Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.1.1.2
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     25  *
     26  */
     27 
     28 #include <linux/cpufreq.h>
     29 #include "i915_drv.h"
     30 #include "intel_drv.h"
     31 #include "../../../platform/x86/intel_ips.h"
     32 #include <linux/module.h>
     33 #include <linux/vgaarb.h>
     34 #include <drm/i915_powerwell.h>
     35 #include <linux/pm_runtime.h>
     36 
     37 /**
     38  * RC6 is a special power stage which allows the GPU to enter an very
     39  * low-voltage mode when idle, using down to 0V while at this stage.  This
     40  * stage is entered automatically when the GPU is idle when RC6 support is
     41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
     42  *
     43  * There are different RC6 modes available in Intel GPU, which differentiate
     44  * among each other with the latency required to enter and leave RC6 and
     45  * voltage consumed by the GPU in different states.
     46  *
     47  * The combination of the following flags define which states GPU is allowed
     48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
     49  * RC6pp is deepest RC6. Their support by hardware varies according to the
     50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
     51  * which brings the most power savings; deeper states save more power, but
     52  * require higher latency to switch to and wake up.
     53  */
     54 #define INTEL_RC6_ENABLE			(1<<0)
     55 #define INTEL_RC6p_ENABLE			(1<<1)
     56 #define INTEL_RC6pp_ENABLE			(1<<2)
     57 
     58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
     59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
     60  * during in-memory transfers and, therefore, reduce the power packet.
     61  *
     62  * The benefits of FBC are mostly visible with solid backgrounds and
     63  * variation-less patterns.
     64  *
     65  * FBC-related functionality can be enabled by the means of the
     66  * i915.i915_enable_fbc parameter
     67  */
     68 
     69 static void i8xx_disable_fbc(struct drm_device *dev)
     70 {
     71 	struct drm_i915_private *dev_priv = dev->dev_private;
     72 	u32 fbc_ctl;
     73 
     74 	/* Disable compression */
     75 	fbc_ctl = I915_READ(FBC_CONTROL);
     76 	if ((fbc_ctl & FBC_CTL_EN) == 0)
     77 		return;
     78 
     79 	fbc_ctl &= ~FBC_CTL_EN;
     80 	I915_WRITE(FBC_CONTROL, fbc_ctl);
     81 
     82 	/* Wait for compressing bit to clear */
     83 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
     84 		DRM_DEBUG_KMS("FBC idle timed out\n");
     85 		return;
     86 	}
     87 
     88 	DRM_DEBUG_KMS("disabled FBC\n");
     89 }
     90 
     91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
     92 {
     93 	struct drm_device *dev = crtc->dev;
     94 	struct drm_i915_private *dev_priv = dev->dev_private;
     95 	struct drm_framebuffer *fb = crtc->primary->fb;
     96 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
     97 	struct drm_i915_gem_object *obj = intel_fb->obj;
     98 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
     99 	int cfb_pitch;
    100 	int i;
    101 	u32 fbc_ctl;
    102 
    103 	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
    104 	if (fb->pitches[0] < cfb_pitch)
    105 		cfb_pitch = fb->pitches[0];
    106 
    107 	/* FBC_CTL wants 32B or 64B units */
    108 	if (IS_GEN2(dev))
    109 		cfb_pitch = (cfb_pitch / 32) - 1;
    110 	else
    111 		cfb_pitch = (cfb_pitch / 64) - 1;
    112 
    113 	/* Clear old tags */
    114 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
    115 		I915_WRITE(FBC_TAG + (i * 4), 0);
    116 
    117 	if (IS_GEN4(dev)) {
    118 		u32 fbc_ctl2;
    119 
    120 		/* Set it up... */
    121 		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
    122 		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
    123 		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
    124 		I915_WRITE(FBC_FENCE_OFF, crtc->y);
    125 	}
    126 
    127 	/* enable it... */
    128 	fbc_ctl = I915_READ(FBC_CONTROL);
    129 	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
    130 	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
    131 	if (IS_I945GM(dev))
    132 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
    133 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
    134 	fbc_ctl |= obj->fence_reg;
    135 	I915_WRITE(FBC_CONTROL, fbc_ctl);
    136 
    137 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
    138 		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
    139 }
    140 
    141 static bool i8xx_fbc_enabled(struct drm_device *dev)
    142 {
    143 	struct drm_i915_private *dev_priv = dev->dev_private;
    144 
    145 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
    146 }
    147 
    148 static void g4x_enable_fbc(struct drm_crtc *crtc)
    149 {
    150 	struct drm_device *dev = crtc->dev;
    151 	struct drm_i915_private *dev_priv = dev->dev_private;
    152 	struct drm_framebuffer *fb = crtc->primary->fb;
    153 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    154 	struct drm_i915_gem_object *obj = intel_fb->obj;
    155 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    156 	u32 dpfc_ctl;
    157 
    158 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
    159 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    160 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    161 	else
    162 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    163 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
    164 
    165 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
    166 
    167 	/* enable it... */
    168 	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    169 
    170 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    171 }
    172 
    173 static void g4x_disable_fbc(struct drm_device *dev)
    174 {
    175 	struct drm_i915_private *dev_priv = dev->dev_private;
    176 	u32 dpfc_ctl;
    177 
    178 	/* Disable compression */
    179 	dpfc_ctl = I915_READ(DPFC_CONTROL);
    180 	if (dpfc_ctl & DPFC_CTL_EN) {
    181 		dpfc_ctl &= ~DPFC_CTL_EN;
    182 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
    183 
    184 		DRM_DEBUG_KMS("disabled FBC\n");
    185 	}
    186 }
    187 
    188 static bool g4x_fbc_enabled(struct drm_device *dev)
    189 {
    190 	struct drm_i915_private *dev_priv = dev->dev_private;
    191 
    192 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
    193 }
    194 
    195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
    196 {
    197 	struct drm_i915_private *dev_priv = dev->dev_private;
    198 	u32 blt_ecoskpd;
    199 
    200 	/* Make sure blitter notifies FBC of writes */
    201 
    202 	/* Blitter is part of Media powerwell on VLV. No impact of
    203 	 * his param in other platforms for now */
    204 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
    205 
    206 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
    207 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
    208 		GEN6_BLITTER_LOCK_SHIFT;
    209 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    210 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
    211 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    212 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
    213 			 GEN6_BLITTER_LOCK_SHIFT);
    214 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    215 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
    216 
    217 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
    218 }
    219 
    220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
    221 {
    222 	struct drm_device *dev = crtc->dev;
    223 	struct drm_i915_private *dev_priv = dev->dev_private;
    224 	struct drm_framebuffer *fb = crtc->primary->fb;
    225 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    226 	struct drm_i915_gem_object *obj = intel_fb->obj;
    227 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    228 	u32 dpfc_ctl;
    229 
    230 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
    231 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    232 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    233 	else
    234 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    235 	dpfc_ctl |= DPFC_CTL_FENCE_EN;
    236 	if (IS_GEN5(dev))
    237 		dpfc_ctl |= obj->fence_reg;
    238 
    239 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
    240 	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
    241 	/* enable it... */
    242 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    243 
    244 	if (IS_GEN6(dev)) {
    245 		I915_WRITE(SNB_DPFC_CTL_SA,
    246 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
    247 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
    248 		sandybridge_blit_fbc_update(dev);
    249 	}
    250 
    251 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    252 }
    253 
    254 static void ironlake_disable_fbc(struct drm_device *dev)
    255 {
    256 	struct drm_i915_private *dev_priv = dev->dev_private;
    257 	u32 dpfc_ctl;
    258 
    259 	/* Disable compression */
    260 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
    261 	if (dpfc_ctl & DPFC_CTL_EN) {
    262 		dpfc_ctl &= ~DPFC_CTL_EN;
    263 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
    264 
    265 		DRM_DEBUG_KMS("disabled FBC\n");
    266 	}
    267 }
    268 
    269 static bool ironlake_fbc_enabled(struct drm_device *dev)
    270 {
    271 	struct drm_i915_private *dev_priv = dev->dev_private;
    272 
    273 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
    274 }
    275 
    276 static void gen7_enable_fbc(struct drm_crtc *crtc)
    277 {
    278 	struct drm_device *dev = crtc->dev;
    279 	struct drm_i915_private *dev_priv = dev->dev_private;
    280 	struct drm_framebuffer *fb = crtc->primary->fb;
    281 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    282 	struct drm_i915_gem_object *obj = intel_fb->obj;
    283 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    284 	u32 dpfc_ctl;
    285 
    286 	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
    287 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    288 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    289 	else
    290 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    291 	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
    292 
    293 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    294 
    295 	if (IS_IVYBRIDGE(dev)) {
    296 		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
    297 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
    298 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
    299 			   ILK_FBCQ_DIS);
    300 	} else {
    301 		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
    302 		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
    303 			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
    304 			   HSW_FBCQ_DIS);
    305 	}
    306 
    307 	I915_WRITE(SNB_DPFC_CTL_SA,
    308 		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
    309 	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
    310 
    311 	sandybridge_blit_fbc_update(dev);
    312 
    313 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    314 }
    315 
    316 bool intel_fbc_enabled(struct drm_device *dev)
    317 {
    318 	struct drm_i915_private *dev_priv = dev->dev_private;
    319 
    320 	if (!dev_priv->display.fbc_enabled)
    321 		return false;
    322 
    323 	return dev_priv->display.fbc_enabled(dev);
    324 }
    325 
    326 static void intel_fbc_work_fn(struct work_struct *__work)
    327 {
    328 	struct intel_fbc_work *work =
    329 		container_of(to_delayed_work(__work),
    330 			     struct intel_fbc_work, work);
    331 	struct drm_device *dev = work->crtc->dev;
    332 	struct drm_i915_private *dev_priv = dev->dev_private;
    333 
    334 	mutex_lock(&dev->struct_mutex);
    335 	if (work == dev_priv->fbc.fbc_work) {
    336 		/* Double check that we haven't switched fb without cancelling
    337 		 * the prior work.
    338 		 */
    339 		if (work->crtc->primary->fb == work->fb) {
    340 			dev_priv->display.enable_fbc(work->crtc);
    341 
    342 			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
    343 			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
    344 			dev_priv->fbc.y = work->crtc->y;
    345 		}
    346 
    347 		dev_priv->fbc.fbc_work = NULL;
    348 	}
    349 	mutex_unlock(&dev->struct_mutex);
    350 
    351 	kfree(work);
    352 }
    353 
    354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
    355 {
    356 	if (dev_priv->fbc.fbc_work == NULL)
    357 		return;
    358 
    359 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
    360 
    361 	/* Synchronisation is provided by struct_mutex and checking of
    362 	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
    363 	 * entirely asynchronously.
    364 	 */
    365 	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
    366 		/* tasklet was killed before being run, clean up */
    367 		kfree(dev_priv->fbc.fbc_work);
    368 
    369 	/* Mark the work as no longer wanted so that if it does
    370 	 * wake-up (because the work was already running and waiting
    371 	 * for our mutex), it will discover that is no longer
    372 	 * necessary to run.
