Home | History | Annotate | Line # | Download | only in i915
      1  1.1  riastrad /*	$NetBSD: intel_device_info.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $	*/
      2  1.1  riastrad 
      3  1.1  riastrad /*
      4  1.1  riastrad  * Copyright  2016 Intel Corporation
      5  1.1  riastrad  *
      6  1.1  riastrad  * Permission is hereby granted, free of charge, to any person obtaining a
      7  1.1  riastrad  * copy of this software and associated documentation files (the "Software"),
      8  1.1  riastrad  * to deal in the Software without restriction, including without limitation
      9  1.1  riastrad  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  1.1  riastrad  * and/or sell copies of the Software, and to permit persons to whom the
     11  1.1  riastrad  * Software is furnished to do so, subject to the following conditions:
     12  1.1  riastrad  *
     13  1.1  riastrad  * The above copyright notice and this permission notice (including the next
     14  1.1  riastrad  * paragraph) shall be included in all copies or substantial portions of the
     15  1.1  riastrad  * Software.
     16  1.1  riastrad  *
     17  1.1  riastrad  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  1.1  riastrad  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  1.1  riastrad  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  1.1  riastrad  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  1.1  riastrad  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  1.1  riastrad  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  1.1  riastrad  * IN THE SOFTWARE.
     24  1.1  riastrad  *
     25  1.1  riastrad  */
     26  1.1  riastrad 
     27  1.1  riastrad #include <sys/cdefs.h>
     28  1.1  riastrad __KERNEL_RCSID(0, "$NetBSD: intel_device_info.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $");
     29  1.1  riastrad 
     30  1.1  riastrad #include <drm/drm_print.h>
     31  1.1  riastrad 
     32  1.1  riastrad #include "intel_device_info.h"
     33  1.1  riastrad #include "i915_drv.h"
     34  1.1  riastrad 
     35  1.1  riastrad #define PLATFORM_NAME(x) [INTEL_##x] = #x
     36  1.1  riastrad static const char * const platform_names[] = {
     37  1.1  riastrad 	PLATFORM_NAME(I830),
     38  1.1  riastrad 	PLATFORM_NAME(I845G),
     39  1.1  riastrad 	PLATFORM_NAME(I85X),
     40  1.1  riastrad 	PLATFORM_NAME(I865G),
     41  1.1  riastrad 	PLATFORM_NAME(I915G),
     42  1.1  riastrad 	PLATFORM_NAME(I915GM),
     43  1.1  riastrad 	PLATFORM_NAME(I945G),
     44  1.1  riastrad 	PLATFORM_NAME(I945GM),
     45  1.1  riastrad 	PLATFORM_NAME(G33),
     46  1.1  riastrad 	PLATFORM_NAME(PINEVIEW),
     47  1.1  riastrad 	PLATFORM_NAME(I965G),
     48  1.1  riastrad 	PLATFORM_NAME(I965GM),
     49  1.1  riastrad 	PLATFORM_NAME(G45),
     50  1.1  riastrad 	PLATFORM_NAME(GM45),
     51  1.1  riastrad 	PLATFORM_NAME(IRONLAKE),
     52  1.1  riastrad 	PLATFORM_NAME(SANDYBRIDGE),
     53  1.1  riastrad 	PLATFORM_NAME(IVYBRIDGE),
     54  1.1  riastrad 	PLATFORM_NAME(VALLEYVIEW),
     55  1.1  riastrad 	PLATFORM_NAME(HASWELL),
     56  1.1  riastrad 	PLATFORM_NAME(BROADWELL),
     57  1.1  riastrad 	PLATFORM_NAME(CHERRYVIEW),
     58  1.1  riastrad 	PLATFORM_NAME(SKYLAKE),
     59  1.1  riastrad 	PLATFORM_NAME(BROXTON),
     60  1.1  riastrad 	PLATFORM_NAME(KABYLAKE),
     61  1.1  riastrad 	PLATFORM_NAME(GEMINILAKE),
     62  1.1  riastrad 	PLATFORM_NAME(COFFEELAKE),
     63  1.1  riastrad 	PLATFORM_NAME(CANNONLAKE),
     64  1.1  riastrad 	PLATFORM_NAME(ICELAKE),
     65  1.1  riastrad 	PLATFORM_NAME(ELKHARTLAKE),
     66  1.1  riastrad 	PLATFORM_NAME(TIGERLAKE),
     67  1.1  riastrad };
     68  1.1  riastrad #undef PLATFORM_NAME
     69  1.1  riastrad 
     70  1.1  riastrad const char *intel_platform_name(enum intel_platform platform)
     71  1.1  riastrad {
     72  1.1  riastrad 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
     73  1.1  riastrad 
     74  1.1  riastrad 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
     75  1.1  riastrad 			 platform_names[platform] == NULL))
     76  1.1  riastrad 		return "<unknown>";
     77  1.1  riastrad 
     78  1.1  riastrad 	return platform_names[platform];
     79  1.1  riastrad }
     80  1.1  riastrad 
     81  1.1  riastrad static const char *iommu_name(void)
     82  1.1  riastrad {
     83  1.1  riastrad 	const char *msg = "n/a";
     84  1.1  riastrad 
     85  1.1  riastrad #ifdef CONFIG_INTEL_IOMMU
     86  1.1  riastrad 	msg = enableddisabled(intel_iommu_gfx_mapped);
     87  1.1  riastrad #endif
     88  1.1  riastrad 
     89  1.1  riastrad 	return msg;
     90  1.1  riastrad }
     91  1.1  riastrad 
     92  1.1  riastrad void intel_device_info_print_static(const struct intel_device_info *info,
     93  1.1  riastrad 				    struct drm_printer *p)
     94  1.1  riastrad {
     95  1.1  riastrad 	drm_printf(p, "engines: %x\n", info->engine_mask);
     96  1.1  riastrad 	drm_printf(p, "gen: %d\n", info->gen);
     97  1.1  riastrad 	drm_printf(p, "gt: %d\n", info->gt);
     98  1.1  riastrad 	drm_printf(p, "iommu: %s\n", iommu_name());
     99  1.1  riastrad 	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
    100  1.1  riastrad 	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
    101  1.1  riastrad 	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
    102  1.1  riastrad 	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
    103  1.1  riastrad 	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
    104  1.1  riastrad 
    105  1.1  riastrad #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
    106  1.1  riastrad 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
    107  1.1  riastrad #undef PRINT_FLAG
    108  1.1  riastrad 
    109  1.1  riastrad #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
    110  1.1  riastrad 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
    111  1.1  riastrad #undef PRINT_FLAG
    112  1.1  riastrad }
    113  1.1  riastrad 
    114  1.1  riastrad static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
    115  1.1  riastrad {
    116  1.1  riastrad 	int s;
    117  1.1  riastrad 
    118  1.1  riastrad 	drm_printf(p, "slice total: %u, mask=%04x\n",
    119  1.1  riastrad 		   hweight8(sseu->slice_mask), sseu->slice_mask);
