intel_pm.c revision 1.1.1.1.2.3 1 /*
2 * Copyright 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov (at) intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #ifndef __NetBSD__
32 #include "../../../platform/x86/intel_ips.h"
33 #endif
34 #include <linux/module.h>
35
36 #define FORCEWAKE_ACK_TIMEOUT_MS 2
37
38 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
39 * framebuffer contents in-memory, aiming at reducing the required bandwidth
40 * during in-memory transfers and, therefore, reduce the power packet.
41 *
42 * The benefits of FBC are mostly visible with solid backgrounds and
43 * variation-less patterns.
44 *
45 * FBC-related functionality can be enabled by the means of the
46 * i915.i915_enable_fbc parameter
47 */
48
49 static bool intel_crtc_active(struct drm_crtc *crtc)
50 {
51 /* Be paranoid as we can arrive here with only partial
52 * state retrieved from the hardware during setup.
53 */
54 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
55 }
56
57 static void i8xx_disable_fbc(struct drm_device *dev)
58 {
59 struct drm_i915_private *dev_priv = dev->dev_private;
60 u32 fbc_ctl;
61
62 /* Disable compression */
63 fbc_ctl = I915_READ(FBC_CONTROL);
64 if ((fbc_ctl & FBC_CTL_EN) == 0)
65 return;
66
67 fbc_ctl &= ~FBC_CTL_EN;
68 I915_WRITE(FBC_CONTROL, fbc_ctl);
69
70 /* Wait for compressing bit to clear */
71 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
72 DRM_DEBUG_KMS("FBC idle timed out\n");
73 return;
74 }
75
76 DRM_DEBUG_KMS("disabled FBC\n");
77 }
78
79 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
80 {
81 struct drm_device *dev = crtc->dev;
82 struct drm_i915_private *dev_priv = dev->dev_private;
83 struct drm_framebuffer *fb = crtc->fb;
84 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
85 struct drm_i915_gem_object *obj = intel_fb->obj;
86 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
87 int cfb_pitch;
88 int plane, i;
89 u32 fbc_ctl, fbc_ctl2;
90
91 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
92 if (fb->pitches[0] < cfb_pitch)
93 cfb_pitch = fb->pitches[0];
94
95 /* FBC_CTL wants 64B units */
96 cfb_pitch = (cfb_pitch / 64) - 1;
97 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
98
99 /* Clear old tags */
100 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
101 I915_WRITE(FBC_TAG + (i * 4), 0);
102
103 /* Set it up... */
104 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
105 fbc_ctl2 |= plane;
106 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
107 I915_WRITE(FBC_FENCE_OFF, crtc->y);
108
109 /* enable it... */
110 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
111 if (IS_I945GM(dev))
112 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
113 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
114 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
115 fbc_ctl |= obj->fence_reg;
116 I915_WRITE(FBC_CONTROL, fbc_ctl);
117
118 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
119 cfb_pitch, crtc->y, intel_crtc->plane);
120 }
121
122 static bool i8xx_fbc_enabled(struct drm_device *dev)
123 {
124 struct drm_i915_private *dev_priv = dev->dev_private;
125
126 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
127 }
128
129 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
130 {
131 struct drm_device *dev = crtc->dev;
132 struct drm_i915_private *dev_priv = dev->dev_private;
133 struct drm_framebuffer *fb = crtc->fb;
134 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
135 struct drm_i915_gem_object *obj = intel_fb->obj;
136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
137 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
138 unsigned long stall_watermark = 200;
139 u32 dpfc_ctl;
140
141 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
142 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
143 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
144
145 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
146 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
147 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
148 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
149
150 /* enable it... */
151 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
152
153 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
154 }
155
156 static void g4x_disable_fbc(struct drm_device *dev)
157 {
158 struct drm_i915_private *dev_priv = dev->dev_private;
159 u32 dpfc_ctl;
160
161 /* Disable compression */
162 dpfc_ctl = I915_READ(DPFC_CONTROL);
163 if (dpfc_ctl & DPFC_CTL_EN) {
164 dpfc_ctl &= ~DPFC_CTL_EN;
165 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
166
167 DRM_DEBUG_KMS("disabled FBC\n");
168 }
169 }
170
171 static bool g4x_fbc_enabled(struct drm_device *dev)
172 {
173 struct drm_i915_private *dev_priv = dev->dev_private;
174
175 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
176 }
177
178 static void sandybridge_blit_fbc_update(struct drm_device *dev)
179 {
180 struct drm_i915_private *dev_priv = dev->dev_private;
181 u32 blt_ecoskpd;
182
183 /* Make sure blitter notifies FBC of writes */
184 gen6_gt_force_wake_get(dev_priv);
185 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
186 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
187 GEN6_BLITTER_LOCK_SHIFT;
188 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
190 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
192 GEN6_BLITTER_LOCK_SHIFT);
193 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
194 POSTING_READ(GEN6_BLITTER_ECOSKPD);
195 gen6_gt_force_wake_put(dev_priv);
196 }
197
198 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
199 {
200 struct drm_device *dev = crtc->dev;
201 struct drm_i915_private *dev_priv = dev->dev_private;
202 struct drm_framebuffer *fb = crtc->fb;
203 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
204 struct drm_i915_gem_object *obj = intel_fb->obj;
205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
206 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
207 unsigned long stall_watermark = 200;
208 u32 dpfc_ctl;
209
210 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
211 dpfc_ctl &= DPFC_RESERVED;
212 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
213 /* Set persistent mode for front-buffer rendering, ala X. */
214 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
215 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
216 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
217
218 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
219 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
220 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
221 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
222 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
223 /* enable it... */
224 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
225
226 if (IS_GEN6(dev)) {
227 I915_WRITE(SNB_DPFC_CTL_SA,
228 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
229 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
230 sandybridge_blit_fbc_update(dev);
231 }
232
233 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
234 }
235
236 static void ironlake_disable_fbc(struct drm_device *dev)
237 {
238 struct drm_i915_private *dev_priv = dev->dev_private;
239 u32 dpfc_ctl;
240
241 /* Disable compression */
242 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
243 if (dpfc_ctl & DPFC_CTL_EN) {
244 dpfc_ctl &= ~DPFC_CTL_EN;
245 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
246
247 DRM_DEBUG_KMS("disabled FBC\n");
248 }
249 }
250
251 static bool ironlake_fbc_enabled(struct drm_device *dev)
252 {
253 struct drm_i915_private *dev_priv = dev->dev_private;
254
255 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
256 }
257
258 bool intel_fbc_enabled(struct drm_device *dev)
259 {
260 struct drm_i915_private *dev_priv = dev->dev_private;
261
262 if (!dev_priv->display.fbc_enabled)
263 return false;
264
265 return dev_priv->display.fbc_enabled(dev);
266 }
267
268 static void intel_fbc_work_fn(struct work_struct *__work)
269 {
270 struct intel_fbc_work *work =
271 container_of(to_delayed_work(__work),
272 struct intel_fbc_work, work);
273 struct drm_device *dev = work->crtc->dev;
274 struct drm_i915_private *dev_priv = dev->dev_private;
275
276 mutex_lock(&dev->struct_mutex);
277 if (work == dev_priv->fbc_work) {
278 /* Double check that we haven't switched fb without cancelling
279 * the prior work.
280 */
281 if (work->crtc->fb == work->fb) {
282 dev_priv->display.enable_fbc(work->crtc,
283 work->interval);
284
285 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
286 dev_priv->cfb_fb = work->crtc->fb->base.id;
287 dev_priv->cfb_y = work->crtc->y;
288 }
289
290 dev_priv->fbc_work = NULL;
291 }
292 mutex_unlock(&dev->struct_mutex);
293
294 kfree(work);
295 }
296
297 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
298 {
299 if (dev_priv->fbc_work == NULL)
300 return;
301
302 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
303
304 /* Synchronisation is provided by struct_mutex and checking of
305 * dev_priv->fbc_work, so we can perform the cancellation
306 * entirely asynchronously.
307 */
308 if (cancel_delayed_work(&dev_priv->fbc_work->work))
309 /* tasklet was killed before being run, clean up */
310 kfree(dev_priv->fbc_work);
311
312 /* Mark the work as no longer wanted so that if it does
313 * wake-up (because the work was already running and waiting
314 * for our mutex), it will discover that is no longer
315 * necessary to run.
316 */
317 dev_priv->fbc_work = NULL;
318 }
319
320 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
321 {
322 struct intel_fbc_work *work;
323 struct drm_device *dev = crtc->dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 if (!dev_priv->display.enable_fbc)
327 return;
328
329 intel_cancel_fbc_work(dev_priv);
330
331 work = kzalloc(sizeof *work, GFP_KERNEL);
332 if (work == NULL) {
333 dev_priv->display.enable_fbc(crtc, interval);
334 return;
335 }
336
337 work->crtc = crtc;
338 work->fb = crtc->fb;
339 work->interval = interval;
340 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
341
342 dev_priv->fbc_work = work;
343
344 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
345
346 /* Delay the actual enabling to let pageflipping cease and the
347 * display to settle before starting the compression. Note that
348 * this delay also serves a second purpose: it allows for a
349 * vblank to pass after disabling the FBC before we attempt
350 * to modify the control registers.
351 *
352 * A more complicated solution would involve tracking vblanks
353 * following the termination of the page-flipping sequence
354 * and indeed performing the enable as a co-routine and not
355 * waiting synchronously upon the vblank.
356 */
357 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
358 }
359
360 void intel_disable_fbc(struct drm_device *dev)
361 {
362 struct drm_i915_private *dev_priv = dev->dev_private;
363
364 intel_cancel_fbc_work(dev_priv);
365
366 if (!dev_priv->display.disable_fbc)
367 return;
368
369 dev_priv->display.disable_fbc(dev);
370 dev_priv->cfb_plane = -1;
371 }
372
373 /**
374 * intel_update_fbc - enable/disable FBC as needed
375 * @dev: the drm_device
376 *
377 * Set up the framebuffer compression hardware at mode set time. We
378 * enable it if possible:
379 * - plane A only (on pre-965)
380 * - no pixel mulitply/line duplication
381 * - no alpha buffer discard
382 * - no dual wide
383 * - framebuffer <= 2048 in width, 1536 in height
384 *
385 * We can't assume that any compression will take place (worst case),
386 * so the compressed buffer has to be the same size as the uncompressed
387 * one. It also must reside (along with the line length buffer) in
388 * stolen memory.
389 *
390 * We need to enable/disable FBC on a global basis.
391 */
392 void intel_update_fbc(struct drm_device *dev)
393 {
394 struct drm_i915_private *dev_priv = dev->dev_private;
395 struct drm_crtc *crtc = NULL, *tmp_crtc;
396 struct intel_crtc *intel_crtc;
397 struct drm_framebuffer *fb;
398 struct intel_framebuffer *intel_fb;
399 struct drm_i915_gem_object *obj;
400 int enable_fbc;
401
402 if (!i915_powersave)
403 return;
404
405 if (!I915_HAS_FBC(dev))
406 return;
407
408 /*
409 * If FBC is already on, we just have to verify that we can
410 * keep it that way...
411 * Need to disable if:
412 * - more than one pipe is active
413 * - changing FBC params (stride, fence, mode)
414 * - new fb is too large to fit in compressed buffer
415 * - going to an unsupported config (interlace, pixel multiply, etc.)
416 */
417 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
418 if (intel_crtc_active(tmp_crtc) &&
419 !to_intel_crtc(tmp_crtc)->primary_disabled) {
420 if (crtc) {
421 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
422 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
423 goto out_disable;
424 }
425 crtc = tmp_crtc;
426 }
427 }
428
429 if (!crtc || crtc->fb == NULL) {
430 DRM_DEBUG_KMS("no output, disabling\n");
431 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
432 goto out_disable;
433 }
434
435 intel_crtc = to_intel_crtc(crtc);
436 fb = crtc->fb;
437 intel_fb = to_intel_framebuffer(fb);
438 obj = intel_fb->obj;
439
440 enable_fbc = i915_enable_fbc;
441 if (enable_fbc < 0) {
442 DRM_DEBUG_KMS("fbc set to per-chip default\n");
443 enable_fbc = 1;
444 if (INTEL_INFO(dev)->gen <= 6)
445 enable_fbc = 0;
446 }
447 if (!enable_fbc) {
448 DRM_DEBUG_KMS("fbc disabled per module param\n");
449 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
450 goto out_disable;
451 }
452 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
453 DRM_DEBUG_KMS("framebuffer too large, disabling "
454 "compression\n");
455 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
456 goto out_disable;
457 }
458 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
459 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
460 DRM_DEBUG_KMS("mode incompatible with compression, "
461 "disabling\n");
462 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
463 goto out_disable;
464 }
465 if ((crtc->mode.hdisplay > 2048) ||
466 (crtc->mode.vdisplay > 1536)) {
467 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
468 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
469 goto out_disable;
470 }
471 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
472 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
473 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
474 goto out_disable;
475 }
476
477 /* The use of a CPU fence is mandatory in order to detect writes
478 * by the CPU to the scanout and trigger updates to the FBC.
479 */
480 if (obj->tiling_mode != I915_TILING_X ||
481 obj->fence_reg == I915_FENCE_REG_NONE) {
482 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
483 dev_priv->no_fbc_reason = FBC_NOT_TILED;
484 goto out_disable;
485 }
486
487 /* If the kernel debugger is active, always disable compression */
488 if (in_dbg_master())
489 goto out_disable;
490
491 /* If the scanout has not changed, don't modify the FBC settings.
492 * Note that we make the fundamental assumption that the fb->obj
493 * cannot be unpinned (and have its GTT offset and fence revoked)
494 * without first being decoupled from the scanout and FBC disabled.
495 */
496 if (dev_priv->cfb_plane == intel_crtc->plane &&
497 dev_priv->cfb_fb == fb->base.id &&
498 dev_priv->cfb_y == crtc->y)
499 return;
500
501 if (intel_fbc_enabled(dev)) {
502 /* We update FBC along two paths, after changing fb/crtc
503 * configuration (modeswitching) and after page-flipping
504 * finishes. For the latter, we know that not only did
505 * we disable the FBC at the start of the page-flip
506 * sequence, but also more than one vblank has passed.
507 *
508 * For the former case of modeswitching, it is possible
509 * to switch between two FBC valid configurations
510 * instantaneously so we do need to disable the FBC
511 * before we can modify its control registers. We also
512 * have to wait for the next vblank for that to take
513 * effect. However, since we delay enabling FBC we can
514 * assume that a vblank has passed since disabling and
515 * that we can safely alter the registers in the deferred
516 * callback.
517 *
518 * In the scenario that we go from a valid to invalid
519 * and then back to valid FBC configuration we have
520 * no strict enforcement that a vblank occurred since
521 * disabling the FBC. However, along all current pipe
522 * disabling paths we do need to wait for a vblank at
523 * some point. And we wait before enabling FBC anyway.