    373 	 */
    374 	dev_priv->fbc.fbc_work = NULL;
    375 }
    376 
    377 static void intel_enable_fbc(struct drm_crtc *crtc)
    378 {
    379 	struct intel_fbc_work *work;
    380 	struct drm_device *dev = crtc->dev;
    381 	struct drm_i915_private *dev_priv = dev->dev_private;
    382 
    383 	if (!dev_priv->display.enable_fbc)
    384 		return;
    385 
    386 	intel_cancel_fbc_work(dev_priv);
    387 
    388 	work = kzalloc(sizeof(*work), GFP_KERNEL);
    389 	if (work == NULL) {
    390 		DRM_ERROR("Failed to allocate FBC work structure\n");
    391 		dev_priv->display.enable_fbc(crtc);
    392 		return;
    393 	}
    394 
    395 	work->crtc = crtc;
    396 	work->fb = crtc->primary->fb;
    397 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
    398 
    399 	dev_priv->fbc.fbc_work = work;
    400 
    401 	/* Delay the actual enabling to let pageflipping cease and the
    402 	 * display to settle before starting the compression. Note that
    403 	 * this delay also serves a second purpose: it allows for a
    404 	 * vblank to pass after disabling the FBC before we attempt
    405 	 * to modify the control registers.
    406 	 *
    407 	 * A more complicated solution would involve tracking vblanks
    408 	 * following the termination of the page-flipping sequence
    409 	 * and indeed performing the enable as a co-routine and not
    410 	 * waiting synchronously upon the vblank.
    411 	 *
    412 	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
    413 	 */
    414 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
    415 }
    416 
    417 void intel_disable_fbc(struct drm_device *dev)
    418 {
    419 	struct drm_i915_private *dev_priv = dev->dev_private;
    420 
    421 	intel_cancel_fbc_work(dev_priv);
    422 
    423 	if (!dev_priv->display.disable_fbc)
    424 		return;
    425 
    426 	dev_priv->display.disable_fbc(dev);
    427 	dev_priv->fbc.plane = -1;
    428 }
    429 
    430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
    431 			      enum no_fbc_reason reason)
    432 {
    433 	if (dev_priv->fbc.no_fbc_reason == reason)
    434 		return false;
    435 
    436 	dev_priv->fbc.no_fbc_reason = reason;
    437 	return true;
    438 }
    439 
    440 /**
    441  * intel_update_fbc - enable/disable FBC as needed
    442  * @dev: the drm_device
    443  *
    444  * Set up the framebuffer compression hardware at mode set time.  We
    445  * enable it if possible:
    446  *   - plane A only (on pre-965)
    447  *   - no pixel mulitply/line duplication
    448  *   - no alpha buffer discard
    449  *   - no dual wide
    450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
    451  *
    452  * We can't assume that any compression will take place (worst case),
    453  * so the compressed buffer has to be the same size as the uncompressed
    454  * one.  It also must reside (along with the line length buffer) in
    455  * stolen memory.
    456  *
    457  * We need to enable/disable FBC on a global basis.
    458  */
    459 void intel_update_fbc(struct drm_device *dev)
    460 {
    461 	struct drm_i915_private *dev_priv = dev->dev_private;
    462 	struct drm_crtc *crtc = NULL, *tmp_crtc;
    463 	struct intel_crtc *intel_crtc;
    464 	struct drm_framebuffer *fb;
    465 	struct intel_framebuffer *intel_fb;
    466 	struct drm_i915_gem_object *obj;
    467 	const struct drm_display_mode *adjusted_mode;
    468 	unsigned int max_width, max_height;
    469 
    470 	if (!HAS_FBC(dev)) {
    471 		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
    472 		return;
    473 	}
    474 
    475 	if (!i915.powersave) {
    476 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
    477 			DRM_DEBUG_KMS("fbc disabled per module param\n");
    478 		return;
    479 	}
    480 
    481 	/*
    482 	 * If FBC is already on, we just have to verify that we can
    483 	 * keep it that way...
    484 	 * Need to disable if:
    485 	 *   - more than one pipe is active
    486 	 *   - changing FBC params (stride, fence, mode)
    487 	 *   - new fb is too large to fit in compressed buffer
    488 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
    489 	 */
    490 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
    491 		if (intel_crtc_active(tmp_crtc) &&
    492 		    to_intel_crtc(tmp_crtc)->primary_enabled) {
    493 			if (crtc) {
    494 				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
    495 					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
    496 				goto out_disable;
    497 			}
    498 			crtc = tmp_crtc;
    499 		}
    500 	}
    501 
    502 	if (!crtc || crtc->primary->fb == NULL) {
    503 		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
    504 			DRM_DEBUG_KMS("no output, disabling\n");
    505 		goto out_disable;
    506 	}
    507 
    508 	intel_crtc = to_intel_crtc(crtc);
    509 	fb = crtc->primary->fb;
    510 	intel_fb = to_intel_framebuffer(fb);
    511 	obj = intel_fb->obj;
    512 	adjusted_mode = &intel_crtc->config.adjusted_mode;
    513 
    514 	if (i915.enable_fbc < 0 &&
    515 	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
    516 		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
    517 			DRM_DEBUG_KMS("disabled per chip default\n");
    518 		goto out_disable;
    519 	}
    520 	if (!i915.enable_fbc) {
    521 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
    522 			DRM_DEBUG_KMS("fbc disabled per module param\n");
    523 		goto out_disable;
    524 	}
    525 	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
    526 	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
    527 		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
    528 			DRM_DEBUG_KMS("mode incompatible with compression, "
    529 				      "disabling\n");
    530 		goto out_disable;
    531 	}
    532 
    533 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
    534 		max_width = 4096;
    535 		max_height = 2048;
    536 	} else {
    537 		max_width = 2048;
    538 		max_height = 1536;
    539 	}
    540 	if (intel_crtc->config.pipe_src_w > max_width ||
    541 	    intel_crtc->config.pipe_src_h > max_height) {
    542 		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
    543 			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
    544 		goto out_disable;
    545 	}
    546 	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
    547 	    intel_crtc->plane != PLANE_A) {
    548 		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
    549 			DRM_DEBUG_KMS("plane not A, disabling compression\n");
    550 		goto out_disable;
    551 	}
    552 
    553 	/* The use of a CPU fence is mandatory in order to detect writes
    554 	 * by the CPU to the scanout and trigger updates to the FBC.
    555 	 */
    556 	if (obj->tiling_mode != I915_TILING_X ||
    557 	    obj->fence_reg == I915_FENCE_REG_NONE) {
    558 		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
    559 			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
    560 		goto out_disable;
    561 	}
    562 
    563 	/* If the kernel debugger is active, always disable compression */
    564 	if (in_dbg_master())
    565 		goto out_disable;
    566 
    567 	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
    568 		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
    569 			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
    570 		goto out_disable;
    571 	}
    572 
    573 	/* If the scanout has not changed, don't modify the FBC settings.
    574 	 * Note that we make the fundamental assumption that the fb->obj
    575 	 * cannot be unpinned (and have its GTT offset and fence revoked)
    576 	 * without first being decoupled from the scanout and FBC disabled.
    577 	 */
    578 	if (dev_priv->fbc.plane == intel_crtc->plane &&
    579 	    dev_priv->fbc.fb_id == fb->base.id &&
    580 	    dev_priv->fbc.y == crtc->y)
    581 		return;
    582 
    583 	if (intel_fbc_enabled(dev)) {
    584 		/* We update FBC along two paths, after changing fb/crtc
    585 		 * configuration (modeswitching) and after page-flipping
    586 		 * finishes. For the latter, we know that not only did
    587 		 * we disable the FBC at the start of the page-flip
    588 		 * sequence, but also more than one vblank has passed.
    589 		 *
    590 		 * For the former case of modeswitching, it is possible
    591 		 * to switch between two FBC valid configurations
    592 		 * instantaneously so we do need to disable the FBC
    593 		 * before we can modify its control registers. We also
    594 		 * have to wait for the next vblank for that to take
    595 		 * effect. However, since we delay enabling FBC we can
    596 		 * assume that a vblank has passed since disabling and
    597 		 * that we can safely alter the registers in the deferred
    598 		 * callback.
    599 		 *
    600 		 * In the scenario that we go from a valid to invalid
    601 		 * and then back to valid FBC configuration we have
    602 		 * no strict enforcement that a vblank occurred since
    603 		 * disabling the FBC. However, along all current pipe
    604 		 * disabling paths we do need to wait for a vblank at
    605 		 * some point. And we wait before enabling FBC anyway.
    606 		 */
    607 		DRM_DEBUG_KMS("disabling active FBC for update\n");
    608 		intel_disable_fbc(dev);
    609 	}
    610 
    611 	intel_enable_fbc(crtc);
    612 	dev_priv->fbc.no_fbc_reason = FBC_OK;
    613 	return;
    614 
    615 out_disable:
    616 	/* Multiple disables should be harmless */
    617 	if (intel_fbc_enabled(dev)) {
    618 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
    619 		intel_disable_fbc(dev);
    620 	}
    621 	i915_gem_stolen_cleanup_compression(dev);
    622 }
    623 
    624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
    625 {
    626 	struct drm_i915_private *dev_priv = dev->dev_private;
    627 	u32 tmp;
    628 
    629 	tmp = I915_READ(CLKCFG);
    630 
    631 	switch (tmp & CLKCFG_FSB_MASK) {
    632 	case CLKCFG_FSB_533:
    633 		dev_priv->fsb_freq = 533; /* 133*4 */
    634 		break;
    635 	case CLKCFG_FSB_800:
    636 		dev_priv->fsb_freq = 800; /* 200*4 */
    637 		break;
    638 	case CLKCFG_FSB_667:
    639 		dev_priv->fsb_freq =  667; /* 167*4 */
    640 		break;
    641 	case CLKCFG_FSB_400:
    642 		dev_priv->fsb_freq = 400; /* 100*4 */
    643 		break;
    644 	}
    645 
    646 	switch (tmp & CLKCFG_MEM_MASK) {
    647 	case CLKCFG_MEM_533:
    648 		dev_priv->mem_freq = 533;
    649 		break;
    650 	case CLKCFG_MEM_667:
    651 		dev_priv->mem_freq = 667;
    652 		break;
    653 	case CLKCFG_MEM_800:
    654 		dev_priv->mem_freq = 800;
    655 		break;
    656 	}
    657 
    658 	/* detect pineview DDR3 setting */
    659 	tmp = I915_READ(CSHRDDR3CTL);
    660 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    661 }
    662 
    663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    664 {
    665 	struct drm_i915_private *dev_priv = dev->dev_private;
    666 	u16 ddrpll, csipll;
    667 
    668 	ddrpll = I915_READ16(DDRMPLL1);
    669 	csipll = I915_READ16(CSIPLL0);
    670 
    671 	switch (ddrpll & 0xff) {
    672 	case 0xc:
    673 		dev_priv->mem_freq = 800;
    674 		break;
    675 	case 0x10:
    676 		dev_priv->mem_freq = 1066;
    677 		break;
    678 	case 0x14:
    679 		dev_priv->mem_freq = 1333;
    680 		break;
    681 	case 0x18:
    682 		dev_priv->mem_freq = 1600;
    683 		break;
    684 	default:
    685 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    686 				 ddrpll & 0xff);
    687 		dev_priv->mem_freq = 0;
    688 		break;
    689 	}
    690 
    691 	dev_priv->ips.r_t = dev_priv->mem_freq;
    692 
    693 	switch (csipll & 0x3ff) {
    694 	case 0x00c:
    695 		dev_priv->fsb_freq = 3200;
    696 		break;
    697 	case 0x00e:
    698 		dev_priv->fsb_freq = 3733;
    699 		break;
    700 	case 0x010:
    701 		dev_priv->fsb_freq = 4266;
    702 		break;
    703 	case 0x012:
    704 		dev_priv->fsb_freq = 4800;
    705 		break;
    706 	case 0x014:
    707 		dev_priv->fsb_freq = 5333;
    708 		break;
    709 	case 0x016:
    710 		dev_priv->fsb_freq = 5866;
    711 		break;
    712 	case 0x018:
    713 		dev_priv->fsb_freq = 6400;
    714 		break;
    715 	default:
    716 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    717 				 csipll & 0x3ff);
    718 		dev_priv->fsb_freq = 0;
    719 		break;
    720 	}
    721 
    722 	if (dev_priv->fsb_freq == 3200) {
    723 		dev_priv->ips.c_m = 0;
    724 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    725 		dev_priv->ips.c_m = 1;
    726 	} else {
    727 		dev_priv->ips.c_m = 2;
    728 	}
    729 }
    730 
    731 static const struct cxsr_latency cxsr_latency_table[] = {
    732 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    733 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    734 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    735 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    736 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    737 
    738 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    739 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    740 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    741 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    742 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    743 
    744 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    745 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    746 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    747 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    748 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    749 
    750 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    751 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    752 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    753 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    754 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    755 
    756 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    757 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    758 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    759 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    760 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    761 
    762 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    763 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    764 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    765 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    766 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    767 };
    768 
    769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    770 							 int is_ddr3,
    771 							 int fsb,
    772 							 int mem)
    773 {
    774 	const struct cxsr_latency *latency;
    775 	int i;
    776 
    777 	if (fsb == 0 || mem == 0)
    778 		return NULL;
    779 
    780 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    781 		latency = &cxsr_latency_table[i];
    782 		if (is_desktop == latency->is_desktop &&
    783 		    is_ddr3 == latency->is_ddr3 &&
    784 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    785 			return latency;
    786 	}
    787 
    788 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    789 
    790 	return NULL;
    791 }
    792 
    793 static void pineview_disable_cxsr(struct drm_device *dev)
    794 {
    795 	struct drm_i915_private *dev_priv = dev->dev_private;
    796 
    797 	/* deactivate cxsr */
    798 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
    799 }
    800 
    801 /*
    802  * Latency for FIFO fetches is dependent on several factors:
    803  *   - memory configuration (speed, channels)
    804  *   - chipset
    805  *   - current MCH state
    806  * It can be fairly high in some situations, so here we assume a fairly
    807  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    808  * set this value too high, the FIFO will fetch frequently to stay full)
    809  * and power consumption (set it too low to save power and we might see
    810  * FIFO underruns and display "flicker").
