intel_pm.c revision 1.1.1.1.2.4 1 /*
2 * Copyright 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov (at) intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #ifndef __NetBSD__
32 #include "../../../platform/x86/intel_ips.h"
33 #endif
34 #include <linux/module.h>
35 #include <linux/kgdb.h>
36 #include <linux/log2.h>
37 #include <linux/math64.h>
38 #include <linux/time.h>
39 #include <asm/param.h>
40
41 #define FORCEWAKE_ACK_TIMEOUT_MS 2
42
43 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
44 * framebuffer contents in-memory, aiming at reducing the required bandwidth
45 * during in-memory transfers and, therefore, reduce the power packet.
46 *
47 * The benefits of FBC are mostly visible with solid backgrounds and
48 * variation-less patterns.
49 *
50 * FBC-related functionality can be enabled by the means of the
51 * i915.i915_enable_fbc parameter
52 */
53
54 static bool intel_crtc_active(struct drm_crtc *crtc)
55 {
56 /* Be paranoid as we can arrive here with only partial
57 * state retrieved from the hardware during setup.
58 */
59 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
60 }
61
62 static void i8xx_disable_fbc(struct drm_device *dev)
63 {
64 struct drm_i915_private *dev_priv = dev->dev_private;
65 u32 fbc_ctl;
66
67 /* Disable compression */
68 fbc_ctl = I915_READ(FBC_CONTROL);
69 if ((fbc_ctl & FBC_CTL_EN) == 0)
70 return;
71
72 fbc_ctl &= ~FBC_CTL_EN;
73 I915_WRITE(FBC_CONTROL, fbc_ctl);
74
75 /* Wait for compressing bit to clear */
76 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
77 DRM_DEBUG_KMS("FBC idle timed out\n");
78 return;
79 }
80
81 DRM_DEBUG_KMS("disabled FBC\n");
82 }
83
84 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85 {
86 struct drm_device *dev = crtc->dev;
87 struct drm_i915_private *dev_priv = dev->dev_private;
88 struct drm_framebuffer *fb = crtc->fb;
89 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
90 struct drm_i915_gem_object *obj = intel_fb->obj;
91 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
92 int cfb_pitch;
93 int plane, i;
94 u32 fbc_ctl, fbc_ctl2;
95
96 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
97 if (fb->pitches[0] < cfb_pitch)
98 cfb_pitch = fb->pitches[0];
99
100 /* FBC_CTL wants 64B units */
101 cfb_pitch = (cfb_pitch / 64) - 1;
102 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
103
104 /* Clear old tags */
105 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
106 I915_WRITE(FBC_TAG + (i * 4), 0);
107
108 /* Set it up... */
109 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
110 fbc_ctl2 |= plane;
111 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
112 I915_WRITE(FBC_FENCE_OFF, crtc->y);
113
114 /* enable it... */
115 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
116 if (IS_I945GM(dev))
117 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
118 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
119 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
120 fbc_ctl |= obj->fence_reg;
121 I915_WRITE(FBC_CONTROL, fbc_ctl);
122
123 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
124 cfb_pitch, crtc->y, intel_crtc->plane);
125 }
126
127 static bool i8xx_fbc_enabled(struct drm_device *dev)
128 {
129 struct drm_i915_private *dev_priv = dev->dev_private;
130
131 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
132 }
133
134 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
135 {
136 struct drm_device *dev = crtc->dev;
137 struct drm_i915_private *dev_priv = dev->dev_private;
138 struct drm_framebuffer *fb = crtc->fb;
139 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
140 struct drm_i915_gem_object *obj = intel_fb->obj;
141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
142 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
143 unsigned long stall_watermark = 200;
144 u32 dpfc_ctl;
145
146 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
147 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
148 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
149
150 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
151 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
152 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
153 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
154
155 /* enable it... */
156 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
157
158 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
159 }
160
161 static void g4x_disable_fbc(struct drm_device *dev)
162 {
163 struct drm_i915_private *dev_priv = dev->dev_private;
164 u32 dpfc_ctl;
165
166 /* Disable compression */
167 dpfc_ctl = I915_READ(DPFC_CONTROL);
168 if (dpfc_ctl & DPFC_CTL_EN) {
169 dpfc_ctl &= ~DPFC_CTL_EN;
170 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
171
172 DRM_DEBUG_KMS("disabled FBC\n");
173 }
174 }
175
176 static bool g4x_fbc_enabled(struct drm_device *dev)
177 {
178 struct drm_i915_private *dev_priv = dev->dev_private;
179
180 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
181 }
182
183 static void sandybridge_blit_fbc_update(struct drm_device *dev)
184 {
185 struct drm_i915_private *dev_priv = dev->dev_private;
186 u32 blt_ecoskpd;
187
188 /* Make sure blitter notifies FBC of writes */
189 gen6_gt_force_wake_get(dev_priv);
190 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
191 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
192 GEN6_BLITTER_LOCK_SHIFT;
193 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
194 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
195 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
196 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
197 GEN6_BLITTER_LOCK_SHIFT);
198 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
199 POSTING_READ(GEN6_BLITTER_ECOSKPD);
200 gen6_gt_force_wake_put(dev_priv);
201 }
202
203 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
204 {
205 struct drm_device *dev = crtc->dev;
206 struct drm_i915_private *dev_priv = dev->dev_private;
207 struct drm_framebuffer *fb = crtc->fb;
208 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
209 struct drm_i915_gem_object *obj = intel_fb->obj;
210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
211 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
212 unsigned long stall_watermark = 200;
213 u32 dpfc_ctl;
214
215 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
216 dpfc_ctl &= DPFC_RESERVED;
217 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
218 /* Set persistent mode for front-buffer rendering, ala X. */
219 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
220 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
221 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
222
223 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
224 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
225 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
226 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
227 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
228 /* enable it... */
229 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
230
231 if (IS_GEN6(dev)) {
232 I915_WRITE(SNB_DPFC_CTL_SA,
233 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
234 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
235 sandybridge_blit_fbc_update(dev);
236 }
237
238 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
239 }
240
241 static void ironlake_disable_fbc(struct drm_device *dev)
242 {
243 struct drm_i915_private *dev_priv = dev->dev_private;
244 u32 dpfc_ctl;
245
246 /* Disable compression */
247 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
248 if (dpfc_ctl & DPFC_CTL_EN) {
249 dpfc_ctl &= ~DPFC_CTL_EN;
250 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
251
252 DRM_DEBUG_KMS("disabled FBC\n");
253 }
254 }
255
256 static bool ironlake_fbc_enabled(struct drm_device *dev)
257 {
258 struct drm_i915_private *dev_priv = dev->dev_private;
259
260 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
261 }
262
263 bool intel_fbc_enabled(struct drm_device *dev)
264 {
265 struct drm_i915_private *dev_priv = dev->dev_private;
266
267 if (!dev_priv->display.fbc_enabled)
268 return false;
269
270 return dev_priv->display.fbc_enabled(dev);
271 }
272
273 static void intel_fbc_work_fn(struct work_struct *__work)
274 {
275 struct intel_fbc_work *work =
276 container_of(to_delayed_work(__work),
277 struct intel_fbc_work, work);
278 struct drm_device *dev = work->crtc->dev;
279 struct drm_i915_private *dev_priv = dev->dev_private;
280
281 mutex_lock(&dev->struct_mutex);
282 if (work == dev_priv->fbc_work) {
283 /* Double check that we haven't switched fb without cancelling
284 * the prior work.
285 */
286 if (work->crtc->fb == work->fb) {
287 dev_priv->display.enable_fbc(work->crtc,
288 work->interval);
289
290 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
291 dev_priv->cfb_fb = work->crtc->fb->base.id;
292 dev_priv->cfb_y = work->crtc->y;
293 }
294
295 dev_priv->fbc_work = NULL;
296 }
297 mutex_unlock(&dev->struct_mutex);
298
299 kfree(work);
300 }
301
302 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
303 {
304 if (dev_priv->fbc_work == NULL)
305 return;
306
307 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
308
309 /* Synchronisation is provided by struct_mutex and checking of
310 * dev_priv->fbc_work, so we can perform the cancellation
311 * entirely asynchronously.
312 */
313 if (cancel_delayed_work(&dev_priv->fbc_work->work))
314 /* tasklet was killed before being run, clean up */
315 kfree(dev_priv->fbc_work);
316
317 /* Mark the work as no longer wanted so that if it does
318 * wake-up (because the work was already running and waiting
319 * for our mutex), it will discover that is no longer
320 * necessary to run.
321 */
322 dev_priv->fbc_work = NULL;
323 }
324
325 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
326 {
327 struct intel_fbc_work *work;
328 struct drm_device *dev = crtc->dev;
329 struct drm_i915_private *dev_priv = dev->dev_private;
330
331 if (!dev_priv->display.enable_fbc)
332 return;
333
334 intel_cancel_fbc_work(dev_priv);
335
336 work = kzalloc(sizeof *work, GFP_KERNEL);
337 if (work == NULL) {
338 dev_priv->display.enable_fbc(crtc, interval);
339 return;
340 }
341
342 work->crtc = crtc;
343 work->fb = crtc->fb;
344 work->interval = interval;
345 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
346
347 dev_priv->fbc_work = work;
348
349 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
350
351 /* Delay the actual enabling to let pageflipping cease and the
352 * display to settle before starting the compression. Note that
353 * this delay also serves a second purpose: it allows for a
354 * vblank to pass after disabling the FBC before we attempt
355 * to modify the control registers.
356 *
357 * A more complicated solution would involve tracking vblanks
358 * following the termination of the page-flipping sequence
359 * and indeed performing the enable as a co-routine and not
360 * waiting synchronously upon the vblank.
361 */
362 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
363 }
364
365 void intel_disable_fbc(struct drm_device *dev)
366 {
367 struct drm_i915_private *dev_priv = dev->dev_private;
368
369 intel_cancel_fbc_work(dev_priv);
370
371 if (!dev_priv->display.disable_fbc)
372 return;
373
374 dev_priv->display.disable_fbc(dev);
375 dev_priv->cfb_plane = -1;
376 }
377
378 /**
379 * intel_update_fbc - enable/disable FBC as needed
380 * @dev: the drm_device
381 *
382 * Set up the framebuffer compression hardware at mode set time. We
383 * enable it if possible:
384 * - plane A only (on pre-965)
385 * - no pixel mulitply/line duplication
386 * - no alpha buffer discard
387 * - no dual wide
388 * - framebuffer <= 2048 in width, 1536 in height
389 *
390 * We can't assume that any compression will take place (worst case),
391 * so the compressed buffer has to be the same size as the uncompressed
392 * one. It also must reside (along with the line length buffer) in
393 * stolen memory.
394 *
395 * We need to enable/disable FBC on a global basis.
396 */
397 void intel_update_fbc(struct drm_device *dev)
398 {
399 struct drm_i915_private *dev_priv = dev->dev_private;
400 struct drm_crtc *crtc = NULL, *tmp_crtc;
401 struct intel_crtc *intel_crtc;
402 struct drm_framebuffer *fb;
403 struct intel_framebuffer *intel_fb;
404 struct drm_i915_gem_object *obj;
405 int enable_fbc;
406
407 if (!i915_powersave)
408 return;
409
410 if (!I915_HAS_FBC(dev))
411 return;
412
413 /*
414 * If FBC is already on, we just have to verify that we can
415 * keep it that way...
416 * Need to disable if:
417 * - more than one pipe is active
418 * - changing FBC params (stride, fence, mode)
419 * - new fb is too large to fit in compressed buffer
420 * - going to an unsupported config (interlace, pixel multiply, etc.)
421 */
422 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
423 if (intel_crtc_active(tmp_crtc) &&
424 !to_intel_crtc(tmp_crtc)->primary_disabled) {
425 if (crtc) {
426 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
427 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
428 goto out_disable;
429 }
430 crtc = tmp_crtc;
431 }
432 }
433
434 if (!crtc || crtc->fb == NULL) {
435 DRM_DEBUG_KMS("no output, disabling\n");
436 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
437 goto out_disable;
438 }
439
440 intel_crtc = to_intel_crtc(crtc);
441 fb = crtc->fb;
442 intel_fb = to_intel_framebuffer(fb);
443 obj = intel_fb->obj;
444
445 enable_fbc = i915_enable_fbc;
446 if (enable_fbc < 0) {
447 DRM_DEBUG_KMS("fbc set to per-chip default\n");
448 enable_fbc = 1;
449 if (INTEL_INFO(dev)->gen <= 6)
450 enable_fbc = 0;
451 }
452 if (!enable_fbc) {
453 DRM_DEBUG_KMS("fbc disabled per module param\n");
454 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
455 goto out_disable;
456 }
457 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
458 DRM_DEBUG_KMS("framebuffer too large, disabling "
459 "compression\n");
460 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
461 goto out_disable;
462 }
463 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
464 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
465 DRM_DEBUG_KMS("mode incompatible with compression, "
466 "disabling\n");
467 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
468 goto out_disable;
469 }
470 if ((crtc->mode.hdisplay > 2048) ||
471 (crtc->mode.vdisplay > 1536)) {
472 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
473 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
474 goto out_disable;
475 }
476 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
477 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
478 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
479 goto out_disable;
480 }
481
482 /* The use of a CPU fence is mandatory in order to detect writes
483 * by the CPU to the scanout and trigger updates to the FBC.
484 */
485 if (obj->tiling_mode != I915_TILING_X ||
486 obj->fence_reg == I915_FENCE_REG_NONE) {
487 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
488 dev_priv->no_fbc_reason = FBC_NOT_TILED;
489 goto out_disable;
490 }
491
492 /* If the kernel debugger is active, always disable compression */
493 if (in_dbg_master())
494 goto out_disable;
495
496 /* If the scanout has not changed, don't modify the FBC settings.
497 * Note that we make the fundamental assumption that the fb->obj
498 * cannot be unpinned (and have its GTT offset and fence revoked)
499 * without first being decoupled from the scanout and FBC disabled.
500 */
501 if (dev_priv->cfb_plane == intel_crtc->plane &&
502 dev_priv->cfb_fb == fb->base.id &&
503 dev_priv->cfb_y == crtc->y)
504 return;
505
506 if (intel_fbc_enabled(dev)) {
507 /* We update FBC along two paths, after changing fb/crtc
508 * configuration (modeswitching) and after page-flipping
509 * finishes. For the latter, we know that not only did
510 * we disable the FBC at the start of the page-flip
511 * sequence, but also more than one vblank has passed.
512 *
513 * For the former case of modeswitching, it is possible
514 * to switch between two FBC valid configurations
515 * instantaneously so we do need to disable the FBC
516 * before we can modify its control registers. We also
517 * have to wait for the next vblank for that to take
518 * effect. However, since we delay enabling FBC we can
519 * assume that a vblank has passed since disabling and
520 * that we can safely alter the registers in the deferred
521 * callback.
522 *
523 * In the scenario that we go from a valid to invalid
524 * and then back to valid FBC configuration we have
525 * no strict enforcement that a vblank occurred since
526 * disabling the FBC. However, along all current pipe
527 * disabling paths we do need to wait for a vblank at
528 * some point. And we wait before enabling FBC anyway.