524 */
525 DRM_DEBUG_KMS("disabling active FBC for update\n");
526 intel_disable_fbc(dev);
527 }
528
529 intel_enable_fbc(crtc, 500);
530 return;
531
532 out_disable:
533 /* Multiple disables should be harmless */
534 if (intel_fbc_enabled(dev)) {
535 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
536 intel_disable_fbc(dev);
537 }
538 }
539
540 static void i915_pineview_get_mem_freq(struct drm_device *dev)
541 {
542 drm_i915_private_t *dev_priv = dev->dev_private;
543 u32 tmp;
544
545 tmp = I915_READ(CLKCFG);
546
547 switch (tmp & CLKCFG_FSB_MASK) {
548 case CLKCFG_FSB_533:
549 dev_priv->fsb_freq = 533; /* 133*4 */
550 break;
551 case CLKCFG_FSB_800:
552 dev_priv->fsb_freq = 800; /* 200*4 */
553 break;
554 case CLKCFG_FSB_667:
555 dev_priv->fsb_freq = 667; /* 167*4 */
556 break;
557 case CLKCFG_FSB_400:
558 dev_priv->fsb_freq = 400; /* 100*4 */
559 break;
560 }
561
562 switch (tmp & CLKCFG_MEM_MASK) {
563 case CLKCFG_MEM_533:
564 dev_priv->mem_freq = 533;
565 break;
566 case CLKCFG_MEM_667:
567 dev_priv->mem_freq = 667;
568 break;
569 case CLKCFG_MEM_800:
570 dev_priv->mem_freq = 800;
571 break;
572 }
573
574 /* detect pineview DDR3 setting */
575 tmp = I915_READ(CSHRDDR3CTL);
576 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
577 }
578
579 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
580 {
581 drm_i915_private_t *dev_priv = dev->dev_private;
582 u16 ddrpll, csipll;
583
584 ddrpll = I915_READ16(DDRMPLL1);
585 csipll = I915_READ16(CSIPLL0);
586
587 switch (ddrpll & 0xff) {
588 case 0xc:
589 dev_priv->mem_freq = 800;
590 break;
591 case 0x10:
592 dev_priv->mem_freq = 1066;
593 break;
594 case 0x14:
595 dev_priv->mem_freq = 1333;
596 break;
597 case 0x18:
598 dev_priv->mem_freq = 1600;
599 break;
600 default:
601 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
602 ddrpll & 0xff);
603 dev_priv->mem_freq = 0;
604 break;
605 }
606
607 dev_priv->ips.r_t = dev_priv->mem_freq;
608
609 switch (csipll & 0x3ff) {
610 case 0x00c:
611 dev_priv->fsb_freq = 3200;
612 break;
613 case 0x00e:
614 dev_priv->fsb_freq = 3733;
615 break;
616 case 0x010:
617 dev_priv->fsb_freq = 4266;
618 break;
619 case 0x012:
620 dev_priv->fsb_freq = 4800;
621 break;
622 case 0x014:
623 dev_priv->fsb_freq = 5333;
624 break;
625 case 0x016:
626 dev_priv->fsb_freq = 5866;
627 break;
628 case 0x018:
629 dev_priv->fsb_freq = 6400;
630 break;
631 default:
632 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
633 csipll & 0x3ff);
634 dev_priv->fsb_freq = 0;
635 break;
636 }
637
638 if (dev_priv->fsb_freq == 3200) {
639 dev_priv->ips.c_m = 0;
640 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
641 dev_priv->ips.c_m = 1;
642 } else {
643 dev_priv->ips.c_m = 2;
644 }
645 }
646
647 static const struct cxsr_latency cxsr_latency_table[] = {
648 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
649 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
650 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
651 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
652 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
653
654 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
655 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
656 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
657 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
658 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
659
660 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
661 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
662 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
663 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
664 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
665
666 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
667 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
668 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
669 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
670 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
671
672 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
673 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
674 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
675 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
676 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
677
678 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
679 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
680 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
681 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
682 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
683 };
684
685 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
686 int is_ddr3,
687 int fsb,
688 int mem)
689 {
690 const struct cxsr_latency *latency;
691 int i;
692
693 if (fsb == 0 || mem == 0)
694 return NULL;
695
696 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
697 latency = &cxsr_latency_table[i];
698 if (is_desktop == latency->is_desktop &&
699 is_ddr3 == latency->is_ddr3 &&
700 fsb == latency->fsb_freq && mem == latency->mem_freq)
701 return latency;
702 }
703
704 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
705
706 return NULL;
707 }
708
709 static void pineview_disable_cxsr(struct drm_device *dev)
710 {
711 struct drm_i915_private *dev_priv = dev->dev_private;
712
713 /* deactivate cxsr */
714 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
715 }
716
717 /*
718 * Latency for FIFO fetches is dependent on several factors:
719 * - memory configuration (speed, channels)
720 * - chipset
721 * - current MCH state
722 * It can be fairly high in some situations, so here we assume a fairly
723 * pessimal value. It's a tradeoff between extra memory fetches (if we
724 * set this value too high, the FIFO will fetch frequently to stay full)
725 * and power consumption (set it too low to save power and we might see
726 * FIFO underruns and display "flicker").
727 *
728 * A value of 5us seems to be a good balance; safe for very low end
729 * platforms but not overly aggressive on lower latency configs.
730 */
731 static const int latency_ns = 5000;
732
733 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736 uint32_t dsparb = I915_READ(DSPARB);
737 int size;
738
739 size = dsparb & 0x7f;
740 if (plane)
741 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
742
743 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
744 plane ? "B" : "A", size);
745
746 return size;
747 }
748
749 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
750 {
751 struct drm_i915_private *dev_priv = dev->dev_private;
752 uint32_t dsparb = I915_READ(DSPARB);
753 int size;
754
755 size = dsparb & 0x1ff;
756 if (plane)
757 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
758 size >>= 1; /* Convert to cachelines */
759
760 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
761 plane ? "B" : "A", size);
762
763 return size;
764 }
765
766 static int i845_get_fifo_size(struct drm_device *dev, int plane)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 uint32_t dsparb = I915_READ(DSPARB);
770 int size;
771
772 size = dsparb & 0x7f;
773 size >>= 2; /* Convert to cachelines */
774
775 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
776 plane ? "B" : "A",
777 size);
778
779 return size;
780 }
781
782 static int i830_get_fifo_size(struct drm_device *dev, int plane)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 uint32_t dsparb = I915_READ(DSPARB);
786 int size;
787
788 size = dsparb & 0x7f;
789 size >>= 1; /* Convert to cachelines */
790
791 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
792 plane ? "B" : "A", size);
793
794 return size;
795 }
796
797 /* Pineview has different values for various configs */
798 static const struct intel_watermark_params pineview_display_wm = {
799 PINEVIEW_DISPLAY_FIFO,
800 PINEVIEW_MAX_WM,
801 PINEVIEW_DFT_WM,
802 PINEVIEW_GUARD_WM,
803 PINEVIEW_FIFO_LINE_SIZE
804 };
805 static const struct intel_watermark_params pineview_display_hplloff_wm = {
806 PINEVIEW_DISPLAY_FIFO,
807 PINEVIEW_MAX_WM,
808 PINEVIEW_DFT_HPLLOFF_WM,
809 PINEVIEW_GUARD_WM,
810 PINEVIEW_FIFO_LINE_SIZE
811 };
812 static const struct intel_watermark_params pineview_cursor_wm = {
813 PINEVIEW_CURSOR_FIFO,
814 PINEVIEW_CURSOR_MAX_WM,
815 PINEVIEW_CURSOR_DFT_WM,
816 PINEVIEW_CURSOR_GUARD_WM,
817 PINEVIEW_FIFO_LINE_SIZE,
818 };
819 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
820 PINEVIEW_CURSOR_FIFO,
821 PINEVIEW_CURSOR_MAX_WM,
822 PINEVIEW_CURSOR_DFT_WM,
823 PINEVIEW_CURSOR_GUARD_WM,
824 PINEVIEW_FIFO_LINE_SIZE
825 };
826 static const struct intel_watermark_params g4x_wm_info = {
827 G4X_FIFO_SIZE,
828 G4X_MAX_WM,
829 G4X_MAX_WM,
830 2,
831 G4X_FIFO_LINE_SIZE,
832 };
833 static const struct intel_watermark_params g4x_cursor_wm_info = {
834 I965_CURSOR_FIFO,
835 I965_CURSOR_MAX_WM,
836 I965_CURSOR_DFT_WM,
837 2,
838 G4X_FIFO_LINE_SIZE,
839 };
840 static const struct intel_watermark_params valleyview_wm_info = {
841 VALLEYVIEW_FIFO_SIZE,
842 VALLEYVIEW_MAX_WM,
843 VALLEYVIEW_MAX_WM,
844 2,
845 G4X_FIFO_LINE_SIZE,
846 };
847 static const struct intel_watermark_params valleyview_cursor_wm_info = {
848 I965_CURSOR_FIFO,
849 VALLEYVIEW_CURSOR_MAX_WM,
850 I965_CURSOR_DFT_WM,
851 2,
852 G4X_FIFO_LINE_SIZE,
853 };
854 static const struct intel_watermark_params i965_cursor_wm_info = {
855 I965_CURSOR_FIFO,
856 I965_CURSOR_MAX_WM,
857 I965_CURSOR_DFT_WM,
858 2,
859 I915_FIFO_LINE_SIZE,
860 };
861 static const struct intel_watermark_params i945_wm_info = {
862 I945_FIFO_SIZE,
863 I915_MAX_WM,
864 1,
865 2,
866 I915_FIFO_LINE_SIZE
867 };
868 static const struct intel_watermark_params i915_wm_info = {
869 I915_FIFO_SIZE,
870 I915_MAX_WM,
871 1,
872 2,
873 I915_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params i855_wm_info = {
876 I855GM_FIFO_SIZE,
877 I915_MAX_WM,
878 1,
879 2,
880 I830_FIFO_LINE_SIZE
881 };
882 static const struct intel_watermark_params i830_wm_info = {
883 I830_FIFO_SIZE,
884 I915_MAX_WM,
885 1,
886 2,
887 I830_FIFO_LINE_SIZE
888 };
889
890 static const struct intel_watermark_params ironlake_display_wm_info = {
891 ILK_DISPLAY_FIFO,
892 ILK_DISPLAY_MAXWM,
893 ILK_DISPLAY_DFTWM,
894 2,
895 ILK_FIFO_LINE_SIZE
896 };
897 static const struct intel_watermark_params ironlake_cursor_wm_info = {
898 ILK_CURSOR_FIFO,
899 ILK_CURSOR_MAXWM,
900 ILK_CURSOR_DFTWM,
901 2,
902 ILK_FIFO_LINE_SIZE
903 };
904 static const struct intel_watermark_params ironlake_display_srwm_info = {
905 ILK_DISPLAY_SR_FIFO,
906 ILK_DISPLAY_MAX_SRWM,
907 ILK_DISPLAY_DFT_SRWM,
908 2,
909 ILK_FIFO_LINE_SIZE
910 };
911 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
912 ILK_CURSOR_SR_FIFO,
913 ILK_CURSOR_MAX_SRWM,
914 ILK_CURSOR_DFT_SRWM,
915 2,
916 ILK_FIFO_LINE_SIZE
917 };
918
919 static const struct intel_watermark_params sandybridge_display_wm_info = {
920 SNB_DISPLAY_FIFO,
921 SNB_DISPLAY_MAXWM,
922 SNB_DISPLAY_DFTWM,
923 2,
924 SNB_FIFO_LINE_SIZE
925 };
926 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
927 SNB_CURSOR_FIFO,
928 SNB_CURSOR_MAXWM,
929 SNB_CURSOR_DFTWM,
930 2,
931 SNB_FIFO_LINE_SIZE
932 };
933 static const struct intel_watermark_params sandybridge_display_srwm_info = {
934 SNB_DISPLAY_SR_FIFO,
935 SNB_DISPLAY_MAX_SRWM,
936 SNB_DISPLAY_DFT_SRWM,
937 2,
938 SNB_FIFO_LINE_SIZE
939 };
940 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
941 SNB_CURSOR_SR_FIFO,
942 SNB_CURSOR_MAX_SRWM,
943 SNB_CURSOR_DFT_SRWM,
944 2,
945 SNB_FIFO_LINE_SIZE
946 };
947
948
949 /**
950 * intel_calculate_wm - calculate watermark level
951 * @clock_in_khz: pixel clock
952 * @wm: chip FIFO params
953 * @pixel_size: display pixel size
954 * @latency_ns: memory latency for the platform
955 *
956 * Calculate the watermark level (the level at which the display plane will
957 * start fetching from memory again). Each chip has a different display
958 * FIFO size and allocation, so the caller needs to figure that out and pass
959 * in the correct intel_watermark_params structure.
960 *
961 * As the pixel clock runs, the FIFO will be drained at a rate that depends
962 * on the pixel size. When it reaches the watermark level, it'll start
963 * fetching FIFO line sized based chunks from memory until the FIFO fills
964 * past the watermark point. If the FIFO drains completely, a FIFO underrun
965 * will occur, and a display engine hang could result.
966 */
967 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
968 const struct intel_watermark_params *wm,
969 int fifo_size,
970 int pixel_size,
971 unsigned long latency_ns)
972 {
973 long entries_required, wm_size;
974
975 /*
976 * Note: we need to make sure we don't overflow for various clock &
977 * latency values.
978 * clocks go from a few thousand to several hundred thousand.
979 * latency is usually a few thousand
980 */
981 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
982 1000;
983 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
984
985 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
986
987 wm_size = fifo_size - (entries_required + wm->guard_size);
988
989 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
990
991 /* Don't promote wm_size to unsigned... */
992 if (wm_size > (long)wm->max_wm)
993 wm_size = wm->max_wm;
994 if (wm_size <= 0)
995 wm_size = wm->default_wm;
996 return wm_size;
997 }
998
999 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1000 {
1001 struct drm_crtc *crtc, *enabled = NULL;
1002
1003 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1004 if (intel_crtc_active(crtc)) {
1005 if (enabled)
1006 return NULL;
1007 enabled = crtc;
1008 }
1009 }
1010
1011 return enabled;
1012 }
1013
1014 static void pineview_update_wm(struct drm_device *dev)
1015 {
1016 struct drm_i915_private *dev_priv = dev->dev_private;
1017 struct drm_crtc *crtc;
1018 const struct cxsr_latency *latency;
1019 u32 reg;
1020 unsigned long wm;
1021
1022 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1023 dev_priv->fsb_freq, dev_priv->mem_freq);
1024 if (!latency) {
1025 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1026 pineview_disable_cxsr(dev);
1027 return;
1028 }
1029
1030 crtc = single_enabled_crtc(dev);
1031 if (crtc) {
1032 int clock = crtc->mode.clock;
1033 int pixel_size = crtc->fb->bits_per_pixel / 8;
1034
1035 /* Display SR */
1036 wm = intel_calculate_wm(clock, &pineview_display_wm,
1037 pineview_display_wm.fifo_size,
1038 pixel_size, latency->display_sr);
1039 reg = I915_READ(DSPFW1);
1040 reg &= ~DSPFW_SR_MASK;
1041 reg |= wm << DSPFW_SR_SHIFT;
1042 I915_WRITE(DSPFW1, reg);
1043 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1044
1045 /* cursor SR */
1046 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1047 pineview_display_wm.fifo_size,
1048 pixel_size, latency->cursor_sr);
1049 reg = I915_READ(DSPFW3);
1050 reg &= ~DSPFW_CURSOR_SR_MASK;
1051 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1052 I915_WRITE(DSPFW3, reg);
1053
1054 /* Display HPLL off SR */
1055 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1056 pineview_display_hplloff_wm.fifo_size,
1057 pixel_size, latency->display_hpll_disable);
1058 reg = I915_READ(DSPFW3);
1059 reg &= ~DSPFW_HPLL_SR_MASK;
1060 reg |= wm & DSPFW_HPLL_SR_MASK;
1061 I915_WRITE(DSPFW3, reg);
1062
1063 /* cursor HPLL off SR */
1064 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1065 pineview_display_hplloff_wm.fifo_size,
1066 pixel_size, latency->cursor_hpll_disable);
1067 reg = I915_READ(DSPFW3);
1068 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1069 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1070 I915_WRITE(DSPFW3, reg);
1071 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1072
1073 /* activate cxsr */
1074 I915_WRITE(DSPFW3,
1075 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1076 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1077 } else {
1078 pineview_disable_cxsr(dev);
1079 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1080 }
1081 }
1082
1083 static bool g4x_compute_wm0(struct drm_device *dev,
1084 int plane,
1085 const struct intel_watermark_params *display,
1086 int display_latency_ns,
1087 const struct intel_watermark_params *cursor,
1088 int cursor_latency_ns,
1089 int *plane_wm,
1090 int *cursor_wm)
1091 {
1092 struct drm_crtc *crtc;
1093 int htotal, hdisplay, clock, pixel_size;
1094 int line_time_us, line_count;
1095 int entries, tlb_miss;
1096
1097 crtc = intel_get_crtc_for_plane(dev, plane);
1098 if (!intel_crtc_active(crtc)) {
1099 *cursor_wm = cursor->guard_size;
1100 *plane_wm = display->guard_size;
1101 return false;
1102 }
1103
1104 htotal = crtc->mode.htotal;
1105 hdisplay = crtc->mode.hdisplay;
1106 clock = crtc->mode.clock;
1107 pixel_size = crtc->fb->bits_per_pixel / 8;
1108
1109 /* Use the small buffer method to calculate plane watermark */
1110 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1111 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1112 if (tlb_miss > 0)
1113 entries += tlb_miss;
1114 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1115 *plane_wm = entries + display->guard_size;
1116 if (*plane_wm > (int)display->max_wm)
1117 *plane_wm = display->max_wm;
1118
1119 /* Use the large buffer method to calculate cursor watermark */
1120 line_time_us = ((htotal * 1000) / clock);
1121 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1122 entries = line_count * 64 * pixel_size;
1123 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1124 if (tlb_miss > 0)
1125 entries += tlb_miss;
1126 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1127 *cursor_wm = entries + cursor->guard_size;
1128 if (*cursor_wm > (int)cursor->max_wm)
1129 *cursor_wm = (int)cursor->max_wm;
1130
1131 return true;
1132 }
1133
1134 /*
1135 * Check the wm result.
1136 *
1137 * If any calculated watermark values is larger than the maximum value that
1138 * can be programmed into the associated watermark register, that watermark
1139 * must be disabled.