    811  *
    812  * A value of 5us seems to be a good balance; safe for very low end
    813  * platforms but not overly aggressive on lower latency configs.
    814  */
    815 static const int latency_ns = 5000;
    816 
    817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    818 {
    819 	struct drm_i915_private *dev_priv = dev->dev_private;
    820 	uint32_t dsparb = I915_READ(DSPARB);
    821 	int size;
    822 
    823 	size = dsparb & 0x7f;
    824 	if (plane)
    825 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    826 
    827 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    828 		      plane ? "B" : "A", size);
    829 
    830 	return size;
    831 }
    832 
    833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    834 {
    835 	struct drm_i915_private *dev_priv = dev->dev_private;
    836 	uint32_t dsparb = I915_READ(DSPARB);
    837 	int size;
    838 
    839 	size = dsparb & 0x1ff;
    840 	if (plane)
    841 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    842 	size >>= 1; /* Convert to cachelines */
    843 
    844 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    845 		      plane ? "B" : "A", size);
    846 
    847 	return size;
    848 }
    849 
    850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    851 {
    852 	struct drm_i915_private *dev_priv = dev->dev_private;
    853 	uint32_t dsparb = I915_READ(DSPARB);
    854 	int size;
    855 
    856 	size = dsparb & 0x7f;
    857 	size >>= 2; /* Convert to cachelines */
    858 
    859 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    860 		      plane ? "B" : "A",
    861 		      size);
    862 
    863 	return size;
    864 }
    865 
    866 /* Pineview has different values for various configs */
    867 static const struct intel_watermark_params pineview_display_wm = {
    868 	PINEVIEW_DISPLAY_FIFO,
    869 	PINEVIEW_MAX_WM,
    870 	PINEVIEW_DFT_WM,
    871 	PINEVIEW_GUARD_WM,
    872 	PINEVIEW_FIFO_LINE_SIZE
    873 };
    874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    875 	PINEVIEW_DISPLAY_FIFO,
    876 	PINEVIEW_MAX_WM,
    877 	PINEVIEW_DFT_HPLLOFF_WM,
    878 	PINEVIEW_GUARD_WM,
    879 	PINEVIEW_FIFO_LINE_SIZE
    880 };
    881 static const struct intel_watermark_params pineview_cursor_wm = {
    882 	PINEVIEW_CURSOR_FIFO,
    883 	PINEVIEW_CURSOR_MAX_WM,
    884 	PINEVIEW_CURSOR_DFT_WM,
    885 	PINEVIEW_CURSOR_GUARD_WM,
    886 	PINEVIEW_FIFO_LINE_SIZE,
    887 };
    888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    889 	PINEVIEW_CURSOR_FIFO,
    890 	PINEVIEW_CURSOR_MAX_WM,
    891 	PINEVIEW_CURSOR_DFT_WM,
    892 	PINEVIEW_CURSOR_GUARD_WM,
    893 	PINEVIEW_FIFO_LINE_SIZE
    894 };
    895 static const struct intel_watermark_params g4x_wm_info = {
    896 	G4X_FIFO_SIZE,
    897 	G4X_MAX_WM,
    898 	G4X_MAX_WM,
    899 	2,
    900 	G4X_FIFO_LINE_SIZE,
    901 };
    902 static const struct intel_watermark_params g4x_cursor_wm_info = {
    903 	I965_CURSOR_FIFO,
    904 	I965_CURSOR_MAX_WM,
    905 	I965_CURSOR_DFT_WM,
    906 	2,
    907 	G4X_FIFO_LINE_SIZE,
    908 };
    909 static const struct intel_watermark_params valleyview_wm_info = {
    910 	VALLEYVIEW_FIFO_SIZE,
    911 	VALLEYVIEW_MAX_WM,
    912 	VALLEYVIEW_MAX_WM,
    913 	2,
    914 	G4X_FIFO_LINE_SIZE,
    915 };
    916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
    917 	I965_CURSOR_FIFO,
    918 	VALLEYVIEW_CURSOR_MAX_WM,
    919 	I965_CURSOR_DFT_WM,
    920 	2,
    921 	G4X_FIFO_LINE_SIZE,
    922 };
    923 static const struct intel_watermark_params i965_cursor_wm_info = {
    924 	I965_CURSOR_FIFO,
    925 	I965_CURSOR_MAX_WM,
    926 	I965_CURSOR_DFT_WM,
    927 	2,
    928 	I915_FIFO_LINE_SIZE,
    929 };
    930 static const struct intel_watermark_params i945_wm_info = {
    931 	I945_FIFO_SIZE,
    932 	I915_MAX_WM,
    933 	1,
    934 	2,
    935 	I915_FIFO_LINE_SIZE
    936 };
    937 static const struct intel_watermark_params i915_wm_info = {
    938 	I915_FIFO_SIZE,
    939 	I915_MAX_WM,
    940 	1,
    941 	2,
    942 	I915_FIFO_LINE_SIZE
    943 };
    944 static const struct intel_watermark_params i830_wm_info = {
    945 	I855GM_FIFO_SIZE,
    946 	I915_MAX_WM,
    947 	1,
    948 	2,
    949 	I830_FIFO_LINE_SIZE
    950 };
    951 static const struct intel_watermark_params i845_wm_info = {
    952 	I830_FIFO_SIZE,
    953 	I915_MAX_WM,
    954 	1,
    955 	2,
    956 	I830_FIFO_LINE_SIZE
    957 };
    958 
    959 /**
    960  * intel_calculate_wm - calculate watermark level
    961  * @clock_in_khz: pixel clock
    962  * @wm: chip FIFO params
    963  * @pixel_size: display pixel size
    964  * @latency_ns: memory latency for the platform
    965  *
    966  * Calculate the watermark level (the level at which the display plane will
    967  * start fetching from memory again).  Each chip has a different display
    968  * FIFO size and allocation, so the caller needs to figure that out and pass
    969  * in the correct intel_watermark_params structure.
    970  *
    971  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    972  * on the pixel size.  When it reaches the watermark level, it'll start
    973  * fetching FIFO line sized based chunks from memory until the FIFO fills
    974  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    975  * will occur, and a display engine hang could result.
    976  */
    977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    978 					const struct intel_watermark_params *wm,
    979 					int fifo_size,
    980 					int pixel_size,
    981 					unsigned long latency_ns)
    982 {
    983 	long entries_required, wm_size;
    984 
    985 	/*
    986 	 * Note: we need to make sure we don't overflow for various clock &
    987 	 * latency values.
    988 	 * clocks go from a few thousand to several hundred thousand.
    989 	 * latency is usually a few thousand
    990 	 */
    991 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
    992 		1000;
    993 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
    994 
    995 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
    996 
    997 	wm_size = fifo_size - (entries_required + wm->guard_size);
    998 
    999 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
   1000 
   1001 	/* Don't promote wm_size to unsigned... */
   1002 	if (wm_size > (long)wm->max_wm)
   1003 		wm_size = wm->max_wm;
   1004 	if (wm_size <= 0)
   1005 		wm_size = wm->default_wm;
   1006 	return wm_size;
   1007 }
   1008 
   1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
   1010 {
   1011 	struct drm_crtc *crtc, *enabled = NULL;
   1012 
   1013 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
   1014 		if (intel_crtc_active(crtc)) {
   1015 			if (enabled)
   1016 				return NULL;
   1017 			enabled = crtc;
   1018 		}
   1019 	}
   1020 
   1021 	return enabled;
   1022 }
   1023 
   1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
   1025 {
   1026 	struct drm_device *dev = unused_crtc->dev;
   1027 	struct drm_i915_private *dev_priv = dev->dev_private;
   1028 	struct drm_crtc *crtc;
   1029 	const struct cxsr_latency *latency;
   1030 	u32 reg;
   1031 	unsigned long wm;
   1032 
   1033 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
   1034 					 dev_priv->fsb_freq, dev_priv->mem_freq);
   1035 	if (!latency) {
   1036 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
   1037 		pineview_disable_cxsr(dev);
   1038 		return;
   1039 	}
   1040 
   1041 	crtc = single_enabled_crtc(dev);
   1042 	if (crtc) {
   1043 		const struct drm_display_mode *adjusted_mode;
   1044 		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1045 		int clock;
   1046 
   1047 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1048 		clock = adjusted_mode->crtc_clock;
   1049 
   1050 		/* Display SR */
   1051 		wm = intel_calculate_wm(clock, &pineview_display_wm,
   1052 					pineview_display_wm.fifo_size,
   1053 					pixel_size, latency->display_sr);
   1054 		reg = I915_READ(DSPFW1);
   1055 		reg &= ~DSPFW_SR_MASK;
   1056 		reg |= wm << DSPFW_SR_SHIFT;
   1057 		I915_WRITE(DSPFW1, reg);
   1058 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
   1059 
   1060 		/* cursor SR */
   1061 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
   1062 					pineview_display_wm.fifo_size,
   1063 					pixel_size, latency->cursor_sr);
   1064 		reg = I915_READ(DSPFW3);
   1065 		reg &= ~DSPFW_CURSOR_SR_MASK;
   1066 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
   1067 		I915_WRITE(DSPFW3, reg);
   1068 
   1069 		/* Display HPLL off SR */
   1070 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
   1071 					pineview_display_hplloff_wm.fifo_size,
   1072 					pixel_size, latency->display_hpll_disable);
   1073 		reg = I915_READ(DSPFW3);
   1074 		reg &= ~DSPFW_HPLL_SR_MASK;
   1075 		reg |= wm & DSPFW_HPLL_SR_MASK;
   1076 		I915_WRITE(DSPFW3, reg);
   1077 
   1078 		/* cursor HPLL off SR */
   1079 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
   1080 					pineview_display_hplloff_wm.fifo_size,
   1081 					pixel_size, latency->cursor_hpll_disable);
   1082 		reg = I915_READ(DSPFW3);
   1083 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
   1084 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
   1085 		I915_WRITE(DSPFW3, reg);
   1086 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
   1087 
   1088 		/* activate cxsr */
   1089 		I915_WRITE(DSPFW3,
   1090 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
   1091 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
   1092 	} else {
   1093 		pineview_disable_cxsr(dev);
   1094 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
   1095 	}
   1096 }
   1097 
   1098 static bool g4x_compute_wm0(struct drm_device *dev,
   1099 			    int plane,
   1100 			    const struct intel_watermark_params *display,
   1101 			    int display_latency_ns,
   1102 			    const struct intel_watermark_params *cursor,
   1103 			    int cursor_latency_ns,
   1104 			    int *plane_wm,
   1105 			    int *cursor_wm)
   1106 {
   1107 	struct drm_crtc *crtc;
   1108 	const struct drm_display_mode *adjusted_mode;
   1109 	int htotal, hdisplay, clock, pixel_size;
   1110 	int line_time_us, line_count;
   1111 	int entries, tlb_miss;
   1112 
   1113 	crtc = intel_get_crtc_for_plane(dev, plane);
   1114 	if (!intel_crtc_active(crtc)) {
   1115 		*cursor_wm = cursor->guard_size;
   1116 		*plane_wm = display->guard_size;
   1117 		return false;
   1118 	}
   1119 
   1120 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1121 	clock = adjusted_mode->crtc_clock;
   1122 	htotal = adjusted_mode->crtc_htotal;
   1123 	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1124 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1125 
   1126 	/* Use the small buffer method to calculate plane watermark */
   1127 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
   1128 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
   1129 	if (tlb_miss > 0)
   1130 		entries += tlb_miss;
   1131 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
   1132 	*plane_wm = entries + display->guard_size;
   1133 	if (*plane_wm > (int)display->max_wm)
   1134 		*plane_wm = display->max_wm;
   1135 
   1136 	/* Use the large buffer method to calculate cursor watermark */
   1137 	line_time_us = max(htotal * 1000 / clock, 1);
   1138 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
   1139 	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
   1140 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
   1141 	if (tlb_miss > 0)
   1142 		entries += tlb_miss;
   1143 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1144 	*cursor_wm = entries + cursor->guard_size;
   1145 	if (*cursor_wm > (int)cursor->max_wm)
   1146 		*cursor_wm = (int)cursor->max_wm;
   1147 
   1148 	return true;
   1149 }
   1150 
   1151 /*
   1152  * Check the wm result.