529 */
530 DRM_DEBUG_KMS("disabling active FBC for update\n");
531 intel_disable_fbc(dev);
532 }
533
534 intel_enable_fbc(crtc, 500);
535 return;
536
537 out_disable:
538 /* Multiple disables should be harmless */
539 if (intel_fbc_enabled(dev)) {
540 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
541 intel_disable_fbc(dev);
542 }
543 }
544
545 static void i915_pineview_get_mem_freq(struct drm_device *dev)
546 {
547 drm_i915_private_t *dev_priv = dev->dev_private;
548 u32 tmp;
549
550 tmp = I915_READ(CLKCFG);
551
552 switch (tmp & CLKCFG_FSB_MASK) {
553 case CLKCFG_FSB_533:
554 dev_priv->fsb_freq = 533; /* 133*4 */
555 break;
556 case CLKCFG_FSB_800:
557 dev_priv->fsb_freq = 800; /* 200*4 */
558 break;
559 case CLKCFG_FSB_667:
560 dev_priv->fsb_freq = 667; /* 167*4 */
561 break;
562 case CLKCFG_FSB_400:
563 dev_priv->fsb_freq = 400; /* 100*4 */
564 break;
565 }
566
567 switch (tmp & CLKCFG_MEM_MASK) {
568 case CLKCFG_MEM_533:
569 dev_priv->mem_freq = 533;
570 break;
571 case CLKCFG_MEM_667:
572 dev_priv->mem_freq = 667;
573 break;
574 case CLKCFG_MEM_800:
575 dev_priv->mem_freq = 800;
576 break;
577 }
578
579 /* detect pineview DDR3 setting */
580 tmp = I915_READ(CSHRDDR3CTL);
581 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
582 }
583
584 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
585 {
586 drm_i915_private_t *dev_priv = dev->dev_private;
587 u16 ddrpll, csipll;
588
589 ddrpll = I915_READ16(DDRMPLL1);
590 csipll = I915_READ16(CSIPLL0);
591
592 switch (ddrpll & 0xff) {
593 case 0xc:
594 dev_priv->mem_freq = 800;
595 break;
596 case 0x10:
597 dev_priv->mem_freq = 1066;
598 break;
599 case 0x14:
600 dev_priv->mem_freq = 1333;
601 break;
602 case 0x18:
603 dev_priv->mem_freq = 1600;
604 break;
605 default:
606 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
607 ddrpll & 0xff);
608 dev_priv->mem_freq = 0;
609 break;
610 }
611
612 dev_priv->ips.r_t = dev_priv->mem_freq;
613
614 switch (csipll & 0x3ff) {
615 case 0x00c:
616 dev_priv->fsb_freq = 3200;
617 break;
618 case 0x00e:
619 dev_priv->fsb_freq = 3733;
620 break;
621 case 0x010:
622 dev_priv->fsb_freq = 4266;
623 break;
624 case 0x012:
625 dev_priv->fsb_freq = 4800;
626 break;
627 case 0x014:
628 dev_priv->fsb_freq = 5333;
629 break;
630 case 0x016:
631 dev_priv->fsb_freq = 5866;
632 break;
633 case 0x018:
634 dev_priv->fsb_freq = 6400;
635 break;
636 default:
637 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
638 csipll & 0x3ff);
639 dev_priv->fsb_freq = 0;
640 break;
641 }
642
643 if (dev_priv->fsb_freq == 3200) {
644 dev_priv->ips.c_m = 0;
645 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
646 dev_priv->ips.c_m = 1;
647 } else {
648 dev_priv->ips.c_m = 2;
649 }
650 }
651
652 static const struct cxsr_latency cxsr_latency_table[] = {
653 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
654 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
655 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
656 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
657 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
658
659 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
660 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
661 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
662 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
663 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
664
665 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
666 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
667 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
668 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
669 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
670
671 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
672 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
673 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
674 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
675 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
676
677 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
678 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
679 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
680 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
681 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
682
683 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
684 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
685 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
686 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
687 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
688 };
689
690 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
691 int is_ddr3,
692 int fsb,
693 int mem)
694 {
695 const struct cxsr_latency *latency;
696 int i;
697
698 if (fsb == 0 || mem == 0)
699 return NULL;
700
701 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
702 latency = &cxsr_latency_table[i];
703 if (is_desktop == latency->is_desktop &&
704 is_ddr3 == latency->is_ddr3 &&
705 fsb == latency->fsb_freq && mem == latency->mem_freq)
706 return latency;
707 }
708
709 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
710
711 return NULL;
712 }
713
714 static void pineview_disable_cxsr(struct drm_device *dev)
715 {
716 struct drm_i915_private *dev_priv = dev->dev_private;
717
718 /* deactivate cxsr */
719 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
720 }
721
722 /*
723 * Latency for FIFO fetches is dependent on several factors:
724 * - memory configuration (speed, channels)
725 * - chipset
726 * - current MCH state
727 * It can be fairly high in some situations, so here we assume a fairly
728 * pessimal value. It's a tradeoff between extra memory fetches (if we
729 * set this value too high, the FIFO will fetch frequently to stay full)
730 * and power consumption (set it too low to save power and we might see
731 * FIFO underruns and display "flicker").
732 *
733 * A value of 5us seems to be a good balance; safe for very low end
734 * platforms but not overly aggressive on lower latency configs.
735 */
736 static const int latency_ns = 5000;
737
738 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
739 {
740 struct drm_i915_private *dev_priv = dev->dev_private;
741 uint32_t dsparb = I915_READ(DSPARB);
742 int size;
743
744 size = dsparb & 0x7f;
745 if (plane)
746 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
747
748 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
749 plane ? "B" : "A", size);
750
751 return size;
752 }
753
754 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
755 {
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 uint32_t dsparb = I915_READ(DSPARB);
758 int size;
759
760 size = dsparb & 0x1ff;
761 if (plane)
762 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
763 size >>= 1; /* Convert to cachelines */
764
765 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
766 plane ? "B" : "A", size);
767
768 return size;
769 }
770
771 static int i845_get_fifo_size(struct drm_device *dev, int plane)
772 {
773 struct drm_i915_private *dev_priv = dev->dev_private;
774 uint32_t dsparb = I915_READ(DSPARB);
775 int size;
776
777 size = dsparb & 0x7f;
778 size >>= 2; /* Convert to cachelines */
779
780 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
781 plane ? "B" : "A",
782 size);
783
784 return size;
785 }
786
787 static int i830_get_fifo_size(struct drm_device *dev, int plane)
788 {
789 struct drm_i915_private *dev_priv = dev->dev_private;
790 uint32_t dsparb = I915_READ(DSPARB);
791 int size;
792
793 size = dsparb & 0x7f;
794 size >>= 1; /* Convert to cachelines */
795
796 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
797 plane ? "B" : "A", size);
798
799 return size;
800 }
801
802 /* Pineview has different values for various configs */
803 static const struct intel_watermark_params pineview_display_wm = {
804 PINEVIEW_DISPLAY_FIFO,
805 PINEVIEW_MAX_WM,
806 PINEVIEW_DFT_WM,
807 PINEVIEW_GUARD_WM,
808 PINEVIEW_FIFO_LINE_SIZE
809 };
810 static const struct intel_watermark_params pineview_display_hplloff_wm = {
811 PINEVIEW_DISPLAY_FIFO,
812 PINEVIEW_MAX_WM,
813 PINEVIEW_DFT_HPLLOFF_WM,
814 PINEVIEW_GUARD_WM,
815 PINEVIEW_FIFO_LINE_SIZE
816 };
817 static const struct intel_watermark_params pineview_cursor_wm = {
818 PINEVIEW_CURSOR_FIFO,
819 PINEVIEW_CURSOR_MAX_WM,
820 PINEVIEW_CURSOR_DFT_WM,
821 PINEVIEW_CURSOR_GUARD_WM,
822 PINEVIEW_FIFO_LINE_SIZE,
823 };
824 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
825 PINEVIEW_CURSOR_FIFO,
826 PINEVIEW_CURSOR_MAX_WM,
827 PINEVIEW_CURSOR_DFT_WM,
828 PINEVIEW_CURSOR_GUARD_WM,
829 PINEVIEW_FIFO_LINE_SIZE
830 };
831 static const struct intel_watermark_params g4x_wm_info = {
832 G4X_FIFO_SIZE,
833 G4X_MAX_WM,
834 G4X_MAX_WM,
835 2,
836 G4X_FIFO_LINE_SIZE,
837 };
838 static const struct intel_watermark_params g4x_cursor_wm_info = {
839 I965_CURSOR_FIFO,
840 I965_CURSOR_MAX_WM,
841 I965_CURSOR_DFT_WM,
842 2,
843 G4X_FIFO_LINE_SIZE,
844 };
845 static const struct intel_watermark_params valleyview_wm_info = {
846 VALLEYVIEW_FIFO_SIZE,
847 VALLEYVIEW_MAX_WM,
848 VALLEYVIEW_MAX_WM,
849 2,
850 G4X_FIFO_LINE_SIZE,
851 };
852 static const struct intel_watermark_params valleyview_cursor_wm_info = {
853 I965_CURSOR_FIFO,
854 VALLEYVIEW_CURSOR_MAX_WM,
855 I965_CURSOR_DFT_WM,
856 2,
857 G4X_FIFO_LINE_SIZE,
858 };
859 static const struct intel_watermark_params i965_cursor_wm_info = {
860 I965_CURSOR_FIFO,
861 I965_CURSOR_MAX_WM,
862 I965_CURSOR_DFT_WM,
863 2,
864 I915_FIFO_LINE_SIZE,
865 };
866 static const struct intel_watermark_params i945_wm_info = {
867 I945_FIFO_SIZE,
868 I915_MAX_WM,
869 1,
870 2,
871 I915_FIFO_LINE_SIZE
872 };
873 static const struct intel_watermark_params i915_wm_info = {
874 I915_FIFO_SIZE,
875 I915_MAX_WM,
876 1,
877 2,
878 I915_FIFO_LINE_SIZE
879 };
880 static const struct intel_watermark_params i855_wm_info = {
881 I855GM_FIFO_SIZE,
882 I915_MAX_WM,
883 1,
884 2,
885 I830_FIFO_LINE_SIZE
886 };
887 static const struct intel_watermark_params i830_wm_info = {
888 I830_FIFO_SIZE,
889 I915_MAX_WM,
890 1,
891 2,
892 I830_FIFO_LINE_SIZE
893 };
894
895 static const struct intel_watermark_params ironlake_display_wm_info = {
896 ILK_DISPLAY_FIFO,
897 ILK_DISPLAY_MAXWM,
898 ILK_DISPLAY_DFTWM,
899 2,
900 ILK_FIFO_LINE_SIZE
901 };
902 static const struct intel_watermark_params ironlake_cursor_wm_info = {
903 ILK_CURSOR_FIFO,
904 ILK_CURSOR_MAXWM,
905 ILK_CURSOR_DFTWM,
906 2,
907 ILK_FIFO_LINE_SIZE
908 };
909 static const struct intel_watermark_params ironlake_display_srwm_info = {
910 ILK_DISPLAY_SR_FIFO,
911 ILK_DISPLAY_MAX_SRWM,
912 ILK_DISPLAY_DFT_SRWM,
913 2,
914 ILK_FIFO_LINE_SIZE
915 };
916 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
917 ILK_CURSOR_SR_FIFO,
918 ILK_CURSOR_MAX_SRWM,
919 ILK_CURSOR_DFT_SRWM,
920 2,
921 ILK_FIFO_LINE_SIZE
922 };
923
924 static const struct intel_watermark_params sandybridge_display_wm_info = {
925 SNB_DISPLAY_FIFO,
926 SNB_DISPLAY_MAXWM,
927 SNB_DISPLAY_DFTWM,
928 2,
929 SNB_FIFO_LINE_SIZE
930 };
931 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
932 SNB_CURSOR_FIFO,
933 SNB_CURSOR_MAXWM,
934 SNB_CURSOR_DFTWM,
935 2,
936 SNB_FIFO_LINE_SIZE
937 };
938 static const struct intel_watermark_params sandybridge_display_srwm_info = {
939 SNB_DISPLAY_SR_FIFO,
940 SNB_DISPLAY_MAX_SRWM,
941 SNB_DISPLAY_DFT_SRWM,
942 2,
943 SNB_FIFO_LINE_SIZE
944 };
945 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
946 SNB_CURSOR_SR_FIFO,
947 SNB_CURSOR_MAX_SRWM,
948 SNB_CURSOR_DFT_SRWM,
949 2,
950 SNB_FIFO_LINE_SIZE
951 };
952
953
954 /**
955 * intel_calculate_wm - calculate watermark level
956 * @clock_in_khz: pixel clock
957 * @wm: chip FIFO params
958 * @pixel_size: display pixel size
959 * @latency_ns: memory latency for the platform
960 *
961 * Calculate the watermark level (the level at which the display plane will
962 * start fetching from memory again). Each chip has a different display
963 * FIFO size and allocation, so the caller needs to figure that out and pass
964 * in the correct intel_watermark_params structure.
965 *
966 * As the pixel clock runs, the FIFO will be drained at a rate that depends
967 * on the pixel size. When it reaches the watermark level, it'll start
968 * fetching FIFO line sized based chunks from memory until the FIFO fills
969 * past the watermark point. If the FIFO drains completely, a FIFO underrun
970 * will occur, and a display engine hang could result.
971 */
972 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
973 const struct intel_watermark_params *wm,
974 int fifo_size,
975 int pixel_size,
976 unsigned long latency_ns)
977 {
978 long entries_required, wm_size;
979
980 /*
981 * Note: we need to make sure we don't overflow for various clock &
982 * latency values.
983 * clocks go from a few thousand to several hundred thousand.
984 * latency is usually a few thousand
985 */
986 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
987 1000;
988 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
989
990 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
991
992 wm_size = fifo_size - (entries_required + wm->guard_size);
993
994 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
995
996 /* Don't promote wm_size to unsigned... */
997 if (wm_size > (long)wm->max_wm)
998 wm_size = wm->max_wm;
999 if (wm_size <= 0)
1000 wm_size = wm->default_wm;
1001 return wm_size;
1002 }
1003
1004 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1005 {
1006 struct drm_crtc *crtc, *enabled = NULL;
1007
1008 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1009 if (intel_crtc_active(crtc)) {
1010 if (enabled)
1011 return NULL;
1012 enabled = crtc;
1013 }
1014 }
1015
1016 return enabled;
1017 }
1018
1019 static void pineview_update_wm(struct drm_device *dev)
1020 {
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 struct drm_crtc *crtc;
1023 const struct cxsr_latency *latency;
1024 u32 reg;
1025 unsigned long wm;
1026
1027 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1028 dev_priv->fsb_freq, dev_priv->mem_freq);
1029 if (!latency) {
1030 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1031 pineview_disable_cxsr(dev);
1032 return;
1033 }
1034
1035 crtc = single_enabled_crtc(dev);
1036 if (crtc) {
1037 int clock = crtc->mode.clock;
1038 int pixel_size = crtc->fb->bits_per_pixel / 8;
1039
1040 /* Display SR */
1041 wm = intel_calculate_wm(clock, &pineview_display_wm,
1042 pineview_display_wm.fifo_size,
1043 pixel_size, latency->display_sr);
1044 reg = I915_READ(DSPFW1);
1045 reg &= ~DSPFW_SR_MASK;
1046 reg |= wm << DSPFW_SR_SHIFT;
1047 I915_WRITE(DSPFW1, reg);
1048 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1049
1050 /* cursor SR */
1051 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1052 pineview_display_wm.fifo_size,
1053 pixel_size, latency->cursor_sr);
1054 reg = I915_READ(DSPFW3);
1055 reg &= ~DSPFW_CURSOR_SR_MASK;
1056 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1057 I915_WRITE(DSPFW3, reg);
1058
1059 /* Display HPLL off SR */
1060 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1061 pineview_display_hplloff_wm.fifo_size,
1062 pixel_size, latency->display_hpll_disable);
1063 reg = I915_READ(DSPFW3);
1064 reg &= ~DSPFW_HPLL_SR_MASK;
1065 reg |= wm & DSPFW_HPLL_SR_MASK;
1066 I915_WRITE(DSPFW3, reg);
1067
1068 /* cursor HPLL off SR */
1069 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1070 pineview_display_hplloff_wm.fifo_size,
1071 pixel_size, latency->cursor_hpll_disable);
1072 reg = I915_READ(DSPFW3);
1073 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1074 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1075 I915_WRITE(DSPFW3, reg);
1076 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1077
1078 /* activate cxsr */
1079 I915_WRITE(DSPFW3,
1080 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1081 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1082 } else {
1083 pineview_disable_cxsr(dev);
1084 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1085 }
1086 }
1087
1088 static bool g4x_compute_wm0(struct drm_device *dev,
1089 int plane,
1090 const struct intel_watermark_params *display,
1091 int display_latency_ns,
1092 const struct intel_watermark_params *cursor,
1093 int cursor_latency_ns,
1094 int *plane_wm,
1095 int *cursor_wm)
1096 {
1097 struct drm_crtc *crtc;
1098 int htotal, hdisplay, clock, pixel_size;
1099 int line_time_us, line_count;
1100 int entries, tlb_miss;
1101
1102 crtc = intel_get_crtc_for_plane(dev, plane);
1103 if (!intel_crtc_active(crtc)) {
1104 *cursor_wm = cursor->guard_size;
1105 *plane_wm = display->guard_size;
1106 return false;
1107 }
1108
1109 htotal = crtc->mode.htotal;
1110 hdisplay = crtc->mode.hdisplay;
1111 clock = crtc->mode.clock;
1112 pixel_size = crtc->fb->bits_per_pixel / 8;
1113
1114 /* Use the small buffer method to calculate plane watermark */
1115 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1116 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1117 if (tlb_miss > 0)
1118 entries += tlb_miss;
1119 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1120 *plane_wm = entries + display->guard_size;
1121 if (*plane_wm > (int)display->max_wm)
1122 *plane_wm = display->max_wm;
1123
1124 /* Use the large buffer method to calculate cursor watermark */
1125 line_time_us = ((htotal * 1000) / clock);
1126 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1127 entries = line_count * 64 * pixel_size;
1128 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1129 if (tlb_miss > 0)
1130 entries += tlb_miss;
1131 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1132 *cursor_wm = entries + cursor->guard_size;
1133 if (*cursor_wm > (int)cursor->max_wm)
1134 *cursor_wm = (int)cursor->max_wm;
1135
1136 return true;
1137 }
1138
1139 /*
1140 * Check the wm result.
1141 *
1142 * If any calculated watermark values is larger than the maximum value that
1143 * can be programmed into the associated watermark register, that watermark
1144 * must be disabled.