1140 */
1141 static bool g4x_check_srwm(struct drm_device *dev,
1142 int display_wm, int cursor_wm,
1143 const struct intel_watermark_params *display,
1144 const struct intel_watermark_params *cursor)
1145 {
1146 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1147 display_wm, cursor_wm);
1148
1149 if (display_wm > display->max_wm) {
1150 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1151 display_wm, display->max_wm);
1152 return false;
1153 }
1154
1155 if (cursor_wm > cursor->max_wm) {
1156 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1157 cursor_wm, cursor->max_wm);
1158 return false;
1159 }
1160
1161 if (!(display_wm || cursor_wm)) {
1162 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1163 return false;
1164 }
1165
1166 return true;
1167 }
1168
1169 static bool g4x_compute_srwm(struct drm_device *dev,
1170 int plane,
1171 int latency_ns,
1172 const struct intel_watermark_params *display,
1173 const struct intel_watermark_params *cursor,
1174 int *display_wm, int *cursor_wm)
1175 {
1176 struct drm_crtc *crtc;
1177 int hdisplay, htotal, pixel_size, clock;
1178 unsigned long line_time_us;
1179 int line_count, line_size;
1180 int small, large;
1181 int entries;
1182
1183 if (!latency_ns) {
1184 *display_wm = *cursor_wm = 0;
1185 return false;
1186 }
1187
1188 crtc = intel_get_crtc_for_plane(dev, plane);
1189 hdisplay = crtc->mode.hdisplay;
1190 htotal = crtc->mode.htotal;
1191 clock = crtc->mode.clock;
1192 pixel_size = crtc->fb->bits_per_pixel / 8;
1193
1194 line_time_us = (htotal * 1000) / clock;
1195 line_count = (latency_ns / line_time_us + 1000) / 1000;
1196 line_size = hdisplay * pixel_size;
1197
1198 /* Use the minimum of the small and large buffer method for primary */
1199 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1200 large = line_count * line_size;
1201
1202 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1203 *display_wm = entries + display->guard_size;
1204
1205 /* calculate the self-refresh watermark for display cursor */
1206 entries = line_count * pixel_size * 64;
1207 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1208 *cursor_wm = entries + cursor->guard_size;
1209
1210 return g4x_check_srwm(dev,
1211 *display_wm, *cursor_wm,
1212 display, cursor);
1213 }
1214
1215 static bool vlv_compute_drain_latency(struct drm_device *dev,
1216 int plane,
1217 int *plane_prec_mult,
1218 int *plane_dl,
1219 int *cursor_prec_mult,
1220 int *cursor_dl)
1221 {
1222 struct drm_crtc *crtc;
1223 int clock, pixel_size;
1224 int entries;
1225
1226 crtc = intel_get_crtc_for_plane(dev, plane);
1227 if (!intel_crtc_active(crtc))
1228 return false;
1229
1230 clock = crtc->mode.clock; /* VESA DOT Clock */
1231 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1232
1233 entries = (clock / 1000) * pixel_size;
1234 *plane_prec_mult = (entries > 256) ?
1235 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1236 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1237 pixel_size);
1238
1239 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1240 *cursor_prec_mult = (entries > 256) ?
1241 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1242 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1243
1244 return true;
1245 }
1246
1247 /*
1248 * Update drain latency registers of memory arbiter
1249 *
1250 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1251 * to be programmed. Each plane has a drain latency multiplier and a drain
1252 * latency value.
1253 */
1254
1255 static void vlv_update_drain_latency(struct drm_device *dev)
1256 {
1257 struct drm_i915_private *dev_priv = dev->dev_private;
1258 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1259 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1260 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1261 either 16 or 32 */
1262
1263 /* For plane A, Cursor A */
1264 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1265 &cursor_prec_mult, &cursora_dl)) {
1266 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1267 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1268 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1270
1271 I915_WRITE(VLV_DDL1, cursora_prec |
1272 (cursora_dl << DDL_CURSORA_SHIFT) |
1273 planea_prec | planea_dl);
1274 }
1275
1276 /* For plane B, Cursor B */
1277 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1278 &cursor_prec_mult, &cursorb_dl)) {
1279 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1280 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1281 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1283
1284 I915_WRITE(VLV_DDL2, cursorb_prec |
1285 (cursorb_dl << DDL_CURSORB_SHIFT) |
1286 planeb_prec | planeb_dl);
1287 }
1288 }
1289
1290 #define single_plane_enabled(mask) is_power_of_2(mask)
1291
1292 static void valleyview_update_wm(struct drm_device *dev)
1293 {
1294 static const int sr_latency_ns = 12000;
1295 struct drm_i915_private *dev_priv = dev->dev_private;
1296 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1297 int plane_sr, cursor_sr;
1298 int ignore_plane_sr, ignore_cursor_sr;
1299 unsigned int enabled = 0;
1300
1301 vlv_update_drain_latency(dev);
1302
1303 if (g4x_compute_wm0(dev, 0,
1304 &valleyview_wm_info, latency_ns,
1305 &valleyview_cursor_wm_info, latency_ns,
1306 &planea_wm, &cursora_wm))
1307 enabled |= 1;
1308
1309 if (g4x_compute_wm0(dev, 1,
1310 &valleyview_wm_info, latency_ns,
1311 &valleyview_cursor_wm_info, latency_ns,
1312 &planeb_wm, &cursorb_wm))
1313 enabled |= 2;
1314
1315 if (single_plane_enabled(enabled) &&
1316 g4x_compute_srwm(dev, ffs(enabled) - 1,
1317 sr_latency_ns,
1318 &valleyview_wm_info,
1319 &valleyview_cursor_wm_info,
1320 &plane_sr, &ignore_cursor_sr) &&
1321 g4x_compute_srwm(dev, ffs(enabled) - 1,
1322 2*sr_latency_ns,
1323 &valleyview_wm_info,
1324 &valleyview_cursor_wm_info,
1325 &ignore_plane_sr, &cursor_sr)) {
1326 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1327 } else {
1328 I915_WRITE(FW_BLC_SELF_VLV,
1329 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1330 plane_sr = cursor_sr = 0;
1331 }
1332
1333 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1334 planea_wm, cursora_wm,
1335 planeb_wm, cursorb_wm,
1336 plane_sr, cursor_sr);
1337
1338 I915_WRITE(DSPFW1,
1339 (plane_sr << DSPFW_SR_SHIFT) |
1340 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1341 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1342 planea_wm);
1343 I915_WRITE(DSPFW2,
1344 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1345 (cursora_wm << DSPFW_CURSORA_SHIFT));
1346 I915_WRITE(DSPFW3,
1347 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1348 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1349 }
1350
1351 static void g4x_update_wm(struct drm_device *dev)
1352 {
1353 static const int sr_latency_ns = 12000;
1354 struct drm_i915_private *dev_priv = dev->dev_private;
1355 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1356 int plane_sr, cursor_sr;
1357 unsigned int enabled = 0;
1358
1359 if (g4x_compute_wm0(dev, 0,
1360 &g4x_wm_info, latency_ns,
1361 &g4x_cursor_wm_info, latency_ns,
1362 &planea_wm, &cursora_wm))
1363 enabled |= 1;
1364
1365 if (g4x_compute_wm0(dev, 1,
1366 &g4x_wm_info, latency_ns,
1367 &g4x_cursor_wm_info, latency_ns,
1368 &planeb_wm, &cursorb_wm))
1369 enabled |= 2;
1370
1371 if (single_plane_enabled(enabled) &&
1372 g4x_compute_srwm(dev, ffs(enabled) - 1,
1373 sr_latency_ns,
1374 &g4x_wm_info,
1375 &g4x_cursor_wm_info,
1376 &plane_sr, &cursor_sr)) {
1377 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1378 } else {
1379 I915_WRITE(FW_BLC_SELF,
1380 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1381 plane_sr = cursor_sr = 0;
1382 }
1383
1384 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1385 planea_wm, cursora_wm,
1386 planeb_wm, cursorb_wm,
1387 plane_sr, cursor_sr);
1388
1389 I915_WRITE(DSPFW1,
1390 (plane_sr << DSPFW_SR_SHIFT) |
1391 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1392 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1393 planea_wm);
1394 I915_WRITE(DSPFW2,
1395 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1396 (cursora_wm << DSPFW_CURSORA_SHIFT));
1397 /* HPLL off in SR has some issues on G4x... disable it */
1398 I915_WRITE(DSPFW3,
1399 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1400 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1401 }
1402
1403 static void i965_update_wm(struct drm_device *dev)
1404 {
1405 struct drm_i915_private *dev_priv = dev->dev_private;
1406 struct drm_crtc *crtc;
1407 int srwm = 1;
1408 int cursor_sr = 16;
1409
1410 /* Calc sr entries for one plane configs */
1411 crtc = single_enabled_crtc(dev);
1412 if (crtc) {
1413 /* self-refresh has much higher latency */
1414 static const int sr_latency_ns = 12000;
1415 int clock = crtc->mode.clock;
1416 int htotal = crtc->mode.htotal;
1417 int hdisplay = crtc->mode.hdisplay;
1418 int pixel_size = crtc->fb->bits_per_pixel / 8;
1419 unsigned long line_time_us;
1420 int entries;
1421
1422 line_time_us = ((htotal * 1000) / clock);
1423
1424 /* Use ns/us then divide to preserve precision */
1425 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1426 pixel_size * hdisplay;
1427 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1428 srwm = I965_FIFO_SIZE - entries;
1429 if (srwm < 0)
1430 srwm = 1;
1431 srwm &= 0x1ff;
1432 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1433 entries, srwm);
1434
1435 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1436 pixel_size * 64;
1437 entries = DIV_ROUND_UP(entries,
1438 i965_cursor_wm_info.cacheline_size);
1439 cursor_sr = i965_cursor_wm_info.fifo_size -
1440 (entries + i965_cursor_wm_info.guard_size);
1441
1442 if (cursor_sr > i965_cursor_wm_info.max_wm)
1443 cursor_sr = i965_cursor_wm_info.max_wm;
1444
1445 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1446 "cursor %d\n", srwm, cursor_sr);
1447
1448 if (IS_CRESTLINE(dev))
1449 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1450 } else {
1451 /* Turn off self refresh if both pipes are enabled */
1452 if (IS_CRESTLINE(dev))
1453 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1454 & ~FW_BLC_SELF_EN);
1455 }
1456
1457 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1458 srwm);
1459
1460 /* 965 has limitations... */
1461 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1462 (8 << 16) | (8 << 8) | (8 << 0));
1463 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1464 /* update cursor SR watermark */
1465 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1466 }
1467
1468 static void i9xx_update_wm(struct drm_device *dev)
1469 {
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 const struct intel_watermark_params *wm_info;
1472 uint32_t fwater_lo;
1473 uint32_t fwater_hi;
1474 int cwm, srwm = 1;
1475 int fifo_size;
1476 int planea_wm, planeb_wm;
1477 struct drm_crtc *crtc, *enabled = NULL;
1478
1479 if (IS_I945GM(dev))
1480 wm_info = &i945_wm_info;
1481 else if (!IS_GEN2(dev))
1482 wm_info = &i915_wm_info;
1483 else
1484 wm_info = &i855_wm_info;
1485
1486 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1487 crtc = intel_get_crtc_for_plane(dev, 0);
1488 if (intel_crtc_active(crtc)) {
1489 int cpp = crtc->fb->bits_per_pixel / 8;
1490 if (IS_GEN2(dev))
1491 cpp = 4;
1492
1493 planea_wm = intel_calculate_wm(crtc->mode.clock,
1494 wm_info, fifo_size, cpp,
1495 latency_ns);
1496 enabled = crtc;
1497 } else
1498 planea_wm = fifo_size - wm_info->guard_size;
1499
1500 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1501 crtc = intel_get_crtc_for_plane(dev, 1);
1502 if (intel_crtc_active(crtc)) {
1503 int cpp = crtc->fb->bits_per_pixel / 8;
1504 if (IS_GEN2(dev))
1505 cpp = 4;
1506
1507 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1508 wm_info, fifo_size, cpp,
1509 latency_ns);
1510 if (enabled == NULL)
1511 enabled = crtc;
1512 else
1513 enabled = NULL;
1514 } else
1515 planeb_wm = fifo_size - wm_info->guard_size;
1516
1517 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1518
1519 /*
1520 * Overlay gets an aggressive default since video jitter is bad.
1521 */
1522 cwm = 2;
1523
1524 /* Play safe and disable self-refresh before adjusting watermarks. */
1525 if (IS_I945G(dev) || IS_I945GM(dev))
1526 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1527 else if (IS_I915GM(dev))
1528 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1529
1530 /* Calc sr entries for one plane configs */
1531 if (HAS_FW_BLC(dev) && enabled) {
1532 /* self-refresh has much higher latency */
1533 static const int sr_latency_ns = 6000;
1534 int clock = enabled->mode.clock;
1535 int htotal = enabled->mode.htotal;
1536 int hdisplay = enabled->mode.hdisplay;
1537 int pixel_size = enabled->fb->bits_per_pixel / 8;
1538 unsigned long line_time_us;
1539 int entries;
1540
1541 line_time_us = (htotal * 1000) / clock;
1542
1543 /* Use ns/us then divide to preserve precision */
1544 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1545 pixel_size * hdisplay;
1546 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1547 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1548 srwm = wm_info->fifo_size - entries;
1549 if (srwm < 0)
1550 srwm = 1;
1551
1552 if (IS_I945G(dev) || IS_I945GM(dev))
1553 I915_WRITE(FW_BLC_SELF,
1554 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1555 else if (IS_I915GM(dev))
1556 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1557 }
1558
1559 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1560 planea_wm, planeb_wm, cwm, srwm);
1561
1562 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1563 fwater_hi = (cwm & 0x1f);
1564
1565 /* Set request length to 8 cachelines per fetch */
1566 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1567 fwater_hi = fwater_hi | (1 << 8);
1568
1569 I915_WRITE(FW_BLC, fwater_lo);
1570 I915_WRITE(FW_BLC2, fwater_hi);
1571
1572 if (HAS_FW_BLC(dev)) {
1573 if (enabled) {
1574 if (IS_I945G(dev) || IS_I945GM(dev))
1575 I915_WRITE(FW_BLC_SELF,
1576 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1577 else if (IS_I915GM(dev))
1578 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1579 DRM_DEBUG_KMS("memory self refresh enabled\n");
1580 } else
1581 DRM_DEBUG_KMS("memory self refresh disabled\n");
1582 }
1583 }
1584
1585 static void i830_update_wm(struct drm_device *dev)
1586 {
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 struct drm_crtc *crtc;
1589 uint32_t fwater_lo;
1590 int planea_wm;
1591
1592 crtc = single_enabled_crtc(dev);
1593 if (crtc == NULL)
1594 return;
1595
1596 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1597 dev_priv->display.get_fifo_size(dev, 0),
1598 4, latency_ns);
1599 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1600 fwater_lo |= (3<<8) | planea_wm;
1601
1602 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1603
1604 I915_WRITE(FW_BLC, fwater_lo);
1605 }
1606
1607 #define ILK_LP0_PLANE_LATENCY 700
1608 #define ILK_LP0_CURSOR_LATENCY 1300
1609
1610 /*
1611 * Check the wm result.
1612 *
1613 * If any calculated watermark values is larger than the maximum value that
1614 * can be programmed into the associated watermark register, that watermark
1615 * must be disabled.
1616 */
1617 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1618 int fbc_wm, int display_wm, int cursor_wm,
1619 const struct intel_watermark_params *display,
1620 const struct intel_watermark_params *cursor)
1621 {
1622 struct drm_i915_private *dev_priv = dev->dev_private;
1623
1624 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1625 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1626
1627 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1628 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1629 fbc_wm, SNB_FBC_MAX_SRWM, level);
1630
1631 /* fbc has it's own way to disable FBC WM */
1632 I915_WRITE(DISP_ARB_CTL,
1633 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1634 return false;
1635 }
1636
1637 if (display_wm > display->max_wm) {
1638 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1639 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1640 return false;
1641 }
1642
1643 if (cursor_wm > cursor->max_wm) {
1644 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1645 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1646 return false;
1647 }
1648
1649 if (!(fbc_wm || display_wm || cursor_wm)) {
1650 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1651 return false;
1652 }
1653
1654 return true;
1655 }
1656
1657 /*
1658 * Compute watermark values of WM[1-3],
1659 */
1660 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1661 int latency_ns,
1662 const struct intel_watermark_params *display,
1663 const struct intel_watermark_params *cursor,
1664 int *fbc_wm, int *display_wm, int *cursor_wm)
1665 {
1666 struct drm_crtc *crtc;
1667 unsigned long line_time_us;
1668 int hdisplay, htotal, pixel_size, clock;
1669 int line_count, line_size;
1670 int small, large;
1671 int entries;
1672
1673 if (!latency_ns) {
1674 *fbc_wm = *display_wm = *cursor_wm = 0;
1675 return false;
1676 }
1677
1678 crtc = intel_get_crtc_for_plane(dev, plane);
1679 hdisplay = crtc->mode.hdisplay;
1680 htotal = crtc->mode.htotal;
1681 clock = crtc->mode.clock;
1682 pixel_size = crtc->fb->bits_per_pixel / 8;
1683
1684 line_time_us = (htotal * 1000) / clock;
1685 line_count = (latency_ns / line_time_us + 1000) / 1000;
1686 line_size = hdisplay * pixel_size;
1687
1688 /* Use the minimum of the small and large buffer method for primary */
1689 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1690 large = line_count * line_size;
1691
1692 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1693 *display_wm = entries + display->guard_size;
1694
1695 /*
1696 * Spec says:
1697 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1698 */
1699 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1700
1701 /* calculate the self-refresh watermark for display cursor */
1702 entries = line_count * pixel_size * 64;
1703 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1704 *cursor_wm = entries + cursor->guard_size;
1705
1706 return ironlake_check_srwm(dev, level,
1707 *fbc_wm, *display_wm, *cursor_wm,
1708 display, cursor);
1709 }
1710
1711 static void ironlake_update_wm(struct drm_device *dev)
1712 {
1713 struct drm_i915_private *dev_priv = dev->dev_private;
1714 int fbc_wm, plane_wm, cursor_wm;
1715 unsigned int enabled;
1716
1717 enabled = 0;
1718 if (g4x_compute_wm0(dev, 0,
1719 &ironlake_display_wm_info,
1720 ILK_LP0_PLANE_LATENCY,
1721 &ironlake_cursor_wm_info,
1722 ILK_LP0_CURSOR_LATENCY,
1723 &plane_wm, &cursor_wm)) {
1724 I915_WRITE(WM0_PIPEA_ILK,
1725 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1726 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1727 " plane %d, " "cursor: %d\n",
1728 plane_wm, cursor_wm);
1729 enabled |= 1;
1730 }
1731
1732 if (g4x_compute_wm0(dev, 1,
1733 &ironlake_display_wm_info,
1734 ILK_LP0_PLANE_LATENCY,
1735 &ironlake_cursor_wm_info,
1736 ILK_LP0_CURSOR_LATENCY,
1737 &plane_wm, &cursor_wm)) {
1738 I915_WRITE(WM0_PIPEB_ILK,
1739 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1740 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1741 " plane %d, cursor: %d\n",
1742 plane_wm, cursor_wm);
1743 enabled |= 2;
1744 }
1745
1746 /*
1747 * Calculate and update the self-refresh watermark only when one
1748 * display plane is used.