    120  1.1  riastrad 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
    121  1.1  riastrad 	for (s = 0; s < sseu->max_slices; s++) {
    122  1.1  riastrad 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
    123  1.1  riastrad 			   s, intel_sseu_subslices_per_slice(sseu, s),
    124  1.1  riastrad 			   intel_sseu_get_subslices(sseu, s));
    125  1.1  riastrad 	}
    126  1.1  riastrad 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
    127  1.1  riastrad 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
    128  1.1  riastrad 	drm_printf(p, "has slice power gating: %s\n",
    129  1.1  riastrad 		   yesno(sseu->has_slice_pg));
    130  1.1  riastrad 	drm_printf(p, "has subslice power gating: %s\n",
    131  1.1  riastrad 		   yesno(sseu->has_subslice_pg));
    132  1.1  riastrad 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
    133  1.1  riastrad }
    134  1.1  riastrad 
    135  1.1  riastrad void intel_device_info_print_runtime(const struct intel_runtime_info *info,
    136  1.1  riastrad 				     struct drm_printer *p)
    137  1.1  riastrad {
    138  1.1  riastrad 	sseu_dump(&info->sseu, p);
    139  1.1  riastrad 
    140  1.1  riastrad 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
    141  1.1  riastrad 		   info->cs_timestamp_frequency_khz);
    142  1.1  riastrad }
    143  1.1  riastrad 
    144  1.1  riastrad static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
    145  1.1  riastrad 		       int subslice)
    146  1.1  riastrad {
    147  1.1  riastrad 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
    148  1.1  riastrad 
    149  1.1  riastrad 	return slice * slice_stride + subslice * sseu->eu_stride;
    150  1.1  riastrad }
    151  1.1  riastrad 
    152  1.1  riastrad static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
    153  1.1  riastrad 			int subslice)
    154  1.1  riastrad {
    155  1.1  riastrad 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
    156  1.1  riastrad 	u16 eu_mask = 0;
    157  1.1  riastrad 
    158  1.1  riastrad 	for (i = 0; i < sseu->eu_stride; i++) {
    159  1.1  riastrad 		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
    160  1.1  riastrad 			(i * BITS_PER_BYTE);
    161  1.1  riastrad 	}
    162  1.1  riastrad 
    163  1.1  riastrad 	return eu_mask;
    164  1.1  riastrad }
    165  1.1  riastrad 
    166  1.1  riastrad static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
    167  1.1  riastrad 			 u16 eu_mask)
    168  1.1  riastrad {
    169  1.1  riastrad 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
    170  1.1  riastrad 
    171  1.1  riastrad 	for (i = 0; i < sseu->eu_stride; i++) {
    172  1.1  riastrad 		sseu->eu_mask[offset + i] =
    173  1.1  riastrad 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
    174  1.1  riastrad 	}
    175  1.1  riastrad }
    176  1.1  riastrad 
    177  1.1  riastrad void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
    178  1.1  riastrad 				      struct drm_printer *p)
    179  1.1  riastrad {
    180  1.1  riastrad 	int s, ss;
    181  1.1  riastrad 
    182  1.1  riastrad 	if (sseu->max_slices == 0) {
    183  1.1  riastrad 		drm_printf(p, "Unavailable\n");
    184  1.1  riastrad 		return;
    185  1.1  riastrad 	}
    186  1.1  riastrad 
    187  1.1  riastrad 	for (s = 0; s < sseu->max_slices; s++) {
    188  1.1  riastrad 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
    189  1.1  riastrad 			   s, intel_sseu_subslices_per_slice(sseu, s),
    190  1.1  riastrad 			   intel_sseu_get_subslices(sseu, s));
    191  1.1  riastrad 
    192  1.1  riastrad 		for (ss = 0; ss < sseu->max_subslices; ss++) {
    193  1.1  riastrad 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
    194  1.1  riastrad 
    195  1.1  riastrad 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
    196  1.1  riastrad 				   ss, hweight16(enabled_eus), enabled_eus);
    197  1.1  riastrad 		}
    198  1.1  riastrad 	}
    199  1.1  riastrad }
    200  1.1  riastrad 
    201  1.1  riastrad static u16 compute_eu_total(const struct sseu_dev_info *sseu)
    202  1.1  riastrad {
    203  1.1  riastrad 	u16 i, total = 0;
    204  1.1  riastrad 
    205  1.1  riastrad 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
    206  1.1  riastrad 		total += hweight8(sseu->eu_mask[i]);
    207  1.1  riastrad 
    208  1.1  riastrad 	return total;
    209  1.1  riastrad }
    210  1.1  riastrad 
    211  1.1  riastrad static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
    212  1.1  riastrad 				    u8 s_en, u32 ss_en, u16 eu_en)
    213  1.1  riastrad {
    214  1.1  riastrad 	int s, ss;
    215  1.1  riastrad 
    216  1.1  riastrad 	/* ss_en represents entire subslice mask across all slices */
    217  1.1  riastrad 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
    218  1.1  riastrad 		   sizeof(ss_en) * BITS_PER_BYTE);
    219  1.1  riastrad 
    220  1.1  riastrad 	for (s = 0; s < sseu->max_slices; s++) {
    221  1.1  riastrad 		if ((s_en & BIT(s)) == 0)
    222  1.1  riastrad 			continue;
    223  1.1  riastrad 
    224  1.1  riastrad 		sseu->slice_mask |= BIT(s);
    225  1.1  riastrad 
    226  1.1  riastrad 		intel_sseu_set_subslices(sseu, s, ss_en);
    227  1.1  riastrad 
    228  1.1  riastrad 		for (ss = 0; ss < sseu->max_subslices; ss++)
    229  1.1  riastrad 			if (intel_sseu_has_subslice(sseu, s, ss))
    230  1.1  riastrad 				sseu_set_eus(sseu, s, ss, eu_en);
    231  1.1  riastrad 	}
    232  1.1  riastrad 	sseu->eu_per_subslice = hweight16(eu_en);
    233  1.1  riastrad 	sseu->eu_total = compute_eu_total(sseu);
    234  1.1  riastrad }
    235  1.1  riastrad 
    236  1.1  riastrad static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
    237  1.1  riastrad {
    238  1.1  riastrad 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
    239  1.1  riastrad 	u8 s_en;
    240  1.1  riastrad 	u32 dss_en;
    241  1.1  riastrad 	u16 eu_en = 0;
    242  1.1  riastrad 	u8 eu_en_fuse;
    243  1.1  riastrad 	int eu;
    244  1.1  riastrad 
    245  1.1  riastrad 	/*
    246  1.1  riastrad 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
    247  1.1  riastrad 	 * Instead of splitting these, provide userspace with an array
    248  1.1  riastrad 	 * of DSS to more closely represent the hardware resource.
