Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.1.1.1.2.3
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     25  *
     26  */
     27 
     28 #include <linux/cpufreq.h>
     29 #include "i915_drv.h"
     30 #include "intel_drv.h"
     31 #ifndef __NetBSD__
     32 #include "../../../platform/x86/intel_ips.h"
     33 #endif
     34 #include <linux/module.h>
     35 
     36 #define FORCEWAKE_ACK_TIMEOUT_MS 2
     37 
     38 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
     39  * framebuffer contents in-memory, aiming at reducing the required bandwidth
     40  * during in-memory transfers and, therefore, reduce the power packet.
     41  *
     42  * The benefits of FBC are mostly visible with solid backgrounds and
     43  * variation-less patterns.
     44  *
     45  * FBC-related functionality can be enabled by the means of the
     46  * i915.i915_enable_fbc parameter
     47  */
     48 
     49 static bool intel_crtc_active(struct drm_crtc *crtc)
     50 {
     51 	/* Be paranoid as we can arrive here with only partial
     52 	 * state retrieved from the hardware during setup.
     53 	 */
     54 	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
     55 }
     56 
     57 static void i8xx_disable_fbc(struct drm_device *dev)
     58 {
     59 	struct drm_i915_private *dev_priv = dev->dev_private;
     60 	u32 fbc_ctl;
     61 
     62 	/* Disable compression */
     63 	fbc_ctl = I915_READ(FBC_CONTROL);
     64 	if ((fbc_ctl & FBC_CTL_EN) == 0)
     65 		return;
     66 
     67 	fbc_ctl &= ~FBC_CTL_EN;
     68 	I915_WRITE(FBC_CONTROL, fbc_ctl);
     69 
     70 	/* Wait for compressing bit to clear */
     71 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
     72 		DRM_DEBUG_KMS("FBC idle timed out\n");
     73 		return;
     74 	}
     75 
     76 	DRM_DEBUG_KMS("disabled FBC\n");
     77 }
     78 
     79 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
     80 {
     81 	struct drm_device *dev = crtc->dev;
     82 	struct drm_i915_private *dev_priv = dev->dev_private;
     83 	struct drm_framebuffer *fb = crtc->fb;
     84 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
     85 	struct drm_i915_gem_object *obj = intel_fb->obj;
     86 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
     87 	int cfb_pitch;
     88 	int plane, i;
     89 	u32 fbc_ctl, fbc_ctl2;
     90 
     91 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
     92 	if (fb->pitches[0] < cfb_pitch)
     93 		cfb_pitch = fb->pitches[0];
     94 
     95 	/* FBC_CTL wants 64B units */
     96 	cfb_pitch = (cfb_pitch / 64) - 1;
     97 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
     98 
     99 	/* Clear old tags */
    100 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
    101 		I915_WRITE(FBC_TAG + (i * 4), 0);
    102 
    103 	/* Set it up... */
    104 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
    105 	fbc_ctl2 |= plane;
    106 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
    107 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
    108 
    109 	/* enable it... */
    110 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
    111 	if (IS_I945GM(dev))
    112 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
    113 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
    114 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
    115 	fbc_ctl |= obj->fence_reg;
    116 	I915_WRITE(FBC_CONTROL, fbc_ctl);
    117 
    118 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
    119 		      cfb_pitch, crtc->y, intel_crtc->plane);
    120 }
    121 
    122 static bool i8xx_fbc_enabled(struct drm_device *dev)
    123 {
    124 	struct drm_i915_private *dev_priv = dev->dev_private;
    125 
    126 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
    127 }
    128 
    129 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
    130 {
    131 	struct drm_device *dev = crtc->dev;
    132 	struct drm_i915_private *dev_priv = dev->dev_private;
    133 	struct drm_framebuffer *fb = crtc->fb;
    134 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    135 	struct drm_i915_gem_object *obj = intel_fb->obj;
    136 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    137 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
    138 	unsigned long stall_watermark = 200;
    139 	u32 dpfc_ctl;
    140 
    141 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
    142 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
    143 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
    144 
    145 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
    146 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
    147 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
    148 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
    149 
    150 	/* enable it... */
    151 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
    152 
    153 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
    154 }
    155 
    156 static void g4x_disable_fbc(struct drm_device *dev)
    157 {
    158 	struct drm_i915_private *dev_priv = dev->dev_private;
    159 	u32 dpfc_ctl;
    160 
    161 	/* Disable compression */
    162 	dpfc_ctl = I915_READ(DPFC_CONTROL);
    163 	if (dpfc_ctl & DPFC_CTL_EN) {
    164 		dpfc_ctl &= ~DPFC_CTL_EN;
    165 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
    166 
    167 		DRM_DEBUG_KMS("disabled FBC\n");
    168 	}
    169 }
    170 
    171 static bool g4x_fbc_enabled(struct drm_device *dev)
    172 {
    173 	struct drm_i915_private *dev_priv = dev->dev_private;
    174 
    175 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
    176 }
    177 
    178 static void sandybridge_blit_fbc_update(struct drm_device *dev)
    179 {
    180 	struct drm_i915_private *dev_priv = dev->dev_private;
    181 	u32 blt_ecoskpd;
    182 
    183 	/* Make sure blitter notifies FBC of writes */
    184 	gen6_gt_force_wake_get(dev_priv);
    185 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
    186 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
    187 		GEN6_BLITTER_LOCK_SHIFT;
    188 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    189 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
    190 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    191 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
    192 			 GEN6_BLITTER_LOCK_SHIFT);
    193 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    194 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
    195 	gen6_gt_force_wake_put(dev_priv);
    196 }
    197 
    198 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
    199 {
    200 	struct drm_device *dev = crtc->dev;
    201 	struct drm_i915_private *dev_priv = dev->dev_private;
    202 	struct drm_framebuffer *fb = crtc->fb;
    203 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    204 	struct drm_i915_gem_object *obj = intel_fb->obj;
    205 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    206 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
    207 	unsigned long stall_watermark = 200;
    208 	u32 dpfc_ctl;
    209 
    210 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
    211 	dpfc_ctl &= DPFC_RESERVED;
    212 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
    213 	/* Set persistent mode for front-buffer rendering, ala X. */
    214 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
    215 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
    216 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
    217 
    218 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
    219 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
    220 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
    221 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
    222 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
    223 	/* enable it... */
    224 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    225 
    226 	if (IS_GEN6(dev)) {
    227 		I915_WRITE(SNB_DPFC_CTL_SA,
    228 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
    229 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
    230 		sandybridge_blit_fbc_update(dev);
    231 	}
    232 
    233 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
    234 }
    235 
    236 static void ironlake_disable_fbc(struct drm_device *dev)
    237 {
    238 	struct drm_i915_private *dev_priv = dev->dev_private;
    239 	u32 dpfc_ctl;
    240 
    241 	/* Disable compression */
    242 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
    243 	if (dpfc_ctl & DPFC_CTL_EN) {
    244 		dpfc_ctl &= ~DPFC_CTL_EN;
    245 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
    246 
    247 		DRM_DEBUG_KMS("disabled FBC\n");
    248 	}
    249 }
    250 
    251 static bool ironlake_fbc_enabled(struct drm_device *dev)
    252 {
    253 	struct drm_i915_private *dev_priv = dev->dev_private;
    254 
    255 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
    256 }
    257 
    258 bool intel_fbc_enabled(struct drm_device *dev)
    259 {
    260 	struct drm_i915_private *dev_priv = dev->dev_private;
    261 
    262 	if (!dev_priv->display.fbc_enabled)
    263 		return false;
    264 
    265 	return dev_priv->display.fbc_enabled(dev);
    266 }
    267 
    268 static void intel_fbc_work_fn(struct work_struct *__work)
    269 {
    270 	struct intel_fbc_work *work =
    271 		container_of(to_delayed_work(__work),
    272 			     struct intel_fbc_work, work);
    273 	struct drm_device *dev = work->crtc->dev;
    274 	struct drm_i915_private *dev_priv = dev->dev_private;
    275 
    276 	mutex_lock(&dev->struct_mutex);
    277 	if (work == dev_priv->fbc_work) {
    278 		/* Double check that we haven't switched fb without cancelling
    279 		 * the prior work.
    280 		 */
    281 		if (work->crtc->fb == work->fb) {
    282 			dev_priv->display.enable_fbc(work->crtc,
    283 						     work->interval);
    284 
    285 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
    286 			dev_priv->cfb_fb = work->crtc->fb->base.id;
    287 			dev_priv->cfb_y = work->crtc->y;
    288 		}
    289 
    290 		dev_priv->fbc_work = NULL;
    291 	}
    292 	mutex_unlock(&dev->struct_mutex);
    293 
    294 	kfree(work);
    295 }
    296 
    297 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
    298 {
    299 	if (dev_priv->fbc_work == NULL)
    300 		return;
    301 
    302 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
    303 
    304 	/* Synchronisation is provided by struct_mutex and checking of
    305 	 * dev_priv->fbc_work, so we can perform the cancellation
    306 	 * entirely asynchronously.
    307 	 */
    308 	if (cancel_delayed_work(&dev_priv->fbc_work->work))
    309 		/* tasklet was killed before being run, clean up */
    310 		kfree(dev_priv->fbc_work);
    311 
    312 	/* Mark the work as no longer wanted so that if it does
    313 	 * wake-up (because the work was already running and waiting
    314 	 * for our mutex), it will discover that is no longer
    315 	 * necessary to run.
    316 	 */
    317 	dev_priv->fbc_work = NULL;
    318 }
    319 
    320 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
    321 {
    322 	struct intel_fbc_work *work;
    323 	struct drm_device *dev = crtc->dev;
    324 	struct drm_i915_private *dev_priv = dev->dev_private;
    325 
    326 	if (!dev_priv->display.enable_fbc)
    327 		return;
    328 
    329 	intel_cancel_fbc_work(dev_priv);
    330 
    331 	work = kzalloc(sizeof *work, GFP_KERNEL);
    332 	if (work == NULL) {
    333 		dev_priv->display.enable_fbc(crtc, interval);
    334 		return;
    335 	}
    336 
    337 	work->crtc = crtc;
    338 	work->fb = crtc->fb;
    339 	work->interval = interval;
    340 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
    341 
    342 	dev_priv->fbc_work = work;
    343 
    344 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
    345 
    346 	/* Delay the actual enabling to let pageflipping cease and the
    347 	 * display to settle before starting the compression. Note that
    348 	 * this delay also serves a second purpose: it allows for a
    349 	 * vblank to pass after disabling the FBC before we attempt
    350 	 * to modify the control registers.
    351 	 *
    352 	 * A more complicated solution would involve tracking vblanks
    353 	 * following the termination of the page-flipping sequence
    354 	 * and indeed performing the enable as a co-routine and not
    355 	 * waiting synchronously upon the vblank.
    356 	 */
    357 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
    358 }
    359 
    360 void intel_disable_fbc(struct drm_device *dev)
    361 {
    362 	struct drm_i915_private *dev_priv = dev->dev_private;
    363 
    364 	intel_cancel_fbc_work(dev_priv);
    365 
    366 	if (!dev_priv->display.disable_fbc)
    367 		return;
    368 
    369 	dev_priv->display.disable_fbc(dev);
    370 	dev_priv->cfb_plane = -1;
    371 }
    372 
    373 /**
    374  * intel_update_fbc - enable/disable FBC as needed
    375  * @dev: the drm_device
    376  *
    377  * Set up the framebuffer compression hardware at mode set time.  We
    378  * enable it if possible:
    379  *   - plane A only (on pre-965)
    380  *   - no pixel mulitply/line duplication
    381  *   - no alpha buffer discard
    382  *   - no dual wide
    383  *   - framebuffer <= 2048 in width, 1536 in height
    384  *
    385  * We can't assume that any compression will take place (worst case),
    386  * so the compressed buffer has to be the same size as the uncompressed
    387  * one.  It also must reside (along with the line length buffer) in
    388  * stolen memory.
    389  *
    390  * We need to enable/disable FBC on a global basis.
    391  */
    392 void intel_update_fbc(struct drm_device *dev)
    393 {
    394 	struct drm_i915_private *dev_priv = dev->dev_private;
    395 	struct drm_crtc *crtc = NULL, *tmp_crtc;
    396 	struct intel_crtc *intel_crtc;
    397 	struct drm_framebuffer *fb;
    398 	struct intel_framebuffer *intel_fb;
    399 	struct drm_i915_gem_object *obj;
    400 	int enable_fbc;
    401 
    402 	if (!i915_powersave)
    403 		return;
    404 
    405 	if (!I915_HAS_FBC(dev))
    406 		return;
    407 
    408 	/*
    409 	 * If FBC is already on, we just have to verify that we can
    410 	 * keep it that way...
    411 	 * Need to disable if:
    412 	 *   - more than one pipe is active
    413 	 *   - changing FBC params (stride, fence, mode)
    414 	 *   - new fb is too large to fit in compressed buffer
    415 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
    416 	 */
    417 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
    418 		if (intel_crtc_active(tmp_crtc) &&
    419 		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
    420 			if (crtc) {
    421 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
    422 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
    423 				goto out_disable;
    424 			}
    425 			crtc = tmp_crtc;
    426 		}
    427 	}
    428 
    429 	if (!crtc || crtc->fb == NULL) {
    430 		DRM_DEBUG_KMS("no output, disabling\n");
    431 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
    432 		goto out_disable;
    433 	}
    434 
    435 	intel_crtc = to_intel_crtc(crtc);
    436 	fb = crtc->fb;
    437 	intel_fb = to_intel_framebuffer(fb);
    438 	obj = intel_fb->obj;
    439 
    440 	enable_fbc = i915_enable_fbc;
    441 	if (enable_fbc < 0) {
    442 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
    443 		enable_fbc = 1;
    444 		if (INTEL_INFO(dev)->gen <= 6)
    445 			enable_fbc = 0;
    446 	}
    447 	if (!enable_fbc) {
    448 		DRM_DEBUG_KMS("fbc disabled per module param\n");
    449 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
    450 		goto out_disable;
    451 	}
    452 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
    453 		DRM_DEBUG_KMS("framebuffer too large, disabling "
    454 			      "compression\n");
    455 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
    456 		goto out_disable;
    457 	}
    458 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
    459 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
    460 		DRM_DEBUG_KMS("mode incompatible with compression, "
    461 			      "disabling\n");
    462 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
    463 		goto out_disable;
    464 	}
    465 	if ((crtc->mode.hdisplay > 2048) ||
    466 	    (crtc->mode.vdisplay > 1536)) {
    467 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
    468 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
    469 		goto out_disable;
    470 	}
    471 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
    472 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
    473 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
    474 		goto out_disable;
    475 	}
    476 
    477 	/* The use of a CPU fence is mandatory in order to detect writes
    478 	 * by the CPU to the scanout and trigger updates to the FBC.
    479 	 */
    480 	if (obj->tiling_mode != I915_TILING_X ||
    481 	    obj->fence_reg == I915_FENCE_REG_NONE) {
    482 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
    483 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
    484 		goto out_disable;
    485 	}
    486 
    487 	/* If the kernel debugger is active, always disable compression */
    488 	if (in_dbg_master())
    489 		goto out_disable;
    490 
    491 	/* If the scanout has not changed, don't modify the FBC settings.
    492 	 * Note that we make the fundamental assumption that the fb->obj
    493 	 * cannot be unpinned (and have its GTT offset and fence revoked)
    494 	 * without first being decoupled from the scanout and FBC disabled.
    495 	 */
    496 	if (dev_priv->cfb_plane == intel_crtc->plane &&
    497 	    dev_priv->cfb_fb == fb->base.id &&
    498 	    dev_priv->cfb_y == crtc->y)
    499 		return;
    500 
    501 	if (intel_fbc_enabled(dev)) {
    502 		/* We update FBC along two paths, after changing fb/crtc
    503 		 * configuration (modeswitching) and after page-flipping
    504 		 * finishes. For the latter, we know that not only did
    505 		 * we disable the FBC at the start of the page-flip
    506 		 * sequence, but also more than one vblank has passed.
    507 		 *
    508 		 * For the former case of modeswitching, it is possible
    509 		 * to switch between two FBC valid configurations
    510 		 * instantaneously so we do need to disable the FBC
    511 		 * before we can modify its control registers. We also
    512 		 * have to wait for the next vblank for that to take
    513 		 * effect. However, since we delay enabling FBC we can
    514 		 * assume that a vblank has passed since disabling and
    515 		 * that we can safely alter the registers in the deferred
    516 		 * callback.
    517 		 *
    518 		 * In the scenario that we go from a valid to invalid
    519 		 * and then back to valid FBC configuration we have
    520 		 * no strict enforcement that a vblank occurred since
    521 		 * disabling the FBC. However, along all current pipe
    522 		 * disabling paths we do need to wait for a vblank at
    523 		 * some point. And we wait before enabling FBC anyway.