1145 */
1146 static bool g4x_check_srwm(struct drm_device *dev,
1147 int display_wm, int cursor_wm,
1148 const struct intel_watermark_params *display,
1149 const struct intel_watermark_params *cursor)
1150 {
1151 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1152 display_wm, cursor_wm);
1153
1154 if (display_wm > display->max_wm) {
1155 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1156 display_wm, display->max_wm);
1157 return false;
1158 }
1159
1160 if (cursor_wm > cursor->max_wm) {
1161 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1162 cursor_wm, cursor->max_wm);
1163 return false;
1164 }
1165
1166 if (!(display_wm || cursor_wm)) {
1167 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1168 return false;
1169 }
1170
1171 return true;
1172 }
1173
1174 static bool g4x_compute_srwm(struct drm_device *dev,
1175 int plane,
1176 int latency_ns,
1177 const struct intel_watermark_params *display,
1178 const struct intel_watermark_params *cursor,
1179 int *display_wm, int *cursor_wm)
1180 {
1181 struct drm_crtc *crtc;
1182 int hdisplay, htotal, pixel_size, clock;
1183 unsigned long line_time_us;
1184 int line_count, line_size;
1185 int small, large;
1186 int entries;
1187
1188 if (!latency_ns) {
1189 *display_wm = *cursor_wm = 0;
1190 return false;
1191 }
1192
1193 crtc = intel_get_crtc_for_plane(dev, plane);
1194 hdisplay = crtc->mode.hdisplay;
1195 htotal = crtc->mode.htotal;
1196 clock = crtc->mode.clock;
1197 pixel_size = crtc->fb->bits_per_pixel / 8;
1198
1199 line_time_us = (htotal * 1000) / clock;
1200 line_count = (latency_ns / line_time_us + 1000) / 1000;
1201 line_size = hdisplay * pixel_size;
1202
1203 /* Use the minimum of the small and large buffer method for primary */
1204 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1205 large = line_count * line_size;
1206
1207 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1208 *display_wm = entries + display->guard_size;
1209
1210 /* calculate the self-refresh watermark for display cursor */
1211 entries = line_count * pixel_size * 64;
1212 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1213 *cursor_wm = entries + cursor->guard_size;
1214
1215 return g4x_check_srwm(dev,
1216 *display_wm, *cursor_wm,
1217 display, cursor);
1218 }
1219
1220 static bool vlv_compute_drain_latency(struct drm_device *dev,
1221 int plane,
1222 int *plane_prec_mult,
1223 int *plane_dl,
1224 int *cursor_prec_mult,
1225 int *cursor_dl)
1226 {
1227 struct drm_crtc *crtc;
1228 int clock, pixel_size;
1229 int entries;
1230
1231 crtc = intel_get_crtc_for_plane(dev, plane);
1232 if (!intel_crtc_active(crtc))
1233 return false;
1234
1235 clock = crtc->mode.clock; /* VESA DOT Clock */
1236 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1237
1238 entries = (clock / 1000) * pixel_size;
1239 *plane_prec_mult = (entries > 256) ?
1240 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1241 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1242 pixel_size);
1243
1244 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1245 *cursor_prec_mult = (entries > 256) ?
1246 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1247 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1248
1249 return true;
1250 }
1251
1252 /*
1253 * Update drain latency registers of memory arbiter
1254 *
1255 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1256 * to be programmed. Each plane has a drain latency multiplier and a drain
1257 * latency value.
1258 */
1259
1260 static void vlv_update_drain_latency(struct drm_device *dev)
1261 {
1262 struct drm_i915_private *dev_priv = dev->dev_private;
1263 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1264 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1265 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1266 either 16 or 32 */
1267
1268 /* For plane A, Cursor A */
1269 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1270 &cursor_prec_mult, &cursora_dl)) {
1271 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1272 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1273 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1274 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1275
1276 I915_WRITE(VLV_DDL1, cursora_prec |
1277 (cursora_dl << DDL_CURSORA_SHIFT) |
1278 planea_prec | planea_dl);
1279 }
1280
1281 /* For plane B, Cursor B */
1282 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1283 &cursor_prec_mult, &cursorb_dl)) {
1284 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1285 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1286 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1287 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1288
1289 I915_WRITE(VLV_DDL2, cursorb_prec |
1290 (cursorb_dl << DDL_CURSORB_SHIFT) |
1291 planeb_prec | planeb_dl);
1292 }
1293 }
1294
1295 #define single_plane_enabled(mask) is_power_of_2(mask)
1296
1297 static void valleyview_update_wm(struct drm_device *dev)
1298 {
1299 static const int sr_latency_ns = 12000;
1300 struct drm_i915_private *dev_priv = dev->dev_private;
1301 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1302 int plane_sr, cursor_sr;
1303 int ignore_plane_sr, ignore_cursor_sr;
1304 unsigned int enabled = 0;
1305
1306 vlv_update_drain_latency(dev);
1307
1308 if (g4x_compute_wm0(dev, 0,
1309 &valleyview_wm_info, latency_ns,
1310 &valleyview_cursor_wm_info, latency_ns,
1311 &planea_wm, &cursora_wm))
1312 enabled |= 1;
1313
1314 if (g4x_compute_wm0(dev, 1,
1315 &valleyview_wm_info, latency_ns,
1316 &valleyview_cursor_wm_info, latency_ns,
1317 &planeb_wm, &cursorb_wm))
1318 enabled |= 2;
1319
1320 if (single_plane_enabled(enabled) &&
1321 g4x_compute_srwm(dev, ffs(enabled) - 1,
1322 sr_latency_ns,
1323 &valleyview_wm_info,
1324 &valleyview_cursor_wm_info,
1325 &plane_sr, &ignore_cursor_sr) &&
1326 g4x_compute_srwm(dev, ffs(enabled) - 1,
1327 2*sr_latency_ns,
1328 &valleyview_wm_info,
1329 &valleyview_cursor_wm_info,
1330 &ignore_plane_sr, &cursor_sr)) {
1331 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1332 } else {
1333 I915_WRITE(FW_BLC_SELF_VLV,
1334 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1335 plane_sr = cursor_sr = 0;
1336 }
1337
1338 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1339 planea_wm, cursora_wm,
1340 planeb_wm, cursorb_wm,
1341 plane_sr, cursor_sr);
1342
1343 I915_WRITE(DSPFW1,
1344 (plane_sr << DSPFW_SR_SHIFT) |
1345 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1346 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1347 planea_wm);
1348 I915_WRITE(DSPFW2,
1349 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1350 (cursora_wm << DSPFW_CURSORA_SHIFT));
1351 I915_WRITE(DSPFW3,
1352 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1353 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1354 }
1355
1356 static void g4x_update_wm(struct drm_device *dev)
1357 {
1358 static const int sr_latency_ns = 12000;
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1361 int plane_sr, cursor_sr;
1362 unsigned int enabled = 0;
1363
1364 if (g4x_compute_wm0(dev, 0,
1365 &g4x_wm_info, latency_ns,
1366 &g4x_cursor_wm_info, latency_ns,
1367 &planea_wm, &cursora_wm))
1368 enabled |= 1;
1369
1370 if (g4x_compute_wm0(dev, 1,
1371 &g4x_wm_info, latency_ns,
1372 &g4x_cursor_wm_info, latency_ns,
1373 &planeb_wm, &cursorb_wm))
1374 enabled |= 2;
1375
1376 if (single_plane_enabled(enabled) &&
1377 g4x_compute_srwm(dev, ffs(enabled) - 1,
1378 sr_latency_ns,
1379 &g4x_wm_info,
1380 &g4x_cursor_wm_info,
1381 &plane_sr, &cursor_sr)) {
1382 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1383 } else {
1384 I915_WRITE(FW_BLC_SELF,
1385 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1386 plane_sr = cursor_sr = 0;
1387 }
1388
1389 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1390 planea_wm, cursora_wm,
1391 planeb_wm, cursorb_wm,
1392 plane_sr, cursor_sr);
1393
1394 I915_WRITE(DSPFW1,
1395 (plane_sr << DSPFW_SR_SHIFT) |
1396 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1397 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1398 planea_wm);
1399 I915_WRITE(DSPFW2,
1400 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1401 (cursora_wm << DSPFW_CURSORA_SHIFT));
1402 /* HPLL off in SR has some issues on G4x... disable it */
1403 I915_WRITE(DSPFW3,
1404 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1405 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1406 }
1407
1408 static void i965_update_wm(struct drm_device *dev)
1409 {
1410 struct drm_i915_private *dev_priv = dev->dev_private;
1411 struct drm_crtc *crtc;
1412 int srwm = 1;
1413 int cursor_sr = 16;
1414
1415 /* Calc sr entries for one plane configs */
1416 crtc = single_enabled_crtc(dev);
1417 if (crtc) {
1418 /* self-refresh has much higher latency */
1419 static const int sr_latency_ns = 12000;
1420 int clock = crtc->mode.clock;
1421 int htotal = crtc->mode.htotal;
1422 int hdisplay = crtc->mode.hdisplay;
1423 int pixel_size = crtc->fb->bits_per_pixel / 8;
1424 unsigned long line_time_us;
1425 int entries;
1426
1427 line_time_us = ((htotal * 1000) / clock);
1428
1429 /* Use ns/us then divide to preserve precision */
1430 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1431 pixel_size * hdisplay;
1432 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1433 srwm = I965_FIFO_SIZE - entries;
1434 if (srwm < 0)
1435 srwm = 1;
1436 srwm &= 0x1ff;
1437 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1438 entries, srwm);
1439
1440 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1441 pixel_size * 64;
1442 entries = DIV_ROUND_UP(entries,
1443 i965_cursor_wm_info.cacheline_size);
1444 cursor_sr = i965_cursor_wm_info.fifo_size -
1445 (entries + i965_cursor_wm_info.guard_size);
1446
1447 if (cursor_sr > i965_cursor_wm_info.max_wm)
1448 cursor_sr = i965_cursor_wm_info.max_wm;
1449
1450 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1451 "cursor %d\n", srwm, cursor_sr);
1452
1453 if (IS_CRESTLINE(dev))
1454 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1455 } else {
1456 /* Turn off self refresh if both pipes are enabled */
1457 if (IS_CRESTLINE(dev))
1458 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1459 & ~FW_BLC_SELF_EN);
1460 }
1461
1462 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1463 srwm);
1464
1465 /* 965 has limitations... */
1466 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1467 (8 << 16) | (8 << 8) | (8 << 0));
1468 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1469 /* update cursor SR watermark */
1470 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1471 }
1472
1473 static void i9xx_update_wm(struct drm_device *dev)
1474 {
1475 struct drm_i915_private *dev_priv = dev->dev_private;
1476 const struct intel_watermark_params *wm_info;
1477 uint32_t fwater_lo;
1478 uint32_t fwater_hi;
1479 int cwm, srwm = 1;
1480 int fifo_size;
1481 int planea_wm, planeb_wm;
1482 struct drm_crtc *crtc, *enabled = NULL;
1483
1484 if (IS_I945GM(dev))
1485 wm_info = &i945_wm_info;
1486 else if (!IS_GEN2(dev))
1487 wm_info = &i915_wm_info;
1488 else
1489 wm_info = &i855_wm_info;
1490
1491 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1492 crtc = intel_get_crtc_for_plane(dev, 0);
1493 if (intel_crtc_active(crtc)) {
1494 int cpp = crtc->fb->bits_per_pixel / 8;
1495 if (IS_GEN2(dev))
1496 cpp = 4;
1497
1498 planea_wm = intel_calculate_wm(crtc->mode.clock,
1499 wm_info, fifo_size, cpp,
1500 latency_ns);
1501 enabled = crtc;
1502 } else
1503 planea_wm = fifo_size - wm_info->guard_size;
1504
1505 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1506 crtc = intel_get_crtc_for_plane(dev, 1);
1507 if (intel_crtc_active(crtc)) {
1508 int cpp = crtc->fb->bits_per_pixel / 8;
1509 if (IS_GEN2(dev))
1510 cpp = 4;
1511
1512 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1513 wm_info, fifo_size, cpp,
1514 latency_ns);
1515 if (enabled == NULL)
1516 enabled = crtc;
1517 else
1518 enabled = NULL;
1519 } else
1520 planeb_wm = fifo_size - wm_info->guard_size;
1521
1522 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1523
1524 /*
1525 * Overlay gets an aggressive default since video jitter is bad.
1526 */
1527 cwm = 2;
1528
1529 /* Play safe and disable self-refresh before adjusting watermarks. */
1530 if (IS_I945G(dev) || IS_I945GM(dev))
1531 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1532 else if (IS_I915GM(dev))
1533 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1534
1535 /* Calc sr entries for one plane configs */
1536 if (HAS_FW_BLC(dev) && enabled) {
1537 /* self-refresh has much higher latency */
1538 static const int sr_latency_ns = 6000;
1539 int clock = enabled->mode.clock;
1540 int htotal = enabled->mode.htotal;
1541 int hdisplay = enabled->mode.hdisplay;
1542 int pixel_size = enabled->fb->bits_per_pixel / 8;
1543 unsigned long line_time_us;
1544 int entries;
1545
1546 line_time_us = (htotal * 1000) / clock;
1547
1548 /* Use ns/us then divide to preserve precision */
1549 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1550 pixel_size * hdisplay;
1551 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1552 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1553 srwm = wm_info->fifo_size - entries;
1554 if (srwm < 0)
1555 srwm = 1;
1556
1557 if (IS_I945G(dev) || IS_I945GM(dev))
1558 I915_WRITE(FW_BLC_SELF,
1559 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1560 else if (IS_I915GM(dev))
1561 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1562 }
1563
1564 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1565 planea_wm, planeb_wm, cwm, srwm);
1566
1567 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1568 fwater_hi = (cwm & 0x1f);
1569
1570 /* Set request length to 8 cachelines per fetch */
1571 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1572 fwater_hi = fwater_hi | (1 << 8);
1573
1574 I915_WRITE(FW_BLC, fwater_lo);
1575 I915_WRITE(FW_BLC2, fwater_hi);
1576
1577 if (HAS_FW_BLC(dev)) {
1578 if (enabled) {
1579 if (IS_I945G(dev) || IS_I945GM(dev))
1580 I915_WRITE(FW_BLC_SELF,
1581 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1582 else if (IS_I915GM(dev))
1583 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1584 DRM_DEBUG_KMS("memory self refresh enabled\n");
1585 } else
1586 DRM_DEBUG_KMS("memory self refresh disabled\n");
1587 }
1588 }
1589
1590 static void i830_update_wm(struct drm_device *dev)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 struct drm_crtc *crtc;
1594 uint32_t fwater_lo;
1595 int planea_wm;
1596
1597 crtc = single_enabled_crtc(dev);
1598 if (crtc == NULL)
1599 return;
1600
1601 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1602 dev_priv->display.get_fifo_size(dev, 0),
1603 4, latency_ns);
1604 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1605 fwater_lo |= (3<<8) | planea_wm;
1606
1607 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1608
1609 I915_WRITE(FW_BLC, fwater_lo);
1610 }
1611
1612 #define ILK_LP0_PLANE_LATENCY 700
1613 #define ILK_LP0_CURSOR_LATENCY 1300
1614
1615 /*
1616 * Check the wm result.
1617 *
1618 * If any calculated watermark values is larger than the maximum value that
1619 * can be programmed into the associated watermark register, that watermark
1620 * must be disabled.
1621 */
1622 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1623 int fbc_wm, int display_wm, int cursor_wm,
1624 const struct intel_watermark_params *display,
1625 const struct intel_watermark_params *cursor)
1626 {
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628
1629 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1630 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1631
1632 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1633 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1634 fbc_wm, SNB_FBC_MAX_SRWM, level);
1635
1636 /* fbc has it's own way to disable FBC WM */
1637 I915_WRITE(DISP_ARB_CTL,
1638 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1639 return false;
1640 }
1641
1642 if (display_wm > display->max_wm) {
1643 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1644 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1645 return false;
1646 }
1647
1648 if (cursor_wm > cursor->max_wm) {
1649 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1650 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1651 return false;
1652 }
1653
1654 if (!(fbc_wm || display_wm || cursor_wm)) {
1655 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1656 return false;
1657 }
1658
1659 return true;
1660 }
1661
1662 /*
1663 * Compute watermark values of WM[1-3],
1664 */
1665 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1666 int latency_ns,
1667 const struct intel_watermark_params *display,
1668 const struct intel_watermark_params *cursor,
1669 int *fbc_wm, int *display_wm, int *cursor_wm)
1670 {
1671 struct drm_crtc *crtc;
1672 unsigned long line_time_us;
1673 int hdisplay, htotal, pixel_size, clock;
1674 int line_count, line_size;
1675 int small, large;
1676 int entries;
1677
1678 if (!latency_ns) {
1679 *fbc_wm = *display_wm = *cursor_wm = 0;
1680 return false;
1681 }
1682
1683 crtc = intel_get_crtc_for_plane(dev, plane);
1684 hdisplay = crtc->mode.hdisplay;
1685 htotal = crtc->mode.htotal;
1686 clock = crtc->mode.clock;
1687 pixel_size = crtc->fb->bits_per_pixel / 8;
1688
1689 line_time_us = (htotal * 1000) / clock;
1690 line_count = (latency_ns / line_time_us + 1000) / 1000;
1691 line_size = hdisplay * pixel_size;
1692
1693 /* Use the minimum of the small and large buffer method for primary */
1694 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1695 large = line_count * line_size;
1696
1697 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1698 *display_wm = entries + display->guard_size;
1699
1700 /*
1701 * Spec says:
1702 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1703 */
1704 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1705
1706 /* calculate the self-refresh watermark for display cursor */
1707 entries = line_count * pixel_size * 64;
1708 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1709 *cursor_wm = entries + cursor->guard_size;
1710
1711 return ironlake_check_srwm(dev, level,
1712 *fbc_wm, *display_wm, *cursor_wm,
1713 display, cursor);
1714 }
1715
1716 static void ironlake_update_wm(struct drm_device *dev)
1717 {
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 int fbc_wm, plane_wm, cursor_wm;
1720 unsigned int enabled;
1721
1722 enabled = 0;
1723 if (g4x_compute_wm0(dev, 0,
1724 &ironlake_display_wm_info,
1725 ILK_LP0_PLANE_LATENCY,
1726 &ironlake_cursor_wm_info,
1727 ILK_LP0_CURSOR_LATENCY,
1728 &plane_wm, &cursor_wm)) {
1729 I915_WRITE(WM0_PIPEA_ILK,
1730 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1731 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1732 " plane %d, " "cursor: %d\n",
1733 plane_wm, cursor_wm);
1734 enabled |= 1;
1735 }
1736
1737 if (g4x_compute_wm0(dev, 1,
1738 &ironlake_display_wm_info,
1739 ILK_LP0_PLANE_LATENCY,
1740 &ironlake_cursor_wm_info,
1741 ILK_LP0_CURSOR_LATENCY,
1742 &plane_wm, &cursor_wm)) {
1743 I915_WRITE(WM0_PIPEB_ILK,
1744 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1745 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1746 " plane %d, cursor: %d\n",
1747 plane_wm, cursor_wm);
1748 enabled |= 2;
1749 }
1750
1751 /*
1752 * Calculate and update the self-refresh watermark only when one
1753 * display plane is used.
