Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.1.1.1.4.3
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     25  *
     26  */
     27 
     28 #include <linux/cpufreq.h>
     29 #include "i915_drv.h"
     30 #include "intel_drv.h"
     31 #ifndef __NetBSD__
     32 #include "../../../platform/x86/intel_ips.h"
     33 #endif
     34 #include <linux/module.h>
     35 #include <linux/kgdb.h>
     36 #include <linux/log2.h>
     37 #include <linux/math64.h>
     38 #include <linux/time.h>
     39 #include <asm/param.h>
     40 
     41 #define FORCEWAKE_ACK_TIMEOUT_MS 2
     42 
     43 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
     44  * framebuffer contents in-memory, aiming at reducing the required bandwidth
     45  * during in-memory transfers and, therefore, reduce the power packet.
     46  *
     47  * The benefits of FBC are mostly visible with solid backgrounds and
     48  * variation-less patterns.
     49  *
     50  * FBC-related functionality can be enabled by the means of the
     51  * i915.i915_enable_fbc parameter
     52  */
     53 
     54 static bool intel_crtc_active(struct drm_crtc *crtc)
     55 {
     56 	/* Be paranoid as we can arrive here with only partial
     57 	 * state retrieved from the hardware during setup.
     58 	 */
     59 	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
     60 }
     61 
     62 static void i8xx_disable_fbc(struct drm_device *dev)
     63 {
     64 	struct drm_i915_private *dev_priv = dev->dev_private;
     65 	u32 fbc_ctl;
     66 
     67 	/* Disable compression */
     68 	fbc_ctl = I915_READ(FBC_CONTROL);
     69 	if ((fbc_ctl & FBC_CTL_EN) == 0)
     70 		return;
     71 
     72 	fbc_ctl &= ~FBC_CTL_EN;
     73 	I915_WRITE(FBC_CONTROL, fbc_ctl);
     74 
     75 	/* Wait for compressing bit to clear */
     76 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
     77 		DRM_DEBUG_KMS("FBC idle timed out\n");
     78 		return;
     79 	}
     80 
     81 	DRM_DEBUG_KMS("disabled FBC\n");
     82 }
     83 
     84 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
     85 {
     86 	struct drm_device *dev = crtc->dev;
     87 	struct drm_i915_private *dev_priv = dev->dev_private;
     88 	struct drm_framebuffer *fb = crtc->fb;
     89 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
     90 	struct drm_i915_gem_object *obj = intel_fb->obj;
     91 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
     92 	int cfb_pitch;
     93 	int plane, i;
     94 	u32 fbc_ctl, fbc_ctl2;
     95 
     96 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
     97 	if (fb->pitches[0] < cfb_pitch)
     98 		cfb_pitch = fb->pitches[0];
     99 
    100 	/* FBC_CTL wants 64B units */
    101 	cfb_pitch = (cfb_pitch / 64) - 1;
    102 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
    103 
    104 	/* Clear old tags */
    105 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
    106 		I915_WRITE(FBC_TAG + (i * 4), 0);
    107 
    108 	/* Set it up... */
    109 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
    110 	fbc_ctl2 |= plane;
    111 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
    112 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
    113 
    114 	/* enable it... */
    115 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
    116 	if (IS_I945GM(dev))
    117 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
    118 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
    119 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
    120 	fbc_ctl |= obj->fence_reg;
    121 	I915_WRITE(FBC_CONTROL, fbc_ctl);
    122 
    123 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
    124 		      cfb_pitch, crtc->y, intel_crtc->plane);
    125 }
    126 
    127 static bool i8xx_fbc_enabled(struct drm_device *dev)
    128 {
    129 	struct drm_i915_private *dev_priv = dev->dev_private;
    130 
    131 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
    132 }
    133 
    134 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
    135 {
    136 	struct drm_device *dev = crtc->dev;
    137 	struct drm_i915_private *dev_priv = dev->dev_private;
    138 	struct drm_framebuffer *fb = crtc->fb;
    139 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    140 	struct drm_i915_gem_object *obj = intel_fb->obj;
    141 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    142 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
    143 	unsigned long stall_watermark = 200;
    144 	u32 dpfc_ctl;
    145 
    146 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
    147 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
    148 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
    149 
    150 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
    151 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
    152 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
    153 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
    154 
    155 	/* enable it... */
    156 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
    157 
    158 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
    159 }
    160 
    161 static void g4x_disable_fbc(struct drm_device *dev)
    162 {
    163 	struct drm_i915_private *dev_priv = dev->dev_private;
    164 	u32 dpfc_ctl;
    165 
    166 	/* Disable compression */
    167 	dpfc_ctl = I915_READ(DPFC_CONTROL);
    168 	if (dpfc_ctl & DPFC_CTL_EN) {
    169 		dpfc_ctl &= ~DPFC_CTL_EN;
    170 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
    171 
    172 		DRM_DEBUG_KMS("disabled FBC\n");
    173 	}
    174 }
    175 
    176 static bool g4x_fbc_enabled(struct drm_device *dev)
    177 {
    178 	struct drm_i915_private *dev_priv = dev->dev_private;
    179 
    180 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
    181 }
    182 
    183 static void sandybridge_blit_fbc_update(struct drm_device *dev)
    184 {
    185 	struct drm_i915_private *dev_priv = dev->dev_private;
    186 	u32 blt_ecoskpd;
    187 
    188 	/* Make sure blitter notifies FBC of writes */
    189 	gen6_gt_force_wake_get(dev_priv);
    190 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
    191 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
    192 		GEN6_BLITTER_LOCK_SHIFT;
    193 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    194 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
    195 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    196 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
    197 			 GEN6_BLITTER_LOCK_SHIFT);
    198 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    199 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
    200 	gen6_gt_force_wake_put(dev_priv);
    201 }
    202 
    203 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
    204 {
    205 	struct drm_device *dev = crtc->dev;
    206 	struct drm_i915_private *dev_priv = dev->dev_private;
    207 	struct drm_framebuffer *fb = crtc->fb;
    208 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    209 	struct drm_i915_gem_object *obj = intel_fb->obj;
    210 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    211 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
    212 	unsigned long stall_watermark = 200;
    213 	u32 dpfc_ctl;
    214 
    215 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
    216 	dpfc_ctl &= DPFC_RESERVED;
    217 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
    218 	/* Set persistent mode for front-buffer rendering, ala X. */
    219 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
    220 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
    221 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
    222 
    223 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
    224 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
    225 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
    226 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
    227 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
    228 	/* enable it... */
    229 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    230 
    231 	if (IS_GEN6(dev)) {
    232 		I915_WRITE(SNB_DPFC_CTL_SA,
    233 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
    234 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
    235 		sandybridge_blit_fbc_update(dev);
    236 	}
    237 
    238 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
    239 }
    240 
    241 static void ironlake_disable_fbc(struct drm_device *dev)
    242 {
    243 	struct drm_i915_private *dev_priv = dev->dev_private;
    244 	u32 dpfc_ctl;
    245 
    246 	/* Disable compression */
    247 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
    248 	if (dpfc_ctl & DPFC_CTL_EN) {
    249 		dpfc_ctl &= ~DPFC_CTL_EN;
    250 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
    251 
    252 		DRM_DEBUG_KMS("disabled FBC\n");
    253 	}
    254 }
    255 
    256 static bool ironlake_fbc_enabled(struct drm_device *dev)
    257 {
    258 	struct drm_i915_private *dev_priv = dev->dev_private;
    259 
    260 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
    261 }
    262 
    263 bool intel_fbc_enabled(struct drm_device *dev)
    264 {
    265 	struct drm_i915_private *dev_priv = dev->dev_private;
    266 
    267 	if (!dev_priv->display.fbc_enabled)
    268 		return false;
    269 
    270 	return dev_priv->display.fbc_enabled(dev);
    271 }
    272 
    273 static void intel_fbc_work_fn(struct work_struct *__work)
    274 {
    275 	struct intel_fbc_work *work =
    276 		container_of(to_delayed_work(__work),
    277 			     struct intel_fbc_work, work);
    278 	struct drm_device *dev = work->crtc->dev;
    279 	struct drm_i915_private *dev_priv = dev->dev_private;
    280 
    281 	mutex_lock(&dev->struct_mutex);
    282 	if (work == dev_priv->fbc_work) {
    283 		/* Double check that we haven't switched fb without cancelling
    284 		 * the prior work.
    285 		 */
    286 		if (work->crtc->fb == work->fb) {
    287 			dev_priv->display.enable_fbc(work->crtc,
    288 						     work->interval);
    289 
    290 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
    291 			dev_priv->cfb_fb = work->crtc->fb->base.id;
    292 			dev_priv->cfb_y = work->crtc->y;
    293 		}
    294 
    295 		dev_priv->fbc_work = NULL;
    296 	}
    297 	mutex_unlock(&dev->struct_mutex);
    298 
    299 	kfree(work);
    300 }
    301 
    302 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
    303 {
    304 	if (dev_priv->fbc_work == NULL)
    305 		return;
    306 
    307 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
    308 
    309 	/* Synchronisation is provided by struct_mutex and checking of
    310 	 * dev_priv->fbc_work, so we can perform the cancellation
    311 	 * entirely asynchronously.
    312 	 */
    313 	if (cancel_delayed_work(&dev_priv->fbc_work->work))
    314 		/* tasklet was killed before being run, clean up */
    315 		kfree(dev_priv->fbc_work);
    316 
    317 	/* Mark the work as no longer wanted so that if it does
    318 	 * wake-up (because the work was already running and waiting
    319 	 * for our mutex), it will discover that is no longer
    320 	 * necessary to run.
    321 	 */
    322 	dev_priv->fbc_work = NULL;
    323 }
    324 
    325 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
    326 {
    327 	struct intel_fbc_work *work;
    328 	struct drm_device *dev = crtc->dev;
    329 	struct drm_i915_private *dev_priv = dev->dev_private;
    330 
    331 	if (!dev_priv->display.enable_fbc)
    332 		return;
    333 
    334 	intel_cancel_fbc_work(dev_priv);
    335 
    336 	work = kzalloc(sizeof *work, GFP_KERNEL);
    337 	if (work == NULL) {
    338 		dev_priv->display.enable_fbc(crtc, interval);
    339 		return;
    340 	}
    341 
    342 	work->crtc = crtc;
    343 	work->fb = crtc->fb;
    344 	work->interval = interval;
    345 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
    346 
    347 	dev_priv->fbc_work = work;
    348 
    349 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
    350 
    351 	/* Delay the actual enabling to let pageflipping cease and the
    352 	 * display to settle before starting the compression. Note that
    353 	 * this delay also serves a second purpose: it allows for a
    354 	 * vblank to pass after disabling the FBC before we attempt
    355 	 * to modify the control registers.
    356 	 *
    357 	 * A more complicated solution would involve tracking vblanks
    358 	 * following the termination of the page-flipping sequence
    359 	 * and indeed performing the enable as a co-routine and not
    360 	 * waiting synchronously upon the vblank.
    361 	 */
    362 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
    363 }
    364 
    365 void intel_disable_fbc(struct drm_device *dev)
    366 {
    367 	struct drm_i915_private *dev_priv = dev->dev_private;
    368 
    369 	intel_cancel_fbc_work(dev_priv);
    370 
    371 	if (!dev_priv->display.disable_fbc)
    372 		return;
    373 
    374 	dev_priv->display.disable_fbc(dev);
    375 	dev_priv->cfb_plane = -1;
    376 }
    377 
    378 /**
    379  * intel_update_fbc - enable/disable FBC as needed
    380  * @dev: the drm_device
    381  *
    382  * Set up the framebuffer compression hardware at mode set time.  We
    383  * enable it if possible:
    384  *   - plane A only (on pre-965)
    385  *   - no pixel mulitply/line duplication
    386  *   - no alpha buffer discard
    387  *   - no dual wide
    388  *   - framebuffer <= 2048 in width, 1536 in height
    389  *
    390  * We can't assume that any compression will take place (worst case),
    391  * so the compressed buffer has to be the same size as the uncompressed
    392  * one.  It also must reside (along with the line length buffer) in
    393  * stolen memory.
    394  *
    395  * We need to enable/disable FBC on a global basis.
    396  */
    397 void intel_update_fbc(struct drm_device *dev)
    398 {
    399 	struct drm_i915_private *dev_priv = dev->dev_private;
    400 	struct drm_crtc *crtc = NULL, *tmp_crtc;
    401 	struct intel_crtc *intel_crtc;
    402 	struct drm_framebuffer *fb;
    403 	struct intel_framebuffer *intel_fb;
    404 	struct drm_i915_gem_object *obj;
    405 	int enable_fbc;
    406 
    407 	if (!i915_powersave)
    408 		return;
    409 
    410 	if (!I915_HAS_FBC(dev))
    411 		return;
    412 
    413 	/*
    414 	 * If FBC is already on, we just have to verify that we can
    415 	 * keep it that way...
    416 	 * Need to disable if:
    417 	 *   - more than one pipe is active
    418 	 *   - changing FBC params (stride, fence, mode)
    419 	 *   - new fb is too large to fit in compressed buffer
    420 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
    421 	 */
    422 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
    423 		if (intel_crtc_active(tmp_crtc) &&
    424 		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
    425 			if (crtc) {
    426 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
    427 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
    428 				goto out_disable;
    429 			}
    430 			crtc = tmp_crtc;
    431 		}
    432 	}
    433 
    434 	if (!crtc || crtc->fb == NULL) {
    435 		DRM_DEBUG_KMS("no output, disabling\n");
    436 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
    437 		goto out_disable;
    438 	}
    439 
    440 	intel_crtc = to_intel_crtc(crtc);
    441 	fb = crtc->fb;
    442 	intel_fb = to_intel_framebuffer(fb);
    443 	obj = intel_fb->obj;
    444 
    445 	enable_fbc = i915_enable_fbc;
    446 	if (enable_fbc < 0) {
    447 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
    448 		enable_fbc = 1;
    449 		if (INTEL_INFO(dev)->gen <= 6)
    450 			enable_fbc = 0;
    451 	}
    452 	if (!enable_fbc) {
    453 		DRM_DEBUG_KMS("fbc disabled per module param\n");
    454 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
    455 		goto out_disable;
    456 	}
    457 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
    458 		DRM_DEBUG_KMS("framebuffer too large, disabling "
    459 			      "compression\n");
    460 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
    461 		goto out_disable;
    462 	}
    463 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
    464 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
    465 		DRM_DEBUG_KMS("mode incompatible with compression, "
    466 			      "disabling\n");
    467 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
    468 		goto out_disable;
    469 	}
    470 	if ((crtc->mode.hdisplay > 2048) ||
    471 	    (crtc->mode.vdisplay > 1536)) {
    472 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
    473 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
    474 		goto out_disable;
    475 	}
    476 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
    477 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
    478 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
    479 		goto out_disable;
    480 	}
    481 
    482 	/* The use of a CPU fence is mandatory in order to detect writes
    483 	 * by the CPU to the scanout and trigger updates to the FBC.
    484 	 */
    485 	if (obj->tiling_mode != I915_TILING_X ||
    486 	    obj->fence_reg == I915_FENCE_REG_NONE) {
    487 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
    488 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
    489 		goto out_disable;
    490 	}
    491 
    492 	/* If the kernel debugger is active, always disable compression */
    493 	if (in_dbg_master())
    494 		goto out_disable;
    495 
    496 	/* If the scanout has not changed, don't modify the FBC settings.
    497 	 * Note that we make the fundamental assumption that the fb->obj
    498 	 * cannot be unpinned (and have its GTT offset and fence revoked)
    499 	 * without first being decoupled from the scanout and FBC disabled.
    500 	 */
    501 	if (dev_priv->cfb_plane == intel_crtc->plane &&
    502 	    dev_priv->cfb_fb == fb->base.id &&
    503 	    dev_priv->cfb_y == crtc->y)
    504 		return;
    505 
    506 	if (intel_fbc_enabled(dev)) {
    507 		/* We update FBC along two paths, after changing fb/crtc
    508 		 * configuration (modeswitching) and after page-flipping
    509 		 * finishes. For the latter, we know that not only did
    510 		 * we disable the FBC at the start of the page-flip
    511 		 * sequence, but also more than one vblank has passed.
    512 		 *
    513 		 * For the former case of modeswitching, it is possible
    514 		 * to switch between two FBC valid configurations
    515 		 * instantaneously so we do need to disable the FBC
    516 		 * before we can modify its control registers. We also
    517 		 * have to wait for the next vblank for that to take
    518 		 * effect. However, since we delay enabling FBC we can
    519 		 * assume that a vblank has passed since disabling and
    520 		 * that we can safely alter the registers in the deferred
    521 		 * callback.
    522 		 *
    523 		 * In the scenario that we go from a valid to invalid
    524 		 * and then back to valid FBC configuration we have
    525 		 * no strict enforcement that a vblank occurred since
    526 		 * disabling the FBC. However, along all current pipe
    527 		 * disabling paths we do need to wait for a vblank at
    528 		 * some point. And we wait before enabling FBC anyway.