    524 		 */
    525 		DRM_DEBUG_KMS("disabling active FBC for update\n");
    526 		intel_disable_fbc(dev);
    527 	}
    528 
    529 	intel_enable_fbc(crtc, 500);
    530 	return;
    531 
    532 out_disable:
    533 	/* Multiple disables should be harmless */
    534 	if (intel_fbc_enabled(dev)) {
    535 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
    536 		intel_disable_fbc(dev);
    537 	}
    538 }
    539 
    540 static void i915_pineview_get_mem_freq(struct drm_device *dev)
    541 {
    542 	drm_i915_private_t *dev_priv = dev->dev_private;
    543 	u32 tmp;
    544 
    545 	tmp = I915_READ(CLKCFG);
    546 
    547 	switch (tmp & CLKCFG_FSB_MASK) {
    548 	case CLKCFG_FSB_533:
    549 		dev_priv->fsb_freq = 533; /* 133*4 */
    550 		break;
    551 	case CLKCFG_FSB_800:
    552 		dev_priv->fsb_freq = 800; /* 200*4 */
    553 		break;
    554 	case CLKCFG_FSB_667:
    555 		dev_priv->fsb_freq =  667; /* 167*4 */
    556 		break;
    557 	case CLKCFG_FSB_400:
    558 		dev_priv->fsb_freq = 400; /* 100*4 */
    559 		break;
    560 	}
    561 
    562 	switch (tmp & CLKCFG_MEM_MASK) {
    563 	case CLKCFG_MEM_533:
    564 		dev_priv->mem_freq = 533;
    565 		break;
    566 	case CLKCFG_MEM_667:
    567 		dev_priv->mem_freq = 667;
    568 		break;
    569 	case CLKCFG_MEM_800:
    570 		dev_priv->mem_freq = 800;
    571 		break;
    572 	}
    573 
    574 	/* detect pineview DDR3 setting */
    575 	tmp = I915_READ(CSHRDDR3CTL);
    576 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    577 }
    578 
    579 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    580 {
    581 	drm_i915_private_t *dev_priv = dev->dev_private;
    582 	u16 ddrpll, csipll;
    583 
    584 	ddrpll = I915_READ16(DDRMPLL1);
    585 	csipll = I915_READ16(CSIPLL0);
    586 
    587 	switch (ddrpll & 0xff) {
    588 	case 0xc:
    589 		dev_priv->mem_freq = 800;
    590 		break;
    591 	case 0x10:
    592 		dev_priv->mem_freq = 1066;
    593 		break;
    594 	case 0x14:
    595 		dev_priv->mem_freq = 1333;
    596 		break;
    597 	case 0x18:
    598 		dev_priv->mem_freq = 1600;
    599 		break;
    600 	default:
    601 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    602 				 ddrpll & 0xff);
    603 		dev_priv->mem_freq = 0;
    604 		break;
    605 	}
    606 
    607 	dev_priv->ips.r_t = dev_priv->mem_freq;
    608 
    609 	switch (csipll & 0x3ff) {
    610 	case 0x00c:
    611 		dev_priv->fsb_freq = 3200;
    612 		break;
    613 	case 0x00e:
    614 		dev_priv->fsb_freq = 3733;
    615 		break;
    616 	case 0x010:
    617 		dev_priv->fsb_freq = 4266;
    618 		break;
    619 	case 0x012:
    620 		dev_priv->fsb_freq = 4800;
    621 		break;
    622 	case 0x014:
    623 		dev_priv->fsb_freq = 5333;
    624 		break;
    625 	case 0x016:
    626 		dev_priv->fsb_freq = 5866;
    627 		break;
    628 	case 0x018:
    629 		dev_priv->fsb_freq = 6400;
    630 		break;
    631 	default:
    632 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    633 				 csipll & 0x3ff);
    634 		dev_priv->fsb_freq = 0;
    635 		break;
    636 	}
    637 
    638 	if (dev_priv->fsb_freq == 3200) {
    639 		dev_priv->ips.c_m = 0;
    640 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    641 		dev_priv->ips.c_m = 1;
    642 	} else {
    643 		dev_priv->ips.c_m = 2;
    644 	}
    645 }
    646 
    647 static const struct cxsr_latency cxsr_latency_table[] = {
    648 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    649 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    650 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    651 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    652 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    653 
    654 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    655 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    656 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    657 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    658 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    659 
    660 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    661 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    662 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    663 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    664 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    665 
    666 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    667 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    668 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    669 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    670 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    671 
    672 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    673 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    674 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    675 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    676 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    677 
    678 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    679 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    680 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    681 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    682 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    683 };
    684 
    685 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    686 							 int is_ddr3,
    687 							 int fsb,
    688 							 int mem)
    689 {
    690 	const struct cxsr_latency *latency;
    691 	int i;
    692 
    693 	if (fsb == 0 || mem == 0)
    694 		return NULL;
    695 
    696 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    697 		latency = &cxsr_latency_table[i];
    698 		if (is_desktop == latency->is_desktop &&
    699 		    is_ddr3 == latency->is_ddr3 &&
    700 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    701 			return latency;
    702 	}
    703 
    704 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    705 
    706 	return NULL;
    707 }
    708 
    709 static void pineview_disable_cxsr(struct drm_device *dev)
    710 {
    711 	struct drm_i915_private *dev_priv = dev->dev_private;
    712 
    713 	/* deactivate cxsr */
    714 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
    715 }
    716 
    717 /*
    718  * Latency for FIFO fetches is dependent on several factors:
    719  *   - memory configuration (speed, channels)
    720  *   - chipset
    721  *   - current MCH state
    722  * It can be fairly high in some situations, so here we assume a fairly
    723  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    724  * set this value too high, the FIFO will fetch frequently to stay full)
    725  * and power consumption (set it too low to save power and we might see
    726  * FIFO underruns and display "flicker").
    727  *
    728  * A value of 5us seems to be a good balance; safe for very low end
    729  * platforms but not overly aggressive on lower latency configs.
    730  */
    731 static const int latency_ns = 5000;
    732 
    733 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    734 {
    735 	struct drm_i915_private *dev_priv = dev->dev_private;
    736 	uint32_t dsparb = I915_READ(DSPARB);
    737 	int size;
    738 
    739 	size = dsparb & 0x7f;
    740 	if (plane)
    741 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    742 
    743 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    744 		      plane ? "B" : "A", size);
    745 
    746 	return size;
    747 }
    748 
    749 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
    750 {
    751 	struct drm_i915_private *dev_priv = dev->dev_private;
    752 	uint32_t dsparb = I915_READ(DSPARB);
    753 	int size;
    754 
    755 	size = dsparb & 0x1ff;
    756 	if (plane)
    757 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    758 	size >>= 1; /* Convert to cachelines */
    759 
    760 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    761 		      plane ? "B" : "A", size);
    762 
    763 	return size;
    764 }
    765 
    766 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    767 {
    768 	struct drm_i915_private *dev_priv = dev->dev_private;
    769 	uint32_t dsparb = I915_READ(DSPARB);
    770 	int size;
    771 
    772 	size = dsparb & 0x7f;
    773 	size >>= 2; /* Convert to cachelines */
    774 
    775 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    776 		      plane ? "B" : "A",
    777 		      size);
    778 
    779 	return size;
    780 }
    781 
    782 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    783 {
    784 	struct drm_i915_private *dev_priv = dev->dev_private;
    785 	uint32_t dsparb = I915_READ(DSPARB);
    786 	int size;
    787 
    788 	size = dsparb & 0x7f;
    789 	size >>= 1; /* Convert to cachelines */
    790 
    791 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    792 		      plane ? "B" : "A", size);
    793 
    794 	return size;
    795 }
    796 
    797 /* Pineview has different values for various configs */
    798 static const struct intel_watermark_params pineview_display_wm = {
    799 	PINEVIEW_DISPLAY_FIFO,
    800 	PINEVIEW_MAX_WM,
    801 	PINEVIEW_DFT_WM,
    802 	PINEVIEW_GUARD_WM,
    803 	PINEVIEW_FIFO_LINE_SIZE
    804 };
    805 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    806 	PINEVIEW_DISPLAY_FIFO,
    807 	PINEVIEW_MAX_WM,
    808 	PINEVIEW_DFT_HPLLOFF_WM,
    809 	PINEVIEW_GUARD_WM,
    810 	PINEVIEW_FIFO_LINE_SIZE
    811 };
    812 static const struct intel_watermark_params pineview_cursor_wm = {
    813 	PINEVIEW_CURSOR_FIFO,
    814 	PINEVIEW_CURSOR_MAX_WM,
    815 	PINEVIEW_CURSOR_DFT_WM,
    816 	PINEVIEW_CURSOR_GUARD_WM,
    817 	PINEVIEW_FIFO_LINE_SIZE,
    818 };
    819 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    820 	PINEVIEW_CURSOR_FIFO,
    821 	PINEVIEW_CURSOR_MAX_WM,
    822 	PINEVIEW_CURSOR_DFT_WM,
    823 	PINEVIEW_CURSOR_GUARD_WM,
    824 	PINEVIEW_FIFO_LINE_SIZE
    825 };
    826 static const struct intel_watermark_params g4x_wm_info = {
    827 	G4X_FIFO_SIZE,
    828 	G4X_MAX_WM,
    829 	G4X_MAX_WM,
    830 	2,
    831 	G4X_FIFO_LINE_SIZE,
    832 };
    833 static const struct intel_watermark_params g4x_cursor_wm_info = {
    834 	I965_CURSOR_FIFO,
    835 	I965_CURSOR_MAX_WM,
    836 	I965_CURSOR_DFT_WM,
    837 	2,
    838 	G4X_FIFO_LINE_SIZE,
    839 };
    840 static const struct intel_watermark_params valleyview_wm_info = {
    841 	VALLEYVIEW_FIFO_SIZE,
    842 	VALLEYVIEW_MAX_WM,
    843 	VALLEYVIEW_MAX_WM,
    844 	2,
    845 	G4X_FIFO_LINE_SIZE,
    846 };
    847 static const struct intel_watermark_params valleyview_cursor_wm_info = {
    848 	I965_CURSOR_FIFO,
    849 	VALLEYVIEW_CURSOR_MAX_WM,
    850 	I965_CURSOR_DFT_WM,
    851 	2,
    852 	G4X_FIFO_LINE_SIZE,
    853 };
    854 static const struct intel_watermark_params i965_cursor_wm_info = {
    855 	I965_CURSOR_FIFO,
    856 	I965_CURSOR_MAX_WM,
    857 	I965_CURSOR_DFT_WM,
    858 	2,
    859 	I915_FIFO_LINE_SIZE,
    860 };
    861 static const struct intel_watermark_params i945_wm_info = {
    862 	I945_FIFO_SIZE,
    863 	I915_MAX_WM,
    864 	1,
    865 	2,
    866 	I915_FIFO_LINE_SIZE
    867 };
    868 static const struct intel_watermark_params i915_wm_info = {
    869 	I915_FIFO_SIZE,
    870 	I915_MAX_WM,
    871 	1,
    872 	2,
    873 	I915_FIFO_LINE_SIZE
    874 };
    875 static const struct intel_watermark_params i855_wm_info = {
    876 	I855GM_FIFO_SIZE,
    877 	I915_MAX_WM,
    878 	1,
    879 	2,
    880 	I830_FIFO_LINE_SIZE
    881 };
    882 static const struct intel_watermark_params i830_wm_info = {
    883 	I830_FIFO_SIZE,
    884 	I915_MAX_WM,
    885 	1,
    886 	2,
    887 	I830_FIFO_LINE_SIZE
    888 };
    889 
    890 static const struct intel_watermark_params ironlake_display_wm_info = {
    891 	ILK_DISPLAY_FIFO,
    892 	ILK_DISPLAY_MAXWM,
    893 	ILK_DISPLAY_DFTWM,
    894 	2,
    895 	ILK_FIFO_LINE_SIZE
    896 };
    897 static const struct intel_watermark_params ironlake_cursor_wm_info = {
    898 	ILK_CURSOR_FIFO,
    899 	ILK_CURSOR_MAXWM,
    900 	ILK_CURSOR_DFTWM,
    901 	2,
    902 	ILK_FIFO_LINE_SIZE
    903 };
    904 static const struct intel_watermark_params ironlake_display_srwm_info = {
    905 	ILK_DISPLAY_SR_FIFO,
    906 	ILK_DISPLAY_MAX_SRWM,
    907 	ILK_DISPLAY_DFT_SRWM,
    908 	2,
    909 	ILK_FIFO_LINE_SIZE
    910 };
    911 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
    912 	ILK_CURSOR_SR_FIFO,
    913 	ILK_CURSOR_MAX_SRWM,
    914 	ILK_CURSOR_DFT_SRWM,
    915 	2,
    916 	ILK_FIFO_LINE_SIZE
    917 };
    918 
    919 static const struct intel_watermark_params sandybridge_display_wm_info = {
    920 	SNB_DISPLAY_FIFO,
    921 	SNB_DISPLAY_MAXWM,
    922 	SNB_DISPLAY_DFTWM,
    923 	2,
    924 	SNB_FIFO_LINE_SIZE
    925 };
    926 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
    927 	SNB_CURSOR_FIFO,
    928 	SNB_CURSOR_MAXWM,
    929 	SNB_CURSOR_DFTWM,
    930 	2,
    931 	SNB_FIFO_LINE_SIZE
    932 };
    933 static const struct intel_watermark_params sandybridge_display_srwm_info = {
    934 	SNB_DISPLAY_SR_FIFO,
    935 	SNB_DISPLAY_MAX_SRWM,
    936 	SNB_DISPLAY_DFT_SRWM,
    937 	2,
    938 	SNB_FIFO_LINE_SIZE
    939 };
    940 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
    941 	SNB_CURSOR_SR_FIFO,
    942 	SNB_CURSOR_MAX_SRWM,
    943 	SNB_CURSOR_DFT_SRWM,
    944 	2,
    945 	SNB_FIFO_LINE_SIZE
    946 };
    947 
    948 
    949 /**
    950  * intel_calculate_wm - calculate watermark level
    951  * @clock_in_khz: pixel clock
    952  * @wm: chip FIFO params
    953  * @pixel_size: display pixel size
    954  * @latency_ns: memory latency for the platform
    955  *
    956  * Calculate the watermark level (the level at which the display plane will
    957  * start fetching from memory again).  Each chip has a different display
    958  * FIFO size and allocation, so the caller needs to figure that out and pass
    959  * in the correct intel_watermark_params structure.
    960  *
    961  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    962  * on the pixel size.  When it reaches the watermark level, it'll start
    963  * fetching FIFO line sized based chunks from memory until the FIFO fills
    964  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    965  * will occur, and a display engine hang could result.
    966  */
    967 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    968 					const struct intel_watermark_params *wm,
    969 					int fifo_size,
    970 					int pixel_size,
    971 					unsigned long latency_ns)
    972 {
    973 	long entries_required, wm_size;
    974 
    975 	/*
    976 	 * Note: we need to make sure we don't overflow for various clock &
    977 	 * latency values.
    978 	 * clocks go from a few thousand to several hundred thousand.
    979 	 * latency is usually a few thousand
    980 	 */
    981 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
    982 		1000;
    983 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
    984 
    985 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
    986 
    987 	wm_size = fifo_size - (entries_required + wm->guard_size);
    988 
    989 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
    990 
    991 	/* Don't promote wm_size to unsigned... */
    992 	if (wm_size > (long)wm->max_wm)
    993 		wm_size = wm->max_wm;
    994 	if (wm_size <= 0)
    995 		wm_size = wm->default_wm;
    996 	return wm_size;
    997 }
    998 
    999 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
   1000 {
   1001 	struct drm_crtc *crtc, *enabled = NULL;
   1002 
   1003 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
   1004 		if (intel_crtc_active(crtc)) {
   1005 			if (enabled)
   1006 				return NULL;
   1007 			enabled = crtc;
   1008 		}
   1009 	}
   1010 
   1011 	return enabled;
   1012 }
   1013 
   1014 static void pineview_update_wm(struct drm_device *dev)
   1015 {
   1016 	struct drm_i915_private *dev_priv = dev->dev_private;
   1017 	struct drm_crtc *crtc;
   1018 	const struct cxsr_latency *latency;
   1019 	u32 reg;
   1020 	unsigned long wm;
   1021 
   1022 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
   1023 					 dev_priv->fsb_freq, dev_priv->mem_freq);
   1024 	if (!latency) {
   1025 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
   1026 		pineview_disable_cxsr(dev);
   1027 		return;
   1028 	}
   1029 
   1030 	crtc = single_enabled_crtc(dev);
   1031 	if (crtc) {
   1032 		int clock = crtc->mode.clock;
   1033 		int pixel_size = crtc->fb->bits_per_pixel / 8;
   1034 
   1035 		/* Display SR */
   1036 		wm = intel_calculate_wm(clock, &pineview_display_wm,
   1037 					pineview_display_wm.fifo_size,
   1038 					pixel_size, latency->display_sr);
   1039 		reg = I915_READ(DSPFW1);
   1040 		reg &= ~DSPFW_SR_MASK;
   1041 		reg |= wm << DSPFW_SR_SHIFT;
   1042 		I915_WRITE(DSPFW1, reg);
   1043 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
   1044 
   1045 		/* cursor SR */
   1046 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
   1047 					pineview_display_wm.fifo_size,
   1048 					pixel_size, latency->cursor_sr);
   1049 		reg = I915_READ(DSPFW3);
   1050 		reg &= ~DSPFW_CURSOR_SR_MASK;
   1051 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
   1052 		I915_WRITE(DSPFW3, reg);
   1053 
   1054 		/* Display HPLL off SR */
   1055 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
   1056 					pineview_display_hplloff_wm.fifo_size,
   1057 					pixel_size, latency->display_hpll_disable);
   1058 		reg = I915_READ(DSPFW3);
   1059 		reg &= ~DSPFW_HPLL_SR_MASK;
   1060 		reg |= wm & DSPFW_HPLL_SR_MASK;
   1061 		I915_WRITE(DSPFW3, reg);
   1062 
   1063 		/* cursor HPLL off SR */
   1064 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
   1065 					pineview_display_hplloff_wm.fifo_size,
   1066 					pixel_size, latency->cursor_hpll_disable);
   1067 		reg = I915_READ(DSPFW3);
   1068 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
   1069 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
   1070 		I915_WRITE(DSPFW3, reg);
   1071 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
   1072 
   1073 		/* activate cxsr */
   1074 		I915_WRITE(DSPFW3,
   1075 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
   1076 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
   1077 	} else {
   1078 		pineview_disable_cxsr(dev);
   1079 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
   1080 	}
   1081 }
   1082 
   1083 static bool g4x_compute_wm0(struct drm_device *dev,
   1084 			    int plane,
   1085 			    const struct intel_watermark_params *display,
   1086 			    int display_latency_ns,
   1087 			    const struct intel_watermark_params *cursor,
   1088 			    int cursor_latency_ns,
   1089 			    int *plane_wm,
   1090 			    int *cursor_wm)
   1091 {
   1092 	struct drm_crtc *crtc;
   1093 	int htotal, hdisplay, clock, pixel_size;
   1094 	int line_time_us, line_count;
   1095 	int entries, tlb_miss;
   1096 
   1097 	crtc = intel_get_crtc_for_plane(dev, plane);
   1098 	if (!intel_crtc_active(crtc)) {
   1099 		*cursor_wm = cursor->guard_size;
   1100 		*plane_wm = display->guard_size;
   1101 		return false;
   1102 	}
   1103 
   1104 	htotal = crtc->mode.htotal;
   1105 	hdisplay = crtc->mode.hdisplay;
   1106 	clock = crtc->mode.clock;
   1107 	pixel_size = crtc->fb->bits_per_pixel / 8;
   1108 
   1109 	/* Use the small buffer method to calculate plane watermark */
   1110 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
   1111 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
   1112 	if (tlb_miss > 0)
   1113 		entries += tlb_miss;
   1114 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
   1115 	*plane_wm = entries + display->guard_size;
   1116 	if (*plane_wm > (int)display->max_wm)
   1117 		*plane_wm = display->max_wm;
   1118 
   1119 	/* Use the large buffer method to calculate cursor watermark */
   1120 	line_time_us = ((htotal * 1000) / clock);
   1121 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
   1122 	entries = line_count * 64 * pixel_size;
   1123 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
   1124 	if (tlb_miss > 0)
   1125 		entries += tlb_miss;
   1126 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1127 	*cursor_wm = entries + cursor->guard_size;
   1128 	if (*cursor_wm > (int)cursor->max_wm)
   1129 		*cursor_wm = (int)cursor->max_wm;
   1130 
   1131 	return true;
   1132 }
   1133 
   1134 /*
   1135  * Check the wm result.
   1136  *
   1137  * If any calculated watermark values is larger than the maximum value that
   1138  * can be programmed into the associated watermark register, that watermark
   1139  * must be disabled.