1754 */
1755 I915_WRITE(WM3_LP_ILK, 0);
1756 I915_WRITE(WM2_LP_ILK, 0);
1757 I915_WRITE(WM1_LP_ILK, 0);
1758
1759 if (!single_plane_enabled(enabled))
1760 return;
1761 enabled = ffs(enabled) - 1;
1762
1763 /* WM1 */
1764 if (!ironlake_compute_srwm(dev, 1, enabled,
1765 ILK_READ_WM1_LATENCY() * 500,
1766 &ironlake_display_srwm_info,
1767 &ironlake_cursor_srwm_info,
1768 &fbc_wm, &plane_wm, &cursor_wm))
1769 return;
1770
1771 I915_WRITE(WM1_LP_ILK,
1772 WM1_LP_SR_EN |
1773 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1774 (fbc_wm << WM1_LP_FBC_SHIFT) |
1775 (plane_wm << WM1_LP_SR_SHIFT) |
1776 cursor_wm);
1777
1778 /* WM2 */
1779 if (!ironlake_compute_srwm(dev, 2, enabled,
1780 ILK_READ_WM2_LATENCY() * 500,
1781 &ironlake_display_srwm_info,
1782 &ironlake_cursor_srwm_info,
1783 &fbc_wm, &plane_wm, &cursor_wm))
1784 return;
1785
1786 I915_WRITE(WM2_LP_ILK,
1787 WM2_LP_EN |
1788 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1789 (fbc_wm << WM1_LP_FBC_SHIFT) |
1790 (plane_wm << WM1_LP_SR_SHIFT) |
1791 cursor_wm);
1792
1793 /*
1794 * WM3 is unsupported on ILK, probably because we don't have latency
1795 * data for that power state
1796 */
1797 }
1798
1799 static void sandybridge_update_wm(struct drm_device *dev)
1800 {
1801 struct drm_i915_private *dev_priv = dev->dev_private;
1802 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1803 u32 val;
1804 int fbc_wm, plane_wm, cursor_wm;
1805 unsigned int enabled;
1806
1807 enabled = 0;
1808 if (g4x_compute_wm0(dev, 0,
1809 &sandybridge_display_wm_info, latency,
1810 &sandybridge_cursor_wm_info, latency,
1811 &plane_wm, &cursor_wm)) {
1812 val = I915_READ(WM0_PIPEA_ILK);
1813 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1814 I915_WRITE(WM0_PIPEA_ILK, val |
1815 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1816 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1817 " plane %d, " "cursor: %d\n",
1818 plane_wm, cursor_wm);
1819 enabled |= 1;
1820 }
1821
1822 if (g4x_compute_wm0(dev, 1,
1823 &sandybridge_display_wm_info, latency,
1824 &sandybridge_cursor_wm_info, latency,
1825 &plane_wm, &cursor_wm)) {
1826 val = I915_READ(WM0_PIPEB_ILK);
1827 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1828 I915_WRITE(WM0_PIPEB_ILK, val |
1829 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1830 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1831 " plane %d, cursor: %d\n",
1832 plane_wm, cursor_wm);
1833 enabled |= 2;
1834 }
1835
1836 /*
1837 * Calculate and update the self-refresh watermark only when one
1838 * display plane is used.
1839 *
1840 * SNB support 3 levels of watermark.
1841 *
1842 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1843 * and disabled in the descending order
1844 *
1845 */
1846 I915_WRITE(WM3_LP_ILK, 0);
1847 I915_WRITE(WM2_LP_ILK, 0);
1848 I915_WRITE(WM1_LP_ILK, 0);
1849
1850 if (!single_plane_enabled(enabled) ||
1851 dev_priv->sprite_scaling_enabled)
1852 return;
1853 enabled = ffs(enabled) - 1;
1854
1855 /* WM1 */
1856 if (!ironlake_compute_srwm(dev, 1, enabled,
1857 SNB_READ_WM1_LATENCY() * 500,
1858 &sandybridge_display_srwm_info,
1859 &sandybridge_cursor_srwm_info,
1860 &fbc_wm, &plane_wm, &cursor_wm))
1861 return;
1862
1863 I915_WRITE(WM1_LP_ILK,
1864 WM1_LP_SR_EN |
1865 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1866 (fbc_wm << WM1_LP_FBC_SHIFT) |
1867 (plane_wm << WM1_LP_SR_SHIFT) |
1868 cursor_wm);
1869
1870 /* WM2 */
1871 if (!ironlake_compute_srwm(dev, 2, enabled,
1872 SNB_READ_WM2_LATENCY() * 500,
1873 &sandybridge_display_srwm_info,
1874 &sandybridge_cursor_srwm_info,
1875 &fbc_wm, &plane_wm, &cursor_wm))
1876 return;
1877
1878 I915_WRITE(WM2_LP_ILK,
1879 WM2_LP_EN |
1880 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1881 (fbc_wm << WM1_LP_FBC_SHIFT) |
1882 (plane_wm << WM1_LP_SR_SHIFT) |
1883 cursor_wm);
1884
1885 /* WM3 */
1886 if (!ironlake_compute_srwm(dev, 3, enabled,
1887 SNB_READ_WM3_LATENCY() * 500,
1888 &sandybridge_display_srwm_info,
1889 &sandybridge_cursor_srwm_info,
1890 &fbc_wm, &plane_wm, &cursor_wm))
1891 return;
1892
1893 I915_WRITE(WM3_LP_ILK,
1894 WM3_LP_EN |
1895 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1896 (fbc_wm << WM1_LP_FBC_SHIFT) |
1897 (plane_wm << WM1_LP_SR_SHIFT) |
1898 cursor_wm);
1899 }
1900
1901 static void ivybridge_update_wm(struct drm_device *dev)
1902 {
1903 struct drm_i915_private *dev_priv = dev->dev_private;
1904 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1905 u32 val;
1906 int fbc_wm, plane_wm, cursor_wm;
1907 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1908 unsigned int enabled;
1909
1910 enabled = 0;
1911 if (g4x_compute_wm0(dev, 0,
1912 &sandybridge_display_wm_info, latency,
1913 &sandybridge_cursor_wm_info, latency,
1914 &plane_wm, &cursor_wm)) {
1915 val = I915_READ(WM0_PIPEA_ILK);
1916 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1917 I915_WRITE(WM0_PIPEA_ILK, val |
1918 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1919 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1920 " plane %d, " "cursor: %d\n",
1921 plane_wm, cursor_wm);
1922 enabled |= 1;
1923 }
1924
1925 if (g4x_compute_wm0(dev, 1,
1926 &sandybridge_display_wm_info, latency,
1927 &sandybridge_cursor_wm_info, latency,
1928 &plane_wm, &cursor_wm)) {
1929 val = I915_READ(WM0_PIPEB_ILK);
1930 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1931 I915_WRITE(WM0_PIPEB_ILK, val |
1932 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1933 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1934 " plane %d, cursor: %d\n",
1935 plane_wm, cursor_wm);
1936 enabled |= 2;
1937 }
1938
1939 if (g4x_compute_wm0(dev, 2,
1940 &sandybridge_display_wm_info, latency,
1941 &sandybridge_cursor_wm_info, latency,
1942 &plane_wm, &cursor_wm)) {
1943 val = I915_READ(WM0_PIPEC_IVB);
1944 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1945 I915_WRITE(WM0_PIPEC_IVB, val |
1946 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1947 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1948 " plane %d, cursor: %d\n",
1949 plane_wm, cursor_wm);
1950 enabled |= 3;
1951 }
1952
1953 /*
1954 * Calculate and update the self-refresh watermark only when one
1955 * display plane is used.
1956 *
1957 * SNB support 3 levels of watermark.
1958 *
1959 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1960 * and disabled in the descending order
1961 *
1962 */
1963 I915_WRITE(WM3_LP_ILK, 0);
1964 I915_WRITE(WM2_LP_ILK, 0);
1965 I915_WRITE(WM1_LP_ILK, 0);
1966
1967 if (!single_plane_enabled(enabled) ||
1968 dev_priv->sprite_scaling_enabled)
1969 return;
1970 enabled = ffs(enabled) - 1;
1971
1972 /* WM1 */
1973 if (!ironlake_compute_srwm(dev, 1, enabled,
1974 SNB_READ_WM1_LATENCY() * 500,
1975 &sandybridge_display_srwm_info,
1976 &sandybridge_cursor_srwm_info,
1977 &fbc_wm, &plane_wm, &cursor_wm))
1978 return;
1979
1980 I915_WRITE(WM1_LP_ILK,
1981 WM1_LP_SR_EN |
1982 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1983 (fbc_wm << WM1_LP_FBC_SHIFT) |
1984 (plane_wm << WM1_LP_SR_SHIFT) |
1985 cursor_wm);
1986
1987 /* WM2 */
1988 if (!ironlake_compute_srwm(dev, 2, enabled,
1989 SNB_READ_WM2_LATENCY() * 500,
1990 &sandybridge_display_srwm_info,
1991 &sandybridge_cursor_srwm_info,
1992 &fbc_wm, &plane_wm, &cursor_wm))
1993 return;
1994
1995 I915_WRITE(WM2_LP_ILK,
1996 WM2_LP_EN |
1997 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1998 (fbc_wm << WM1_LP_FBC_SHIFT) |
1999 (plane_wm << WM1_LP_SR_SHIFT) |
2000 cursor_wm);
2001
2002 /* WM3, note we have to correct the cursor latency */
2003 if (!ironlake_compute_srwm(dev, 3, enabled,
2004 SNB_READ_WM3_LATENCY() * 500,
2005 &sandybridge_display_srwm_info,
2006 &sandybridge_cursor_srwm_info,
2007 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2008 !ironlake_compute_srwm(dev, 3, enabled,
2009 2 * SNB_READ_WM3_LATENCY() * 500,
2010 &sandybridge_display_srwm_info,
2011 &sandybridge_cursor_srwm_info,
2012 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2013 return;
2014
2015 I915_WRITE(WM3_LP_ILK,
2016 WM3_LP_EN |
2017 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2018 (fbc_wm << WM1_LP_FBC_SHIFT) |
2019 (plane_wm << WM1_LP_SR_SHIFT) |
2020 cursor_wm);
2021 }
2022
2023 static void
2024 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2025 struct drm_display_mode *mode)
2026 {
2027 struct drm_i915_private *dev_priv = dev->dev_private;
2028 u32 temp;
2029
2030 temp = I915_READ(PIPE_WM_LINETIME(pipe));
2031 temp &= ~PIPE_WM_LINETIME_MASK;
2032
2033 /* The WM are computed with base on how long it takes to fill a single
2034 * row at the given clock rate, multiplied by 8.
2035 * */
2036 temp |= PIPE_WM_LINETIME_TIME(
2037 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2038
2039 /* IPS watermarks are only used by pipe A, and are ignored by
2040 * pipes B and C. They are calculated similarly to the common
2041 * linetime values, except that we are using CD clock frequency
2042 * in MHz instead of pixel rate for the division.
2043 *
2044 * This is a placeholder for the IPS watermark calculation code.
2045 */
2046
2047 I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2048 }
2049
2050 static bool
2051 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2052 uint32_t sprite_width, int pixel_size,
2053 const struct intel_watermark_params *display,
2054 int display_latency_ns, int *sprite_wm)
2055 {
2056 struct drm_crtc *crtc;
2057 int clock;
2058 int entries, tlb_miss;
2059
2060 crtc = intel_get_crtc_for_plane(dev, plane);
2061 if (!intel_crtc_active(crtc)) {
2062 *sprite_wm = display->guard_size;
2063 return false;
2064 }
2065
2066 clock = crtc->mode.clock;
2067
2068 /* Use the small buffer method to calculate the sprite watermark */
2069 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2070 tlb_miss = display->fifo_size*display->cacheline_size -
2071 sprite_width * 8;
2072 if (tlb_miss > 0)
2073 entries += tlb_miss;
2074 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2075 *sprite_wm = entries + display->guard_size;
2076 if (*sprite_wm > (int)display->max_wm)
2077 *sprite_wm = display->max_wm;
2078
2079 return true;
2080 }
2081
2082 static bool
2083 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2084 uint32_t sprite_width, int pixel_size,
2085 const struct intel_watermark_params *display,
2086 int latency_ns, int *sprite_wm)
2087 {
2088 struct drm_crtc *crtc;
2089 unsigned long line_time_us;
2090 int clock;
2091 int line_count, line_size;
2092 int small, large;
2093 int entries;
2094
2095 if (!latency_ns) {
2096 *sprite_wm = 0;
2097 return false;
2098 }
2099
2100 crtc = intel_get_crtc_for_plane(dev, plane);
2101 clock = crtc->mode.clock;
2102 if (!clock) {
2103 *sprite_wm = 0;
2104 return false;
2105 }
2106
2107 line_time_us = (sprite_width * 1000) / clock;
2108 if (!line_time_us) {
2109 *sprite_wm = 0;
2110 return false;
2111 }
2112
2113 line_count = (latency_ns / line_time_us + 1000) / 1000;
2114 line_size = sprite_width * pixel_size;
2115
2116 /* Use the minimum of the small and large buffer method for primary */
2117 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2118 large = line_count * line_size;
2119
2120 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2121 *sprite_wm = entries + display->guard_size;
2122
2123 return *sprite_wm > 0x3ff ? false : true;
2124 }
2125
2126 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2127 uint32_t sprite_width, int pixel_size)
2128 {
2129 struct drm_i915_private *dev_priv = dev->dev_private;
2130 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2131 u32 val;
2132 int sprite_wm, reg;
2133 int ret;
2134
2135 switch (pipe) {
2136 case 0:
2137 reg = WM0_PIPEA_ILK;
2138 break;
2139 case 1:
2140 reg = WM0_PIPEB_ILK;
2141 break;
2142 case 2:
2143 reg = WM0_PIPEC_IVB;
2144 break;
2145 default:
2146 return; /* bad pipe */
2147 }
2148
2149 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2150 &sandybridge_display_wm_info,
2151 latency, &sprite_wm);
2152 if (!ret) {
2153 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2154 pipe);
2155 return;
2156 }
2157
2158 val = I915_READ(reg);
2159 val &= ~WM0_PIPE_SPRITE_MASK;
2160 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2161 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2162
2163
2164 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2165 pixel_size,
2166 &sandybridge_display_srwm_info,
2167 SNB_READ_WM1_LATENCY() * 500,
2168 &sprite_wm);
2169 if (!ret) {
2170 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2171 pipe);
2172 return;
2173 }
2174 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2175
2176 /* Only IVB has two more LP watermarks for sprite */
2177 if (!IS_IVYBRIDGE(dev))
2178 return;
2179
2180 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2181 pixel_size,
2182 &sandybridge_display_srwm_info,
2183 SNB_READ_WM2_LATENCY() * 500,
2184 &sprite_wm);
2185 if (!ret) {
2186 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2187 pipe);
2188 return;
2189 }
2190 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2191
2192 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2193 pixel_size,
2194 &sandybridge_display_srwm_info,
2195 SNB_READ_WM3_LATENCY() * 500,
2196 &sprite_wm);
2197 if (!ret) {
2198 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2199 pipe);
2200 return;
2201 }
2202 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2203 }
2204
2205 /**
2206 * intel_update_watermarks - update FIFO watermark values based on current modes
2207 *
2208 * Calculate watermark values for the various WM regs based on current mode
2209 * and plane configuration.
2210 *
2211 * There are several cases to deal with here:
2212 * - normal (i.e. non-self-refresh)
2213 * - self-refresh (SR) mode
2214 * - lines are large relative to FIFO size (buffer can hold up to 2)
2215 * - lines are small relative to FIFO size (buffer can hold more than 2
2216 * lines), so need to account for TLB latency
2217 *
2218 * The normal calculation is:
2219 * watermark = dotclock * bytes per pixel * latency
2220 * where latency is platform & configuration dependent (we assume pessimal
2221 * values here).
