i915_sysfs.c revision 1.2 1 /* $NetBSD: i915_sysfs.c,v 1.2 2018/08/27 04:58:24 riastradh Exp $ */
2
3 /*
4 * Copyright 2012 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Ben Widawsky <ben (at) bwidawsk.net>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: i915_sysfs.c,v 1.2 2018/08/27 04:58:24 riastradh Exp $");
32
33 #include <linux/device.h>
34 #include <linux/module.h>
35 #include <linux/stat.h>
36 #include <linux/sysfs.h>
37 #include "intel_drv.h"
38 #include "i915_drv.h"
39
40 #define dev_to_drm_minor(d) dev_get_drvdata((d))
41
42 #ifdef CONFIG_PM
43 static u32 calc_residency(struct drm_device *dev, const u32 reg)
44 {
45 struct drm_i915_private *dev_priv = dev->dev_private;
46 u64 raw_time; /* 32b value may overflow during fixed point math */
47 u64 units = 128ULL, div = 100000ULL;
48 u32 ret;
49
50 if (!intel_enable_rc6(dev))
51 return 0;
52
53 intel_runtime_pm_get(dev_priv);
54
55 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
56 if (IS_VALLEYVIEW(dev)) {
57 units = 1;
58 div = dev_priv->czclk_freq;
59
60 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
61 units <<= 8;
62 } else if (IS_BROXTON(dev)) {
63 units = 1;
64 div = 1200; /* 833.33ns */
65 }
66
67 raw_time = I915_READ(reg) * units;
68 ret = DIV_ROUND_UP_ULL(raw_time, div);
69
70 intel_runtime_pm_put(dev_priv);
71 return ret;
72 }
73
74 static ssize_t
75 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
76 {
77 struct drm_minor *dminor = dev_to_drm_minor(kdev);
78 return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
79 }
80
81 static ssize_t
82 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
83 {
84 struct drm_minor *dminor = dev_get_drvdata(kdev);
85 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
86 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
87 }
88
89 static ssize_t
90 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
91 {
92 struct drm_minor *dminor = dev_to_drm_minor(kdev);
93 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
94 return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
95 }
96
97 static ssize_t
98 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
99 {
100 struct drm_minor *dminor = dev_to_drm_minor(kdev);
101 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
102 return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
103 }
104
105 static ssize_t
106 show_media_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
107 {
108 struct drm_minor *dminor = dev_get_drvdata(kdev);
109 u32 rc6_residency = calc_residency(dminor->dev, VLV_GT_MEDIA_RC6);
110 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
111 }
112
113 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
114 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
115 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
116 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
117 static DEVICE_ATTR(media_rc6_residency_ms, S_IRUGO, show_media_rc6_ms, NULL);
118
119 static struct attribute *rc6_attrs[] = {
120 &dev_attr_rc6_enable.attr,
121 &dev_attr_rc6_residency_ms.attr,
122 NULL
123 };
124
125 static struct attribute_group rc6_attr_group = {
126 .name = power_group_name,
127 .attrs = rc6_attrs
128 };
129
130 static struct attribute *rc6p_attrs[] = {
131 &dev_attr_rc6p_residency_ms.attr,
132 &dev_attr_rc6pp_residency_ms.attr,
133 NULL
134 };
135
136 static struct attribute_group rc6p_attr_group = {
137 .name = power_group_name,
138 .attrs = rc6p_attrs
139 };
140
141 static struct attribute *media_rc6_attrs[] = {
142 &dev_attr_media_rc6_residency_ms.attr,
143 NULL
144 };
145
146 static struct attribute_group media_rc6_attr_group = {
147 .name = power_group_name,
148 .attrs = media_rc6_attrs
149 };
150 #endif
151
