i915_vgpu.c revision 1.1 1 /* $NetBSD: i915_vgpu.c,v 1.1 2018/08/27 01:34:54 riastradh Exp $ */
2
3 /*
4 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: i915_vgpu.c,v 1.1 2018/08/27 01:34:54 riastradh Exp $");
28
29 #include "intel_drv.h"
30 #include "i915_vgpu.h"
31
32 /**
33 * DOC: Intel GVT-g guest support
34 *
35 * Intel GVT-g is a graphics virtualization technology which shares the
36 * GPU among multiple virtual machines on a time-sharing basis. Each
37 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
38 * features as the underlying physical GPU (pGPU), so i915 driver can run
39 * seamlessly in a virtual machine. This file provides vGPU specific
40 * optimizations when running in a virtual machine, to reduce the complexity
41 * of vGPU emulation and to improve the overall performance.
42 *
43 * A primary function introduced here is so-called "address space ballooning"
44 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
45 * so each VM can directly access a portion of the memory without hypervisor's
46 * intervention, e.g. filling textures or queuing commands. However with the
47 * partitioning an unmodified i915 driver would assume a smaller graphics
48 * memory starting from address ZERO, then requires vGPU emulation module to
49 * translate the graphics address between 'guest view' and 'host view', for
50 * all registers and command opcodes which contain a graphics memory address.
51 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
52 * by telling the exact partitioning knowledge to each guest i915 driver, which
53 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
54 * emulation module only needs to scan and validate graphics addresses without
55 * complexity of address translation.
56 *
57 */
58
59 /**
60 * i915_check_vgpu - detect virtual GPU
61 * @dev: drm device *
62 *
63 * This function is called at the initialization stage, to detect whether
64 * running on a vGPU.
65 */
66 void i915_check_vgpu(struct drm_device *dev)
67 {
68 struct drm_i915_private *dev_priv = to_i915(dev);
69 uint64_t magic;
70 uint32_t version;
71
72 BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
73
74 if (!IS_HASWELL(dev))
75 return;
76
77 magic = readq(dev_priv->regs + vgtif_reg(magic));
78 if (magic != VGT_MAGIC)
79 return;
80
81 version = INTEL_VGT_IF_VERSION_ENCODE(
82 readw(dev_priv->regs + vgtif_reg(version_major)),
83 readw(dev_priv->regs + vgtif_reg(version_minor)));
84 if (version != INTEL_VGT_IF_VERSION) {
85 DRM_INFO("VGT interface version mismatch!\n");
86 return;
87 }
88
89 dev_priv->vgpu.active = true;
90 DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
91 }
92
93 struct _balloon_info_ {
94 /*
95 * There are up to 2 regions per mappable/unmappable graphic
96 * memory that might be ballooned. Here, index 0/1 is for mappable
97 * graphic memory, 2/3 for unmappable graphic memory.
98 */
99 struct drm_mm_node space[4];
100 };
101
102 static struct _balloon_info_ bl_info;
103
104 /**
105 * intel_vgt_deballoon - deballoon reserved graphics address trunks
106 *
107 * This function is called to deallocate the ballooned-out graphic memory, when
108 * driver is unloaded or when ballooning fails.
109 */
110 void intel_vgt_deballoon(void)
111 {
112 int i;
113
114 DRM_DEBUG("VGT deballoon.\n");
115
116 for (i = 0; i < 4; i++) {
117 if (bl_info.space[i].allocated)
118 drm_mm_remove_node(&bl_info.space[i]);
119 }
120
121 memset(&bl_info, 0, sizeof(bl_info));
122 }
123
124 static int vgt_balloon_space(struct drm_mm *mm,
125 struct drm_mm_node *node,
126 unsigned long start, unsigned long end)
127 {
128 unsigned long size = end - start;
129
130 if (start == end)
131 return -EINVAL;
132
133 DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
134 start, end, size / 1024);
135
136 node->start = start;
137 node->size = size;
138
139 return drm_mm_reserve_node(mm, node);
140 }
141
142 /**
143 * intel_vgt_balloon - balloon out reserved graphics address trunks
144 * @dev: drm device
145 *
146 * This function is called at the initialization stage, to balloon out the
147 * graphic address space allocated to other vGPUs, by marking these spaces as
148 * reserved. The ballooning related knowledge(starting address and size of
149 * the mappable/unmappable graphic memory) is described in the vgt_if structure
150 * in a reserved mmio range.