2222 *
2223 * The SR calculation is:
2224 * watermark = (trunc(latency/line time)+1) * surface width *
2225 * bytes per pixel
2226 * where
2227 * line time = htotal / dotclock
2228 * surface width = hdisplay for normal plane and 64 for cursor
2229 * and latency is assumed to be high, as above.
2230 *
2231 * The final value programmed to the register should always be rounded up,
2232 * and include an extra 2 entries to account for clock crossings.
2233 *
2234 * We don't use the sprite, so we can ignore that. And on Crestline we have
2235 * to set the non-SR watermarks to 8.
2236 */
2237 void intel_update_watermarks(struct drm_device *dev)
2238 {
2239 struct drm_i915_private *dev_priv = dev->dev_private;
2240
2241 if (dev_priv->display.update_wm)
2242 dev_priv->display.update_wm(dev);
2243 }
2244
2245 void intel_update_linetime_watermarks(struct drm_device *dev,
2246 int pipe, struct drm_display_mode *mode)
2247 {
2248 struct drm_i915_private *dev_priv = dev->dev_private;
2249
2250 if (dev_priv->display.update_linetime_wm)
2251 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2252 }
2253
2254 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2255 uint32_t sprite_width, int pixel_size)
2256 {
2257 struct drm_i915_private *dev_priv = dev->dev_private;
2258
2259 if (dev_priv->display.update_sprite_wm)
2260 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2261 pixel_size);
2262 }
2263
2264 static struct drm_i915_gem_object *
2265 intel_alloc_context_page(struct drm_device *dev)
2266 {
2267 struct drm_i915_gem_object *ctx;
2268 int ret;
2269
2270 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2271
2272 ctx = i915_gem_alloc_object(dev, 4096);
2273 if (!ctx) {
2274 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2275 return NULL;
2276 }
2277
2278 ret = i915_gem_object_pin(ctx, 4096, true, false);
2279 if (ret) {
2280 DRM_ERROR("failed to pin power context: %d\n", ret);
2281 goto err_unref;
2282 }
2283
2284 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2285 if (ret) {
2286 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2287 goto err_unpin;
2288 }
2289
2290 return ctx;
2291
2292 err_unpin:
2293 i915_gem_object_unpin(ctx);
2294 err_unref:
2295 drm_gem_object_unreference(&ctx->base);
2296 mutex_unlock(&dev->struct_mutex);
2297 return NULL;
2298 }
2299
2300 /**
2301 * Lock protecting IPS related data structures
2302 */
2303 DEFINE_SPINLOCK(mchdev_lock);
2304
2305 /* Global for IPS driver to get at the current i915 device. Protected by
2306 * mchdev_lock. */
2307 static struct drm_i915_private *i915_mch_dev;
2308
2309 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2310 {
2311 struct drm_i915_private *dev_priv = dev->dev_private;
2312 u16 rgvswctl;
2313
2314 assert_spin_locked(&mchdev_lock);
2315
2316 rgvswctl = I915_READ16(MEMSWCTL);
2317 if (rgvswctl & MEMCTL_CMD_STS) {
2318 DRM_DEBUG("gpu busy, RCS change rejected\n");
2319 return false; /* still busy with another command */
2320 }
2321
2322 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2323 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2324 I915_WRITE16(MEMSWCTL, rgvswctl);
2325 POSTING_READ16(MEMSWCTL);
2326
2327 rgvswctl |= MEMCTL_CMD_STS;
2328 I915_WRITE16(MEMSWCTL, rgvswctl);
2329
2330 return true;
2331 }
2332
2333 static void ironlake_enable_drps(struct drm_device *dev)
2334 {
2335 struct drm_i915_private *dev_priv = dev->dev_private;
2336 u32 rgvmodectl = I915_READ(MEMMODECTL);
2337 u8 fmax, fmin, fstart, vstart;
2338
2339 spin_lock_irq(&mchdev_lock);
2340
2341 /* Enable temp reporting */
2342 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2343 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2344
2345 /* 100ms RC evaluation intervals */
2346 I915_WRITE(RCUPEI, 100000);
2347 I915_WRITE(RCDNEI, 100000);
2348
2349 /* Set max/min thresholds to 90ms and 80ms respectively */
2350 I915_WRITE(RCBMAXAVG, 90000);
2351 I915_WRITE(RCBMINAVG, 80000);
2352
2353 I915_WRITE(MEMIHYST, 1);
2354
2355 /* Set up min, max, and cur for interrupt handling */
2356 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2357 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2358 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2359 MEMMODE_FSTART_SHIFT;
2360
2361 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2362 PXVFREQ_PX_SHIFT;
2363
2364 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2365 dev_priv->ips.fstart = fstart;
2366
2367 dev_priv->ips.max_delay = fstart;
2368 dev_priv->ips.min_delay = fmin;
2369 dev_priv->ips.cur_delay = fstart;
2370
2371 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2372 fmax, fmin, fstart);
2373
2374 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2375
2376 /*
2377 * Interrupts will be enabled in ironlake_irq_postinstall
2378 */
2379
2380 I915_WRITE(VIDSTART, vstart);
2381 POSTING_READ(VIDSTART);
2382
2383 rgvmodectl |= MEMMODE_SWMODE_EN;
2384 I915_WRITE(MEMMODECTL, rgvmodectl);
2385
2386 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2387 DRM_ERROR("stuck trying to change perf mode\n");
2388 mdelay(1);
2389
2390 ironlake_set_drps(dev, fstart);
2391
2392 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2393 I915_READ(0x112e0);
2394 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2395 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2396 getrawmonotonic(&dev_priv->ips.last_time2);
2397
2398 spin_unlock_irq(&mchdev_lock);
2399 }
2400
2401 static void ironlake_disable_drps(struct drm_device *dev)
2402 {
2403 struct drm_i915_private *dev_priv = dev->dev_private;
2404 u16 rgvswctl;
2405
2406 spin_lock_irq(&mchdev_lock);
2407
2408 rgvswctl = I915_READ16(MEMSWCTL);
2409
2410 /* Ack interrupts, disable EFC interrupt */
2411 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2412 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2413 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2414 I915_WRITE(DEIIR, DE_PCU_EVENT);
2415 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2416
2417 /* Go back to the starting frequency */
2418 ironlake_set_drps(dev, dev_priv->ips.fstart);
2419 mdelay(1);
2420 rgvswctl |= MEMCTL_CMD_STS;
2421 I915_WRITE(MEMSWCTL, rgvswctl);
2422 mdelay(1);
2423
2424 spin_unlock_irq(&mchdev_lock);
2425 }
2426
2427 /* There's a funny hw issue where the hw returns all 0 when reading from
2428 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2429 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2430 * all limits and the gpu stuck at whatever frequency it is at atm).
2431 */
2432 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2433 {
2434 u32 limits;
2435
2436 limits = 0;
2437
2438 if (*val >= dev_priv->rps.max_delay)
2439 *val = dev_priv->rps.max_delay;
2440 limits |= dev_priv->rps.max_delay << 24;
2441
2442 /* Only set the down limit when we've reached the lowest level to avoid
2443 * getting more interrupts, otherwise leave this clear. This prevents a
2444 * race in the hw when coming out of rc6: There's a tiny window where
2445 * the hw runs at the minimal clock before selecting the desired
2446 * frequency, if the down threshold expires in that window we will not
2447 * receive a down interrupt. */
2448 if (*val <= dev_priv->rps.min_delay) {
2449 *val = dev_priv->rps.min_delay;
2450 limits |= dev_priv->rps.min_delay << 16;
2451 }
2452
2453 return limits;
2454 }
2455
2456 void gen6_set_rps(struct drm_device *dev, u8 val)
2457 {
2458 struct drm_i915_private *dev_priv = dev->dev_private;
2459 u32 limits = gen6_rps_limits(dev_priv, &val);
2460
2461 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2462 WARN_ON(val > dev_priv->rps.max_delay);
2463 WARN_ON(val < dev_priv->rps.min_delay);
2464
2465 if (val == dev_priv->rps.cur_delay)
2466 return;
2467
2468 I915_WRITE(GEN6_RPNSWREQ,
2469 GEN6_FREQUENCY(val) |
2470 GEN6_OFFSET(0) |
2471 GEN6_AGGRESSIVE_TURBO);
2472
2473 /* Make sure we continue to get interrupts
2474 * until we hit the minimum or maximum frequencies.
2475 */
2476 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2477
2478 POSTING_READ(GEN6_RPNSWREQ);
2479
2480 dev_priv->rps.cur_delay = val;
2481
2482 trace_intel_gpu_freq_change(val * 50);
2483 }
2484
2485 static void gen6_disable_rps(struct drm_device *dev)
2486 {
2487 struct drm_i915_private *dev_priv = dev->dev_private;
2488
2489 I915_WRITE(GEN6_RC_CONTROL, 0);
2490 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2491 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2492 I915_WRITE(GEN6_PMIER, 0);
2493 /* Complete PM interrupt masking here doesn't race with the rps work
2494 * item again unmasking PM interrupts because that is using a different
2495 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2496 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2497
2498 spin_lock_irq(&dev_priv->rps.lock);
2499 dev_priv->rps.pm_iir = 0;
2500 spin_unlock_irq(&dev_priv->rps.lock);
2501
2502 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2503 }
2504
2505 int intel_enable_rc6(const struct drm_device *dev)
2506 {
2507 /* Respect the kernel parameter if it is set */
2508 if (i915_enable_rc6 >= 0)
2509 return i915_enable_rc6;
2510
2511 /* Disable RC6 on Ironlake */
2512 if (INTEL_INFO(dev)->gen == 5)
2513 return 0;
2514
2515 if (IS_HASWELL(dev)) {
2516 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2517 return INTEL_RC6_ENABLE;
2518 }
2519
2520 /* snb/ivb have more than one rc6 state. */
2521 if (INTEL_INFO(dev)->gen == 6) {
2522 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2523 return INTEL_RC6_ENABLE;
2524 }
2525
2526 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2527 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2528 }
2529
2530 static void gen6_enable_rps(struct drm_device *dev)
2531 {
2532 struct drm_i915_private *dev_priv = dev->dev_private;
2533 struct intel_ring_buffer *ring;
2534 u32 rp_state_cap;
2535 u32 gt_perf_status;
2536 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2537 u32 gtfifodbg;
2538 int rc6_mode;
2539 int i, ret;
2540
2541 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2542
2543 /* Here begins a magic sequence of register writes to enable
2544 * auto-downclocking.
2545 *
2546 * Perhaps there might be some value in exposing these to
2547 * userspace...
2548 */
2549 I915_WRITE(GEN6_RC_STATE, 0);
2550
2551 /* Clear the DBG now so we don't confuse earlier errors */
2552 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2553 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2554 I915_WRITE(GTFIFODBG, gtfifodbg);
2555 }
2556
2557 gen6_gt_force_wake_get(dev_priv);
2558
2559 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2560 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2561
2562 /* In units of 100MHz */
2563 dev_priv->rps.max_delay = rp_state_cap & 0xff;
2564 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2565 dev_priv->rps.cur_delay = 0;
2566
2567 /* disable the counters and set deterministic thresholds */
2568 I915_WRITE(GEN6_RC_CONTROL, 0);
2569
2570 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2571 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2572 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2573 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2574 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2575
2576 for_each_ring(ring, dev_priv, i)
2577 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2578
2579 I915_WRITE(GEN6_RC_SLEEP, 0);
2580 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2581 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2582 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2583 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2584
2585 /* Check if we are enabling RC6 */
2586 rc6_mode = intel_enable_rc6(dev_priv->dev);
2587 if (rc6_mode & INTEL_RC6_ENABLE)
2588 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2589
2590 /* We don't use those on Haswell */
2591 if (!IS_HASWELL(dev)) {
2592 if (rc6_mode & INTEL_RC6p_ENABLE)
2593 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2594
2595 if (rc6_mode & INTEL_RC6pp_ENABLE)
2596 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2597 }
2598
2599 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2600 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2601 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2602 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2603
2604 I915_WRITE(GEN6_RC_CONTROL,
2605 rc6_mask |
2606 GEN6_RC_CTL_EI_MODE(1) |
2607 GEN6_RC_CTL_HW_ENABLE);
2608
2609 I915_WRITE(GEN6_RPNSWREQ,
2610 GEN6_FREQUENCY(10) |
2611 GEN6_OFFSET(0) |
2612 GEN6_AGGRESSIVE_TURBO);
2613 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2614 GEN6_FREQUENCY(12));
2615
2616 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2617 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2618 dev_priv->rps.max_delay << 24 |
2619 dev_priv->rps.min_delay << 16);
2620
2621 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2622 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2623 I915_WRITE(GEN6_RP_UP_EI, 66000);
2624 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2625
2626 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2627 I915_WRITE(GEN6_RP_CONTROL,
2628 GEN6_RP_MEDIA_TURBO |
2629 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2630 GEN6_RP_MEDIA_IS_GFX |
2631 GEN6_RP_ENABLE |
2632 GEN6_RP_UP_BUSY_AVG |
2633 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2634
2635 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2636 if (!ret) {
2637 pcu_mbox = 0;
2638 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2639 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2640 dev_priv->rps.max_delay = pcu_mbox & 0xff;
2641 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2642 }
2643 } else {
2644 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2645 }
2646
2647 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2648
2649 /* requires MSI enabled */
2650 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2651 spin_lock_irq(&dev_priv->rps.lock);
2652 WARN_ON(dev_priv->rps.pm_iir != 0);
2653 I915_WRITE(GEN6_PMIMR, 0);
2654 spin_unlock_irq(&dev_priv->rps.lock);
2655 /* enable all PM interrupts */
2656 I915_WRITE(GEN6_PMINTRMSK, 0);
2657
2658 rc6vids = 0;
2659 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2660 if (IS_GEN6(dev) && ret) {
2661 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2662 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2663 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2664 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2665 rc6vids &= 0xffff00;
2666 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2667 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2668 if (ret)
2669 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2670 }
2671
2672 gen6_gt_force_wake_put(dev_priv);
2673 }
2674
2675 static void gen6_update_ring_freq(struct drm_device *dev)
2676 {
2677 struct drm_i915_private *dev_priv = dev->dev_private;
2678 int min_freq = 15;
2679 int gpu_freq;
2680 unsigned int ia_freq, max_ia_freq;
2681 int scaling_factor = 180;
2682
2683 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2684
2685 max_ia_freq = cpufreq_quick_get_max(0);
2686 /*
2687 * Default to measured freq if none found, PCU will ensure we don't go
2688 * over
2689 */
2690 if (!max_ia_freq)
2691 max_ia_freq = tsc_khz;
2692
2693 /* Convert from kHz to MHz */
2694 max_ia_freq /= 1000;
2695
2696 /*
2697 * For each potential GPU frequency, load a ring frequency we'd like
2698 * to use for memory access. We do this by specifying the IA frequency
2699 * the PCU should use as a reference to determine the ring frequency.
2700 */
2701 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2702 gpu_freq--) {
2703 int diff = dev_priv->rps.max_delay - gpu_freq;
2704
2705 /*
2706 * For GPU frequencies less than 750MHz, just use the lowest
2707 * ring freq.
2708 */
2709 if (gpu_freq < min_freq)
2710 ia_freq = 800;
2711 else
2712 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2713 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2714 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2715
2716 sandybridge_pcode_write(dev_priv,
2717 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2718 ia_freq | gpu_freq);
2719 }
2720 }
2721
2722 void ironlake_teardown_rc6(struct drm_device *dev)
2723 {
2724 struct drm_i915_private *dev_priv = dev->dev_private;
2725
2726 if (dev_priv->ips.renderctx) {
2727 i915_gem_object_unpin(dev_priv->ips.renderctx);
2728 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2729 dev_priv->ips.renderctx = NULL;
2730 }
2731
2732 if (dev_priv->ips.pwrctx) {
2733 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2734 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2735 dev_priv->ips.pwrctx = NULL;
2736 }
2737 }
2738
2739 static void ironlake_disable_rc6(struct drm_device *dev)
2740 {
2741 struct drm_i915_private *dev_priv = dev->dev_private;
2742
2743 if (I915_READ(PWRCTXA)) {
2744 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2745 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2746 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2747 50);
2748
2749 I915_WRITE(PWRCTXA, 0);
2750 POSTING_READ(PWRCTXA);
2751
2752 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2753 POSTING_READ(RSTDBYCTL);
2754 }
2755 }
2756
2757 static int ironlake_setup_rc6(struct drm_device *dev)
2758 {
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760
2761 if (dev_priv->ips.renderctx == NULL)
2762 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2763 if (!dev_priv->ips.renderctx)
2764 return -ENOMEM;
2765
2766 if (dev_priv->ips.pwrctx == NULL)
2767 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2768 if (!dev_priv->ips.pwrctx) {
2769 ironlake_teardown_rc6(dev);
2770 return -ENOMEM;
2771 }
2772
2773 return 0;
2774 }
2775
2776 static void ironlake_enable_rc6(struct drm_device *dev)
2777 {
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2780 bool was_interruptible;
2781 int ret;
2782
2783 /* rc6 disabled by default due to repeated reports of hanging during
2784 * boot and resume.