    529 		 */
    530 		DRM_DEBUG_KMS("disabling active FBC for update\n");
    531 		intel_disable_fbc(dev);
    532 	}
    533 
    534 	intel_enable_fbc(crtc, 500);
    535 	return;
    536 
    537 out_disable:
    538 	/* Multiple disables should be harmless */
    539 	if (intel_fbc_enabled(dev)) {
    540 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
    541 		intel_disable_fbc(dev);
    542 	}
    543 }
    544 
    545 static void i915_pineview_get_mem_freq(struct drm_device *dev)
    546 {
    547 	drm_i915_private_t *dev_priv = dev->dev_private;
    548 	u32 tmp;
    549 
    550 	tmp = I915_READ(CLKCFG);
    551 
    552 	switch (tmp & CLKCFG_FSB_MASK) {
    553 	case CLKCFG_FSB_533:
    554 		dev_priv->fsb_freq = 533; /* 133*4 */
    555 		break;
    556 	case CLKCFG_FSB_800:
    557 		dev_priv->fsb_freq = 800; /* 200*4 */
    558 		break;
    559 	case CLKCFG_FSB_667:
    560 		dev_priv->fsb_freq =  667; /* 167*4 */
    561 		break;
    562 	case CLKCFG_FSB_400:
    563 		dev_priv->fsb_freq = 400; /* 100*4 */
    564 		break;
    565 	}
    566 
    567 	switch (tmp & CLKCFG_MEM_MASK) {
    568 	case CLKCFG_MEM_533:
    569 		dev_priv->mem_freq = 533;
    570 		break;
    571 	case CLKCFG_MEM_667:
    572 		dev_priv->mem_freq = 667;
    573 		break;
    574 	case CLKCFG_MEM_800:
    575 		dev_priv->mem_freq = 800;
    576 		break;
    577 	}
    578 
    579 	/* detect pineview DDR3 setting */
    580 	tmp = I915_READ(CSHRDDR3CTL);
    581 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    582 }
    583 
    584 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    585 {
    586 	drm_i915_private_t *dev_priv = dev->dev_private;
    587 	u16 ddrpll, csipll;
    588 
    589 	ddrpll = I915_READ16(DDRMPLL1);
    590 	csipll = I915_READ16(CSIPLL0);
    591 
    592 	switch (ddrpll & 0xff) {
    593 	case 0xc:
    594 		dev_priv->mem_freq = 800;
    595 		break;
    596 	case 0x10:
    597 		dev_priv->mem_freq = 1066;
    598 		break;
    599 	case 0x14:
    600 		dev_priv->mem_freq = 1333;
    601 		break;
    602 	case 0x18:
    603 		dev_priv->mem_freq = 1600;
    604 		break;
    605 	default:
    606 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    607 				 ddrpll & 0xff);
    608 		dev_priv->mem_freq = 0;
    609 		break;
    610 	}
    611 
    612 	dev_priv->ips.r_t = dev_priv->mem_freq;
    613 
    614 	switch (csipll & 0x3ff) {
    615 	case 0x00c:
    616 		dev_priv->fsb_freq = 3200;
    617 		break;
    618 	case 0x00e:
    619 		dev_priv->fsb_freq = 3733;
    620 		break;
    621 	case 0x010:
    622 		dev_priv->fsb_freq = 4266;
    623 		break;
    624 	case 0x012:
    625 		dev_priv->fsb_freq = 4800;
    626 		break;
    627 	case 0x014:
    628 		dev_priv->fsb_freq = 5333;
    629 		break;
    630 	case 0x016:
    631 		dev_priv->fsb_freq = 5866;
    632 		break;
    633 	case 0x018:
    634 		dev_priv->fsb_freq = 6400;
    635 		break;
    636 	default:
    637 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    638 				 csipll & 0x3ff);
    639 		dev_priv->fsb_freq = 0;
    640 		break;
    641 	}
    642 
    643 	if (dev_priv->fsb_freq == 3200) {
    644 		dev_priv->ips.c_m = 0;
    645 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    646 		dev_priv->ips.c_m = 1;
    647 	} else {
    648 		dev_priv->ips.c_m = 2;
    649 	}
    650 }
    651 
    652 static const struct cxsr_latency cxsr_latency_table[] = {
    653 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    654 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    655 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    656 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    657 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    658 
    659 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    660 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    661 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    662 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    663 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    664 
    665 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    666 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    667 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    668 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    669 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    670 
    671 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    672 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    673 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    674 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    675 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    676 
    677 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    678 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    679 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    680 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    681 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    682 
    683 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    684 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    685 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    686 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    687 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    688 };
    689 
    690 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    691 							 int is_ddr3,
    692 							 int fsb,
    693 							 int mem)
    694 {
    695 	const struct cxsr_latency *latency;
    696 	int i;
    697 
    698 	if (fsb == 0 || mem == 0)
    699 		return NULL;
    700 
    701 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    702 		latency = &cxsr_latency_table[i];
    703 		if (is_desktop == latency->is_desktop &&
    704 		    is_ddr3 == latency->is_ddr3 &&
    705 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    706 			return latency;
    707 	}
    708 
    709 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    710 
    711 	return NULL;
    712 }
    713 
    714 static void pineview_disable_cxsr(struct drm_device *dev)
    715 {
    716 	struct drm_i915_private *dev_priv = dev->dev_private;
    717 
    718 	/* deactivate cxsr */
    719 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
    720 }
    721 
    722 /*
    723  * Latency for FIFO fetches is dependent on several factors:
    724  *   - memory configuration (speed, channels)
    725  *   - chipset
    726  *   - current MCH state
    727  * It can be fairly high in some situations, so here we assume a fairly
    728  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    729  * set this value too high, the FIFO will fetch frequently to stay full)
    730  * and power consumption (set it too low to save power and we might see
    731  * FIFO underruns and display "flicker").
    732  *
    733  * A value of 5us seems to be a good balance; safe for very low end
    734  * platforms but not overly aggressive on lower latency configs.
    735  */
    736 static const int latency_ns = 5000;
    737 
    738 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    739 {
    740 	struct drm_i915_private *dev_priv = dev->dev_private;
    741 	uint32_t dsparb = I915_READ(DSPARB);
    742 	int size;
    743 
    744 	size = dsparb & 0x7f;
    745 	if (plane)
    746 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    747 
    748 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    749 		      plane ? "B" : "A", size);
    750 
    751 	return size;
    752 }
    753 
    754 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
    755 {
    756 	struct drm_i915_private *dev_priv = dev->dev_private;
    757 	uint32_t dsparb = I915_READ(DSPARB);
    758 	int size;
    759 
    760 	size = dsparb & 0x1ff;
    761 	if (plane)
    762 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    763 	size >>= 1; /* Convert to cachelines */
    764 
    765 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    766 		      plane ? "B" : "A", size);
    767 
    768 	return size;
    769 }
    770 
    771 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    772 {
    773 	struct drm_i915_private *dev_priv = dev->dev_private;
    774 	uint32_t dsparb = I915_READ(DSPARB);
    775 	int size;
    776 
    777 	size = dsparb & 0x7f;
    778 	size >>= 2; /* Convert to cachelines */
    779 
    780 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    781 		      plane ? "B" : "A",
    782 		      size);
    783 
    784 	return size;
    785 }
    786 
    787 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    788 {
    789 	struct drm_i915_private *dev_priv = dev->dev_private;
    790 	uint32_t dsparb = I915_READ(DSPARB);
    791 	int size;
    792 
    793 	size = dsparb & 0x7f;
    794 	size >>= 1; /* Convert to cachelines */
    795 
    796 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    797 		      plane ? "B" : "A", size);
    798 
    799 	return size;
    800 }
    801 
    802 /* Pineview has different values for various configs */
    803 static const struct intel_watermark_params pineview_display_wm = {
    804 	PINEVIEW_DISPLAY_FIFO,
    805 	PINEVIEW_MAX_WM,
    806 	PINEVIEW_DFT_WM,
    807 	PINEVIEW_GUARD_WM,
    808 	PINEVIEW_FIFO_LINE_SIZE
    809 };
    810 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    811 	PINEVIEW_DISPLAY_FIFO,
    812 	PINEVIEW_MAX_WM,
    813 	PINEVIEW_DFT_HPLLOFF_WM,
    814 	PINEVIEW_GUARD_WM,
    815 	PINEVIEW_FIFO_LINE_SIZE
    816 };
    817 static const struct intel_watermark_params pineview_cursor_wm = {
    818 	PINEVIEW_CURSOR_FIFO,
    819 	PINEVIEW_CURSOR_MAX_WM,
    820 	PINEVIEW_CURSOR_DFT_WM,
    821 	PINEVIEW_CURSOR_GUARD_WM,
    822 	PINEVIEW_FIFO_LINE_SIZE,
    823 };
    824 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    825 	PINEVIEW_CURSOR_FIFO,
    826 	PINEVIEW_CURSOR_MAX_WM,
    827 	PINEVIEW_CURSOR_DFT_WM,
    828 	PINEVIEW_CURSOR_GUARD_WM,
    829 	PINEVIEW_FIFO_LINE_SIZE
    830 };
    831 static const struct intel_watermark_params g4x_wm_info = {
    832 	G4X_FIFO_SIZE,
    833 	G4X_MAX_WM,
    834 	G4X_MAX_WM,
    835 	2,
    836 	G4X_FIFO_LINE_SIZE,
    837 };
    838 static const struct intel_watermark_params g4x_cursor_wm_info = {
    839 	I965_CURSOR_FIFO,
    840 	I965_CURSOR_MAX_WM,
    841 	I965_CURSOR_DFT_WM,
    842 	2,
    843 	G4X_FIFO_LINE_SIZE,
    844 };
    845 static const struct intel_watermark_params valleyview_wm_info = {
    846 	VALLEYVIEW_FIFO_SIZE,
    847 	VALLEYVIEW_MAX_WM,
    848 	VALLEYVIEW_MAX_WM,
    849 	2,
    850 	G4X_FIFO_LINE_SIZE,
    851 };
    852 static const struct intel_watermark_params valleyview_cursor_wm_info = {
    853 	I965_CURSOR_FIFO,
    854 	VALLEYVIEW_CURSOR_MAX_WM,
    855 	I965_CURSOR_DFT_WM,
    856 	2,
    857 	G4X_FIFO_LINE_SIZE,
    858 };
    859 static const struct intel_watermark_params i965_cursor_wm_info = {
    860 	I965_CURSOR_FIFO,
    861 	I965_CURSOR_MAX_WM,
    862 	I965_CURSOR_DFT_WM,
    863 	2,
    864 	I915_FIFO_LINE_SIZE,
    865 };
    866 static const struct intel_watermark_params i945_wm_info = {
    867 	I945_FIFO_SIZE,
    868 	I915_MAX_WM,
    869 	1,
    870 	2,
    871 	I915_FIFO_LINE_SIZE
    872 };
    873 static const struct intel_watermark_params i915_wm_info = {
    874 	I915_FIFO_SIZE,
    875 	I915_MAX_WM,
    876 	1,
    877 	2,
    878 	I915_FIFO_LINE_SIZE
    879 };
    880 static const struct intel_watermark_params i855_wm_info = {
    881 	I855GM_FIFO_SIZE,
    882 	I915_MAX_WM,
    883 	1,
    884 	2,
    885 	I830_FIFO_LINE_SIZE
    886 };
    887 static const struct intel_watermark_params i830_wm_info = {
    888 	I830_FIFO_SIZE,
    889 	I915_MAX_WM,
    890 	1,
    891 	2,
    892 	I830_FIFO_LINE_SIZE
    893 };
    894 
    895 static const struct intel_watermark_params ironlake_display_wm_info = {
    896 	ILK_DISPLAY_FIFO,
    897 	ILK_DISPLAY_MAXWM,
    898 	ILK_DISPLAY_DFTWM,
    899 	2,
    900 	ILK_FIFO_LINE_SIZE
    901 };
    902 static const struct intel_watermark_params ironlake_cursor_wm_info = {
    903 	ILK_CURSOR_FIFO,
    904 	ILK_CURSOR_MAXWM,
    905 	ILK_CURSOR_DFTWM,
    906 	2,
    907 	ILK_FIFO_LINE_SIZE
    908 };
    909 static const struct intel_watermark_params ironlake_display_srwm_info = {
    910 	ILK_DISPLAY_SR_FIFO,
    911 	ILK_DISPLAY_MAX_SRWM,
    912 	ILK_DISPLAY_DFT_SRWM,
    913 	2,
    914 	ILK_FIFO_LINE_SIZE
    915 };
    916 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
    917 	ILK_CURSOR_SR_FIFO,
    918 	ILK_CURSOR_MAX_SRWM,
    919 	ILK_CURSOR_DFT_SRWM,
    920 	2,
    921 	ILK_FIFO_LINE_SIZE
    922 };
    923 
    924 static const struct intel_watermark_params sandybridge_display_wm_info = {
    925 	SNB_DISPLAY_FIFO,
    926 	SNB_DISPLAY_MAXWM,
    927 	SNB_DISPLAY_DFTWM,
    928 	2,
    929 	SNB_FIFO_LINE_SIZE
    930 };
    931 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
    932 	SNB_CURSOR_FIFO,
    933 	SNB_CURSOR_MAXWM,
    934 	SNB_CURSOR_DFTWM,
    935 	2,
    936 	SNB_FIFO_LINE_SIZE
    937 };
    938 static const struct intel_watermark_params sandybridge_display_srwm_info = {
    939 	SNB_DISPLAY_SR_FIFO,
    940 	SNB_DISPLAY_MAX_SRWM,
    941 	SNB_DISPLAY_DFT_SRWM,
    942 	2,
    943 	SNB_FIFO_LINE_SIZE
    944 };
    945 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
    946 	SNB_CURSOR_SR_FIFO,
    947 	SNB_CURSOR_MAX_SRWM,
    948 	SNB_CURSOR_DFT_SRWM,
    949 	2,
    950 	SNB_FIFO_LINE_SIZE
    951 };
    952 
    953 
    954 /**
    955  * intel_calculate_wm - calculate watermark level
    956  * @clock_in_khz: pixel clock
    957  * @wm: chip FIFO params
    958  * @pixel_size: display pixel size
    959  * @latency_ns: memory latency for the platform
    960  *
    961  * Calculate the watermark level (the level at which the display plane will
    962  * start fetching from memory again).  Each chip has a different display
    963  * FIFO size and allocation, so the caller needs to figure that out and pass
    964  * in the correct intel_watermark_params structure.
    965  *
    966  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    967  * on the pixel size.  When it reaches the watermark level, it'll start
    968  * fetching FIFO line sized based chunks from memory until the FIFO fills
    969  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    970  * will occur, and a display engine hang could result.
    971  */
    972 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    973 					const struct intel_watermark_params *wm,
    974 					int fifo_size,
    975 					int pixel_size,
    976 					unsigned long latency_ns)
    977 {
    978 	long entries_required, wm_size;
    979 
    980 	/*
    981 	 * Note: we need to make sure we don't overflow for various clock &
    982 	 * latency values.
    983 	 * clocks go from a few thousand to several hundred thousand.
    984 	 * latency is usually a few thousand
    985 	 */
    986 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
    987 		1000;
    988 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
    989 
    990 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
    991 
    992 	wm_size = fifo_size - (entries_required + wm->guard_size);
    993 
    994 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
    995 
    996 	/* Don't promote wm_size to unsigned... */
    997 	if (wm_size > (long)wm->max_wm)
    998 		wm_size = wm->max_wm;
    999 	if (wm_size <= 0)
   1000 		wm_size = wm->default_wm;
   1001 	return wm_size;
   1002 }
   1003 
   1004 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
   1005 {
   1006 	struct drm_crtc *crtc, *enabled = NULL;
   1007 
   1008 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
   1009 		if (intel_crtc_active(crtc)) {
   1010 			if (enabled)
   1011 				return NULL;
   1012 			enabled = crtc;
   1013 		}
   1014 	}
   1015 
   1016 	return enabled;
   1017 }
   1018 
   1019 static void pineview_update_wm(struct drm_device *dev)
   1020 {
   1021 	struct drm_i915_private *dev_priv = dev->dev_private;
   1022 	struct drm_crtc *crtc;
   1023 	const struct cxsr_latency *latency;
   1024 	u32 reg;
   1025 	unsigned long wm;
   1026 
   1027 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
   1028 					 dev_priv->fsb_freq, dev_priv->mem_freq);
   1029 	if (!latency) {
   1030 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
   1031 		pineview_disable_cxsr(dev);
   1032 		return;
   1033 	}
   1034 
   1035 	crtc = single_enabled_crtc(dev);
   1036 	if (crtc) {
   1037 		int clock = crtc->mode.clock;
   1038 		int pixel_size = crtc->fb->bits_per_pixel / 8;
   1039 
   1040 		/* Display SR */
   1041 		wm = intel_calculate_wm(clock, &pineview_display_wm,
   1042 					pineview_display_wm.fifo_size,
   1043 					pixel_size, latency->display_sr);
   1044 		reg = I915_READ(DSPFW1);
   1045 		reg &= ~DSPFW_SR_MASK;
   1046 		reg |= wm << DSPFW_SR_SHIFT;
   1047 		I915_WRITE(DSPFW1, reg);
   1048 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
   1049 
   1050 		/* cursor SR */
   1051 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
   1052 					pineview_display_wm.fifo_size,
   1053 					pixel_size, latency->cursor_sr);
   1054 		reg = I915_READ(DSPFW3);
   1055 		reg &= ~DSPFW_CURSOR_SR_MASK;
   1056 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
   1057 		I915_WRITE(DSPFW3, reg);
   1058 
   1059 		/* Display HPLL off SR */
   1060 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
   1061 					pineview_display_hplloff_wm.fifo_size,
   1062 					pixel_size, latency->display_hpll_disable);
   1063 		reg = I915_READ(DSPFW3);
   1064 		reg &= ~DSPFW_HPLL_SR_MASK;
   1065 		reg |= wm & DSPFW_HPLL_SR_MASK;
   1066 		I915_WRITE(DSPFW3, reg);
   1067 
   1068 		/* cursor HPLL off SR */
   1069 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
   1070 					pineview_display_hplloff_wm.fifo_size,
   1071 					pixel_size, latency->cursor_hpll_disable);
   1072 		reg = I915_READ(DSPFW3);
   1073 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
   1074 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
   1075 		I915_WRITE(DSPFW3, reg);
   1076 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
   1077 
   1078 		/* activate cxsr */
   1079 		I915_WRITE(DSPFW3,
   1080 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
   1081 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
   1082 	} else {
   1083 		pineview_disable_cxsr(dev);
   1084 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
   1085 	}
   1086 }
   1087 
   1088 static bool g4x_compute_wm0(struct drm_device *dev,
   1089 			    int plane,
   1090 			    const struct intel_watermark_params *display,
   1091 			    int display_latency_ns,
   1092 			    const struct intel_watermark_params *cursor,
   1093 			    int cursor_latency_ns,
   1094 			    int *plane_wm,
   1095 			    int *cursor_wm)
   1096 {
   1097 	struct drm_crtc *crtc;
   1098 	int htotal, hdisplay, clock, pixel_size;
   1099 	int line_time_us, line_count;
   1100 	int entries, tlb_miss;
   1101 
   1102 	crtc = intel_get_crtc_for_plane(dev, plane);
   1103 	if (!intel_crtc_active(crtc)) {
   1104 		*cursor_wm = cursor->guard_size;
   1105 		*plane_wm = display->guard_size;
   1106 		return false;
   1107 	}
   1108 
   1109 	htotal = crtc->mode.htotal;
   1110 	hdisplay = crtc->mode.hdisplay;
   1111 	clock = crtc->mode.clock;
   1112 	pixel_size = crtc->fb->bits_per_pixel / 8;
   1113 
   1114 	/* Use the small buffer method to calculate plane watermark */
   1115 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
   1116 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
   1117 	if (tlb_miss > 0)
   1118 		entries += tlb_miss;
   1119 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
   1120 	*plane_wm = entries + display->guard_size;
   1121 	if (*plane_wm > (int)display->max_wm)
   1122 		*plane_wm = display->max_wm;
   1123 
   1124 	/* Use the large buffer method to calculate cursor watermark */
   1125 	line_time_us = ((htotal * 1000) / clock);
   1126 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
   1127 	entries = line_count * 64 * pixel_size;
   1128 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
   1129 	if (tlb_miss > 0)
   1130 		entries += tlb_miss;
   1131 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1132 	*cursor_wm = entries + cursor->guard_size;
   1133 	if (*cursor_wm > (int)cursor->max_wm)
   1134 		*cursor_wm = (int)cursor->max_wm;
   1135 
   1136 	return true;
   1137 }
   1138 
   1139 /*
   1140  * Check the wm result.
   1141  *
   1142  * If any calculated watermark values is larger than the maximum value that
   1143  * can be programmed into the associated watermark register, that watermark
   1144  * must be disabled.