   1140  */
   1141 static bool g4x_check_srwm(struct drm_device *dev,
   1142 			   int display_wm, int cursor_wm,
   1143 			   const struct intel_watermark_params *display,
   1144 			   const struct intel_watermark_params *cursor)
   1145 {
   1146 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
   1147 		      display_wm, cursor_wm);
   1148 
   1149 	if (display_wm > display->max_wm) {
   1150 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
   1151 			      display_wm, display->max_wm);
   1152 		return false;
   1153 	}
   1154 
   1155 	if (cursor_wm > cursor->max_wm) {
   1156 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
   1157 			      cursor_wm, cursor->max_wm);
   1158 		return false;
   1159 	}
   1160 
   1161 	if (!(display_wm || cursor_wm)) {
   1162 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
   1163 		return false;
   1164 	}
   1165 
   1166 	return true;
   1167 }
   1168 
   1169 static bool g4x_compute_srwm(struct drm_device *dev,
   1170 			     int plane,
   1171 			     int latency_ns,
   1172 			     const struct intel_watermark_params *display,
   1173 			     const struct intel_watermark_params *cursor,
   1174 			     int *display_wm, int *cursor_wm)
   1175 {
   1176 	struct drm_crtc *crtc;
   1177 	int hdisplay, htotal, pixel_size, clock;
   1178 	unsigned long line_time_us;
   1179 	int line_count, line_size;
   1180 	int small, large;
   1181 	int entries;
   1182 
   1183 	if (!latency_ns) {
   1184 		*display_wm = *cursor_wm = 0;
   1185 		return false;
   1186 	}
   1187 
   1188 	crtc = intel_get_crtc_for_plane(dev, plane);
   1189 	hdisplay = crtc->mode.hdisplay;
   1190 	htotal = crtc->mode.htotal;
   1191 	clock = crtc->mode.clock;
   1192 	pixel_size = crtc->fb->bits_per_pixel / 8;
   1193 
   1194 	line_time_us = (htotal * 1000) / clock;
   1195 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   1196 	line_size = hdisplay * pixel_size;
   1197 
   1198 	/* Use the minimum of the small and large buffer method for primary */
   1199 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   1200 	large = line_count * line_size;
   1201 
   1202 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   1203 	*display_wm = entries + display->guard_size;
   1204 
   1205 	/* calculate the self-refresh watermark for display cursor */
   1206 	entries = line_count * pixel_size * 64;
   1207 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1208 	*cursor_wm = entries + cursor->guard_size;
   1209 
   1210 	return g4x_check_srwm(dev,
   1211 			      *display_wm, *cursor_wm,
   1212 			      display, cursor);
   1213 }
   1214 
   1215 static bool vlv_compute_drain_latency(struct drm_device *dev,
   1216 				     int plane,
   1217 				     int *plane_prec_mult,
   1218 				     int *plane_dl,
   1219 				     int *cursor_prec_mult,
   1220 				     int *cursor_dl)
   1221 {
   1222 	struct drm_crtc *crtc;
   1223 	int clock, pixel_size;
   1224 	int entries;
   1225 
   1226 	crtc = intel_get_crtc_for_plane(dev, plane);
   1227 	if (!intel_crtc_active(crtc))
   1228 		return false;
   1229 
   1230 	clock = crtc->mode.clock;	/* VESA DOT Clock */
   1231 	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
   1232 
   1233 	entries = (clock / 1000) * pixel_size;
   1234 	*plane_prec_mult = (entries > 256) ?
   1235 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1236 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
   1237 						     pixel_size);
   1238 
   1239 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
   1240 	*cursor_prec_mult = (entries > 256) ?
   1241 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1242 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
   1243 
   1244 	return true;
   1245 }
   1246 
   1247 /*
   1248  * Update drain latency registers of memory arbiter
   1249  *
   1250  * Valleyview SoC has a new memory arbiter and needs drain latency registers
   1251  * to be programmed. Each plane has a drain latency multiplier and a drain
   1252  * latency value.
   1253  */
   1254 
   1255 static void vlv_update_drain_latency(struct drm_device *dev)
   1256 {
   1257 	struct drm_i915_private *dev_priv = dev->dev_private;
   1258 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
   1259 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
   1260 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
   1261 							either 16 or 32 */
   1262 
   1263 	/* For plane A, Cursor A */
   1264 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
   1265 				      &cursor_prec_mult, &cursora_dl)) {
   1266 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1267 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
   1268 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1269 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
   1270 
   1271 		I915_WRITE(VLV_DDL1, cursora_prec |
   1272 				(cursora_dl << DDL_CURSORA_SHIFT) |
   1273 				planea_prec | planea_dl);
   1274 	}
   1275 
   1276 	/* For plane B, Cursor B */
   1277 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
   1278 				      &cursor_prec_mult, &cursorb_dl)) {
   1279 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1280 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
   1281 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1282 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
   1283 
   1284 		I915_WRITE(VLV_DDL2, cursorb_prec |
   1285 				(cursorb_dl << DDL_CURSORB_SHIFT) |
   1286 				planeb_prec | planeb_dl);
   1287 	}
   1288 }
   1289 
   1290 #define single_plane_enabled(mask) is_power_of_2(mask)
   1291 
   1292 static void valleyview_update_wm(struct drm_device *dev)
   1293 {
   1294 	static const int sr_latency_ns = 12000;
   1295 	struct drm_i915_private *dev_priv = dev->dev_private;
   1296 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1297 	int plane_sr, cursor_sr;
   1298 	int ignore_plane_sr, ignore_cursor_sr;
   1299 	unsigned int enabled = 0;
   1300 
   1301 	vlv_update_drain_latency(dev);
   1302 
   1303 	if (g4x_compute_wm0(dev, 0,
   1304 			    &valleyview_wm_info, latency_ns,
   1305 			    &valleyview_cursor_wm_info, latency_ns,
   1306 			    &planea_wm, &cursora_wm))
   1307 		enabled |= 1;
   1308 
   1309 	if (g4x_compute_wm0(dev, 1,
   1310 			    &valleyview_wm_info, latency_ns,
   1311 			    &valleyview_cursor_wm_info, latency_ns,
   1312 			    &planeb_wm, &cursorb_wm))
   1313 		enabled |= 2;
   1314 
   1315 	if (single_plane_enabled(enabled) &&
   1316 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1317 			     sr_latency_ns,
   1318 			     &valleyview_wm_info,
   1319 			     &valleyview_cursor_wm_info,
   1320 			     &plane_sr, &ignore_cursor_sr) &&
   1321 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1322 			     2*sr_latency_ns,
   1323 			     &valleyview_wm_info,
   1324 			     &valleyview_cursor_wm_info,
   1325 			     &ignore_plane_sr, &cursor_sr)) {
   1326 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
   1327 	} else {
   1328 		I915_WRITE(FW_BLC_SELF_VLV,
   1329 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
   1330 		plane_sr = cursor_sr = 0;
   1331 	}
   1332 
   1333 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1334 		      planea_wm, cursora_wm,
   1335 		      planeb_wm, cursorb_wm,
   1336 		      plane_sr, cursor_sr);
   1337 
   1338 	I915_WRITE(DSPFW1,
   1339 		   (plane_sr << DSPFW_SR_SHIFT) |
   1340 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1341 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1342 		   planea_wm);
   1343 	I915_WRITE(DSPFW2,
   1344 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1345 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1346 	I915_WRITE(DSPFW3,
   1347 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
   1348 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1349 }
   1350 
   1351 static void g4x_update_wm(struct drm_device *dev)
   1352 {
   1353 	static const int sr_latency_ns = 12000;
   1354 	struct drm_i915_private *dev_priv = dev->dev_private;
   1355 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1356 	int plane_sr, cursor_sr;
   1357 	unsigned int enabled = 0;
   1358 
   1359 	if (g4x_compute_wm0(dev, 0,
   1360 			    &g4x_wm_info, latency_ns,
   1361 			    &g4x_cursor_wm_info, latency_ns,
   1362 			    &planea_wm, &cursora_wm))
   1363 		enabled |= 1;
   1364 
   1365 	if (g4x_compute_wm0(dev, 1,
   1366 			    &g4x_wm_info, latency_ns,
   1367 			    &g4x_cursor_wm_info, latency_ns,
   1368 			    &planeb_wm, &cursorb_wm))
   1369 		enabled |= 2;
   1370 
   1371 	if (single_plane_enabled(enabled) &&
   1372 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1373 			     sr_latency_ns,
   1374 			     &g4x_wm_info,
   1375 			     &g4x_cursor_wm_info,
   1376 			     &plane_sr, &cursor_sr)) {
   1377 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1378 	} else {
   1379 		I915_WRITE(FW_BLC_SELF,
   1380 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
   1381 		plane_sr = cursor_sr = 0;
   1382 	}
   1383 
   1384 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1385 		      planea_wm, cursora_wm,
   1386 		      planeb_wm, cursorb_wm,
   1387 		      plane_sr, cursor_sr);
   1388 
   1389 	I915_WRITE(DSPFW1,
   1390 		   (plane_sr << DSPFW_SR_SHIFT) |
   1391 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1392 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1393 		   planea_wm);
   1394 	I915_WRITE(DSPFW2,
   1395 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1396 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1397 	/* HPLL off in SR has some issues on G4x... disable it */
   1398 	I915_WRITE(DSPFW3,
   1399 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1400 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1401 }
   1402 
   1403 static void i965_update_wm(struct drm_device *dev)
   1404 {
   1405 	struct drm_i915_private *dev_priv = dev->dev_private;
   1406 	struct drm_crtc *crtc;
   1407 	int srwm = 1;
   1408 	int cursor_sr = 16;
   1409 
   1410 	/* Calc sr entries for one plane configs */
   1411 	crtc = single_enabled_crtc(dev);
   1412 	if (crtc) {
   1413 		/* self-refresh has much higher latency */
   1414 		static const int sr_latency_ns = 12000;
   1415 		int clock = crtc->mode.clock;
   1416 		int htotal = crtc->mode.htotal;
   1417 		int hdisplay = crtc->mode.hdisplay;
   1418 		int pixel_size = crtc->fb->bits_per_pixel / 8;
   1419 		unsigned long line_time_us;
   1420 		int entries;
   1421 
   1422 		line_time_us = ((htotal * 1000) / clock);
   1423 
   1424 		/* Use ns/us then divide to preserve precision */
   1425 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1426 			pixel_size * hdisplay;
   1427 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1428 		srwm = I965_FIFO_SIZE - entries;
   1429 		if (srwm < 0)
   1430 			srwm = 1;
   1431 		srwm &= 0x1ff;
   1432 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1433 			      entries, srwm);
   1434 
   1435 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1436 			pixel_size * 64;
   1437 		entries = DIV_ROUND_UP(entries,
   1438 					  i965_cursor_wm_info.cacheline_size);
   1439 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1440 			(entries + i965_cursor_wm_info.guard_size);
   1441 
   1442 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1443 			cursor_sr = i965_cursor_wm_info.max_wm;
   1444 
   1445 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1446 			      "cursor %d\n", srwm, cursor_sr);
   1447 
   1448 		if (IS_CRESTLINE(dev))
   1449 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1450 	} else {
   1451 		/* Turn off self refresh if both pipes are enabled */
   1452 		if (IS_CRESTLINE(dev))
   1453 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
   1454 				   & ~FW_BLC_SELF_EN);
   1455 	}
   1456 
   1457 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1458 		      srwm);
   1459 
   1460 	/* 965 has limitations... */
   1461 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
   1462 		   (8 << 16) | (8 << 8) | (8 << 0));
   1463 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
   1464 	/* update cursor SR watermark */
   1465 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1466 }
   1467 
   1468 static void i9xx_update_wm(struct drm_device *dev)
   1469 {
   1470 	struct drm_i915_private *dev_priv = dev->dev_private;
   1471 	const struct intel_watermark_params *wm_info;
   1472 	uint32_t fwater_lo;
   1473 	uint32_t fwater_hi;
   1474 	int cwm, srwm = 1;
   1475 	int fifo_size;
   1476 	int planea_wm, planeb_wm;
   1477 	struct drm_crtc *crtc, *enabled = NULL;
   1478 
   1479 	if (IS_I945GM(dev))
   1480 		wm_info = &i945_wm_info;
   1481 	else if (!IS_GEN2(dev))
   1482 		wm_info = &i915_wm_info;
   1483 	else
   1484 		wm_info = &i855_wm_info;
   1485 
   1486 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1487 	crtc = intel_get_crtc_for_plane(dev, 0);
   1488 	if (intel_crtc_active(crtc)) {
   1489 		int cpp = crtc->fb->bits_per_pixel / 8;
   1490 		if (IS_GEN2(dev))
   1491 			cpp = 4;
   1492 
   1493 		planea_wm = intel_calculate_wm(crtc->mode.clock,
   1494 					       wm_info, fifo_size, cpp,
   1495 					       latency_ns);
   1496 		enabled = crtc;
   1497 	} else
   1498 		planea_wm = fifo_size - wm_info->guard_size;
   1499 
   1500 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1501 	crtc = intel_get_crtc_for_plane(dev, 1);
   1502 	if (intel_crtc_active(crtc)) {
   1503 		int cpp = crtc->fb->bits_per_pixel / 8;
   1504 		if (IS_GEN2(dev))
   1505 			cpp = 4;
   1506 
   1507 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
   1508 					       wm_info, fifo_size, cpp,
   1509 					       latency_ns);
   1510 		if (enabled == NULL)
   1511 			enabled = crtc;
   1512 		else
   1513 			enabled = NULL;
   1514 	} else
   1515 		planeb_wm = fifo_size - wm_info->guard_size;
   1516 
   1517 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1518 
   1519 	/*
   1520 	 * Overlay gets an aggressive default since video jitter is bad.
   1521 	 */
   1522 	cwm = 2;
   1523 
   1524 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1525 	if (IS_I945G(dev) || IS_I945GM(dev))
   1526 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
   1527 	else if (IS_I915GM(dev))
   1528 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
   1529 
   1530 	/* Calc sr entries for one plane configs */
   1531 	if (HAS_FW_BLC(dev) && enabled) {
   1532 		/* self-refresh has much higher latency */
   1533 		static const int sr_latency_ns = 6000;
   1534 		int clock = enabled->mode.clock;
   1535 		int htotal = enabled->mode.htotal;
   1536 		int hdisplay = enabled->mode.hdisplay;
   1537 		int pixel_size = enabled->fb->bits_per_pixel / 8;
   1538 		unsigned long line_time_us;
   1539 		int entries;
   1540 
   1541 		line_time_us = (htotal * 1000) / clock;
   1542 
   1543 		/* Use ns/us then divide to preserve precision */
   1544 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1545 			pixel_size * hdisplay;
   1546 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1547 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1548 		srwm = wm_info->fifo_size - entries;
   1549 		if (srwm < 0)
   1550 			srwm = 1;
   1551 
   1552 		if (IS_I945G(dev) || IS_I945GM(dev))
   1553 			I915_WRITE(FW_BLC_SELF,
   1554 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1555 		else if (IS_I915GM(dev))
   1556 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1557 	}
   1558 
   1559 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1560 		      planea_wm, planeb_wm, cwm, srwm);
   1561 
   1562 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1563 	fwater_hi = (cwm & 0x1f);
   1564 
   1565 	/* Set request length to 8 cachelines per fetch */
   1566 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1567 	fwater_hi = fwater_hi | (1 << 8);
   1568 
   1569 	I915_WRITE(FW_BLC, fwater_lo);
   1570 	I915_WRITE(FW_BLC2, fwater_hi);
   1571 
   1572 	if (HAS_FW_BLC(dev)) {
   1573 		if (enabled) {
   1574 			if (IS_I945G(dev) || IS_I945GM(dev))
   1575 				I915_WRITE(FW_BLC_SELF,
   1576 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
   1577 			else if (IS_I915GM(dev))
   1578 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
   1579 			DRM_DEBUG_KMS("memory self refresh enabled\n");
   1580 		} else
   1581 			DRM_DEBUG_KMS("memory self refresh disabled\n");
   1582 	}
   1583 }
   1584 
   1585 static void i830_update_wm(struct drm_device *dev)
   1586 {
   1587 	struct drm_i915_private *dev_priv = dev->dev_private;
   1588 	struct drm_crtc *crtc;
   1589 	uint32_t fwater_lo;
   1590 	int planea_wm;
   1591 
   1592 	crtc = single_enabled_crtc(dev);
   1593 	if (crtc == NULL)
   1594 		return;
   1595 
   1596 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
   1597 				       dev_priv->display.get_fifo_size(dev, 0),
   1598 				       4, latency_ns);
   1599 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1600 	fwater_lo |= (3<<8) | planea_wm;
   1601 
   1602 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1603 
   1604 	I915_WRITE(FW_BLC, fwater_lo);
   1605 }
   1606 
   1607 #define ILK_LP0_PLANE_LATENCY		700
   1608 #define ILK_LP0_CURSOR_LATENCY		1300
   1609 
   1610 /*
   1611  * Check the wm result.
   1612  *
   1613  * If any calculated watermark values is larger than the maximum value that
   1614  * can be programmed into the associated watermark register, that watermark
   1615  * must be disabled.
   1616  */
   1617 static bool ironlake_check_srwm(struct drm_device *dev, int level,
   1618 				int fbc_wm, int display_wm, int cursor_wm,
   1619 				const struct intel_watermark_params *display,
   1620 				const struct intel_watermark_params *cursor)
   1621 {
   1622 	struct drm_i915_private *dev_priv = dev->dev_private;
   1623 
   1624 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
   1625 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
   1626 
   1627 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
   1628 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
   1629 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
   1630 
   1631 		/* fbc has it's own way to disable FBC WM */
   1632 		I915_WRITE(DISP_ARB_CTL,
   1633 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
   1634 		return false;
   1635 	}
   1636 
   1637 	if (display_wm > display->max_wm) {
   1638 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
   1639 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
   1640 		return false;
   1641 	}
   1642 
   1643 	if (cursor_wm > cursor->max_wm) {
   1644 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
   1645 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
   1646 		return false;
   1647 	}
   1648 
   1649 	if (!(fbc_wm || display_wm || cursor_wm)) {
   1650 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
   1651 		return false;
   1652 	}
   1653 
   1654 	return true;
   1655 }
   1656 
   1657 /*
   1658  * Compute watermark values of WM[1-3],
   1659  */
   1660 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
   1661 				  int latency_ns,
   1662 				  const struct intel_watermark_params *display,
   1663 				  const struct intel_watermark_params *cursor,
   1664 				  int *fbc_wm, int *display_wm, int *cursor_wm)
   1665 {
   1666 	struct drm_crtc *crtc;
   1667 	unsigned long line_time_us;
   1668 	int hdisplay, htotal, pixel_size, clock;
   1669 	int line_count, line_size;
   1670 	int small, large;
   1671 	int entries;
   1672 
   1673 	if (!latency_ns) {
   1674 		*fbc_wm = *display_wm = *cursor_wm = 0;
   1675 		return false;
   1676 	}
   1677 
   1678 	crtc = intel_get_crtc_for_plane(dev, plane);
   1679 	hdisplay = crtc->mode.hdisplay;
   1680 	htotal = crtc->mode.htotal;
   1681 	clock = crtc->mode.clock;
   1682 	pixel_size = crtc->fb->bits_per_pixel / 8;
   1683 
   1684 	line_time_us = (htotal * 1000) / clock;
   1685 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   1686 	line_size = hdisplay * pixel_size;
   1687 
   1688 	/* Use the minimum of the small and large buffer method for primary */
   1689 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   1690 	large = line_count * line_size;
   1691 
   1692 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   1693 	*display_wm = entries + display->guard_size;
   1694 
   1695 	/*
   1696 	 * Spec says:
   1697 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
   1698 	 */
   1699 	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
   1700 
   1701 	/* calculate the self-refresh watermark for display cursor */
   1702 	entries = line_count * pixel_size * 64;
   1703 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1704 	*cursor_wm = entries + cursor->guard_size;
   1705 
   1706 	return ironlake_check_srwm(dev, level,
   1707 				   *fbc_wm, *display_wm, *cursor_wm,
   1708 				   display, cursor);
   1709 }
   1710 
   1711 static void ironlake_update_wm(struct drm_device *dev)
   1712 {
   1713 	struct drm_i915_private *dev_priv = dev->dev_private;
   1714 	int fbc_wm, plane_wm, cursor_wm;
   1715 	unsigned int enabled;
   1716 
   1717 	enabled = 0;
   1718 	if (g4x_compute_wm0(dev, 0,
   1719 			    &ironlake_display_wm_info,
   1720 			    ILK_LP0_PLANE_LATENCY,
   1721 			    &ironlake_cursor_wm_info,
   1722 			    ILK_LP0_CURSOR_LATENCY,
   1723 			    &plane_wm, &cursor_wm)) {
   1724 		I915_WRITE(WM0_PIPEA_ILK,
   1725 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
   1726 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
   1727 			      " plane %d, " "cursor: %d\n",
   1728 			      plane_wm, cursor_wm);
   1729 		enabled |= 1;
   1730 	}
   1731 
   1732 	if (g4x_compute_wm0(dev, 1,
   1733 			    &ironlake_display_wm_info,
   1734 			    ILK_LP0_PLANE_LATENCY,
   1735 			    &ironlake_cursor_wm_info,
   1736 			    ILK_LP0_CURSOR_LATENCY,
   1737 			    &plane_wm, &cursor_wm)) {
   1738 		I915_WRITE(WM0_PIPEB_ILK,
   1739 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
   1740 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
   1741 			      " plane %d, cursor: %d\n",
   1742 			      plane_wm, cursor_wm);
   1743 		enabled |= 2;
   1744 	}
   1745 
   1746 	/*
   1747 	 * Calculate and update the self-refresh watermark only when one
   1748 	 * display plane is used.
