i915_vgpu.c revision 1.3 1 /* $NetBSD: i915_vgpu.c,v 1.3 2018/08/27 07:16:10 riastradh Exp $ */
2
3 /*
4 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: i915_vgpu.c,v 1.3 2018/08/27 07:16:10 riastradh Exp $");
28
29 #include "intel_drv.h"
30 #include "i915_vgpu.h"
31
32 /**
33 * DOC: Intel GVT-g guest support
34 *
35 * Intel GVT-g is a graphics virtualization technology which shares the
36 * GPU among multiple virtual machines on a time-sharing basis. Each
37 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
38 * features as the underlying physical GPU (pGPU), so i915 driver can run
39 * seamlessly in a virtual machine. This file provides vGPU specific
40 * optimizations when running in a virtual machine, to reduce the complexity
41 * of vGPU emulation and to improve the overall performance.
42 *
43 * A primary function introduced here is so-called "address space ballooning"
44 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
45 * so each VM can directly access a portion of the memory without hypervisor's
46 * intervention, e.g. filling textures or queuing commands. However with the
47 * partitioning an unmodified i915 driver would assume a smaller graphics
48 * memory starting from address ZERO, then requires vGPU emulation module to
49 * translate the graphics address between 'guest view' and 'host view', for
50 * all registers and command opcodes which contain a graphics memory address.
51 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
52 * by telling the exact partitioning knowledge to each guest i915 driver, which
53 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
54 * emulation module only needs to scan and validate graphics addresses without
55 * complexity of address translation.
56 *
57 */
58
59 /**
60 * i915_check_vgpu - detect virtual GPU
61 * @dev: drm device *
62 *
63 * This function is called at the initialization stage, to detect whether
64 * running on a vGPU.
65 */
66 void i915_check_vgpu(struct drm_device *dev)
67 {
68 struct drm_i915_private *dev_priv = to_i915(dev);
69 uint64_t magic;
70 uint32_t version;
71
72 BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
73
74 if (!IS_HASWELL(dev))
75 return;
76
77 #ifdef __NetBSD__
78 magic = bus_space_read_8(dev_priv->regs_bst, dev_priv->regs_bsh,
79 vgtif_reg(magic));
80 #else
81 magic = readq(dev_priv->regs + vgtif_reg(magic));
82 #endif
83 if (magic != VGT_MAGIC)
84 return;
85
86 #ifdef __NetBSD__
87 version = INTEL_VGT_IF_VERSION_ENCODE(
88 bus_space_read_2(dev_priv->regs_bst, dev_priv->regs_bsh,
89 vgtif_reg(version_major)),
90 bus_space_read_2(dev_priv->regs_bst, dev_priv->regs_bsh,
91 vgtif_reg(version_minor)));
92 #else
93 version = INTEL_VGT_IF_VERSION_ENCODE(
94 readw(dev_priv->regs + vgtif_reg(version_major)),
95 readw(dev_priv->regs + vgtif_reg(version_minor)));
96 #endif
97 if (version != INTEL_VGT_IF_VERSION) {
98 DRM_INFO("VGT interface version mismatch!\n");
99 return;
100 }
101
102 dev_priv->vgpu.active = true;
103 DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
104 }
105
106 struct _balloon_info_ {
107 /*
108 * There are up to 2 regions per mappable/unmappable graphic
109 * memory that might be ballooned. Here, index 0/1 is for mappable
110 * graphic memory, 2/3 for unmappable graphic memory.
111 */
112 struct drm_mm_node space[4];
113 };
114
115 static struct _balloon_info_ bl_info;
116
117 /**
118 * intel_vgt_deballoon - deballoon reserved graphics address trunks
119 *
120 * This function is called to deallocate the ballooned-out graphic memory, when
121 * driver is unloaded or when ballooning fails.
122 */
123 void intel_vgt_deballoon(void)
124 {
125 int i;
126
127 DRM_DEBUG("VGT deballoon.\n");
128
129 for (i = 0; i < 4; i++) {
130 if (bl_info.space[i].allocated)
131 drm_mm_remove_node(&bl_info.space[i]);
132 }
133
134 memset(&bl_info, 0, sizeof(bl_info));
135 }
136
137 static int vgt_balloon_space(struct drm_mm *mm,
138 struct drm_mm_node *node,
139 unsigned long start, unsigned long end)
140 {
141 unsigned long size = end - start;
142
143 if (start == end)
144 return -EINVAL;
145
146 DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
147 start, end, size / 1024);
148
149 node->start = start;
150 node->size = size;
151
152 return drm_mm_reserve_node(mm, node);
153 }
154
155 /**
156 * intel_vgt_balloon - balloon out reserved graphics address trunks
157 * @dev: drm device
158 *
159 * This function is called at the initialization stage, to balloon out the
160 * graphic address space allocated to other vGPUs, by marking these spaces as
161 * reserved. The ballooning related knowledge(starting address and size of
162 * the mappable/unmappable graphic memory) is described in the vgt_if structure
163 * in a reserved mmio range.