   1153  *
   1154  * If any calculated watermark values is larger than the maximum value that
   1155  * can be programmed into the associated watermark register, that watermark
   1156  * must be disabled.
   1157  */
   1158 static bool g4x_check_srwm(struct drm_device *dev,
   1159 			   int display_wm, int cursor_wm,
   1160 			   const struct intel_watermark_params *display,
   1161 			   const struct intel_watermark_params *cursor)
   1162 {
   1163 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
   1164 		      display_wm, cursor_wm);
   1165 
   1166 	if (display_wm > display->max_wm) {
   1167 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
   1168 			      display_wm, display->max_wm);
   1169 		return false;
   1170 	}
   1171 
   1172 	if (cursor_wm > cursor->max_wm) {
   1173 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
   1174 			      cursor_wm, cursor->max_wm);
   1175 		return false;
   1176 	}
   1177 
   1178 	if (!(display_wm || cursor_wm)) {
   1179 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
   1180 		return false;
   1181 	}
   1182 
   1183 	return true;
   1184 }
   1185 
   1186 static bool g4x_compute_srwm(struct drm_device *dev,
   1187 			     int plane,
   1188 			     int latency_ns,
   1189 			     const struct intel_watermark_params *display,
   1190 			     const struct intel_watermark_params *cursor,
   1191 			     int *display_wm, int *cursor_wm)
   1192 {
   1193 	struct drm_crtc *crtc;
   1194 	const struct drm_display_mode *adjusted_mode;
   1195 	int hdisplay, htotal, pixel_size, clock;
   1196 	unsigned long line_time_us;
   1197 	int line_count, line_size;
   1198 	int small, large;
   1199 	int entries;
   1200 
   1201 	if (!latency_ns) {
   1202 		*display_wm = *cursor_wm = 0;
   1203 		return false;
   1204 	}
   1205 
   1206 	crtc = intel_get_crtc_for_plane(dev, plane);
   1207 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1208 	clock = adjusted_mode->crtc_clock;
   1209 	htotal = adjusted_mode->crtc_htotal;
   1210 	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1211 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1212 
   1213 	line_time_us = max(htotal * 1000 / clock, 1);
   1214 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   1215 	line_size = hdisplay * pixel_size;
   1216 
   1217 	/* Use the minimum of the small and large buffer method for primary */
   1218 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   1219 	large = line_count * line_size;
   1220 
   1221 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   1222 	*display_wm = entries + display->guard_size;
   1223 
   1224 	/* calculate the self-refresh watermark for display cursor */
   1225 	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
   1226 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1227 	*cursor_wm = entries + cursor->guard_size;
   1228 
   1229 	return g4x_check_srwm(dev,
   1230 			      *display_wm, *cursor_wm,
   1231 			      display, cursor);
   1232 }
   1233 
   1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
   1235 				     int plane,
   1236 				     int *plane_prec_mult,
   1237 				     int *plane_dl,
   1238 				     int *cursor_prec_mult,
   1239 				     int *cursor_dl)
   1240 {
   1241 	struct drm_crtc *crtc;
   1242 	int clock, pixel_size;
   1243 	int entries;
   1244 
   1245 	crtc = intel_get_crtc_for_plane(dev, plane);
   1246 	if (!intel_crtc_active(crtc))
   1247 		return false;
   1248 
   1249 	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
   1250 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
   1251 
   1252 	entries = (clock / 1000) * pixel_size;
   1253 	*plane_prec_mult = (entries > 256) ?
   1254 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1255 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
   1256 						     pixel_size);
   1257 
   1258 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
   1259 	*cursor_prec_mult = (entries > 256) ?
   1260 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1261 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
   1262 
   1263 	return true;
   1264 }
   1265 
   1266 /*
   1267  * Update drain latency registers of memory arbiter
   1268  *
   1269  * Valleyview SoC has a new memory arbiter and needs drain latency registers
   1270  * to be programmed. Each plane has a drain latency multiplier and a drain
   1271  * latency value.
   1272  */
   1273 
   1274 static void vlv_update_drain_latency(struct drm_device *dev)
   1275 {
   1276 	struct drm_i915_private *dev_priv = dev->dev_private;
   1277 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
   1278 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
   1279 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
   1280 							either 16 or 32 */
   1281 
   1282 	/* For plane A, Cursor A */
   1283 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
   1284 				      &cursor_prec_mult, &cursora_dl)) {
   1285 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1286 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
   1287 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1288 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
   1289 
   1290 		I915_WRITE(VLV_DDL1, cursora_prec |
   1291 				(cursora_dl << DDL_CURSORA_SHIFT) |
   1292 				planea_prec | planea_dl);
   1293 	}
   1294 
   1295 	/* For plane B, Cursor B */
   1296 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
   1297 				      &cursor_prec_mult, &cursorb_dl)) {
   1298 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1299 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
   1300 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1301 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
   1302 
   1303 		I915_WRITE(VLV_DDL2, cursorb_prec |
   1304 				(cursorb_dl << DDL_CURSORB_SHIFT) |
   1305 				planeb_prec | planeb_dl);
   1306 	}
   1307 }
   1308 
   1309 #define single_plane_enabled(mask) is_power_of_2(mask)
   1310 
   1311 static void valleyview_update_wm(struct drm_crtc *crtc)
   1312 {
   1313 	struct drm_device *dev = crtc->dev;
   1314 	static const int sr_latency_ns = 12000;
   1315 	struct drm_i915_private *dev_priv = dev->dev_private;
   1316 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1317 	int plane_sr, cursor_sr;
   1318 	int ignore_plane_sr, ignore_cursor_sr;
   1319 	unsigned int enabled = 0;
   1320 
   1321 	vlv_update_drain_latency(dev);
   1322 
   1323 	if (g4x_compute_wm0(dev, PIPE_A,
   1324 			    &valleyview_wm_info, latency_ns,
   1325 			    &valleyview_cursor_wm_info, latency_ns,
   1326 			    &planea_wm, &cursora_wm))
   1327 		enabled |= 1 << PIPE_A;
   1328 
   1329 	if (g4x_compute_wm0(dev, PIPE_B,
   1330 			    &valleyview_wm_info, latency_ns,
   1331 			    &valleyview_cursor_wm_info, latency_ns,
   1332 			    &planeb_wm, &cursorb_wm))
   1333 		enabled |= 1 << PIPE_B;
   1334 
   1335 	if (single_plane_enabled(enabled) &&
   1336 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1337 			     sr_latency_ns,
   1338 			     &valleyview_wm_info,
   1339 			     &valleyview_cursor_wm_info,
   1340 			     &plane_sr, &ignore_cursor_sr) &&
   1341 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1342 			     2*sr_latency_ns,
   1343 			     &valleyview_wm_info,
   1344 			     &valleyview_cursor_wm_info,
   1345 			     &ignore_plane_sr, &cursor_sr)) {
   1346 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
   1347 	} else {
   1348 		I915_WRITE(FW_BLC_SELF_VLV,
   1349 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
   1350 		plane_sr = cursor_sr = 0;
   1351 	}
   1352 
   1353 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1354 		      planea_wm, cursora_wm,
   1355 		      planeb_wm, cursorb_wm,
   1356 		      plane_sr, cursor_sr);
   1357 
   1358 	I915_WRITE(DSPFW1,
   1359 		   (plane_sr << DSPFW_SR_SHIFT) |
   1360 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1361 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1362 		   planea_wm);
   1363 	I915_WRITE(DSPFW2,
   1364 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1365 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1366 	I915_WRITE(DSPFW3,
   1367 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
   1368 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1369 }
   1370 
   1371 static void g4x_update_wm(struct drm_crtc *crtc)
   1372 {
   1373 	struct drm_device *dev = crtc->dev;
   1374 	static const int sr_latency_ns = 12000;
   1375 	struct drm_i915_private *dev_priv = dev->dev_private;
   1376 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1377 	int plane_sr, cursor_sr;
   1378 	unsigned int enabled = 0;
   1379 
   1380 	if (g4x_compute_wm0(dev, PIPE_A,
   1381 			    &g4x_wm_info, latency_ns,
   1382 			    &g4x_cursor_wm_info, latency_ns,
   1383 			    &planea_wm, &cursora_wm))
   1384 		enabled |= 1 << PIPE_A;
   1385 
   1386 	if (g4x_compute_wm0(dev, PIPE_B,
   1387 			    &g4x_wm_info, latency_ns,
   1388 			    &g4x_cursor_wm_info, latency_ns,
   1389 			    &planeb_wm, &cursorb_wm))
   1390 		enabled |= 1 << PIPE_B;
   1391 
   1392 	if (single_plane_enabled(enabled) &&
   1393 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1394 			     sr_latency_ns,
   1395 			     &g4x_wm_info,
   1396 			     &g4x_cursor_wm_info,
   1397 			     &plane_sr, &cursor_sr)) {
   1398 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1399 	} else {
   1400 		I915_WRITE(FW_BLC_SELF,
   1401 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
   1402 		plane_sr = cursor_sr = 0;
   1403 	}
   1404 
   1405 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1406 		      planea_wm, cursora_wm,
   1407 		      planeb_wm, cursorb_wm,
   1408 		      plane_sr, cursor_sr);
   1409 
   1410 	I915_WRITE(DSPFW1,
   1411 		   (plane_sr << DSPFW_SR_SHIFT) |
   1412 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1413 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1414 		   planea_wm);
   1415 	I915_WRITE(DSPFW2,
   1416 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1417 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1418 	/* HPLL off in SR has some issues on G4x... disable it */
   1419 	I915_WRITE(DSPFW3,
   1420 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1421 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1422 }
   1423 
   1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
   1425 {
   1426 	struct drm_device *dev = unused_crtc->dev;
   1427 	struct drm_i915_private *dev_priv = dev->dev_private;
   1428 	struct drm_crtc *crtc;
   1429 	int srwm = 1;
   1430 	int cursor_sr = 16;
   1431 
   1432 	/* Calc sr entries for one plane configs */
   1433 	crtc = single_enabled_crtc(dev);
   1434 	if (crtc) {
   1435 		/* self-refresh has much higher latency */
   1436 		static const int sr_latency_ns = 12000;
   1437 		const struct drm_display_mode *adjusted_mode =