   1749 	 */
   1750 	I915_WRITE(WM3_LP_ILK, 0);
   1751 	I915_WRITE(WM2_LP_ILK, 0);
   1752 	I915_WRITE(WM1_LP_ILK, 0);
   1753 
   1754 	if (!single_plane_enabled(enabled))
   1755 		return;
   1756 	enabled = ffs(enabled) - 1;
   1757 
   1758 	/* WM1 */
   1759 	if (!ironlake_compute_srwm(dev, 1, enabled,
   1760 				   ILK_READ_WM1_LATENCY() * 500,
   1761 				   &ironlake_display_srwm_info,
   1762 				   &ironlake_cursor_srwm_info,
   1763 				   &fbc_wm, &plane_wm, &cursor_wm))
   1764 		return;
   1765 
   1766 	I915_WRITE(WM1_LP_ILK,
   1767 		   WM1_LP_SR_EN |
   1768 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1769 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1770 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1771 		   cursor_wm);
   1772 
   1773 	/* WM2 */
   1774 	if (!ironlake_compute_srwm(dev, 2, enabled,
   1775 				   ILK_READ_WM2_LATENCY() * 500,
   1776 				   &ironlake_display_srwm_info,
   1777 				   &ironlake_cursor_srwm_info,
   1778 				   &fbc_wm, &plane_wm, &cursor_wm))
   1779 		return;
   1780 
   1781 	I915_WRITE(WM2_LP_ILK,
   1782 		   WM2_LP_EN |
   1783 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1784 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1785 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1786 		   cursor_wm);
   1787 
   1788 	/*
   1789 	 * WM3 is unsupported on ILK, probably because we don't have latency
   1790 	 * data for that power state
   1791 	 */
   1792 }
   1793 
   1794 static void sandybridge_update_wm(struct drm_device *dev)
   1795 {
   1796 	struct drm_i915_private *dev_priv = dev->dev_private;
   1797 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
   1798 	u32 val;
   1799 	int fbc_wm, plane_wm, cursor_wm;
   1800 	unsigned int enabled;
   1801 
   1802 	enabled = 0;
   1803 	if (g4x_compute_wm0(dev, 0,
   1804 			    &sandybridge_display_wm_info, latency,
   1805 			    &sandybridge_cursor_wm_info, latency,
   1806 			    &plane_wm, &cursor_wm)) {
   1807 		val = I915_READ(WM0_PIPEA_ILK);
   1808 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1809 		I915_WRITE(WM0_PIPEA_ILK, val |
   1810 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1811 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
   1812 			      " plane %d, " "cursor: %d\n",
   1813 			      plane_wm, cursor_wm);
   1814 		enabled |= 1;
   1815 	}
   1816 
   1817 	if (g4x_compute_wm0(dev, 1,
   1818 			    &sandybridge_display_wm_info, latency,
   1819 			    &sandybridge_cursor_wm_info, latency,
   1820 			    &plane_wm, &cursor_wm)) {
   1821 		val = I915_READ(WM0_PIPEB_ILK);
   1822 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1823 		I915_WRITE(WM0_PIPEB_ILK, val |
   1824 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1825 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
   1826 			      " plane %d, cursor: %d\n",
   1827 			      plane_wm, cursor_wm);
   1828 		enabled |= 2;
   1829 	}
   1830 
   1831 	/*
   1832 	 * Calculate and update the self-refresh watermark only when one
   1833 	 * display plane is used.
   1834 	 *
   1835 	 * SNB support 3 levels of watermark.
   1836 	 *
   1837 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
   1838 	 * and disabled in the descending order
   1839 	 *
   1840 	 */
   1841 	I915_WRITE(WM3_LP_ILK, 0);
   1842 	I915_WRITE(WM2_LP_ILK, 0);
   1843 	I915_WRITE(WM1_LP_ILK, 0);
   1844 
   1845 	if (!single_plane_enabled(enabled) ||
   1846 	    dev_priv->sprite_scaling_enabled)
   1847 		return;
   1848 	enabled = ffs(enabled) - 1;
   1849 
   1850 	/* WM1 */
   1851 	if (!ironlake_compute_srwm(dev, 1, enabled,
   1852 				   SNB_READ_WM1_LATENCY() * 500,
   1853 				   &sandybridge_display_srwm_info,
   1854 				   &sandybridge_cursor_srwm_info,
   1855 				   &fbc_wm, &plane_wm, &cursor_wm))
   1856 		return;
   1857 
   1858 	I915_WRITE(WM1_LP_ILK,
   1859 		   WM1_LP_SR_EN |
   1860 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1861 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1862 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1863 		   cursor_wm);
   1864 
   1865 	/* WM2 */
   1866 	if (!ironlake_compute_srwm(dev, 2, enabled,
   1867 				   SNB_READ_WM2_LATENCY() * 500,
   1868 				   &sandybridge_display_srwm_info,
   1869 				   &sandybridge_cursor_srwm_info,
   1870 				   &fbc_wm, &plane_wm, &cursor_wm))
   1871 		return;
   1872 
   1873 	I915_WRITE(WM2_LP_ILK,
   1874 		   WM2_LP_EN |
   1875 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1876 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1877 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1878 		   cursor_wm);
   1879 
   1880 	/* WM3 */
   1881 	if (!ironlake_compute_srwm(dev, 3, enabled,
   1882 				   SNB_READ_WM3_LATENCY() * 500,
   1883 				   &sandybridge_display_srwm_info,
   1884 				   &sandybridge_cursor_srwm_info,
   1885 				   &fbc_wm, &plane_wm, &cursor_wm))
   1886 		return;
   1887 
   1888 	I915_WRITE(WM3_LP_ILK,
   1889 		   WM3_LP_EN |
   1890 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1891 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1892 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1893 		   cursor_wm);
   1894 }
   1895 
   1896 static void ivybridge_update_wm(struct drm_device *dev)
   1897 {
   1898 	struct drm_i915_private *dev_priv = dev->dev_private;
   1899 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
   1900 	u32 val;
   1901 	int fbc_wm, plane_wm, cursor_wm;
   1902 	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
   1903 	unsigned int enabled;
   1904 
   1905 	enabled = 0;
   1906 	if (g4x_compute_wm0(dev, 0,
   1907 			    &sandybridge_display_wm_info, latency,
   1908 			    &sandybridge_cursor_wm_info, latency,
   1909 			    &plane_wm, &cursor_wm)) {
   1910 		val = I915_READ(WM0_PIPEA_ILK);
   1911 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1912 		I915_WRITE(WM0_PIPEA_ILK, val |
   1913 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1914 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
   1915 			      " plane %d, " "cursor: %d\n",
   1916 			      plane_wm, cursor_wm);
   1917 		enabled |= 1;
   1918 	}
   1919 
   1920 	if (g4x_compute_wm0(dev, 1,
   1921 			    &sandybridge_display_wm_info, latency,
   1922 			    &sandybridge_cursor_wm_info, latency,
   1923 			    &plane_wm, &cursor_wm)) {
   1924 		val = I915_READ(WM0_PIPEB_ILK);
   1925 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1926 		I915_WRITE(WM0_PIPEB_ILK, val |
   1927 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1928 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
   1929 			      " plane %d, cursor: %d\n",
   1930 			      plane_wm, cursor_wm);
   1931 		enabled |= 2;
   1932 	}
   1933 
   1934 	if (g4x_compute_wm0(dev, 2,
   1935 			    &sandybridge_display_wm_info, latency,
   1936 			    &sandybridge_cursor_wm_info, latency,
   1937 			    &plane_wm, &cursor_wm)) {
   1938 		val = I915_READ(WM0_PIPEC_IVB);
   1939 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1940 		I915_WRITE(WM0_PIPEC_IVB, val |
   1941 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1942 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
   1943 			      " plane %d, cursor: %d\n",
   1944 			      plane_wm, cursor_wm);
   1945 		enabled |= 3;
   1946 	}
   1947 
   1948 	/*
   1949 	 * Calculate and update the self-refresh watermark only when one
   1950 	 * display plane is used.
   1951 	 *
   1952 	 * SNB support 3 levels of watermark.
   1953 	 *
   1954 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
   1955 	 * and disabled in the descending order
   1956 	 *
   1957 	 */
   1958 	I915_WRITE(WM3_LP_ILK, 0);
   1959 	I915_WRITE(WM2_LP_ILK, 0);
   1960 	I915_WRITE(WM1_LP_ILK, 0);
   1961 
   1962 	if (!single_plane_enabled(enabled) ||
   1963 	    dev_priv->sprite_scaling_enabled)
   1964 		return;
   1965 	enabled = ffs(enabled) - 1;
   1966 
   1967 	/* WM1 */
   1968 	if (!ironlake_compute_srwm(dev, 1, enabled,
   1969 				   SNB_READ_WM1_LATENCY() * 500,
   1970 				   &sandybridge_display_srwm_info,
   1971 				   &sandybridge_cursor_srwm_info,
   1972 				   &fbc_wm, &plane_wm, &cursor_wm))
   1973 		return;
   1974 
   1975 	I915_WRITE(WM1_LP_ILK,
   1976 		   WM1_LP_SR_EN |
   1977 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1978 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1979 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1980 		   cursor_wm);
   1981 
   1982 	/* WM2 */
   1983 	if (!ironlake_compute_srwm(dev, 2, enabled,
   1984 				   SNB_READ_WM2_LATENCY() * 500,
   1985 				   &sandybridge_display_srwm_info,
   1986 				   &sandybridge_cursor_srwm_info,
   1987 				   &fbc_wm, &plane_wm, &cursor_wm))
   1988 		return;
   1989 
   1990 	I915_WRITE(WM2_LP_ILK,
   1991 		   WM2_LP_EN |
   1992 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1993 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1994 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1995 		   cursor_wm);
   1996 
   1997 	/* WM3, note we have to correct the cursor latency */
   1998 	if (!ironlake_compute_srwm(dev, 3, enabled,
   1999 				   SNB_READ_WM3_LATENCY() * 500,
   2000 				   &sandybridge_display_srwm_info,
   2001 				   &sandybridge_cursor_srwm_info,
   2002 				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
   2003 	    !ironlake_compute_srwm(dev, 3, enabled,
   2004 				   2 * SNB_READ_WM3_LATENCY() * 500,
   2005 				   &sandybridge_display_srwm_info,
   2006 				   &sandybridge_cursor_srwm_info,
   2007 				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
   2008 		return;
   2009 
   2010 	I915_WRITE(WM3_LP_ILK,
   2011 		   WM3_LP_EN |
   2012 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   2013 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   2014 		   (plane_wm << WM1_LP_SR_SHIFT) |
   2015 		   cursor_wm);
   2016 }
   2017 
   2018 static void
   2019 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
   2020 				 struct drm_display_mode *mode)
   2021 {
   2022 	struct drm_i915_private *dev_priv = dev->dev_private;
   2023 	u32 temp;
   2024 
   2025 	temp = I915_READ(PIPE_WM_LINETIME(pipe));
   2026 	temp &= ~PIPE_WM_LINETIME_MASK;
   2027 
   2028 	/* The WM are computed with base on how long it takes to fill a single
   2029 	 * row at the given clock rate, multiplied by 8.
   2030 	 * */
   2031 	temp |= PIPE_WM_LINETIME_TIME(
   2032 		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
   2033 
   2034 	/* IPS watermarks are only used by pipe A, and are ignored by
   2035 	 * pipes B and C.  They are calculated similarly to the common
   2036 	 * linetime values, except that we are using CD clock frequency
   2037 	 * in MHz instead of pixel rate for the division.
   2038 	 *
   2039 	 * This is a placeholder for the IPS watermark calculation code.
   2040 	 */
   2041 
   2042 	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
   2043 }
   2044 
   2045 static bool
   2046 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
   2047 			      uint32_t sprite_width, int pixel_size,
   2048 			      const struct intel_watermark_params *display,
   2049 			      int display_latency_ns, int *sprite_wm)
   2050 {
   2051 	struct drm_crtc *crtc;
   2052 	int clock;
   2053 	int entries, tlb_miss;
   2054 
   2055 	crtc = intel_get_crtc_for_plane(dev, plane);
   2056 	if (!intel_crtc_active(crtc)) {
   2057 		*sprite_wm = display->guard_size;
   2058 		return false;
   2059 	}
   2060 
   2061 	clock = crtc->mode.clock;
   2062 
   2063 	/* Use the small buffer method to calculate the sprite watermark */
   2064 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
   2065 	tlb_miss = display->fifo_size*display->cacheline_size -
   2066 		sprite_width * 8;
   2067 	if (tlb_miss > 0)
   2068 		entries += tlb_miss;
   2069 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
   2070 	*sprite_wm = entries + display->guard_size;
   2071 	if (*sprite_wm > (int)display->max_wm)
   2072 		*sprite_wm = display->max_wm;
   2073 
   2074 	return true;
   2075 }
   2076 
   2077 static bool
   2078 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
   2079 				uint32_t sprite_width, int pixel_size,
   2080 				const struct intel_watermark_params *display,
   2081 				int latency_ns, int *sprite_wm)
   2082 {
   2083 	struct drm_crtc *crtc;
   2084 	unsigned long line_time_us;
   2085 	int clock;
   2086 	int line_count, line_size;
   2087 	int small, large;
   2088 	int entries;
   2089 
   2090 	if (!latency_ns) {
   2091 		*sprite_wm = 0;
   2092 		return false;
   2093 	}
   2094 
   2095 	crtc = intel_get_crtc_for_plane(dev, plane);
   2096 	clock = crtc->mode.clock;
   2097 	if (!clock) {
   2098 		*sprite_wm = 0;
   2099 		return false;
   2100 	}
   2101 
   2102 	line_time_us = (sprite_width * 1000) / clock;
   2103 	if (!line_time_us) {
   2104 		*sprite_wm = 0;
   2105 		return false;
   2106 	}
   2107 
   2108 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   2109 	line_size = sprite_width * pixel_size;
   2110 
   2111 	/* Use the minimum of the small and large buffer method for primary */
   2112 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   2113 	large = line_count * line_size;
   2114 
   2115 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   2116 	*sprite_wm = entries + display->guard_size;
   2117 
   2118 	return *sprite_wm > 0x3ff ? false : true;
   2119 }
   2120 
   2121 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
   2122 					 uint32_t sprite_width, int pixel_size)
   2123 {
   2124 	struct drm_i915_private *dev_priv = dev->dev_private;
   2125 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
   2126 	u32 val;
   2127 	int sprite_wm, reg;
   2128 	int ret;
   2129 
   2130 	switch (pipe) {
   2131 	case 0:
   2132 		reg = WM0_PIPEA_ILK;
   2133 		break;
   2134 	case 1:
   2135 		reg = WM0_PIPEB_ILK;
   2136 		break;
   2137 	case 2:
   2138 		reg = WM0_PIPEC_IVB;
   2139 		break;
   2140 	default:
   2141 		return; /* bad pipe */
   2142 	}
   2143 
   2144 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
   2145 					    &sandybridge_display_wm_info,
   2146 					    latency, &sprite_wm);
   2147 	if (!ret) {
   2148 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
   2149 			      pipe);
   2150 		return;
   2151 	}
   2152 
   2153 	val = I915_READ(reg);
   2154 	val &= ~WM0_PIPE_SPRITE_MASK;
   2155 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
   2156 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
   2157 
   2158 
   2159 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
   2160 					      pixel_size,
   2161 					      &sandybridge_display_srwm_info,
   2162 					      SNB_READ_WM1_LATENCY() * 500,
   2163 					      &sprite_wm);
   2164 	if (!ret) {
   2165 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
   2166 			      pipe);
   2167 		return;
   2168 	}
   2169 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
   2170 
   2171 	/* Only IVB has two more LP watermarks for sprite */
   2172 	if (!IS_IVYBRIDGE(dev))
   2173 		return;
   2174 
   2175 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
   2176 					      pixel_size,
   2177 					      &sandybridge_display_srwm_info,
   2178 					      SNB_READ_WM2_LATENCY() * 500,
   2179 					      &sprite_wm);
   2180 	if (!ret) {
   2181 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
   2182 			      pipe);
   2183 		return;
   2184 	}
   2185 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
   2186 
   2187 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
   2188 					      pixel_size,
   2189 					      &sandybridge_display_srwm_info,
   2190 					      SNB_READ_WM3_LATENCY() * 500,
   2191 					      &sprite_wm);
   2192 	if (!ret) {
   2193 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
   2194 			      pipe);
   2195 		return;
   2196 	}
   2197 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
   2198 }
   2199 
   2200 /**
   2201  * intel_update_watermarks - update FIFO watermark values based on current modes
   2202  *
   2203  * Calculate watermark values for the various WM regs based on current mode
   2204  * and plane configuration.
   2205  *
   2206  * There are several cases to deal with here:
   2207  *   - normal (i.e. non-self-refresh)
   2208  *   - self-refresh (SR) mode
   2209  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   2210  *   - lines are small relative to FIFO size (buffer can hold more than 2
   2211  *     lines), so need to account for TLB latency
   2212  *
   2213  *   The normal calculation is:
   2214  *     watermark = dotclock * bytes per pixel * latency
   2215  *   where latency is platform & configuration dependent (we assume pessimal
   2216  *   values here).
   2217  *
   2218  *   The SR calculation is:
   2219  *     watermark = (trunc(latency/line time)+1) * surface width *
   2220  *       bytes per pixel
   2221  *   where
   2222  *     line time = htotal / dotclock
   2223  *     surface width = hdisplay for normal plane and 64 for cursor
   2224  *   and latency is assumed to be high, as above.