2785 */
2786 if (!intel_enable_rc6(dev))
2787 return;
2788
2789 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2790
2791 ret = ironlake_setup_rc6(dev);
2792 if (ret)
2793 return;
2794
2795 was_interruptible = dev_priv->mm.interruptible;
2796 dev_priv->mm.interruptible = false;
2797
2798 /*
2799 * GPU can automatically power down the render unit if given a page
2800 * to save state.
2801 */
2802 ret = intel_ring_begin(ring, 6);
2803 if (ret) {
2804 ironlake_teardown_rc6(dev);
2805 dev_priv->mm.interruptible = was_interruptible;
2806 return;
2807 }
2808
2809 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2810 intel_ring_emit(ring, MI_SET_CONTEXT);
2811 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2812 MI_MM_SPACE_GTT |
2813 MI_SAVE_EXT_STATE_EN |
2814 MI_RESTORE_EXT_STATE_EN |
2815 MI_RESTORE_INHIBIT);
2816 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2817 intel_ring_emit(ring, MI_NOOP);
2818 intel_ring_emit(ring, MI_FLUSH);
2819 intel_ring_advance(ring);
2820
2821 /*
2822 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2823 * does an implicit flush, combined with MI_FLUSH above, it should be
2824 * safe to assume that renderctx is valid
2825 */
2826 ret = intel_ring_idle(ring);
2827 dev_priv->mm.interruptible = was_interruptible;
2828 if (ret) {
2829 DRM_ERROR("failed to enable ironlake power power savings\n");
2830 ironlake_teardown_rc6(dev);
2831 return;
2832 }
2833
2834 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2835 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2836 }
2837
2838 static unsigned long intel_pxfreq(u32 vidfreq)
2839 {
2840 unsigned long freq;
2841 int div = (vidfreq & 0x3f0000) >> 16;
2842 int post = (vidfreq & 0x3000) >> 12;
2843 int pre = (vidfreq & 0x7);
2844
2845 if (!pre)
2846 return 0;
2847
2848 freq = ((div * 133333) / ((1<<post) * pre));
2849
2850 return freq;
2851 }
2852
2853 static const struct cparams {
2854 u16 i;
2855 u16 t;
2856 u16 m;
2857 u16 c;
2858 } cparams[] = {
2859 { 1, 1333, 301, 28664 },
2860 { 1, 1066, 294, 24460 },
2861 { 1, 800, 294, 25192 },
2862 { 0, 1333, 276, 27605 },
2863 { 0, 1066, 276, 27605 },
2864 { 0, 800, 231, 23784 },
2865 };
2866
2867 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2868 {
2869 u64 total_count, diff, ret;
2870 u32 count1, count2, count3, m = 0, c = 0;
2871 unsigned long now = jiffies_to_msecs(jiffies), diff1;
2872 int i;
2873
2874 assert_spin_locked(&mchdev_lock);
2875
2876 diff1 = now - dev_priv->ips.last_time1;
2877
2878 /* Prevent division-by-zero if we are asking too fast.
2879 * Also, we don't get interesting results if we are polling
2880 * faster than once in 10ms, so just return the saved value
2881 * in such cases.
2882 */
2883 if (diff1 <= 10)
2884 return dev_priv->ips.chipset_power;
2885
2886 count1 = I915_READ(DMIEC);
2887 count2 = I915_READ(DDREC);
2888 count3 = I915_READ(CSIEC);
2889
2890 total_count = count1 + count2 + count3;
2891
2892 /* FIXME: handle per-counter overflow */
2893 if (total_count < dev_priv->ips.last_count1) {
2894 diff = ~0UL - dev_priv->ips.last_count1;
2895 diff += total_count;
2896 } else {
2897 diff = total_count - dev_priv->ips.last_count1;
2898 }
2899
2900 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2901 if (cparams[i].i == dev_priv->ips.c_m &&
2902 cparams[i].t == dev_priv->ips.r_t) {
2903 m = cparams[i].m;
2904 c = cparams[i].c;
2905 break;
2906 }
2907 }
2908
2909 diff = div_u64(diff, diff1);
2910 ret = ((m * diff) + c);
2911 ret = div_u64(ret, 10);
2912
2913 dev_priv->ips.last_count1 = total_count;
2914 dev_priv->ips.last_time1 = now;
2915
2916 dev_priv->ips.chipset_power = ret;
2917
2918 return ret;
2919 }
2920
2921 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2922 {
2923 unsigned long val;
2924
2925 if (dev_priv->info->gen != 5)
2926 return 0;
2927
2928 spin_lock_irq(&mchdev_lock);
2929
2930 val = __i915_chipset_val(dev_priv);
2931
2932 spin_unlock_irq(&mchdev_lock);
2933
2934 return val;
2935 }
2936
2937 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2938 {
2939 unsigned long m, x, b;
2940 u32 tsfs;
2941
2942 tsfs = I915_READ(TSFS);
2943
2944 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2945 x = I915_READ8(TR1);
2946
2947 b = tsfs & TSFS_INTR_MASK;
2948
2949 return ((m * x) / 127) - b;
2950 }
2951
2952 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2953 {
2954 static const struct v_table {
2955 u16 vd; /* in .1 mil */
2956 u16 vm; /* in .1 mil */
2957 } v_table[] = {
2958 { 0, 0, },
2959 { 375, 0, },
2960 { 500, 0, },
2961 { 625, 0, },
2962 { 750, 0, },
2963 { 875, 0, },
2964 { 1000, 0, },
2965 { 1125, 0, },
2966 { 4125, 3000, },
2967 { 4125, 3000, },
2968 { 4125, 3000, },
2969 { 4125, 3000, },
2970 { 4125, 3000, },
2971 { 4125, 3000, },
2972 { 4125, 3000, },
2973 { 4125, 3000, },
2974 { 4125, 3000, },
2975 { 4125, 3000, },
2976 { 4125, 3000, },
2977 { 4125, 3000, },
2978 { 4125, 3000, },
2979 { 4125, 3000, },
2980 { 4125, 3000, },
2981 { 4125, 3000, },
2982 { 4125, 3000, },
2983 { 4125, 3000, },
2984 { 4125, 3000, },
2985 { 4125, 3000, },
2986 { 4125, 3000, },
2987 { 4125, 3000, },
2988 { 4125, 3000, },
2989 { 4125, 3000, },
2990 { 4250, 3125, },
2991 { 4375, 3250, },
2992 { 4500, 3375, },
2993 { 4625, 3500, },
2994 { 4750, 3625, },
2995 { 4875, 3750, },
2996 { 5000, 3875, },
2997 { 5125, 4000, },
2998 { 5250, 4125, },
2999 { 5375, 4250, },
3000 { 5500, 4375, },
3001 { 5625, 4500, },
3002 { 5750, 4625, },
3003 { 5875, 4750, },
3004 { 6000, 4875, },
3005 { 6125, 5000, },
3006 { 6250, 5125, },
3007 { 6375, 5250, },
3008 { 6500, 5375, },
3009 { 6625, 5500, },
3010 { 6750, 5625, },
3011 { 6875, 5750, },
3012 { 7000, 5875, },
3013 { 7125, 6000, },
3014 { 7250, 6125, },
3015 { 7375, 6250, },
3016 { 7500, 6375, },
3017 { 7625, 6500, },
3018 { 7750, 6625, },
3019 { 7875, 6750, },
3020 { 8000, 6875, },
3021 { 8125, 7000, },
3022 { 8250, 7125, },
3023 { 8375, 7250, },
3024 { 8500, 7375, },
3025 { 8625, 7500, },
3026 { 8750, 7625, },
3027 { 8875, 7750, },
3028 { 9000, 7875, },
3029 { 9125, 8000, },
3030 { 9250, 8125, },
3031 { 9375, 8250, },
3032 { 9500, 8375, },
3033 { 9625, 8500, },
3034 { 9750, 8625, },
3035 { 9875, 8750, },
3036 { 10000, 8875, },
3037 { 10125, 9000, },
3038 { 10250, 9125, },
3039 { 10375, 9250, },
3040 { 10500, 9375, },
3041 { 10625, 9500, },
3042 { 10750, 9625, },
3043 { 10875, 9750, },
3044 { 11000, 9875, },
3045 { 11125, 10000, },
3046 { 11250, 10125, },
3047 { 11375, 10250, },
3048 { 11500, 10375, },
3049 { 11625, 10500, },
3050 { 11750, 10625, },
3051 { 11875, 10750, },
3052 { 12000, 10875, },
3053 { 12125, 11000, },
3054 { 12250, 11125, },
3055 { 12375, 11250, },
3056 { 12500, 11375, },
3057 { 12625, 11500, },
3058 { 12750, 11625, },
3059 { 12875, 11750, },
3060 { 13000, 11875, },
3061 { 13125, 12000, },
3062 { 13250, 12125, },
3063 { 13375, 12250, },
3064 { 13500, 12375, },
3065 { 13625, 12500, },
3066 { 13750, 12625, },
3067 { 13875, 12750, },
3068 { 14000, 12875, },
3069 { 14125, 13000, },
3070 { 14250, 13125, },
3071 { 14375, 13250, },
3072 { 14500, 13375, },
3073 { 14625, 13500, },
3074 { 14750, 13625, },
3075 { 14875, 13750, },
3076 { 15000, 13875, },
3077 { 15125, 14000, },
3078 { 15250, 14125, },
3079 { 15375, 14250, },
3080 { 15500, 14375, },
3081 { 15625, 14500, },
3082 { 15750, 14625, },
3083 { 15875, 14750, },
3084 { 16000, 14875, },
3085 { 16125, 15000, },
3086 };
3087 if (dev_priv->info->is_mobile)
3088 return v_table[pxvid].vm;
3089 else
3090 return v_table[pxvid].vd;
3091 }
3092
3093 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3094 {
3095 struct timespec now, diff1;
3096 u64 diff;
3097 unsigned long diffms;
3098 u32 count;
3099
3100 assert_spin_locked(&mchdev_lock);
3101
3102 getrawmonotonic(&now);
3103 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3104
3105 /* Don't divide by 0 */
3106 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3107 if (!diffms)
3108 return;
3109
3110 count = I915_READ(GFXEC);
3111
3112 if (count < dev_priv->ips.last_count2) {
3113 diff = ~0UL - dev_priv->ips.last_count2;
3114 diff += count;
3115 } else {
3116 diff = count - dev_priv->ips.last_count2;
3117 }
3118
3119 dev_priv->ips.last_count2 = count;
3120 dev_priv->ips.last_time2 = now;
3121
3122 /* More magic constants... */
3123 diff = diff * 1181;
3124 diff = div_u64(diff, diffms * 10);
3125 dev_priv->ips.gfx_power = diff;
3126 }
3127
3128 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3129 {
3130 if (dev_priv->info->gen != 5)
3131 return;
3132
3133 spin_lock_irq(&mchdev_lock);
3134
3135 __i915_update_gfx_val(dev_priv);
3136
3137 spin_unlock_irq(&mchdev_lock);
3138 }
3139
3140 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3141 {
3142 unsigned long t, corr, state1, corr2, state2;
3143 u32 pxvid, ext_v;
3144
3145 assert_spin_locked(&mchdev_lock);
3146
3147 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3148 pxvid = (pxvid >> 24) & 0x7f;
3149 ext_v = pvid_to_extvid(dev_priv, pxvid);
3150
3151 state1 = ext_v;
3152
3153 t = i915_mch_val(dev_priv);
3154
3155 /* Revel in the empirically derived constants */
3156
3157 /* Correction factor in 1/100000 units */
3158 if (t > 80)
3159 corr = ((t * 2349) + 135940);
3160 else if (t >= 50)
3161 corr = ((t * 964) + 29317);
3162 else /* < 50 */
3163 corr = ((t * 301) + 1004);
3164
3165 corr = corr * ((150142 * state1) / 10000 - 78642);
3166 corr /= 100000;
3167 corr2 = (corr * dev_priv->ips.corr);
3168
3169 state2 = (corr2 * state1) / 10000;
3170 state2 /= 100; /* convert to mW */
3171
3172 __i915_update_gfx_val(dev_priv);
3173
3174 return dev_priv->ips.gfx_power + state2;
3175 }
3176
3177 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3178 {
3179 unsigned long val;
3180
3181 if (dev_priv->info->gen != 5)
3182 return 0;
3183
3184 spin_lock_irq(&mchdev_lock);
3185
3186 val = __i915_gfx_val(dev_priv);
3187
3188 spin_unlock_irq(&mchdev_lock);
3189
3190 return val;
3191 }
3192
3193 /**
3194 * i915_read_mch_val - return value for IPS use
3195 *
3196 * Calculate and return a value for the IPS driver to use when deciding whether
3197 * we have thermal and power headroom to increase CPU or GPU power budget.
3198 */
3199 unsigned long i915_read_mch_val(void)
3200 {
3201 struct drm_i915_private *dev_priv;
3202 unsigned long chipset_val, graphics_val, ret = 0;
3203
3204 spin_lock_irq(&mchdev_lock);
3205 if (!i915_mch_dev)
3206 goto out_unlock;
3207 dev_priv = i915_mch_dev;
3208
3209 chipset_val = __i915_chipset_val(dev_priv);
3210 graphics_val = __i915_gfx_val(dev_priv);
3211
3212 ret = chipset_val + graphics_val;
3213
3214 out_unlock:
3215 spin_unlock_irq(&mchdev_lock);
3216
3217 return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3220
3221 /**
3222 * i915_gpu_raise - raise GPU frequency limit
3223 *
3224 * Raise the limit; IPS indicates we have thermal headroom.
3225 */
3226 bool i915_gpu_raise(void)
3227 {
3228 struct drm_i915_private *dev_priv;
3229 bool ret = true;
3230
3231 spin_lock_irq(&mchdev_lock);
3232 if (!i915_mch_dev) {
3233 ret = false;
3234 goto out_unlock;
3235 }
3236 dev_priv = i915_mch_dev;
3237
3238 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3239 dev_priv->ips.max_delay--;
3240
3241 out_unlock:
3242 spin_unlock_irq(&mchdev_lock);
3243
3244 return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3247
3248 /**
3249 * i915_gpu_lower - lower GPU frequency limit
3250 *
3251 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3252 * frequency maximum.
3253 */
3254 bool i915_gpu_lower(void)
3255 {
3256 struct drm_i915_private *dev_priv;
3257 bool ret = true;
3258
3259 spin_lock_irq(&mchdev_lock);
3260 if (!i915_mch_dev) {
3261 ret = false;
3262 goto out_unlock;
3263 }
3264 dev_priv = i915_mch_dev;
3265
3266 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3267 dev_priv->ips.max_delay++;
3268
3269 out_unlock:
3270 spin_unlock_irq(&mchdev_lock);
3271
3272 return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3275
3276 /**
3277 * i915_gpu_busy - indicate GPU business to IPS
3278 *
3279 * Tell the IPS driver whether or not the GPU is busy.
3280 */
3281 bool i915_gpu_busy(void)
3282 {
3283 struct drm_i915_private *dev_priv;
3284 struct intel_ring_buffer *ring;
3285 bool ret = false;
3286 int i;
3287
3288 spin_lock_irq(&mchdev_lock);
3289 if (!i915_mch_dev)
3290 goto out_unlock;
3291 dev_priv = i915_mch_dev;
3292
3293 for_each_ring(ring, dev_priv, i)
3294 ret |= !list_empty(&ring->request_list);
3295
3296 out_unlock:
3297 spin_unlock_irq(&mchdev_lock);
3298
3299 return ret;
3300 }
3301 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3302
3303 /**
3304 * i915_gpu_turbo_disable - disable graphics turbo
3305 *
3306 * Disable graphics turbo by resetting the max frequency and setting the
3307 * current frequency to the default.
3308 */
3309 bool i915_gpu_turbo_disable(void)
3310 {
3311 struct drm_i915_private *dev_priv;
3312 bool ret = true;
3313
3314 spin_lock_irq(&mchdev_lock);
3315 if (!i915_mch_dev) {
3316 ret = false;
3317 goto out_unlock;
3318 }
3319 dev_priv = i915_mch_dev;
3320
3321 dev_priv->ips.max_delay = dev_priv->ips.fstart;
3322
3323 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3324 ret = false;
3325
3326 out_unlock:
3327 spin_unlock_irq(&mchdev_lock);
3328
3329 return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3332
3333 /**
3334 * Tells the intel_ips driver that the i915 driver is now loaded, if
3335 * IPS got loaded first.
3336 *
3337 * This awkward dance is so that neither module has to depend on the
3338 * other in order for IPS to do the appropriate communication of
3339 * GPU turbo limits to i915.