   1145  */
   1146 static bool g4x_check_srwm(struct drm_device *dev,
   1147 			   int display_wm, int cursor_wm,
   1148 			   const struct intel_watermark_params *display,
   1149 			   const struct intel_watermark_params *cursor)
   1150 {
   1151 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
   1152 		      display_wm, cursor_wm);
   1153 
   1154 	if (display_wm > display->max_wm) {
   1155 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
   1156 			      display_wm, display->max_wm);
   1157 		return false;
   1158 	}
   1159 
   1160 	if (cursor_wm > cursor->max_wm) {
   1161 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
   1162 			      cursor_wm, cursor->max_wm);
   1163 		return false;
   1164 	}
   1165 
   1166 	if (!(display_wm || cursor_wm)) {
   1167 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
   1168 		return false;
   1169 	}
   1170 
   1171 	return true;
   1172 }
   1173 
   1174 static bool g4x_compute_srwm(struct drm_device *dev,
   1175 			     int plane,
   1176 			     int latency_ns,
   1177 			     const struct intel_watermark_params *display,
   1178 			     const struct intel_watermark_params *cursor,
   1179 			     int *display_wm, int *cursor_wm)
   1180 {
   1181 	struct drm_crtc *crtc;
   1182 	int hdisplay, htotal, pixel_size, clock;
   1183 	unsigned long line_time_us;
   1184 	int line_count, line_size;
   1185 	int small, large;
   1186 	int entries;
   1187 
   1188 	if (!latency_ns) {
   1189 		*display_wm = *cursor_wm = 0;
   1190 		return false;
   1191 	}
   1192 
   1193 	crtc = intel_get_crtc_for_plane(dev, plane);
   1194 	hdisplay = crtc->mode.hdisplay;
   1195 	htotal = crtc->mode.htotal;
   1196 	clock = crtc->mode.clock;
   1197 	pixel_size = crtc->fb->bits_per_pixel / 8;
   1198 
   1199 	line_time_us = (htotal * 1000) / clock;
   1200 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   1201 	line_size = hdisplay * pixel_size;
   1202 
   1203 	/* Use the minimum of the small and large buffer method for primary */
   1204 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   1205 	large = line_count * line_size;
   1206 
   1207 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   1208 	*display_wm = entries + display->guard_size;
   1209 
   1210 	/* calculate the self-refresh watermark for display cursor */
   1211 	entries = line_count * pixel_size * 64;
   1212 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1213 	*cursor_wm = entries + cursor->guard_size;
   1214 
   1215 	return g4x_check_srwm(dev,
   1216 			      *display_wm, *cursor_wm,
   1217 			      display, cursor);
   1218 }
   1219 
   1220 static bool vlv_compute_drain_latency(struct drm_device *dev,
   1221 				     int plane,
   1222 				     int *plane_prec_mult,
   1223 				     int *plane_dl,
   1224 				     int *cursor_prec_mult,
   1225 				     int *cursor_dl)
   1226 {
   1227 	struct drm_crtc *crtc;
   1228 	int clock, pixel_size;
   1229 	int entries;
   1230 
   1231 	crtc = intel_get_crtc_for_plane(dev, plane);
   1232 	if (!intel_crtc_active(crtc))
   1233 		return false;
   1234 
   1235 	clock = crtc->mode.clock;	/* VESA DOT Clock */
   1236 	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
   1237 
   1238 	entries = (clock / 1000) * pixel_size;
   1239 	*plane_prec_mult = (entries > 256) ?
   1240 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1241 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
   1242 						     pixel_size);
   1243 
   1244 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
   1245 	*cursor_prec_mult = (entries > 256) ?
   1246 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1247 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
   1248 
   1249 	return true;
   1250 }
   1251 
   1252 /*
   1253  * Update drain latency registers of memory arbiter
   1254  *
   1255  * Valleyview SoC has a new memory arbiter and needs drain latency registers
   1256  * to be programmed. Each plane has a drain latency multiplier and a drain
   1257  * latency value.
   1258  */
   1259 
   1260 static void vlv_update_drain_latency(struct drm_device *dev)
   1261 {
   1262 	struct drm_i915_private *dev_priv = dev->dev_private;
   1263 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
   1264 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
   1265 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
   1266 							either 16 or 32 */
   1267 
   1268 	/* For plane A, Cursor A */
   1269 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
   1270 				      &cursor_prec_mult, &cursora_dl)) {
   1271 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1272 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
   1273 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1274 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
   1275 
   1276 		I915_WRITE(VLV_DDL1, cursora_prec |
   1277 				(cursora_dl << DDL_CURSORA_SHIFT) |
   1278 				planea_prec | planea_dl);
   1279 	}
   1280 
   1281 	/* For plane B, Cursor B */
   1282 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
   1283 				      &cursor_prec_mult, &cursorb_dl)) {
   1284 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1285 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
   1286 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1287 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
   1288 
   1289 		I915_WRITE(VLV_DDL2, cursorb_prec |
   1290 				(cursorb_dl << DDL_CURSORB_SHIFT) |
   1291 				planeb_prec | planeb_dl);
   1292 	}
   1293 }
   1294 
   1295 #define single_plane_enabled(mask) is_power_of_2(mask)
   1296 
   1297 static void valleyview_update_wm(struct drm_device *dev)
   1298 {
   1299 	static const int sr_latency_ns = 12000;
   1300 	struct drm_i915_private *dev_priv = dev->dev_private;
   1301 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1302 	int plane_sr, cursor_sr;
   1303 	int ignore_plane_sr, ignore_cursor_sr;
   1304 	unsigned int enabled = 0;
   1305 
   1306 	vlv_update_drain_latency(dev);
   1307 
   1308 	if (g4x_compute_wm0(dev, 0,
   1309 			    &valleyview_wm_info, latency_ns,
   1310 			    &valleyview_cursor_wm_info, latency_ns,
   1311 			    &planea_wm, &cursora_wm))
   1312 		enabled |= 1;
   1313 
   1314 	if (g4x_compute_wm0(dev, 1,
   1315 			    &valleyview_wm_info, latency_ns,
   1316 			    &valleyview_cursor_wm_info, latency_ns,
   1317 			    &planeb_wm, &cursorb_wm))
   1318 		enabled |= 2;
   1319 
   1320 	if (single_plane_enabled(enabled) &&
   1321 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1322 			     sr_latency_ns,
   1323 			     &valleyview_wm_info,
   1324 			     &valleyview_cursor_wm_info,
   1325 			     &plane_sr, &ignore_cursor_sr) &&
   1326 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1327 			     2*sr_latency_ns,
   1328 			     &valleyview_wm_info,
   1329 			     &valleyview_cursor_wm_info,
   1330 			     &ignore_plane_sr, &cursor_sr)) {
   1331 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
   1332 	} else {
   1333 		I915_WRITE(FW_BLC_SELF_VLV,
   1334 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
   1335 		plane_sr = cursor_sr = 0;
   1336 	}
   1337 
   1338 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1339 		      planea_wm, cursora_wm,
   1340 		      planeb_wm, cursorb_wm,
   1341 		      plane_sr, cursor_sr);
   1342 
   1343 	I915_WRITE(DSPFW1,
   1344 		   (plane_sr << DSPFW_SR_SHIFT) |
   1345 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1346 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1347 		   planea_wm);
   1348 	I915_WRITE(DSPFW2,
   1349 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1350 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1351 	I915_WRITE(DSPFW3,
   1352 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
   1353 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1354 }
   1355 
   1356 static void g4x_update_wm(struct drm_device *dev)
   1357 {
   1358 	static const int sr_latency_ns = 12000;
   1359 	struct drm_i915_private *dev_priv = dev->dev_private;
   1360 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1361 	int plane_sr, cursor_sr;
   1362 	unsigned int enabled = 0;
   1363 
   1364 	if (g4x_compute_wm0(dev, 0,
   1365 			    &g4x_wm_info, latency_ns,
   1366 			    &g4x_cursor_wm_info, latency_ns,
   1367 			    &planea_wm, &cursora_wm))
   1368 		enabled |= 1;
   1369 
   1370 	if (g4x_compute_wm0(dev, 1,
   1371 			    &g4x_wm_info, latency_ns,
   1372 			    &g4x_cursor_wm_info, latency_ns,
   1373 			    &planeb_wm, &cursorb_wm))
   1374 		enabled |= 2;
   1375 
   1376 	if (single_plane_enabled(enabled) &&
   1377 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1378 			     sr_latency_ns,
   1379 			     &g4x_wm_info,
   1380 			     &g4x_cursor_wm_info,
   1381 			     &plane_sr, &cursor_sr)) {
   1382 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1383 	} else {
   1384 		I915_WRITE(FW_BLC_SELF,
   1385 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
   1386 		plane_sr = cursor_sr = 0;
   1387 	}
   1388 
   1389 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1390 		      planea_wm, cursora_wm,
   1391 		      planeb_wm, cursorb_wm,
   1392 		      plane_sr, cursor_sr);
   1393 
   1394 	I915_WRITE(DSPFW1,
   1395 		   (plane_sr << DSPFW_SR_SHIFT) |
   1396 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1397 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1398 		   planea_wm);
   1399 	I915_WRITE(DSPFW2,
   1400 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1401 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1402 	/* HPLL off in SR has some issues on G4x... disable it */
   1403 	I915_WRITE(DSPFW3,
   1404 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1405 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1406 }
   1407 
   1408 static void i965_update_wm(struct drm_device *dev)
   1409 {
   1410 	struct drm_i915_private *dev_priv = dev->dev_private;
   1411 	struct drm_crtc *crtc;
   1412 	int srwm = 1;
   1413 	int cursor_sr = 16;
   1414 
   1415 	/* Calc sr entries for one plane configs */
   1416 	crtc = single_enabled_crtc(dev);
   1417 	if (crtc) {
   1418 		/* self-refresh has much higher latency */
   1419 		static const int sr_latency_ns = 12000;
   1420 		int clock = crtc->mode.clock;
   1421 		int htotal = crtc->mode.htotal;
   1422 		int hdisplay = crtc->mode.hdisplay;
   1423 		int pixel_size = crtc->fb->bits_per_pixel / 8;
   1424 		unsigned long line_time_us;
   1425 		int entries;
   1426 
   1427 		line_time_us = ((htotal * 1000) / clock);
   1428 
   1429 		/* Use ns/us then divide to preserve precision */
   1430 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1431 			pixel_size * hdisplay;
   1432 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1433 		srwm = I965_FIFO_SIZE - entries;
   1434 		if (srwm < 0)
   1435 			srwm = 1;
   1436 		srwm &= 0x1ff;
   1437 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1438 			      entries, srwm);
   1439 
   1440 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1441 			pixel_size * 64;
   1442 		entries = DIV_ROUND_UP(entries,
   1443 					  i965_cursor_wm_info.cacheline_size);
   1444 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1445 			(entries + i965_cursor_wm_info.guard_size);
   1446 
   1447 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1448 			cursor_sr = i965_cursor_wm_info.max_wm;
   1449 
   1450 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1451 			      "cursor %d\n", srwm, cursor_sr);
   1452 
   1453 		if (IS_CRESTLINE(dev))
   1454 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1455 	} else {
   1456 		/* Turn off self refresh if both pipes are enabled */
   1457 		if (IS_CRESTLINE(dev))
   1458 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
   1459 				   & ~FW_BLC_SELF_EN);
   1460 	}
   1461 
   1462 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1463 		      srwm);
   1464 
   1465 	/* 965 has limitations... */
   1466 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
   1467 		   (8 << 16) | (8 << 8) | (8 << 0));
   1468 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
   1469 	/* update cursor SR watermark */
   1470 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1471 }
   1472 
   1473 static void i9xx_update_wm(struct drm_device *dev)
   1474 {
   1475 	struct drm_i915_private *dev_priv = dev->dev_private;
   1476 	const struct intel_watermark_params *wm_info;
   1477 	uint32_t fwater_lo;
   1478 	uint32_t fwater_hi;
   1479 	int cwm, srwm = 1;
   1480 	int fifo_size;
   1481 	int planea_wm, planeb_wm;
   1482 	struct drm_crtc *crtc, *enabled = NULL;
   1483 
   1484 	if (IS_I945GM(dev))
   1485 		wm_info = &i945_wm_info;
   1486 	else if (!IS_GEN2(dev))
   1487 		wm_info = &i915_wm_info;
   1488 	else
   1489 		wm_info = &i855_wm_info;
   1490 
   1491 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1492 	crtc = intel_get_crtc_for_plane(dev, 0);
   1493 	if (intel_crtc_active(crtc)) {
   1494 		int cpp = crtc->fb->bits_per_pixel / 8;
   1495 		if (IS_GEN2(dev))
   1496 			cpp = 4;
   1497 
   1498 		planea_wm = intel_calculate_wm(crtc->mode.clock,
   1499 					       wm_info, fifo_size, cpp,
   1500 					       latency_ns);
   1501 		enabled = crtc;
   1502 	} else
   1503 		planea_wm = fifo_size - wm_info->guard_size;
   1504 
   1505 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1506 	crtc = intel_get_crtc_for_plane(dev, 1);
   1507 	if (intel_crtc_active(crtc)) {
   1508 		int cpp = crtc->fb->bits_per_pixel / 8;
   1509 		if (IS_GEN2(dev))
   1510 			cpp = 4;
   1511 
   1512 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
   1513 					       wm_info, fifo_size, cpp,
   1514 					       latency_ns);
   1515 		if (enabled == NULL)
   1516 			enabled = crtc;
   1517 		else
   1518 			enabled = NULL;
   1519 	} else
   1520 		planeb_wm = fifo_size - wm_info->guard_size;
   1521 
   1522 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1523 
   1524 	/*
   1525 	 * Overlay gets an aggressive default since video jitter is bad.
   1526 	 */
   1527 	cwm = 2;
   1528 
   1529 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1530 	if (IS_I945G(dev) || IS_I945GM(dev))
   1531 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
   1532 	else if (IS_I915GM(dev))
   1533 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
   1534 
   1535 	/* Calc sr entries for one plane configs */
   1536 	if (HAS_FW_BLC(dev) && enabled) {
   1537 		/* self-refresh has much higher latency */
   1538 		static const int sr_latency_ns = 6000;
   1539 		int clock = enabled->mode.clock;
   1540 		int htotal = enabled->mode.htotal;
   1541 		int hdisplay = enabled->mode.hdisplay;
   1542 		int pixel_size = enabled->fb->bits_per_pixel / 8;
   1543 		unsigned long line_time_us;
   1544 		int entries;
   1545 
   1546 		line_time_us = (htotal * 1000) / clock;
   1547 
   1548 		/* Use ns/us then divide to preserve precision */
   1549 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1550 			pixel_size * hdisplay;
   1551 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1552 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1553 		srwm = wm_info->fifo_size - entries;
   1554 		if (srwm < 0)
   1555 			srwm = 1;
   1556 
   1557 		if (IS_I945G(dev) || IS_I945GM(dev))
   1558 			I915_WRITE(FW_BLC_SELF,
   1559 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1560 		else if (IS_I915GM(dev))
   1561 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1562 	}
   1563 
   1564 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1565 		      planea_wm, planeb_wm, cwm, srwm);
   1566 
   1567 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1568 	fwater_hi = (cwm & 0x1f);
   1569 
   1570 	/* Set request length to 8 cachelines per fetch */
   1571 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1572 	fwater_hi = fwater_hi | (1 << 8);
   1573 
   1574 	I915_WRITE(FW_BLC, fwater_lo);
   1575 	I915_WRITE(FW_BLC2, fwater_hi);
   1576 
   1577 	if (HAS_FW_BLC(dev)) {
   1578 		if (enabled) {
   1579 			if (IS_I945G(dev) || IS_I945GM(dev))
   1580 				I915_WRITE(FW_BLC_SELF,
   1581 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
   1582 			else if (IS_I915GM(dev))
   1583 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
   1584 			DRM_DEBUG_KMS("memory self refresh enabled\n");
   1585 		} else
   1586 			DRM_DEBUG_KMS("memory self refresh disabled\n");
   1587 	}
   1588 }
   1589 
   1590 static void i830_update_wm(struct drm_device *dev)
   1591 {
   1592 	struct drm_i915_private *dev_priv = dev->dev_private;
   1593 	struct drm_crtc *crtc;
   1594 	uint32_t fwater_lo;
   1595 	int planea_wm;
   1596 
   1597 	crtc = single_enabled_crtc(dev);
   1598 	if (crtc == NULL)
   1599 		return;
   1600 
   1601 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
   1602 				       dev_priv->display.get_fifo_size(dev, 0),
   1603 				       4, latency_ns);
   1604 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1605 	fwater_lo |= (3<<8) | planea_wm;
   1606 
   1607 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1608 
   1609 	I915_WRITE(FW_BLC, fwater_lo);
   1610 }
   1611 
   1612 #define ILK_LP0_PLANE_LATENCY		700
   1613 #define ILK_LP0_CURSOR_LATENCY		1300
   1614 
   1615 /*
   1616  * Check the wm result.
   1617  *
   1618  * If any calculated watermark values is larger than the maximum value that
   1619  * can be programmed into the associated watermark register, that watermark
   1620  * must be disabled.
   1621  */
   1622 static bool ironlake_check_srwm(struct drm_device *dev, int level,
   1623 				int fbc_wm, int display_wm, int cursor_wm,
   1624 				const struct intel_watermark_params *display,
   1625 				const struct intel_watermark_params *cursor)
   1626 {
   1627 	struct drm_i915_private *dev_priv = dev->dev_private;
   1628 
   1629 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
   1630 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
   1631 
   1632 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
   1633 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
   1634 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
   1635 
   1636 		/* fbc has it's own way to disable FBC WM */
   1637 		I915_WRITE(DISP_ARB_CTL,
   1638 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
   1639 		return false;
   1640 	}
   1641 
   1642 	if (display_wm > display->max_wm) {
   1643 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
   1644 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
   1645 		return false;
   1646 	}
   1647 
   1648 	if (cursor_wm > cursor->max_wm) {
   1649 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
   1650 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
   1651 		return false;
   1652 	}
   1653 
   1654 	if (!(fbc_wm || display_wm || cursor_wm)) {
   1655 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
   1656 		return false;
   1657 	}
   1658 
   1659 	return true;
   1660 }
   1661 
   1662 /*
   1663  * Compute watermark values of WM[1-3],
   1664  */
   1665 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
   1666 				  int latency_ns,
   1667 				  const struct intel_watermark_params *display,
   1668 				  const struct intel_watermark_params *cursor,
   1669 				  int *fbc_wm, int *display_wm, int *cursor_wm)
   1670 {
   1671 	struct drm_crtc *crtc;
   1672 	unsigned long line_time_us;
   1673 	int hdisplay, htotal, pixel_size, clock;
   1674 	int line_count, line_size;
   1675 	int small, large;
   1676 	int entries;
   1677 
   1678 	if (!latency_ns) {
   1679 		*fbc_wm = *display_wm = *cursor_wm = 0;
   1680 		return false;
   1681 	}
   1682 
   1683 	crtc = intel_get_crtc_for_plane(dev, plane);
   1684 	hdisplay = crtc->mode.hdisplay;
   1685 	htotal = crtc->mode.htotal;
   1686 	clock = crtc->mode.clock;
   1687 	pixel_size = crtc->fb->bits_per_pixel / 8;
   1688 
   1689 	line_time_us = (htotal * 1000) / clock;
   1690 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   1691 	line_size = hdisplay * pixel_size;
   1692 
   1693 	/* Use the minimum of the small and large buffer method for primary */
   1694 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   1695 	large = line_count * line_size;
   1696 
   1697 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   1698 	*display_wm = entries + display->guard_size;
   1699 
   1700 	/*
   1701 	 * Spec says:
   1702 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
   1703 	 */
   1704 	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
   1705 
   1706 	/* calculate the self-refresh watermark for display cursor */
   1707 	entries = line_count * pixel_size * 64;
   1708 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1709 	*cursor_wm = entries + cursor->guard_size;
   1710 
   1711 	return ironlake_check_srwm(dev, level,
   1712 				   *fbc_wm, *display_wm, *cursor_wm,
   1713 				   display, cursor);
   1714 }
   1715 
   1716 static void ironlake_update_wm(struct drm_device *dev)
   1717 {
   1718 	struct drm_i915_private *dev_priv = dev->dev_private;
   1719 	int fbc_wm, plane_wm, cursor_wm;
   1720 	unsigned int enabled;
   1721 
   1722 	enabled = 0;
   1723 	if (g4x_compute_wm0(dev, 0,
   1724 			    &ironlake_display_wm_info,
   1725 			    ILK_LP0_PLANE_LATENCY,
   1726 			    &ironlake_cursor_wm_info,
   1727 			    ILK_LP0_CURSOR_LATENCY,
   1728 			    &plane_wm, &cursor_wm)) {
   1729 		I915_WRITE(WM0_PIPEA_ILK,
   1730 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
   1731 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
   1732 			      " plane %d, " "cursor: %d\n",
   1733 			      plane_wm, cursor_wm);
   1734 		enabled |= 1;
   1735 	}
   1736 
   1737 	if (g4x_compute_wm0(dev, 1,
   1738 			    &ironlake_display_wm_info,
   1739 			    ILK_LP0_PLANE_LATENCY,
   1740 			    &ironlake_cursor_wm_info,
   1741 			    ILK_LP0_CURSOR_LATENCY,
   1742 			    &plane_wm, &cursor_wm)) {
   1743 		I915_WRITE(WM0_PIPEB_ILK,
   1744 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
   1745 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
   1746 			      " plane %d, cursor: %d\n",
   1747 			      plane_wm, cursor_wm);
   1748 		enabled |= 2;
   1749 	}
   1750 
   1751 	/*
   1752 	 * Calculate and update the self-refresh watermark only when one
   1753 	 * display plane is used.