164 *
165 * To give an example, the drawing below depicts one typical scenario after
166 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
167 * out each for the mappable and the non-mappable part. From the vGPU1 point of
168 * view, the total size is the same as the physical one, with the start address
169 * of its graphic space being zero. Yet there are some portions ballooned out(
170 * the shadow part, which are marked as reserved by drm allocator). From the
171 * host point of view, the graphic address space is partitioned by multiple
172 * vGPUs in different VMs.
173 *
174 * vGPU1 view Host view
175 * 0 ------> +-----------+ +-----------+
176 * ^ |///////////| | vGPU3 |
177 * | |///////////| +-----------+
178 * | |///////////| | vGPU2 |
179 * | +-----------+ +-----------+
180 * mappable GM | available | ==> | vGPU1 |
181 * | +-----------+ +-----------+
182 * | |///////////| | |
183 * v |///////////| | Host |
184 * +=======+===========+ +===========+
185 * ^ |///////////| | vGPU3 |
186 * | |///////////| +-----------+
187 * | |///////////| | vGPU2 |
188 * | +-----------+ +-----------+
189 * unmappable GM | available | ==> | vGPU1 |
190 * | +-----------+ +-----------+
191 * | |///////////| | |
192 * | |///////////| | Host |
193 * v |///////////| | |
194 * total GM size ------> +-----------+ +-----------+
195 *
196 * Returns:
197 * zero on success, non-zero if configuration invalid or ballooning failed
198 */
199 int intel_vgt_balloon(struct drm_device *dev)
200 {
201 struct drm_i915_private *dev_priv = to_i915(dev);
202 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
203 unsigned long ggtt_vm_end = ggtt_vm->start + ggtt_vm->total;
204
205 unsigned long mappable_base, mappable_size, mappable_end;
206 unsigned long unmappable_base, unmappable_size, unmappable_end;
207 int ret;
208
209 mappable_base = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.base));
210 mappable_size = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.size));
211 unmappable_base = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.base));
212 unmappable_size = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.size));
213
214 mappable_end = mappable_base + mappable_size;
215 unmappable_end = unmappable_base + unmappable_size;
216
217 DRM_INFO("VGT ballooning configuration:\n");
218 DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
219 mappable_base, mappable_size / 1024);
220 DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
221 unmappable_base, unmappable_size / 1024);
222
223 if (mappable_base < ggtt_vm->start ||
224 mappable_end > dev_priv->gtt.mappable_end ||
225 unmappable_base < dev_priv->gtt.mappable_end ||
226 unmappable_end > ggtt_vm_end) {
227 DRM_ERROR("Invalid ballooning configuration!\n");
228 return -EINVAL;
229 }
230
231 /* Unmappable graphic memory ballooning */
232 if (unmappable_base > dev_priv->gtt.mappable_end) {
233 ret = vgt_balloon_space(&ggtt_vm->mm,
234 &bl_info.space[2],
235 dev_priv->gtt.mappable_end,
236 unmappable_base);
237
238 if (ret)
239 goto err;
240 }
241
242 /*
243 * No need to partition out the last physical page,
244 * because it is reserved to the guard page.
245 */
246 if (unmappable_end < ggtt_vm_end - PAGE_SIZE) {
247 ret = vgt_balloon_space(&ggtt_vm->mm,
248 &bl_info.space[3],
249 unmappable_end,
250 ggtt_vm_end - PAGE_SIZE);
251 if (ret)
252 goto err;
253 }
254
255 /* Mappable graphic memory ballooning */
256 if (mappable_base > ggtt_vm->start) {
257 ret = vgt_balloon_space(&ggtt_vm->mm,
258 &bl_info.space[0],
259 ggtt_vm->start, mappable_base);
260
261 if (ret)
262 goto err;
263 }
264
265 if (mappable_end < dev_priv->gtt.mappable_end) {
266 ret = vgt_balloon_space(&ggtt_vm->mm,
267 &bl_info.space[1],
268 mappable_end,
269 dev_priv->gtt.mappable_end);
270
271 if (ret)
272 goto err;
273 }
274
275 DRM_INFO("VGT balloon successfully\n");
276 return 0;
277
278 err:
279 DRM_ERROR("VGT balloon fail\n");
280 intel_vgt_deballoon();
281 return ret;
282 }
283