Home | History | Annotate | Line # | Download | only in i915
i915_vgpu.c revision 1.5
      1 /*	$NetBSD: i915_vgpu.c,v 1.5 2021/12/18 23:45:28 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     23  * SOFTWARE.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: i915_vgpu.c,v 1.5 2021/12/18 23:45:28 riastradh Exp $");
     28 
     29 #include "i915_vgpu.h"
     30 
     31 /**
     32  * DOC: Intel GVT-g guest support
     33  *
     34  * Intel GVT-g is a graphics virtualization technology which shares the
     35  * GPU among multiple virtual machines on a time-sharing basis. Each
     36  * virtual machine is presented a virtual GPU (vGPU), which has equivalent
     37  * features as the underlying physical GPU (pGPU), so i915 driver can run
     38  * seamlessly in a virtual machine. This file provides vGPU specific
     39  * optimizations when running in a virtual machine, to reduce the complexity
     40  * of vGPU emulation and to improve the overall performance.
     41  *
     42  * A primary function introduced here is so-called "address space ballooning"
     43  * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
     44  * so each VM can directly access a portion of the memory without hypervisor's
     45  * intervention, e.g. filling textures or queuing commands. However with the
     46  * partitioning an unmodified i915 driver would assume a smaller graphics
     47  * memory starting from address ZERO, then requires vGPU emulation module to
     48  * translate the graphics address between 'guest view' and 'host view', for
     49  * all registers and command opcodes which contain a graphics memory address.
     50  * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
     51  * by telling the exact partitioning knowledge to each guest i915 driver, which
     52  * then reserves and prevents non-allocated portions from allocation. Thus vGPU
     53  * emulation module only needs to scan and validate graphics addresses without
     54  * complexity of address translation.
     55  *
     56  */
     57 
     58 /**
     59  * i915_detect_vgpu - detect virtual GPU
     60  * @dev_priv: i915 device private
     61  *
     62  * This function is called at the initialization stage, to detect whether
     63  * running on a vGPU.
     64  */
     65 void i915_detect_vgpu(struct drm_i915_private *dev_priv)
     66 {
     67 	struct pci_dev *pdev = dev_priv->drm.pdev;
     68 	u64 magic;
     69 	u16 version_major;
     70 	void __iomem *shared_area;
     71 
     72 	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
     73 
     74 	/*
     75 	 * This is called before we setup the main MMIO BAR mappings used via
     76 	 * the uncore structure, so we need to access the BAR directly. Since
     77 	 * we do not support VGT on older gens, return early so we don't have
     78 	 * to consider differently numbered or sized MMIO bars
     79 	 */
     80 	if (INTEL_GEN(dev_priv) < 6)
     81 		return;
     82 
     83 	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
     84 	if (!shared_area) {
     85 		DRM_ERROR("failed to map MMIO bar to check for VGT\n");
     86 		return;
     87 	}
     88 
     89 #ifdef __NetBSD__
     90 #  ifdef _LP64
     91 	magic = bus_space_read_8(dev_priv->regs_bst, dev_priv->regs_bsh,
     92 	    vgtif_reg(magic));
     93 #  else
     94 	magic = bus_space_read_4(dev_priv->regs_bst, dev_priv->regs_bsh,
     95 	    vgtif_reg(magic));
     96 	magic |= (uint64_t)bus_space_read_4(dev_priv->regs_bst,
     97 	    dev_priv->regs_bsh, vgtif_reg(magic) + 4) << 32;
     98 #  endif
     99 #else
    100 	magic = readq(shared_area + vgtif_offset(magic));
    101 #endif
    102 	if (magic != VGT_MAGIC)
    103 		goto out;
    104 
    105 #ifdef __NetBSD__
    106 	version_major = bus_space_read_2(dev_priv->regs_bst, dev_priv->regs_bsh,
    107 		    vgtif_reg(version_major));
    108 #else
    109 	version_major = readw(shared_area + vgtif_offset(version_major));
    110 #endif
    111 	if (version_major < VGT_VERSION_MAJOR) {
    112 		DRM_INFO("VGT interface version mismatch!\n");
    113 		goto out;
    114 	}
    115 
    116 	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
    117 
    118 	dev_priv->vgpu.active = true;
    119 	mutex_init(&dev_priv->vgpu.lock);
    120 	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
    121 
    122 out:
    123 	pci_iounmap(pdev, shared_area);
    124 }
    125 
    126 bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
    127 {
    128 	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
    129 }
    130 
    131 struct _balloon_info_ {
    132 	/*
    133 	 * There are up to 2 regions per mappable/unmappable graphic
    134 	 * memory that might be ballooned. Here, index 0/1 is for mappable
    135 	 * graphic memory, 2/3 for unmappable graphic memory.