152 static int l3_access_valid(struct drm_device *dev, loff_t offset)
153 {
154 if (!HAS_L3_DPF(dev))
155 return -EPERM;
156
157 if (offset % 4 != 0)
158 return -EINVAL;
159
160 if (offset >= GEN7_L3LOG_SIZE)
161 return -ENXIO;
162
163 return 0;
164 }
165
166 static ssize_t
167 i915_l3_read(struct file *filp, struct kobject *kobj,
168 struct bin_attribute *attr, char *buf,
169 loff_t offset, size_t count)
170 {
171 struct device *dev = container_of(kobj, struct device, kobj);
172 struct drm_minor *dminor = dev_to_drm_minor(dev);
173 struct drm_device *drm_dev = dminor->dev;
174 struct drm_i915_private *dev_priv = drm_dev->dev_private;
175 int slice = (int)(uintptr_t)attr->private;
176 int ret;
177
178 count = round_down(count, 4);
179
180 ret = l3_access_valid(drm_dev, offset);
181 if (ret)
182 return ret;
183
184 count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
185
186 ret = i915_mutex_lock_interruptible(drm_dev);
187 if (ret)
188 return ret;
189
190 if (dev_priv->l3_parity.remap_info[slice])
191 memcpy(buf,
192 dev_priv->l3_parity.remap_info[slice] + (offset/4),
193 count);
194 else
195 memset(buf, 0, count);
196
197 mutex_unlock(&drm_dev->struct_mutex);
198
199 return count;
200 }
201
202 static ssize_t
203 i915_l3_write(struct file *filp, struct kobject *kobj,
204 struct bin_attribute *attr, char *buf,
205 loff_t offset, size_t count)
206 {
207 struct device *dev = container_of(kobj, struct device, kobj);
208 struct drm_minor *dminor = dev_to_drm_minor(dev);
209 struct drm_device *drm_dev = dminor->dev;
210 struct drm_i915_private *dev_priv = drm_dev->dev_private;
211 struct intel_context *ctx;
212 u32 *temp = NULL; /* Just here to make handling failures easy */
213 int slice = (int)(uintptr_t)attr->private;
214 int ret;
215
216 if (!HAS_HW_CONTEXTS(drm_dev))
217 return -ENXIO;
218
219 ret = l3_access_valid(drm_dev, offset);
220 if (ret)
221 return ret;
222
223 ret = i915_mutex_lock_interruptible(drm_dev);
224 if (ret)
225 return ret;
226
227 if (!dev_priv->l3_parity.remap_info[slice]) {
228 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
229 if (!temp) {
230 mutex_unlock(&drm_dev->struct_mutex);
231 return -ENOMEM;
232 }
233 }
234
235 ret = i915_gpu_idle(drm_dev);
236 if (ret) {
237 kfree(temp);
238 mutex_unlock(&drm_dev->struct_mutex);
239 return ret;
240 }
241
242 /* TODO: Ideally we really want a GPU reset here to make sure errors
243 * aren't propagated. Since I cannot find a stable way to reset the GPU
244 * at this point it is left as a TODO.
245 */
246 if (temp)
247 dev_priv->l3_parity.remap_info[slice] = temp;
248
249 memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
250
251 /* NB: We defer the remapping until we switch to the context */
252 list_for_each_entry(ctx, &dev_priv->context_list, link)
253 ctx->remap_slice |= (1<<slice);
254
255 mutex_unlock(&drm_dev->struct_mutex);
256
257 return count;
258 }
259
260 static struct bin_attribute dpf_attrs = {
261 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
262 .size = GEN7_L3LOG_SIZE,
263 .read = i915_l3_read,
264 .write = i915_l3_write,
265 .mmap = NULL,
266 .private = (void *)0
267 };
268
269 static struct bin_attribute dpf_attrs_1 = {
270 .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
271 .size = GEN7_L3LOG_SIZE,
272 .read = i915_l3_read,
273 .write = i915_l3_write,
274 .mmap = NULL,
275 .private = (void *)1
276 };
277
278 static ssize_t gt_act_freq_mhz_show(struct device *kdev,
279 struct device_attribute *attr, char *buf)
280 {
281 struct drm_minor *minor = dev_to_drm_minor(kdev);
282 struct drm_device *dev = minor->dev;
283 struct drm_i915_private *dev_priv = dev->dev_private;
284 int ret;
285
286 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