3340 */
3341 static void
3342 ips_ping_for_i915_load(void)
3343 {
3344 #ifndef __NetBSD__ /* XXX whattakludge for Linux module mania */
3345 void (*link)(void);
3346
3347 link = symbol_get(ips_link_to_i915_driver);
3348 if (link) {
3349 link();
3350 symbol_put(ips_link_to_i915_driver);
3351 }
3352 #endif
3353 }
3354
3355 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3356 {
3357 /* We only register the i915 ips part with intel-ips once everything is
3358 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3359 spin_lock_irq(&mchdev_lock);
3360 i915_mch_dev = dev_priv;
3361 spin_unlock_irq(&mchdev_lock);
3362
3363 ips_ping_for_i915_load();
3364 }
3365
3366 void intel_gpu_ips_teardown(void)
3367 {
3368 spin_lock_irq(&mchdev_lock);
3369 i915_mch_dev = NULL;
3370 spin_unlock_irq(&mchdev_lock);
3371 }
3372 static void intel_init_emon(struct drm_device *dev)
3373 {
3374 struct drm_i915_private *dev_priv = dev->dev_private;
3375 u32 lcfuse;
3376 u8 pxw[16];
3377 int i;
3378
3379 /* Disable to program */
3380 I915_WRITE(ECR, 0);
3381 POSTING_READ(ECR);
3382
3383 /* Program energy weights for various events */
3384 I915_WRITE(SDEW, 0x15040d00);
3385 I915_WRITE(CSIEW0, 0x007f0000);
3386 I915_WRITE(CSIEW1, 0x1e220004);
3387 I915_WRITE(CSIEW2, 0x04000004);
3388
3389 for (i = 0; i < 5; i++)
3390 I915_WRITE(PEW + (i * 4), 0);
3391 for (i = 0; i < 3; i++)
3392 I915_WRITE(DEW + (i * 4), 0);
3393
3394 /* Program P-state weights to account for frequency power adjustment */
3395 for (i = 0; i < 16; i++) {
3396 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3397 unsigned long freq = intel_pxfreq(pxvidfreq);
3398 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3399 PXVFREQ_PX_SHIFT;
3400 unsigned long val;
3401
3402 val = vid * vid;
3403 val *= (freq / 1000);
3404 val *= 255;
3405 val /= (127*127*900);
3406 if (val > 0xff)
3407 DRM_ERROR("bad pxval: %ld\n", val);
3408 pxw[i] = val;
3409 }
3410 /* Render standby states get 0 weight */
3411 pxw[14] = 0;
3412 pxw[15] = 0;
3413
3414 for (i = 0; i < 4; i++) {
3415 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3416 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3417 I915_WRITE(PXW + (i * 4), val);
3418 }
3419
3420 /* Adjust magic regs to magic values (more experimental results) */
3421 I915_WRITE(OGW0, 0);
3422 I915_WRITE(OGW1, 0);
3423 I915_WRITE(EG0, 0x00007f00);
3424 I915_WRITE(EG1, 0x0000000e);
3425 I915_WRITE(EG2, 0x000e0000);
3426 I915_WRITE(EG3, 0x68000300);
3427 I915_WRITE(EG4, 0x42000000);
3428 I915_WRITE(EG5, 0x00140031);
3429 I915_WRITE(EG6, 0);
3430 I915_WRITE(EG7, 0);
3431
3432 for (i = 0; i < 8; i++)
3433 I915_WRITE(PXWL + (i * 4), 0);
3434
3435 /* Enable PMON + select events */
3436 I915_WRITE(ECR, 0x80000019);
3437
3438 lcfuse = I915_READ(LCFUSE02);
3439
3440 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3441 }
3442
3443 void intel_disable_gt_powersave(struct drm_device *dev)
3444 {
3445 struct drm_i915_private *dev_priv = dev->dev_private;
3446
3447 if (IS_IRONLAKE_M(dev)) {
3448 ironlake_disable_drps(dev);
3449 ironlake_disable_rc6(dev);
3450 } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3451 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3452 mutex_lock(&dev_priv->rps.hw_lock);
3453 gen6_disable_rps(dev);
3454 mutex_unlock(&dev_priv->rps.hw_lock);
3455 }
3456 }
3457
3458 static void intel_gen6_powersave_work(struct work_struct *work)
3459 {
3460 struct drm_i915_private *dev_priv =
3461 container_of(work, struct drm_i915_private,
3462 rps.delayed_resume_work.work);
3463 struct drm_device *dev = dev_priv->dev;
3464
3465 mutex_lock(&dev_priv->rps.hw_lock);
3466 gen6_enable_rps(dev);
3467 gen6_update_ring_freq(dev);
3468 mutex_unlock(&dev_priv->rps.hw_lock);
3469 }
3470
3471 void intel_enable_gt_powersave(struct drm_device *dev)
3472 {
3473 struct drm_i915_private *dev_priv = dev->dev_private;
3474
3475 if (IS_IRONLAKE_M(dev)) {
3476 ironlake_enable_drps(dev);
3477 ironlake_enable_rc6(dev);
3478 intel_init_emon(dev);
3479 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3480 /*
3481 * PCU communication is slow and this doesn't need to be
3482 * done at any specific time, so do this out of our fast path
3483 * to make resume and init faster.
3484 */
3485 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3486 round_jiffies_up_relative(HZ));
3487 }
3488 }
3489
3490 static void ibx_init_clock_gating(struct drm_device *dev)
3491 {
3492 struct drm_i915_private *dev_priv = dev->dev_private;
3493
3494 /*
3495 * On Ibex Peak and Cougar Point, we need to disable clock
3496 * gating for the panel power sequencer or it will fail to
3497 * start up when no ports are active.
3498 */
3499 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3500 }
3501
3502 static void ironlake_init_clock_gating(struct drm_device *dev)
3503 {
3504 struct drm_i915_private *dev_priv = dev->dev_private;
3505 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3506
3507 /* Required for FBC */
3508 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3509 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3510 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3511
3512 I915_WRITE(PCH_3DCGDIS0,
3513 MARIUNIT_CLOCK_GATE_DISABLE |
3514 SVSMUNIT_CLOCK_GATE_DISABLE);
3515 I915_WRITE(PCH_3DCGDIS1,
3516 VFMUNIT_CLOCK_GATE_DISABLE);
3517
3518 /*
3519 * According to the spec the following bits should be set in
3520 * order to enable memory self-refresh
3521 * The bit 22/21 of 0x42004
3522 * The bit 5 of 0x42020
3523 * The bit 15 of 0x45000
3524 */
3525 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3526 (I915_READ(ILK_DISPLAY_CHICKEN2) |
3527 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3528 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3529 I915_WRITE(DISP_ARB_CTL,
3530 (I915_READ(DISP_ARB_CTL) |
3531 DISP_FBC_WM_DIS));
3532 I915_WRITE(WM3_LP_ILK, 0);
3533 I915_WRITE(WM2_LP_ILK, 0);
3534 I915_WRITE(WM1_LP_ILK, 0);
3535
3536 /*
3537 * Based on the document from hardware guys the following bits
3538 * should be set unconditionally in order to enable FBC.
3539 * The bit 22 of 0x42000
3540 * The bit 22 of 0x42004
3541 * The bit 7,8,9 of 0x42020.
3542 */
3543 if (IS_IRONLAKE_M(dev)) {
3544 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3545 I915_READ(ILK_DISPLAY_CHICKEN1) |
3546 ILK_FBCQ_DIS);
3547 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3548 I915_READ(ILK_DISPLAY_CHICKEN2) |
3549 ILK_DPARB_GATE);
3550 }
3551
3552 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3553
3554 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3555 I915_READ(ILK_DISPLAY_CHICKEN2) |
3556 ILK_ELPIN_409_SELECT);
3557 I915_WRITE(_3D_CHICKEN2,
3558 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3559 _3D_CHICKEN2_WM_READ_PIPELINED);
3560
3561 /* WaDisableRenderCachePipelinedFlush */
3562 I915_WRITE(CACHE_MODE_0,
3563 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3564
3565 ibx_init_clock_gating(dev);
3566 }
3567
3568 static void cpt_init_clock_gating(struct drm_device *dev)
3569 {
3570 struct drm_i915_private *dev_priv = dev->dev_private;
3571 int pipe;
3572
3573 /*
3574 * On Ibex Peak and Cougar Point, we need to disable clock
3575 * gating for the panel power sequencer or it will fail to
3576 * start up when no ports are active.
3577 */
3578 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3579 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3580 DPLS_EDP_PPS_FIX_DIS);
3581 /* The below fixes the weird display corruption, a few pixels shifted
3582 * downward, on (only) LVDS of some HP laptops with IVY.
3583 */
3584 for_each_pipe(pipe)
3585 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
3586 /* WADP0ClockGatingDisable */
3587 for_each_pipe(pipe) {
3588 I915_WRITE(TRANS_CHICKEN1(pipe),
3589 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3590 }
3591 }
3592
3593 static void gen6_init_clock_gating(struct drm_device *dev)
3594 {
3595 struct drm_i915_private *dev_priv = dev->dev_private;
3596 int pipe;
3597 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3598
3599 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3600
3601 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3602 I915_READ(ILK_DISPLAY_CHICKEN2) |
3603 ILK_ELPIN_409_SELECT);
3604
3605 /* WaDisableHiZPlanesWhenMSAAEnabled */
3606 I915_WRITE(_3D_CHICKEN,
3607 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3608
3609 /* WaSetupGtModeTdRowDispatch */
3610 if (IS_SNB_GT1(dev))
3611 I915_WRITE(GEN6_GT_MODE,
3612 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3613
3614 I915_WRITE(WM3_LP_ILK, 0);
3615 I915_WRITE(WM2_LP_ILK, 0);
3616 I915_WRITE(WM1_LP_ILK, 0);
3617
3618 I915_WRITE(CACHE_MODE_0,
3619 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3620
3621 I915_WRITE(GEN6_UCGCTL1,
3622 I915_READ(GEN6_UCGCTL1) |
3623 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3624 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3625
3626 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3627 * gating disable must be set. Failure to set it results in
3628 * flickering pixels due to Z write ordering failures after
3629 * some amount of runtime in the Mesa "fire" demo, and Unigine
3630 * Sanctuary and Tropics, and apparently anything else with
3631 * alpha test or pixel discard.
3632 *
3633 * According to the spec, bit 11 (RCCUNIT) must also be set,
3634 * but we didn't debug actual testcases to find it out.
3635 *
3636 * Also apply WaDisableVDSUnitClockGating and
3637 * WaDisableRCPBUnitClockGating.
3638 */
3639 I915_WRITE(GEN6_UCGCTL2,
3640 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3641 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3642 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3643
3644 /* Bspec says we need to always set all mask bits. */
3645 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3646 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3647
3648 /*
3649 * According to the spec the following bits should be
3650 * set in order to enable memory self-refresh and fbc:
3651 * The bit21 and bit22 of 0x42000
3652 * The bit21 and bit22 of 0x42004
3653 * The bit5 and bit7 of 0x42020
3654 * The bit14 of 0x70180
3655 * The bit14 of 0x71180
3656 */
3657 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3658 I915_READ(ILK_DISPLAY_CHICKEN1) |
3659 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3660 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3661 I915_READ(ILK_DISPLAY_CHICKEN2) |
3662 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3663 I915_WRITE(ILK_DSPCLK_GATE_D,
3664 I915_READ(ILK_DSPCLK_GATE_D) |
3665 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
3666 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3667
3668 /* WaMbcDriverBootEnable */
3669 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3670 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3671
3672 for_each_pipe(pipe) {
3673 I915_WRITE(DSPCNTR(pipe),
3674 I915_READ(DSPCNTR(pipe)) |
3675 DISPPLANE_TRICKLE_FEED_DISABLE);
3676 intel_flush_display_plane(dev_priv, pipe);
3677 }
3678
3679 /* The default value should be 0x200 according to docs, but the two
3680 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3681 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3682 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3683
3684 cpt_init_clock_gating(dev);
3685 }
3686
3687 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3688 {
3689 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3690
3691 reg &= ~GEN7_FF_SCHED_MASK;
3692 reg |= GEN7_FF_TS_SCHED_HW;
3693 reg |= GEN7_FF_VS_SCHED_HW;
3694 reg |= GEN7_FF_DS_SCHED_HW;
3695
3696 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3697 }
3698
3699 static void lpt_init_clock_gating(struct drm_device *dev)
3700 {
3701 struct drm_i915_private *dev_priv = dev->dev_private;
3702
3703 /*
3704 * TODO: this bit should only be enabled when really needed, then
3705 * disabled when not needed anymore in order to save power.
3706 */
3707 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3708 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3709 I915_READ(SOUTH_DSPCLK_GATE_D) |
3710 PCH_LP_PARTITION_LEVEL_DISABLE);
3711 }
3712
3713 static void haswell_init_clock_gating(struct drm_device *dev)
3714 {
3715 struct drm_i915_private *dev_priv = dev->dev_private;
3716 int pipe;
3717
3718 I915_WRITE(WM3_LP_ILK, 0);
3719 I915_WRITE(WM2_LP_ILK, 0);
3720 I915_WRITE(WM1_LP_ILK, 0);
3721
3722 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3723 * This implements the WaDisableRCZUnitClockGating workaround.
3724 */
3725 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3726
3727 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3728 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3729 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3730
3731 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3732 I915_WRITE(GEN7_L3CNTLREG1,
3733 GEN7_WA_FOR_GEN7_L3_CONTROL);
3734 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3735 GEN7_WA_L3_CHICKEN_MODE);
3736
3737 /* This is required by WaCatErrorRejectionIssue */
3738 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3739 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3740 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3741
3742 for_each_pipe(pipe) {
3743 I915_WRITE(DSPCNTR(pipe),
3744 I915_READ(DSPCNTR(pipe)) |
3745 DISPPLANE_TRICKLE_FEED_DISABLE);
3746 intel_flush_display_plane(dev_priv, pipe);
3747 }
3748
3749 gen7_setup_fixed_func_scheduler(dev_priv);
3750
3751 /* WaDisable4x2SubspanOptimization */
3752 I915_WRITE(CACHE_MODE_1,
3753 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3754
3755 /* WaMbcDriverBootEnable */
3756 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3757 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3758
3759 /* XXX: This is a workaround for early silicon revisions and should be
3760 * removed later.
3761 */
3762 I915_WRITE(WM_DBG,
3763 I915_READ(WM_DBG) |
3764 WM_DBG_DISALLOW_MULTIPLE_LP |
3765 WM_DBG_DISALLOW_SPRITE |
3766 WM_DBG_DISALLOW_MAXFIFO);
3767
3768 lpt_init_clock_gating(dev);
3769 }
3770
3771 static void ivybridge_init_clock_gating(struct drm_device *dev)
3772 {
3773 struct drm_i915_private *dev_priv = dev->dev_private;
3774 int pipe;
3775 uint32_t snpcr;
3776
3777 I915_WRITE(WM3_LP_ILK, 0);
3778 I915_WRITE(WM2_LP_ILK, 0);
3779 I915_WRITE(WM1_LP_ILK, 0);
3780
3781 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3782
3783 /* WaDisableEarlyCull */
3784 I915_WRITE(_3D_CHICKEN3,
3785 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3786
3787 /* WaDisableBackToBackFlipFix */
3788 I915_WRITE(IVB_CHICKEN3,
3789 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3790 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3791
3792 /* WaDisablePSDDualDispatchEnable */
3793 if (IS_IVB_GT1(dev))
3794 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3795 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3796 else
3797 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3798 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3799
3800 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3801 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3802 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3803
3804 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3805 I915_WRITE(GEN7_L3CNTLREG1,
3806 GEN7_WA_FOR_GEN7_L3_CONTROL);
3807 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3808 GEN7_WA_L3_CHICKEN_MODE);
3809 if (IS_IVB_GT1(dev))
3810 I915_WRITE(GEN7_ROW_CHICKEN2,
3811 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3812 else
3813 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3814 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3815
3816
3817 /* WaForceL3Serialization */
3818 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3819 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3820
3821 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3822 * gating disable must be set. Failure to set it results in
3823 * flickering pixels due to Z write ordering failures after
3824 * some amount of runtime in the Mesa "fire" demo, and Unigine
3825 * Sanctuary and Tropics, and apparently anything else with
3826 * alpha test or pixel discard.
3827 *
3828 * According to the spec, bit 11 (RCCUNIT) must also be set,
3829 * but we didn't debug actual testcases to find it out.
3830 *
3831 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3832 * This implements the WaDisableRCZUnitClockGating workaround.
3833 */
3834 I915_WRITE(GEN6_UCGCTL2,
3835 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3836 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3837
3838 /* This is required by WaCatErrorRejectionIssue */
3839 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3840 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3841 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3842
3843 for_each_pipe(pipe) {
3844 I915_WRITE(DSPCNTR(pipe),
3845 I915_READ(DSPCNTR(pipe)) |
3846 DISPPLANE_TRICKLE_FEED_DISABLE);
3847 intel_flush_display_plane(dev_priv, pipe);
3848 }
3849
3850 /* WaMbcDriverBootEnable */
3851 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3852 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3853
3854 gen7_setup_fixed_func_scheduler(dev_priv);
3855
3856 /* WaDisable4x2SubspanOptimization */
3857 I915_WRITE(CACHE_MODE_1,
3858 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3859
3860 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3861 snpcr &= ~GEN6_MBC_SNPCR_MASK;
3862 snpcr |= GEN6_MBC_SNPCR_MED;
3863 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3864
3865 cpt_init_clock_gating(dev);
3866 }
3867
3868 static void valleyview_init_clock_gating(struct drm_device *dev)
3869 {
3870 struct drm_i915_private *dev_priv = dev->dev_private;
3871 int pipe;
3872
3873 I915_WRITE(WM3_LP_ILK, 0);
3874 I915_WRITE(WM2_LP_ILK, 0);
3875 I915_WRITE(WM1_LP_ILK, 0);
3876
3877 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3878
3879 /* WaDisableEarlyCull */
3880 I915_WRITE(_3D_CHICKEN3,
3881 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3882
3883 /* WaDisableBackToBackFlipFix */
3884 I915_WRITE(IVB_CHICKEN3,
3885 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3886 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3887
3888 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3889 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3890
3891 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3892 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3893 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3894
3895 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3896 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3897 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3898
3899 /* WaForceL3Serialization */
3900 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3901 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3902
3903 /* WaDisableDopClockGating */
3904 I915_WRITE(GEN7_ROW_CHICKEN2,
3905 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3906
3907 /* WaForceL3Serialization */
3908 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3909 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3910
3911 /* This is required by WaCatErrorRejectionIssue */
3912 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3913 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3914 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3915
3916 /* WaMbcDriverBootEnable */
3917 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3918 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3919
3920
3921 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3922 * gating disable must be set. Failure to set it results in
3923 * flickering pixels due to Z write ordering failures after
3924 * some amount of runtime in the Mesa "fire" demo, and Unigine
3925 * Sanctuary and Tropics, and apparently anything else with
3926 * alpha test or pixel discard.