    249  1.1  riastrad 	 */
    250  1.1  riastrad 	intel_sseu_set_info(sseu, 1, 6, 16);
    251  1.1  riastrad 
    252  1.1  riastrad 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
    253  1.1  riastrad 
    254  1.1  riastrad 	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
    255  1.1  riastrad 
    256  1.1  riastrad 	/* one bit per pair of EUs */
    257  1.1  riastrad 	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
    258  1.1  riastrad 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
    259  1.1  riastrad 		if (eu_en_fuse & BIT(eu))
    260  1.1  riastrad 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
    261  1.1  riastrad 
    262  1.1  riastrad 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
    263  1.1  riastrad 
    264  1.1  riastrad 	/* TGL only supports slice-level power gating */
    265  1.1  riastrad 	sseu->has_slice_pg = 1;
    266  1.1  riastrad }
    267  1.1  riastrad 
    268  1.1  riastrad static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
    269  1.1  riastrad {
    270  1.1  riastrad 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
    271  1.1  riastrad 	u8 s_en;
    272  1.1  riastrad 	u32 ss_en;
    273  1.1  riastrad 	u8 eu_en;
    274  1.1  riastrad 
    275  1.1  riastrad 	if (IS_ELKHARTLAKE(dev_priv))
    276  1.1  riastrad 		intel_sseu_set_info(sseu, 1, 4, 8);
    277  1.1  riastrad 	else
    278  1.1  riastrad 		intel_sseu_set_info(sseu, 1, 8, 8);
    279  1.1  riastrad 
    280  1.1  riastrad 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
    281  1.1  riastrad 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
    282  1.1  riastrad 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
    283  1.1  riastrad 
    284  1.1  riastrad 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
    285  1.1  riastrad 
    286  1.1  riastrad 	/* ICL has no power gating restrictions. */
    287  1.1  riastrad 	sseu->has_slice_pg = 1;
    288  1.1  riastrad 	sseu->has_subslice_pg = 1;
    289  1.1  riastrad 	sseu->has_eu_pg = 1;
    290  1.1  riastrad }
    291  1.1  riastrad 
    292  1.1  riastrad static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
    293  1.1  riastrad {
    294  1.1  riastrad 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
    295  1.1  riastrad 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
    296  1.1  riastrad 	int s, ss;
    297  1.1  riastrad 	const int eu_mask = 0xff;
    298  1.1  riastrad 	u32 subslice_mask, eu_en;
    299  1.1  riastrad 
    300  1.1  riastrad 	intel_sseu_set_info(sseu, 6, 4, 8);
    301  1.1  riastrad 
    302  1.1  riastrad 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
    303  1.1  riastrad 			    GEN10_F2_S_ENA_SHIFT;
    304  1.1  riastrad 
    305  1.1  riastrad 	/* Slice0 */
    306  1.1  riastrad 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
    307  1.1  riastrad 	for (ss = 0; ss < sseu->max_subslices; ss++)
    308  1.1  riastrad 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
    309  1.1  riastrad 	/* Slice1 */
    310  1.1  riastrad 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
    311  1.1  riastrad 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
    312  1.1  riastrad 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
    313  1.1  riastrad 	/* Slice2 */
    314  1.1  riastrad 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
    315  1.1  riastrad 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
    316  1.1  riastrad 	/* Slice3 */
    317  1.1  riastrad 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
    318  1.1  riastrad 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
    319  1.1  riastrad 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
    320  1.1  riastrad 	/* Slice4 */
    321  1.1  riastrad 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
    322  1.1  riastrad 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
    323  1.1  riastrad 	/* Slice5 */
    324  1.1  riastrad 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
    325  1.1  riastrad 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
    326  1.1  riastrad 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
    327  1.1  riastrad 
    328  1.1  riastrad 	subslice_mask = (1 << 4) - 1;
    329  1.1  riastrad 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
    330  1.1  riastrad 			   GEN10_F2_SS_DIS_SHIFT);
    331  1.1  riastrad 
    332  1.1  riastrad 	for (s = 0; s < sseu->max_slices; s++) {
    333  1.1  riastrad 		u32 subslice_mask_with_eus = subslice_mask;
    334  1.1  riastrad 
    335  1.1  riastrad 		for (ss = 0; ss < sseu->max_subslices; ss++) {
    336  1.1  riastrad 			if (sseu_get_eus(sseu, s, ss) == 0)
    337  1.1  riastrad 				subslice_mask_with_eus &= ~BIT(ss);
    338  1.1  riastrad 		}
    339  1.1  riastrad 
    340  1.1  riastrad 		/*
    341  1.1  riastrad 		 * Slice0 can have up to 3 subslices, but there are only 2 in
    342  1.1  riastrad 		 * slice1/2.
    343  1.1  riastrad 		 */
    344  1.1  riastrad 		intel_sseu_set_subslices(sseu, s, s == 0 ?
    345  1.1  riastrad 						  subslice_mask_with_eus :
    346  1.1  riastrad 						  subslice_mask_with_eus & 0x3);
    347  1.1  riastrad 	}
    348  1.1  riastrad 
    349  1.1  riastrad 	sseu->eu_total = compute_eu_total(sseu);
    350  1.1  riastrad 
    351  1.1  riastrad 	/*
    352  1.1  riastrad 	 * CNL is expected to always have a uniform distribution
    353  1.1  riastrad 	 * of EU across subslices with the exception that any one
    354  1.1  riastrad 	 * EU in any one subslice may be fused off for die
    355  1.1  riastrad 	 * recovery.
    356  1.1  riastrad 	 */
    357  1.1  riastrad 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
    358  1.1  riastrad 				DIV_ROUND_UP(sseu->eu_total,
    359  1.1  riastrad 					     intel_sseu_subslice_total(sseu)) :
    360  1.1  riastrad 				0;
    361  1.1  riastrad 
    362  1.1  riastrad 	/* No restrictions on Power Gating */
    363  1.1  riastrad 	sseu->has_slice_pg = 1;
    364  1.1  riastrad 	sseu->has_subslice_pg = 1;
    365  1.1  riastrad 	sseu->has_eu_pg = 1;
    366  1.1  riastrad }
    367  1.1  riastrad 
    368  1.1  riastrad static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
    369  1.1  riastrad {
    370  1.1  riastrad 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
    371  1.1  riastrad 	u32 fuse;
    372  1.1  riastrad 	u8 subslice_mask = 0;
    373  1.1  riastrad 
    374  1.1  riastrad 	fuse = I915_READ(CHV_FUSE_GT);
    375  1.1  riastrad 
    376  1.1  riastrad 	sseu->slice_mask = BIT(0);
    377  1.1  riastrad 	intel_sseu_set_info(sseu, 1, 2, 8);
    378  1.1  riastrad 
    379  1.1  riastrad 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
    380  1.1  riastrad 		u8 disabled_mask =
    381  1.1  riastrad 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
    382  1.1  riastrad 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
    383  1.1  riastrad 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
    384  1.1  riastrad 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
    385  1.1  riastrad 
    386  1.1  riastrad 		subslice_mask |= BIT(0);
    387  1.1  riastrad 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
    388  1.1  riastrad 	}
    389  1.1  riastrad 
    390  1.1  riastrad 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
    391  1.1  riastrad 		u8 disabled_mask =
    392  1.1  riastrad 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
    393  1.1  riastrad 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
    394  1.1  riastrad 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
    395  1.1  riastrad 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
    396  1.1  riastrad 
    397  1.1  riastrad 		subslice_mask |= BIT(1);
    398  1.1  riastrad 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
    399  1.1  riastrad 	}
    400  1.1  riastrad 
    401  1.1  riastrad 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
    402  1.1  riastrad 
    403  1.1  riastrad 	sseu->eu_total = compute_eu_total(sseu);
    404  1.1  riastrad 
    405  1.1  riastrad 	/*
    406  1.1  riastrad 	 * CHV expected to always have a uniform distribution of EU
    407  1.1  riastrad 	 * across subslices.
    408  1.1  riastrad 	*/
    409  1.1  riastrad 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
    410  1.1  riastrad 				sseu->eu_total /
    411  1.1  riastrad 					intel_sseu_subslice_total(sseu) :
    412  1.1  riastrad 				0;
    413  1.1  riastrad 	/*
    414  1.1  riastrad 	 * CHV supports subslice power gating on devices with more than
    415  1.1  riastrad 	 * one subslice, and supports EU power gating on devices with
    416  1.1  riastrad 	 * more than one EU pair per subslice.
    417  1.1  riastrad 	*/
    418  1.1  riastrad 	sseu->has_slice_pg = 0;
    419  1.1  riastrad 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
    420  1.1  riastrad 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
    421  1.1  riastrad }
    422  1.1  riastrad 
    423  1.1  riastrad static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
    424  1.1  riastrad {
    425  1.1  riastrad 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
    426  1.1  riastrad 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
    427  1.1  riastrad 	int s, ss;
    428  1.1  riastrad 	u32 fuse2, eu_disable, subslice_mask;
    429  1.1  riastrad 	const u8 eu_mask = 0xff;
    430  1.1  riastrad 
    431  1.1  riastrad 	fuse2 = I915_READ(GEN8_FUSE2);
    432  1.1  riastrad 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
    433  1.1  riastrad 
    434  1.1  riastrad 	/* BXT has a single slice and at most 3 subslices. */
    435  1.1  riastrad 	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
    436  1.1  riastrad 			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
    437  1.1  riastrad 
    438  1.1  riastrad 	/*
    439  1.1  riastrad 	 * The subslice disable field is global, i.e. it applies
    440  1.1  riastrad 	 * to each of the enabled slices.
    441  1.1  riastrad 	*/
    442  1.1  riastrad 	subslice_mask = (1 << sseu->max_subslices) - 1;
    443  1.1  riastrad 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
    444  1.1  riastrad 			   GEN9_F2_SS_DIS_SHIFT);
    445  1.1  riastrad 
    446  1.1  riastrad 	/*
    447  1.1  riastrad 	 * Iterate through enabled slices and subslices to
    448  1.1  riastrad 	 * count the total enabled EU.