1749 */
1750 I915_WRITE(WM3_LP_ILK, 0);
1751 I915_WRITE(WM2_LP_ILK, 0);
1752 I915_WRITE(WM1_LP_ILK, 0);
1753
1754 if (!single_plane_enabled(enabled))
1755 return;
1756 enabled = ffs(enabled) - 1;
1757
1758 /* WM1 */
1759 if (!ironlake_compute_srwm(dev, 1, enabled,
1760 ILK_READ_WM1_LATENCY() * 500,
1761 &ironlake_display_srwm_info,
1762 &ironlake_cursor_srwm_info,
1763 &fbc_wm, &plane_wm, &cursor_wm))
1764 return;
1765
1766 I915_WRITE(WM1_LP_ILK,
1767 WM1_LP_SR_EN |
1768 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1769 (fbc_wm << WM1_LP_FBC_SHIFT) |
1770 (plane_wm << WM1_LP_SR_SHIFT) |
1771 cursor_wm);
1772
1773 /* WM2 */
1774 if (!ironlake_compute_srwm(dev, 2, enabled,
1775 ILK_READ_WM2_LATENCY() * 500,
1776 &ironlake_display_srwm_info,
1777 &ironlake_cursor_srwm_info,
1778 &fbc_wm, &plane_wm, &cursor_wm))
1779 return;
1780
1781 I915_WRITE(WM2_LP_ILK,
1782 WM2_LP_EN |
1783 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1784 (fbc_wm << WM1_LP_FBC_SHIFT) |
1785 (plane_wm << WM1_LP_SR_SHIFT) |
1786 cursor_wm);
1787
1788 /*
1789 * WM3 is unsupported on ILK, probably because we don't have latency
1790 * data for that power state
1791 */
1792 }
1793
1794 static void sandybridge_update_wm(struct drm_device *dev)
1795 {
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1798 u32 val;
1799 int fbc_wm, plane_wm, cursor_wm;
1800 unsigned int enabled;
1801
1802 enabled = 0;
1803 if (g4x_compute_wm0(dev, 0,
1804 &sandybridge_display_wm_info, latency,
1805 &sandybridge_cursor_wm_info, latency,
1806 &plane_wm, &cursor_wm)) {
1807 val = I915_READ(WM0_PIPEA_ILK);
1808 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1809 I915_WRITE(WM0_PIPEA_ILK, val |
1810 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1811 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1812 " plane %d, " "cursor: %d\n",
1813 plane_wm, cursor_wm);
1814 enabled |= 1;
1815 }
1816
1817 if (g4x_compute_wm0(dev, 1,
1818 &sandybridge_display_wm_info, latency,
1819 &sandybridge_cursor_wm_info, latency,
1820 &plane_wm, &cursor_wm)) {
1821 val = I915_READ(WM0_PIPEB_ILK);
1822 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1823 I915_WRITE(WM0_PIPEB_ILK, val |
1824 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1825 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1826 " plane %d, cursor: %d\n",
1827 plane_wm, cursor_wm);
1828 enabled |= 2;
1829 }
1830
1831 /*
1832 * Calculate and update the self-refresh watermark only when one
1833 * display plane is used.
1834 *
1835 * SNB support 3 levels of watermark.
1836 *
1837 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1838 * and disabled in the descending order
1839 *
1840 */
1841 I915_WRITE(WM3_LP_ILK, 0);
1842 I915_WRITE(WM2_LP_ILK, 0);
1843 I915_WRITE(WM1_LP_ILK, 0);
1844
1845 if (!single_plane_enabled(enabled) ||
1846 dev_priv->sprite_scaling_enabled)
1847 return;
1848 enabled = ffs(enabled) - 1;
1849
1850 /* WM1 */
1851 if (!ironlake_compute_srwm(dev, 1, enabled,
1852 SNB_READ_WM1_LATENCY() * 500,
1853 &sandybridge_display_srwm_info,
1854 &sandybridge_cursor_srwm_info,
1855 &fbc_wm, &plane_wm, &cursor_wm))
1856 return;
1857
1858 I915_WRITE(WM1_LP_ILK,
1859 WM1_LP_SR_EN |
1860 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1861 (fbc_wm << WM1_LP_FBC_SHIFT) |
1862 (plane_wm << WM1_LP_SR_SHIFT) |
1863 cursor_wm);
1864
1865 /* WM2 */
1866 if (!ironlake_compute_srwm(dev, 2, enabled,
1867 SNB_READ_WM2_LATENCY() * 500,
1868 &sandybridge_display_srwm_info,
1869 &sandybridge_cursor_srwm_info,
1870 &fbc_wm, &plane_wm, &cursor_wm))
1871 return;
1872
1873 I915_WRITE(WM2_LP_ILK,
1874 WM2_LP_EN |
1875 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1876 (fbc_wm << WM1_LP_FBC_SHIFT) |
1877 (plane_wm << WM1_LP_SR_SHIFT) |
1878 cursor_wm);
1879
1880 /* WM3 */
1881 if (!ironlake_compute_srwm(dev, 3, enabled,
1882 SNB_READ_WM3_LATENCY() * 500,
1883 &sandybridge_display_srwm_info,
1884 &sandybridge_cursor_srwm_info,
1885 &fbc_wm, &plane_wm, &cursor_wm))
1886 return;
1887
1888 I915_WRITE(WM3_LP_ILK,
1889 WM3_LP_EN |
1890 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1891 (fbc_wm << WM1_LP_FBC_SHIFT) |
1892 (plane_wm << WM1_LP_SR_SHIFT) |
1893 cursor_wm);
1894 }
1895
1896 static void ivybridge_update_wm(struct drm_device *dev)
1897 {
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1900 u32 val;
1901 int fbc_wm, plane_wm, cursor_wm;
1902 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1903 unsigned int enabled;
1904
1905 enabled = 0;
1906 if (g4x_compute_wm0(dev, 0,
1907 &sandybridge_display_wm_info, latency,
1908 &sandybridge_cursor_wm_info, latency,
1909 &plane_wm, &cursor_wm)) {
1910 val = I915_READ(WM0_PIPEA_ILK);
1911 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1912 I915_WRITE(WM0_PIPEA_ILK, val |
1913 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1914 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1915 " plane %d, " "cursor: %d\n",
1916 plane_wm, cursor_wm);
1917 enabled |= 1;
1918 }
1919
1920 if (g4x_compute_wm0(dev, 1,
1921 &sandybridge_display_wm_info, latency,
1922 &sandybridge_cursor_wm_info, latency,
1923 &plane_wm, &cursor_wm)) {
1924 val = I915_READ(WM0_PIPEB_ILK);
1925 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1926 I915_WRITE(WM0_PIPEB_ILK, val |
1927 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1928 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1929 " plane %d, cursor: %d\n",
1930 plane_wm, cursor_wm);
1931 enabled |= 2;
1932 }
1933
1934 if (g4x_compute_wm0(dev, 2,
1935 &sandybridge_display_wm_info, latency,
1936 &sandybridge_cursor_wm_info, latency,
1937 &plane_wm, &cursor_wm)) {
1938 val = I915_READ(WM0_PIPEC_IVB);
1939 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1940 I915_WRITE(WM0_PIPEC_IVB, val |
1941 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1942 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1943 " plane %d, cursor: %d\n",
1944 plane_wm, cursor_wm);
1945 enabled |= 3;
1946 }
1947
1948 /*
1949 * Calculate and update the self-refresh watermark only when one
1950 * display plane is used.
1951 *
1952 * SNB support 3 levels of watermark.
1953 *
1954 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1955 * and disabled in the descending order
1956 *
1957 */
1958 I915_WRITE(WM3_LP_ILK, 0);
1959 I915_WRITE(WM2_LP_ILK, 0);
1960 I915_WRITE(WM1_LP_ILK, 0);
1961
1962 if (!single_plane_enabled(enabled) ||
1963 dev_priv->sprite_scaling_enabled)
1964 return;
1965 enabled = ffs(enabled) - 1;
1966
1967 /* WM1 */
1968 if (!ironlake_compute_srwm(dev, 1, enabled,
1969 SNB_READ_WM1_LATENCY() * 500,
1970 &sandybridge_display_srwm_info,
1971 &sandybridge_cursor_srwm_info,
1972 &fbc_wm, &plane_wm, &cursor_wm))
1973 return;
1974
1975 I915_WRITE(WM1_LP_ILK,
1976 WM1_LP_SR_EN |
1977 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1978 (fbc_wm << WM1_LP_FBC_SHIFT) |
1979 (plane_wm << WM1_LP_SR_SHIFT) |
1980 cursor_wm);
1981
1982 /* WM2 */
1983 if (!ironlake_compute_srwm(dev, 2, enabled,
1984 SNB_READ_WM2_LATENCY() * 500,
1985 &sandybridge_display_srwm_info,
1986 &sandybridge_cursor_srwm_info,
1987 &fbc_wm, &plane_wm, &cursor_wm))
1988 return;
1989
1990 I915_WRITE(WM2_LP_ILK,
1991 WM2_LP_EN |
1992 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1993 (fbc_wm << WM1_LP_FBC_SHIFT) |
1994 (plane_wm << WM1_LP_SR_SHIFT) |
1995 cursor_wm);
1996
1997 /* WM3, note we have to correct the cursor latency */
1998 if (!ironlake_compute_srwm(dev, 3, enabled,
1999 SNB_READ_WM3_LATENCY() * 500,
2000 &sandybridge_display_srwm_info,
2001 &sandybridge_cursor_srwm_info,
2002 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2003 !ironlake_compute_srwm(dev, 3, enabled,
2004 2 * SNB_READ_WM3_LATENCY() * 500,
2005 &sandybridge_display_srwm_info,
2006 &sandybridge_cursor_srwm_info,
2007 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2008 return;
2009
2010 I915_WRITE(WM3_LP_ILK,
2011 WM3_LP_EN |
2012 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2013 (fbc_wm << WM1_LP_FBC_SHIFT) |
2014 (plane_wm << WM1_LP_SR_SHIFT) |
2015 cursor_wm);
2016 }
2017
2018 static void
2019 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2020 struct drm_display_mode *mode)
2021 {
2022 struct drm_i915_private *dev_priv = dev->dev_private;
2023 u32 temp;
2024
2025 temp = I915_READ(PIPE_WM_LINETIME(pipe));
2026 temp &= ~PIPE_WM_LINETIME_MASK;
2027
2028 /* The WM are computed with base on how long it takes to fill a single
2029 * row at the given clock rate, multiplied by 8.
2030 * */
2031 temp |= PIPE_WM_LINETIME_TIME(
2032 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2033
2034 /* IPS watermarks are only used by pipe A, and are ignored by
2035 * pipes B and C. They are calculated similarly to the common
2036 * linetime values, except that we are using CD clock frequency
2037 * in MHz instead of pixel rate for the division.
2038 *
2039 * This is a placeholder for the IPS watermark calculation code.
2040 */
2041
2042 I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2043 }
2044
2045 static bool
2046 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2047 uint32_t sprite_width, int pixel_size,
2048 const struct intel_watermark_params *display,
2049 int display_latency_ns, int *sprite_wm)
2050 {
2051 struct drm_crtc *crtc;
2052 int clock;
2053 int entries, tlb_miss;
2054
2055 crtc = intel_get_crtc_for_plane(dev, plane);
2056 if (!intel_crtc_active(crtc)) {
2057 *sprite_wm = display->guard_size;
2058 return false;
2059 }
2060
2061 clock = crtc->mode.clock;
2062
2063 /* Use the small buffer method to calculate the sprite watermark */
2064 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2065 tlb_miss = display->fifo_size*display->cacheline_size -
2066 sprite_width * 8;
2067 if (tlb_miss > 0)
2068 entries += tlb_miss;
2069 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2070 *sprite_wm = entries + display->guard_size;
2071 if (*sprite_wm > (int)display->max_wm)
2072 *sprite_wm = display->max_wm;
2073
2074 return true;
2075 }
2076
2077 static bool
2078 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2079 uint32_t sprite_width, int pixel_size,
2080 const struct intel_watermark_params *display,
2081 int latency_ns, int *sprite_wm)
2082 {
2083 struct drm_crtc *crtc;
2084 unsigned long line_time_us;
2085 int clock;
2086 int line_count, line_size;
2087 int small, large;
2088 int entries;
2089
2090 if (!latency_ns) {
2091 *sprite_wm = 0;
2092 return false;
2093 }
2094
2095 crtc = intel_get_crtc_for_plane(dev, plane);
2096 clock = crtc->mode.clock;
2097 if (!clock) {
2098 *sprite_wm = 0;
2099 return false;
2100 }
2101
2102 line_time_us = (sprite_width * 1000) / clock;
2103 if (!line_time_us) {
2104 *sprite_wm = 0;
2105 return false;
2106 }
2107
2108 line_count = (latency_ns / line_time_us + 1000) / 1000;
2109 line_size = sprite_width * pixel_size;
2110
2111 /* Use the minimum of the small and large buffer method for primary */
2112 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2113 large = line_count * line_size;
2114
2115 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2116 *sprite_wm = entries + display->guard_size;
2117
2118 return *sprite_wm > 0x3ff ? false : true;
2119 }
2120
2121 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2122 uint32_t sprite_width, int pixel_size)
2123 {
2124 struct drm_i915_private *dev_priv = dev->dev_private;
2125 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2126 u32 val;
2127 int sprite_wm, reg;
2128 int ret;
2129
2130 switch (pipe) {
2131 case 0:
2132 reg = WM0_PIPEA_ILK;
2133 break;
2134 case 1:
2135 reg = WM0_PIPEB_ILK;
2136 break;
2137 case 2:
2138 reg = WM0_PIPEC_IVB;
2139 break;
2140 default:
2141 return; /* bad pipe */
2142 }
2143
2144 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2145 &sandybridge_display_wm_info,
2146 latency, &sprite_wm);
2147 if (!ret) {
2148 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2149 pipe);
2150 return;
2151 }
2152
2153 val = I915_READ(reg);
2154 val &= ~WM0_PIPE_SPRITE_MASK;
2155 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2156 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2157
2158
2159 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2160 pixel_size,
2161 &sandybridge_display_srwm_info,
2162 SNB_READ_WM1_LATENCY() * 500,
2163 &sprite_wm);
2164 if (!ret) {
2165 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2166 pipe);
2167 return;
2168 }
2169 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2170
2171 /* Only IVB has two more LP watermarks for sprite */
2172 if (!IS_IVYBRIDGE(dev))
2173 return;
2174
2175 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2176 pixel_size,
2177 &sandybridge_display_srwm_info,
2178 SNB_READ_WM2_LATENCY() * 500,
2179 &sprite_wm);
2180 if (!ret) {
2181 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2182 pipe);
2183 return;
2184 }
2185 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2186
2187 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2188 pixel_size,
2189 &sandybridge_display_srwm_info,
2190 SNB_READ_WM3_LATENCY() * 500,
2191 &sprite_wm);
2192 if (!ret) {
2193 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2194 pipe);
2195 return;
2196 }
2197 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2198 }
2199
2200 /**
2201 * intel_update_watermarks - update FIFO watermark values based on current modes
2202 *
2203 * Calculate watermark values for the various WM regs based on current mode
2204 * and plane configuration.
2205 *
2206 * There are several cases to deal with here:
2207 * - normal (i.e. non-self-refresh)
2208 * - self-refresh (SR) mode
2209 * - lines are large relative to FIFO size (buffer can hold up to 2)
2210 * - lines are small relative to FIFO size (buffer can hold more than 2
2211 * lines), so need to account for TLB latency
2212 *
2213 * The normal calculation is:
2214 * watermark = dotclock * bytes per pixel * latency
2215 * where latency is platform & configuration dependent (we assume pessimal
2216 * values here).