    136 	 */
    137 	struct drm_mm_node space[4];
    138 };
    139 
    140 static struct _balloon_info_ bl_info;
    141 
    142 static void vgt_deballoon_space(struct i915_ggtt *ggtt,
    143 				struct drm_mm_node *node)
    144 {
    145 	if (!drm_mm_node_allocated(node))
    146 		return;
    147 
    148 	DRM_DEBUG_DRIVER("deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
    149 			 node->start,
    150 			 node->start + node->size,
    151 			 node->size / 1024);
    152 
    153 	ggtt->vm.reserved -= node->size;
    154 	drm_mm_remove_node(node);
    155 }
    156 
    157 /**
    158  * intel_vgt_deballoon - deballoon reserved graphics address trunks
    159  * @ggtt: the global GGTT from which we reserved earlier
    160  *
    161  * This function is called to deallocate the ballooned-out graphic memory, when
    162  * driver is unloaded or when ballooning fails.
    163  */
    164 void intel_vgt_deballoon(struct i915_ggtt *ggtt)
    165 {
    166 	int i;
    167 
    168 	if (!intel_vgpu_active(ggtt->vm.i915))
    169 		return;
    170 
    171 	DRM_DEBUG("VGT deballoon.\n");
    172 
    173 	for (i = 0; i < 4; i++)
    174 		vgt_deballoon_space(ggtt, &bl_info.space[i]);
    175 }
    176 
    177 static int vgt_balloon_space(struct i915_ggtt *ggtt,
    178 			     struct drm_mm_node *node,
    179 			     unsigned long start, unsigned long end)
    180 {
    181 	unsigned long size = end - start;
    182 	int ret;
    183 
    184 	if (start >= end)
    185 		return -EINVAL;
    186 
    187 	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
    188 		 start, end, size / 1024);
    189 	ret = i915_gem_gtt_reserve(&ggtt->vm, node,
    190 				   size, start, I915_COLOR_UNEVICTABLE,
    191 				   0);
    192 	if (!ret)
    193 		ggtt->vm.reserved += size;
    194 
    195 	return ret;
    196 }
    197 
    198 /**
    199  * intel_vgt_balloon - balloon out reserved graphics address trunks
    200  * @ggtt: the global GGTT from which to reserve
    201  *
    202  * This function is called at the initialization stage, to balloon out the
    203  * graphic address space allocated to other vGPUs, by marking these spaces as
    204  * reserved. The ballooning related knowledge(starting address and size of
    205  * the mappable/unmappable graphic memory) is described in the vgt_if structure
    206  * in a reserved mmio range.