    449  1.1  riastrad 	*/
    450  1.1  riastrad 	for (s = 0; s < sseu->max_slices; s++) {
    451  1.1  riastrad 		if (!(sseu->slice_mask & BIT(s)))
    452  1.1  riastrad 			/* skip disabled slice */
    453  1.1  riastrad 			continue;
    454  1.1  riastrad 
    455  1.1  riastrad 		intel_sseu_set_subslices(sseu, s, subslice_mask);
    456  1.1  riastrad 
    457  1.1  riastrad 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
    458  1.1  riastrad 		for (ss = 0; ss < sseu->max_subslices; ss++) {
    459  1.1  riastrad 			int eu_per_ss;
    460  1.1  riastrad 			u8 eu_disabled_mask;
    461  1.1  riastrad 
    462  1.1  riastrad 			if (!intel_sseu_has_subslice(sseu, s, ss))
    463  1.1  riastrad 				/* skip disabled subslice */
    464  1.1  riastrad 				continue;
    465  1.1  riastrad 
    466  1.1  riastrad 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
    467  1.1  riastrad 
    468  1.1  riastrad 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
    469  1.1  riastrad 
    470  1.1  riastrad 			eu_per_ss = sseu->max_eus_per_subslice -
    471  1.1  riastrad 				hweight8(eu_disabled_mask);
    472  1.1  riastrad 
    473  1.1  riastrad 			/*
    474  1.1  riastrad 			 * Record which subslice(s) has(have) 7 EUs. we
    475  1.1  riastrad 			 * can tune the hash used to spread work among
    476  1.1  riastrad 			 * subslices if they are unbalanced.
    477  1.1  riastrad 			 */
    478  1.1  riastrad 			if (eu_per_ss == 7)
    479  1.1  riastrad 				sseu->subslice_7eu[s] |= BIT(ss);
    480  1.1  riastrad 		}
    481  1.1  riastrad 	}
    482  1.1  riastrad 
    483  1.1  riastrad 	sseu->eu_total = compute_eu_total(sseu);
    484  1.1  riastrad 
    485  1.1  riastrad 	/*
    486  1.1  riastrad 	 * SKL is expected to always have a uniform distribution
    487  1.1  riastrad 	 * of EU across subslices with the exception that any one
    488  1.1  riastrad 	 * EU in any one subslice may be fused off for die
    489  1.1  riastrad 	 * recovery. BXT is expected to be perfectly uniform in EU
    490  1.1  riastrad 	 * distribution.
    491  1.1  riastrad 	*/
    492  1.1  riastrad 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
    493  1.1  riastrad 				DIV_ROUND_UP(sseu->eu_total,
    494  1.1  riastrad 					     intel_sseu_subslice_total(sseu)) :
    495  1.1  riastrad 				0;
    496  1.1  riastrad 	/*
    497  1.1  riastrad 	 * SKL+ supports slice power gating on devices with more than
    498  1.1  riastrad 	 * one slice, and supports EU power gating on devices with
    499  1.1  riastrad 	 * more than one EU pair per subslice. BXT+ supports subslice
    500  1.1  riastrad 	 * power gating on devices with more than one subslice, and
    501  1.1  riastrad 	 * supports EU power gating on devices with more than one EU
    502  1.1  riastrad 	 * pair per subslice.
    503  1.1  riastrad 	*/
    504  1.1  riastrad 	sseu->has_slice_pg =
    505  1.1  riastrad 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
    506  1.1  riastrad 	sseu->has_subslice_pg =
    507  1.1  riastrad 		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
    508  1.1  riastrad 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
    509  1.1  riastrad 
    510  1.1  riastrad 	if (IS_GEN9_LP(dev_priv)) {
    511  1.1  riastrad #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
    512  1.1  riastrad 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
    513  1.1  riastrad 
    514  1.1  riastrad 		sseu->min_eu_in_pool = 0;
    515  1.1  riastrad 		if (info->has_pooled_eu) {
    516  1.1  riastrad 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
    517  1.1  riastrad 				sseu->min_eu_in_pool = 3;
    518  1.1  riastrad 			else if (IS_SS_DISABLED(1))
    519  1.1  riastrad 				sseu->min_eu_in_pool = 6;
    520  1.1  riastrad 			else
    521  1.1  riastrad 				sseu->min_eu_in_pool = 9;
    522  1.1  riastrad 		}
    523  1.1  riastrad #undef IS_SS_DISABLED
    524  1.1  riastrad 	}
    525  1.1  riastrad }
    526  1.1  riastrad 
    527  1.1  riastrad static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
    528  1.1  riastrad {
    529  1.1  riastrad 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
    530  1.1  riastrad 	int s, ss;
    531  1.1  riastrad 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
    532  1.1  riastrad 
    533  1.1  riastrad 	fuse2 = I915_READ(GEN8_FUSE2);
    534  1.1  riastrad 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
    535  1.1  riastrad 	intel_sseu_set_info(sseu, 3, 3, 8);
    536  1.1  riastrad 
    537  1.1  riastrad 	/*
    538  1.1  riastrad 	 * The subslice disable field is global, i.e. it applies
    539  1.1  riastrad 	 * to each of the enabled slices.
    540  1.1  riastrad 	 */
    541  1.1  riastrad 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
    542  1.1  riastrad 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
    543  1.1  riastrad 			   GEN8_F2_SS_DIS_SHIFT);
    544  1.1  riastrad 
    545  1.1  riastrad 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
    546  1.1  riastrad 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
    547  1.1  riastrad 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
    548  1.1  riastrad 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
    549  1.1  riastrad 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
    550  1.1  riastrad 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
    551  1.1  riastrad 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
    552  1.1  riastrad 
    553  1.1  riastrad 	/*
    554  1.1  riastrad 	 * Iterate through enabled slices and subslices to
    555  1.1  riastrad 	 * count the total enabled EU.
    556  1.1  riastrad 	 */
    557  1.1  riastrad 	for (s = 0; s < sseu->max_slices; s++) {
    558  1.1  riastrad 		if (!(sseu->slice_mask & BIT(s)))
    559  1.1  riastrad 			/* skip disabled slice */
    560  1.1  riastrad 			continue;
    561  1.1  riastrad 
    562  1.1  riastrad 		intel_sseu_set_subslices(sseu, s, subslice_mask);
    563  1.1  riastrad 
    564  1.1  riastrad 		for (ss = 0; ss < sseu->max_subslices; ss++) {
    565  1.1  riastrad 			u8 eu_disabled_mask;
    566  1.1  riastrad 			u32 n_disabled;
    567  1.1  riastrad 
    568  1.1  riastrad 			if (!intel_sseu_has_subslice(sseu, s, ss))
    569  1.1  riastrad 				/* skip disabled subslice */
    570  1.1  riastrad 				continue;
    571  1.1  riastrad 
    572  1.1  riastrad 			eu_disabled_mask =
    573  1.1  riastrad 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
    574  1.1  riastrad 
    575  1.1  riastrad 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
    576  1.1  riastrad 
    577  1.1  riastrad 			n_disabled = hweight8(eu_disabled_mask);
    578  1.1  riastrad 
    579  1.1  riastrad 			/*
    580  1.1  riastrad 			 * Record which subslices have 7 EUs.
    581  1.1  riastrad 			 */
    582  1.1  riastrad 			if (sseu->max_eus_per_subslice - n_disabled == 7)
    583  1.1  riastrad 				sseu->subslice_7eu[s] |= 1 << ss;
    584  1.1  riastrad 		}
    585  1.1  riastrad 	}
    586  1.1  riastrad 
    587  1.1  riastrad 	sseu->eu_total = compute_eu_total(sseu);
    588  1.1  riastrad 
    589  1.1  riastrad 	/*
    590  1.1  riastrad 	 * BDW is expected to always have a uniform distribution of EU across
    591  1.1  riastrad 	 * subslices with the exception that any one EU in any one subslice may
    592  1.1  riastrad 	 * be fused off for die recovery.