   2225  *
   2226  * The final value programmed to the register should always be rounded up,
   2227  * and include an extra 2 entries to account for clock crossings.
   2228  *
   2229  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   2230  * to set the non-SR watermarks to 8.
   2231  */
   2232 void intel_update_watermarks(struct drm_device *dev)
   2233 {
   2234 	struct drm_i915_private *dev_priv = dev->dev_private;
   2235 
   2236 	if (dev_priv->display.update_wm)
   2237 		dev_priv->display.update_wm(dev);
   2238 }
   2239 
   2240 void intel_update_linetime_watermarks(struct drm_device *dev,
   2241 		int pipe, struct drm_display_mode *mode)
   2242 {
   2243 	struct drm_i915_private *dev_priv = dev->dev_private;
   2244 
   2245 	if (dev_priv->display.update_linetime_wm)
   2246 		dev_priv->display.update_linetime_wm(dev, pipe, mode);
   2247 }
   2248 
   2249 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
   2250 				    uint32_t sprite_width, int pixel_size)
   2251 {
   2252 	struct drm_i915_private *dev_priv = dev->dev_private;
   2253 
   2254 	if (dev_priv->display.update_sprite_wm)
   2255 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
   2256 						   pixel_size);
   2257 }
   2258 
   2259 static struct drm_i915_gem_object *
   2260 intel_alloc_context_page(struct drm_device *dev)
   2261 {
   2262 	struct drm_i915_gem_object *ctx;
   2263 	int ret;
   2264 
   2265 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   2266 
   2267 	ctx = i915_gem_alloc_object(dev, 4096);
   2268 	if (!ctx) {
   2269 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
   2270 		return NULL;
   2271 	}
   2272 
   2273 	ret = i915_gem_object_pin(ctx, 4096, true, false);
   2274 	if (ret) {
   2275 		DRM_ERROR("failed to pin power context: %d\n", ret);
   2276 		goto err_unref;
   2277 	}
   2278 
   2279 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
   2280 	if (ret) {
   2281 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
   2282 		goto err_unpin;
   2283 	}
   2284 
   2285 	return ctx;
   2286 
   2287 err_unpin:
   2288 	i915_gem_object_unpin(ctx);
   2289 err_unref:
   2290 	drm_gem_object_unreference(&ctx->base);
   2291 	mutex_unlock(&dev->struct_mutex);
   2292 	return NULL;
   2293 }
   2294 
   2295 /**
   2296  * Lock protecting IPS related data structures
   2297  */
   2298 DEFINE_SPINLOCK(mchdev_lock);
   2299 
   2300 /* Global for IPS driver to get at the current i915 device. Protected by
   2301  * mchdev_lock. */
   2302 static struct drm_i915_private *i915_mch_dev;
   2303 
   2304 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   2305 {
   2306 	struct drm_i915_private *dev_priv = dev->dev_private;
   2307 	u16 rgvswctl;
   2308 
   2309 	assert_spin_locked(&mchdev_lock);
   2310 
   2311 	rgvswctl = I915_READ16(MEMSWCTL);
   2312 	if (rgvswctl & MEMCTL_CMD_STS) {
   2313 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   2314 		return false; /* still busy with another command */
   2315 	}
   2316 
   2317 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   2318 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   2319 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2320 	POSTING_READ16(MEMSWCTL);
   2321 
   2322 	rgvswctl |= MEMCTL_CMD_STS;
   2323 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2324 
   2325 	return true;
   2326 }
   2327 
   2328 static void ironlake_enable_drps(struct drm_device *dev)
   2329 {
   2330 	struct drm_i915_private *dev_priv = dev->dev_private;
   2331 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   2332 	u8 fmax, fmin, fstart, vstart;
   2333 
   2334 	spin_lock_irq(&mchdev_lock);
   2335 
   2336 	/* Enable temp reporting */
   2337 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   2338 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   2339 
   2340 	/* 100ms RC evaluation intervals */
   2341 	I915_WRITE(RCUPEI, 100000);
   2342 	I915_WRITE(RCDNEI, 100000);
   2343 
   2344 	/* Set max/min thresholds to 90ms and 80ms respectively */
   2345 	I915_WRITE(RCBMAXAVG, 90000);
   2346 	I915_WRITE(RCBMINAVG, 80000);
   2347 
   2348 	I915_WRITE(MEMIHYST, 1);
   2349 
   2350 	/* Set up min, max, and cur for interrupt handling */
   2351 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   2352 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   2353 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   2354 		MEMMODE_FSTART_SHIFT;
   2355 
   2356 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
   2357 		PXVFREQ_PX_SHIFT;
   2358 
   2359 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   2360 	dev_priv->ips.fstart = fstart;
   2361 
   2362 	dev_priv->ips.max_delay = fstart;
   2363 	dev_priv->ips.min_delay = fmin;
   2364 	dev_priv->ips.cur_delay = fstart;
   2365 
   2366 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   2367 			 fmax, fmin, fstart);
   2368 
   2369 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   2370 
   2371 	/*
   2372 	 * Interrupts will be enabled in ironlake_irq_postinstall
   2373 	 */
   2374 
   2375 	I915_WRITE(VIDSTART, vstart);
   2376 	POSTING_READ(VIDSTART);
   2377 
   2378 	rgvmodectl |= MEMMODE_SWMODE_EN;
   2379 	I915_WRITE(MEMMODECTL, rgvmodectl);
   2380 
   2381 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   2382 		DRM_ERROR("stuck trying to change perf mode\n");
   2383 	mdelay(1);
   2384 
   2385 	ironlake_set_drps(dev, fstart);
   2386 
   2387 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
   2388 		I915_READ(0x112e0);
   2389 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   2390 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
   2391 	getrawmonotonic(&dev_priv->ips.last_time2);
   2392 
   2393 	spin_unlock_irq(&mchdev_lock);
   2394 }
   2395 
   2396 static void ironlake_disable_drps(struct drm_device *dev)
   2397 {
   2398 	struct drm_i915_private *dev_priv = dev->dev_private;
   2399 	u16 rgvswctl;
   2400 
   2401 	spin_lock_irq(&mchdev_lock);
   2402 
   2403 	rgvswctl = I915_READ16(MEMSWCTL);
   2404 
   2405 	/* Ack interrupts, disable EFC interrupt */
   2406 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   2407 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   2408 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   2409 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   2410 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   2411 
   2412 	/* Go back to the starting frequency */
   2413 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   2414 	mdelay(1);
   2415 	rgvswctl |= MEMCTL_CMD_STS;
   2416 	I915_WRITE(MEMSWCTL, rgvswctl);
   2417 	mdelay(1);
   2418 
   2419 	spin_unlock_irq(&mchdev_lock);
   2420 }
   2421 
   2422 /* There's a funny hw issue where the hw returns all 0 when reading from
   2423  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   2424  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   2425  * all limits and the gpu stuck at whatever frequency it is at atm).
   2426  */
   2427 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
   2428 {
   2429 	u32 limits;
   2430 
   2431 	limits = 0;
   2432 
   2433 	if (*val >= dev_priv->rps.max_delay)
   2434 		*val = dev_priv->rps.max_delay;
   2435 	limits |= dev_priv->rps.max_delay << 24;
   2436 
   2437 	/* Only set the down limit when we've reached the lowest level to avoid
   2438 	 * getting more interrupts, otherwise leave this clear. This prevents a
   2439 	 * race in the hw when coming out of rc6: There's a tiny window where
   2440 	 * the hw runs at the minimal clock before selecting the desired
   2441 	 * frequency, if the down threshold expires in that window we will not
   2442 	 * receive a down interrupt. */
   2443 	if (*val <= dev_priv->rps.min_delay) {
   2444 		*val = dev_priv->rps.min_delay;
   2445 		limits |= dev_priv->rps.min_delay << 16;
   2446 	}
   2447 
   2448 	return limits;
   2449 }
   2450 
   2451 void gen6_set_rps(struct drm_device *dev, u8 val)
   2452 {
   2453 	struct drm_i915_private *dev_priv = dev->dev_private;
   2454 	u32 limits = gen6_rps_limits(dev_priv, &val);
   2455 
   2456 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   2457 	WARN_ON(val > dev_priv->rps.max_delay);
   2458 	WARN_ON(val < dev_priv->rps.min_delay);
   2459 
   2460 	if (val == dev_priv->rps.cur_delay)
   2461 		return;
   2462 
   2463 	I915_WRITE(GEN6_RPNSWREQ,
   2464 		   GEN6_FREQUENCY(val) |
   2465 		   GEN6_OFFSET(0) |
   2466 		   GEN6_AGGRESSIVE_TURBO);
   2467 
   2468 	/* Make sure we continue to get interrupts
   2469 	 * until we hit the minimum or maximum frequencies.
   2470 	 */
   2471 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
   2472 
   2473 	POSTING_READ(GEN6_RPNSWREQ);
   2474 
   2475 	dev_priv->rps.cur_delay = val;
   2476 
   2477 	trace_intel_gpu_freq_change(val * 50);
   2478 }
   2479 
   2480 static void gen6_disable_rps(struct drm_device *dev)
   2481 {
   2482 	struct drm_i915_private *dev_priv = dev->dev_private;
   2483 
   2484 	I915_WRITE(GEN6_RC_CONTROL, 0);
   2485 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
   2486 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
   2487 	I915_WRITE(GEN6_PMIER, 0);
   2488 	/* Complete PM interrupt masking here doesn't race with the rps work
   2489 	 * item again unmasking PM interrupts because that is using a different
   2490 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
   2491 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
   2492 
   2493 	spin_lock_irq(&dev_priv->rps.lock);
   2494 	dev_priv->rps.pm_iir = 0;
   2495 	spin_unlock_irq(&dev_priv->rps.lock);
   2496 
   2497 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
   2498 }
   2499 
   2500 int intel_enable_rc6(const struct drm_device *dev)
   2501 {
   2502 	/* Respect the kernel parameter if it is set */
   2503 	if (i915_enable_rc6 >= 0)
   2504 		return i915_enable_rc6;
   2505 
   2506 	/* Disable RC6 on Ironlake */
   2507 	if (INTEL_INFO(dev)->gen == 5)
   2508 		return 0;
   2509 
   2510 	if (IS_HASWELL(dev)) {
   2511 		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
   2512 		return INTEL_RC6_ENABLE;
   2513 	}
   2514 
   2515 	/* snb/ivb have more than one rc6 state. */
   2516 	if (INTEL_INFO(dev)->gen == 6) {
   2517 		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
   2518 		return INTEL_RC6_ENABLE;
   2519 	}
   2520 
   2521 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
   2522 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   2523 }
   2524 
   2525 static void gen6_enable_rps(struct drm_device *dev)
   2526 {
   2527 	struct drm_i915_private *dev_priv = dev->dev_private;
   2528 	struct intel_ring_buffer *ring;
   2529 	u32 rp_state_cap;
   2530 	u32 gt_perf_status;
   2531 	u32 rc6vids, pcu_mbox, rc6_mask = 0;
   2532 	u32 gtfifodbg;
   2533 	int rc6_mode;
   2534 	int i, ret;
   2535 
   2536 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   2537 
   2538 	/* Here begins a magic sequence of register writes to enable
   2539 	 * auto-downclocking.
   2540 	 *
   2541 	 * Perhaps there might be some value in exposing these to
   2542 	 * userspace...
   2543 	 */
   2544 	I915_WRITE(GEN6_RC_STATE, 0);
   2545 
   2546 	/* Clear the DBG now so we don't confuse earlier errors */
   2547 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   2548 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   2549 		I915_WRITE(GTFIFODBG, gtfifodbg);
   2550 	}
   2551 
   2552 	gen6_gt_force_wake_get(dev_priv);
   2553 
   2554 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   2555 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
   2556 
   2557 	/* In units of 100MHz */
   2558 	dev_priv->rps.max_delay = rp_state_cap & 0xff;
   2559 	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
   2560 	dev_priv->rps.cur_delay = 0;
   2561 
   2562 	/* disable the counters and set deterministic thresholds */
   2563 	I915_WRITE(GEN6_RC_CONTROL, 0);
   2564 
   2565 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   2566 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   2567 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   2568 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   2569 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   2570 
   2571 	for_each_ring(ring, dev_priv, i)
   2572 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   2573 
   2574 	I915_WRITE(GEN6_RC_SLEEP, 0);
   2575 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   2576 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   2577 	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
   2578 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   2579 
   2580 	/* Check if we are enabling RC6 */
   2581 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   2582 	if (rc6_mode & INTEL_RC6_ENABLE)
   2583 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   2584 
   2585 	/* We don't use those on Haswell */
   2586 	if (!IS_HASWELL(dev)) {
   2587 		if (rc6_mode & INTEL_RC6p_ENABLE)
   2588 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   2589 
   2590 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   2591 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   2592 	}
   2593 
   2594 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
   2595 			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   2596 			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   2597 			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   2598 
   2599 	I915_WRITE(GEN6_RC_CONTROL,
   2600 		   rc6_mask |
   2601 		   GEN6_RC_CTL_EI_MODE(1) |
   2602 		   GEN6_RC_CTL_HW_ENABLE);
   2603 
   2604 	I915_WRITE(GEN6_RPNSWREQ,
   2605 		   GEN6_FREQUENCY(10) |
   2606 		   GEN6_OFFSET(0) |
   2607 		   GEN6_AGGRESSIVE_TURBO);
   2608 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   2609 		   GEN6_FREQUENCY(12));
   2610 
   2611 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   2612 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   2613 		   dev_priv->rps.max_delay << 24 |
   2614 		   dev_priv->rps.min_delay << 16);
   2615 
   2616 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   2617 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   2618 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   2619 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   2620 
   2621 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   2622 	I915_WRITE(GEN6_RP_CONTROL,
   2623 		   GEN6_RP_MEDIA_TURBO |
   2624 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   2625 		   GEN6_RP_MEDIA_IS_GFX |
   2626 		   GEN6_RP_ENABLE |
   2627 		   GEN6_RP_UP_BUSY_AVG |
   2628 		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
   2629 
   2630 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   2631 	if (!ret) {
   2632 		pcu_mbox = 0;
   2633 		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   2634 		if (ret && pcu_mbox & (1<<31)) { /* OC supported */
   2635 			dev_priv->rps.max_delay = pcu_mbox & 0xff;
   2636 			DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
   2637 		}
   2638 	} else {
   2639 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   2640 	}
   2641 
   2642 	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
   2643 
   2644 	/* requires MSI enabled */
   2645 	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
   2646 	spin_lock_irq(&dev_priv->rps.lock);
   2647 	WARN_ON(dev_priv->rps.pm_iir != 0);
   2648 	I915_WRITE(GEN6_PMIMR, 0);
   2649 	spin_unlock_irq(&dev_priv->rps.lock);
   2650 	/* enable all PM interrupts */
   2651 	I915_WRITE(GEN6_PMINTRMSK, 0);
   2652 
   2653 	rc6vids = 0;
   2654 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   2655 	if (IS_GEN6(dev) && ret) {
   2656 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   2657 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   2658 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   2659 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   2660 		rc6vids &= 0xffff00;
   2661 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   2662 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   2663 		if (ret)
   2664 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   2665 	}
   2666 
   2667 	gen6_gt_force_wake_put(dev_priv);
   2668 }
   2669 
   2670 static void gen6_update_ring_freq(struct drm_device *dev)
   2671 {
   2672 	struct drm_i915_private *dev_priv = dev->dev_private;
   2673 	int min_freq = 15;
   2674 	int gpu_freq;
   2675 	unsigned int ia_freq, max_ia_freq;
   2676 	int scaling_factor = 180;
   2677 
   2678 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   2679 
   2680 	max_ia_freq = cpufreq_quick_get_max(0);
   2681 	/*
   2682 	 * Default to measured freq if none found, PCU will ensure we don't go
   2683 	 * over
   2684 	 */
   2685 	if (!max_ia_freq)
   2686 		max_ia_freq = tsc_khz;
   2687 
   2688 	/* Convert from kHz to MHz */
   2689 	max_ia_freq /= 1000;
   2690 
   2691 	/*
   2692 	 * For each potential GPU frequency, load a ring frequency we'd like
   2693 	 * to use for memory access.  We do this by specifying the IA frequency
   2694 	 * the PCU should use as a reference to determine the ring frequency.
   2695 	 */
   2696 	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
   2697 	     gpu_freq--) {
   2698 		int diff = dev_priv->rps.max_delay - gpu_freq;
   2699 
   2700 		/*
   2701 		 * For GPU frequencies less than 750MHz, just use the lowest
   2702 		 * ring freq.
   2703 		 */
   2704 		if (gpu_freq < min_freq)
   2705 			ia_freq = 800;
   2706 		else
   2707 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   2708 		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   2709 		ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
   2710 
   2711 		sandybridge_pcode_write(dev_priv,
   2712 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   2713 					ia_freq | gpu_freq);
   2714 	}
   2715 }
   2716 
   2717 void ironlake_teardown_rc6(struct drm_device *dev)
   2718 {
   2719 	struct drm_i915_private *dev_priv = dev->dev_private;
   2720 
   2721 	if (dev_priv->ips.renderctx) {
   2722 		i915_gem_object_unpin(dev_priv->ips.renderctx);
   2723 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
   2724 		dev_priv->ips.renderctx = NULL;
   2725 	}
   2726 
   2727 	if (dev_priv->ips.pwrctx) {
   2728 		i915_gem_object_unpin(dev_priv->ips.pwrctx);
   2729 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
   2730 		dev_priv->ips.pwrctx = NULL;
   2731 	}
   2732 }
   2733 
   2734 static void ironlake_disable_rc6(struct drm_device *dev)
   2735 {
   2736 	struct drm_i915_private *dev_priv = dev->dev_private;
   2737 
   2738 	if (I915_READ(PWRCTXA)) {
   2739 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
   2740 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
   2741 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
   2742 			 50);
   2743 
   2744 		I915_WRITE(PWRCTXA, 0);
   2745 		POSTING_READ(PWRCTXA);
   2746 
   2747 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   2748 		POSTING_READ(RSTDBYCTL);
   2749 	}
   2750 }
   2751 
   2752 static int ironlake_setup_rc6(struct drm_device *dev)
   2753 {
   2754 	struct drm_i915_private *dev_priv = dev->dev_private;
   2755 
   2756 	if (dev_priv->ips.renderctx == NULL)
   2757 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
   2758 	if (!dev_priv->ips.renderctx)
   2759 		return -ENOMEM;
   2760 
   2761 	if (dev_priv->ips.pwrctx == NULL)
   2762 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
   2763 	if (!dev_priv->ips.pwrctx) {
   2764 		ironlake_teardown_rc6(dev);
   2765 		return -ENOMEM;
   2766 	}
   2767 
   2768 	return 0;
   2769 }
   2770 
   2771 static void ironlake_enable_rc6(struct drm_device *dev)
   2772 {
   2773 	struct drm_i915_private *dev_priv = dev->dev_private;
   2774 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
   2775 	bool was_interruptible;
   2776 	int ret;
   2777 
   2778 	/* rc6 disabled by default due to repeated reports of hanging during
   2779 	 * boot and resume.