   1754 	 */
   1755 	I915_WRITE(WM3_LP_ILK, 0);
   1756 	I915_WRITE(WM2_LP_ILK, 0);
   1757 	I915_WRITE(WM1_LP_ILK, 0);
   1758 
   1759 	if (!single_plane_enabled(enabled))
   1760 		return;
   1761 	enabled = ffs(enabled) - 1;
   1762 
   1763 	/* WM1 */
   1764 	if (!ironlake_compute_srwm(dev, 1, enabled,
   1765 				   ILK_READ_WM1_LATENCY() * 500,
   1766 				   &ironlake_display_srwm_info,
   1767 				   &ironlake_cursor_srwm_info,
   1768 				   &fbc_wm, &plane_wm, &cursor_wm))
   1769 		return;
   1770 
   1771 	I915_WRITE(WM1_LP_ILK,
   1772 		   WM1_LP_SR_EN |
   1773 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1774 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1775 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1776 		   cursor_wm);
   1777 
   1778 	/* WM2 */
   1779 	if (!ironlake_compute_srwm(dev, 2, enabled,
   1780 				   ILK_READ_WM2_LATENCY() * 500,
   1781 				   &ironlake_display_srwm_info,
   1782 				   &ironlake_cursor_srwm_info,
   1783 				   &fbc_wm, &plane_wm, &cursor_wm))
   1784 		return;
   1785 
   1786 	I915_WRITE(WM2_LP_ILK,
   1787 		   WM2_LP_EN |
   1788 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1789 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1790 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1791 		   cursor_wm);
   1792 
   1793 	/*
   1794 	 * WM3 is unsupported on ILK, probably because we don't have latency
   1795 	 * data for that power state
   1796 	 */
   1797 }
   1798 
   1799 static void sandybridge_update_wm(struct drm_device *dev)
   1800 {
   1801 	struct drm_i915_private *dev_priv = dev->dev_private;
   1802 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
   1803 	u32 val;
   1804 	int fbc_wm, plane_wm, cursor_wm;
   1805 	unsigned int enabled;
   1806 
   1807 	enabled = 0;
   1808 	if (g4x_compute_wm0(dev, 0,
   1809 			    &sandybridge_display_wm_info, latency,
   1810 			    &sandybridge_cursor_wm_info, latency,
   1811 			    &plane_wm, &cursor_wm)) {
   1812 		val = I915_READ(WM0_PIPEA_ILK);
   1813 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1814 		I915_WRITE(WM0_PIPEA_ILK, val |
   1815 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1816 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
   1817 			      " plane %d, " "cursor: %d\n",
   1818 			      plane_wm, cursor_wm);
   1819 		enabled |= 1;
   1820 	}
   1821 
   1822 	if (g4x_compute_wm0(dev, 1,
   1823 			    &sandybridge_display_wm_info, latency,
   1824 			    &sandybridge_cursor_wm_info, latency,
   1825 			    &plane_wm, &cursor_wm)) {
   1826 		val = I915_READ(WM0_PIPEB_ILK);
   1827 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1828 		I915_WRITE(WM0_PIPEB_ILK, val |
   1829 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1830 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
   1831 			      " plane %d, cursor: %d\n",
   1832 			      plane_wm, cursor_wm);
   1833 		enabled |= 2;
   1834 	}
   1835 
   1836 	/*
   1837 	 * Calculate and update the self-refresh watermark only when one
   1838 	 * display plane is used.
   1839 	 *
   1840 	 * SNB support 3 levels of watermark.
   1841 	 *
   1842 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
   1843 	 * and disabled in the descending order
   1844 	 *
   1845 	 */
   1846 	I915_WRITE(WM3_LP_ILK, 0);
   1847 	I915_WRITE(WM2_LP_ILK, 0);
   1848 	I915_WRITE(WM1_LP_ILK, 0);
   1849 
   1850 	if (!single_plane_enabled(enabled) ||
   1851 	    dev_priv->sprite_scaling_enabled)
   1852 		return;
   1853 	enabled = ffs(enabled) - 1;
   1854 
   1855 	/* WM1 */
   1856 	if (!ironlake_compute_srwm(dev, 1, enabled,
   1857 				   SNB_READ_WM1_LATENCY() * 500,
   1858 				   &sandybridge_display_srwm_info,
   1859 				   &sandybridge_cursor_srwm_info,
   1860 				   &fbc_wm, &plane_wm, &cursor_wm))
   1861 		return;
   1862 
   1863 	I915_WRITE(WM1_LP_ILK,
   1864 		   WM1_LP_SR_EN |
   1865 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1866 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1867 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1868 		   cursor_wm);
   1869 
   1870 	/* WM2 */
   1871 	if (!ironlake_compute_srwm(dev, 2, enabled,
   1872 				   SNB_READ_WM2_LATENCY() * 500,
   1873 				   &sandybridge_display_srwm_info,
   1874 				   &sandybridge_cursor_srwm_info,
   1875 				   &fbc_wm, &plane_wm, &cursor_wm))
   1876 		return;
   1877 
   1878 	I915_WRITE(WM2_LP_ILK,
   1879 		   WM2_LP_EN |
   1880 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1881 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1882 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1883 		   cursor_wm);
   1884 
   1885 	/* WM3 */
   1886 	if (!ironlake_compute_srwm(dev, 3, enabled,
   1887 				   SNB_READ_WM3_LATENCY() * 500,
   1888 				   &sandybridge_display_srwm_info,
   1889 				   &sandybridge_cursor_srwm_info,
   1890 				   &fbc_wm, &plane_wm, &cursor_wm))
   1891 		return;
   1892 
   1893 	I915_WRITE(WM3_LP_ILK,
   1894 		   WM3_LP_EN |
   1895 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1896 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1897 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1898 		   cursor_wm);
   1899 }
   1900 
   1901 static void ivybridge_update_wm(struct drm_device *dev)
   1902 {
   1903 	struct drm_i915_private *dev_priv = dev->dev_private;
   1904 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
   1905 	u32 val;
   1906 	int fbc_wm, plane_wm, cursor_wm;
   1907 	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
   1908 	unsigned int enabled;
   1909 
   1910 	enabled = 0;
   1911 	if (g4x_compute_wm0(dev, 0,
   1912 			    &sandybridge_display_wm_info, latency,
   1913 			    &sandybridge_cursor_wm_info, latency,
   1914 			    &plane_wm, &cursor_wm)) {
   1915 		val = I915_READ(WM0_PIPEA_ILK);
   1916 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1917 		I915_WRITE(WM0_PIPEA_ILK, val |
   1918 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1919 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
   1920 			      " plane %d, " "cursor: %d\n",
   1921 			      plane_wm, cursor_wm);
   1922 		enabled |= 1;
   1923 	}
   1924 
   1925 	if (g4x_compute_wm0(dev, 1,
   1926 			    &sandybridge_display_wm_info, latency,
   1927 			    &sandybridge_cursor_wm_info, latency,
   1928 			    &plane_wm, &cursor_wm)) {
   1929 		val = I915_READ(WM0_PIPEB_ILK);
   1930 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1931 		I915_WRITE(WM0_PIPEB_ILK, val |
   1932 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1933 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
   1934 			      " plane %d, cursor: %d\n",
   1935 			      plane_wm, cursor_wm);
   1936 		enabled |= 2;
   1937 	}
   1938 
   1939 	if (g4x_compute_wm0(dev, 2,
   1940 			    &sandybridge_display_wm_info, latency,
   1941 			    &sandybridge_cursor_wm_info, latency,
   1942 			    &plane_wm, &cursor_wm)) {
   1943 		val = I915_READ(WM0_PIPEC_IVB);
   1944 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
   1945 		I915_WRITE(WM0_PIPEC_IVB, val |
   1946 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
   1947 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
   1948 			      " plane %d, cursor: %d\n",
   1949 			      plane_wm, cursor_wm);
   1950 		enabled |= 3;
   1951 	}
   1952 
   1953 	/*
   1954 	 * Calculate and update the self-refresh watermark only when one
   1955 	 * display plane is used.
   1956 	 *
   1957 	 * SNB support 3 levels of watermark.
   1958 	 *
   1959 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
   1960 	 * and disabled in the descending order
   1961 	 *
   1962 	 */
   1963 	I915_WRITE(WM3_LP_ILK, 0);
   1964 	I915_WRITE(WM2_LP_ILK, 0);
   1965 	I915_WRITE(WM1_LP_ILK, 0);
   1966 
   1967 	if (!single_plane_enabled(enabled) ||
   1968 	    dev_priv->sprite_scaling_enabled)
   1969 		return;
   1970 	enabled = ffs(enabled) - 1;
   1971 
   1972 	/* WM1 */
   1973 	if (!ironlake_compute_srwm(dev, 1, enabled,
   1974 				   SNB_READ_WM1_LATENCY() * 500,
   1975 				   &sandybridge_display_srwm_info,
   1976 				   &sandybridge_cursor_srwm_info,
   1977 				   &fbc_wm, &plane_wm, &cursor_wm))
   1978 		return;
   1979 
   1980 	I915_WRITE(WM1_LP_ILK,
   1981 		   WM1_LP_SR_EN |
   1982 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1983 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1984 		   (plane_wm << WM1_LP_SR_SHIFT) |
   1985 		   cursor_wm);
   1986 
   1987 	/* WM2 */
   1988 	if (!ironlake_compute_srwm(dev, 2, enabled,
   1989 				   SNB_READ_WM2_LATENCY() * 500,
   1990 				   &sandybridge_display_srwm_info,
   1991 				   &sandybridge_cursor_srwm_info,
   1992 				   &fbc_wm, &plane_wm, &cursor_wm))
   1993 		return;
   1994 
   1995 	I915_WRITE(WM2_LP_ILK,
   1996 		   WM2_LP_EN |
   1997 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   1998 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   1999 		   (plane_wm << WM1_LP_SR_SHIFT) |
   2000 		   cursor_wm);
   2001 
   2002 	/* WM3, note we have to correct the cursor latency */
   2003 	if (!ironlake_compute_srwm(dev, 3, enabled,
   2004 				   SNB_READ_WM3_LATENCY() * 500,
   2005 				   &sandybridge_display_srwm_info,
   2006 				   &sandybridge_cursor_srwm_info,
   2007 				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
   2008 	    !ironlake_compute_srwm(dev, 3, enabled,
   2009 				   2 * SNB_READ_WM3_LATENCY() * 500,
   2010 				   &sandybridge_display_srwm_info,
   2011 				   &sandybridge_cursor_srwm_info,
   2012 				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
   2013 		return;
   2014 
   2015 	I915_WRITE(WM3_LP_ILK,
   2016 		   WM3_LP_EN |
   2017 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
   2018 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
   2019 		   (plane_wm << WM1_LP_SR_SHIFT) |
   2020 		   cursor_wm);
   2021 }
   2022 
   2023 static void
   2024 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
   2025 				 struct drm_display_mode *mode)
   2026 {
   2027 	struct drm_i915_private *dev_priv = dev->dev_private;
   2028 	u32 temp;
   2029 
   2030 	temp = I915_READ(PIPE_WM_LINETIME(pipe));
   2031 	temp &= ~PIPE_WM_LINETIME_MASK;
   2032 
   2033 	/* The WM are computed with base on how long it takes to fill a single
   2034 	 * row at the given clock rate, multiplied by 8.
   2035 	 * */
   2036 	temp |= PIPE_WM_LINETIME_TIME(
   2037 		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
   2038 
   2039 	/* IPS watermarks are only used by pipe A, and are ignored by
   2040 	 * pipes B and C.  They are calculated similarly to the common
   2041 	 * linetime values, except that we are using CD clock frequency
   2042 	 * in MHz instead of pixel rate for the division.
   2043 	 *
   2044 	 * This is a placeholder for the IPS watermark calculation code.
   2045 	 */
   2046 
   2047 	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
   2048 }
   2049 
   2050 static bool
   2051 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
   2052 			      uint32_t sprite_width, int pixel_size,
   2053 			      const struct intel_watermark_params *display,
   2054 			      int display_latency_ns, int *sprite_wm)
   2055 {
   2056 	struct drm_crtc *crtc;
   2057 	int clock;
   2058 	int entries, tlb_miss;
   2059 
   2060 	crtc = intel_get_crtc_for_plane(dev, plane);
   2061 	if (!intel_crtc_active(crtc)) {
   2062 		*sprite_wm = display->guard_size;
   2063 		return false;
   2064 	}
   2065 
   2066 	clock = crtc->mode.clock;
   2067 
   2068 	/* Use the small buffer method to calculate the sprite watermark */
   2069 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
   2070 	tlb_miss = display->fifo_size*display->cacheline_size -
   2071 		sprite_width * 8;
   2072 	if (tlb_miss > 0)
   2073 		entries += tlb_miss;
   2074 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
   2075 	*sprite_wm = entries + display->guard_size;
   2076 	if (*sprite_wm > (int)display->max_wm)
   2077 		*sprite_wm = display->max_wm;
   2078 
   2079 	return true;
   2080 }
   2081 
   2082 static bool
   2083 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
   2084 				uint32_t sprite_width, int pixel_size,
   2085 				const struct intel_watermark_params *display,
   2086 				int latency_ns, int *sprite_wm)
   2087 {
   2088 	struct drm_crtc *crtc;
   2089 	unsigned long line_time_us;
   2090 	int clock;
   2091 	int line_count, line_size;
   2092 	int small, large;
   2093 	int entries;
   2094 
   2095 	if (!latency_ns) {
   2096 		*sprite_wm = 0;
   2097 		return false;
   2098 	}
   2099 
   2100 	crtc = intel_get_crtc_for_plane(dev, plane);
   2101 	clock = crtc->mode.clock;
   2102 	if (!clock) {
   2103 		*sprite_wm = 0;
   2104 		return false;
   2105 	}
   2106 
   2107 	line_time_us = (sprite_width * 1000) / clock;
   2108 	if (!line_time_us) {
   2109 		*sprite_wm = 0;
   2110 		return false;
   2111 	}
   2112 
   2113 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   2114 	line_size = sprite_width * pixel_size;
   2115 
   2116 	/* Use the minimum of the small and large buffer method for primary */
   2117 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   2118 	large = line_count * line_size;
   2119 
   2120 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   2121 	*sprite_wm = entries + display->guard_size;
   2122 
   2123 	return *sprite_wm > 0x3ff ? false : true;
   2124 }
   2125 
   2126 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
   2127 					 uint32_t sprite_width, int pixel_size)
   2128 {
   2129 	struct drm_i915_private *dev_priv = dev->dev_private;
   2130 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
   2131 	u32 val;
   2132 	int sprite_wm, reg;
   2133 	int ret;
   2134 
   2135 	switch (pipe) {
   2136 	case 0:
   2137 		reg = WM0_PIPEA_ILK;
   2138 		break;
   2139 	case 1:
   2140 		reg = WM0_PIPEB_ILK;
   2141 		break;
   2142 	case 2:
   2143 		reg = WM0_PIPEC_IVB;
   2144 		break;
   2145 	default:
   2146 		return; /* bad pipe */
   2147 	}
   2148 
   2149 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
   2150 					    &sandybridge_display_wm_info,
   2151 					    latency, &sprite_wm);
   2152 	if (!ret) {
   2153 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
   2154 			      pipe);
   2155 		return;
   2156 	}
   2157 
   2158 	val = I915_READ(reg);
   2159 	val &= ~WM0_PIPE_SPRITE_MASK;
   2160 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
   2161 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
   2162 
   2163 
   2164 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
   2165 					      pixel_size,
   2166 					      &sandybridge_display_srwm_info,
   2167 					      SNB_READ_WM1_LATENCY() * 500,
   2168 					      &sprite_wm);
   2169 	if (!ret) {
   2170 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
   2171 			      pipe);
   2172 		return;
   2173 	}
   2174 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
   2175 
   2176 	/* Only IVB has two more LP watermarks for sprite */
   2177 	if (!IS_IVYBRIDGE(dev))
   2178 		return;
   2179 
   2180 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
   2181 					      pixel_size,
   2182 					      &sandybridge_display_srwm_info,
   2183 					      SNB_READ_WM2_LATENCY() * 500,
   2184 					      &sprite_wm);
   2185 	if (!ret) {
   2186 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
   2187 			      pipe);
   2188 		return;
   2189 	}
   2190 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
   2191 
   2192 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
   2193 					      pixel_size,
   2194 					      &sandybridge_display_srwm_info,
   2195 					      SNB_READ_WM3_LATENCY() * 500,
   2196 					      &sprite_wm);
   2197 	if (!ret) {
   2198 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
   2199 			      pipe);
   2200 		return;
   2201 	}
   2202 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
   2203 }
   2204 
   2205 /**
   2206  * intel_update_watermarks - update FIFO watermark values based on current modes
   2207  *
   2208  * Calculate watermark values for the various WM regs based on current mode
   2209  * and plane configuration.
   2210  *
   2211  * There are several cases to deal with here:
   2212  *   - normal (i.e. non-self-refresh)
   2213  *   - self-refresh (SR) mode
   2214  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   2215  *   - lines are small relative to FIFO size (buffer can hold more than 2
   2216  *     lines), so need to account for TLB latency
   2217  *
   2218  *   The normal calculation is:
   2219  *     watermark = dotclock * bytes per pixel * latency
   2220  *   where latency is platform & configuration dependent (we assume pessimal
   2221  *   values here).
   2222  *
   2223  *   The SR calculation is:
   2224  *     watermark = (trunc(latency/line time)+1) * surface width *
   2225  *       bytes per pixel
   2226  *   where
   2227  *     line time = htotal / dotclock
   2228  *     surface width = hdisplay for normal plane and 64 for cursor
   2229  *   and latency is assumed to be high, as above.
   2230  *
   2231  * The final value programmed to the register should always be rounded up,
   2232  * and include an extra 2 entries to account for clock crossings.
   2233  *
   2234  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   2235  * to set the non-SR watermarks to 8.