2217 *
2218 * The SR calculation is:
2219 * watermark = (trunc(latency/line time)+1) * surface width *
2220 * bytes per pixel
2221 * where
2222 * line time = htotal / dotclock
2223 * surface width = hdisplay for normal plane and 64 for cursor
2224 * and latency is assumed to be high, as above.
2225 *
2226 * The final value programmed to the register should always be rounded up,
2227 * and include an extra 2 entries to account for clock crossings.
2228 *
2229 * We don't use the sprite, so we can ignore that. And on Crestline we have
2230 * to set the non-SR watermarks to 8.
2231 */
2232 void intel_update_watermarks(struct drm_device *dev)
2233 {
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235
2236 if (dev_priv->display.update_wm)
2237 dev_priv->display.update_wm(dev);
2238 }
2239
2240 void intel_update_linetime_watermarks(struct drm_device *dev,
2241 int pipe, struct drm_display_mode *mode)
2242 {
2243 struct drm_i915_private *dev_priv = dev->dev_private;
2244
2245 if (dev_priv->display.update_linetime_wm)
2246 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2247 }
2248
2249 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2250 uint32_t sprite_width, int pixel_size)
2251 {
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253
2254 if (dev_priv->display.update_sprite_wm)
2255 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2256 pixel_size);
2257 }
2258
2259 static struct drm_i915_gem_object *
2260 intel_alloc_context_page(struct drm_device *dev)
2261 {
2262 struct drm_i915_gem_object *ctx;
2263 int ret;
2264
2265 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2266
2267 ctx = i915_gem_alloc_object(dev, 4096);
2268 if (!ctx) {
2269 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2270 return NULL;
2271 }
2272
2273 ret = i915_gem_object_pin(ctx, 4096, true, false);
2274 if (ret) {
2275 DRM_ERROR("failed to pin power context: %d\n", ret);
2276 goto err_unref;
2277 }
2278
2279 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2280 if (ret) {
2281 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2282 goto err_unpin;
2283 }
2284
2285 return ctx;
2286
2287 err_unpin:
2288 i915_gem_object_unpin(ctx);
2289 err_unref:
2290 drm_gem_object_unreference(&ctx->base);
2291 mutex_unlock(&dev->struct_mutex);
2292 return NULL;
2293 }
2294
2295 /**
2296 * Lock protecting IPS related data structures
2297 */
2298 DEFINE_SPINLOCK(mchdev_lock);
2299
2300 /* Global for IPS driver to get at the current i915 device. Protected by
2301 * mchdev_lock. */
2302 static struct drm_i915_private *i915_mch_dev;
2303
2304 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2305 {
2306 struct drm_i915_private *dev_priv = dev->dev_private;
2307 u16 rgvswctl;
2308
2309 assert_spin_locked(&mchdev_lock);
2310
2311 rgvswctl = I915_READ16(MEMSWCTL);
2312 if (rgvswctl & MEMCTL_CMD_STS) {
2313 DRM_DEBUG("gpu busy, RCS change rejected\n");
2314 return false; /* still busy with another command */
2315 }
2316
2317 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2318 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2319 I915_WRITE16(MEMSWCTL, rgvswctl);
2320 POSTING_READ16(MEMSWCTL);
2321
2322 rgvswctl |= MEMCTL_CMD_STS;
2323 I915_WRITE16(MEMSWCTL, rgvswctl);
2324
2325 return true;
2326 }
2327
2328 static void ironlake_enable_drps(struct drm_device *dev)
2329 {
2330 struct drm_i915_private *dev_priv = dev->dev_private;
2331 u32 rgvmodectl = I915_READ(MEMMODECTL);
2332 u8 fmax, fmin, fstart, vstart;
2333
2334 spin_lock_irq(&mchdev_lock);
2335
2336 /* Enable temp reporting */
2337 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2338 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2339
2340 /* 100ms RC evaluation intervals */
2341 I915_WRITE(RCUPEI, 100000);
2342 I915_WRITE(RCDNEI, 100000);
2343
2344 /* Set max/min thresholds to 90ms and 80ms respectively */
2345 I915_WRITE(RCBMAXAVG, 90000);
2346 I915_WRITE(RCBMINAVG, 80000);
2347
2348 I915_WRITE(MEMIHYST, 1);
2349
2350 /* Set up min, max, and cur for interrupt handling */
2351 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2352 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2353 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2354 MEMMODE_FSTART_SHIFT;
2355
2356 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2357 PXVFREQ_PX_SHIFT;
2358
2359 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2360 dev_priv->ips.fstart = fstart;
2361
2362 dev_priv->ips.max_delay = fstart;
2363 dev_priv->ips.min_delay = fmin;
2364 dev_priv->ips.cur_delay = fstart;
2365
2366 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2367 fmax, fmin, fstart);
2368
2369 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2370
2371 /*
2372 * Interrupts will be enabled in ironlake_irq_postinstall
2373 */
2374
2375 I915_WRITE(VIDSTART, vstart);
2376 POSTING_READ(VIDSTART);
2377
2378 rgvmodectl |= MEMMODE_SWMODE_EN;
2379 I915_WRITE(MEMMODECTL, rgvmodectl);
2380
2381 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2382 DRM_ERROR("stuck trying to change perf mode\n");
2383 mdelay(1);
2384
2385 ironlake_set_drps(dev, fstart);
2386
2387 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2388 I915_READ(0x112e0);
2389 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2390 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2391 getrawmonotonic(&dev_priv->ips.last_time2);
2392
2393 spin_unlock_irq(&mchdev_lock);
2394 }
2395
2396 static void ironlake_disable_drps(struct drm_device *dev)
2397 {
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 u16 rgvswctl;
2400
2401 spin_lock_irq(&mchdev_lock);
2402
2403 rgvswctl = I915_READ16(MEMSWCTL);
2404
2405 /* Ack interrupts, disable EFC interrupt */
2406 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2407 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2408 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2409 I915_WRITE(DEIIR, DE_PCU_EVENT);
2410 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2411
2412 /* Go back to the starting frequency */
2413 ironlake_set_drps(dev, dev_priv->ips.fstart);
2414 mdelay(1);
2415 rgvswctl |= MEMCTL_CMD_STS;
2416 I915_WRITE(MEMSWCTL, rgvswctl);
2417 mdelay(1);
2418
2419 spin_unlock_irq(&mchdev_lock);
2420 }
2421
2422 /* There's a funny hw issue where the hw returns all 0 when reading from
2423 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2424 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2425 * all limits and the gpu stuck at whatever frequency it is at atm).
2426 */
2427 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2428 {
2429 u32 limits;
2430
2431 limits = 0;
2432
2433 if (*val >= dev_priv->rps.max_delay)
2434 *val = dev_priv->rps.max_delay;
2435 limits |= dev_priv->rps.max_delay << 24;
2436
2437 /* Only set the down limit when we've reached the lowest level to avoid
2438 * getting more interrupts, otherwise leave this clear. This prevents a
2439 * race in the hw when coming out of rc6: There's a tiny window where
2440 * the hw runs at the minimal clock before selecting the desired
2441 * frequency, if the down threshold expires in that window we will not
2442 * receive a down interrupt. */
2443 if (*val <= dev_priv->rps.min_delay) {
2444 *val = dev_priv->rps.min_delay;
2445 limits |= dev_priv->rps.min_delay << 16;
2446 }
2447
2448 return limits;
2449 }
2450
2451 void gen6_set_rps(struct drm_device *dev, u8 val)
2452 {
2453 struct drm_i915_private *dev_priv = dev->dev_private;
2454 u32 limits = gen6_rps_limits(dev_priv, &val);
2455
2456 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2457 WARN_ON(val > dev_priv->rps.max_delay);
2458 WARN_ON(val < dev_priv->rps.min_delay);
2459
2460 if (val == dev_priv->rps.cur_delay)
2461 return;
2462
2463 I915_WRITE(GEN6_RPNSWREQ,
2464 GEN6_FREQUENCY(val) |
2465 GEN6_OFFSET(0) |
2466 GEN6_AGGRESSIVE_TURBO);
2467
2468 /* Make sure we continue to get interrupts
2469 * until we hit the minimum or maximum frequencies.
2470 */
2471 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2472
2473 POSTING_READ(GEN6_RPNSWREQ);
2474
2475 dev_priv->rps.cur_delay = val;
2476
2477 trace_intel_gpu_freq_change(val * 50);
2478 }
2479
2480 static void gen6_disable_rps(struct drm_device *dev)
2481 {
2482 struct drm_i915_private *dev_priv = dev->dev_private;
2483
2484 I915_WRITE(GEN6_RC_CONTROL, 0);
2485 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2486 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2487 I915_WRITE(GEN6_PMIER, 0);
2488 /* Complete PM interrupt masking here doesn't race with the rps work
2489 * item again unmasking PM interrupts because that is using a different
2490 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2491 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2492
2493 spin_lock_irq(&dev_priv->rps.lock);
2494 dev_priv->rps.pm_iir = 0;
2495 spin_unlock_irq(&dev_priv->rps.lock);
2496
2497 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2498 }
2499
2500 int intel_enable_rc6(const struct drm_device *dev)
2501 {
2502 /* Respect the kernel parameter if it is set */
2503 if (i915_enable_rc6 >= 0)
2504 return i915_enable_rc6;
2505
2506 /* Disable RC6 on Ironlake */
2507 if (INTEL_INFO(dev)->gen == 5)
2508 return 0;
2509
2510 if (IS_HASWELL(dev)) {
2511 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2512 return INTEL_RC6_ENABLE;
2513 }
2514
2515 /* snb/ivb have more than one rc6 state. */
2516 if (INTEL_INFO(dev)->gen == 6) {
2517 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2518 return INTEL_RC6_ENABLE;
2519 }
2520
2521 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2522 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2523 }
2524
2525 static void gen6_enable_rps(struct drm_device *dev)
2526 {
2527 struct drm_i915_private *dev_priv = dev->dev_private;
2528 struct intel_ring_buffer *ring;
2529 u32 rp_state_cap;
2530 u32 gt_perf_status;
2531 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2532 u32 gtfifodbg;
2533 int rc6_mode;
2534 int i, ret;
2535
2536 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2537
2538 /* Here begins a magic sequence of register writes to enable
2539 * auto-downclocking.
2540 *
2541 * Perhaps there might be some value in exposing these to
2542 * userspace...
2543 */
2544 I915_WRITE(GEN6_RC_STATE, 0);
2545
2546 /* Clear the DBG now so we don't confuse earlier errors */
2547 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2548 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2549 I915_WRITE(GTFIFODBG, gtfifodbg);
2550 }
2551
2552 gen6_gt_force_wake_get(dev_priv);
2553
2554 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2555 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2556
2557 /* In units of 100MHz */
2558 dev_priv->rps.max_delay = rp_state_cap & 0xff;
2559 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2560 dev_priv->rps.cur_delay = 0;
2561
2562 /* disable the counters and set deterministic thresholds */
2563 I915_WRITE(GEN6_RC_CONTROL, 0);
2564
2565 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2566 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2567 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2568 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2569 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2570
2571 for_each_ring(ring, dev_priv, i)
2572 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2573
2574 I915_WRITE(GEN6_RC_SLEEP, 0);
2575 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2576 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2577 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2578 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2579
2580 /* Check if we are enabling RC6 */
2581 rc6_mode = intel_enable_rc6(dev_priv->dev);
2582 if (rc6_mode & INTEL_RC6_ENABLE)
2583 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2584
2585 /* We don't use those on Haswell */
2586 if (!IS_HASWELL(dev)) {
2587 if (rc6_mode & INTEL_RC6p_ENABLE)
2588 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2589
2590 if (rc6_mode & INTEL_RC6pp_ENABLE)
2591 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2592 }
2593
2594 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2595 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2596 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2597 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2598
2599 I915_WRITE(GEN6_RC_CONTROL,
2600 rc6_mask |
2601 GEN6_RC_CTL_EI_MODE(1) |
2602 GEN6_RC_CTL_HW_ENABLE);
2603
2604 I915_WRITE(GEN6_RPNSWREQ,
2605 GEN6_FREQUENCY(10) |
2606 GEN6_OFFSET(0) |
2607 GEN6_AGGRESSIVE_TURBO);
2608 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2609 GEN6_FREQUENCY(12));
2610
2611 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2612 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2613 dev_priv->rps.max_delay << 24 |
2614 dev_priv->rps.min_delay << 16);
2615
2616 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2617 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2618 I915_WRITE(GEN6_RP_UP_EI, 66000);
2619 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2620
2621 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2622 I915_WRITE(GEN6_RP_CONTROL,
2623 GEN6_RP_MEDIA_TURBO |
2624 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2625 GEN6_RP_MEDIA_IS_GFX |
2626 GEN6_RP_ENABLE |
2627 GEN6_RP_UP_BUSY_AVG |
2628 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2629
2630 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2631 if (!ret) {
2632 pcu_mbox = 0;
2633 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2634 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2635 dev_priv->rps.max_delay = pcu_mbox & 0xff;
2636 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2637 }
2638 } else {
2639 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2640 }
2641
2642 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2643
2644 /* requires MSI enabled */
2645 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2646 spin_lock_irq(&dev_priv->rps.lock);
2647 WARN_ON(dev_priv->rps.pm_iir != 0);
2648 I915_WRITE(GEN6_PMIMR, 0);
2649 spin_unlock_irq(&dev_priv->rps.lock);
2650 /* enable all PM interrupts */
2651 I915_WRITE(GEN6_PMINTRMSK, 0);
2652
2653 rc6vids = 0;
2654 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2655 if (IS_GEN6(dev) && ret) {
2656 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2657 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2658 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2659 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2660 rc6vids &= 0xffff00;
2661 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2662 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2663 if (ret)
2664 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2665 }
2666
2667 gen6_gt_force_wake_put(dev_priv);
2668 }
2669
2670 static void gen6_update_ring_freq(struct drm_device *dev)
2671 {
2672 struct drm_i915_private *dev_priv = dev->dev_private;
2673 int min_freq = 15;
2674 int gpu_freq;
2675 unsigned int ia_freq, max_ia_freq;
2676 int scaling_factor = 180;
2677
2678 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2679
2680 max_ia_freq = cpufreq_quick_get_max(0);
2681 /*
2682 * Default to measured freq if none found, PCU will ensure we don't go
2683 * over
2684 */
2685 if (!max_ia_freq)
2686 max_ia_freq = tsc_khz;
2687
2688 /* Convert from kHz to MHz */
2689 max_ia_freq /= 1000;
2690
2691 /*
2692 * For each potential GPU frequency, load a ring frequency we'd like
2693 * to use for memory access. We do this by specifying the IA frequency
2694 * the PCU should use as a reference to determine the ring frequency.
2695 */
2696 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2697 gpu_freq--) {
2698 int diff = dev_priv->rps.max_delay - gpu_freq;
2699
2700 /*
2701 * For GPU frequencies less than 750MHz, just use the lowest
2702 * ring freq.
2703 */
2704 if (gpu_freq < min_freq)
2705 ia_freq = 800;
2706 else
2707 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2708 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2709 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2710
2711 sandybridge_pcode_write(dev_priv,
2712 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2713 ia_freq | gpu_freq);
2714 }
2715 }
2716
2717 void ironlake_teardown_rc6(struct drm_device *dev)
2718 {
2719 struct drm_i915_private *dev_priv = dev->dev_private;
2720
2721 if (dev_priv->ips.renderctx) {
2722 i915_gem_object_unpin(dev_priv->ips.renderctx);
2723 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2724 dev_priv->ips.renderctx = NULL;
2725 }
2726
2727 if (dev_priv->ips.pwrctx) {
2728 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2729 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2730 dev_priv->ips.pwrctx = NULL;
2731 }
2732 }
2733
2734 static void ironlake_disable_rc6(struct drm_device *dev)
2735 {
2736 struct drm_i915_private *dev_priv = dev->dev_private;
2737
2738 if (I915_READ(PWRCTXA)) {
2739 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2740 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2741 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2742 50);
2743
2744 I915_WRITE(PWRCTXA, 0);
2745 POSTING_READ(PWRCTXA);
2746
2747 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2748 POSTING_READ(RSTDBYCTL);
2749 }
2750 }
2751
2752 static int ironlake_setup_rc6(struct drm_device *dev)
2753 {
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755
2756 if (dev_priv->ips.renderctx == NULL)
2757 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2758 if (!dev_priv->ips.renderctx)
2759 return -ENOMEM;
2760
2761 if (dev_priv->ips.pwrctx == NULL)
2762 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2763 if (!dev_priv->ips.pwrctx) {
2764 ironlake_teardown_rc6(dev);
2765 return -ENOMEM;
2766 }
2767
2768 return 0;
2769 }
2770
2771 static void ironlake_enable_rc6(struct drm_device *dev)
2772 {
2773 struct drm_i915_private *dev_priv = dev->dev_private;
2774 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2775 bool was_interruptible;
2776 int ret;
2777
2778 /* rc6 disabled by default due to repeated reports of hanging during
2779 * boot and resume.
2780 */
2781 if (!intel_enable_rc6(dev))
2782 return;
2783
2784 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2785
2786 ret = ironlake_setup_rc6(dev);
2787 if (ret)
2788 return;
2789
2790 was_interruptible = dev_priv->mm.interruptible;
2791 dev_priv->mm.interruptible = false;
2792
2793 /*
2794 * GPU can automatically power down the render unit if given a page
2795 * to save state.