   1438 			&to_intel_crtc(crtc)->config.adjusted_mode;
   1439 		int clock = adjusted_mode->crtc_clock;
   1440 		int htotal = adjusted_mode->crtc_htotal;
   1441 		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1442 		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1443 		unsigned long line_time_us;
   1444 		int entries;
   1445 
   1446 		line_time_us = max(htotal * 1000 / clock, 1);
   1447 
   1448 		/* Use ns/us then divide to preserve precision */
   1449 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1450 			pixel_size * hdisplay;
   1451 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1452 		srwm = I965_FIFO_SIZE - entries;
   1453 		if (srwm < 0)
   1454 			srwm = 1;
   1455 		srwm &= 0x1ff;
   1456 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1457 			      entries, srwm);
   1458 
   1459 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1460 			pixel_size * to_intel_crtc(crtc)->cursor_width;
   1461 		entries = DIV_ROUND_UP(entries,
   1462 					  i965_cursor_wm_info.cacheline_size);
   1463 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1464 			(entries + i965_cursor_wm_info.guard_size);
   1465 
   1466 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1467 			cursor_sr = i965_cursor_wm_info.max_wm;
   1468 
   1469 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1470 			      "cursor %d\n", srwm, cursor_sr);
   1471 
   1472 		if (IS_CRESTLINE(dev))
   1473 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1474 	} else {
   1475 		/* Turn off self refresh if both pipes are enabled */
   1476 		if (IS_CRESTLINE(dev))
   1477 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
   1478 				   & ~FW_BLC_SELF_EN);
   1479 	}
   1480 
   1481 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1482 		      srwm);
   1483 
   1484 	/* 965 has limitations... */
   1485 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
   1486 		   (8 << 16) | (8 << 8) | (8 << 0));
   1487 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
   1488 	/* update cursor SR watermark */
   1489 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1490 }
   1491 
   1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
   1493 {
   1494 	struct drm_device *dev = unused_crtc->dev;
   1495 	struct drm_i915_private *dev_priv = dev->dev_private;
   1496 	const struct intel_watermark_params *wm_info;
   1497 	uint32_t fwater_lo;
   1498 	uint32_t fwater_hi;
   1499 	int cwm, srwm = 1;
   1500 	int fifo_size;
   1501 	int planea_wm, planeb_wm;
   1502 	struct drm_crtc *crtc, *enabled = NULL;
   1503 
   1504 	if (IS_I945GM(dev))
   1505 		wm_info = &i945_wm_info;
   1506 	else if (!IS_GEN2(dev))
   1507 		wm_info = &i915_wm_info;
   1508 	else
   1509 		wm_info = &i830_wm_info;
   1510 
   1511 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1512 	crtc = intel_get_crtc_for_plane(dev, 0);
   1513 	if (intel_crtc_active(crtc)) {
   1514 		const struct drm_display_mode *adjusted_mode;
   1515 		int cpp = crtc->primary->fb->bits_per_pixel / 8;
   1516 		if (IS_GEN2(dev))
   1517 			cpp = 4;
   1518 
   1519 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1520 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1521 					       wm_info, fifo_size, cpp,
   1522 					       latency_ns);
   1523 		enabled = crtc;
   1524 	} else
   1525 		planea_wm = fifo_size - wm_info->guard_size;
   1526 
   1527 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1528 	crtc = intel_get_crtc_for_plane(dev, 1);
   1529 	if (intel_crtc_active(crtc)) {
   1530 		const struct drm_display_mode *adjusted_mode;
   1531 		int cpp = crtc->primary->fb->bits_per_pixel / 8;
   1532 		if (IS_GEN2(dev))
   1533 			cpp = 4;
   1534 
   1535 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1536 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1537 					       wm_info, fifo_size, cpp,
   1538 					       latency_ns);
   1539 		if (enabled == NULL)
   1540 			enabled = crtc;
   1541 		else
   1542 			enabled = NULL;
   1543 	} else
   1544 		planeb_wm = fifo_size - wm_info->guard_size;
   1545 
   1546 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1547 
   1548 	if (IS_I915GM(dev) && enabled) {
   1549 		struct intel_framebuffer *fb;
   1550 
   1551 		fb = to_intel_framebuffer(enabled->primary->fb);
   1552 
   1553 		/* self-refresh seems busted with untiled */
   1554 		if (fb->obj->tiling_mode == I915_TILING_NONE)
   1555 			enabled = NULL;
   1556 	}
   1557 
   1558 	/*
   1559 	 * Overlay gets an aggressive default since video jitter is bad.
   1560 	 */
   1561 	cwm = 2;
   1562 
   1563 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1564 	if (IS_I945G(dev) || IS_I945GM(dev))
   1565 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
   1566 	else if (IS_I915GM(dev))
   1567 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
   1568 
   1569 	/* Calc sr entries for one plane configs */
   1570 	if (HAS_FW_BLC(dev) && enabled) {
   1571 		/* self-refresh has much higher latency */
   1572 		static const int sr_latency_ns = 6000;
   1573 		const struct drm_display_mode *adjusted_mode =
   1574 			&to_intel_crtc(enabled)->config.adjusted_mode;
   1575 		int clock = adjusted_mode->crtc_clock;
   1576 		int htotal = adjusted_mode->crtc_htotal;
   1577 		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
   1578 		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
   1579 		unsigned long line_time_us;
   1580 		int entries;
   1581 
   1582 		line_time_us = max(htotal * 1000 / clock, 1);
   1583 
   1584 		/* Use ns/us then divide to preserve precision */
   1585 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1586 			pixel_size * hdisplay;
   1587 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1588 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1589 		srwm = wm_info->fifo_size - entries;
   1590 		if (srwm < 0)
   1591 			srwm = 1;
   1592 
   1593 		if (IS_I945G(dev) || IS_I945GM(dev))
   1594 			I915_WRITE(FW_BLC_SELF,
   1595 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1596 		else if (IS_I915GM(dev))
   1597 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1598 	}
   1599 
   1600 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1601 		      planea_wm, planeb_wm, cwm, srwm);
   1602 
   1603 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1604 	fwater_hi = (cwm & 0x1f);
   1605 
   1606 	/* Set request length to 8 cachelines per fetch */
   1607 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1608 	fwater_hi = fwater_hi | (1 << 8);
   1609 
   1610 	I915_WRITE(FW_BLC, fwater_lo);
   1611 	I915_WRITE(FW_BLC2, fwater_hi);
   1612 
   1613 	if (HAS_FW_BLC(dev)) {
   1614 		if (enabled) {
   1615 			if (IS_I945G(dev) || IS_I945GM(dev))
   1616 				I915_WRITE(FW_BLC_SELF,
   1617 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
   1618 			else if (IS_I915GM(dev))
   1619 				I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
   1620 			DRM_DEBUG_KMS("memory self refresh enabled\n");
   1621 		} else
   1622 			DRM_DEBUG_KMS("memory self refresh disabled\n");
   1623 	}
   1624 }
   1625 
   1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
   1627 {
   1628 	struct drm_device *dev = unused_crtc->dev;
   1629 	struct drm_i915_private *dev_priv = dev->dev_private;
   1630 	struct drm_crtc *crtc;
   1631 	const struct drm_display_mode *adjusted_mode;
   1632 	uint32_t fwater_lo;
   1633 	int planea_wm;
   1634 
   1635 	crtc = single_enabled_crtc(dev);
   1636 	if (crtc == NULL)
   1637 		return;
   1638 
   1639 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1640 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1641 				       &i845_wm_info,
   1642 				       dev_priv->display.get_fifo_size(dev, 0),
   1643 				       4, latency_ns);
   1644 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1645 	fwater_lo |= (3<<8) | planea_wm;
   1646 
   1647 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1648 
   1649 	I915_WRITE(FW_BLC, fwater_lo);
   1650 }
   1651 
   1652 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
   1653 				    struct drm_crtc *crtc)
   1654 {
   1655 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   1656 	uint32_t pixel_rate;
   1657 
   1658 	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
   1659 
   1660 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
   1661 	 * adjust the pixel_rate here. */
   1662 
   1663 	if (intel_crtc->config.pch_pfit.enabled) {
   1664 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
   1665 		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
   1666 
   1667 		pipe_w = intel_crtc->config.pipe_src_w;
   1668 		pipe_h = intel_crtc->config.pipe_src_h;
   1669 		pfit_w = (pfit_size >> 16) & 0xFFFF;
   1670 		pfit_h = pfit_size & 0xFFFF;
   1671 		if (pipe_w < pfit_w)
   1672 			pipe_w = pfit_w;
   1673 		if (pipe_h < pfit_h)
   1674 			pipe_h = pfit_h;
   1675 
   1676 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
   1677 				     pfit_w * pfit_h);
   1678 	}
   1679 
   1680 	return pixel_rate;
   1681 }
   1682 
   1683 /* latency must be in 0.1us units. */
   1684 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   1685 			       uint32_t latency)
   1686 {
   1687 	uint64_t ret;
   1688 
   1689 	if (WARN(latency == 0, "Latency value missing\n"))
   1690 		return UINT_MAX;
   1691 
   1692 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
   1693 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
   1694 
   1695 	return ret;
   1696 }
   1697 
   1698 /* latency must be in 0.1us units. */
   1699 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   1700 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   1701 			       uint32_t latency)
   1702 {
   1703 	uint32_t ret;
   1704 
   1705 	if (WARN(latency == 0, "Latency value missing\n"))
   1706 		return UINT_MAX;
   1707 
   1708 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
   1709 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
   1710 	ret = DIV_ROUND_UP(ret, 64) + 2;
   1711 	return ret;
   1712 }
   1713 
   1714 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
   1715 			   uint8_t bytes_per_pixel)
   1716 {
   1717 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
   1718 }
   1719 
   1720 struct ilk_pipe_wm_parameters {
   1721 	bool active;
   1722 	uint32_t pipe_htotal;
   1723 	uint32_t pixel_rate;
   1724 	struct intel_plane_wm_parameters pri;
   1725 	struct intel_plane_wm_parameters spr;
   1726 	struct intel_plane_wm_parameters cur;
   1727 };
   1728 
   1729 struct ilk_wm_maximums {
   1730 	uint16_t pri;
   1731 	uint16_t spr;
   1732 	uint16_t cur;
   1733 	uint16_t fbc;
   1734 };
   1735 
   1736 /* used in computing the new watermarks state */
   1737 struct intel_wm_config {
   1738 	unsigned int num_pipes_active;
   1739 	bool sprites_enabled;
   1740 	bool sprites_scaled;
   1741 };
   1742 
   1743 /*
   1744  * For both WM_PIPE and WM_LP.