287
288 intel_runtime_pm_get(dev_priv);
289
290 mutex_lock(&dev_priv->rps.hw_lock);
291 if (IS_VALLEYVIEW(dev_priv->dev)) {
292 u32 freq;
293 freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
294 ret = intel_gpu_freq(dev_priv, (freq >> 8) & 0xff);
295 } else {
296 u32 rpstat = I915_READ(GEN6_RPSTAT1);
297 if (IS_GEN9(dev_priv))
298 ret = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
299 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
300 ret = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
301 else
302 ret = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
303 ret = intel_gpu_freq(dev_priv, ret);
304 }
305 mutex_unlock(&dev_priv->rps.hw_lock);
306
307 intel_runtime_pm_put(dev_priv);
308
309 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
310 }
311
312 static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
313 struct device_attribute *attr, char *buf)
314 {
315 struct drm_minor *minor = dev_to_drm_minor(kdev);
316 struct drm_device *dev = minor->dev;
317 struct drm_i915_private *dev_priv = dev->dev_private;
318 int ret;
319
320 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
321
322 intel_runtime_pm_get(dev_priv);
323
324 mutex_lock(&dev_priv->rps.hw_lock);
325 ret = intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq);
326 mutex_unlock(&dev_priv->rps.hw_lock);
327
328 intel_runtime_pm_put(dev_priv);
329
330 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
331 }
332
333 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
334 struct device_attribute *attr, char *buf)
335 {
336 struct drm_minor *minor = dev_to_drm_minor(kdev);
337 struct drm_device *dev = minor->dev;
338 struct drm_i915_private *dev_priv = dev->dev_private;
339
340 return snprintf(buf, PAGE_SIZE,
341 "%d\n",
342 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
343 }
344
345 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
346 {
347 struct drm_minor *minor = dev_to_drm_minor(kdev);
348 struct drm_device *dev = minor->dev;
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 int ret;
351
352 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
353
354 mutex_lock(&dev_priv->rps.hw_lock);
355 ret = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
356 mutex_unlock(&dev_priv->rps.hw_lock);
357
358 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
359 }
360
361 static ssize_t gt_max_freq_mhz_store(struct device *kdev,
362 struct device_attribute *attr,
363 const char *buf, size_t count)
364 {
365 struct drm_minor *minor = dev_to_drm_minor(kdev);
366 struct drm_device *dev = minor->dev;
367 struct drm_i915_private *dev_priv = dev->dev_private;
368 u32 val;
369 ssize_t ret;
370
371 ret = kstrtou32(buf, 0, &val);
372 if (ret)
373 return ret;
374
375 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
376
377 mutex_lock(&dev_priv->rps.hw_lock);
378
379 val = intel_freq_opcode(dev_priv, val);
380
381 if (val < dev_priv->rps.min_freq ||
382 val > dev_priv->rps.max_freq ||
383 val < dev_priv->rps.min_freq_softlimit) {
384 mutex_unlock(&dev_priv->rps.hw_lock);
385 return -EINVAL;
386 }
387
388 if (val > dev_priv->rps.rp0_freq)
389 DRM_DEBUG("User requested overclocking to %d\n",
390 intel_gpu_freq(dev_priv, val));
391
392 dev_priv->rps.max_freq_softlimit = val;
393
394 val = clamp_t(int, dev_priv->rps.cur_freq,
395 dev_priv->rps.min_freq_softlimit,
396 dev_priv->rps.max_freq_softlimit);
397
398 /* We still need *_set_rps to process the new max_delay and
399 * update the interrupt limits and PMINTRMSK even though
400 * frequency request may be unchanged. */
401 intel_set_rps(dev, val);
402
403 mutex_unlock(&dev_priv->rps.hw_lock);
404
405 return count;
406 }
407