   2780 	 */
   2781 	if (!intel_enable_rc6(dev))
   2782 		return;
   2783 
   2784 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   2785 
   2786 	ret = ironlake_setup_rc6(dev);
   2787 	if (ret)
   2788 		return;
   2789 
   2790 	was_interruptible = dev_priv->mm.interruptible;
   2791 	dev_priv->mm.interruptible = false;
   2792 
   2793 	/*
   2794 	 * GPU can automatically power down the render unit if given a page
   2795 	 * to save state.
   2796 	 */
   2797 	ret = intel_ring_begin(ring, 6);
   2798 	if (ret) {
   2799 		ironlake_teardown_rc6(dev);
   2800 		dev_priv->mm.interruptible = was_interruptible;
   2801 		return;
   2802 	}
   2803 
   2804 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
   2805 	intel_ring_emit(ring, MI_SET_CONTEXT);
   2806 	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
   2807 			MI_MM_SPACE_GTT |
   2808 			MI_SAVE_EXT_STATE_EN |
   2809 			MI_RESTORE_EXT_STATE_EN |
   2810 			MI_RESTORE_INHIBIT);
   2811 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
   2812 	intel_ring_emit(ring, MI_NOOP);
   2813 	intel_ring_emit(ring, MI_FLUSH);
   2814 	intel_ring_advance(ring);
   2815 
   2816 	/*
   2817 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
   2818 	 * does an implicit flush, combined with MI_FLUSH above, it should be
   2819 	 * safe to assume that renderctx is valid
   2820 	 */
   2821 	ret = intel_ring_idle(ring);
   2822 	dev_priv->mm.interruptible = was_interruptible;
   2823 	if (ret) {
   2824 		DRM_ERROR("failed to enable ironlake power power savings\n");
   2825 		ironlake_teardown_rc6(dev);
   2826 		return;
   2827 	}
   2828 
   2829 	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
   2830 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   2831 }
   2832 
   2833 static unsigned long intel_pxfreq(u32 vidfreq)
   2834 {
   2835 	unsigned long freq;
   2836 	int div = (vidfreq & 0x3f0000) >> 16;
   2837 	int post = (vidfreq & 0x3000) >> 12;
   2838 	int pre = (vidfreq & 0x7);
   2839 
   2840 	if (!pre)
   2841 		return 0;
   2842 
   2843 	freq = ((div * 133333) / ((1<<post) * pre));
   2844 
   2845 	return freq;
   2846 }
   2847 
   2848 static const struct cparams {
   2849 	u16 i;
   2850 	u16 t;
   2851 	u16 m;
   2852 	u16 c;
   2853 } cparams[] = {
   2854 	{ 1, 1333, 301, 28664 },
   2855 	{ 1, 1066, 294, 24460 },
   2856 	{ 1, 800, 294, 25192 },
   2857 	{ 0, 1333, 276, 27605 },
   2858 	{ 0, 1066, 276, 27605 },
   2859 	{ 0, 800, 231, 23784 },
   2860 };
   2861 
   2862 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   2863 {
   2864 	u64 total_count, diff, ret;
   2865 	u32 count1, count2, count3, m = 0, c = 0;
   2866 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   2867 	int i;
   2868 
   2869 	assert_spin_locked(&mchdev_lock);
   2870 
   2871 	diff1 = now - dev_priv->ips.last_time1;
   2872 
   2873 	/* Prevent division-by-zero if we are asking too fast.
   2874 	 * Also, we don't get interesting results if we are polling
   2875 	 * faster than once in 10ms, so just return the saved value
   2876 	 * in such cases.
   2877 	 */
   2878 	if (diff1 <= 10)
   2879 		return dev_priv->ips.chipset_power;
   2880 
   2881 	count1 = I915_READ(DMIEC);
   2882 	count2 = I915_READ(DDREC);
   2883 	count3 = I915_READ(CSIEC);
   2884 
   2885 	total_count = count1 + count2 + count3;
   2886 
   2887 	/* FIXME: handle per-counter overflow */
   2888 	if (total_count < dev_priv->ips.last_count1) {
   2889 		diff = ~0UL - dev_priv->ips.last_count1;
   2890 		diff += total_count;
   2891 	} else {
   2892 		diff = total_count - dev_priv->ips.last_count1;
   2893 	}
   2894 
   2895 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   2896 		if (cparams[i].i == dev_priv->ips.c_m &&
   2897 		    cparams[i].t == dev_priv->ips.r_t) {
   2898 			m = cparams[i].m;
   2899 			c = cparams[i].c;
   2900 			break;
   2901 		}
   2902 	}
   2903 
   2904 	diff = div_u64(diff, diff1);
   2905 	ret = ((m * diff) + c);
   2906 	ret = div_u64(ret, 10);
   2907 
   2908 	dev_priv->ips.last_count1 = total_count;
   2909 	dev_priv->ips.last_time1 = now;
   2910 
   2911 	dev_priv->ips.chipset_power = ret;
   2912 
   2913 	return ret;
   2914 }
   2915 
   2916 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   2917 {
   2918 	unsigned long val;
   2919 
   2920 	if (dev_priv->info->gen != 5)
   2921 		return 0;
   2922 
   2923 	spin_lock_irq(&mchdev_lock);
   2924 
   2925 	val = __i915_chipset_val(dev_priv);
   2926 
   2927 	spin_unlock_irq(&mchdev_lock);
   2928 
   2929 	return val;
   2930 }
   2931 
   2932 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   2933 {
   2934 	unsigned long m, x, b;
   2935 	u32 tsfs;
   2936 
   2937 	tsfs = I915_READ(TSFS);
   2938 
   2939 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   2940 	x = I915_READ8(TR1);
   2941 
   2942 	b = tsfs & TSFS_INTR_MASK;
   2943 
   2944 	return ((m * x) / 127) - b;
   2945 }
   2946 
   2947 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   2948 {
   2949 	static const struct v_table {
   2950 		u16 vd; /* in .1 mil */
   2951 		u16 vm; /* in .1 mil */
   2952 	} v_table[] = {
   2953 		{ 0, 0, },
   2954 		{ 375, 0, },
   2955 		{ 500, 0, },
   2956 		{ 625, 0, },
   2957 		{ 750, 0, },
   2958 		{ 875, 0, },
   2959 		{ 1000, 0, },
   2960 		{ 1125, 0, },
   2961 		{ 4125, 3000, },
   2962 		{ 4125, 3000, },
   2963 		{ 4125, 3000, },
   2964 		{ 4125, 3000, },
   2965 		{ 4125, 3000, },
   2966 		{ 4125, 3000, },
   2967 		{ 4125, 3000, },
   2968 		{ 4125, 3000, },
   2969 		{ 4125, 3000, },
   2970 		{ 4125, 3000, },
   2971 		{ 4125, 3000, },
   2972 		{ 4125, 3000, },
   2973 		{ 4125, 3000, },
   2974 		{ 4125, 3000, },
   2975 		{ 4125, 3000, },
   2976 		{ 4125, 3000, },
   2977 		{ 4125, 3000, },
   2978 		{ 4125, 3000, },
   2979 		{ 4125, 3000, },
   2980 		{ 4125, 3000, },
   2981 		{ 4125, 3000, },
   2982 		{ 4125, 3000, },
   2983 		{ 4125, 3000, },
   2984 		{ 4125, 3000, },
   2985 		{ 4250, 3125, },
   2986 		{ 4375, 3250, },
   2987 		{ 4500, 3375, },
   2988 		{ 4625, 3500, },
   2989 		{ 4750, 3625, },
   2990 		{ 4875, 3750, },
   2991 		{ 5000, 3875, },
   2992 		{ 5125, 4000, },
   2993 		{ 5250, 4125, },
   2994 		{ 5375, 4250, },
   2995 		{ 5500, 4375, },
   2996 		{ 5625, 4500, },
   2997 		{ 5750, 4625, },
   2998 		{ 5875, 4750, },
   2999 		{ 6000, 4875, },
   3000 		{ 6125, 5000, },
   3001 		{ 6250, 5125, },
   3002 		{ 6375, 5250, },
   3003 		{ 6500, 5375, },
   3004 		{ 6625, 5500, },
   3005 		{ 6750, 5625, },
   3006 		{ 6875, 5750, },
   3007 		{ 7000, 5875, },
   3008 		{ 7125, 6000, },
   3009 		{ 7250, 6125, },
   3010 		{ 7375, 6250, },
   3011 		{ 7500, 6375, },
   3012 		{ 7625, 6500, },
   3013 		{ 7750, 6625, },
   3014 		{ 7875, 6750, },
   3015 		{ 8000, 6875, },
   3016 		{ 8125, 7000, },
   3017 		{ 8250, 7125, },
   3018 		{ 8375, 7250, },
   3019 		{ 8500, 7375, },
   3020 		{ 8625, 7500, },
   3021 		{ 8750, 7625, },
   3022 		{ 8875, 7750, },
   3023 		{ 9000, 7875, },
   3024 		{ 9125, 8000, },
   3025 		{ 9250, 8125, },
   3026 		{ 9375, 8250, },
   3027 		{ 9500, 8375, },
   3028 		{ 9625, 8500, },
   3029 		{ 9750, 8625, },
   3030 		{ 9875, 8750, },
   3031 		{ 10000, 8875, },
   3032 		{ 10125, 9000, },
   3033 		{ 10250, 9125, },
   3034 		{ 10375, 9250, },
   3035 		{ 10500, 9375, },
   3036 		{ 10625, 9500, },
   3037 		{ 10750, 9625, },
   3038 		{ 10875, 9750, },
   3039 		{ 11000, 9875, },
   3040 		{ 11125, 10000, },
   3041 		{ 11250, 10125, },
   3042 		{ 11375, 10250, },
   3043 		{ 11500, 10375, },
   3044 		{ 11625, 10500, },
   3045 		{ 11750, 10625, },
   3046 		{ 11875, 10750, },
   3047 		{ 12000, 10875, },
   3048 		{ 12125, 11000, },
   3049 		{ 12250, 11125, },
   3050 		{ 12375, 11250, },
   3051 		{ 12500, 11375, },
   3052 		{ 12625, 11500, },
   3053 		{ 12750, 11625, },
   3054 		{ 12875, 11750, },
   3055 		{ 13000, 11875, },
   3056 		{ 13125, 12000, },
   3057 		{ 13250, 12125, },
   3058 		{ 13375, 12250, },
   3059 		{ 13500, 12375, },
   3060 		{ 13625, 12500, },
   3061 		{ 13750, 12625, },
   3062 		{ 13875, 12750, },
   3063 		{ 14000, 12875, },
   3064 		{ 14125, 13000, },
   3065 		{ 14250, 13125, },
   3066 		{ 14375, 13250, },
   3067 		{ 14500, 13375, },
   3068 		{ 14625, 13500, },
   3069 		{ 14750, 13625, },
   3070 		{ 14875, 13750, },
   3071 		{ 15000, 13875, },
   3072 		{ 15125, 14000, },
   3073 		{ 15250, 14125, },
   3074 		{ 15375, 14250, },
   3075 		{ 15500, 14375, },
   3076 		{ 15625, 14500, },
   3077 		{ 15750, 14625, },
   3078 		{ 15875, 14750, },
   3079 		{ 16000, 14875, },
   3080 		{ 16125, 15000, },
   3081 	};
   3082 	if (dev_priv->info->is_mobile)
   3083 		return v_table[pxvid].vm;
   3084 	else
   3085 		return v_table[pxvid].vd;
   3086 }
   3087 
   3088 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   3089 {
   3090 	struct timespec now, diff1;
   3091 	u64 diff;
   3092 	unsigned long diffms;
   3093 	u32 count;
   3094 
   3095 	assert_spin_locked(&mchdev_lock);
   3096 
   3097 	getrawmonotonic(&now);
   3098 	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
   3099 
   3100 	/* Don't divide by 0 */
   3101 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
   3102 	if (!diffms)
   3103 		return;
   3104 
   3105 	count = I915_READ(GFXEC);
   3106 
   3107 	if (count < dev_priv->ips.last_count2) {
   3108 		diff = ~0UL - dev_priv->ips.last_count2;
   3109 		diff += count;
   3110 	} else {
   3111 		diff = count - dev_priv->ips.last_count2;
   3112 	}
   3113 
   3114 	dev_priv->ips.last_count2 = count;
   3115 	dev_priv->ips.last_time2 = now;
   3116 
   3117 	/* More magic constants... */
   3118 	diff = diff * 1181;
   3119 	diff = div_u64(diff, diffms * 10);
   3120 	dev_priv->ips.gfx_power = diff;
   3121 }
   3122 
   3123 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   3124 {
   3125 	if (dev_priv->info->gen != 5)
   3126 		return;
   3127 
   3128 	spin_lock_irq(&mchdev_lock);
   3129 
   3130 	__i915_update_gfx_val(dev_priv);
   3131 
   3132 	spin_unlock_irq(&mchdev_lock);
   3133 }
   3134 
   3135 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   3136 {
   3137 	unsigned long t, corr, state1, corr2, state2;
   3138 	u32 pxvid, ext_v;
   3139 
   3140 	assert_spin_locked(&mchdev_lock);
   3141 
   3142 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
   3143 	pxvid = (pxvid >> 24) & 0x7f;
   3144 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   3145 
   3146 	state1 = ext_v;
   3147 
   3148 	t = i915_mch_val(dev_priv);
   3149 
   3150 	/* Revel in the empirically derived constants */
   3151 
   3152 	/* Correction factor in 1/100000 units */
   3153 	if (t > 80)
   3154 		corr = ((t * 2349) + 135940);
   3155 	else if (t >= 50)
   3156 		corr = ((t * 964) + 29317);
   3157 	else /* < 50 */
   3158 		corr = ((t * 301) + 1004);
   3159 
   3160 	corr = corr * ((150142 * state1) / 10000 - 78642);
   3161 	corr /= 100000;
   3162 	corr2 = (corr * dev_priv->ips.corr);
   3163 
   3164 	state2 = (corr2 * state1) / 10000;
   3165 	state2 /= 100; /* convert to mW */
   3166 
   3167 	__i915_update_gfx_val(dev_priv);
   3168 
   3169 	return dev_priv->ips.gfx_power + state2;
   3170 }
   3171 
   3172 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   3173 {
   3174 	unsigned long val;
   3175 
   3176 	if (dev_priv->info->gen != 5)
   3177 		return 0;
   3178 
   3179 	spin_lock_irq(&mchdev_lock);
   3180 
   3181 	val = __i915_gfx_val(dev_priv);
   3182 
   3183 	spin_unlock_irq(&mchdev_lock);
   3184 
   3185 	return val;
   3186 }
   3187 
   3188 /**
   3189  * i915_read_mch_val - return value for IPS use
   3190  *
   3191  * Calculate and return a value for the IPS driver to use when deciding whether
   3192  * we have thermal and power headroom to increase CPU or GPU power budget.
   3193  */
   3194 unsigned long i915_read_mch_val(void)
   3195 {
   3196 	struct drm_i915_private *dev_priv;
   3197 	unsigned long chipset_val, graphics_val, ret = 0;
   3198 
   3199 	spin_lock_irq(&mchdev_lock);
   3200 	if (!i915_mch_dev)
   3201 		goto out_unlock;
   3202 	dev_priv = i915_mch_dev;
   3203 
   3204 	chipset_val = __i915_chipset_val(dev_priv);
   3205 	graphics_val = __i915_gfx_val(dev_priv);
   3206 
   3207 	ret = chipset_val + graphics_val;
   3208 
   3209 out_unlock:
   3210 	spin_unlock_irq(&mchdev_lock);
   3211 
   3212 	return ret;
   3213 }
   3214 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   3215 
   3216 /**
   3217  * i915_gpu_raise - raise GPU frequency limit
   3218  *
   3219  * Raise the limit; IPS indicates we have thermal headroom.
   3220  */
   3221 bool i915_gpu_raise(void)
   3222 {
   3223 	struct drm_i915_private *dev_priv;
   3224 	bool ret = true;
   3225 
   3226 	spin_lock_irq(&mchdev_lock);
   3227 	if (!i915_mch_dev) {
   3228 		ret = false;
   3229 		goto out_unlock;
   3230 	}
   3231 	dev_priv = i915_mch_dev;
   3232 
   3233 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   3234 		dev_priv->ips.max_delay--;
   3235 
   3236 out_unlock:
   3237 	spin_unlock_irq(&mchdev_lock);
   3238 
   3239 	return ret;
   3240 }
   3241 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   3242 
   3243 /**
   3244  * i915_gpu_lower - lower GPU frequency limit
   3245  *
   3246  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   3247  * frequency maximum.
   3248  */
   3249 bool i915_gpu_lower(void)
   3250 {
   3251 	struct drm_i915_private *dev_priv;
   3252 	bool ret = true;
   3253 
   3254 	spin_lock_irq(&mchdev_lock);
   3255 	if (!i915_mch_dev) {
   3256 		ret = false;
   3257 		goto out_unlock;
   3258 	}
   3259 	dev_priv = i915_mch_dev;
   3260 
   3261 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   3262 		dev_priv->ips.max_delay++;
   3263 
   3264 out_unlock:
   3265 	spin_unlock_irq(&mchdev_lock);
   3266 
   3267 	return ret;
   3268 }
   3269 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   3270 
   3271 /**
   3272  * i915_gpu_busy - indicate GPU business to IPS
   3273  *
   3274  * Tell the IPS driver whether or not the GPU is busy.
   3275  */
   3276 bool i915_gpu_busy(void)
   3277 {
   3278 	struct drm_i915_private *dev_priv;
   3279 	struct intel_ring_buffer *ring;
   3280 	bool ret = false;
   3281 	int i;
   3282 
   3283 	spin_lock_irq(&mchdev_lock);
   3284 	if (!i915_mch_dev)
   3285 		goto out_unlock;
   3286 	dev_priv = i915_mch_dev;
   3287 
   3288 	for_each_ring(ring, dev_priv, i)
   3289 		ret |= !list_empty(&ring->request_list);
   3290 
   3291 out_unlock:
   3292 	spin_unlock_irq(&mchdev_lock);
   3293 
   3294 	return ret;
   3295 }
   3296 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   3297 
   3298 /**
   3299  * i915_gpu_turbo_disable - disable graphics turbo
   3300  *
   3301  * Disable graphics turbo by resetting the max frequency and setting the
   3302  * current frequency to the default.
   3303  */
   3304 bool i915_gpu_turbo_disable(void)
   3305 {
   3306 	struct drm_i915_private *dev_priv;
   3307 	bool ret = true;
   3308 
   3309 	spin_lock_irq(&mchdev_lock);
   3310 	if (!i915_mch_dev) {
   3311 		ret = false;
   3312 		goto out_unlock;
   3313 	}
   3314 	dev_priv = i915_mch_dev;
   3315 
   3316 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   3317 
   3318 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   3319 		ret = false;
   3320 
   3321 out_unlock:
   3322 	spin_unlock_irq(&mchdev_lock);
   3323 
   3324 	return ret;
   3325 }
   3326 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   3327 
   3328 /**
   3329  * Tells the intel_ips driver that the i915 driver is now loaded, if
   3330  * IPS got loaded first.
   3331  *
   3332  * This awkward dance is so that neither module has to depend on the
   3333  * other in order for IPS to do the appropriate communication of
   3334  * GPU turbo limits to i915.