    207  *
    208  * To give an example, the drawing below depicts one typical scenario after
    209  * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
    210  * out each for the mappable and the non-mappable part. From the vGPU1 point of
    211  * view, the total size is the same as the physical one, with the start address
    212  * of its graphic space being zero. Yet there are some portions ballooned out(
    213  * the shadow part, which are marked as reserved by drm allocator). From the
    214  * host point of view, the graphic address space is partitioned by multiple
    215  * vGPUs in different VMs. ::
    216  *
    217  *                         vGPU1 view         Host view
    218  *              0 ------> +-----------+     +-----------+
    219  *                ^       |###########|     |   vGPU3   |
    220  *                |       |###########|     +-----------+
    221  *                |       |###########|     |   vGPU2   |
    222  *                |       +-----------+     +-----------+
    223  *         mappable GM    | available | ==> |   vGPU1   |
    224  *                |       +-----------+     +-----------+
    225  *                |       |###########|     |           |
    226  *                v       |###########|     |   Host    |
    227  *                +=======+===========+     +===========+
    228  *                ^       |###########|     |   vGPU3   |
    229  *                |       |###########|     +-----------+
    230  *                |       |###########|     |   vGPU2   |
    231  *                |       +-----------+     +-----------+
    232  *       unmappable GM    | available | ==> |   vGPU1   |
    233  *                |       +-----------+     +-----------+
    234  *                |       |###########|     |           |
    235  *                |       |###########|     |   Host    |
    236  *                v       |###########|     |           |
    237  *  total GM size ------> +-----------+     +-----------+
    238  *
    239  * Returns:
    240  * zero on success, non-zero if configuration invalid or ballooning failed
    241  */
    242 int intel_vgt_balloon(struct i915_ggtt *ggtt)
    243 {
    244 	struct intel_uncore *uncore = &ggtt->vm.i915->uncore;
    245 	unsigned long ggtt_end = ggtt->vm.total;
    246 
    247 	unsigned long mappable_base, mappable_size, mappable_end;
    248 	unsigned long unmappable_base, unmappable_size, unmappable_end;
    249 	int ret;
    250 
    251 	if (!intel_vgpu_active(ggtt->vm.i915))
    252 		return 0;
    253 
    254 	mappable_base =
    255 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
    256 	mappable_size =
    257 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
    258 	unmappable_base =
    259 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
    260 	unmappable_size =
    261 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
    262 
    263 	mappable_end = mappable_base + mappable_size;
    264 	unmappable_end = unmappable_base + unmappable_size;
    265 
    266 	DRM_INFO("VGT ballooning configuration:\n");
    267 	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
    268 		 mappable_base, mappable_size / 1024);
    269 	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
    270 		 unmappable_base, unmappable_size / 1024);
    271 
    272 	if (mappable_end > ggtt->mappable_end ||
    273 	    unmappable_base < ggtt->mappable_end ||
    274 	    unmappable_end > ggtt_end) {
    275 		DRM_ERROR("Invalid ballooning configuration!\n");
    276 		return -EINVAL;
    277 	}
    278 
    279 	/* Unmappable graphic memory ballooning */
    280 	if (unmappable_base > ggtt->mappable_end) {
    281 		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
    282 					ggtt->mappable_end, unmappable_base);
    283 
    284 		if (ret)
    285 			goto err;
    286 	}
    287 
    288 	if (unmappable_end < ggtt_end) {
    289 		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
    290 					unmappable_end, ggtt_end);
    291 		if (ret)
    292 			goto err_upon_mappable;
    293 	}
    294 
    295 	/* Mappable graphic memory ballooning */
    296 	if (mappable_base) {
    297 		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
    298 					0, mappable_base);
    299 
    300 		if (ret)
    301 			goto err_upon_unmappable;
    302 	}
    303 
    304 	if (mappable_end < ggtt->mappable_end) {
    305 		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
    306 					mappable_end, ggtt->mappable_end);
    307 
    308 		if (ret)
    309 			goto err_below_mappable;
    310 	}
    311 
    312 	DRM_INFO("VGT balloon successfully\n");
    313 	return 0;
    314 
    315 err_below_mappable:
    316 	vgt_deballoon_space(ggtt, &bl_info.space[0]);
    317 err_upon_unmappable:
    318 	vgt_deballoon_space(ggtt, &bl_info.space[3]);
    319 err_upon_mappable:
    320 	vgt_deballoon_space(ggtt, &bl_info.space[2]);
    321 err:
    322 	DRM_ERROR("VGT balloon fail\n");
    323 	return ret;
    324 }
    325