   2236  */
   2237 void intel_update_watermarks(struct drm_device *dev)
   2238 {
   2239 	struct drm_i915_private *dev_priv = dev->dev_private;
   2240 
   2241 	if (dev_priv->display.update_wm)
   2242 		dev_priv->display.update_wm(dev);
   2243 }
   2244 
   2245 void intel_update_linetime_watermarks(struct drm_device *dev,
   2246 		int pipe, struct drm_display_mode *mode)
   2247 {
   2248 	struct drm_i915_private *dev_priv = dev->dev_private;
   2249 
   2250 	if (dev_priv->display.update_linetime_wm)
   2251 		dev_priv->display.update_linetime_wm(dev, pipe, mode);
   2252 }
   2253 
   2254 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
   2255 				    uint32_t sprite_width, int pixel_size)
   2256 {
   2257 	struct drm_i915_private *dev_priv = dev->dev_private;
   2258 
   2259 	if (dev_priv->display.update_sprite_wm)
   2260 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
   2261 						   pixel_size);
   2262 }
   2263 
   2264 static struct drm_i915_gem_object *
   2265 intel_alloc_context_page(struct drm_device *dev)
   2266 {
   2267 	struct drm_i915_gem_object *ctx;
   2268 	int ret;
   2269 
   2270 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   2271 
   2272 	ctx = i915_gem_alloc_object(dev, 4096);
   2273 	if (!ctx) {
   2274 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
   2275 		return NULL;
   2276 	}
   2277 
   2278 	ret = i915_gem_object_pin(ctx, 4096, true, false);
   2279 	if (ret) {
   2280 		DRM_ERROR("failed to pin power context: %d\n", ret);
   2281 		goto err_unref;
   2282 	}
   2283 
   2284 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
   2285 	if (ret) {
   2286 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
   2287 		goto err_unpin;
   2288 	}
   2289 
   2290 	return ctx;
   2291 
   2292 err_unpin:
   2293 	i915_gem_object_unpin(ctx);
   2294 err_unref:
   2295 	drm_gem_object_unreference(&ctx->base);
   2296 	mutex_unlock(&dev->struct_mutex);
   2297 	return NULL;
   2298 }
   2299 
   2300 /**
   2301  * Lock protecting IPS related data structures
   2302  */
   2303 #ifdef __NetBSD__
   2304 spinlock_t mchdev_lock;
   2305 #else
   2306 DEFINE_SPINLOCK(mchdev_lock);
   2307 #endif
   2308 
   2309 /* Global for IPS driver to get at the current i915 device. Protected by
   2310  * mchdev_lock. */
   2311 static struct drm_i915_private *i915_mch_dev;
   2312 
   2313 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   2314 {
   2315 	struct drm_i915_private *dev_priv = dev->dev_private;
   2316 	u16 rgvswctl;
   2317 
   2318 	assert_spin_locked(&mchdev_lock);
   2319 
   2320 	rgvswctl = I915_READ16(MEMSWCTL);
   2321 	if (rgvswctl & MEMCTL_CMD_STS) {
   2322 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   2323 		return false; /* still busy with another command */
   2324 	}
   2325 
   2326 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   2327 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   2328 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2329 	POSTING_READ16(MEMSWCTL);
   2330 
   2331 	rgvswctl |= MEMCTL_CMD_STS;
   2332 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2333 
   2334 	return true;
   2335 }
   2336 
   2337 static void ironlake_enable_drps(struct drm_device *dev)
   2338 {
   2339 	struct drm_i915_private *dev_priv = dev->dev_private;
   2340 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   2341 	u8 fmax, fmin, fstart, vstart;
   2342 
   2343 	spin_lock_irq(&mchdev_lock);
   2344 
   2345 	/* Enable temp reporting */
   2346 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   2347 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   2348 
   2349 	/* 100ms RC evaluation intervals */
   2350 	I915_WRITE(RCUPEI, 100000);
   2351 	I915_WRITE(RCDNEI, 100000);
   2352 
   2353 	/* Set max/min thresholds to 90ms and 80ms respectively */
   2354 	I915_WRITE(RCBMAXAVG, 90000);
   2355 	I915_WRITE(RCBMINAVG, 80000);
   2356 
   2357 	I915_WRITE(MEMIHYST, 1);
   2358 
   2359 	/* Set up min, max, and cur for interrupt handling */
   2360 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   2361 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   2362 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   2363 		MEMMODE_FSTART_SHIFT;
   2364 
   2365 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
   2366 		PXVFREQ_PX_SHIFT;
   2367 
   2368 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   2369 	dev_priv->ips.fstart = fstart;
   2370 
   2371 	dev_priv->ips.max_delay = fstart;
   2372 	dev_priv->ips.min_delay = fmin;
   2373 	dev_priv->ips.cur_delay = fstart;
   2374 
   2375 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   2376 			 fmax, fmin, fstart);
   2377 
   2378 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   2379 
   2380 	/*
   2381 	 * Interrupts will be enabled in ironlake_irq_postinstall
   2382 	 */
   2383 
   2384 	I915_WRITE(VIDSTART, vstart);
   2385 	POSTING_READ(VIDSTART);
   2386 
   2387 	rgvmodectl |= MEMMODE_SWMODE_EN;
   2388 	I915_WRITE(MEMMODECTL, rgvmodectl);
   2389 
   2390 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   2391 		DRM_ERROR("stuck trying to change perf mode\n");
   2392 	mdelay(1);
   2393 
   2394 	ironlake_set_drps(dev, fstart);
   2395 
   2396 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
   2397 		I915_READ(0x112e0);
   2398 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   2399 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
   2400 	getrawmonotonic(&dev_priv->ips.last_time2);
   2401 
   2402 	spin_unlock_irq(&mchdev_lock);
   2403 }
   2404 
   2405 static void ironlake_disable_drps(struct drm_device *dev)
   2406 {
   2407 	struct drm_i915_private *dev_priv = dev->dev_private;
   2408 	u16 rgvswctl;
   2409 
   2410 	spin_lock_irq(&mchdev_lock);
   2411 
   2412 	rgvswctl = I915_READ16(MEMSWCTL);
   2413 
   2414 	/* Ack interrupts, disable EFC interrupt */
   2415 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   2416 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   2417 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   2418 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   2419 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   2420 
   2421 	/* Go back to the starting frequency */
   2422 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   2423 	mdelay(1);
   2424 	rgvswctl |= MEMCTL_CMD_STS;
   2425 	I915_WRITE(MEMSWCTL, rgvswctl);
   2426 	mdelay(1);
   2427 
   2428 	spin_unlock_irq(&mchdev_lock);
   2429 }
   2430 
   2431 /* There's a funny hw issue where the hw returns all 0 when reading from
   2432  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   2433  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   2434  * all limits and the gpu stuck at whatever frequency it is at atm).
   2435  */
   2436 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
   2437 {
   2438 	u32 limits;
   2439 
   2440 	limits = 0;
   2441 
   2442 	if (*val >= dev_priv->rps.max_delay)
   2443 		*val = dev_priv->rps.max_delay;
   2444 	limits |= dev_priv->rps.max_delay << 24;
   2445 
   2446 	/* Only set the down limit when we've reached the lowest level to avoid
   2447 	 * getting more interrupts, otherwise leave this clear. This prevents a
   2448 	 * race in the hw when coming out of rc6: There's a tiny window where
   2449 	 * the hw runs at the minimal clock before selecting the desired
   2450 	 * frequency, if the down threshold expires in that window we will not
   2451 	 * receive a down interrupt. */
   2452 	if (*val <= dev_priv->rps.min_delay) {
   2453 		*val = dev_priv->rps.min_delay;
   2454 		limits |= dev_priv->rps.min_delay << 16;
   2455 	}
   2456 
   2457 	return limits;
   2458 }
   2459 
   2460 void gen6_set_rps(struct drm_device *dev, u8 val)
   2461 {
   2462 	struct drm_i915_private *dev_priv = dev->dev_private;
   2463 	u32 limits = gen6_rps_limits(dev_priv, &val);
   2464 
   2465 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   2466 	WARN_ON(val > dev_priv->rps.max_delay);
   2467 	WARN_ON(val < dev_priv->rps.min_delay);
   2468 
   2469 	if (val == dev_priv->rps.cur_delay)
   2470 		return;
   2471 
   2472 	I915_WRITE(GEN6_RPNSWREQ,
   2473 		   GEN6_FREQUENCY(val) |
   2474 		   GEN6_OFFSET(0) |
   2475 		   GEN6_AGGRESSIVE_TURBO);
   2476 
   2477 	/* Make sure we continue to get interrupts
   2478 	 * until we hit the minimum or maximum frequencies.
   2479 	 */
   2480 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
   2481 
   2482 	POSTING_READ(GEN6_RPNSWREQ);
   2483 
   2484 	dev_priv->rps.cur_delay = val;
   2485 
   2486 	trace_intel_gpu_freq_change(val * 50);
   2487 }
   2488 
   2489 static void gen6_disable_rps(struct drm_device *dev)
   2490 {
   2491 	struct drm_i915_private *dev_priv = dev->dev_private;
   2492 
   2493 	I915_WRITE(GEN6_RC_CONTROL, 0);
   2494 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
   2495 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
   2496 	I915_WRITE(GEN6_PMIER, 0);
   2497 	/* Complete PM interrupt masking here doesn't race with the rps work
   2498 	 * item again unmasking PM interrupts because that is using a different
   2499 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
   2500 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
   2501 
   2502 	spin_lock_irq(&dev_priv->rps.lock);
   2503 	dev_priv->rps.pm_iir = 0;
   2504 	spin_unlock_irq(&dev_priv->rps.lock);
   2505 
   2506 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
   2507 }
   2508 
   2509 int intel_enable_rc6(const struct drm_device *dev)
   2510 {
   2511 	/* Respect the kernel parameter if it is set */
   2512 	if (i915_enable_rc6 >= 0)
   2513 		return i915_enable_rc6;
   2514 
   2515 	/* Disable RC6 on Ironlake */
   2516 	if (INTEL_INFO(dev)->gen == 5)
   2517 		return 0;
   2518 
   2519 	if (IS_HASWELL(dev)) {
   2520 		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
   2521 		return INTEL_RC6_ENABLE;
   2522 	}
   2523 
   2524 	/* snb/ivb have more than one rc6 state. */
   2525 	if (INTEL_INFO(dev)->gen == 6) {
   2526 		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
   2527 		return INTEL_RC6_ENABLE;
   2528 	}
   2529 
   2530 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
   2531 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   2532 }
   2533 
   2534 static void gen6_enable_rps(struct drm_device *dev)
   2535 {
   2536 	struct drm_i915_private *dev_priv = dev->dev_private;
   2537 	struct intel_ring_buffer *ring;
   2538 	u32 rp_state_cap;
   2539 	u32 gt_perf_status;
   2540 	u32 rc6vids, pcu_mbox, rc6_mask = 0;
   2541 	u32 gtfifodbg;
   2542 	int rc6_mode;
   2543 	int i, ret;
   2544 
   2545 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   2546 
   2547 	/* Here begins a magic sequence of register writes to enable
   2548 	 * auto-downclocking.
   2549 	 *
   2550 	 * Perhaps there might be some value in exposing these to
   2551 	 * userspace...
   2552 	 */
   2553 	I915_WRITE(GEN6_RC_STATE, 0);
   2554 
   2555 	/* Clear the DBG now so we don't confuse earlier errors */
   2556 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   2557 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   2558 		I915_WRITE(GTFIFODBG, gtfifodbg);
   2559 	}
   2560 
   2561 	gen6_gt_force_wake_get(dev_priv);
   2562 
   2563 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   2564 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
   2565 
   2566 	/* In units of 100MHz */
   2567 	dev_priv->rps.max_delay = rp_state_cap & 0xff;
   2568 	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
   2569 	dev_priv->rps.cur_delay = 0;
   2570 
   2571 	/* disable the counters and set deterministic thresholds */
   2572 	I915_WRITE(GEN6_RC_CONTROL, 0);
   2573 
   2574 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   2575 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   2576 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   2577 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   2578 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   2579 
   2580 	for_each_ring(ring, dev_priv, i)
   2581 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   2582 
   2583 	I915_WRITE(GEN6_RC_SLEEP, 0);
   2584 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   2585 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   2586 	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
   2587 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   2588 
   2589 	/* Check if we are enabling RC6 */
   2590 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   2591 	if (rc6_mode & INTEL_RC6_ENABLE)
   2592 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   2593 
   2594 	/* We don't use those on Haswell */
   2595 	if (!IS_HASWELL(dev)) {
   2596 		if (rc6_mode & INTEL_RC6p_ENABLE)
   2597 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   2598 
   2599 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   2600 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   2601 	}
   2602 
   2603 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
   2604 			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   2605 			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   2606 			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   2607 
   2608 	I915_WRITE(GEN6_RC_CONTROL,
   2609 		   rc6_mask |
   2610 		   GEN6_RC_CTL_EI_MODE(1) |
   2611 		   GEN6_RC_CTL_HW_ENABLE);
   2612 
   2613 	I915_WRITE(GEN6_RPNSWREQ,
   2614 		   GEN6_FREQUENCY(10) |
   2615 		   GEN6_OFFSET(0) |
   2616 		   GEN6_AGGRESSIVE_TURBO);
   2617 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   2618 		   GEN6_FREQUENCY(12));
   2619 
   2620 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   2621 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   2622 		   dev_priv->rps.max_delay << 24 |
   2623 		   dev_priv->rps.min_delay << 16);
   2624 
   2625 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   2626 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   2627 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   2628 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   2629 
   2630 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   2631 	I915_WRITE(GEN6_RP_CONTROL,
   2632 		   GEN6_RP_MEDIA_TURBO |
   2633 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   2634 		   GEN6_RP_MEDIA_IS_GFX |
   2635 		   GEN6_RP_ENABLE |
   2636 		   GEN6_RP_UP_BUSY_AVG |
   2637 		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
   2638 
   2639 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   2640 	if (!ret) {
   2641 		pcu_mbox = 0;
   2642 		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   2643 		if (ret && pcu_mbox & (1<<31)) { /* OC supported */
   2644 			dev_priv->rps.max_delay = pcu_mbox & 0xff;
   2645 			DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
   2646 		}
   2647 	} else {
   2648 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   2649 	}
   2650 
   2651 	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
   2652 
   2653 	/* requires MSI enabled */
   2654 	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
   2655 	spin_lock_irq(&dev_priv->rps.lock);
   2656 	WARN_ON(dev_priv->rps.pm_iir != 0);
   2657 	I915_WRITE(GEN6_PMIMR, 0);
   2658 	spin_unlock_irq(&dev_priv->rps.lock);
   2659 	/* enable all PM interrupts */
   2660 	I915_WRITE(GEN6_PMINTRMSK, 0);
   2661 
   2662 	rc6vids = 0;
   2663 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   2664 	if (IS_GEN6(dev) && ret) {
   2665 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   2666 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   2667 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   2668 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   2669 		rc6vids &= 0xffff00;
   2670 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   2671 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   2672 		if (ret)
   2673 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   2674 	}
   2675 
   2676 	gen6_gt_force_wake_put(dev_priv);
   2677 }
   2678 
   2679 static void gen6_update_ring_freq(struct drm_device *dev)
   2680 {
   2681 	struct drm_i915_private *dev_priv = dev->dev_private;
   2682 	int min_freq = 15;
   2683 	int gpu_freq;
   2684 	unsigned int ia_freq, max_ia_freq;
   2685 	int scaling_factor = 180;
   2686 
   2687 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   2688 
   2689 #ifdef __NetBSD__		/* XXX cpufreq */
   2690 	{
   2691 		extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
   2692 		max_ia_freq = (tsc_freq / 1000);
   2693 	}
   2694 #else
   2695 	max_ia_freq = cpufreq_quick_get_max(0);
   2696 	/*
   2697 	 * Default to measured freq if none found, PCU will ensure we don't go
   2698 	 * over
   2699 	 */
   2700 	if (!max_ia_freq)
   2701 		max_ia_freq = tsc_khz;
   2702 #endif
   2703 
   2704 	/* Convert from kHz to MHz */
   2705 	max_ia_freq /= 1000;
   2706 
   2707 	/*
   2708 	 * For each potential GPU frequency, load a ring frequency we'd like
   2709 	 * to use for memory access.  We do this by specifying the IA frequency
   2710 	 * the PCU should use as a reference to determine the ring frequency.
   2711 	 */
   2712 	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
   2713 	     gpu_freq--) {
   2714 		int diff = dev_priv->rps.max_delay - gpu_freq;
   2715 
   2716 		/*
   2717 		 * For GPU frequencies less than 750MHz, just use the lowest
   2718 		 * ring freq.
   2719 		 */
   2720 		if (gpu_freq < min_freq)
   2721 			ia_freq = 800;
   2722 		else
   2723 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   2724 		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   2725 		ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
   2726 
   2727 		sandybridge_pcode_write(dev_priv,
   2728 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   2729 					ia_freq | gpu_freq);
   2730 	}
   2731 }
   2732 
   2733 void ironlake_teardown_rc6(struct drm_device *dev)
   2734 {
   2735 	struct drm_i915_private *dev_priv = dev->dev_private;
   2736 
   2737 	if (dev_priv->ips.renderctx) {
   2738 		i915_gem_object_unpin(dev_priv->ips.renderctx);
   2739 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
   2740 		dev_priv->ips.renderctx = NULL;
   2741 	}
   2742 
   2743 	if (dev_priv->ips.pwrctx) {
   2744 		i915_gem_object_unpin(dev_priv->ips.pwrctx);
   2745 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
   2746 		dev_priv->ips.pwrctx = NULL;
   2747 	}
   2748 }
   2749 
   2750 static void ironlake_disable_rc6(struct drm_device *dev)
   2751 {
   2752 	struct drm_i915_private *dev_priv = dev->dev_private;
   2753 
   2754 	if (I915_READ(PWRCTXA)) {
   2755 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
   2756 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
   2757 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
   2758 			 50);
   2759 
   2760 		I915_WRITE(PWRCTXA, 0);
   2761 		POSTING_READ(PWRCTXA);
   2762 
   2763 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   2764 		POSTING_READ(RSTDBYCTL);
   2765 	}
   2766 }
   2767 
   2768 static int ironlake_setup_rc6(struct drm_device *dev)
   2769 {
   2770 	struct drm_i915_private *dev_priv = dev->dev_private;
   2771 
   2772 	if (dev_priv->ips.renderctx == NULL)
   2773 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
   2774 	if (!dev_priv->ips.renderctx)
   2775 		return -ENOMEM;
   2776 
   2777 	if (dev_priv->ips.pwrctx == NULL)
   2778 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
   2779 	if (!dev_priv->ips.pwrctx) {
   2780 		ironlake_teardown_rc6(dev);
   2781 		return -ENOMEM;
   2782 	}
   2783 
   2784 	return 0;
   2785 }
   2786 
   2787 static void ironlake_enable_rc6(struct drm_device *dev)
   2788 {
   2789 	struct drm_i915_private *dev_priv = dev->dev_private;
   2790 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
   2791 	bool was_interruptible;
   2792 	int ret;
   2793 
   2794 	/* rc6 disabled by default due to repeated reports of hanging during
   2795 	 * boot and resume.
   2796 	 */
   2797 	if (!intel_enable_rc6(dev))
   2798 		return;
   2799 
   2800 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   2801 
   2802 	ret = ironlake_setup_rc6(dev);
   2803 	if (ret)
   2804 		return;
   2805 
   2806 	was_interruptible = dev_priv->mm.interruptible;
   2807 	dev_priv->mm.interruptible = false;
   2808 
   2809 	/*
   2810 	 * GPU can automatically power down the render unit if given a page
   2811 	 * to save state.