2796 */
2797 ret = intel_ring_begin(ring, 6);
2798 if (ret) {
2799 ironlake_teardown_rc6(dev);
2800 dev_priv->mm.interruptible = was_interruptible;
2801 return;
2802 }
2803
2804 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2805 intel_ring_emit(ring, MI_SET_CONTEXT);
2806 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2807 MI_MM_SPACE_GTT |
2808 MI_SAVE_EXT_STATE_EN |
2809 MI_RESTORE_EXT_STATE_EN |
2810 MI_RESTORE_INHIBIT);
2811 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2812 intel_ring_emit(ring, MI_NOOP);
2813 intel_ring_emit(ring, MI_FLUSH);
2814 intel_ring_advance(ring);
2815
2816 /*
2817 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2818 * does an implicit flush, combined with MI_FLUSH above, it should be
2819 * safe to assume that renderctx is valid
2820 */
2821 ret = intel_ring_idle(ring);
2822 dev_priv->mm.interruptible = was_interruptible;
2823 if (ret) {
2824 DRM_ERROR("failed to enable ironlake power power savings\n");
2825 ironlake_teardown_rc6(dev);
2826 return;
2827 }
2828
2829 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2830 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2831 }
2832
2833 static unsigned long intel_pxfreq(u32 vidfreq)
2834 {
2835 unsigned long freq;
2836 int div = (vidfreq & 0x3f0000) >> 16;
2837 int post = (vidfreq & 0x3000) >> 12;
2838 int pre = (vidfreq & 0x7);
2839
2840 if (!pre)
2841 return 0;
2842
2843 freq = ((div * 133333) / ((1<<post) * pre));
2844
2845 return freq;
2846 }
2847
2848 static const struct cparams {
2849 u16 i;
2850 u16 t;
2851 u16 m;
2852 u16 c;
2853 } cparams[] = {
2854 { 1, 1333, 301, 28664 },
2855 { 1, 1066, 294, 24460 },
2856 { 1, 800, 294, 25192 },
2857 { 0, 1333, 276, 27605 },
2858 { 0, 1066, 276, 27605 },
2859 { 0, 800, 231, 23784 },
2860 };
2861
2862 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2863 {
2864 u64 total_count, diff, ret;
2865 u32 count1, count2, count3, m = 0, c = 0;
2866 unsigned long now = jiffies_to_msecs(jiffies), diff1;
2867 int i;
2868
2869 assert_spin_locked(&mchdev_lock);
2870
2871 diff1 = now - dev_priv->ips.last_time1;
2872
2873 /* Prevent division-by-zero if we are asking too fast.
2874 * Also, we don't get interesting results if we are polling
2875 * faster than once in 10ms, so just return the saved value
2876 * in such cases.
2877 */
2878 if (diff1 <= 10)
2879 return dev_priv->ips.chipset_power;
2880
2881 count1 = I915_READ(DMIEC);
2882 count2 = I915_READ(DDREC);
2883 count3 = I915_READ(CSIEC);
2884
2885 total_count = count1 + count2 + count3;
2886
2887 /* FIXME: handle per-counter overflow */
2888 if (total_count < dev_priv->ips.last_count1) {
2889 diff = ~0UL - dev_priv->ips.last_count1;
2890 diff += total_count;
2891 } else {
2892 diff = total_count - dev_priv->ips.last_count1;
2893 }
2894
2895 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2896 if (cparams[i].i == dev_priv->ips.c_m &&
2897 cparams[i].t == dev_priv->ips.r_t) {
2898 m = cparams[i].m;
2899 c = cparams[i].c;
2900 break;
2901 }
2902 }
2903
2904 diff = div_u64(diff, diff1);
2905 ret = ((m * diff) + c);
2906 ret = div_u64(ret, 10);
2907
2908 dev_priv->ips.last_count1 = total_count;
2909 dev_priv->ips.last_time1 = now;
2910
2911 dev_priv->ips.chipset_power = ret;
2912
2913 return ret;
2914 }
2915
2916 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2917 {
2918 unsigned long val;
2919
2920 if (dev_priv->info->gen != 5)
2921 return 0;
2922
2923 spin_lock_irq(&mchdev_lock);
2924
2925 val = __i915_chipset_val(dev_priv);
2926
2927 spin_unlock_irq(&mchdev_lock);
2928
2929 return val;
2930 }
2931
2932 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2933 {
2934 unsigned long m, x, b;
2935 u32 tsfs;
2936
2937 tsfs = I915_READ(TSFS);
2938
2939 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2940 x = I915_READ8(TR1);
2941
2942 b = tsfs & TSFS_INTR_MASK;
2943
2944 return ((m * x) / 127) - b;
2945 }
2946
2947 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2948 {
2949 static const struct v_table {
2950 u16 vd; /* in .1 mil */
2951 u16 vm; /* in .1 mil */
2952 } v_table[] = {
2953 { 0, 0, },
2954 { 375, 0, },
2955 { 500, 0, },
2956 { 625, 0, },
2957 { 750, 0, },
2958 { 875, 0, },
2959 { 1000, 0, },
2960 { 1125, 0, },
2961 { 4125, 3000, },
2962 { 4125, 3000, },
2963 { 4125, 3000, },
2964 { 4125, 3000, },
2965 { 4125, 3000, },
2966 { 4125, 3000, },
2967 { 4125, 3000, },
2968 { 4125, 3000, },
2969 { 4125, 3000, },
2970 { 4125, 3000, },
2971 { 4125, 3000, },
2972 { 4125, 3000, },
2973 { 4125, 3000, },
2974 { 4125, 3000, },
2975 { 4125, 3000, },
2976 { 4125, 3000, },
2977 { 4125, 3000, },
2978 { 4125, 3000, },
2979 { 4125, 3000, },
2980 { 4125, 3000, },
2981 { 4125, 3000, },
2982 { 4125, 3000, },
2983 { 4125, 3000, },
2984 { 4125, 3000, },
2985 { 4250, 3125, },
2986 { 4375, 3250, },
2987 { 4500, 3375, },
2988 { 4625, 3500, },
2989 { 4750, 3625, },
2990 { 4875, 3750, },
2991 { 5000, 3875, },
2992 { 5125, 4000, },
2993 { 5250, 4125, },
2994 { 5375, 4250, },
2995 { 5500, 4375, },
2996 { 5625, 4500, },
2997 { 5750, 4625, },
2998 { 5875, 4750, },
2999 { 6000, 4875, },
3000 { 6125, 5000, },
3001 { 6250, 5125, },
3002 { 6375, 5250, },
3003 { 6500, 5375, },
3004 { 6625, 5500, },
3005 { 6750, 5625, },
3006 { 6875, 5750, },
3007 { 7000, 5875, },
3008 { 7125, 6000, },
3009 { 7250, 6125, },
3010 { 7375, 6250, },
3011 { 7500, 6375, },
3012 { 7625, 6500, },
3013 { 7750, 6625, },
3014 { 7875, 6750, },
3015 { 8000, 6875, },
3016 { 8125, 7000, },
3017 { 8250, 7125, },
3018 { 8375, 7250, },
3019 { 8500, 7375, },
3020 { 8625, 7500, },
3021 { 8750, 7625, },
3022 { 8875, 7750, },
3023 { 9000, 7875, },
3024 { 9125, 8000, },
3025 { 9250, 8125, },
3026 { 9375, 8250, },
3027 { 9500, 8375, },
3028 { 9625, 8500, },
3029 { 9750, 8625, },
3030 { 9875, 8750, },
3031 { 10000, 8875, },
3032 { 10125, 9000, },
3033 { 10250, 9125, },
3034 { 10375, 9250, },
3035 { 10500, 9375, },
3036 { 10625, 9500, },
3037 { 10750, 9625, },
3038 { 10875, 9750, },
3039 { 11000, 9875, },
3040 { 11125, 10000, },
3041 { 11250, 10125, },
3042 { 11375, 10250, },
3043 { 11500, 10375, },
3044 { 11625, 10500, },
3045 { 11750, 10625, },
3046 { 11875, 10750, },
3047 { 12000, 10875, },
3048 { 12125, 11000, },
3049 { 12250, 11125, },
3050 { 12375, 11250, },
3051 { 12500, 11375, },
3052 { 12625, 11500, },
3053 { 12750, 11625, },
3054 { 12875, 11750, },
3055 { 13000, 11875, },
3056 { 13125, 12000, },
3057 { 13250, 12125, },
3058 { 13375, 12250, },
3059 { 13500, 12375, },
3060 { 13625, 12500, },
3061 { 13750, 12625, },
3062 { 13875, 12750, },
3063 { 14000, 12875, },
3064 { 14125, 13000, },
3065 { 14250, 13125, },
3066 { 14375, 13250, },
3067 { 14500, 13375, },
3068 { 14625, 13500, },
3069 { 14750, 13625, },
3070 { 14875, 13750, },
3071 { 15000, 13875, },
3072 { 15125, 14000, },
3073 { 15250, 14125, },
3074 { 15375, 14250, },
3075 { 15500, 14375, },
3076 { 15625, 14500, },
3077 { 15750, 14625, },
3078 { 15875, 14750, },
3079 { 16000, 14875, },
3080 { 16125, 15000, },
3081 };
3082 if (dev_priv->info->is_mobile)
3083 return v_table[pxvid].vm;
3084 else
3085 return v_table[pxvid].vd;
3086 }
3087
3088 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3089 {
3090 struct timespec now, diff1;
3091 u64 diff;
3092 unsigned long diffms;
3093 u32 count;
3094
3095 assert_spin_locked(&mchdev_lock);
3096
3097 getrawmonotonic(&now);
3098 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3099
3100 /* Don't divide by 0 */
3101 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3102 if (!diffms)
3103 return;
3104
3105 count = I915_READ(GFXEC);
3106
3107 if (count < dev_priv->ips.last_count2) {
3108 diff = ~0UL - dev_priv->ips.last_count2;
3109 diff += count;
3110 } else {
3111 diff = count - dev_priv->ips.last_count2;
3112 }
3113
3114 dev_priv->ips.last_count2 = count;
3115 dev_priv->ips.last_time2 = now;
3116
3117 /* More magic constants... */
3118 diff = diff * 1181;
3119 diff = div_u64(diff, diffms * 10);
3120 dev_priv->ips.gfx_power = diff;
3121 }
3122
3123 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3124 {
3125 if (dev_priv->info->gen != 5)
3126 return;
3127
3128 spin_lock_irq(&mchdev_lock);
3129
3130 __i915_update_gfx_val(dev_priv);
3131
3132 spin_unlock_irq(&mchdev_lock);
3133 }
3134
3135 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3136 {
3137 unsigned long t, corr, state1, corr2, state2;
3138 u32 pxvid, ext_v;
3139
3140 assert_spin_locked(&mchdev_lock);
3141
3142 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3143 pxvid = (pxvid >> 24) & 0x7f;
3144 ext_v = pvid_to_extvid(dev_priv, pxvid);
3145
3146 state1 = ext_v;
3147
3148 t = i915_mch_val(dev_priv);
3149
3150 /* Revel in the empirically derived constants */
3151
3152 /* Correction factor in 1/100000 units */
3153 if (t > 80)
3154 corr = ((t * 2349) + 135940);
3155 else if (t >= 50)
3156 corr = ((t * 964) + 29317);
3157 else /* < 50 */
3158 corr = ((t * 301) + 1004);
3159
3160 corr = corr * ((150142 * state1) / 10000 - 78642);
3161 corr /= 100000;
3162 corr2 = (corr * dev_priv->ips.corr);
3163
3164 state2 = (corr2 * state1) / 10000;
3165 state2 /= 100; /* convert to mW */
3166
3167 __i915_update_gfx_val(dev_priv);
3168
3169 return dev_priv->ips.gfx_power + state2;
3170 }
3171
3172 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3173 {
3174 unsigned long val;
3175
3176 if (dev_priv->info->gen != 5)
3177 return 0;
3178
3179 spin_lock_irq(&mchdev_lock);
3180
3181 val = __i915_gfx_val(dev_priv);
3182
3183 spin_unlock_irq(&mchdev_lock);
3184
3185 return val;
3186 }
3187
3188 /**
3189 * i915_read_mch_val - return value for IPS use
3190 *
3191 * Calculate and return a value for the IPS driver to use when deciding whether
3192 * we have thermal and power headroom to increase CPU or GPU power budget.
3193 */
3194 unsigned long i915_read_mch_val(void)
3195 {
3196 struct drm_i915_private *dev_priv;
3197 unsigned long chipset_val, graphics_val, ret = 0;
3198
3199 spin_lock_irq(&mchdev_lock);
3200 if (!i915_mch_dev)
3201 goto out_unlock;
3202 dev_priv = i915_mch_dev;
3203
3204 chipset_val = __i915_chipset_val(dev_priv);
3205 graphics_val = __i915_gfx_val(dev_priv);
3206
3207 ret = chipset_val + graphics_val;
3208
3209 out_unlock:
3210 spin_unlock_irq(&mchdev_lock);
3211
3212 return ret;
3213 }
3214 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3215
3216 /**
3217 * i915_gpu_raise - raise GPU frequency limit
3218 *
3219 * Raise the limit; IPS indicates we have thermal headroom.
3220 */
3221 bool i915_gpu_raise(void)
3222 {
3223 struct drm_i915_private *dev_priv;
3224 bool ret = true;
3225
3226 spin_lock_irq(&mchdev_lock);
3227 if (!i915_mch_dev) {
3228 ret = false;
3229 goto out_unlock;
3230 }
3231 dev_priv = i915_mch_dev;
3232
3233 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3234 dev_priv->ips.max_delay--;
3235
3236 out_unlock:
3237 spin_unlock_irq(&mchdev_lock);
3238
3239 return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3242
3243 /**
3244 * i915_gpu_lower - lower GPU frequency limit
3245 *
3246 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3247 * frequency maximum.
3248 */
3249 bool i915_gpu_lower(void)
3250 {
3251 struct drm_i915_private *dev_priv;
3252 bool ret = true;
3253
3254 spin_lock_irq(&mchdev_lock);
3255 if (!i915_mch_dev) {
3256 ret = false;
3257 goto out_unlock;
3258 }
3259 dev_priv = i915_mch_dev;
3260
3261 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3262 dev_priv->ips.max_delay++;
3263
3264 out_unlock:
3265 spin_unlock_irq(&mchdev_lock);
3266
3267 return ret;
3268 }
3269 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3270
3271 /**
3272 * i915_gpu_busy - indicate GPU business to IPS
3273 *
3274 * Tell the IPS driver whether or not the GPU is busy.
3275 */
3276 bool i915_gpu_busy(void)
3277 {
3278 struct drm_i915_private *dev_priv;
3279 struct intel_ring_buffer *ring;
3280 bool ret = false;
3281 int i;
3282
3283 spin_lock_irq(&mchdev_lock);
3284 if (!i915_mch_dev)
3285 goto out_unlock;
3286 dev_priv = i915_mch_dev;
3287
3288 for_each_ring(ring, dev_priv, i)
3289 ret |= !list_empty(&ring->request_list);
3290
3291 out_unlock:
3292 spin_unlock_irq(&mchdev_lock);
3293
3294 return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3297
3298 /**
3299 * i915_gpu_turbo_disable - disable graphics turbo
3300 *
3301 * Disable graphics turbo by resetting the max frequency and setting the
3302 * current frequency to the default.
3303 */
3304 bool i915_gpu_turbo_disable(void)
3305 {
3306 struct drm_i915_private *dev_priv;
3307 bool ret = true;
3308
3309 spin_lock_irq(&mchdev_lock);
3310 if (!i915_mch_dev) {
3311 ret = false;
3312 goto out_unlock;
3313 }
3314 dev_priv = i915_mch_dev;
3315
3316 dev_priv->ips.max_delay = dev_priv->ips.fstart;
3317
3318 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3319 ret = false;
3320
3321 out_unlock:
3322 spin_unlock_irq(&mchdev_lock);
3323
3324 return ret;
3325 }
3326 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3327
3328 /**
3329 * Tells the intel_ips driver that the i915 driver is now loaded, if
3330 * IPS got loaded first.
3331 *
3332 * This awkward dance is so that neither module has to depend on the
3333 * other in order for IPS to do the appropriate communication of
3334 * GPU turbo limits to i915.