3927 *
3928 * According to the spec, bit 11 (RCCUNIT) must also be set,
3929 * but we didn't debug actual testcases to find it out.
3930 *
3931 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3932 * This implements the WaDisableRCZUnitClockGating workaround.
3933 *
3934 * Also apply WaDisableVDSUnitClockGating and
3935 * WaDisableRCPBUnitClockGating.
3936 */
3937 I915_WRITE(GEN6_UCGCTL2,
3938 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3939 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3940 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3941 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3942 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3943
3944 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3945
3946 for_each_pipe(pipe) {
3947 I915_WRITE(DSPCNTR(pipe),
3948 I915_READ(DSPCNTR(pipe)) |
3949 DISPPLANE_TRICKLE_FEED_DISABLE);
3950 intel_flush_display_plane(dev_priv, pipe);
3951 }
3952
3953 I915_WRITE(CACHE_MODE_1,
3954 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3955
3956 /*
3957 * On ValleyView, the GUnit needs to signal the GT
3958 * when flip and other events complete. So enable
3959 * all the GUnit->GT interrupts here
3960 */
3961 I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3962 PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3963 SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3964 PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3965 PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3966 SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3967 PLANEA_FLIPDONE_INT_EN);
3968
3969 /*
3970 * WaDisableVLVClockGating_VBIIssue
3971 * Disable clock gating on th GCFG unit to prevent a delay
3972 * in the reporting of vblank events.
3973 */
3974 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3975 }
3976
3977 static void g4x_init_clock_gating(struct drm_device *dev)
3978 {
3979 struct drm_i915_private *dev_priv = dev->dev_private;
3980 uint32_t dspclk_gate;
3981
3982 I915_WRITE(RENCLK_GATE_D1, 0);
3983 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3984 GS_UNIT_CLOCK_GATE_DISABLE |
3985 CL_UNIT_CLOCK_GATE_DISABLE);
3986 I915_WRITE(RAMCLK_GATE_D, 0);
3987 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3988 OVRUNIT_CLOCK_GATE_DISABLE |
3989 OVCUNIT_CLOCK_GATE_DISABLE;
3990 if (IS_GM45(dev))
3991 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3992 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3993
3994 /* WaDisableRenderCachePipelinedFlush */
3995 I915_WRITE(CACHE_MODE_0,
3996 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3997 }
3998
3999 static void crestline_init_clock_gating(struct drm_device *dev)
4000 {
4001 struct drm_i915_private *dev_priv = dev->dev_private;
4002
4003 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4004 I915_WRITE(RENCLK_GATE_D2, 0);
4005 I915_WRITE(DSPCLK_GATE_D, 0);
4006 I915_WRITE(RAMCLK_GATE_D, 0);
4007 I915_WRITE16(DEUC, 0);
4008 }
4009
4010 static void broadwater_init_clock_gating(struct drm_device *dev)
4011 {
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013
4014 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4015 I965_RCC_CLOCK_GATE_DISABLE |
4016 I965_RCPB_CLOCK_GATE_DISABLE |
4017 I965_ISC_CLOCK_GATE_DISABLE |
4018 I965_FBC_CLOCK_GATE_DISABLE);
4019 I915_WRITE(RENCLK_GATE_D2, 0);
4020 }
4021
4022 static void gen3_init_clock_gating(struct drm_device *dev)
4023 {
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025 u32 dstate = I915_READ(D_STATE);
4026
4027 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4028 DSTATE_DOT_CLOCK_GATING;
4029 I915_WRITE(D_STATE, dstate);
4030
4031 if (IS_PINEVIEW(dev))
4032 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4033
4034 /* IIR "flip pending" means done if this bit is set */
4035 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4036 }
4037
4038 static void i85x_init_clock_gating(struct drm_device *dev)
4039 {
4040 struct drm_i915_private *dev_priv = dev->dev_private;
4041
4042 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4043 }
4044
4045 static void i830_init_clock_gating(struct drm_device *dev)
4046 {
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048
4049 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4050 }
4051
4052 void intel_init_clock_gating(struct drm_device *dev)
4053 {
4054 struct drm_i915_private *dev_priv = dev->dev_private;
4055
4056 dev_priv->display.init_clock_gating(dev);
4057 }
4058
4059 /* Starting with Haswell, we have different power wells for
4060 * different parts of the GPU. This attempts to enable them all.
4061 */
4062 void intel_init_power_wells(struct drm_device *dev)
4063 {
4064 struct drm_i915_private *dev_priv = dev->dev_private;
4065 unsigned long power_wells[] = {
4066 HSW_PWR_WELL_CTL1,
4067 HSW_PWR_WELL_CTL2,
4068 HSW_PWR_WELL_CTL4
4069 };
4070 int i;
4071
4072 if (!IS_HASWELL(dev))
4073 return;
4074
4075 mutex_lock(&dev->struct_mutex);
4076
4077 for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4078 int well = I915_READ(power_wells[i]);
4079
4080 if ((well & HSW_PWR_WELL_STATE) == 0) {
4081 I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
4082 if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
4083 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4084 }
4085 }
4086
4087 mutex_unlock(&dev->struct_mutex);
4088 }
4089
4090 /* Set up chip specific power management-related functions */
4091 void intel_init_pm(struct drm_device *dev)
4092 {
4093 struct drm_i915_private *dev_priv = dev->dev_private;
4094
4095 if (I915_HAS_FBC(dev)) {
4096 if (HAS_PCH_SPLIT(dev)) {
4097 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4098 dev_priv->display.enable_fbc = ironlake_enable_fbc;
4099 dev_priv->display.disable_fbc = ironlake_disable_fbc;
4100 } else if (IS_GM45(dev)) {
4101 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4102 dev_priv->display.enable_fbc = g4x_enable_fbc;
4103 dev_priv->display.disable_fbc = g4x_disable_fbc;
4104 } else if (IS_CRESTLINE(dev)) {
4105 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4106 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4107 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4108 }
4109 /* 855GM needs testing */
4110 }
4111
4112 /* For cxsr */
4113 if (IS_PINEVIEW(dev))
4114 i915_pineview_get_mem_freq(dev);
4115 else if (IS_GEN5(dev))
4116 i915_ironlake_get_mem_freq(dev);
4117
4118 /* For FIFO watermark updates */
4119 if (HAS_PCH_SPLIT(dev)) {
4120 if (IS_GEN5(dev)) {
4121 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4122 dev_priv->display.update_wm = ironlake_update_wm;
4123 else {
4124 DRM_DEBUG_KMS("Failed to get proper latency. "
4125 "Disable CxSR\n");
4126 dev_priv->display.update_wm = NULL;
4127 }
4128 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4129 } else if (IS_GEN6(dev)) {
4130 if (SNB_READ_WM0_LATENCY()) {
4131 dev_priv->display.update_wm = sandybridge_update_wm;
4132 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4133 } else {
4134 DRM_DEBUG_KMS("Failed to read display plane latency. "
4135 "Disable CxSR\n");
4136 dev_priv->display.update_wm = NULL;
4137 }
4138 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4139 } else if (IS_IVYBRIDGE(dev)) {
4140 /* FIXME: detect B0+ stepping and use auto training */
4141 if (SNB_READ_WM0_LATENCY()) {
4142 dev_priv->display.update_wm = ivybridge_update_wm;
4143 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4144 } else {
4145 DRM_DEBUG_KMS("Failed to read display plane latency. "
4146 "Disable CxSR\n");
4147 dev_priv->display.update_wm = NULL;
4148 }
4149 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4150 } else if (IS_HASWELL(dev)) {
4151 if (SNB_READ_WM0_LATENCY()) {
4152 dev_priv->display.update_wm = sandybridge_update_wm;
4153 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4154 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4155 } else {
4156 DRM_DEBUG_KMS("Failed to read display plane latency. "
4157 "Disable CxSR\n");
4158 dev_priv->display.update_wm = NULL;
4159 }
4160 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4161 } else
4162 dev_priv->display.update_wm = NULL;
4163 } else if (IS_VALLEYVIEW(dev)) {
4164 dev_priv->display.update_wm = valleyview_update_wm;
4165 dev_priv->display.init_clock_gating =
4166 valleyview_init_clock_gating;
4167 } else if (IS_PINEVIEW(dev)) {
4168 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4169 dev_priv->is_ddr3,
4170 dev_priv->fsb_freq,
4171 dev_priv->mem_freq)) {
4172 DRM_INFO("failed to find known CxSR latency "
4173 "(found ddr%s fsb freq %d, mem freq %d), "
4174 "disabling CxSR\n",
4175 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4176 dev_priv->fsb_freq, dev_priv->mem_freq);
4177 /* Disable CxSR and never update its watermark again */
4178 pineview_disable_cxsr(dev);
4179 dev_priv->display.update_wm = NULL;
4180 } else
4181 dev_priv->display.update_wm = pineview_update_wm;
4182 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4183 } else if (IS_G4X(dev)) {
4184 dev_priv->display.update_wm = g4x_update_wm;
4185 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4186 } else if (IS_GEN4(dev)) {
4187 dev_priv->display.update_wm = i965_update_wm;
4188 if (IS_CRESTLINE(dev))
4189 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4190 else if (IS_BROADWATER(dev))
4191 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4192 } else if (IS_GEN3(dev)) {
4193 dev_priv->display.update_wm = i9xx_update_wm;
4194 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4195 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4196 } else if (IS_I865G(dev)) {
4197 dev_priv->display.update_wm = i830_update_wm;
4198 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4199 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4200 } else if (IS_I85X(dev)) {
4201 dev_priv->display.update_wm = i9xx_update_wm;
4202 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4203 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4204 } else {
4205 dev_priv->display.update_wm = i830_update_wm;
4206 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4207 if (IS_845G(dev))
4208 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4209 else
4210 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4211 }
4212 }
4213
4214 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4215 {
4216 u32 gt_thread_status_mask;
4217
4218 if (IS_HASWELL(dev_priv->dev))
4219 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4220 else
4221 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4222
4223 /* w/a for a sporadic read returning 0 by waiting for the GT
4224 * thread to wake up.
4225 */
4226 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4227 DRM_ERROR("GT thread status wait timed out\n");
4228 }
4229
4230 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4231 {
4232 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4233 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4234 }
4235
4236 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4237 {
4238 u32 forcewake_ack;
4239
4240 if (IS_HASWELL(dev_priv->dev))
4241 forcewake_ack = FORCEWAKE_ACK_HSW;
4242 else
4243 forcewake_ack = FORCEWAKE_ACK;
4244
4245 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4246 FORCEWAKE_ACK_TIMEOUT_MS))
4247 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4248
4249 I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4250 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4251
4252 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4253 FORCEWAKE_ACK_TIMEOUT_MS))
4254 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4255
4256 __gen6_gt_wait_for_thread_c0(dev_priv);
4257 }
4258
4259 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4260 {
4261 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4262 /* something from same cacheline, but !FORCEWAKE_MT */
4263 POSTING_READ(ECOBUS);
4264 }
4265
4266 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4267 {
4268 u32 forcewake_ack;
4269
4270 if (IS_HASWELL(dev_priv->dev))
4271 forcewake_ack = FORCEWAKE_ACK_HSW;
4272 else
4273 forcewake_ack = FORCEWAKE_MT_ACK;
4274
4275 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4276 FORCEWAKE_ACK_TIMEOUT_MS))
4277 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4278
4279 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4280 /* something from same cacheline, but !FORCEWAKE_MT */
4281 POSTING_READ(ECOBUS);
4282
4283 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4284 FORCEWAKE_ACK_TIMEOUT_MS))
4285 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4286
4287 __gen6_gt_wait_for_thread_c0(dev_priv);
4288 }
4289
4290 /*
4291 * Generally this is called implicitly by the register read function. However,
4292 * if some sequence requires the GT to not power down then this function should
4293 * be called at the beginning of the sequence followed by a call to
4294 * gen6_gt_force_wake_put() at the end of the sequence.
4295 */
4296 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4297 {
4298 unsigned long irqflags;
4299
4300 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4301 if (dev_priv->forcewake_count++ == 0)
4302 dev_priv->gt.force_wake_get(dev_priv);
4303 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4304 }
4305
4306 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4307 {
4308 u32 gtfifodbg;
4309 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4310 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4311 "MMIO read or write has been dropped %x\n", gtfifodbg))
4312 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4313 }
4314
4315 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4316 {
4317 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4318 /* something from same cacheline, but !FORCEWAKE */
4319 POSTING_READ(ECOBUS);
4320 gen6_gt_check_fifodbg(dev_priv);
4321 }
4322
4323 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4324 {
4325 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4326 /* something from same cacheline, but !FORCEWAKE_MT */
4327 POSTING_READ(ECOBUS);
4328 gen6_gt_check_fifodbg(dev_priv);
4329 }
4330
4331 /*
4332 * see gen6_gt_force_wake_get()
4333 */
4334 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4335 {
4336 unsigned long irqflags;
4337
4338 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4339 if (--dev_priv->forcewake_count == 0)
4340 dev_priv->gt.force_wake_put(dev_priv);
4341 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4342 }
4343
4344 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4345 {
4346 int ret = 0;
4347
4348 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4349 int loop = 500;
4350 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4351 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4352 udelay(10);
4353 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4354 }
4355 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4356 ++ret;
4357 dev_priv->gt_fifo_count = fifo;
4358 }
4359 dev_priv->gt_fifo_count--;
4360
4361 return ret;
4362 }
4363
4364 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4365 {
4366 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4367 /* something from same cacheline, but !FORCEWAKE_VLV */
4368 POSTING_READ(FORCEWAKE_ACK_VLV);
4369 }
4370
4371 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4372 {
4373 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4374 FORCEWAKE_ACK_TIMEOUT_MS))
4375 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4376
4377 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4378
4379 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4380 FORCEWAKE_ACK_TIMEOUT_MS))
4381 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4382
4383 __gen6_gt_wait_for_thread_c0(dev_priv);
4384 }
4385
4386 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4387 {
4388 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4389 /* something from same cacheline, but !FORCEWAKE_VLV */
4390 POSTING_READ(FORCEWAKE_ACK_VLV);
4391 gen6_gt_check_fifodbg(dev_priv);
4392 }
4393
4394 void intel_gt_reset(struct drm_device *dev)
4395 {
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397
4398 if (IS_VALLEYVIEW(dev)) {
4399 vlv_force_wake_reset(dev_priv);
4400 } else if (INTEL_INFO(dev)->gen >= 6) {
4401 __gen6_gt_force_wake_reset(dev_priv);
4402 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4403 __gen6_gt_force_wake_mt_reset(dev_priv);
4404 }
4405 }
4406
4407 void intel_gt_init(struct drm_device *dev)
4408 {
4409 struct drm_i915_private *dev_priv = dev->dev_private;
4410
4411 spin_lock_init(&dev_priv->gt_lock);
4412
4413 intel_gt_reset(dev);
4414
4415 if (IS_VALLEYVIEW(dev)) {
4416 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4417 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4418 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4419 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4420 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4421 } else if (IS_GEN6(dev)) {
4422 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4423 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4424 }
4425 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4426 intel_gen6_powersave_work);
4427 }
4428
4429 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4430 {
4431 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4432
4433 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4434 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4435 return -EAGAIN;
4436 }
4437
4438 I915_WRITE(GEN6_PCODE_DATA, *val);
4439 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4440
4441 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4442 500)) {
4443 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4444 return -ETIMEDOUT;
4445 }
4446
4447 *val = I915_READ(GEN6_PCODE_DATA);
4448 I915_WRITE(GEN6_PCODE_DATA, 0);
4449
4450 return 0;
4451 }
4452
4453 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4454 {
4455 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4456
4457 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4458 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4459 return -EAGAIN;
4460 }
4461
4462 I915_WRITE(GEN6_PCODE_DATA, val);
4463 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4464
4465 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4466 500)) {
4467 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4468 return -ETIMEDOUT;
4469 }
4470
4471 I915_WRITE(GEN6_PCODE_DATA, 0);
4472
4473 return 0;
4474 }
4475