   2812 	 */
   2813 	ret = intel_ring_begin(ring, 6);
   2814 	if (ret) {
   2815 		ironlake_teardown_rc6(dev);
   2816 		dev_priv->mm.interruptible = was_interruptible;
   2817 		return;
   2818 	}
   2819 
   2820 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
   2821 	intel_ring_emit(ring, MI_SET_CONTEXT);
   2822 	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
   2823 			MI_MM_SPACE_GTT |
   2824 			MI_SAVE_EXT_STATE_EN |
   2825 			MI_RESTORE_EXT_STATE_EN |
   2826 			MI_RESTORE_INHIBIT);
   2827 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
   2828 	intel_ring_emit(ring, MI_NOOP);
   2829 	intel_ring_emit(ring, MI_FLUSH);
   2830 	intel_ring_advance(ring);
   2831 
   2832 	/*
   2833 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
   2834 	 * does an implicit flush, combined with MI_FLUSH above, it should be
   2835 	 * safe to assume that renderctx is valid
   2836 	 */
   2837 	ret = intel_ring_idle(ring);
   2838 	dev_priv->mm.interruptible = was_interruptible;
   2839 	if (ret) {
   2840 		DRM_ERROR("failed to enable ironlake power power savings\n");
   2841 		ironlake_teardown_rc6(dev);
   2842 		return;
   2843 	}
   2844 
   2845 	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
   2846 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   2847 }
   2848 
   2849 static unsigned long intel_pxfreq(u32 vidfreq)
   2850 {
   2851 	unsigned long freq;
   2852 	int div = (vidfreq & 0x3f0000) >> 16;
   2853 	int post = (vidfreq & 0x3000) >> 12;
   2854 	int pre = (vidfreq & 0x7);
   2855 
   2856 	if (!pre)
   2857 		return 0;
   2858 
   2859 	freq = ((div * 133333) / ((1<<post) * pre));
   2860 
   2861 	return freq;
   2862 }
   2863 
   2864 static const struct cparams {
   2865 	u16 i;
   2866 	u16 t;
   2867 	u16 m;
   2868 	u16 c;
   2869 } cparams[] = {
   2870 	{ 1, 1333, 301, 28664 },
   2871 	{ 1, 1066, 294, 24460 },
   2872 	{ 1, 800, 294, 25192 },
   2873 	{ 0, 1333, 276, 27605 },
   2874 	{ 0, 1066, 276, 27605 },
   2875 	{ 0, 800, 231, 23784 },
   2876 };
   2877 
   2878 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   2879 {
   2880 	u64 total_count, diff, ret;
   2881 	u32 count1, count2, count3, m = 0, c = 0;
   2882 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   2883 	int i;
   2884 
   2885 	assert_spin_locked(&mchdev_lock);
   2886 
   2887 	diff1 = now - dev_priv->ips.last_time1;
   2888 
   2889 	/* Prevent division-by-zero if we are asking too fast.
   2890 	 * Also, we don't get interesting results if we are polling
   2891 	 * faster than once in 10ms, so just return the saved value
   2892 	 * in such cases.
   2893 	 */
   2894 	if (diff1 <= 10)
   2895 		return dev_priv->ips.chipset_power;
   2896 
   2897 	count1 = I915_READ(DMIEC);
   2898 	count2 = I915_READ(DDREC);
   2899 	count3 = I915_READ(CSIEC);
   2900 
   2901 	total_count = count1 + count2 + count3;
   2902 
   2903 	/* FIXME: handle per-counter overflow */
   2904 	if (total_count < dev_priv->ips.last_count1) {
   2905 		diff = ~0UL - dev_priv->ips.last_count1;
   2906 		diff += total_count;
   2907 	} else {
   2908 		diff = total_count - dev_priv->ips.last_count1;
   2909 	}
   2910 
   2911 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   2912 		if (cparams[i].i == dev_priv->ips.c_m &&
   2913 		    cparams[i].t == dev_priv->ips.r_t) {
   2914 			m = cparams[i].m;
   2915 			c = cparams[i].c;
   2916 			break;
   2917 		}
   2918 	}
   2919 
   2920 	diff = div_u64(diff, diff1);
   2921 	ret = ((m * diff) + c);
   2922 	ret = div_u64(ret, 10);
   2923 
   2924 	dev_priv->ips.last_count1 = total_count;
   2925 	dev_priv->ips.last_time1 = now;
   2926 
   2927 	dev_priv->ips.chipset_power = ret;
   2928 
   2929 	return ret;
   2930 }
   2931 
   2932 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   2933 {
   2934 	unsigned long val;
   2935 
   2936 	if (dev_priv->info->gen != 5)
   2937 		return 0;
   2938 
   2939 	spin_lock_irq(&mchdev_lock);
   2940 
   2941 	val = __i915_chipset_val(dev_priv);
   2942 
   2943 	spin_unlock_irq(&mchdev_lock);
   2944 
   2945 	return val;
   2946 }
   2947 
   2948 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   2949 {
   2950 	unsigned long m, x, b;
   2951 	u32 tsfs;
   2952 
   2953 	tsfs = I915_READ(TSFS);
   2954 
   2955 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   2956 	x = I915_READ8(TR1);
   2957 
   2958 	b = tsfs & TSFS_INTR_MASK;
   2959 
   2960 	return ((m * x) / 127) - b;
   2961 }
   2962 
   2963 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   2964 {
   2965 	static const struct v_table {
   2966 		u16 vd; /* in .1 mil */
   2967 		u16 vm; /* in .1 mil */
   2968 	} v_table[] = {
   2969 		{ 0, 0, },
   2970 		{ 375, 0, },
   2971 		{ 500, 0, },
   2972 		{ 625, 0, },
   2973 		{ 750, 0, },
   2974 		{ 875, 0, },
   2975 		{ 1000, 0, },
   2976 		{ 1125, 0, },
   2977 		{ 4125, 3000, },
   2978 		{ 4125, 3000, },
   2979 		{ 4125, 3000, },
   2980 		{ 4125, 3000, },
   2981 		{ 4125, 3000, },
   2982 		{ 4125, 3000, },
   2983 		{ 4125, 3000, },
   2984 		{ 4125, 3000, },
   2985 		{ 4125, 3000, },
   2986 		{ 4125, 3000, },
   2987 		{ 4125, 3000, },
   2988 		{ 4125, 3000, },
   2989 		{ 4125, 3000, },
   2990 		{ 4125, 3000, },
   2991 		{ 4125, 3000, },
   2992 		{ 4125, 3000, },
   2993 		{ 4125, 3000, },
   2994 		{ 4125, 3000, },
   2995 		{ 4125, 3000, },
   2996 		{ 4125, 3000, },
   2997 		{ 4125, 3000, },
   2998 		{ 4125, 3000, },
   2999 		{ 4125, 3000, },
   3000 		{ 4125, 3000, },
   3001 		{ 4250, 3125, },
   3002 		{ 4375, 3250, },
   3003 		{ 4500, 3375, },
   3004 		{ 4625, 3500, },
   3005 		{ 4750, 3625, },
   3006 		{ 4875, 3750, },
   3007 		{ 5000, 3875, },
   3008 		{ 5125, 4000, },
   3009 		{ 5250, 4125, },
   3010 		{ 5375, 4250, },
   3011 		{ 5500, 4375, },
   3012 		{ 5625, 4500, },
   3013 		{ 5750, 4625, },
   3014 		{ 5875, 4750, },
   3015 		{ 6000, 4875, },
   3016 		{ 6125, 5000, },
   3017 		{ 6250, 5125, },
   3018 		{ 6375, 5250, },
   3019 		{ 6500, 5375, },
   3020 		{ 6625, 5500, },
   3021 		{ 6750, 5625, },
   3022 		{ 6875, 5750, },
   3023 		{ 7000, 5875, },
   3024 		{ 7125, 6000, },
   3025 		{ 7250, 6125, },
   3026 		{ 7375, 6250, },
   3027 		{ 7500, 6375, },
   3028 		{ 7625, 6500, },
   3029 		{ 7750, 6625, },
   3030 		{ 7875, 6750, },
   3031 		{ 8000, 6875, },
   3032 		{ 8125, 7000, },
   3033 		{ 8250, 7125, },
   3034 		{ 8375, 7250, },
   3035 		{ 8500, 7375, },
   3036 		{ 8625, 7500, },
   3037 		{ 8750, 7625, },
   3038 		{ 8875, 7750, },
   3039 		{ 9000, 7875, },
   3040 		{ 9125, 8000, },
   3041 		{ 9250, 8125, },
   3042 		{ 9375, 8250, },
   3043 		{ 9500, 8375, },
   3044 		{ 9625, 8500, },
   3045 		{ 9750, 8625, },
   3046 		{ 9875, 8750, },
   3047 		{ 10000, 8875, },
   3048 		{ 10125, 9000, },
   3049 		{ 10250, 9125, },
   3050 		{ 10375, 9250, },
   3051 		{ 10500, 9375, },
   3052 		{ 10625, 9500, },
   3053 		{ 10750, 9625, },
   3054 		{ 10875, 9750, },
   3055 		{ 11000, 9875, },
   3056 		{ 11125, 10000, },
   3057 		{ 11250, 10125, },
   3058 		{ 11375, 10250, },
   3059 		{ 11500, 10375, },
   3060 		{ 11625, 10500, },
   3061 		{ 11750, 10625, },
   3062 		{ 11875, 10750, },
   3063 		{ 12000, 10875, },
   3064 		{ 12125, 11000, },
   3065 		{ 12250, 11125, },
   3066 		{ 12375, 11250, },
   3067 		{ 12500, 11375, },
   3068 		{ 12625, 11500, },
   3069 		{ 12750, 11625, },
   3070 		{ 12875, 11750, },
   3071 		{ 13000, 11875, },
   3072 		{ 13125, 12000, },
   3073 		{ 13250, 12125, },
   3074 		{ 13375, 12250, },
   3075 		{ 13500, 12375, },
   3076 		{ 13625, 12500, },
   3077 		{ 13750, 12625, },
   3078 		{ 13875, 12750, },
   3079 		{ 14000, 12875, },
   3080 		{ 14125, 13000, },
   3081 		{ 14250, 13125, },
   3082 		{ 14375, 13250, },
   3083 		{ 14500, 13375, },
   3084 		{ 14625, 13500, },
   3085 		{ 14750, 13625, },
   3086 		{ 14875, 13750, },
   3087 		{ 15000, 13875, },
   3088 		{ 15125, 14000, },
   3089 		{ 15250, 14125, },
   3090 		{ 15375, 14250, },
   3091 		{ 15500, 14375, },
   3092 		{ 15625, 14500, },
   3093 		{ 15750, 14625, },
   3094 		{ 15875, 14750, },
   3095 		{ 16000, 14875, },
   3096 		{ 16125, 15000, },
   3097 	};
   3098 	if (dev_priv->info->is_mobile)
   3099 		return v_table[pxvid].vm;
   3100 	else
   3101 		return v_table[pxvid].vd;
   3102 }
   3103 
   3104 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   3105 {
   3106 	struct timespec now, diff1;
   3107 	u64 diff;
   3108 	unsigned long diffms;
   3109 	u32 count;
   3110 
   3111 	assert_spin_locked(&mchdev_lock);
   3112 
   3113 	getrawmonotonic(&now);
   3114 	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
   3115 
   3116 	/* Don't divide by 0 */
   3117 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
   3118 	if (!diffms)
   3119 		return;
   3120 
   3121 	count = I915_READ(GFXEC);
   3122 
   3123 	if (count < dev_priv->ips.last_count2) {
   3124 		diff = ~0UL - dev_priv->ips.last_count2;
   3125 		diff += count;
   3126 	} else {
   3127 		diff = count - dev_priv->ips.last_count2;
   3128 	}
   3129 
   3130 	dev_priv->ips.last_count2 = count;
   3131 	dev_priv->ips.last_time2 = now;
   3132 
   3133 	/* More magic constants... */
   3134 	diff = diff * 1181;
   3135 	diff = div_u64(diff, diffms * 10);
   3136 	dev_priv->ips.gfx_power = diff;
   3137 }
   3138 
   3139 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   3140 {
   3141 	if (dev_priv->info->gen != 5)
   3142 		return;
   3143 
   3144 	spin_lock_irq(&mchdev_lock);
   3145 
   3146 	__i915_update_gfx_val(dev_priv);
   3147 
   3148 	spin_unlock_irq(&mchdev_lock);
   3149 }
   3150 
   3151 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   3152 {
   3153 	unsigned long t, corr, state1, corr2, state2;
   3154 	u32 pxvid, ext_v;
   3155 
   3156 	assert_spin_locked(&mchdev_lock);
   3157 
   3158 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
   3159 	pxvid = (pxvid >> 24) & 0x7f;
   3160 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   3161 
   3162 	state1 = ext_v;
   3163 
   3164 	t = i915_mch_val(dev_priv);
   3165 
   3166 	/* Revel in the empirically derived constants */
   3167 
   3168 	/* Correction factor in 1/100000 units */
   3169 	if (t > 80)
   3170 		corr = ((t * 2349) + 135940);
   3171 	else if (t >= 50)
   3172 		corr = ((t * 964) + 29317);
   3173 	else /* < 50 */
   3174 		corr = ((t * 301) + 1004);
   3175 
   3176 	corr = corr * ((150142 * state1) / 10000 - 78642);
   3177 	corr /= 100000;
   3178 	corr2 = (corr * dev_priv->ips.corr);
   3179 
   3180 	state2 = (corr2 * state1) / 10000;
   3181 	state2 /= 100; /* convert to mW */
   3182 
   3183 	__i915_update_gfx_val(dev_priv);
   3184 
   3185 	return dev_priv->ips.gfx_power + state2;
   3186 }
   3187 
   3188 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   3189 {
   3190 	unsigned long val;
   3191 
   3192 	if (dev_priv->info->gen != 5)
   3193 		return 0;
   3194 
   3195 	spin_lock_irq(&mchdev_lock);
   3196 
   3197 	val = __i915_gfx_val(dev_priv);
   3198 
   3199 	spin_unlock_irq(&mchdev_lock);
   3200 
   3201 	return val;
   3202 }
   3203 
   3204 #ifndef __NetBSD__		/* XXX IPS */
   3205 /**
   3206  * i915_read_mch_val - return value for IPS use
   3207  *
   3208  * Calculate and return a value for the IPS driver to use when deciding whether
   3209  * we have thermal and power headroom to increase CPU or GPU power budget.
   3210  */
   3211 unsigned long i915_read_mch_val(void)
   3212 {
   3213 	struct drm_i915_private *dev_priv;
   3214 	unsigned long chipset_val, graphics_val, ret = 0;
   3215 
   3216 	spin_lock_irq(&mchdev_lock);
   3217 	if (!i915_mch_dev)
   3218 		goto out_unlock;
   3219 	dev_priv = i915_mch_dev;
   3220 
   3221 	chipset_val = __i915_chipset_val(dev_priv);
   3222 	graphics_val = __i915_gfx_val(dev_priv);
   3223 
   3224 	ret = chipset_val + graphics_val;
   3225 
   3226 out_unlock:
   3227 	spin_unlock_irq(&mchdev_lock);
   3228 
   3229 	return ret;
   3230 }
   3231 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   3232 
   3233 /**
   3234  * i915_gpu_raise - raise GPU frequency limit
   3235  *
   3236  * Raise the limit; IPS indicates we have thermal headroom.
   3237  */
   3238 bool i915_gpu_raise(void)
   3239 {
   3240 	struct drm_i915_private *dev_priv;
   3241 	bool ret = true;
   3242 
   3243 	spin_lock_irq(&mchdev_lock);
   3244 	if (!i915_mch_dev) {
   3245 		ret = false;
   3246 		goto out_unlock;
   3247 	}
   3248 	dev_priv = i915_mch_dev;
   3249 
   3250 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   3251 		dev_priv->ips.max_delay--;
   3252 
   3253 out_unlock:
   3254 	spin_unlock_irq(&mchdev_lock);
   3255 
   3256 	return ret;
   3257 }
   3258 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   3259 
   3260 /**
   3261  * i915_gpu_lower - lower GPU frequency limit
   3262  *
   3263  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   3264  * frequency maximum.
   3265  */
   3266 bool i915_gpu_lower(void)
   3267 {
   3268 	struct drm_i915_private *dev_priv;
   3269 	bool ret = true;
   3270 
   3271 	spin_lock_irq(&mchdev_lock);
   3272 	if (!i915_mch_dev) {
   3273 		ret = false;
   3274 		goto out_unlock;
   3275 	}
   3276 	dev_priv = i915_mch_dev;
   3277 
   3278 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   3279 		dev_priv->ips.max_delay++;
   3280 
   3281 out_unlock:
   3282 	spin_unlock_irq(&mchdev_lock);
   3283 
   3284 	return ret;
   3285 }
   3286 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   3287 
   3288 /**
   3289  * i915_gpu_busy - indicate GPU business to IPS
   3290  *
   3291  * Tell the IPS driver whether or not the GPU is busy.
   3292  */
   3293 bool i915_gpu_busy(void)
   3294 {
   3295 	struct drm_i915_private *dev_priv;
   3296 	struct intel_ring_buffer *ring;
   3297 	bool ret = false;
   3298 	int i;
   3299 
   3300 	spin_lock_irq(&mchdev_lock);
   3301 	if (!i915_mch_dev)
   3302 		goto out_unlock;
   3303 	dev_priv = i915_mch_dev;
   3304 
   3305 	for_each_ring(ring, dev_priv, i)
   3306 		ret |= !list_empty(&ring->request_list);
   3307 
   3308 out_unlock:
   3309 	spin_unlock_irq(&mchdev_lock);
   3310 
   3311 	return ret;
   3312 }
   3313 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   3314 
   3315 /**
   3316  * i915_gpu_turbo_disable - disable graphics turbo
   3317  *
   3318  * Disable graphics turbo by resetting the max frequency and setting the
   3319  * current frequency to the default.
   3320  */
   3321 bool i915_gpu_turbo_disable(void)
   3322 {
   3323 	struct drm_i915_private *dev_priv;
   3324 	bool ret = true;
   3325 
   3326 	spin_lock_irq(&mchdev_lock);
   3327 	if (!i915_mch_dev) {
   3328 		ret = false;
   3329 		goto out_unlock;
   3330 	}
   3331 	dev_priv = i915_mch_dev;
   3332 
   3333 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   3334 
   3335 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   3336 		ret = false;
   3337 
   3338 out_unlock:
   3339 	spin_unlock_irq(&mchdev_lock);
   3340 
   3341 	return ret;
   3342 }
   3343 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   3344 #endif
   3345 
   3346 /**
   3347  * Tells the intel_ips driver that the i915 driver is now loaded, if
   3348  * IPS got loaded first.
   3349  *
   3350  * This awkward dance is so that neither module has to depend on the
   3351  * other in order for IPS to do the appropriate communication of
   3352  * GPU turbo limits to i915.
   3353  */
   3354 static void
   3355 ips_ping_for_i915_load(void)
   3356 {
   3357 #ifndef __NetBSD__		/* XXX whattakludge for Linux module mania */
   3358 	void (*link)(void);
   3359 
   3360 	link = symbol_get(ips_link_to_i915_driver);
   3361 	if (link) {
   3362 		link();
   3363 		symbol_put(ips_link_to_i915_driver);
   3364 	}
   3365 #endif
   3366 }
   3367 
   3368 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   3369 {
   3370 #ifdef __NetBSD__		/* XXX */
   3371 	/*
   3372 	 * This seems as good a place as any to initialize mchdev_lock.