3335 */
3336 static void
3337 ips_ping_for_i915_load(void)
3338 {
3339 #ifndef __NetBSD__ /* XXX whattakludge for Linux module mania */
3340 void (*link)(void);
3341
3342 link = symbol_get(ips_link_to_i915_driver);
3343 if (link) {
3344 link();
3345 symbol_put(ips_link_to_i915_driver);
3346 }
3347 #endif
3348 }
3349
3350 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3351 {
3352 /* We only register the i915 ips part with intel-ips once everything is
3353 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3354 spin_lock_irq(&mchdev_lock);
3355 i915_mch_dev = dev_priv;
3356 spin_unlock_irq(&mchdev_lock);
3357
3358 ips_ping_for_i915_load();
3359 }
3360
3361 void intel_gpu_ips_teardown(void)
3362 {
3363 spin_lock_irq(&mchdev_lock);
3364 i915_mch_dev = NULL;
3365 spin_unlock_irq(&mchdev_lock);
3366 }
3367 static void intel_init_emon(struct drm_device *dev)
3368 {
3369 struct drm_i915_private *dev_priv = dev->dev_private;
3370 u32 lcfuse;
3371 u8 pxw[16];
3372 int i;
3373
3374 /* Disable to program */
3375 I915_WRITE(ECR, 0);
3376 POSTING_READ(ECR);
3377
3378 /* Program energy weights for various events */
3379 I915_WRITE(SDEW, 0x15040d00);
3380 I915_WRITE(CSIEW0, 0x007f0000);
3381 I915_WRITE(CSIEW1, 0x1e220004);
3382 I915_WRITE(CSIEW2, 0x04000004);
3383
3384 for (i = 0; i < 5; i++)
3385 I915_WRITE(PEW + (i * 4), 0);
3386 for (i = 0; i < 3; i++)
3387 I915_WRITE(DEW + (i * 4), 0);
3388
3389 /* Program P-state weights to account for frequency power adjustment */
3390 for (i = 0; i < 16; i++) {
3391 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3392 unsigned long freq = intel_pxfreq(pxvidfreq);
3393 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3394 PXVFREQ_PX_SHIFT;
3395 unsigned long val;
3396
3397 val = vid * vid;
3398 val *= (freq / 1000);
3399 val *= 255;
3400 val /= (127*127*900);
3401 if (val > 0xff)
3402 DRM_ERROR("bad pxval: %ld\n", val);
3403 pxw[i] = val;
3404 }
3405 /* Render standby states get 0 weight */
3406 pxw[14] = 0;
3407 pxw[15] = 0;
3408
3409 for (i = 0; i < 4; i++) {
3410 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3411 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3412 I915_WRITE(PXW + (i * 4), val);
3413 }
3414
3415 /* Adjust magic regs to magic values (more experimental results) */
3416 I915_WRITE(OGW0, 0);
3417 I915_WRITE(OGW1, 0);
3418 I915_WRITE(EG0, 0x00007f00);
3419 I915_WRITE(EG1, 0x0000000e);
3420 I915_WRITE(EG2, 0x000e0000);
3421 I915_WRITE(EG3, 0x68000300);
3422 I915_WRITE(EG4, 0x42000000);
3423 I915_WRITE(EG5, 0x00140031);
3424 I915_WRITE(EG6, 0);
3425 I915_WRITE(EG7, 0);
3426
3427 for (i = 0; i < 8; i++)
3428 I915_WRITE(PXWL + (i * 4), 0);
3429
3430 /* Enable PMON + select events */
3431 I915_WRITE(ECR, 0x80000019);
3432
3433 lcfuse = I915_READ(LCFUSE02);
3434
3435 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3436 }
3437
3438 void intel_disable_gt_powersave(struct drm_device *dev)
3439 {
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441
3442 if (IS_IRONLAKE_M(dev)) {
3443 ironlake_disable_drps(dev);
3444 ironlake_disable_rc6(dev);
3445 } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3446 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3447 mutex_lock(&dev_priv->rps.hw_lock);
3448 gen6_disable_rps(dev);
3449 mutex_unlock(&dev_priv->rps.hw_lock);
3450 }
3451 }
3452
3453 static void intel_gen6_powersave_work(struct work_struct *work)
3454 {
3455 struct drm_i915_private *dev_priv =
3456 container_of(work, struct drm_i915_private,
3457 rps.delayed_resume_work.work);
3458 struct drm_device *dev = dev_priv->dev;
3459
3460 mutex_lock(&dev_priv->rps.hw_lock);
3461 gen6_enable_rps(dev);
3462 gen6_update_ring_freq(dev);
3463 mutex_unlock(&dev_priv->rps.hw_lock);
3464 }
3465
3466 void intel_enable_gt_powersave(struct drm_device *dev)
3467 {
3468 struct drm_i915_private *dev_priv = dev->dev_private;
3469
3470 if (IS_IRONLAKE_M(dev)) {
3471 ironlake_enable_drps(dev);
3472 ironlake_enable_rc6(dev);
3473 intel_init_emon(dev);
3474 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3475 /*
3476 * PCU communication is slow and this doesn't need to be
3477 * done at any specific time, so do this out of our fast path
3478 * to make resume and init faster.
3479 */
3480 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3481 round_jiffies_up_relative(HZ));
3482 }
3483 }
3484
3485 static void ibx_init_clock_gating(struct drm_device *dev)
3486 {
3487 struct drm_i915_private *dev_priv = dev->dev_private;
3488
3489 /*
3490 * On Ibex Peak and Cougar Point, we need to disable clock
3491 * gating for the panel power sequencer or it will fail to
3492 * start up when no ports are active.
3493 */
3494 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3495 }
3496
3497 static void ironlake_init_clock_gating(struct drm_device *dev)
3498 {
3499 struct drm_i915_private *dev_priv = dev->dev_private;
3500 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3501
3502 /* Required for FBC */
3503 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3504 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3505 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3506
3507 I915_WRITE(PCH_3DCGDIS0,
3508 MARIUNIT_CLOCK_GATE_DISABLE |
3509 SVSMUNIT_CLOCK_GATE_DISABLE);
3510 I915_WRITE(PCH_3DCGDIS1,
3511 VFMUNIT_CLOCK_GATE_DISABLE);
3512
3513 /*
3514 * According to the spec the following bits should be set in
3515 * order to enable memory self-refresh
3516 * The bit 22/21 of 0x42004
3517 * The bit 5 of 0x42020
3518 * The bit 15 of 0x45000
3519 */
3520 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3521 (I915_READ(ILK_DISPLAY_CHICKEN2) |
3522 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3523 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3524 I915_WRITE(DISP_ARB_CTL,
3525 (I915_READ(DISP_ARB_CTL) |
3526 DISP_FBC_WM_DIS));
3527 I915_WRITE(WM3_LP_ILK, 0);
3528 I915_WRITE(WM2_LP_ILK, 0);
3529 I915_WRITE(WM1_LP_ILK, 0);
3530
3531 /*
3532 * Based on the document from hardware guys the following bits
3533 * should be set unconditionally in order to enable FBC.
3534 * The bit 22 of 0x42000
3535 * The bit 22 of 0x42004
3536 * The bit 7,8,9 of 0x42020.
3537 */
3538 if (IS_IRONLAKE_M(dev)) {
3539 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3540 I915_READ(ILK_DISPLAY_CHICKEN1) |
3541 ILK_FBCQ_DIS);
3542 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3543 I915_READ(ILK_DISPLAY_CHICKEN2) |
3544 ILK_DPARB_GATE);
3545 }
3546
3547 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3548
3549 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3550 I915_READ(ILK_DISPLAY_CHICKEN2) |
3551 ILK_ELPIN_409_SELECT);
3552 I915_WRITE(_3D_CHICKEN2,
3553 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3554 _3D_CHICKEN2_WM_READ_PIPELINED);
3555
3556 /* WaDisableRenderCachePipelinedFlush */
3557 I915_WRITE(CACHE_MODE_0,
3558 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3559
3560 ibx_init_clock_gating(dev);
3561 }
3562
3563 static void cpt_init_clock_gating(struct drm_device *dev)
3564 {
3565 struct drm_i915_private *dev_priv = dev->dev_private;
3566 int pipe;
3567
3568 /*
3569 * On Ibex Peak and Cougar Point, we need to disable clock
3570 * gating for the panel power sequencer or it will fail to
3571 * start up when no ports are active.
3572 */
3573 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3574 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3575 DPLS_EDP_PPS_FIX_DIS);
3576 /* The below fixes the weird display corruption, a few pixels shifted
3577 * downward, on (only) LVDS of some HP laptops with IVY.
3578 */
3579 for_each_pipe(pipe)
3580 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
3581 /* WADP0ClockGatingDisable */
3582 for_each_pipe(pipe) {
3583 I915_WRITE(TRANS_CHICKEN1(pipe),
3584 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3585 }
3586 }
3587
3588 static void gen6_init_clock_gating(struct drm_device *dev)
3589 {
3590 struct drm_i915_private *dev_priv = dev->dev_private;
3591 int pipe;
3592 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3593
3594 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3595
3596 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3597 I915_READ(ILK_DISPLAY_CHICKEN2) |
3598 ILK_ELPIN_409_SELECT);
3599
3600 /* WaDisableHiZPlanesWhenMSAAEnabled */
3601 I915_WRITE(_3D_CHICKEN,
3602 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3603
3604 /* WaSetupGtModeTdRowDispatch */
3605 if (IS_SNB_GT1(dev))
3606 I915_WRITE(GEN6_GT_MODE,
3607 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3608
3609 I915_WRITE(WM3_LP_ILK, 0);
3610 I915_WRITE(WM2_LP_ILK, 0);
3611 I915_WRITE(WM1_LP_ILK, 0);
3612
3613 I915_WRITE(CACHE_MODE_0,
3614 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3615
3616 I915_WRITE(GEN6_UCGCTL1,
3617 I915_READ(GEN6_UCGCTL1) |
3618 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3619 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3620
3621 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3622 * gating disable must be set. Failure to set it results in
3623 * flickering pixels due to Z write ordering failures after
3624 * some amount of runtime in the Mesa "fire" demo, and Unigine
3625 * Sanctuary and Tropics, and apparently anything else with
3626 * alpha test or pixel discard.
3627 *
3628 * According to the spec, bit 11 (RCCUNIT) must also be set,
3629 * but we didn't debug actual testcases to find it out.
3630 *
3631 * Also apply WaDisableVDSUnitClockGating and
3632 * WaDisableRCPBUnitClockGating.
3633 */
3634 I915_WRITE(GEN6_UCGCTL2,
3635 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3636 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3637 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3638
3639 /* Bspec says we need to always set all mask bits. */
3640 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3641 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3642
3643 /*
3644 * According to the spec the following bits should be
3645 * set in order to enable memory self-refresh and fbc:
3646 * The bit21 and bit22 of 0x42000
3647 * The bit21 and bit22 of 0x42004
3648 * The bit5 and bit7 of 0x42020
3649 * The bit14 of 0x70180
3650 * The bit14 of 0x71180
3651 */
3652 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3653 I915_READ(ILK_DISPLAY_CHICKEN1) |
3654 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3655 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3656 I915_READ(ILK_DISPLAY_CHICKEN2) |
3657 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3658 I915_WRITE(ILK_DSPCLK_GATE_D,
3659 I915_READ(ILK_DSPCLK_GATE_D) |
3660 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
3661 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3662
3663 /* WaMbcDriverBootEnable */
3664 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3665 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3666
3667 for_each_pipe(pipe) {
3668 I915_WRITE(DSPCNTR(pipe),
3669 I915_READ(DSPCNTR(pipe)) |
3670 DISPPLANE_TRICKLE_FEED_DISABLE);
3671 intel_flush_display_plane(dev_priv, pipe);
3672 }
3673
3674 /* The default value should be 0x200 according to docs, but the two
3675 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3676 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3677 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3678
3679 cpt_init_clock_gating(dev);
3680 }
3681
3682 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3683 {
3684 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3685
3686 reg &= ~GEN7_FF_SCHED_MASK;
3687 reg |= GEN7_FF_TS_SCHED_HW;
3688 reg |= GEN7_FF_VS_SCHED_HW;
3689 reg |= GEN7_FF_DS_SCHED_HW;
3690
3691 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3692 }
3693
3694 static void lpt_init_clock_gating(struct drm_device *dev)
3695 {
3696 struct drm_i915_private *dev_priv = dev->dev_private;
3697
3698 /*
3699 * TODO: this bit should only be enabled when really needed, then
3700 * disabled when not needed anymore in order to save power.
3701 */
3702 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3703 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3704 I915_READ(SOUTH_DSPCLK_GATE_D) |
3705 PCH_LP_PARTITION_LEVEL_DISABLE);
3706 }
3707
3708 static void haswell_init_clock_gating(struct drm_device *dev)
3709 {
3710 struct drm_i915_private *dev_priv = dev->dev_private;
3711 int pipe;
3712
3713 I915_WRITE(WM3_LP_ILK, 0);
3714 I915_WRITE(WM2_LP_ILK, 0);
3715 I915_WRITE(WM1_LP_ILK, 0);
3716
3717 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3718 * This implements the WaDisableRCZUnitClockGating workaround.
3719 */
3720 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3721
3722 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3723 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3724 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3725
3726 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3727 I915_WRITE(GEN7_L3CNTLREG1,
3728 GEN7_WA_FOR_GEN7_L3_CONTROL);
3729 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3730 GEN7_WA_L3_CHICKEN_MODE);
3731
3732 /* This is required by WaCatErrorRejectionIssue */
3733 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3734 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3735 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3736
3737 for_each_pipe(pipe) {
3738 I915_WRITE(DSPCNTR(pipe),
3739 I915_READ(DSPCNTR(pipe)) |
3740 DISPPLANE_TRICKLE_FEED_DISABLE);
3741 intel_flush_display_plane(dev_priv, pipe);
3742 }
3743
3744 gen7_setup_fixed_func_scheduler(dev_priv);
3745
3746 /* WaDisable4x2SubspanOptimization */
3747 I915_WRITE(CACHE_MODE_1,
3748 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3749
3750 /* WaMbcDriverBootEnable */
3751 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3752 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3753
3754 /* XXX: This is a workaround for early silicon revisions and should be
3755 * removed later.
3756 */
3757 I915_WRITE(WM_DBG,
3758 I915_READ(WM_DBG) |
3759 WM_DBG_DISALLOW_MULTIPLE_LP |
3760 WM_DBG_DISALLOW_SPRITE |
3761 WM_DBG_DISALLOW_MAXFIFO);
3762
3763 lpt_init_clock_gating(dev);
3764 }
3765
3766 static void ivybridge_init_clock_gating(struct drm_device *dev)
3767 {
3768 struct drm_i915_private *dev_priv = dev->dev_private;
3769 int pipe;
3770 uint32_t snpcr;
3771
3772 I915_WRITE(WM3_LP_ILK, 0);
3773 I915_WRITE(WM2_LP_ILK, 0);
3774 I915_WRITE(WM1_LP_ILK, 0);
3775
3776 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3777
3778 /* WaDisableEarlyCull */
3779 I915_WRITE(_3D_CHICKEN3,
3780 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3781
3782 /* WaDisableBackToBackFlipFix */
3783 I915_WRITE(IVB_CHICKEN3,
3784 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3785 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3786
3787 /* WaDisablePSDDualDispatchEnable */
3788 if (IS_IVB_GT1(dev))
3789 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3790 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3791 else
3792 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3793 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3794
3795 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3796 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3797 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3798
3799 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3800 I915_WRITE(GEN7_L3CNTLREG1,
3801 GEN7_WA_FOR_GEN7_L3_CONTROL);
3802 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3803 GEN7_WA_L3_CHICKEN_MODE);
3804 if (IS_IVB_GT1(dev))
3805 I915_WRITE(GEN7_ROW_CHICKEN2,
3806 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3807 else
3808 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3809 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3810
3811
3812 /* WaForceL3Serialization */
3813 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3814 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3815
3816 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3817 * gating disable must be set. Failure to set it results in
3818 * flickering pixels due to Z write ordering failures after
3819 * some amount of runtime in the Mesa "fire" demo, and Unigine
3820 * Sanctuary and Tropics, and apparently anything else with
3821 * alpha test or pixel discard.
3822 *
3823 * According to the spec, bit 11 (RCCUNIT) must also be set,
3824 * but we didn't debug actual testcases to find it out.
3825 *
3826 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3827 * This implements the WaDisableRCZUnitClockGating workaround.
3828 */
3829 I915_WRITE(GEN6_UCGCTL2,
3830 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3831 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3832
3833 /* This is required by WaCatErrorRejectionIssue */
3834 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3835 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3836 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3837
3838 for_each_pipe(pipe) {
3839 I915_WRITE(DSPCNTR(pipe),
3840 I915_READ(DSPCNTR(pipe)) |
3841 DISPPLANE_TRICKLE_FEED_DISABLE);
3842 intel_flush_display_plane(dev_priv, pipe);
3843 }
3844
3845 /* WaMbcDriverBootEnable */
3846 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3847 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3848
3849 gen7_setup_fixed_func_scheduler(dev_priv);
3850
3851 /* WaDisable4x2SubspanOptimization */
3852 I915_WRITE(CACHE_MODE_1,
3853 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3854
3855 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3856 snpcr &= ~GEN6_MBC_SNPCR_MASK;
3857 snpcr |= GEN6_MBC_SNPCR_MED;
3858 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3859
3860 cpt_init_clock_gating(dev);
3861 }
3862
3863 static void valleyview_init_clock_gating(struct drm_device *dev)
3864 {
3865 struct drm_i915_private *dev_priv = dev->dev_private;
3866 int pipe;
3867
3868 I915_WRITE(WM3_LP_ILK, 0);
3869 I915_WRITE(WM2_LP_ILK, 0);
3870 I915_WRITE(WM1_LP_ILK, 0);
3871
3872 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3873
3874 /* WaDisableEarlyCull */
3875 I915_WRITE(_3D_CHICKEN3,
3876 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3877
3878 /* WaDisableBackToBackFlipFix */
3879 I915_WRITE(IVB_CHICKEN3,
3880 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3881 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3882
3883 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3884 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3885
3886 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3887 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3888 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3889
3890 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3891 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3892 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3893
3894 /* WaForceL3Serialization */
3895 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3896 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3897
3898 /* WaDisableDopClockGating */
3899 I915_WRITE(GEN7_ROW_CHICKEN2,
3900 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3901
3902 /* WaForceL3Serialization */
3903 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3904 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3905
3906 /* This is required by WaCatErrorRejectionIssue */
3907 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3908 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3909 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3910
3911 /* WaMbcDriverBootEnable */
3912 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3913 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3914
3915
3916 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3917 * gating disable must be set. Failure to set it results in
3918 * flickering pixels due to Z write ordering failures after
3919 * some amount of runtime in the Mesa "fire" demo, and Unigine
3920 * Sanctuary and Tropics, and apparently anything else with
3921 * alpha test or pixel discard.