408 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
409 {
410 struct drm_minor *minor = dev_to_drm_minor(kdev);
411 struct drm_device *dev = minor->dev;
412 struct drm_i915_private *dev_priv = dev->dev_private;
413 int ret;
414
415 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
416
417 mutex_lock(&dev_priv->rps.hw_lock);
418 ret = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
419 mutex_unlock(&dev_priv->rps.hw_lock);
420
421 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
422 }
423
424 static ssize_t gt_min_freq_mhz_store(struct device *kdev,
425 struct device_attribute *attr,
426 const char *buf, size_t count)
427 {
428 struct drm_minor *minor = dev_to_drm_minor(kdev);
429 struct drm_device *dev = minor->dev;
430 struct drm_i915_private *dev_priv = dev->dev_private;
431 u32 val;
432 ssize_t ret;
433
434 ret = kstrtou32(buf, 0, &val);
435 if (ret)
436 return ret;
437
438 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
439
440 mutex_lock(&dev_priv->rps.hw_lock);
441
442 val = intel_freq_opcode(dev_priv, val);
443
444 if (val < dev_priv->rps.min_freq ||
445 val > dev_priv->rps.max_freq ||
446 val > dev_priv->rps.max_freq_softlimit) {
447 mutex_unlock(&dev_priv->rps.hw_lock);
448 return -EINVAL;
449 }
450
451 dev_priv->rps.min_freq_softlimit = val;
452
453 val = clamp_t(int, dev_priv->rps.cur_freq,
454 dev_priv->rps.min_freq_softlimit,
455 dev_priv->rps.max_freq_softlimit);
456
457 /* We still need *_set_rps to process the new min_delay and
458 * update the interrupt limits and PMINTRMSK even though
459 * frequency request may be unchanged. */
460 intel_set_rps(dev, val);
461
462 mutex_unlock(&dev_priv->rps.hw_lock);
463
464 return count;
465
466 }
467
468 static DEVICE_ATTR(gt_act_freq_mhz, S_IRUGO, gt_act_freq_mhz_show, NULL);
469 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
470 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
471 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
472
473 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
474
475 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
476 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
477 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
478 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
479
480 /* For now we have a static number of RP states */
481 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
482 {
483 struct drm_minor *minor = dev_to_drm_minor(kdev);
484 struct drm_device *dev = minor->dev;
485 struct drm_i915_private *dev_priv = dev->dev_private;
486 u32 val;
487
488 if (attr == &dev_attr_gt_RP0_freq_mhz)
489 val = intel_gpu_freq(dev_priv, dev_priv->rps.rp0_freq);
490 else if (attr == &dev_attr_gt_RP1_freq_mhz)
491 val = intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq);
492 else if (attr == &dev_attr_gt_RPn_freq_mhz)
493 val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq);
494 else
495 BUG();
496
497 return snprintf(buf, PAGE_SIZE, "%d\n", val);
498 }
499
500 static const struct attribute *gen6_attrs[] = {
501 &dev_attr_gt_act_freq_mhz.attr,
502 &dev_attr_gt_cur_freq_mhz.attr,
503 &dev_attr_gt_max_freq_mhz.attr,
504 &dev_attr_gt_min_freq_mhz.attr,
505 &dev_attr_gt_RP0_freq_mhz.attr,
506 &dev_attr_gt_RP1_freq_mhz.attr,
507 &dev_attr_gt_RPn_freq_mhz.attr,
508 NULL,
509 };
510
511 static const struct attribute *vlv_attrs[] = {
512 &dev_attr_gt_act_freq_mhz.attr,
513 &dev_attr_gt_cur_freq_mhz.attr,
514 &dev_attr_gt_max_freq_mhz.attr,
515 &dev_attr_gt_min_freq_mhz.attr,
516 &dev_attr_gt_RP0_freq_mhz.attr,
517 &dev_attr_gt_RP1_freq_mhz.attr,
518 &dev_attr_gt_RPn_freq_mhz.attr,
519 &dev_attr_vlv_rpe_freq_mhz.attr,
520 NULL,
521 };
522
523 static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