   3373 	 * Taking the lock in the rest of this routine is silly, but...
   3374 	 */
   3375 	spin_lock_init(&mchdev_lock);
   3376 #endif
   3377 
   3378 	/* We only register the i915 ips part with intel-ips once everything is
   3379 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   3380 	spin_lock_irq(&mchdev_lock);
   3381 	i915_mch_dev = dev_priv;
   3382 	spin_unlock_irq(&mchdev_lock);
   3383 
   3384 	ips_ping_for_i915_load();
   3385 }
   3386 
   3387 void intel_gpu_ips_teardown(void)
   3388 {
   3389 #ifdef __NetBSD__
   3390 	if (i915_mch_dev == NULL)
   3391 		return;
   3392 #endif
   3393 	spin_lock_irq(&mchdev_lock);
   3394 	i915_mch_dev = NULL;
   3395 	spin_unlock_irq(&mchdev_lock);
   3396 #ifdef __NetBSD__
   3397 	spin_lock_destroy(&mchdev_lock);
   3398 #endif
   3399 }
   3400 static void intel_init_emon(struct drm_device *dev)
   3401 {
   3402 	struct drm_i915_private *dev_priv = dev->dev_private;
   3403 	u32 lcfuse;
   3404 	u8 pxw[16];
   3405 	int i;
   3406 
   3407 	/* Disable to program */
   3408 	I915_WRITE(ECR, 0);
   3409 	POSTING_READ(ECR);
   3410 
   3411 	/* Program energy weights for various events */
   3412 	I915_WRITE(SDEW, 0x15040d00);
   3413 	I915_WRITE(CSIEW0, 0x007f0000);
   3414 	I915_WRITE(CSIEW1, 0x1e220004);
   3415 	I915_WRITE(CSIEW2, 0x04000004);
   3416 
   3417 	for (i = 0; i < 5; i++)
   3418 		I915_WRITE(PEW + (i * 4), 0);
   3419 	for (i = 0; i < 3; i++)
   3420 		I915_WRITE(DEW + (i * 4), 0);
   3421 
   3422 	/* Program P-state weights to account for frequency power adjustment */
   3423 	for (i = 0; i < 16; i++) {
   3424 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
   3425 		unsigned long freq = intel_pxfreq(pxvidfreq);
   3426 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   3427 			PXVFREQ_PX_SHIFT;
   3428 		unsigned long val;
   3429 
   3430 		val = vid * vid;
   3431 		val *= (freq / 1000);
   3432 		val *= 255;
   3433 		val /= (127*127*900);
   3434 		if (val > 0xff)
   3435 			DRM_ERROR("bad pxval: %ld\n", val);
   3436 		pxw[i] = val;
   3437 	}
   3438 	/* Render standby states get 0 weight */
   3439 	pxw[14] = 0;
   3440 	pxw[15] = 0;
   3441 
   3442 	for (i = 0; i < 4; i++) {
   3443 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
   3444 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
   3445 		I915_WRITE(PXW + (i * 4), val);
   3446 	}
   3447 
   3448 	/* Adjust magic regs to magic values (more experimental results) */
   3449 	I915_WRITE(OGW0, 0);
   3450 	I915_WRITE(OGW1, 0);
   3451 	I915_WRITE(EG0, 0x00007f00);
   3452 	I915_WRITE(EG1, 0x0000000e);
   3453 	I915_WRITE(EG2, 0x000e0000);
   3454 	I915_WRITE(EG3, 0x68000300);
   3455 	I915_WRITE(EG4, 0x42000000);
   3456 	I915_WRITE(EG5, 0x00140031);
   3457 	I915_WRITE(EG6, 0);
   3458 	I915_WRITE(EG7, 0);
   3459 
   3460 	for (i = 0; i < 8; i++)
   3461 		I915_WRITE(PXWL + (i * 4), 0);
   3462 
   3463 	/* Enable PMON + select events */
   3464 	I915_WRITE(ECR, 0x80000019);
   3465 
   3466 	lcfuse = I915_READ(LCFUSE02);
   3467 
   3468 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   3469 }
   3470 
   3471 void intel_disable_gt_powersave(struct drm_device *dev)
   3472 {
   3473 	struct drm_i915_private *dev_priv = dev->dev_private;
   3474 
   3475 	if (IS_IRONLAKE_M(dev)) {
   3476 		ironlake_disable_drps(dev);
   3477 		ironlake_disable_rc6(dev);
   3478 	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
   3479 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
   3480 		mutex_lock(&dev_priv->rps.hw_lock);
   3481 		gen6_disable_rps(dev);
   3482 		mutex_unlock(&dev_priv->rps.hw_lock);
   3483 	}
   3484 }
   3485 
   3486 static void intel_gen6_powersave_work(struct work_struct *work)
   3487 {
   3488 	struct drm_i915_private *dev_priv =
   3489 		container_of(work, struct drm_i915_private,
   3490 			     rps.delayed_resume_work.work);
   3491 	struct drm_device *dev = dev_priv->dev;
   3492 
   3493 	mutex_lock(&dev_priv->rps.hw_lock);
   3494 	gen6_enable_rps(dev);
   3495 	gen6_update_ring_freq(dev);
   3496 	mutex_unlock(&dev_priv->rps.hw_lock);
   3497 }
   3498 
   3499 void intel_enable_gt_powersave(struct drm_device *dev)
   3500 {
   3501 	struct drm_i915_private *dev_priv = dev->dev_private;
   3502 
   3503 	if (IS_IRONLAKE_M(dev)) {
   3504 		ironlake_enable_drps(dev);
   3505 		ironlake_enable_rc6(dev);
   3506 		intel_init_emon(dev);
   3507 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
   3508 		/*
   3509 		 * PCU communication is slow and this doesn't need to be
   3510 		 * done at any specific time, so do this out of our fast path
   3511 		 * to make resume and init faster.
   3512 		 */
   3513 		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   3514 				      round_jiffies_up_relative(HZ));
   3515 	}
   3516 }
   3517 
   3518 static void ibx_init_clock_gating(struct drm_device *dev)
   3519 {
   3520 	struct drm_i915_private *dev_priv = dev->dev_private;
   3521 
   3522 	/*
   3523 	 * On Ibex Peak and Cougar Point, we need to disable clock
   3524 	 * gating for the panel power sequencer or it will fail to
   3525 	 * start up when no ports are active.
   3526 	 */
   3527 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   3528 }
   3529 
   3530 static void ironlake_init_clock_gating(struct drm_device *dev)
   3531 {
   3532 	struct drm_i915_private *dev_priv = dev->dev_private;
   3533 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   3534 
   3535 	/* Required for FBC */
   3536 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   3537 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   3538 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   3539 
   3540 	I915_WRITE(PCH_3DCGDIS0,
   3541 		   MARIUNIT_CLOCK_GATE_DISABLE |
   3542 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   3543 	I915_WRITE(PCH_3DCGDIS1,
   3544 		   VFMUNIT_CLOCK_GATE_DISABLE);
   3545 
   3546 	/*
   3547 	 * According to the spec the following bits should be set in
   3548 	 * order to enable memory self-refresh
   3549 	 * The bit 22/21 of 0x42004
   3550 	 * The bit 5 of 0x42020
   3551 	 * The bit 15 of 0x45000
   3552 	 */
   3553 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3554 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   3555 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   3556 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   3557 	I915_WRITE(DISP_ARB_CTL,
   3558 		   (I915_READ(DISP_ARB_CTL) |
   3559 		    DISP_FBC_WM_DIS));
   3560 	I915_WRITE(WM3_LP_ILK, 0);
   3561 	I915_WRITE(WM2_LP_ILK, 0);
   3562 	I915_WRITE(WM1_LP_ILK, 0);
   3563 
   3564 	/*
   3565 	 * Based on the document from hardware guys the following bits
   3566 	 * should be set unconditionally in order to enable FBC.
   3567 	 * The bit 22 of 0x42000
   3568 	 * The bit 22 of 0x42004
   3569 	 * The bit 7,8,9 of 0x42020.
   3570 	 */
   3571 	if (IS_IRONLAKE_M(dev)) {
   3572 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   3573 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   3574 			   ILK_FBCQ_DIS);
   3575 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3576 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   3577 			   ILK_DPARB_GATE);
   3578 	}
   3579 
   3580 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   3581 
   3582 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3583 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   3584 		   ILK_ELPIN_409_SELECT);
   3585 	I915_WRITE(_3D_CHICKEN2,
   3586 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   3587 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   3588 
   3589 	/* WaDisableRenderCachePipelinedFlush */
   3590 	I915_WRITE(CACHE_MODE_0,
   3591 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   3592 
   3593 	ibx_init_clock_gating(dev);
   3594 }
   3595 
   3596 static void cpt_init_clock_gating(struct drm_device *dev)
   3597 {
   3598 	struct drm_i915_private *dev_priv = dev->dev_private;
   3599 	int pipe;
   3600 
   3601 	/*
   3602 	 * On Ibex Peak and Cougar Point, we need to disable clock
   3603 	 * gating for the panel power sequencer or it will fail to
   3604 	 * start up when no ports are active.
   3605 	 */
   3606 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   3607 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   3608 		   DPLS_EDP_PPS_FIX_DIS);
   3609 	/* The below fixes the weird display corruption, a few pixels shifted
   3610 	 * downward, on (only) LVDS of some HP laptops with IVY.
   3611 	 */
   3612 	for_each_pipe(pipe)
   3613 		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
   3614 	/* WADP0ClockGatingDisable */
   3615 	for_each_pipe(pipe) {
   3616 		I915_WRITE(TRANS_CHICKEN1(pipe),
   3617 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   3618 	}
   3619 }
   3620 
   3621 static void gen6_init_clock_gating(struct drm_device *dev)
   3622 {
   3623 	struct drm_i915_private *dev_priv = dev->dev_private;
   3624 	int pipe;
   3625 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   3626 
   3627 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   3628 
   3629 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3630 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   3631 		   ILK_ELPIN_409_SELECT);
   3632 
   3633 	/* WaDisableHiZPlanesWhenMSAAEnabled */
   3634 	I915_WRITE(_3D_CHICKEN,
   3635 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   3636 
   3637 	/* WaSetupGtModeTdRowDispatch */
   3638 	if (IS_SNB_GT1(dev))
   3639 		I915_WRITE(GEN6_GT_MODE,
   3640 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
   3641 
   3642 	I915_WRITE(WM3_LP_ILK, 0);
   3643 	I915_WRITE(WM2_LP_ILK, 0);
   3644 	I915_WRITE(WM1_LP_ILK, 0);
   3645 
   3646 	I915_WRITE(CACHE_MODE_0,
   3647 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   3648 
   3649 	I915_WRITE(GEN6_UCGCTL1,
   3650 		   I915_READ(GEN6_UCGCTL1) |
   3651 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   3652 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   3653 
   3654 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   3655 	 * gating disable must be set.  Failure to set it results in
   3656 	 * flickering pixels due to Z write ordering failures after
   3657 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   3658 	 * Sanctuary and Tropics, and apparently anything else with
   3659 	 * alpha test or pixel discard.
   3660 	 *
   3661 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   3662 	 * but we didn't debug actual testcases to find it out.
   3663 	 *
   3664 	 * Also apply WaDisableVDSUnitClockGating and
   3665 	 * WaDisableRCPBUnitClockGating.
   3666 	 */
   3667 	I915_WRITE(GEN6_UCGCTL2,
   3668 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
   3669 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   3670 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   3671 
   3672 	/* Bspec says we need to always set all mask bits. */
   3673 	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
   3674 		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
   3675 
   3676 	/*
   3677 	 * According to the spec the following bits should be
   3678 	 * set in order to enable memory self-refresh and fbc:
   3679 	 * The bit21 and bit22 of 0x42000
   3680 	 * The bit21 and bit22 of 0x42004
   3681 	 * The bit5 and bit7 of 0x42020
   3682 	 * The bit14 of 0x70180
   3683 	 * The bit14 of 0x71180
   3684 	 */
   3685 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   3686 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   3687 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   3688 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   3689 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   3690 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   3691 	I915_WRITE(ILK_DSPCLK_GATE_D,
   3692 		   I915_READ(ILK_DSPCLK_GATE_D) |
   3693 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   3694 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   3695 
   3696 	/* WaMbcDriverBootEnable */
   3697 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
   3698 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
   3699 
   3700 	for_each_pipe(pipe) {
   3701 		I915_WRITE(DSPCNTR(pipe),
   3702 			   I915_READ(DSPCNTR(pipe)) |
   3703 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   3704 		intel_flush_display_plane(dev_priv, pipe);
   3705 	}
   3706 
   3707 	/* The default value should be 0x200 according to docs, but the two
   3708 	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
   3709 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
   3710 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
   3711 
   3712 	cpt_init_clock_gating(dev);
   3713 }
   3714 
   3715 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   3716 {
   3717 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   3718 
   3719 	reg &= ~GEN7_FF_SCHED_MASK;
   3720 	reg |= GEN7_FF_TS_SCHED_HW;
   3721 	reg |= GEN7_FF_VS_SCHED_HW;
   3722 	reg |= GEN7_FF_DS_SCHED_HW;
   3723 
   3724 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   3725 }
   3726 
   3727 static void lpt_init_clock_gating(struct drm_device *dev)
   3728 {
   3729 	struct drm_i915_private *dev_priv = dev->dev_private;
   3730 
   3731 	/*
   3732 	 * TODO: this bit should only be enabled when really needed, then
   3733 	 * disabled when not needed anymore in order to save power.
   3734 	 */
   3735 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
   3736 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   3737 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   3738 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   3739 }
   3740 
   3741 static void haswell_init_clock_gating(struct drm_device *dev)
   3742 {
   3743 	struct drm_i915_private *dev_priv = dev->dev_private;
   3744 	int pipe;
   3745 
   3746 	I915_WRITE(WM3_LP_ILK, 0);
   3747 	I915_WRITE(WM2_LP_ILK, 0);
   3748 	I915_WRITE(WM1_LP_ILK, 0);
   3749 
   3750 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   3751 	 * This implements the WaDisableRCZUnitClockGating workaround.
   3752 	 */
   3753 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   3754 
   3755 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
   3756 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   3757 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   3758 
   3759 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
   3760 	I915_WRITE(GEN7_L3CNTLREG1,
   3761 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   3762 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   3763 			GEN7_WA_L3_CHICKEN_MODE);
   3764 
   3765 	/* This is required by WaCatErrorRejectionIssue */
   3766 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   3767 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   3768 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   3769 
   3770 	for_each_pipe(pipe) {
   3771 		I915_WRITE(DSPCNTR(pipe),
   3772 			   I915_READ(DSPCNTR(pipe)) |
   3773 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   3774 		intel_flush_display_plane(dev_priv, pipe);
   3775 	}
   3776 
   3777 	gen7_setup_fixed_func_scheduler(dev_priv);
   3778 
   3779 	/* WaDisable4x2SubspanOptimization */
   3780 	I915_WRITE(CACHE_MODE_1,
   3781 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   3782 
   3783 	/* WaMbcDriverBootEnable */
   3784 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
   3785 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
   3786 
   3787 	/* XXX: This is a workaround for early silicon revisions and should be
   3788 	 * removed later.
   3789 	 */
   3790 	I915_WRITE(WM_DBG,
   3791 			I915_READ(WM_DBG) |
   3792 			WM_DBG_DISALLOW_MULTIPLE_LP |
   3793 			WM_DBG_DISALLOW_SPRITE |
   3794 			WM_DBG_DISALLOW_MAXFIFO);
   3795 
   3796 	lpt_init_clock_gating(dev);
   3797 }
   3798 
   3799 static void ivybridge_init_clock_gating(struct drm_device *dev)
   3800 {
   3801 	struct drm_i915_private *dev_priv = dev->dev_private;
   3802 	int pipe;
   3803 	uint32_t snpcr;
   3804 
   3805 	I915_WRITE(WM3_LP_ILK, 0);
   3806 	I915_WRITE(WM2_LP_ILK, 0);
   3807 	I915_WRITE(WM1_LP_ILK, 0);
   3808 
   3809 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   3810 
   3811 	/* WaDisableEarlyCull */
   3812 	I915_WRITE(_3D_CHICKEN3,
   3813 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   3814 
   3815 	/* WaDisableBackToBackFlipFix */
   3816 	I915_WRITE(IVB_CHICKEN3,
   3817 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   3818 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   3819 
   3820 	/* WaDisablePSDDualDispatchEnable */
   3821 	if (IS_IVB_GT1(dev))
   3822 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   3823 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   3824 	else
   3825 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
   3826 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   3827 
   3828 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
   3829 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   3830 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   3831 
   3832 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
   3833 	I915_WRITE(GEN7_L3CNTLREG1,
   3834 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   3835 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   3836 		   GEN7_WA_L3_CHICKEN_MODE);
   3837 	if (IS_IVB_GT1(dev))
   3838 		I915_WRITE(GEN7_ROW_CHICKEN2,
   3839 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   3840 	else
   3841 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   3842 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   3843 
   3844 
   3845 	/* WaForceL3Serialization */
   3846 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   3847 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   3848 
   3849 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   3850 	 * gating disable must be set.  Failure to set it results in
   3851 	 * flickering pixels due to Z write ordering failures after
   3852 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   3853 	 * Sanctuary and Tropics, and apparently anything else with
   3854 	 * alpha test or pixel discard.
   3855 	 *
   3856 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   3857 	 * but we didn't debug actual testcases to find it out.
   3858 	 *
   3859 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   3860 	 * This implements the WaDisableRCZUnitClockGating workaround.
   3861 	 */
   3862 	I915_WRITE(GEN6_UCGCTL2,
   3863 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
   3864 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   3865 
   3866 	/* This is required by WaCatErrorRejectionIssue */
   3867 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   3868 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   3869 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   3870 
   3871 	for_each_pipe(pipe) {
   3872 		I915_WRITE(DSPCNTR(pipe),
   3873 			   I915_READ(DSPCNTR(pipe)) |
   3874 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   3875 		intel_flush_display_plane(dev_priv, pipe);
   3876 	}
   3877 
   3878 	/* WaMbcDriverBootEnable */
   3879 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
   3880 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
   3881 
   3882 	gen7_setup_fixed_func_scheduler(dev_priv);
   3883 
   3884 	/* WaDisable4x2SubspanOptimization */
   3885 	I915_WRITE(CACHE_MODE_1,
   3886 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   3887 
   3888 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   3889 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   3890 	snpcr |= GEN6_MBC_SNPCR_MED;
   3891 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   3892 
   3893 	cpt_init_clock_gating(dev);
   3894 }
   3895 
   3896 static void valleyview_init_clock_gating(struct drm_device *dev)
   3897 {
   3898 	struct drm_i915_private *dev_priv = dev->dev_private;
   3899 	int pipe;
   3900 
   3901 	I915_WRITE(WM3_LP_ILK, 0);
   3902 	I915_WRITE(WM2_LP_ILK, 0);
   3903 	I915_WRITE(WM1_LP_ILK, 0);
   3904 
   3905 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   3906 
   3907 	/* WaDisableEarlyCull */
   3908 	I915_WRITE(_3D_CHICKEN3,
   3909 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   3910 
   3911 	/* WaDisableBackToBackFlipFix */
   3912 	I915_WRITE(IVB_CHICKEN3,
   3913 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   3914 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   3915 
   3916 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   3917 		   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   3918 
   3919 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
   3920 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   3921 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   3922 
   3923 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
   3924 	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
   3925 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
   3926 
   3927 	/* WaForceL3Serialization */
   3928 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   3929 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   3930 
   3931 	/* WaDisableDopClockGating */
   3932 	I915_WRITE(GEN7_ROW_CHICKEN2,
   3933 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   3934 
   3935 	/* WaForceL3Serialization */
   3936 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   3937 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   3938 
   3939 	/* This is required by WaCatErrorRejectionIssue */
   3940 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   3941 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   3942 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   3943 
   3944 	/* WaMbcDriverBootEnable */
   3945 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
   3946 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
   3947 
   3948 
   3949 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   3950 	 * gating disable must be set.  Failure to set it results in
   3951 	 * flickering pixels due to Z write ordering failures after
   3952 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   3953 	 * Sanctuary and Tropics, and apparently anything else with
   3954 	 * alpha test or pixel discard.