3922 *
3923 * According to the spec, bit 11 (RCCUNIT) must also be set,
3924 * but we didn't debug actual testcases to find it out.
3925 *
3926 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3927 * This implements the WaDisableRCZUnitClockGating workaround.
3928 *
3929 * Also apply WaDisableVDSUnitClockGating and
3930 * WaDisableRCPBUnitClockGating.
3931 */
3932 I915_WRITE(GEN6_UCGCTL2,
3933 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3934 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3935 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3936 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3937 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3938
3939 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3940
3941 for_each_pipe(pipe) {
3942 I915_WRITE(DSPCNTR(pipe),
3943 I915_READ(DSPCNTR(pipe)) |
3944 DISPPLANE_TRICKLE_FEED_DISABLE);
3945 intel_flush_display_plane(dev_priv, pipe);
3946 }
3947
3948 I915_WRITE(CACHE_MODE_1,
3949 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3950
3951 /*
3952 * On ValleyView, the GUnit needs to signal the GT
3953 * when flip and other events complete. So enable
3954 * all the GUnit->GT interrupts here
3955 */
3956 I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3957 PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3958 SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3959 PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3960 PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3961 SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3962 PLANEA_FLIPDONE_INT_EN);
3963
3964 /*
3965 * WaDisableVLVClockGating_VBIIssue
3966 * Disable clock gating on th GCFG unit to prevent a delay
3967 * in the reporting of vblank events.
3968 */
3969 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3970 }
3971
3972 static void g4x_init_clock_gating(struct drm_device *dev)
3973 {
3974 struct drm_i915_private *dev_priv = dev->dev_private;
3975 uint32_t dspclk_gate;
3976
3977 I915_WRITE(RENCLK_GATE_D1, 0);
3978 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3979 GS_UNIT_CLOCK_GATE_DISABLE |
3980 CL_UNIT_CLOCK_GATE_DISABLE);
3981 I915_WRITE(RAMCLK_GATE_D, 0);
3982 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3983 OVRUNIT_CLOCK_GATE_DISABLE |
3984 OVCUNIT_CLOCK_GATE_DISABLE;
3985 if (IS_GM45(dev))
3986 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3987 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3988
3989 /* WaDisableRenderCachePipelinedFlush */
3990 I915_WRITE(CACHE_MODE_0,
3991 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3992 }
3993
3994 static void crestline_init_clock_gating(struct drm_device *dev)
3995 {
3996 struct drm_i915_private *dev_priv = dev->dev_private;
3997
3998 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3999 I915_WRITE(RENCLK_GATE_D2, 0);
4000 I915_WRITE(DSPCLK_GATE_D, 0);
4001 I915_WRITE(RAMCLK_GATE_D, 0);
4002 I915_WRITE16(DEUC, 0);
4003 }
4004
4005 static void broadwater_init_clock_gating(struct drm_device *dev)
4006 {
4007 struct drm_i915_private *dev_priv = dev->dev_private;
4008
4009 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4010 I965_RCC_CLOCK_GATE_DISABLE |
4011 I965_RCPB_CLOCK_GATE_DISABLE |
4012 I965_ISC_CLOCK_GATE_DISABLE |
4013 I965_FBC_CLOCK_GATE_DISABLE);
4014 I915_WRITE(RENCLK_GATE_D2, 0);
4015 }
4016
4017 static void gen3_init_clock_gating(struct drm_device *dev)
4018 {
4019 struct drm_i915_private *dev_priv = dev->dev_private;
4020 u32 dstate = I915_READ(D_STATE);
4021
4022 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4023 DSTATE_DOT_CLOCK_GATING;
4024 I915_WRITE(D_STATE, dstate);
4025
4026 if (IS_PINEVIEW(dev))
4027 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4028
4029 /* IIR "flip pending" means done if this bit is set */
4030 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4031 }
4032
4033 static void i85x_init_clock_gating(struct drm_device *dev)
4034 {
4035 struct drm_i915_private *dev_priv = dev->dev_private;
4036
4037 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4038 }
4039
4040 static void i830_init_clock_gating(struct drm_device *dev)
4041 {
4042 struct drm_i915_private *dev_priv = dev->dev_private;
4043
4044 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4045 }
4046
4047 void intel_init_clock_gating(struct drm_device *dev)
4048 {
4049 struct drm_i915_private *dev_priv = dev->dev_private;
4050
4051 dev_priv->display.init_clock_gating(dev);
4052 }
4053
4054 /* Starting with Haswell, we have different power wells for
4055 * different parts of the GPU. This attempts to enable them all.
4056 */
4057 void intel_init_power_wells(struct drm_device *dev)
4058 {
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 unsigned long power_wells[] = {
4061 HSW_PWR_WELL_CTL1,
4062 HSW_PWR_WELL_CTL2,
4063 HSW_PWR_WELL_CTL4
4064 };
4065 int i;
4066
4067 if (!IS_HASWELL(dev))
4068 return;
4069
4070 mutex_lock(&dev->struct_mutex);
4071
4072 for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4073 int well = I915_READ(power_wells[i]);
4074
4075 if ((well & HSW_PWR_WELL_STATE) == 0) {
4076 I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
4077 if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
4078 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4079 }
4080 }
4081
4082 mutex_unlock(&dev->struct_mutex);
4083 }
4084
4085 /* Set up chip specific power management-related functions */
4086 void intel_init_pm(struct drm_device *dev)
4087 {
4088 struct drm_i915_private *dev_priv = dev->dev_private;
4089
4090 if (I915_HAS_FBC(dev)) {
4091 if (HAS_PCH_SPLIT(dev)) {
4092 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4093 dev_priv->display.enable_fbc = ironlake_enable_fbc;
4094 dev_priv->display.disable_fbc = ironlake_disable_fbc;
4095 } else if (IS_GM45(dev)) {
4096 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4097 dev_priv->display.enable_fbc = g4x_enable_fbc;
4098 dev_priv->display.disable_fbc = g4x_disable_fbc;
4099 } else if (IS_CRESTLINE(dev)) {
4100 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4101 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4102 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4103 }
4104 /* 855GM needs testing */
4105 }
4106
4107 /* For cxsr */
4108 if (IS_PINEVIEW(dev))
4109 i915_pineview_get_mem_freq(dev);
4110 else if (IS_GEN5(dev))
4111 i915_ironlake_get_mem_freq(dev);
4112
4113 /* For FIFO watermark updates */
4114 if (HAS_PCH_SPLIT(dev)) {
4115 if (IS_GEN5(dev)) {
4116 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4117 dev_priv->display.update_wm = ironlake_update_wm;
4118 else {
4119 DRM_DEBUG_KMS("Failed to get proper latency. "
4120 "Disable CxSR\n");
4121 dev_priv->display.update_wm = NULL;
4122 }
4123 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4124 } else if (IS_GEN6(dev)) {
4125 if (SNB_READ_WM0_LATENCY()) {
4126 dev_priv->display.update_wm = sandybridge_update_wm;
4127 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4128 } else {
4129 DRM_DEBUG_KMS("Failed to read display plane latency. "
4130 "Disable CxSR\n");
4131 dev_priv->display.update_wm = NULL;
4132 }
4133 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4134 } else if (IS_IVYBRIDGE(dev)) {
4135 /* FIXME: detect B0+ stepping and use auto training */
4136 if (SNB_READ_WM0_LATENCY()) {
4137 dev_priv->display.update_wm = ivybridge_update_wm;
4138 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4139 } else {
4140 DRM_DEBUG_KMS("Failed to read display plane latency. "
4141 "Disable CxSR\n");
4142 dev_priv->display.update_wm = NULL;
4143 }
4144 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4145 } else if (IS_HASWELL(dev)) {
4146 if (SNB_READ_WM0_LATENCY()) {
4147 dev_priv->display.update_wm = sandybridge_update_wm;
4148 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4149 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4150 } else {
4151 DRM_DEBUG_KMS("Failed to read display plane latency. "
4152 "Disable CxSR\n");
4153 dev_priv->display.update_wm = NULL;
4154 }
4155 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4156 } else
4157 dev_priv->display.update_wm = NULL;
4158 } else if (IS_VALLEYVIEW(dev)) {
4159 dev_priv->display.update_wm = valleyview_update_wm;
4160 dev_priv->display.init_clock_gating =
4161 valleyview_init_clock_gating;
4162 } else if (IS_PINEVIEW(dev)) {
4163 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4164 dev_priv->is_ddr3,
4165 dev_priv->fsb_freq,
4166 dev_priv->mem_freq)) {
4167 DRM_INFO("failed to find known CxSR latency "
4168 "(found ddr%s fsb freq %d, mem freq %d), "
4169 "disabling CxSR\n",
4170 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4171 dev_priv->fsb_freq, dev_priv->mem_freq);
4172 /* Disable CxSR and never update its watermark again */
4173 pineview_disable_cxsr(dev);
4174 dev_priv->display.update_wm = NULL;
4175 } else
4176 dev_priv->display.update_wm = pineview_update_wm;
4177 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4178 } else if (IS_G4X(dev)) {
4179 dev_priv->display.update_wm = g4x_update_wm;
4180 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4181 } else if (IS_GEN4(dev)) {
4182 dev_priv->display.update_wm = i965_update_wm;
4183 if (IS_CRESTLINE(dev))
4184 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4185 else if (IS_BROADWATER(dev))
4186 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4187 } else if (IS_GEN3(dev)) {
4188 dev_priv->display.update_wm = i9xx_update_wm;
4189 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4190 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4191 } else if (IS_I865G(dev)) {
4192 dev_priv->display.update_wm = i830_update_wm;
4193 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4194 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4195 } else if (IS_I85X(dev)) {
4196 dev_priv->display.update_wm = i9xx_update_wm;
4197 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4198 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4199 } else {
4200 dev_priv->display.update_wm = i830_update_wm;
4201 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4202 if (IS_845G(dev))
4203 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4204 else
4205 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4206 }
4207 }
4208
4209 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4210 {
4211 u32 gt_thread_status_mask;
4212
4213 if (IS_HASWELL(dev_priv->dev))
4214 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4215 else
4216 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4217
4218 /* w/a for a sporadic read returning 0 by waiting for the GT
4219 * thread to wake up.
4220 */
4221 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4222 DRM_ERROR("GT thread status wait timed out\n");
4223 }
4224
4225 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4226 {
4227 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4228 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4229 }
4230
4231 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4232 {
4233 u32 forcewake_ack;
4234
4235 if (IS_HASWELL(dev_priv->dev))
4236 forcewake_ack = FORCEWAKE_ACK_HSW;
4237 else
4238 forcewake_ack = FORCEWAKE_ACK;
4239
4240 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4241 FORCEWAKE_ACK_TIMEOUT_MS))
4242 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4243
4244 I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4245 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4246
4247 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4248 FORCEWAKE_ACK_TIMEOUT_MS))
4249 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4250
4251 __gen6_gt_wait_for_thread_c0(dev_priv);
4252 }
4253
4254 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4255 {
4256 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4257 /* something from same cacheline, but !FORCEWAKE_MT */
4258 POSTING_READ(ECOBUS);
4259 }
4260
4261 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4262 {
4263 u32 forcewake_ack;
4264
4265 if (IS_HASWELL(dev_priv->dev))
4266 forcewake_ack = FORCEWAKE_ACK_HSW;
4267 else
4268 forcewake_ack = FORCEWAKE_MT_ACK;
4269
4270 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4271 FORCEWAKE_ACK_TIMEOUT_MS))
4272 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4273
4274 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4275 /* something from same cacheline, but !FORCEWAKE_MT */
4276 POSTING_READ(ECOBUS);
4277
4278 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4279 FORCEWAKE_ACK_TIMEOUT_MS))
4280 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4281
4282 __gen6_gt_wait_for_thread_c0(dev_priv);
4283 }
4284
4285 /*
4286 * Generally this is called implicitly by the register read function. However,
4287 * if some sequence requires the GT to not power down then this function should
4288 * be called at the beginning of the sequence followed by a call to
4289 * gen6_gt_force_wake_put() at the end of the sequence.
4290 */
4291 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4292 {
4293 unsigned long irqflags;
4294
4295 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4296 if (dev_priv->forcewake_count++ == 0)
4297 dev_priv->gt.force_wake_get(dev_priv);
4298 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4299 }
4300
4301 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4302 {
4303 u32 gtfifodbg;
4304 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4305 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4306 "MMIO read or write has been dropped %x\n", gtfifodbg))
4307 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4308 }
4309
4310 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4311 {
4312 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4313 /* something from same cacheline, but !FORCEWAKE */
4314 POSTING_READ(ECOBUS);
4315 gen6_gt_check_fifodbg(dev_priv);
4316 }
4317
4318 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4319 {
4320 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4321 /* something from same cacheline, but !FORCEWAKE_MT */
4322 POSTING_READ(ECOBUS);
4323 gen6_gt_check_fifodbg(dev_priv);
4324 }
4325
4326 /*
4327 * see gen6_gt_force_wake_get()
4328 */
4329 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4330 {
4331 unsigned long irqflags;
4332
4333 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4334 if (--dev_priv->forcewake_count == 0)
4335 dev_priv->gt.force_wake_put(dev_priv);
4336 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4337 }
4338
4339 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4340 {
4341 int ret = 0;
4342
4343 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4344 int loop = 500;
4345 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4346 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4347 udelay(10);
4348 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4349 }
4350 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4351 ++ret;
4352 dev_priv->gt_fifo_count = fifo;
4353 }
4354 dev_priv->gt_fifo_count--;
4355
4356 return ret;
4357 }
4358
4359 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4360 {
4361 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4362 /* something from same cacheline, but !FORCEWAKE_VLV */
4363 POSTING_READ(FORCEWAKE_ACK_VLV);
4364 }
4365
4366 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4367 {
4368 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4369 FORCEWAKE_ACK_TIMEOUT_MS))
4370 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4371
4372 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4373
4374 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4375 FORCEWAKE_ACK_TIMEOUT_MS))
4376 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4377
4378 __gen6_gt_wait_for_thread_c0(dev_priv);
4379 }
4380
4381 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4382 {
4383 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4384 /* something from same cacheline, but !FORCEWAKE_VLV */
4385 POSTING_READ(FORCEWAKE_ACK_VLV);
4386 gen6_gt_check_fifodbg(dev_priv);
4387 }
4388
4389 void intel_gt_reset(struct drm_device *dev)
4390 {
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392
4393 if (IS_VALLEYVIEW(dev)) {
4394 vlv_force_wake_reset(dev_priv);
4395 } else if (INTEL_INFO(dev)->gen >= 6) {
4396 __gen6_gt_force_wake_reset(dev_priv);
4397 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4398 __gen6_gt_force_wake_mt_reset(dev_priv);
4399 }
4400 }
4401
4402 void intel_gt_init(struct drm_device *dev)
4403 {
4404 struct drm_i915_private *dev_priv = dev->dev_private;
4405
4406 spin_lock_init(&dev_priv->gt_lock);
4407
4408 intel_gt_reset(dev);
4409
4410 if (IS_VALLEYVIEW(dev)) {
4411 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4412 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4413 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4414 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4415 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4416 } else if (IS_GEN6(dev)) {
4417 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4418 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4419 }
4420 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4421 intel_gen6_powersave_work);
4422 }
4423
4424 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4425 {
4426 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4427
4428 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4429 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4430 return -EAGAIN;
4431 }
4432
4433 I915_WRITE(GEN6_PCODE_DATA, *val);
4434 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4435
4436 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4437 500)) {
4438 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4439 return -ETIMEDOUT;
4440 }
4441
4442 *val = I915_READ(GEN6_PCODE_DATA);
4443 I915_WRITE(GEN6_PCODE_DATA, 0);
4444
4445 return 0;
4446 }
4447
4448 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4449 {
4450 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4451
4452 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4453 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4454 return -EAGAIN;
4455 }
4456
4457 I915_WRITE(GEN6_PCODE_DATA, val);
4458 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4459
4460 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4461 500)) {
4462 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4463 return -ETIMEDOUT;
4464 }
4465
4466 I915_WRITE(GEN6_PCODE_DATA, 0);
4467
4468 return 0;
4469 }
4470