    593  1.1  riastrad 	 */
    594  1.1  riastrad 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
    595  1.1  riastrad 				DIV_ROUND_UP(sseu->eu_total,
    596  1.1  riastrad 					     intel_sseu_subslice_total(sseu)) :
    597  1.1  riastrad 				0;
    598  1.1  riastrad 
    599  1.1  riastrad 	/*
    600  1.1  riastrad 	 * BDW supports slice power gating on devices with more than
    601  1.1  riastrad 	 * one slice.
    602  1.1  riastrad 	 */
    603  1.1  riastrad 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
    604  1.1  riastrad 	sseu->has_subslice_pg = 0;
    605  1.1  riastrad 	sseu->has_eu_pg = 0;
    606  1.1  riastrad }
    607  1.1  riastrad 
    608  1.1  riastrad static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
    609  1.1  riastrad {
    610  1.1  riastrad 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
    611  1.1  riastrad 	u32 fuse1;
    612  1.1  riastrad 	u8 subslice_mask = 0;
    613  1.1  riastrad 	int s, ss;
    614  1.1  riastrad 
    615  1.1  riastrad 	/*
    616  1.1  riastrad 	 * There isn't a register to tell us how many slices/subslices. We
    617  1.1  riastrad 	 * work off the PCI-ids here.
    618  1.1  riastrad 	 */
    619  1.1  riastrad 	switch (INTEL_INFO(dev_priv)->gt) {
    620  1.1  riastrad 	default:
    621  1.1  riastrad 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
    622  1.1  riastrad 		/* fall through */
    623  1.1  riastrad 	case 1:
    624  1.1  riastrad 		sseu->slice_mask = BIT(0);
    625  1.1  riastrad 		subslice_mask = BIT(0);
    626  1.1  riastrad 		break;
    627  1.1  riastrad 	case 2:
    628  1.1  riastrad 		sseu->slice_mask = BIT(0);
    629  1.1  riastrad 		subslice_mask = BIT(0) | BIT(1);
    630  1.1  riastrad 		break;
    631  1.1  riastrad 	case 3:
    632  1.1  riastrad 		sseu->slice_mask = BIT(0) | BIT(1);
    633  1.1  riastrad 		subslice_mask = BIT(0) | BIT(1);
    634  1.1  riastrad 		break;
    635  1.1  riastrad 	}
    636  1.1  riastrad 
    637  1.1  riastrad 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
    638  1.1  riastrad 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
    639  1.1  riastrad 	default:
    640  1.1  riastrad 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
    641  1.1  riastrad 			     HSW_F1_EU_DIS_SHIFT);
    642  1.1  riastrad 		/* fall through */
    643  1.1  riastrad 	case HSW_F1_EU_DIS_10EUS:
    644  1.1  riastrad 		sseu->eu_per_subslice = 10;
    645  1.1  riastrad 		break;
    646  1.1  riastrad 	case HSW_F1_EU_DIS_8EUS:
    647  1.1  riastrad 		sseu->eu_per_subslice = 8;
    648  1.1  riastrad 		break;
    649  1.1  riastrad 	case HSW_F1_EU_DIS_6EUS:
    650  1.1  riastrad 		sseu->eu_per_subslice = 6;
    651  1.1  riastrad 		break;
    652  1.1  riastrad 	}
    653  1.1  riastrad 
    654  1.1  riastrad 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
    655  1.1  riastrad 			    hweight8(subslice_mask),
    656  1.1  riastrad 			    sseu->eu_per_subslice);
    657  1.1  riastrad 
    658  1.1  riastrad 	for (s = 0; s < sseu->max_slices; s++) {
    659  1.1  riastrad 		intel_sseu_set_subslices(sseu, s, subslice_mask);
    660  1.1  riastrad 
    661  1.1  riastrad 		for (ss = 0; ss < sseu->max_subslices; ss++) {
    662  1.1  riastrad 			sseu_set_eus(sseu, s, ss,
    663  1.1  riastrad 				     (1UL << sseu->eu_per_subslice) - 1);
    664  1.1  riastrad 		}
    665  1.1  riastrad 	}
    666  1.1  riastrad 
    667  1.1  riastrad 	sseu->eu_total = compute_eu_total(sseu);
    668  1.1  riastrad 
    669  1.1  riastrad 	/* No powergating for you. */
    670  1.1  riastrad 	sseu->has_slice_pg = 0;
    671  1.1  riastrad 	sseu->has_subslice_pg = 0;
    672  1.1  riastrad 	sseu->has_eu_pg = 0;
    673  1.1  riastrad }
    674  1.1  riastrad 
    675  1.1  riastrad static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
    676  1.1  riastrad {
    677  1.1  riastrad 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
    678  1.1  riastrad 	u32 base_freq, frac_freq;
    679  1.1  riastrad 
    680  1.1  riastrad 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
    681  1.1  riastrad 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
    682  1.1  riastrad 	base_freq *= 1000;
    683  1.1  riastrad 
    684  1.1  riastrad 	frac_freq = ((ts_override &
    685  1.1  riastrad 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
    686  1.1  riastrad 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
    687  1.1  riastrad 	frac_freq = 1000 / (frac_freq + 1);
    688  1.1  riastrad 
    689  1.1  riastrad 	return base_freq + frac_freq;
    690  1.1  riastrad }
    691  1.1  riastrad 
    692  1.1  riastrad static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
    693  1.1  riastrad 					u32 rpm_config_reg)
    694  1.1  riastrad {
    695  1.1  riastrad 	u32 f19_2_mhz = 19200;
    696  1.1  riastrad 	u32 f24_mhz = 24000;
    697  1.1  riastrad 	u32 crystal_clock = (rpm_config_reg &
    698  1.1  riastrad 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
    699  1.1  riastrad 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
    700  1.1  riastrad 
    701  1.1  riastrad 	switch (crystal_clock) {
    702  1.1  riastrad 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
    703  1.1  riastrad 		return f19_2_mhz;
    704  1.1  riastrad 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
    705  1.1  riastrad 		return f24_mhz;
    706  1.1  riastrad 	default:
    707  1.1  riastrad 		MISSING_CASE(crystal_clock);
    708  1.1  riastrad 		return 0;
    709  1.1  riastrad 	}
    710  1.1  riastrad }
    711  1.1  riastrad 
    712  1.1  riastrad static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
    713  1.1  riastrad 					u32 rpm_config_reg)
    714  1.1  riastrad {
    715  1.1  riastrad 	u32 f19_2_mhz = 19200;
    716  1.1  riastrad 	u32 f24_mhz = 24000;
    717  1.1  riastrad 	u32 f25_mhz = 25000;
    718  1.1  riastrad 	u32 f38_4_mhz = 38400;
    719  1.1  riastrad 	u32 crystal_clock = (rpm_config_reg &
    720  1.1  riastrad 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
    721  1.1  riastrad 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
    722  1.1  riastrad 
    723  1.1  riastrad 	switch (crystal_clock) {
    724  1.1  riastrad 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
    725  1.1  riastrad 		return f24_mhz;
    726  1.1  riastrad 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
    727  1.1  riastrad 		return f19_2_mhz;
    728  1.1  riastrad 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
    729  1.1  riastrad 		return f38_4_mhz;
    730  1.1  riastrad 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
    731  1.1  riastrad 		return f25_mhz;
    732  1.1  riastrad 	default:
    733  1.1  riastrad 		MISSING_CASE(crystal_clock);
    734  1.1  riastrad 		return 0;
    735  1.1  riastrad 	}
    736  1.1  riastrad }
    737  1.1  riastrad 
    738  1.1  riastrad static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
    739  1.1  riastrad {
    740  1.1  riastrad 	u32 f12_5_mhz = 12500;
    741  1.1  riastrad 	u32 f19_2_mhz = 19200;
    742  1.1  riastrad 	u32 f24_mhz = 24000;
    743  1.1  riastrad 
    744  1.1  riastrad 	if (INTEL_GEN(dev_priv) <= 4) {
    745  1.1  riastrad 		/* PRMs say:
    746  1.1  riastrad 		 *
    747  1.1  riastrad 		 *     "The value in this register increments once every 16
    748  1.1  riastrad 		 *      hclks." (through the Clocking Configuration
    749  1.1  riastrad 		 *      (CLKCFG) MCHBAR register)
    750  1.1  riastrad 		 */
    751  1.1  riastrad 		return dev_priv->rawclk_freq / 16;
    752  1.1  riastrad 	} else if (INTEL_GEN(dev_priv) <= 8) {
    753  1.1  riastrad 		/* PRMs say:
    754  1.1  riastrad 		 *
    755  1.1  riastrad 		 *     "The PCU TSC counts 10ns increments; this timestamp
    756  1.1  riastrad 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
    757  1.1  riastrad 		 *      rolling over every 1.5 hours).