   3335  */
   3336 static void
   3337 ips_ping_for_i915_load(void)
   3338 {
   3339 #ifndef __NetBSD__		/* XXX whattakludge for Linux module mania */
   3340 	void (*link)(void);
   3341 
   3342 	link = symbol_get(ips_link_to_i915_driver);
   3343 	if (link) {
   3344 		link();
   3345 		symbol_put(ips_link_to_i915_driver);
   3346 	}
   3347 #endif
   3348 }
   3349 
   3350 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   3351 {
   3352 	/* We only register the i915 ips part with intel-ips once everything is
   3353 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   3354 	spin_lock_irq(&mchdev_lock);
   3355 	i915_mch_dev = dev_priv;
   3356 	spin_unlock_irq(&mchdev_lock);
   3357 
   3358 	ips_ping_for_i915_load();
   3359 }
   3360 
   3361 void intel_gpu_ips_teardown(void)
   3362 {
   3363 	spin_lock_irq(&mchdev_lock);
   3364 	i915_mch_dev = NULL;
   3365 	spin_unlock_irq(&mchdev_lock);
   3366 }
   3367 static void intel_init_emon(struct drm_device *dev)
   3368 {
   3369 	struct drm_i915_private *dev_priv = dev->dev_private;
   3370 	u32 lcfuse;
   3371 	u8 pxw[16];
   3372 	int i;
   3373 
   3374 	/* Disable to program */
   3375 	I915_WRITE(ECR, 0);
   3376 	POSTING_READ(ECR);
   3377 
   3378 	/* Program energy weights for various events */
   3379 	I915_WRITE(SDEW, 0x15040d00);
   3380 	I915_WRITE(CSIEW0, 0x007f0000);
   3381 	I915_WRITE(CSIEW1, 0x1e220004);
   3382 	I915_WRITE(CSIEW2, 0x04000004);
   3383 
   3384 	for (i = 0; i < 5; i++)
   3385 		I915_WRITE(PEW + (i * 4), 0);
   3386 	for (i = 0; i < 3; i++)
   3387 		I915_WRITE(DEW + (i * 4), 0);
   3388 
   3389 	/* Program P-state weights to account for frequency power adjustment */
   3390 	for (i = 0; i < 16; i++) {
   3391 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
   3392 		unsigned long freq = intel_pxfreq(pxvidfreq);
   3393 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   3394 			PXVFREQ_PX_SHIFT;
   3395 		unsigned long val;
   3396 
   3397 		val = vid * vid;
   3398 		val *= (freq / 1000);
   3399 		val *= 255;
   3400 		val /= (127*127*900);
   3401 		if (val > 0xff)
   3402 			DRM_ERROR("bad pxval: %ld\n", val);
   3403 		pxw[i] = val;
   3404 	}
   3405 	/* Render standby states get 0 weight */
   3406 	pxw[14] = 0;
   3407 	pxw[15] = 0;
   3408 
   3409 	for (i = 0; i < 4; i++) {
   3410 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
   3411 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
   3412 		I915_WRITE(PXW + (i * 4), val);
   3413 	}
   3414 
   3415 	/* Adjust magic regs to magic values (more experimental results) */
   3416 	I915_WRITE(OGW0, 0);
   3417 	I915_WRITE(OGW1, 0);
   3418 	I915_WRITE(EG0, 0x00007f00);
   3419 	I915_WRITE(EG1, 0x0000000e);
   3420 	I915_WRITE(EG2, 0x000e0000);
   3421 	I915_WRITE(EG3, 0x68000300);
   3422 	I915_WRITE(EG4, 0x42000000);
   3423 	I915_WRITE(EG5, 0x00140031);
   3424 	I915_WRITE(EG6, 0);
   3425 	I915_WRITE(EG7, 0);
   3426 
   3427 	for (i = 0; i < 8; i++)
   3428 		I915_WRITE(PXWL + (i * 4), 0);
   3429 
   3430 	/* Enable PMON + select events */
   3431 	I915_WRITE(ECR, 0x80000019);
   3432 
   3433 	lcfuse = I915_READ(LCFUSE02);
   3434 
   3435 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   3436 }
   3437 
   3438 void intel_disable_gt_powersave(struct drm_device *dev)
   3439 {
   3440 	struct drm_i915_private *dev_priv = dev->dev_private;
   3441 
   3442 	if (IS_IRONLAKE_M(dev)) {
   3443 		ironlake_disable_drps(dev);
   3444 		ironlake_disable_rc6(dev);
   3445 	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
   3446 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
   3447 		mutex_lock(&dev_priv->rps.hw_lock);
   3448 		gen6_disable_rps(dev);
   3449 		mutex_unlock(&dev_priv->rps.hw_lock);
   3450 	}
   3451 }
   3452 
   3453 static void intel_gen6_powersave_work(struct work_struct *work)
   3454 {
   3455 	struct drm_i915_private *dev_priv =
   3456 		container_of(work, struct drm_i915_private,
   3457 			     rps.delayed_resume_work.work);
   3458 	struct drm_device *dev = dev_priv->dev;
   3459 
   3460 	mutex_lock(&dev_priv->rps.hw_lock);
   3461 	gen6_enable_rps(dev);
   3462 	gen6_update_ring_freq(dev);
   3463 	mutex_unlock(&dev_priv->rps.hw_lock);
   3464 }
   3465 
   3466 void intel_enable_gt_powersave(struct drm_device *dev)
   3467 {
   3468 	struct drm_i915_private *dev_priv = dev->dev_private;
   3469 
   3470 	if (IS_IRONLAKE_M(dev)) {
   3471 		ironlake_enable_drps(dev);
   3472 		ironlake_enable_rc6(dev);
   3473 		intel_init_emon(dev);
   3474 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
   3475 		/*
   3476 		 * PCU communication is slow and this doesn't need to be
   3477 		 * done at any specific time, so do this out of our fast path
   3478 		 * to make resume and init faster.
   3479 		 */
   3480 		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   3481 				      round_jiffies_up_relative(HZ));
   3482 	}
   3483 }
   3484 
   3485 static void ibx_init_clock_gating(struct drm_device *dev)
   3486 {
   3487 	struct drm_i915_private *dev_priv = dev->dev_private;
   3488 
   3489 	/*
   3490 	 * On Ibex Peak and Cougar Point, we need to disable clock
   3491 	 * gating for the panel power sequencer or it will fail to
   3492 	 * start up when no ports are active.
   3493 	 */
   3494 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   3495 }
   3496 
   3497 static void ironlake_init_clock_gating(struct drm_device *dev)
   3498 {
   3499 	struct drm_i915_private *dev_priv = dev->dev_private;
   3500 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   3501 
   3502 	/* Required for FBC */
   3503 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   3504 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   3505 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   3506 
   3507 	I915_WRITE(PCH_3DCGDIS0,
   3508 		   MARIUNIT_CLOCK_GATE_DISABLE |
   3509 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   3510 	I915_WRITE(PCH_3DCGDIS1,
   3511 		   VFMUNIT_CLOCK_GATE_DISABLE);
   3512 
   3513 	/*
   3514 	 * According to the spec the following bits should be set in
   3515 	 * order to enable memory self-refresh
   3516 	 * The bit 22/21 of 0x42004
   3517 	 * The bit 5 of 0x42020
   3518 	 * The bit 15 of 0x45000
   3519 	 */
   3520 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3521 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   3522 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   3523 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   3524 	I915_WRITE(DISP_ARB_CTL,
   3525 		   (I915_READ(DISP_ARB_CTL) |
   3526 		    DISP_FBC_WM_DIS));
   3527 	I915_WRITE(WM3_LP_ILK, 0);
   3528 	I915_WRITE(WM2_LP_ILK, 0);
   3529 	I915_WRITE(WM1_LP_ILK, 0);
   3530 
   3531 	/*
   3532 	 * Based on the document from hardware guys the following bits
   3533 	 * should be set unconditionally in order to enable FBC.
   3534 	 * The bit 22 of 0x42000
   3535 	 * The bit 22 of 0x42004
   3536 	 * The bit 7,8,9 of 0x42020.
   3537 	 */
   3538 	if (IS_IRONLAKE_M(dev)) {
   3539 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   3540 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   3541 			   ILK_FBCQ_DIS);
   3542 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3543 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   3544 			   ILK_DPARB_GATE);
   3545 	}
   3546 
   3547 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   3548 
   3549 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3550 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   3551 		   ILK_ELPIN_409_SELECT);
   3552 	I915_WRITE(_3D_CHICKEN2,
   3553 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   3554 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   3555 
   3556 	/* WaDisableRenderCachePipelinedFlush */
   3557 	I915_WRITE(CACHE_MODE_0,
   3558 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   3559 
   3560 	ibx_init_clock_gating(dev);
   3561 }
   3562 
   3563 static void cpt_init_clock_gating(struct drm_device *dev)
   3564 {
   3565 	struct drm_i915_private *dev_priv = dev->dev_private;
   3566 	int pipe;
   3567 
   3568 	/*
   3569 	 * On Ibex Peak and Cougar Point, we need to disable clock
   3570 	 * gating for the panel power sequencer or it will fail to
   3571 	 * start up when no ports are active.
   3572 	 */
   3573 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   3574 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   3575 		   DPLS_EDP_PPS_FIX_DIS);
   3576 	/* The below fixes the weird display corruption, a few pixels shifted
   3577 	 * downward, on (only) LVDS of some HP laptops with IVY.
   3578 	 */
   3579 	for_each_pipe(pipe)
   3580 		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
   3581 	/* WADP0ClockGatingDisable */
   3582 	for_each_pipe(pipe) {
   3583 		I915_WRITE(TRANS_CHICKEN1(pipe),
   3584 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   3585 	}
   3586 }
   3587 
   3588 static void gen6_init_clock_gating(struct drm_device *dev)
   3589 {
   3590 	struct drm_i915_private *dev_priv = dev->dev_private;
   3591 	int pipe;
   3592 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   3593 
   3594 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   3595 
   3596 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3597 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   3598 		   ILK_ELPIN_409_SELECT);
   3599 
   3600 	/* WaDisableHiZPlanesWhenMSAAEnabled */
   3601 	I915_WRITE(_3D_CHICKEN,
   3602 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   3603 
   3604 	/* WaSetupGtModeTdRowDispatch */
   3605 	if (IS_SNB_GT1(dev))
   3606 		I915_WRITE(GEN6_GT_MODE,
   3607 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
   3608 
   3609 	I915_WRITE(WM3_LP_ILK, 0);
   3610 	I915_WRITE(WM2_LP_ILK, 0);
   3611 	I915_WRITE(WM1_LP_ILK, 0);
   3612 
   3613 	I915_WRITE(CACHE_MODE_0,
   3614 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   3615 
   3616 	I915_WRITE(GEN6_UCGCTL1,
   3617 		   I915_READ(GEN6_UCGCTL1) |
   3618 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   3619 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   3620 
   3621 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   3622 	 * gating disable must be set.  Failure to set it results in
   3623 	 * flickering pixels due to Z write ordering failures after
   3624 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   3625 	 * Sanctuary and Tropics, and apparently anything else with
   3626 	 * alpha test or pixel discard.
   3627 	 *
   3628 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   3629 	 * but we didn't debug actual testcases to find it out.
   3630 	 *
   3631 	 * Also apply WaDisableVDSUnitClockGating and
   3632 	 * WaDisableRCPBUnitClockGating.
   3633 	 */
   3634 	I915_WRITE(GEN6_UCGCTL2,
   3635 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
   3636 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   3637 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   3638 
   3639 	/* Bspec says we need to always set all mask bits. */
   3640 	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
   3641 		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
   3642 
   3643 	/*
   3644 	 * According to the spec the following bits should be
   3645 	 * set in order to enable memory self-refresh and fbc:
   3646 	 * The bit21 and bit22 of 0x42000
   3647 	 * The bit21 and bit22 of 0x42004
   3648 	 * The bit5 and bit7 of 0x42020
   3649 	 * The bit14 of 0x70180
   3650 	 * The bit14 of 0x71180
   3651 	 */
   3652 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   3653 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   3654 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   3655 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3656 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   3657 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   3658 	I915_WRITE(ILK_DSPCLK_GATE_D,
   3659 		   I915_READ(ILK_DSPCLK_GATE_D) |
   3660 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   3661 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   3662 
   3663 	/* WaMbcDriverBootEnable */
   3664 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
   3665 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
   3666 
   3667 	for_each_pipe(pipe) {
   3668 		I915_WRITE(DSPCNTR(pipe),
   3669 			   I915_READ(DSPCNTR(pipe)) |
   3670 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   3671 		intel_flush_display_plane(dev_priv, pipe);
   3672 	}
   3673 
   3674 	/* The default value should be 0x200 according to docs, but the two
   3675 	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
   3676 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
   3677 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
   3678 
   3679 	cpt_init_clock_gating(dev);
   3680 }
   3681 
   3682 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   3683 {
   3684 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   3685 
   3686 	reg &= ~GEN7_FF_SCHED_MASK;
   3687 	reg |= GEN7_FF_TS_SCHED_HW;
   3688 	reg |= GEN7_FF_VS_SCHED_HW;
   3689 	reg |= GEN7_FF_DS_SCHED_HW;
   3690 
   3691 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   3692 }
   3693 
   3694 static void lpt_init_clock_gating(struct drm_device *dev)
   3695 {
   3696 	struct drm_i915_private *dev_priv = dev->dev_private;
   3697 
   3698 	/*
   3699 	 * TODO: this bit should only be enabled when really needed, then
   3700 	 * disabled when not needed anymore in order to save power.
   3701 	 */
   3702 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
   3703 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   3704 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   3705 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   3706 }
   3707 
   3708 static void haswell_init_clock_gating(struct drm_device *dev)
   3709 {
   3710 	struct drm_i915_private *dev_priv = dev->dev_private;
   3711 	int pipe;
   3712 
   3713 	I915_WRITE(WM3_LP_ILK, 0);
   3714 	I915_WRITE(WM2_LP_ILK, 0);
   3715 	I915_WRITE(WM1_LP_ILK, 0);
   3716 
   3717 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   3718 	 * This implements the WaDisableRCZUnitClockGating workaround.
   3719 	 */
   3720 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   3721 
   3722 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
   3723 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   3724 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   3725 
   3726 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
   3727 	I915_WRITE(GEN7_L3CNTLREG1,
   3728 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   3729 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   3730 			GEN7_WA_L3_CHICKEN_MODE);
   3731 
   3732 	/* This is required by WaCatErrorRejectionIssue */
   3733 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   3734 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   3735 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   3736 
   3737 	for_each_pipe(pipe) {
   3738 		I915_WRITE(DSPCNTR(pipe),
   3739 			   I915_READ(DSPCNTR(pipe)) |
   3740 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   3741 		intel_flush_display_plane(dev_priv, pipe);
   3742 	}
   3743 
   3744 	gen7_setup_fixed_func_scheduler(dev_priv);
   3745 
   3746 	/* WaDisable4x2SubspanOptimization */
   3747 	I915_WRITE(CACHE_MODE_1,
   3748 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   3749 
   3750 	/* WaMbcDriverBootEnable */
   3751 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
   3752 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
   3753 
   3754 	/* XXX: This is a workaround for early silicon revisions and should be
   3755 	 * removed later.
   3756 	 */
   3757 	I915_WRITE(WM_DBG,
   3758 			I915_READ(WM_DBG) |
   3759 			WM_DBG_DISALLOW_MULTIPLE_LP |
   3760 			WM_DBG_DISALLOW_SPRITE |
   3761 			WM_DBG_DISALLOW_MAXFIFO);
   3762 
   3763 	lpt_init_clock_gating(dev);
   3764 }
   3765 
   3766 static void ivybridge_init_clock_gating(struct drm_device *dev)
   3767 {
   3768 	struct drm_i915_private *dev_priv = dev->dev_private;
   3769 	int pipe;
   3770 	uint32_t snpcr;
   3771 
   3772 	I915_WRITE(WM3_LP_ILK, 0);
   3773 	I915_WRITE(WM2_LP_ILK, 0);
   3774 	I915_WRITE(WM1_LP_ILK, 0);
   3775 
   3776 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   3777 
   3778 	/* WaDisableEarlyCull */
   3779 	I915_WRITE(_3D_CHICKEN3,
   3780 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   3781 
   3782 	/* WaDisableBackToBackFlipFix */
   3783 	I915_WRITE(IVB_CHICKEN3,
   3784 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   3785 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   3786 
   3787 	/* WaDisablePSDDualDispatchEnable */
   3788 	if (IS_IVB_GT1(dev))
   3789 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   3790 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   3791 	else
   3792 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
   3793 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   3794 
   3795 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
   3796 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   3797 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   3798 
   3799 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
   3800 	I915_WRITE(GEN7_L3CNTLREG1,
   3801 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   3802 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   3803 		   GEN7_WA_L3_CHICKEN_MODE);
   3804 	if (IS_IVB_GT1(dev))
   3805 		I915_WRITE(GEN7_ROW_CHICKEN2,
   3806 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   3807 	else
   3808 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   3809 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   3810 
   3811 
   3812 	/* WaForceL3Serialization */
   3813 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   3814 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   3815 
   3816 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   3817 	 * gating disable must be set.  Failure to set it results in
   3818 	 * flickering pixels due to Z write ordering failures after
   3819 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   3820 	 * Sanctuary and Tropics, and apparently anything else with
   3821 	 * alpha test or pixel discard.
   3822 	 *
   3823 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   3824 	 * but we didn't debug actual testcases to find it out.
   3825 	 *
   3826 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   3827 	 * This implements the WaDisableRCZUnitClockGating workaround.
   3828 	 */
   3829 	I915_WRITE(GEN6_UCGCTL2,
   3830 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
   3831 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   3832 
   3833 	/* This is required by WaCatErrorRejectionIssue */
   3834 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   3835 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   3836 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   3837 
   3838 	for_each_pipe(pipe) {
   3839 		I915_WRITE(DSPCNTR(pipe),
   3840 			   I915_READ(DSPCNTR(pipe)) |
   3841 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   3842 		intel_flush_display_plane(dev_priv, pipe);
   3843 	}
   3844 
   3845 	/* WaMbcDriverBootEnable */
   3846 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
   3847 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
   3848 
   3849 	gen7_setup_fixed_func_scheduler(dev_priv);
   3850 
   3851 	/* WaDisable4x2SubspanOptimization */
   3852 	I915_WRITE(CACHE_MODE_1,
   3853 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   3854 
   3855 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   3856 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   3857 	snpcr |= GEN6_MBC_SNPCR_MED;
   3858 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   3859 
   3860 	cpt_init_clock_gating(dev);
   3861 }
   3862 
   3863 static void valleyview_init_clock_gating(struct drm_device *dev)
   3864 {
   3865 	struct drm_i915_private *dev_priv = dev->dev_private;
   3866 	int pipe;
   3867 
   3868 	I915_WRITE(WM3_LP_ILK, 0);
   3869 	I915_WRITE(WM2_LP_ILK, 0);
   3870 	I915_WRITE(WM1_LP_ILK, 0);
   3871 
   3872 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   3873 
   3874 	/* WaDisableEarlyCull */
   3875 	I915_WRITE(_3D_CHICKEN3,
   3876 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   3877 
   3878 	/* WaDisableBackToBackFlipFix */
   3879 	I915_WRITE(IVB_CHICKEN3,
   3880 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   3881 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   3882 
   3883 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   3884 		   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   3885 
   3886 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
   3887 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   3888 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   3889 
   3890 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
   3891 	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
   3892 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
   3893 
   3894 	/* WaForceL3Serialization */
   3895 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   3896 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   3897 
   3898 	/* WaDisableDopClockGating */
   3899 	I915_WRITE(GEN7_ROW_CHICKEN2,
   3900 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   3901 
   3902 	/* WaForceL3Serialization */
   3903 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   3904 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   3905 
   3906 	/* This is required by WaCatErrorRejectionIssue */
   3907 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   3908 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   3909 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   3910 
   3911 	/* WaMbcDriverBootEnable */
   3912 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
   3913 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
   3914 
   3915 
   3916 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   3917 	 * gating disable must be set.  Failure to set it results in
   3918 	 * flickering pixels due to Z write ordering failures after
   3919 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   3920 	 * Sanctuary and Tropics, and apparently anything else with
   3921 	 * alpha test or pixel discard.