524 struct bin_attribute *attr, char *buf,
525 loff_t off, size_t count)
526 {
527
528 struct device *kdev = container_of(kobj, struct device, kobj);
529 struct drm_minor *minor = dev_to_drm_minor(kdev);
530 struct drm_device *dev = minor->dev;
531 struct i915_error_state_file_priv error_priv;
532 struct drm_i915_error_state_buf error_str;
533 ssize_t ret_count = 0;
534 int ret;
535
536 memset(&error_priv, 0, sizeof(error_priv));
537
538 ret = i915_error_state_buf_init(&error_str, to_i915(dev), count, off);
539 if (ret)
540 return ret;
541
542 error_priv.dev = dev;
543 i915_error_state_get(dev, &error_priv);
544
545 ret = i915_error_state_to_str(&error_str, &error_priv);
546 if (ret)
547 goto out;
548
549 ret_count = count < error_str.bytes ? count : error_str.bytes;
550
551 memcpy(buf, error_str.buf, ret_count);
552 out:
553 i915_error_state_put(&error_priv);
554 i915_error_state_buf_release(&error_str);
555
556 return ret ?: ret_count;
557 }
558
559 static ssize_t error_state_write(struct file *file, struct kobject *kobj,
560 struct bin_attribute *attr, char *buf,
561 loff_t off, size_t count)
562 {
563 struct device *kdev = container_of(kobj, struct device, kobj);
564 struct drm_minor *minor = dev_to_drm_minor(kdev);
565 struct drm_device *dev = minor->dev;
566 int ret;
567
568 DRM_DEBUG_DRIVER("Resetting error state\n");
569
570 ret = mutex_lock_interruptible(&dev->struct_mutex);
571 if (ret)
572 return ret;
573
574 i915_destroy_error_state(dev);
575 mutex_unlock(&dev->struct_mutex);
576
577 return count;
578 }
579
580 static struct bin_attribute error_state_attr = {
581 .attr.name = "error",
582 .attr.mode = S_IRUSR | S_IWUSR,
583 .size = 0,
584 .read = error_state_read,
585 .write = error_state_write,
586 };
587
588 void i915_setup_sysfs(struct drm_device *dev)
589 {
590 int ret;
591
592 #ifdef CONFIG_PM
593 if (HAS_RC6(dev)) {
594 ret = sysfs_merge_group(&dev->primary->kdev->kobj,
595 &rc6_attr_group);
596 if (ret)
597 DRM_ERROR("RC6 residency sysfs setup failed\n");
598 }
599 if (HAS_RC6p(dev)) {
600 ret = sysfs_merge_group(&dev->primary->kdev->kobj,
601 &rc6p_attr_group);
602 if (ret)
603 DRM_ERROR("RC6p residency sysfs setup failed\n");
604 }
605 if (IS_VALLEYVIEW(dev)) {
606 ret = sysfs_merge_group(&dev->primary->kdev->kobj,
607 &media_rc6_attr_group);
608 if (ret)
609 DRM_ERROR("Media RC6 residency sysfs setup failed\n");
610 }
611 #endif
612 if (HAS_L3_DPF(dev)) {
613 ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
614 if (ret)
615 DRM_ERROR("l3 parity sysfs setup failed\n");
616
617 if (NUM_L3_SLICES(dev) > 1) {
618 ret = device_create_bin_file(dev->primary->kdev,
619 &dpf_attrs_1);
620 if (ret)
621 DRM_ERROR("l3 parity slice 1 setup failed\n");
622 }
623 }
624
625 ret = 0;
626 if (IS_VALLEYVIEW(dev))
627 ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
628 else if (INTEL_INFO(dev)->gen >= 6)
629 ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
630 if (ret)
631 DRM_ERROR("RPS sysfs setup failed\n");
632
633 ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
634 &error_state_attr);
635 if (ret)
636 DRM_ERROR("error_state sysfs setup failed\n");
637 }
638
639 void i915_teardown_sysfs(struct drm_device *dev)
640 {
641 sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
642 if (IS_VALLEYVIEW(dev))
643 sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
644 else
645 sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
646 device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
647 device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
648 #ifdef CONFIG_PM
649 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
650 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6p_attr_group);
651 #endif
652 }
653