    758  1.1  riastrad 		 */
    759  1.1  riastrad 		return f12_5_mhz;
    760  1.1  riastrad 	} else if (INTEL_GEN(dev_priv) <= 9) {
    761  1.1  riastrad 		u32 ctc_reg = I915_READ(CTC_MODE);
    762  1.1  riastrad 		u32 freq = 0;
    763  1.1  riastrad 
    764  1.1  riastrad 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
    765  1.1  riastrad 			freq = read_reference_ts_freq(dev_priv);
    766  1.1  riastrad 		} else {
    767  1.1  riastrad 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
    768  1.1  riastrad 
    769  1.1  riastrad 			/* Now figure out how the command stream's timestamp
    770  1.1  riastrad 			 * register increments from this frequency (it might
    771  1.1  riastrad 			 * increment only every few clock cycle).
    772  1.1  riastrad 			 */
    773  1.1  riastrad 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
    774  1.1  riastrad 				      CTC_SHIFT_PARAMETER_SHIFT);
    775  1.1  riastrad 		}
    776  1.1  riastrad 
    777  1.1  riastrad 		return freq;
    778  1.1  riastrad 	} else if (INTEL_GEN(dev_priv) <= 12) {
    779  1.1  riastrad 		u32 ctc_reg = I915_READ(CTC_MODE);
    780  1.1  riastrad 		u32 freq = 0;
    781  1.1  riastrad 
    782  1.1  riastrad 		/* First figure out the reference frequency. There are 2 ways
    783  1.1  riastrad 		 * we can compute the frequency, either through the
    784  1.1  riastrad 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
    785  1.1  riastrad 		 * tells us which one we should use.
    786  1.1  riastrad 		 */
    787  1.1  riastrad 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
    788  1.1  riastrad 			freq = read_reference_ts_freq(dev_priv);
    789  1.1  riastrad 		} else {
    790  1.1  riastrad 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
    791  1.1  riastrad 
    792  1.1  riastrad 			if (INTEL_GEN(dev_priv) <= 10)
    793  1.1  riastrad 				freq = gen10_get_crystal_clock_freq(dev_priv,
    794  1.1  riastrad 								rpm_config_reg);
    795  1.1  riastrad 			else
    796  1.1  riastrad 				freq = gen11_get_crystal_clock_freq(dev_priv,
    797  1.1  riastrad 								rpm_config_reg);
    798  1.1  riastrad 
    799  1.1  riastrad 			/* Now figure out how the command stream's timestamp
    800  1.1  riastrad 			 * register increments from this frequency (it might
    801  1.1  riastrad 			 * increment only every few clock cycle).
    802  1.1  riastrad 			 */
    803  1.1  riastrad 			freq >>= 3 - ((rpm_config_reg &
    804  1.1  riastrad 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
    805  1.1  riastrad 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
    806  1.1  riastrad 		}
    807  1.1  riastrad 
    808  1.1  riastrad 		return freq;
    809  1.1  riastrad 	}
    810  1.1  riastrad 
    811  1.1  riastrad 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
    812  1.1  riastrad 	return 0;
    813  1.1  riastrad }
    814  1.1  riastrad 
    815  1.1  riastrad #undef INTEL_VGA_DEVICE
    816  1.1  riastrad #define INTEL_VGA_DEVICE(id, info) (id)
    817  1.1  riastrad 
    818  1.1  riastrad static const u16 subplatform_ult_ids[] = {
    819  1.1  riastrad 	INTEL_HSW_ULT_GT1_IDS(0),
    820  1.1  riastrad 	INTEL_HSW_ULT_GT2_IDS(0),
    821  1.1  riastrad 	INTEL_HSW_ULT_GT3_IDS(0),
    822  1.1  riastrad 	INTEL_BDW_ULT_GT1_IDS(0),
    823  1.1  riastrad 	INTEL_BDW_ULT_GT2_IDS(0),
    824  1.1  riastrad 	INTEL_BDW_ULT_GT3_IDS(0),
    825  1.1  riastrad 	INTEL_BDW_ULT_RSVD_IDS(0),
    826  1.1  riastrad 	INTEL_SKL_ULT_GT1_IDS(0),
    827  1.1  riastrad 	INTEL_SKL_ULT_GT2_IDS(0),
    828  1.1  riastrad 	INTEL_SKL_ULT_GT3_IDS(0),
    829  1.1  riastrad 	INTEL_KBL_ULT_GT1_IDS(0),
    830  1.1  riastrad 	INTEL_KBL_ULT_GT2_IDS(0),
    831  1.1  riastrad 	INTEL_KBL_ULT_GT3_IDS(0),
    832  1.1  riastrad 	INTEL_CFL_U_GT2_IDS(0),
    833  1.1  riastrad 	INTEL_CFL_U_GT3_IDS(0),
    834  1.1  riastrad 	INTEL_WHL_U_GT1_IDS(0),
    835  1.1  riastrad 	INTEL_WHL_U_GT2_IDS(0),
    836  1.1  riastrad 	INTEL_WHL_U_GT3_IDS(0),
    837  1.1  riastrad 	INTEL_CML_U_GT1_IDS(0),
    838  1.1  riastrad 	INTEL_CML_U_GT2_IDS(0),
    839  1.1  riastrad };
    840  1.1  riastrad 
    841  1.1  riastrad static const u16 subplatform_ulx_ids[] = {
    842  1.1  riastrad 	INTEL_HSW_ULX_GT1_IDS(0),
    843  1.1  riastrad 	INTEL_HSW_ULX_GT2_IDS(0),
    844  1.1  riastrad 	INTEL_BDW_ULX_GT1_IDS(0),
    845  1.1  riastrad 	INTEL_BDW_ULX_GT2_IDS(0),
    846  1.1  riastrad 	INTEL_BDW_ULX_GT3_IDS(0),
    847  1.1  riastrad 	INTEL_BDW_ULX_RSVD_IDS(0),
    848  1.1  riastrad 	INTEL_SKL_ULX_GT1_IDS(0),
    849  1.1  riastrad 	INTEL_SKL_ULX_GT2_IDS(0),
    850  1.1  riastrad 	INTEL_KBL_ULX_GT1_IDS(0),
    851  1.1  riastrad 	INTEL_KBL_ULX_GT2_IDS(0),
    852  1.1  riastrad 	INTEL_AML_KBL_GT2_IDS(0),
    853  1.1  riastrad 	INTEL_AML_CFL_GT2_IDS(0),
    854  1.1  riastrad };
    855  1.1  riastrad 
    856  1.1  riastrad static const u16 subplatform_portf_ids[] = {
    857  1.1  riastrad 	INTEL_CNL_PORT_F_IDS(0),
    858  1.1  riastrad 	INTEL_ICL_PORT_F_IDS(0),
    859  1.1  riastrad };
    860  1.1  riastrad 
    861  1.1  riastrad static bool find_devid(u16 id, const u16 *p, unsigned int num)
    862  1.1  riastrad {
    863  1.1  riastrad 	for (; num; num--, p++) {
    864  1.1  riastrad 		if (*p == id)
    865  1.1  riastrad 			return true;
    866  1.1  riastrad 	}
    867  1.1  riastrad 
    868  1.1  riastrad 	return false;
    869  1.1  riastrad }
    870  1.1  riastrad 
    871  1.1  riastrad void intel_device_info_subplatform_init(struct drm_i915_private *i915)
    872  1.1  riastrad {
    873  1.1  riastrad 	const struct intel_device_info *info = INTEL_INFO(i915);
    874  1.1  riastrad 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
    875  1.1  riastrad 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