   1745  * mem_value must be in 0.1us units.
   1746  */
   1747 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
   1748 				   uint32_t mem_value,
   1749 				   bool is_lp)
   1750 {
   1751 	uint32_t method1, method2;
   1752 
   1753 	if (!params->active || !params->pri.enabled)
   1754 		return 0;
   1755 
   1756 	method1 = ilk_wm_method1(params->pixel_rate,
   1757 				 params->pri.bytes_per_pixel,
   1758 				 mem_value);
   1759 
   1760 	if (!is_lp)
   1761 		return method1;
   1762 
   1763 	method2 = ilk_wm_method2(params->pixel_rate,
   1764 				 params->pipe_htotal,
   1765 				 params->pri.horiz_pixels,
   1766 				 params->pri.bytes_per_pixel,
   1767 				 mem_value);
   1768 
   1769 	return min(method1, method2);
   1770 }
   1771 
   1772 /*
   1773  * For both WM_PIPE and WM_LP.
   1774  * mem_value must be in 0.1us units.
   1775  */
   1776 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
   1777 				   uint32_t mem_value)
   1778 {
   1779 	uint32_t method1, method2;
   1780 
   1781 	if (!params->active || !params->spr.enabled)
   1782 		return 0;
   1783 
   1784 	method1 = ilk_wm_method1(params->pixel_rate,
   1785 				 params->spr.bytes_per_pixel,
   1786 				 mem_value);
   1787 	method2 = ilk_wm_method2(params->pixel_rate,
   1788 				 params->pipe_htotal,
   1789 				 params->spr.horiz_pixels,
   1790 				 params->spr.bytes_per_pixel,
   1791 				 mem_value);
   1792 	return min(method1, method2);
   1793 }
   1794 
   1795 /*
   1796  * For both WM_PIPE and WM_LP.
   1797  * mem_value must be in 0.1us units.
   1798  */
   1799 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
   1800 				   uint32_t mem_value)
   1801 {
   1802 	if (!params->active || !params->cur.enabled)
   1803 		return 0;
   1804 
   1805 	return ilk_wm_method2(params->pixel_rate,
   1806 			      params->pipe_htotal,
   1807 			      params->cur.horiz_pixels,
   1808 			      params->cur.bytes_per_pixel,
   1809 			      mem_value);
   1810 }
   1811 
   1812 /* Only for WM_LP. */
   1813 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
   1814 				   uint32_t pri_val)
   1815 {
   1816 	if (!params->active || !params->pri.enabled)
   1817 		return 0;
   1818 
   1819 	return ilk_wm_fbc(pri_val,
   1820 			  params->pri.horiz_pixels,
   1821 			  params->pri.bytes_per_pixel);
   1822 }
   1823 
   1824 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
   1825 {
   1826 	if (INTEL_INFO(dev)->gen >= 8)
   1827 		return 3072;
   1828 	else if (INTEL_INFO(dev)->gen >= 7)
   1829 		return 768;
   1830 	else
   1831 		return 512;
   1832 }
   1833 
   1834 /* Calculate the maximum primary/sprite plane watermark */
   1835 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
   1836 				     int level,
   1837 				     const struct intel_wm_config *config,
   1838 				     enum intel_ddb_partitioning ddb_partitioning,
   1839 				     bool is_sprite)
   1840 {
   1841 	unsigned int fifo_size = ilk_display_fifo_size(dev);
   1842 	unsigned int max;
   1843 
   1844 	/* if sprites aren't enabled, sprites get nothing */
   1845 	if (is_sprite && !config->sprites_enabled)
   1846 		return 0;
   1847 
   1848 	/* HSW allows LP1+ watermarks even with multiple pipes */
   1849 	if (level == 0 || config->num_pipes_active > 1) {
   1850 		fifo_size /= INTEL_INFO(dev)->num_pipes;
   1851 
   1852 		/*
   1853 		 * For some reason the non self refresh
   1854 		 * FIFO size is only half of the self
   1855 		 * refresh FIFO size on ILK/SNB.
   1856 		 */
   1857 		if (INTEL_INFO(dev)->gen <= 6)
   1858 			fifo_size /= 2;
   1859 	}
   1860 
   1861 	if (config->sprites_enabled) {
   1862 		/* level 0 is always calculated with 1:1 split */
   1863 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
   1864 			if (is_sprite)
   1865 				fifo_size *= 5;
   1866 			fifo_size /= 6;
   1867 		} else {
   1868 			fifo_size /= 2;
   1869 		}
   1870 	}
   1871 
   1872 	/* clamp to max that the registers can hold */
   1873 	if (INTEL_INFO(dev)->gen >= 8)
   1874 		max = level == 0 ? 255 : 2047;
   1875 	else if (INTEL_INFO(dev)->gen >= 7)
   1876 		/* IVB/HSW primary/sprite plane watermarks */
   1877 		max = level == 0 ? 127 : 1023;
   1878 	else if (!is_sprite)
   1879 		/* ILK/SNB primary plane watermarks */
   1880 		max = level == 0 ? 127 : 511;
   1881 	else
   1882 		/* ILK/SNB sprite plane watermarks */
   1883 		max = level == 0 ? 63 : 255;
   1884 
   1885 	return min(fifo_size, max);
   1886 }
   1887 
   1888 /* Calculate the maximum cursor plane watermark */
   1889 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
   1890 				      int level,
   1891 				      const struct intel_wm_config *config)
   1892 {
   1893 	/* HSW LP1+ watermarks w/ multiple pipes */
   1894 	if (level > 0 && config->num_pipes_active > 1)
   1895 		return 64;
   1896 
   1897 	/* otherwise just report max that registers can hold */
   1898 	if (INTEL_INFO(dev)->gen >= 7)
   1899 		return level == 0 ? 63 : 255;
   1900 	else
   1901 		return level == 0 ? 31 : 63;
   1902 }
   1903 
   1904 /* Calculate the maximum FBC watermark */
   1905 static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
   1906 {
   1907 	/* max that registers can hold */
   1908 	if (INTEL_INFO(dev)->gen >= 8)
   1909 		return 31;
   1910 	else
   1911 		return 15;
   1912 }
   1913 
   1914 static void ilk_compute_wm_maximums(const struct drm_device *dev,
   1915 				    int level,
   1916 				    const struct intel_wm_config *config,
   1917 				    enum intel_ddb_partitioning ddb_partitioning,
   1918 				    struct ilk_wm_maximums *max)
   1919 {
   1920 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
   1921 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
   1922 	max->cur = ilk_cursor_wm_max(dev, level, config);
   1923 	max->fbc = ilk_fbc_wm_max(dev);
   1924 }
   1925 
   1926 static bool ilk_validate_wm_level(int level,
   1927 				  const struct ilk_wm_maximums *max,
   1928 				  struct intel_wm_level *result)
   1929 {
   1930 	bool ret;
   1931 
   1932 	/* already determined to be invalid? */
   1933 	if (!result->enable)
   1934 		return false;
   1935 
   1936 	result->enable = result->pri_val <= max->pri &&
   1937 			 result->spr_val <= max->spr &&
   1938 			 result->cur_val <= max->cur;
   1939 
   1940 	ret = result->enable;
   1941 
   1942 	/*
   1943 	 * HACK until we can pre-compute everything,
   1944 	 * and thus fail gracefully if LP0 watermarks
   1945 	 * are exceeded...
   1946 	 */
   1947 	if (level == 0 && !result->enable) {
   1948 		if (result->pri_val > max->pri)
   1949 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
   1950 				      level, result->pri_val, max->pri);
   1951 		if (result->spr_val > max->spr)
   1952 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
   1953 				      level, result->spr_val, max->spr);
   1954 		if (result->cur_val > max->cur)
   1955 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
   1956 				      level, result->cur_val, max->cur);
   1957 
   1958 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
   1959 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
   1960 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
   1961 		result->enable = true;
   1962 	}
   1963 
   1964 	return ret;
   1965 }
   1966 
   1967 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
   1968 				 int level,
   1969 				 const struct ilk_pipe_wm_parameters *p,
   1970 				 struct intel_wm_level *result)
   1971 {
   1972 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
   1973 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
   1974 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
   1975 
   1976 	/* WM1+ latency values stored in 0.5us units */
   1977 	if (level > 0) {
   1978 		pri_latency *= 5;
   1979 		spr_latency *= 5;
   1980 		cur_latency *= 5;
   1981 	}
   1982 
   1983 	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
   1984 	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
   1985 	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
   1986 	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
   1987 	result->enable = true;
   1988 }
   1989 
   1990 static uint32_t
   1991 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
   1992 {
   1993 	struct drm_i915_private *dev_priv = dev->dev_private;
   1994 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   1995 	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
   1996 	u32 linetime, ips_linetime;
   1997 
   1998 	if (!intel_crtc_active(crtc))
   1999 		return 0;
   2000 
   2001 	/* The WM are computed with base on how long it takes to fill a single
   2002 	 * row at the given clock rate, multiplied by 8.
   2003 	 * */
   2004 	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
   2005 				     mode->crtc_clock);
   2006 	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
   2007 					 intel_ddi_get_cdclk_freq(dev_priv));
   2008 
   2009 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
   2010 	       PIPE_WM_LINETIME_TIME(linetime);
   2011 }
   2012 
   2013 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2014 {
   2015 	struct drm_i915_private *dev_priv = dev->dev_private;
   2016 
   2017 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2018 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
   2019 
   2020 		wm[0] = (sskpd >> 56) & 0xFF;
   2021 		if (wm[0] == 0)
   2022 			wm[0] = sskpd & 0xF;
   2023 		wm[1] = (sskpd >> 4) & 0xFF;
   2024 		wm[2] = (sskpd >> 12) & 0xFF;
   2025 		wm[3] = (sskpd >> 20) & 0x1FF;
   2026 		wm[4] = (sskpd >> 32) & 0x1FF;
   2027 	} else if (INTEL_INFO(dev)->gen >= 6) {
   2028 		uint32_t sskpd = I915_READ(MCH_SSKPD);
   2029 
   2030 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
   2031 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
   2032 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
   2033 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
   2034 	} else if (INTEL_INFO(dev)->gen >= 5) {
   2035 		uint32_t mltr = I915_READ(MLTR_ILK);
   2036 
   2037 		/* ILK primary LP0 latency is 700 ns */
   2038 		wm[0] = 7;
   2039 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
   2040 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
   2041 	}
   2042 }
   2043 
   2044 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2045 {
   2046 	/* ILK sprite LP0 latency is 1300 ns */
   2047 	if (INTEL_INFO(dev)->gen == 5)
   2048 		wm[0] = 13;
   2049 }
   2050 
   2051 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2052 {
   2053 	/* ILK cursor LP0 latency is 1300 ns */
   2054 	if (INTEL_INFO(dev)->gen == 5)
   2055 		wm[0] = 13;
   2056 
   2057 	/* WaDoubleCursorLP3Latency:ivb */
   2058 	if (IS_IVYBRIDGE(dev))
   2059 		wm[3] *= 2;
   2060 }
   2061 
   2062 static int ilk_wm_max_level(const struct drm_device *dev)
   2063 {
   2064 	/* how many WM levels are we expecting */
   2065 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2066 		return 4;
   2067 	else if (INTEL_INFO(dev)->gen >= 6)
   2068 		return 3;
   2069 	else
   2070 		return 2;
   2071 }
   2072 
   2073 static void intel_print_wm_latency(struct drm_device *dev,
   2074 				   const char *name,
   2075 				   const uint16_t wm[5])
   2076 {
   2077 	int level, max_level = ilk_wm_max_level(dev);
   2078 
   2079 	for (level = 0; level <= max_level; level++) {
   2080 		unsigned int latency = wm[level];
   2081 
   2082 		if (latency == 0) {
   2083 			DRM_ERROR("%s WM%d latency not provided\n",
   2084 				  name, level);
   2085 			continue;
   2086 		}
   2087 
   2088 		/* WM1+ latency values in 0.5us units */
   2089 		if (level > 0)
   2090 			latency *= 5;
   2091 
   2092 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
   2093 			      name, level, wm[level],
   2094 			      latency / 10, latency % 10);
   2095 	}
   2096 }
   2097 
   2098 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
   2099 				    uint16_t wm[5], uint16_t min)
   2100 {
   2101 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
   2102 
   2103 	if (wm[0] >= min)
   2104 		return false;
   2105 
   2106 	wm[0] = max(wm[0], min);
   2107 	for (level = 1; level <= max_level; level++)
   2108 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
   2109 
   2110 	return true;
   2111 }
   2112 
   2113 static void snb_wm_latency_quirk(struct drm_device *dev)
   2114 {
   2115 	struct drm_i915_private *dev_priv = dev->dev_private;
   2116 	bool changed;
   2117 
   2118 	/*
   2119 	 * The BIOS provided WM memory latency values are often
   2120 	 * inadequate for high resolution displays. Adjust them.