   3955 	 *
   3956 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   3957 	 * but we didn't debug actual testcases to find it out.
   3958 	 *
   3959 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   3960 	 * This implements the WaDisableRCZUnitClockGating workaround.
   3961 	 *
   3962 	 * Also apply WaDisableVDSUnitClockGating and
   3963 	 * WaDisableRCPBUnitClockGating.
   3964 	 */
   3965 	I915_WRITE(GEN6_UCGCTL2,
   3966 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
   3967 		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
   3968 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
   3969 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   3970 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   3971 
   3972 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   3973 
   3974 	for_each_pipe(pipe) {
   3975 		I915_WRITE(DSPCNTR(pipe),
   3976 			   I915_READ(DSPCNTR(pipe)) |
   3977 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   3978 		intel_flush_display_plane(dev_priv, pipe);
   3979 	}
   3980 
   3981 	I915_WRITE(CACHE_MODE_1,
   3982 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   3983 
   3984 	/*
   3985 	 * On ValleyView, the GUnit needs to signal the GT
   3986 	 * when flip and other events complete.  So enable
   3987 	 * all the GUnit->GT interrupts here
   3988 	 */
   3989 	I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
   3990 		   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
   3991 		   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
   3992 		   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
   3993 		   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
   3994 		   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
   3995 		   PLANEA_FLIPDONE_INT_EN);
   3996 
   3997 	/*
   3998 	 * WaDisableVLVClockGating_VBIIssue
   3999 	 * Disable clock gating on th GCFG unit to prevent a delay
   4000 	 * in the reporting of vblank events.
   4001 	 */
   4002 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   4003 }
   4004 
   4005 static void g4x_init_clock_gating(struct drm_device *dev)
   4006 {
   4007 	struct drm_i915_private *dev_priv = dev->dev_private;
   4008 	uint32_t dspclk_gate;
   4009 
   4010 	I915_WRITE(RENCLK_GATE_D1, 0);
   4011 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   4012 		   GS_UNIT_CLOCK_GATE_DISABLE |
   4013 		   CL_UNIT_CLOCK_GATE_DISABLE);
   4014 	I915_WRITE(RAMCLK_GATE_D, 0);
   4015 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   4016 		OVRUNIT_CLOCK_GATE_DISABLE |
   4017 		OVCUNIT_CLOCK_GATE_DISABLE;
   4018 	if (IS_GM45(dev))
   4019 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   4020 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   4021 
   4022 	/* WaDisableRenderCachePipelinedFlush */
   4023 	I915_WRITE(CACHE_MODE_0,
   4024 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   4025 }
   4026 
   4027 static void crestline_init_clock_gating(struct drm_device *dev)
   4028 {
   4029 	struct drm_i915_private *dev_priv = dev->dev_private;
   4030 
   4031 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   4032 	I915_WRITE(RENCLK_GATE_D2, 0);
   4033 	I915_WRITE(DSPCLK_GATE_D, 0);
   4034 	I915_WRITE(RAMCLK_GATE_D, 0);
   4035 	I915_WRITE16(DEUC, 0);
   4036 }
   4037 
   4038 static void broadwater_init_clock_gating(struct drm_device *dev)
   4039 {
   4040 	struct drm_i915_private *dev_priv = dev->dev_private;
   4041 
   4042 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   4043 		   I965_RCC_CLOCK_GATE_DISABLE |
   4044 		   I965_RCPB_CLOCK_GATE_DISABLE |
   4045 		   I965_ISC_CLOCK_GATE_DISABLE |
   4046 		   I965_FBC_CLOCK_GATE_DISABLE);
   4047 	I915_WRITE(RENCLK_GATE_D2, 0);
   4048 }
   4049 
   4050 static void gen3_init_clock_gating(struct drm_device *dev)
   4051 {
   4052 	struct drm_i915_private *dev_priv = dev->dev_private;
   4053 	u32 dstate = I915_READ(D_STATE);
   4054 
   4055 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   4056 		DSTATE_DOT_CLOCK_GATING;
   4057 	I915_WRITE(D_STATE, dstate);
   4058 
   4059 	if (IS_PINEVIEW(dev))
   4060 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   4061 
   4062 	/* IIR "flip pending" means done if this bit is set */
   4063 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   4064 }
   4065 
   4066 static void i85x_init_clock_gating(struct drm_device *dev)
   4067 {
   4068 	struct drm_i915_private *dev_priv = dev->dev_private;
   4069 
   4070 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   4071 }
   4072 
   4073 static void i830_init_clock_gating(struct drm_device *dev)
   4074 {
   4075 	struct drm_i915_private *dev_priv = dev->dev_private;
   4076 
   4077 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   4078 }
   4079 
   4080 void intel_init_clock_gating(struct drm_device *dev)
   4081 {
   4082 	struct drm_i915_private *dev_priv = dev->dev_private;
   4083 
   4084 	dev_priv->display.init_clock_gating(dev);
   4085 }
   4086 
   4087 /* Starting with Haswell, we have different power wells for
   4088  * different parts of the GPU. This attempts to enable them all.
   4089  */
   4090 void intel_init_power_wells(struct drm_device *dev)
   4091 {
   4092 	struct drm_i915_private *dev_priv = dev->dev_private;
   4093 	unsigned long power_wells[] = {
   4094 		HSW_PWR_WELL_CTL1,
   4095 		HSW_PWR_WELL_CTL2,
   4096 		HSW_PWR_WELL_CTL4
   4097 	};
   4098 	int i;
   4099 
   4100 	if (!IS_HASWELL(dev))
   4101 		return;
   4102 
   4103 	mutex_lock(&dev->struct_mutex);
   4104 
   4105 	for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
   4106 		int well = I915_READ(power_wells[i]);
   4107 
   4108 		if ((well & HSW_PWR_WELL_STATE) == 0) {
   4109 			I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
   4110 			if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
   4111 				DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
   4112 		}
   4113 	}
   4114 
   4115 	mutex_unlock(&dev->struct_mutex);
   4116 }
   4117 
   4118 /* Set up chip specific power management-related functions */
   4119 void intel_init_pm(struct drm_device *dev)
   4120 {
   4121 	struct drm_i915_private *dev_priv = dev->dev_private;
   4122 
   4123 	if (I915_HAS_FBC(dev)) {
   4124 		if (HAS_PCH_SPLIT(dev)) {
   4125 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
   4126 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
   4127 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
   4128 		} else if (IS_GM45(dev)) {
   4129 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
   4130 			dev_priv->display.enable_fbc = g4x_enable_fbc;
   4131 			dev_priv->display.disable_fbc = g4x_disable_fbc;
   4132 		} else if (IS_CRESTLINE(dev)) {
   4133 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
   4134 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
   4135 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
   4136 		}
   4137 		/* 855GM needs testing */
   4138 	}
   4139 
   4140 	/* For cxsr */
   4141 	if (IS_PINEVIEW(dev))
   4142 		i915_pineview_get_mem_freq(dev);
   4143 	else if (IS_GEN5(dev))
   4144 		i915_ironlake_get_mem_freq(dev);
   4145 
   4146 	/* For FIFO watermark updates */
   4147 	if (HAS_PCH_SPLIT(dev)) {
   4148 		if (IS_GEN5(dev)) {
   4149 			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
   4150 				dev_priv->display.update_wm = ironlake_update_wm;
   4151 			else {
   4152 				DRM_DEBUG_KMS("Failed to get proper latency. "
   4153 					      "Disable CxSR\n");
   4154 				dev_priv->display.update_wm = NULL;
   4155 			}
   4156 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   4157 		} else if (IS_GEN6(dev)) {
   4158 			if (SNB_READ_WM0_LATENCY()) {
   4159 				dev_priv->display.update_wm = sandybridge_update_wm;
   4160 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
   4161 			} else {
   4162 				DRM_DEBUG_KMS("Failed to read display plane latency. "
   4163 					      "Disable CxSR\n");
   4164 				dev_priv->display.update_wm = NULL;
   4165 			}
   4166 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   4167 		} else if (IS_IVYBRIDGE(dev)) {
   4168 			/* FIXME: detect B0+ stepping and use auto training */
   4169 			if (SNB_READ_WM0_LATENCY()) {
   4170 				dev_priv->display.update_wm = ivybridge_update_wm;
   4171 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
   4172 			} else {
   4173 				DRM_DEBUG_KMS("Failed to read display plane latency. "
   4174 					      "Disable CxSR\n");
   4175 				dev_priv->display.update_wm = NULL;
   4176 			}
   4177 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   4178 		} else if (IS_HASWELL(dev)) {
   4179 			if (SNB_READ_WM0_LATENCY()) {
   4180 				dev_priv->display.update_wm = sandybridge_update_wm;
   4181 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
   4182 				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
   4183 			} else {
   4184 				DRM_DEBUG_KMS("Failed to read display plane latency. "
   4185 					      "Disable CxSR\n");
   4186 				dev_priv->display.update_wm = NULL;
   4187 			}
   4188 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   4189 		} else
   4190 			dev_priv->display.update_wm = NULL;
   4191 	} else if (IS_VALLEYVIEW(dev)) {
   4192 		dev_priv->display.update_wm = valleyview_update_wm;
   4193 		dev_priv->display.init_clock_gating =
   4194 			valleyview_init_clock_gating;
   4195 	} else if (IS_PINEVIEW(dev)) {
   4196 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   4197 					    dev_priv->is_ddr3,
   4198 					    dev_priv->fsb_freq,
   4199 					    dev_priv->mem_freq)) {
   4200 			DRM_INFO("failed to find known CxSR latency "
   4201 				 "(found ddr%s fsb freq %d, mem freq %d), "
   4202 				 "disabling CxSR\n",
   4203 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   4204 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   4205 			/* Disable CxSR and never update its watermark again */
   4206 			pineview_disable_cxsr(dev);
   4207 			dev_priv->display.update_wm = NULL;
   4208 		} else
   4209 			dev_priv->display.update_wm = pineview_update_wm;
   4210 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   4211 	} else if (IS_G4X(dev)) {
   4212 		dev_priv->display.update_wm = g4x_update_wm;
   4213 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   4214 	} else if (IS_GEN4(dev)) {
   4215 		dev_priv->display.update_wm = i965_update_wm;
   4216 		if (IS_CRESTLINE(dev))
   4217 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   4218 		else if (IS_BROADWATER(dev))
   4219 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   4220 	} else if (IS_GEN3(dev)) {
   4221 		dev_priv->display.update_wm = i9xx_update_wm;
   4222 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   4223 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   4224 	} else if (IS_I865G(dev)) {
   4225 		dev_priv->display.update_wm = i830_update_wm;
   4226 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   4227 		dev_priv->display.get_fifo_size = i830_get_fifo_size;
   4228 	} else if (IS_I85X(dev)) {
   4229 		dev_priv->display.update_wm = i9xx_update_wm;
   4230 		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
   4231 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   4232 	} else {
   4233 		dev_priv->display.update_wm = i830_update_wm;
   4234 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
   4235 		if (IS_845G(dev))
   4236 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   4237 		else
   4238 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   4239 	}
   4240 }
   4241 
   4242 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
   4243 {
   4244 	u32 gt_thread_status_mask;
   4245 
   4246 	if (IS_HASWELL(dev_priv->dev))
   4247 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
   4248 	else
   4249 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
   4250 
   4251 	/* w/a for a sporadic read returning 0 by waiting for the GT
   4252 	 * thread to wake up.
   4253 	 */
   4254 	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
   4255 		DRM_ERROR("GT thread status wait timed out\n");
   4256 }
   4257 
   4258 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
   4259 {
   4260 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
   4261 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
   4262 }
   4263 
   4264 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
   4265 {
   4266 	u32 forcewake_ack;
   4267 
   4268 	if (IS_HASWELL(dev_priv->dev))
   4269 		forcewake_ack = FORCEWAKE_ACK_HSW;
   4270 	else
   4271 		forcewake_ack = FORCEWAKE_ACK;
   4272 
   4273 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
   4274 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4275 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
   4276 
   4277 	I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
   4278 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
   4279 
   4280 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
   4281 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4282 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
   4283 
   4284 	__gen6_gt_wait_for_thread_c0(dev_priv);
   4285 }
   4286 
   4287 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
   4288 {
   4289 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
   4290 	/* something from same cacheline, but !FORCEWAKE_MT */
   4291 	POSTING_READ(ECOBUS);
   4292 }
   4293 
   4294 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
   4295 {
   4296 	u32 forcewake_ack;
   4297 
   4298 	if (IS_HASWELL(dev_priv->dev))
   4299 		forcewake_ack = FORCEWAKE_ACK_HSW;
   4300 	else
   4301 		forcewake_ack = FORCEWAKE_MT_ACK;
   4302 
   4303 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
   4304 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4305 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
   4306 
   4307 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
   4308 	/* something from same cacheline, but !FORCEWAKE_MT */
   4309 	POSTING_READ(ECOBUS);
   4310 
   4311 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
   4312 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4313 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
   4314 
   4315 	__gen6_gt_wait_for_thread_c0(dev_priv);
   4316 }
   4317 
   4318 /*
   4319  * Generally this is called implicitly by the register read function. However,
   4320  * if some sequence requires the GT to not power down then this function should
   4321  * be called at the beginning of the sequence followed by a call to
   4322  * gen6_gt_force_wake_put() at the end of the sequence.
   4323  */
   4324 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
   4325 {
   4326 	unsigned long irqflags;
   4327 
   4328 	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
   4329 	if (dev_priv->forcewake_count++ == 0)
   4330 		dev_priv->gt.force_wake_get(dev_priv);
   4331 	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
   4332 }
   4333 
   4334 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
   4335 {
   4336 	u32 gtfifodbg;
   4337 	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
   4338 	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
   4339 	     "MMIO read or write has been dropped %x\n", gtfifodbg))
   4340 		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
   4341 }
   4342 
   4343 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
   4344 {
   4345 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
   4346 	/* something from same cacheline, but !FORCEWAKE */
   4347 	POSTING_READ(ECOBUS);
   4348 	gen6_gt_check_fifodbg(dev_priv);
   4349 }
   4350 
   4351 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
   4352 {
   4353 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
   4354 	/* something from same cacheline, but !FORCEWAKE_MT */
   4355 	POSTING_READ(ECOBUS);
   4356 	gen6_gt_check_fifodbg(dev_priv);
   4357 }
   4358 
   4359 /*
   4360  * see gen6_gt_force_wake_get()
   4361  */
   4362 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
   4363 {
   4364 	unsigned long irqflags;
   4365 
   4366 	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
   4367 	if (--dev_priv->forcewake_count == 0)
   4368 		dev_priv->gt.force_wake_put(dev_priv);
   4369 	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
   4370 }
   4371 
   4372 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
   4373 {
   4374 	int ret = 0;
   4375 
   4376 	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
   4377 		int loop = 500;
   4378 		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
   4379 		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
   4380 			udelay(10);
   4381 			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
   4382 		}
   4383 		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
   4384 			++ret;
   4385 		dev_priv->gt_fifo_count = fifo;
   4386 	}
   4387 	dev_priv->gt_fifo_count--;
   4388 
   4389 	return ret;
   4390 }
   4391 
   4392 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
   4393 {
   4394 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
   4395 	/* something from same cacheline, but !FORCEWAKE_VLV */
   4396 	POSTING_READ(FORCEWAKE_ACK_VLV);
   4397 }
   4398 
   4399 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
   4400 {
   4401 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
   4402 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4403 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
   4404 
   4405 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
   4406 
   4407 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
   4408 			    FORCEWAKE_ACK_TIMEOUT_MS))
   4409 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
   4410 
   4411 	__gen6_gt_wait_for_thread_c0(dev_priv);
   4412 }
   4413 
   4414 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
   4415 {
   4416 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
   4417 	/* something from same cacheline, but !FORCEWAKE_VLV */
   4418 	POSTING_READ(FORCEWAKE_ACK_VLV);
   4419 	gen6_gt_check_fifodbg(dev_priv);
   4420 }
   4421 
   4422 void intel_gt_reset(struct drm_device *dev)
   4423 {
   4424 	struct drm_i915_private *dev_priv = dev->dev_private;
   4425 
   4426 	if (IS_VALLEYVIEW(dev)) {
   4427 		vlv_force_wake_reset(dev_priv);
   4428 	} else if (INTEL_INFO(dev)->gen >= 6) {
   4429 		__gen6_gt_force_wake_reset(dev_priv);
   4430 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
   4431 			__gen6_gt_force_wake_mt_reset(dev_priv);
   4432 	}
   4433 }
   4434 
   4435 void intel_gt_init(struct drm_device *dev)
   4436 {
   4437 	struct drm_i915_private *dev_priv = dev->dev_private;
   4438 
   4439 	spin_lock_init(&dev_priv->gt_lock);
   4440 
   4441 	intel_gt_reset(dev);
   4442 
   4443 	if (IS_VALLEYVIEW(dev)) {
   4444 		dev_priv->gt.force_wake_get = vlv_force_wake_get;
   4445 		dev_priv->gt.force_wake_put = vlv_force_wake_put;
   4446 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
   4447 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
   4448 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
   4449 	} else if (IS_GEN6(dev)) {
   4450 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
   4451 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
   4452 	}
   4453 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   4454 			  intel_gen6_powersave_work);
   4455 }
   4456 
   4457 #ifdef __NetBSD__		/* XXX gt fini */
   4458 void
   4459 intel_gt_fini(struct drm_device *dev)
   4460 {
   4461 	struct drm_i915_private *dev_priv = dev->dev_private;
   4462 
   4463 	spin_lock_destroy(&dev_priv->gt_lock);
   4464 }
   4465 #endif
   4466 
   4467 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
   4468 {
   4469 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4470 
   4471 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   4472 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   4473 		return -EAGAIN;
   4474 	}
   4475 
   4476 	I915_WRITE(GEN6_PCODE_DATA, *val);
   4477 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   4478 
   4479 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   4480 		     500)) {
   4481 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   4482 		return -ETIMEDOUT;
   4483 	}
   4484 
   4485 	*val = I915_READ(GEN6_PCODE_DATA);
   4486 	I915_WRITE(GEN6_PCODE_DATA, 0);
   4487 
   4488 	return 0;
   4489 }
   4490 
   4491 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
   4492 {
   4493 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4494 
   4495 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   4496 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   4497 		return -EAGAIN;
   4498 	}
   4499 
   4500 	I915_WRITE(GEN6_PCODE_DATA, val);
   4501 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   4502 
   4503 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   4504 		     500)) {
   4505 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   4506 		return -ETIMEDOUT;
   4507 	}
   4508 
   4509 	I915_WRITE(GEN6_PCODE_DATA, 0);
   4510 
   4511 	return 0;
   4512 }
   4513