    876  1.1  riastrad 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
    877  1.1  riastrad 	u16 devid = INTEL_DEVID(i915);
    878  1.1  riastrad 	u32 mask = 0;
    879  1.1  riastrad 
    880  1.1  riastrad 	/* Make sure IS_<platform> checks are working. */
    881  1.1  riastrad 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
    882  1.1  riastrad 
    883  1.1  riastrad 	/* Find and mark subplatform bits based on the PCI device id. */
    884  1.1  riastrad 	if (find_devid(devid, subplatform_ult_ids,
    885  1.1  riastrad 		       ARRAY_SIZE(subplatform_ult_ids))) {
    886  1.1  riastrad 		mask = BIT(INTEL_SUBPLATFORM_ULT);
    887  1.1  riastrad 	} else if (find_devid(devid, subplatform_ulx_ids,
    888  1.1  riastrad 			      ARRAY_SIZE(subplatform_ulx_ids))) {
    889  1.1  riastrad 		mask = BIT(INTEL_SUBPLATFORM_ULX);
    890  1.1  riastrad 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
    891  1.1  riastrad 			/* ULX machines are also considered ULT. */
    892  1.1  riastrad 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
    893  1.1  riastrad 		}
    894  1.1  riastrad 	} else if (find_devid(devid, subplatform_portf_ids,
    895  1.1  riastrad 			      ARRAY_SIZE(subplatform_portf_ids))) {
    896  1.1  riastrad 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
    897  1.1  riastrad 	}
    898  1.1  riastrad 
    899  1.1  riastrad 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
    900  1.1  riastrad 
    901  1.1  riastrad 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
    902  1.1  riastrad }
    903  1.1  riastrad 
    904  1.1  riastrad /**
    905  1.1  riastrad  * intel_device_info_runtime_init - initialize runtime info
    906  1.1  riastrad  * @dev_priv: the i915 device
    907  1.1  riastrad  *
    908  1.1  riastrad  * Determine various intel_device_info fields at runtime.
    909  1.1  riastrad  *
    910  1.1  riastrad  * Use it when either:
    911  1.1  riastrad  *   - it's judged too laborious to fill n static structures with the limit
    912  1.1  riastrad  *     when a simple if statement does the job,
    913  1.1  riastrad  *   - run-time checks (eg read fuse/strap registers) are needed.
    914  1.1  riastrad  *
    915  1.1  riastrad  * This function needs to be called:
    916  1.1  riastrad  *   - after the MMIO has been setup as we are reading registers,
    917  1.1  riastrad  *   - after the PCH has been detected,
    918  1.1  riastrad  *   - before the first usage of the fields it can tweak.
    919  1.1  riastrad  */
    920  1.1  riastrad void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
    921  1.1  riastrad {
    922  1.1  riastrad 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
    923  1.1  riastrad 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
    924  1.1  riastrad 	enum pipe pipe;
    925  1.1  riastrad 
    926  1.1  riastrad 	if (INTEL_GEN(dev_priv) >= 10) {
    927  1.1  riastrad 		for_each_pipe(dev_priv, pipe)
    928  1.1  riastrad 			runtime->num_scalers[pipe] = 2;
    929  1.1  riastrad 	} else if (IS_GEN(dev_priv, 9)) {
    930  1.1  riastrad 		runtime->num_scalers[PIPE_A] = 2;
    931  1.1  riastrad 		runtime->num_scalers[PIPE_B] = 2;
    932  1.1  riastrad 		runtime->num_scalers[PIPE_C] = 1;
    933  1.1  riastrad 	}
    934  1.1  riastrad 
    935  1.1  riastrad 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
    936  1.1  riastrad 
    937  1.1  riastrad 	if (INTEL_GEN(dev_priv) >= 11)
    938  1.1  riastrad 		for_each_pipe(dev_priv, pipe)
    939  1.1  riastrad 			runtime->num_sprites[pipe] = 6;
    940  1.1  riastrad 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
    941  1.1  riastrad 		for_each_pipe(dev_priv, pipe)
    942  1.1  riastrad 			runtime->num_sprites[pipe] = 3;
    943  1.1  riastrad 	else if (IS_BROXTON(dev_priv)) {
    944  1.1  riastrad 		/*
    945  1.1  riastrad 		 * Skylake and Broxton currently don't expose the topmost plane as its
    946  1.1  riastrad 		 * use is exclusive with the legacy cursor and we only want to expose
    947  1.1  riastrad 		 * one of those, not both. Until we can safely expose the topmost plane
    948  1.1  riastrad 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
    949  1.1  riastrad 		 * we don't expose the topmost plane at all to prevent ABI breakage
    950  1.1  riastrad 		 * down the line.
    951  1.1  riastrad 		 */
    952  1.1  riastrad 
    953  1.1  riastrad 		runtime->num_sprites[PIPE_A] = 2;
    954  1.1  riastrad 		runtime->num_sprites[PIPE_B] = 2;
    955  1.1  riastrad 		runtime->num_sprites[PIPE_C] = 1;
    956  1.1  riastrad 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
    957  1.1  riastrad 		for_each_pipe(dev_priv, pipe)
    958  1.1  riastrad 			runtime->num_sprites[pipe] = 2;
    959  1.1  riastrad 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
    960  1.1  riastrad 		for_each_pipe(dev_priv, pipe)
    961  1.1  riastrad 			runtime->num_sprites[pipe] = 1;
    962  1.1  riastrad 	}
    963  1.1  riastrad 
    964  1.1  riastrad 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
    965  1.1  riastrad 	    HAS_PCH_SPLIT(dev_priv)) {
    966  1.1  riastrad 		u32 fuse_strap = I915_READ(FUSE_STRAP);
    967  1.1  riastrad 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
    968  1.1  riastrad 
    969  1.1  riastrad 		/*
    970  1.1  riastrad 		 * SFUSE_STRAP is supposed to have a bit signalling the display
    971  1.1  riastrad 		 * is fused off. Unfortunately it seems that, at least in
    972  1.1  riastrad 		 * certain cases, fused off display means that PCH display
    973  1.1  riastrad 		 * reads don't land anywhere. In that case, we read 0s.
    974  1.1  riastrad 		 *
    975  1.1  riastrad 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
    976  1.1  riastrad 		 * should be set when taking over after the firmware.