   2121 	 */
   2122 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
   2123 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
   2124 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
   2125 
   2126 	if (!changed)
   2127 		return;
   2128 
   2129 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
   2130 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2131 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2132 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2133 }
   2134 
   2135 static void ilk_setup_wm_latency(struct drm_device *dev)
   2136 {
   2137 	struct drm_i915_private *dev_priv = dev->dev_private;
   2138 
   2139 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
   2140 
   2141 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
   2142 	       sizeof(dev_priv->wm.pri_latency));
   2143 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
   2144 	       sizeof(dev_priv->wm.pri_latency));
   2145 
   2146 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
   2147 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
   2148 
   2149 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2150 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2151 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2152 
   2153 	if (IS_GEN6(dev))
   2154 		snb_wm_latency_quirk(dev);
   2155 }
   2156 
   2157 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
   2158 				      struct ilk_pipe_wm_parameters *p,
   2159 				      struct intel_wm_config *config)
   2160 {
   2161 	struct drm_device *dev = crtc->dev;
   2162 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2163 	enum pipe pipe = intel_crtc->pipe;
   2164 	struct drm_plane *plane;
   2165 
   2166 	p->active = intel_crtc_active(crtc);
   2167 	if (p->active) {
   2168 		p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
   2169 		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
   2170 		p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
   2171 		p->cur.bytes_per_pixel = 4;
   2172 		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
   2173 		p->cur.horiz_pixels = intel_crtc->cursor_width;
   2174 		/* TODO: for now, assume primary and cursor planes are always enabled. */
   2175 		p->pri.enabled = true;
   2176 		p->cur.enabled = true;
   2177 	}
   2178 
   2179 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   2180 		config->num_pipes_active += intel_crtc_active(crtc);
   2181 
   2182 	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
   2183 		struct intel_plane *intel_plane = to_intel_plane(plane);
   2184 
   2185 		if (intel_plane->pipe == pipe)
   2186 			p->spr = intel_plane->wm;
   2187 
   2188 		config->sprites_enabled |= intel_plane->wm.enabled;
   2189 		config->sprites_scaled |= intel_plane->wm.scaled;
   2190 	}
   2191 }
   2192 
   2193 /* Compute new watermarks for the pipe */
   2194 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
   2195 				  const struct ilk_pipe_wm_parameters *params,
   2196 				  struct intel_pipe_wm *pipe_wm)
   2197 {
   2198 	struct drm_device *dev = crtc->dev;
   2199 	const struct drm_i915_private *dev_priv = dev->dev_private;
   2200 	int level, max_level = ilk_wm_max_level(dev);
   2201 	/* LP0 watermark maximums depend on this pipe alone */
   2202 	struct intel_wm_config config = {
   2203 		.num_pipes_active = 1,
   2204 		.sprites_enabled = params->spr.enabled,
   2205 		.sprites_scaled = params->spr.scaled,
   2206 	};
   2207 	struct ilk_wm_maximums max;
   2208 
   2209 	/* LP0 watermarks always use 1/2 DDB partitioning */
   2210 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
   2211 
   2212 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
   2213 	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
   2214 		max_level = 1;
   2215 
   2216 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
   2217 	if (params->spr.scaled)
   2218 		max_level = 0;
   2219 
   2220 	for (level = 0; level <= max_level; level++)
   2221 		ilk_compute_wm_level(dev_priv, level, params,
   2222 				     &pipe_wm->wm[level]);
   2223 
   2224 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2225 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
   2226 
   2227 	/* At least LP0 must be valid */
   2228 	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
   2229 }
   2230 
   2231 /*
   2232  * Merge the watermarks from all active pipes for a specific level.
   2233  */
   2234 static void ilk_merge_wm_level(struct drm_device *dev,
   2235 			       int level,
   2236 			       struct intel_wm_level *ret_wm)
   2237 {
   2238 	const struct intel_crtc *intel_crtc;
   2239 
   2240 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
   2241 		const struct intel_wm_level *wm =
   2242 			&intel_crtc->wm.active.wm[level];
   2243 
   2244 		if (!wm->enable)
   2245 			return;
   2246 
   2247 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
   2248 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
   2249 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
   2250 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
   2251 	}
   2252 
   2253 	ret_wm->enable = true;
   2254 }
   2255 
   2256 /*
   2257  * Merge all low power watermarks for all active pipes.
   2258  */
   2259 static void ilk_wm_merge(struct drm_device *dev,
   2260 			 const struct intel_wm_config *config,
   2261 			 const struct ilk_wm_maximums *max,
   2262 			 struct intel_pipe_wm *merged)
   2263 {
   2264 	int level, max_level = ilk_wm_max_level(dev);
   2265 
   2266 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
   2267 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
   2268 	    config->num_pipes_active > 1)
   2269 		return;
   2270 
   2271 	/* ILK: FBC WM must be disabled always */
   2272 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
   2273 
   2274 	/* merge each WM1+ level */
   2275 	for (level = 1; level <= max_level; level++) {
   2276 		struct intel_wm_level *wm = &merged->wm[level];
   2277 
   2278 		ilk_merge_wm_level(dev, level, wm);
   2279 
   2280 		if (!ilk_validate_wm_level(level, max, wm))
   2281 			break;
   2282 
   2283 		/*
   2284 		 * The spec says it is preferred to disable
   2285 		 * FBC WMs instead of disabling a WM level.
   2286 		 */
   2287 		if (wm->fbc_val > max->fbc) {
   2288 			merged->fbc_wm_enabled = false;
   2289 			wm->fbc_val = 0;
   2290 		}
   2291 	}
   2292 
   2293 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
   2294 	/*
   2295 	 * FIXME this is racy. FBC might get enabled later.
   2296 	 * What we should check here is whether FBC can be
   2297 	 * enabled sometime later.
   2298 	 */
   2299 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
   2300 		for (level = 2; level <= max_level; level++) {
   2301 			struct intel_wm_level *wm = &merged->wm[level];
   2302 
   2303 			wm->enable = false;
   2304 		}
   2305 	}
   2306 }
   2307 
   2308 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
   2309 {
   2310 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
   2311 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
   2312 }
   2313 
   2314 /* The value we need to program into the WM_LPx latency field */
   2315 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
   2316 {
   2317 	struct drm_i915_private *dev_priv = dev->dev_private;
   2318 
   2319 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2320 		return 2 * level;
   2321 	else
   2322 		return dev_priv->wm.pri_latency[level];
   2323 }
   2324 
   2325 static void ilk_compute_wm_results(struct drm_device *dev,
   2326 				   const struct intel_pipe_wm *merged,
   2327 				   enum intel_ddb_partitioning partitioning,
   2328 				   struct ilk_wm_values *results)
   2329 {
   2330 	struct intel_crtc *intel_crtc;
   2331 	int level, wm_lp;
   2332 
   2333 	results->enable_fbc_wm = merged->fbc_wm_enabled;
   2334 	results->partitioning = partitioning;
   2335 
   2336 	/* LP1+ register values */
   2337 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2338 		const struct intel_wm_level *r;
   2339 
   2340 		level = ilk_wm_lp_to_level(wm_lp, merged);
   2341 
   2342 		r = &merged->wm[level];
   2343 		if (!r->enable)
   2344 			break;
   2345 
   2346 		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
   2347 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
   2348 			(r->pri_val << WM1_LP_SR_SHIFT) |
   2349 			r->cur_val;
   2350 
   2351 		if (INTEL_INFO(dev)->gen >= 8)
   2352 			results->wm_lp[wm_lp - 1] |=
   2353 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
   2354 		else
   2355 			results->wm_lp[wm_lp - 1] |=
   2356 				r->fbc_val << WM1_LP_FBC_SHIFT;
   2357 
   2358 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
   2359 			WARN_ON(wm_lp != 1);
   2360 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
   2361 		} else
   2362 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
   2363 	}
   2364 
   2365 	/* LP0 register values */
   2366 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
   2367 		enum pipe pipe = intel_crtc->pipe;
   2368 		const struct intel_wm_level *r =
   2369 			&intel_crtc->wm.active.wm[0];
   2370 
   2371 		if (WARN_ON(!r->enable))
   2372 			continue;
   2373 
   2374 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
   2375 
   2376 		results->wm_pipe[pipe] =
   2377 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
   2378 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
   2379 			r->cur_val;
   2380 	}
   2381 }
   2382 
   2383 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
   2384  * case both are at the same level. Prefer r1 in case they're the same. */
   2385 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
   2386 						  struct intel_pipe_wm *r1,
   2387 						  struct intel_pipe_wm *r2)
   2388 {
   2389 	int level, max_level = ilk_wm_max_level(dev);
   2390 	int level1 = 0, level2 = 0;
   2391 
   2392 	for (level = 1; level <= max_level; level++) {
   2393 		if (r1->wm[level].enable)
   2394 			level1 = level;
   2395 		if (r2->wm[level].enable)
   2396 			level2 = level;
   2397 	}
   2398 
   2399 	if (level1 == level2) {
   2400 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
   2401 			return r2;
   2402 		else
   2403 			return r1;
   2404 	} else if (level1 > level2) {
   2405 		return r1;
   2406 	} else {
   2407 		return r2;
   2408 	}
   2409 }
   2410 
   2411 /* dirty bits used to track which watermarks need changes */
   2412 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
   2413 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
   2414 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
   2415 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
   2416 #define WM_DIRTY_FBC (1 << 24)
   2417 #define WM_DIRTY_DDB (1 << 25)
   2418 
   2419 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
   2420 					 const struct ilk_wm_values *old,
   2421 					 const struct ilk_wm_values *new)
   2422 {
   2423 	unsigned int dirty = 0;
   2424 	enum pipe pipe;
   2425 	int wm_lp;
   2426 
   2427 	for_each_pipe(pipe) {
   2428 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
   2429 			dirty |= WM_DIRTY_LINETIME(pipe);
   2430 			/* Must disable LP1+ watermarks too */
   2431 			dirty |= WM_DIRTY_LP_ALL;
   2432 		}
   2433 
   2434 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
   2435 			dirty |= WM_DIRTY_PIPE(pipe);
   2436 			/* Must disable LP1+ watermarks too */
   2437 			dirty |= WM_DIRTY_LP_ALL;
   2438 		}
   2439 	}
   2440 
   2441 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
   2442 		dirty |= WM_DIRTY_FBC;
   2443 		/* Must disable LP1+ watermarks too */
   2444 		dirty |= WM_DIRTY_LP_ALL;
   2445 	}
   2446 
   2447 	if (old->partitioning != new->partitioning) {
   2448 		dirty |= WM_DIRTY_DDB;
   2449 		/* Must disable LP1+ watermarks too */
   2450 		dirty |= WM_DIRTY_LP_ALL;
   2451 	}
   2452 
   2453 	/* LP1+ watermarks already deemed dirty, no need to continue */
   2454 	if (dirty & WM_DIRTY_LP_ALL)
   2455 		return dirty;
   2456 
   2457 	/* Find the lowest numbered LP1+ watermark in need of an update... */
   2458 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2459 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
   2460 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
   2461 			break;
   2462 	}
   2463 
   2464 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
   2465 	for (; wm_lp <= 3; wm_lp++)
   2466 		dirty |= WM_DIRTY_LP(wm_lp);
   2467 
   2468 	return dirty;
   2469 }
   2470 
   2471 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
   2472 			       unsigned int dirty)
   2473 {
   2474 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2475 	bool changed = false;
   2476 
   2477 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
   2478 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
   2479 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
   2480 		changed = true;
   2481 	}
   2482 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
   2483 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
   2484 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
   2485 		changed = true;
   2486 	}
   2487 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
   2488 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
   2489 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
   2490 		changed = true;
   2491 	}
   2492 
   2493 	/*
   2494 	 * Don't touch WM1S_LP_EN here.