151 *
152 * To give an example, the drawing below depicts one typical scenario after
153 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
154 * out each for the mappable and the non-mappable part. From the vGPU1 point of
155 * view, the total size is the same as the physical one, with the start address
156 * of its graphic space being zero. Yet there are some portions ballooned out(
157 * the shadow part, which are marked as reserved by drm allocator). From the
158 * host point of view, the graphic address space is partitioned by multiple
159 * vGPUs in different VMs.
160 *
161 * vGPU1 view Host view
162 * 0 ------> +-----------+ +-----------+
163 * ^ |///////////| | vGPU3 |
164 * | |///////////| +-----------+
165 * | |///////////| | vGPU2 |
166 * | +-----------+ +-----------+
167 * mappable GM | available | ==> | vGPU1 |
168 * | +-----------+ +-----------+
169 * | |///////////| | |
170 * v |///////////| | Host |
171 * +=======+===========+ +===========+
172 * ^ |///////////| | vGPU3 |
173 * | |///////////| +-----------+
174 * | |///////////| | vGPU2 |
175 * | +-----------+ +-----------+
176 * unmappable GM | available | ==> | vGPU1 |
177 * | +-----------+ +-----------+
178 * | |///////////| | |
179 * | |///////////| | Host |
180 * v |///////////| | |
181 * total GM size ------> +-----------+ +-----------+
182 *
183 * Returns:
184 * zero on success, non-zero if configuration invalid or ballooning failed
185 */
186 int intel_vgt_balloon(struct drm_device *dev)
187 {
188 struct drm_i915_private *dev_priv = to_i915(dev);
189 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
190 unsigned long ggtt_vm_end = ggtt_vm->start + ggtt_vm->total;
191
192 unsigned long mappable_base, mappable_size, mappable_end;
193 unsigned long unmappable_base, unmappable_size, unmappable_end;
194 int ret;
195
196 mappable_base = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.base));
197 mappable_size = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.size));
198 unmappable_base = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.base));
199 unmappable_size = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.size));
200
201 mappable_end = mappable_base + mappable_size;
202 unmappable_end = unmappable_base + unmappable_size;
203
204 DRM_INFO("VGT ballooning configuration:\n");
205 DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
206 mappable_base, mappable_size / 1024);
207 DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
208 unmappable_base, unmappable_size / 1024);
209
210 if (mappable_base < ggtt_vm->start ||
211 mappable_end > dev_priv->gtt.mappable_end ||
212 unmappable_base < dev_priv->gtt.mappable_end ||
213 unmappable_end > ggtt_vm_end) {
214 DRM_ERROR("Invalid ballooning configuration!\n");
215 return -EINVAL;
216 }
217
218 /* Unmappable graphic memory ballooning */
219 if (unmappable_base > dev_priv->gtt.mappable_end) {
220 ret = vgt_balloon_space(&ggtt_vm->mm,
221 &bl_info.space[2],
222 dev_priv->gtt.mappable_end,
223 unmappable_base);
224
225 if (ret)
226 goto err;
227 }
228
229 /*
230 * No need to partition out the last physical page,
231 * because it is reserved to the guard page.
232 */
233 if (unmappable_end < ggtt_vm_end - PAGE_SIZE) {
234 ret = vgt_balloon_space(&ggtt_vm->mm,
235 &bl_info.space[3],
236 unmappable_end,
237 ggtt_vm_end - PAGE_SIZE);
238 if (ret)
239 goto err;
240 }
241
242 /* Mappable graphic memory ballooning */
243 if (mappable_base > ggtt_vm->start) {
244 ret = vgt_balloon_space(&ggtt_vm->mm,
245 &bl_info.space[0],
246 ggtt_vm->start, mappable_base);
247
248 if (ret)
249 goto err;
250 }
251
252 if (mappable_end < dev_priv->gtt.mappable_end) {
253 ret = vgt_balloon_space(&ggtt_vm->mm,
254 &bl_info.space[1],
255 mappable_end,
256 dev_priv->gtt.mappable_end);
257
258 if (ret)
259 goto err;
260 }
261
262 DRM_INFO("VGT balloon successfully\n");
263 return 0;
264
265 err:
266 DRM_ERROR("VGT balloon fail\n");
267 intel_vgt_deballoon();
268 return ret;
269 }
270