    977  1.1  riastrad 		 */
    978  1.1  riastrad 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
    979  1.1  riastrad 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
    980  1.1  riastrad 		    (HAS_PCH_CPT(dev_priv) &&
    981  1.1  riastrad 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
    982  1.1  riastrad 			DRM_INFO("Display fused off, disabling\n");
    983  1.1  riastrad 			info->pipe_mask = 0;
    984  1.1  riastrad 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
    985  1.1  riastrad 			DRM_INFO("PipeC fused off\n");
    986  1.1  riastrad 			info->pipe_mask &= ~BIT(PIPE_C);
    987  1.1  riastrad 		}
    988  1.1  riastrad 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
    989  1.1  riastrad 		u32 dfsm = I915_READ(SKL_DFSM);
    990  1.1  riastrad 		u8 enabled_mask = info->pipe_mask;
    991  1.1  riastrad 
    992  1.1  riastrad 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
    993  1.1  riastrad 			enabled_mask &= ~BIT(PIPE_A);
    994  1.1  riastrad 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
    995  1.1  riastrad 			enabled_mask &= ~BIT(PIPE_B);
    996  1.1  riastrad 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
    997  1.1  riastrad 			enabled_mask &= ~BIT(PIPE_C);
    998  1.1  riastrad 		if (INTEL_GEN(dev_priv) >= 12 &&
    999  1.1  riastrad 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE))
   1000  1.1  riastrad 			enabled_mask &= ~BIT(PIPE_D);
   1001  1.1  riastrad 
   1002  1.1  riastrad 		/*
   1003  1.1  riastrad 		 * At least one pipe should be enabled and if there are
   1004  1.1  riastrad 		 * disabled pipes, they should be the last ones, with no holes
   1005  1.1  riastrad 		 * in the mask.
   1006  1.1  riastrad 		 */
   1007  1.1  riastrad 		if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
   1008  1.1  riastrad 			DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
   1009  1.1  riastrad 				  enabled_mask);
   1010  1.1  riastrad 		else
   1011  1.1  riastrad 			info->pipe_mask = enabled_mask;
   1012  1.1  riastrad 
   1013  1.1  riastrad 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
   1014  1.1  riastrad 			info->display.has_hdcp = 0;
   1015  1.1  riastrad 
   1016  1.1  riastrad 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
   1017  1.1  riastrad 			info->display.has_fbc = 0;
   1018  1.1  riastrad 
   1019  1.1  riastrad 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
   1020  1.1  riastrad 			info->display.has_csr = 0;
   1021  1.1  riastrad 
   1022  1.1  riastrad 		if (INTEL_GEN(dev_priv) >= 10 &&
   1023  1.1  riastrad 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
   1024  1.1  riastrad 			info->display.has_dsc = 0;
   1025  1.1  riastrad 	}
   1026  1.1  riastrad 
   1027  1.1  riastrad 	/* Initialize slice/subslice/EU info */
   1028  1.1  riastrad 	if (IS_HASWELL(dev_priv))
   1029  1.1  riastrad 		hsw_sseu_info_init(dev_priv);
   1030  1.1  riastrad 	else if (IS_CHERRYVIEW(dev_priv))
   1031  1.1  riastrad 		cherryview_sseu_info_init(dev_priv);
   1032  1.1  riastrad 	else if (IS_BROADWELL(dev_priv))
   1033  1.1  riastrad 		bdw_sseu_info_init(dev_priv);
   1034  1.1  riastrad 	else if (IS_GEN(dev_priv, 9))
   1035  1.1  riastrad 		gen9_sseu_info_init(dev_priv);
   1036  1.1  riastrad 	else if (IS_GEN(dev_priv, 10))
   1037  1.1  riastrad 		gen10_sseu_info_init(dev_priv);
   1038  1.1  riastrad 	else if (IS_GEN(dev_priv, 11))
   1039  1.1  riastrad 		gen11_sseu_info_init(dev_priv);
   1040  1.1  riastrad 	else if (INTEL_GEN(dev_priv) >= 12)
   1041  1.1  riastrad 		gen12_sseu_info_init(dev_priv);
   1042  1.1  riastrad 
   1043  1.1  riastrad 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
   1044  1.1  riastrad 		DRM_INFO("Disabling ppGTT for VT-d support\n");
   1045  1.1  riastrad 		info->ppgtt_type = INTEL_PPGTT_NONE;
   1046  1.1  riastrad 	}
   1047  1.1  riastrad 
   1048  1.1  riastrad 	/* Initialize command stream timestamp frequency */
   1049  1.1  riastrad 	runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
   1050  1.1  riastrad }
   1051  1.1  riastrad 
   1052  1.1  riastrad void intel_driver_caps_print(const struct intel_driver_caps *caps,
   1053  1.1  riastrad 			     struct drm_printer *p)
   1054  1.1  riastrad {
   1055  1.1  riastrad 	drm_printf(p, "Has logical contexts? %s\n",
   1056  1.1  riastrad 		   yesno(caps->has_logical_contexts));
   1057  1.1  riastrad 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
   1058  1.1  riastrad }
   1059  1.1  riastrad 
   1060  1.1  riastrad /*
   1061  1.1  riastrad  * Determine which engines are fused off in our particular hardware. Since the
   1062  1.1  riastrad  * fuse register is in the blitter powerwell, we need forcewake to be ready at
   1063  1.1  riastrad  * this point (but later we need to prune the forcewake domains for engines that
   1064  1.1  riastrad  * are indeed fused off).
   1065  1.1  riastrad  */
   1066  1.1  riastrad void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
   1067  1.1  riastrad {
   1068  1.1  riastrad 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
   1069  1.1  riastrad 	unsigned int logical_vdbox = 0;
   1070  1.1  riastrad 	unsigned int i;
   1071  1.1  riastrad 	u32 media_fuse;
   1072  1.1  riastrad 	u16 vdbox_mask;
   1073  1.1  riastrad 	u16 vebox_mask;
   1074  1.1  riastrad 
   1075  1.1  riastrad 	if (INTEL_GEN(dev_priv) < 11)
   1076  1.1  riastrad 		return;
   1077  1.1  riastrad 
   1078  1.1  riastrad 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
   1079  1.1  riastrad 
   1080  1.1  riastrad 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
   1081  1.1  riastrad 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
   1082  1.1  riastrad 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
   1083  1.1  riastrad 
   1084  1.1  riastrad 	for (i = 0; i < I915_MAX_VCS; i++) {
   1085  1.1  riastrad 		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
   1086  1.1  riastrad 			vdbox_mask &= ~BIT(i);
   1087  1.1  riastrad 			continue;
   1088  1.1  riastrad 		}
   1089  1.1  riastrad 
   1090  1.1  riastrad 		if (!(BIT(i) & vdbox_mask)) {
   1091  1.1  riastrad 			info->engine_mask &= ~BIT(_VCS(i));
   1092  1.1  riastrad 			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
   1093  1.1  riastrad 			continue;
   1094  1.1  riastrad 		}
   1095  1.1  riastrad 
   1096  1.1  riastrad 		/*
   1097  1.1  riastrad 		 * In Gen11, only even numbered logical VDBOXes are
   1098  1.1  riastrad 		 * hooked up to an SFC (Scaler & Format Converter) unit.
   1099  1.1  riastrad 		 * In TGL each VDBOX has access to an SFC.
   1100  1.1  riastrad 		 */
   1101  1.1  riastrad 		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
   1102  1.1  riastrad 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
   1103  1.1  riastrad 	}
   1104  1.1  riastrad 	DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
   1105  1.1  riastrad 			 vdbox_mask, VDBOX_MASK(dev_priv));
   1106  1.1  riastrad 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
   1107  1.1  riastrad 
   1108  1.1  riastrad 	for (i = 0; i < I915_MAX_VECS; i++) {
   1109  1.1  riastrad 		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
   1110  1.1  riastrad 			vebox_mask &= ~BIT(i);
   1111  1.1  riastrad 			continue;
   1112  1.1  riastrad 		}
   1113  1.1  riastrad 
   1114  1.1  riastrad 		if (!(BIT(i) & vebox_mask)) {
   1115  1.1  riastrad 			info->engine_mask &= ~BIT(_VECS(i));
   1116  1.1  riastrad 			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
   1117  1.1  riastrad 		}
   1118  1.1  riastrad 	}
   1119  1.1  riastrad 	DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
   1120  1.1  riastrad 			 vebox_mask, VEBOX_MASK(dev_priv));
   1121  1.1  riastrad 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
   1122  1.1  riastrad }
   1123