   3922 	 *
   3923 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   3924 	 * but we didn't debug actual testcases to find it out.
   3925 	 *
   3926 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   3927 	 * This implements the WaDisableRCZUnitClockGating workaround.
   3928 	 *
   3929 	 * Also apply WaDisableVDSUnitClockGating and
   3930 	 * WaDisableRCPBUnitClockGating.
   3931 	 */
   3932 	I915_WRITE(GEN6_UCGCTL2,
   3933 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
   3934 		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
   3935 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
   3936 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   3937 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   3938 
   3939 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   3940 
   3941 	for_each_pipe(pipe) {
   3942 		I915_WRITE(DSPCNTR(pipe),
   3943 			   I915_READ(DSPCNTR(pipe)) |
   3944 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   3945 		intel_flush_display_plane(dev_priv, pipe);
   3946 	}
   3947 
   3948 	I915_WRITE(CACHE_MODE_1,
   3949 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   3950 
   3951 	/*
   3952 	 * On ValleyView, the GUnit needs to signal the GT
   3953 	 * when flip and other events complete.  So enable
   3954 	 * all the GUnit->GT interrupts here
   3955 	 */
   3956 	I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
   3957 		   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
   3958 		   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
   3959 		   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
   3960 		   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
   3961 		   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
   3962 		   PLANEA_FLIPDONE_INT_EN);
   3963 
   3964 	/*
   3965 	 * WaDisableVLVClockGating_VBIIssue
   3966 	 * Disable clock gating on th GCFG unit to prevent a delay
   3967 	 * in the reporting of vblank events.
   3968 	 */
   3969 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   3970 }
   3971 
   3972 static void g4x_init_clock_gating(struct drm_device *dev)
   3973 {
   3974 	struct drm_i915_private *dev_priv = dev->dev_private;
   3975 	uint32_t dspclk_gate;
   3976 
   3977 	I915_WRITE(RENCLK_GATE_D1, 0);
   3978 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   3979 		   GS_UNIT_CLOCK_GATE_DISABLE |
   3980 		   CL_UNIT_CLOCK_GATE_DISABLE);
   3981 	I915_WRITE(RAMCLK_GATE_D, 0);
   3982 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   3983 		OVRUNIT_CLOCK_GATE_DISABLE |
   3984 		OVCUNIT_CLOCK_GATE_DISABLE;
   3985 	if (IS_GM45(dev))
   3986 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   3987 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   3988 
   3989 	/* WaDisableRenderCachePipelinedFlush */
   3990 	I915_WRITE(CACHE_MODE_0,
   3991 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   3992 }
   3993 
   3994 static void crestline_init_clock_gating(struct drm_device *dev)
   3995 {
   3996 	struct drm_i915_private *dev_priv = dev->dev_private;
   3997 
   3998 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   3999 	I915_WRITE(RENCLK_GATE_D2, 0);
   4000 	I915_WRITE(DSPCLK_GATE_D, 0);
   4001 	I915_WRITE(RAMCLK_GATE_D, 0);
   4002 	I915_WRITE16(DEUC, 0);
   4003 }
   4004 
   4005 static void broadwater_init_clock_gating(struct drm_device *dev)
   4006 {
   4007 	struct drm_i915_private *dev_priv = dev->dev_private;
   4008 
   4009 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   4010 		   I965_RCC_CLOCK_GATE_DISABLE |
   4011 		   I965_RCPB_CLOCK_GATE_DISABLE |
   4012 		   I965_ISC_CLOCK_GATE_DISABLE |
   4013 		   I965_FBC_CLOCK_GATE_DISABLE);
   4014 	I915_WRITE(RENCLK_GATE_D2, 0);
   4015 }
   4016 
   4017 static void gen3_init_clock_gating(struct drm_device *dev)
   4018 {
   4019 	struct drm_i915_private *dev_priv = dev->dev_private;
   4020 	u32 dstate = I915_READ(D_STATE);
   4021 
   4022 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   4023 		DSTATE_DOT_CLOCK_GATING;
   4024 	I915_WRITE(D_STATE, dstate);
   4025 
   4026 	if (IS_PINEVIEW(dev))
   4027 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   4028 
   4029 	/* IIR "flip pending" means done if this bit is set */
   4030 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   4031 }
   4032 
   4033 static void i85x_init_clock_gating(struct drm_device *dev)
   4034 {
   4035 	struct drm_i915_private *dev_priv = dev->dev_private;
   4036 
   4037 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   4038 }
   4039 
   4040 static void i830_init_clock_gating(struct drm_device *dev)
   4041 {
   4042 	struct drm_i915_private *dev_priv = dev->dev_private;
   4043 
   4044 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   4045 }
   4046 
   4047 void intel_init_clock_gating(struct drm_device *dev)
   4048 {
   4049 	struct drm_i915_private *dev_priv = dev->dev_private;
   4050 
   4051 	dev_priv->display.init_clock_gating(dev);
   4052 }
   4053 
   4054 /* Starting with Haswell, we have different power wells for
   4055  * different parts of the GPU. This attempts to enable them all.
   4056  */
   4057 void intel_init_power_wells(struct drm_device *dev)
   4058 {
   4059 	struct drm_i915_private *dev_priv = dev->dev_private;
   4060 	unsigned long power_wells[] = {
   4061 		HSW_PWR_WELL_CTL1,
   4062 		HSW_PWR_WELL_CTL2,
   4063 		HSW_PWR_WELL_CTL4
   4064 	};
   4065 	int i;
   4066 
   4067 	if (!IS_HASWELL(dev))
   4068 		return;
   4069 
   4070 	mutex_lock(&dev->struct_mutex);
   4071 
   4072 	for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
   4073 		int well = I915_READ(power_wells[i]);
   4074 
   4075 		if ((well & HSW_PWR_WELL_STATE) == 0) {
   4076 			I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
   4077 			if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
   4078 				DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
   4079 		}
   4080 	}
   4081 
   4082 	mutex_unlock(&dev->struct_mutex);
   4083 }
   4084 
   4085 /* Set up chip specific power management-related functions */
   4086 void intel_init_pm(struct drm_device *dev)
   4087 {
   4088 	struct drm_i915_private *dev_priv = dev->dev_private;
   4089 
   4090 	if (I915_HAS_FBC(dev)) {
   4091 		if (HAS_PCH_SPLIT(dev)) {
   4092 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
   4093 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
   4094 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
   4095 		} else if (IS_GM45(dev)) {
   4096 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
   4097 			dev_priv->display.enable_fbc = g4x_enable_fbc;
   4098 			dev_priv->display.disable_fbc = g4x_disable_fbc;
   4099 		} else if (IS_CRESTLINE(dev)) {
   4100 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
   4101 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
   4102 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
   4103 		}
   4104 		/* 855GM needs testing */
   4105 	}
   4106 
   4107 	/* For cxsr */
   4108 	if (IS_PINEVIEW(dev))
   4109 		i915_pineview_get_mem_freq(dev);
   4110 	else if (IS_GEN5(dev))
   4111 		i915_ironlake_get_mem_freq(dev);
   4112 
   4113 	/* For FIFO watermark updates */
   4114 	if (HAS_PCH_SPLIT(dev)) {
   4115 		if (IS_GEN5(dev)) {
   4116 			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
   4117 				dev_priv->display.update_wm = ironlake_update_wm;
   4118 			else {
   4119 				DRM_DEBUG_KMS("Failed to get proper latency. "
   4120 					      "Disable CxSR\n");
   4121 				dev_priv->display.update_wm = NULL;
   4122 			}
   4123 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   4124 		} else if (IS_GEN6(dev)) {
   4125 			if (SNB_READ_WM0_LATENCY()) {
   4126 				dev_priv->display.update_wm = sandybridge_update_wm;
   4127 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
   4128 			} else {
   4129 				DRM_DEBUG_KMS("Failed to read display plane latency. "
   4130 					      "Disable CxSR\n");
   4131 				dev_priv->display.update_wm = NULL;
   4132 			}
   4133 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   4134 		} else if (IS_IVYBRIDGE(dev)) {
   4135 			/* FIXME: detect B0+ stepping and use auto training */
   4136 			if (SNB_READ_WM0_LATENCY()) {
   4137 				dev_priv->display.update_wm = ivybridge_update_wm;
   4138 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
   4139 			} else {
   4140 				DRM_DEBUG_KMS("Failed to read display plane latency. "
   4141 					      "Disable CxSR\n");
   4142 				dev_priv->display.update_wm = NULL;
   4143 			}
   4144 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   4145 		} else if (IS_HASWELL(dev)) {
   4146 			if (SNB_READ_WM0_LATENCY()) {
   4147 				dev_priv->display.update_wm = sandybridge_update_wm;
   4148 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
   4149 				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
   4150 			} else {
   4151 				DRM_DEBUG_KMS("Failed to read display plane latency. "
   4152 					      "Disable CxSR\n");
   4153 				dev_priv->display.update_wm = NULL;
   4154 			}
   4155 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   4156 		} else
   4157 			dev_priv->display.update_wm = NULL;
   4158 	} else if (IS_VALLEYVIEW(dev)) {
   4159 		dev_priv->display.update_wm = valleyview_update_wm;
   4160 		dev_priv->display.init_clock_gating =
   4161 			valleyview_init_clock_gating;
   4162 	} else if (IS_PINEVIEW(dev)) {
   4163 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   4164 					    dev_priv->is_ddr3,
   4165 					    dev_priv->fsb_freq,
   4166 					    dev_priv->mem_freq)) {
   4167 			DRM_INFO("failed to find known CxSR latency "
   4168 				 "(found ddr%s fsb freq %d, mem freq %d), "
   4169 				 "disabling CxSR\n",
   4170 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   4171 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   4172 			/* Disable CxSR and never update its watermark again */
   4173 			pineview_disable_cxsr(dev);
   4174 			dev_priv->display.update_wm = NULL;
   4175 		} else
   4176 			dev_priv->display.update_wm = pineview_update_wm;
   4177 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   4178 	} else if (IS_G4X(dev)) {
   4179 		dev_priv->display.update_wm = g4x_update_wm;
   4180 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   4181 	} else if (IS_GEN4(dev)) {
   4182 		dev_priv->display.update_wm = i965_update_wm;
   4183 		if (IS_CRESTLINE(dev))
   4184 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   4185 		else if (IS_BROADWATER(dev))
   4186 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   4187 	} else if (IS_GEN3(dev)) {
   4188 		dev_priv->display.update_wm = i9xx_update_wm;
   4189 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   4190 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   4191 	} else if (IS_I865G(dev)) {
   4192 		dev_priv->display.update_wm = i830_update_wm;
   4193 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   4194 		dev_priv->display.get_fifo_size = i830_get_fifo_size;
   4195 	} else if (IS_I85X(dev)) {
   4196 		dev_priv->display.update_wm = i9xx_update_wm;
   4197 		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
   4198 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   4199 	} else {
   4200 		dev_priv->display.update_wm = i830_update_wm;
   4201 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
   4202 		if (IS_845G(dev))
   4203 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   4204 		else
   4205 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   4206 	}
   4207 }
   4208 
   4209 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
   4210 {
   4211 	u32 gt_thread_status_mask;
   4212 
   4213 	if (IS_HASWELL(dev_priv->dev))
   4214 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
   4215 	else
   4216 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
   4217 
   4218 	/* w/a for a sporadic read returning 0 by waiting for the GT
   4219 	 * thread to wake up.
   4220 	 */
   4221 	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
   4222 		DRM_ERROR("GT thread status wait timed out\n");
   4223 }
   4224 
   4225 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
   4226 {
   4227 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
   4228 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
   4229 }
   4230 
   4231 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
   4232 {
   4233 	u32 forcewake_ack;
   4234 
   4235 	if (IS_HASWELL(dev_priv->dev))
   4236 		forcewake_ack = FORCEWAKE_ACK_HSW;
   4237 	else
   4238 		forcewake_ack = FORCEWAKE_ACK;
   4239 
   4240 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
   4241 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4242 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
   4243 
   4244 	I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
   4245 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
   4246 
   4247 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
   4248 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4249 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
   4250 
   4251 	__gen6_gt_wait_for_thread_c0(dev_priv);
   4252 }
   4253 
   4254 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
   4255 {
   4256 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
   4257 	/* something from same cacheline, but !FORCEWAKE_MT */
   4258 	POSTING_READ(ECOBUS);
   4259 }
   4260 
   4261 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
   4262 {
   4263 	u32 forcewake_ack;
   4264 
   4265 	if (IS_HASWELL(dev_priv->dev))
   4266 		forcewake_ack = FORCEWAKE_ACK_HSW;
   4267 	else
   4268 		forcewake_ack = FORCEWAKE_MT_ACK;
   4269 
   4270 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
   4271 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4272 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
   4273 
   4274 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
   4275 	/* something from same cacheline, but !FORCEWAKE_MT */
   4276 	POSTING_READ(ECOBUS);
   4277 
   4278 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
   4279 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4280 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
   4281 
   4282 	__gen6_gt_wait_for_thread_c0(dev_priv);
   4283 }
   4284 
   4285 /*
   4286  * Generally this is called implicitly by the register read function. However,
   4287  * if some sequence requires the GT to not power down then this function should
   4288  * be called at the beginning of the sequence followed by a call to
   4289  * gen6_gt_force_wake_put() at the end of the sequence.
   4290  */
   4291 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
   4292 {
   4293 	unsigned long irqflags;
   4294 
   4295 	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
   4296 	if (dev_priv->forcewake_count++ == 0)
   4297 		dev_priv->gt.force_wake_get(dev_priv);
   4298 	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
   4299 }
   4300 
   4301 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
   4302 {
   4303 	u32 gtfifodbg;
   4304 	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
   4305 	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
   4306 	     "MMIO read or write has been dropped %x\n", gtfifodbg))
   4307 		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
   4308 }
   4309 
   4310 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
   4311 {
   4312 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
   4313 	/* something from same cacheline, but !FORCEWAKE */
   4314 	POSTING_READ(ECOBUS);
   4315 	gen6_gt_check_fifodbg(dev_priv);
   4316 }
   4317 
   4318 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
   4319 {
   4320 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
   4321 	/* something from same cacheline, but !FORCEWAKE_MT */
   4322 	POSTING_READ(ECOBUS);
   4323 	gen6_gt_check_fifodbg(dev_priv);
   4324 }
   4325 
   4326 /*
   4327  * see gen6_gt_force_wake_get()
   4328  */
   4329 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
   4330 {
   4331 	unsigned long irqflags;
   4332 
   4333 	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
   4334 	if (--dev_priv->forcewake_count == 0)
   4335 		dev_priv->gt.force_wake_put(dev_priv);
   4336 	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
   4337 }
   4338 
   4339 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
   4340 {
   4341 	int ret = 0;
   4342 
   4343 	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
   4344 		int loop = 500;
   4345 		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
   4346 		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
   4347 			udelay(10);
   4348 			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
   4349 		}
   4350 		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
   4351 			++ret;
   4352 		dev_priv->gt_fifo_count = fifo;
   4353 	}
   4354 	dev_priv->gt_fifo_count--;
   4355 
   4356 	return ret;
   4357 }
   4358 
   4359 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
   4360 {
   4361 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
   4362 	/* something from same cacheline, but !FORCEWAKE_VLV */
   4363 	POSTING_READ(FORCEWAKE_ACK_VLV);
   4364 }
   4365 
   4366 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
   4367 {
   4368 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
   4369 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4370 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
   4371 
   4372 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
   4373 
   4374 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
   4375 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4376 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
   4377 
   4378 	__gen6_gt_wait_for_thread_c0(dev_priv);
   4379 }
   4380 
   4381 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
   4382 {
   4383 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
   4384 	/* something from same cacheline, but !FORCEWAKE_VLV */
   4385 	POSTING_READ(FORCEWAKE_ACK_VLV);
   4386 	gen6_gt_check_fifodbg(dev_priv);
   4387 }
   4388 
   4389 void intel_gt_reset(struct drm_device *dev)
   4390 {
   4391 	struct drm_i915_private *dev_priv = dev->dev_private;
   4392 
   4393 	if (IS_VALLEYVIEW(dev)) {
   4394 		vlv_force_wake_reset(dev_priv);
   4395 	} else if (INTEL_INFO(dev)->gen >= 6) {
   4396 		__gen6_gt_force_wake_reset(dev_priv);
   4397 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
   4398 			__gen6_gt_force_wake_mt_reset(dev_priv);
   4399 	}
   4400 }
   4401 
   4402 void intel_gt_init(struct drm_device *dev)
   4403 {
   4404 	struct drm_i915_private *dev_priv = dev->dev_private;
   4405 
   4406 	spin_lock_init(&dev_priv->gt_lock);
   4407 
   4408 	intel_gt_reset(dev);
   4409 
   4410 	if (IS_VALLEYVIEW(dev)) {
   4411 		dev_priv->gt.force_wake_get = vlv_force_wake_get;
   4412 		dev_priv->gt.force_wake_put = vlv_force_wake_put;
   4413 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
   4414 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
   4415 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
   4416 	} else if (IS_GEN6(dev)) {
   4417 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
   4418 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
   4419 	}
   4420 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   4421 			  intel_gen6_powersave_work);
   4422 }
   4423 
   4424 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
   4425 {
   4426 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4427 
   4428 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   4429 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   4430 		return -EAGAIN;
   4431 	}
   4432 
   4433 	I915_WRITE(GEN6_PCODE_DATA, *val);
   4434 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   4435 
   4436 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   4437 		     500)) {
   4438 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   4439 		return -ETIMEDOUT;
   4440 	}
   4441 
   4442 	*val = I915_READ(GEN6_PCODE_DATA);
   4443 	I915_WRITE(GEN6_PCODE_DATA, 0);
   4444 
   4445 	return 0;
   4446 }
   4447 
   4448 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
   4449 {
   4450 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4451 
   4452 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   4453 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   4454 		return -EAGAIN;
   4455 	}
   4456 
   4457 	I915_WRITE(GEN6_PCODE_DATA, val);
   4458 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   4459 
   4460 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   4461 		     500)) {
   4462 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   4463 		return -ETIMEDOUT;
   4464 	}
   4465 
   4466 	I915_WRITE(GEN6_PCODE_DATA, 0);
   4467 
   4468 	return 0;
   4469 }
   4470