   2495 	 * Doing so could cause underruns.
   2496 	 */
   2497 
   2498 	return changed;
   2499 }
   2500 
   2501 /*
   2502  * The spec says we shouldn't write when we don't need, because every write
   2503  * causes WMs to be re-evaluated, expending some power.
   2504  */
   2505 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
   2506 				struct ilk_wm_values *results)
   2507 {
   2508 	struct drm_device *dev = dev_priv->dev;
   2509 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2510 	unsigned int dirty;
   2511 	uint32_t val;
   2512 
   2513 	dirty = ilk_compute_wm_dirty(dev, previous, results);
   2514 	if (!dirty)
   2515 		return;
   2516 
   2517 	_ilk_disable_lp_wm(dev_priv, dirty);
   2518 
   2519 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
   2520 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
   2521 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
   2522 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
   2523 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
   2524 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
   2525 
   2526 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
   2527 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
   2528 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
   2529 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
   2530 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
   2531 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
   2532 
   2533 	if (dirty & WM_DIRTY_DDB) {
   2534 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2535 			val = I915_READ(WM_MISC);
   2536 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2537 				val &= ~WM_MISC_DATA_PARTITION_5_6;
   2538 			else
   2539 				val |= WM_MISC_DATA_PARTITION_5_6;
   2540 			I915_WRITE(WM_MISC, val);
   2541 		} else {
   2542 			val = I915_READ(DISP_ARB_CTL2);
   2543 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2544 				val &= ~DISP_DATA_PARTITION_5_6;
   2545 			else
   2546 				val |= DISP_DATA_PARTITION_5_6;
   2547 			I915_WRITE(DISP_ARB_CTL2, val);
   2548 		}
   2549 	}
   2550 
   2551 	if (dirty & WM_DIRTY_FBC) {
   2552 		val = I915_READ(DISP_ARB_CTL);
   2553 		if (results->enable_fbc_wm)
   2554 			val &= ~DISP_FBC_WM_DIS;
   2555 		else
   2556 			val |= DISP_FBC_WM_DIS;
   2557 		I915_WRITE(DISP_ARB_CTL, val);
   2558 	}
   2559 
   2560 	if (dirty & WM_DIRTY_LP(1) &&
   2561 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
   2562 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
   2563 
   2564 	if (INTEL_INFO(dev)->gen >= 7) {
   2565 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
   2566 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
   2567 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
   2568 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
   2569 	}
   2570 
   2571 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
   2572 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
   2573 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
   2574 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
   2575 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
   2576 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
   2577 
   2578 	dev_priv->wm.hw = *results;
   2579 }
   2580 
   2581 static bool ilk_disable_lp_wm(struct drm_device *dev)
   2582 {
   2583 	struct drm_i915_private *dev_priv = dev->dev_private;
   2584 
   2585 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
   2586 }
   2587 
   2588 static void ilk_update_wm(struct drm_crtc *crtc)
   2589 {
   2590 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2591 	struct drm_device *dev = crtc->dev;
   2592 	struct drm_i915_private *dev_priv = dev->dev_private;
   2593 	struct ilk_wm_maximums max;
   2594 	struct ilk_pipe_wm_parameters params = {};
   2595 	struct ilk_wm_values results = {};
   2596 	enum intel_ddb_partitioning partitioning;
   2597 	struct intel_pipe_wm pipe_wm = {};
   2598 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
   2599 	struct intel_wm_config config = {};
   2600 
   2601 	ilk_compute_wm_parameters(crtc, &params, &config);
   2602 
   2603 	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
   2604 
   2605 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
   2606 		return;
   2607 
   2608 	intel_crtc->wm.active = pipe_wm;
   2609 
   2610 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
   2611 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
   2612 
   2613 	/* 5/6 split only in single pipe config on IVB+ */
   2614 	if (INTEL_INFO(dev)->gen >= 7 &&
   2615 	    config.num_pipes_active == 1 && config.sprites_enabled) {
   2616 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
   2617 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
   2618 
   2619 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
   2620 	} else {
   2621 		best_lp_wm = &lp_wm_1_2;
   2622 	}
   2623 
   2624 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
   2625 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
   2626 
   2627 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
   2628 
   2629 	ilk_write_wm_values(dev_priv, &results);
   2630 }
   2631 
   2632 static void ilk_update_sprite_wm(struct drm_plane *plane,
   2633 				     struct drm_crtc *crtc,
   2634 				     uint32_t sprite_width, int pixel_size,
   2635 				     bool enabled, bool scaled)
   2636 {
   2637 	struct drm_device *dev = plane->dev;
   2638 	struct intel_plane *intel_plane = to_intel_plane(plane);
   2639 
   2640 	intel_plane->wm.enabled = enabled;
   2641 	intel_plane->wm.scaled = scaled;
   2642 	intel_plane->wm.horiz_pixels = sprite_width;
   2643 	intel_plane->wm.bytes_per_pixel = pixel_size;
   2644 
   2645 	/*
   2646 	 * IVB workaround: must disable low power watermarks for at least
   2647 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
   2648 	 * when scaling is disabled.
   2649 	 *
   2650 	 * WaCxSRDisabledForSpriteScaling:ivb
   2651 	 */
   2652 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
   2653 		intel_wait_for_vblank(dev, intel_plane->pipe);
   2654 
   2655 	ilk_update_wm(crtc);
   2656 }
   2657 
   2658 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   2659 {
   2660 	struct drm_device *dev = crtc->dev;
   2661 	struct drm_i915_private *dev_priv = dev->dev_private;
   2662 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   2663 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2664 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
   2665 	enum pipe pipe = intel_crtc->pipe;
   2666 	static const unsigned int wm0_pipe_reg[] = {
   2667 		[PIPE_A] = WM0_PIPEA_ILK,
   2668 		[PIPE_B] = WM0_PIPEB_ILK,
   2669 		[PIPE_C] = WM0_PIPEC_IVB,
   2670 	};
   2671 
   2672 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
   2673 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2674 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   2675 
   2676 	if (intel_crtc_active(crtc)) {
   2677 		u32 tmp = hw->wm_pipe[pipe];
   2678 
   2679 		/*
   2680 		 * For active pipes LP0 watermark is marked as
   2681 		 * enabled, and LP1+ watermaks as disabled since
   2682 		 * we can't really reverse compute them in case
   2683 		 * multiple pipes are active.
   2684 		 */
   2685 		active->wm[0].enable = true;
   2686 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
   2687 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
   2688 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
   2689 		active->linetime = hw->wm_linetime[pipe];
   2690 	} else {
   2691 		int level, max_level = ilk_wm_max_level(dev);
   2692 
   2693 		/*
   2694 		 * For inactive pipes, all watermark levels
   2695 		 * should be marked as enabled but zeroed,
   2696 		 * which is what we'd compute them to.
   2697 		 */
   2698 		for (level = 0; level <= max_level; level++)
   2699 			active->wm[level].enable = true;
   2700 	}
   2701 }
   2702 
   2703 void ilk_wm_get_hw_state(struct drm_device *dev)
   2704 {
   2705 	struct drm_i915_private *dev_priv = dev->dev_private;
   2706 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   2707 	struct drm_crtc *crtc;
   2708 
   2709 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   2710 		ilk_pipe_wm_get_hw_state(crtc);
   2711 
   2712 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
   2713 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
   2714 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
   2715 
   2716 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
   2717 	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
   2718 	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
   2719 
   2720 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2721 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
   2722 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   2723 	else if (IS_IVYBRIDGE(dev))
   2724 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
   2725 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   2726 
   2727 	hw->enable_fbc_wm =
   2728 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
   2729 }
   2730 
   2731 /**
   2732  * intel_update_watermarks - update FIFO watermark values based on current modes
   2733  *
   2734  * Calculate watermark values for the various WM regs based on current mode
   2735  * and plane configuration.
   2736  *
   2737  * There are several cases to deal with here:
   2738  *   - normal (i.e. non-self-refresh)
   2739  *   - self-refresh (SR) mode
   2740  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   2741  *   - lines are small relative to FIFO size (buffer can hold more than 2
   2742  *     lines), so need to account for TLB latency
   2743  *
   2744  *   The normal calculation is:
   2745  *     watermark = dotclock * bytes per pixel * latency
   2746  *   where latency is platform & configuration dependent (we assume pessimal
   2747  *   values here).
   2748  *
   2749  *   The SR calculation is:
   2750  *     watermark = (trunc(latency/line time)+1) * surface width *
   2751  *       bytes per pixel
   2752  *   where
   2753  *     line time = htotal / dotclock
   2754  *     surface width = hdisplay for normal plane and 64 for cursor
   2755  *   and latency is assumed to be high, as above.
   2756  *
   2757  * The final value programmed to the register should always be rounded up,
   2758  * and include an extra 2 entries to account for clock crossings.
   2759  *
   2760  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   2761  * to set the non-SR watermarks to 8.
   2762  */
   2763 void intel_update_watermarks(struct drm_crtc *crtc)
   2764 {
   2765 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
   2766 
   2767 	if (dev_priv->display.update_wm)
   2768 		dev_priv->display.update_wm(crtc);
   2769 }
   2770 
   2771 void intel_update_sprite_watermarks(struct drm_plane *plane,
   2772 				    struct drm_crtc *crtc,
   2773 				    uint32_t sprite_width, int pixel_size,
   2774 				    bool enabled, bool scaled)
   2775 {
   2776 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
   2777 
   2778 	if (dev_priv->display.update_sprite_wm)
   2779 		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
   2780 						   pixel_size, enabled, scaled);
   2781 }
   2782 
   2783 static struct drm_i915_gem_object *
   2784 intel_alloc_context_page(struct drm_device *dev)
   2785 {
   2786 	struct drm_i915_gem_object *ctx;
   2787 	int ret;
   2788 
   2789 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   2790 
   2791 	ctx = i915_gem_alloc_object(dev, 4096);
   2792 	if (!ctx) {
   2793 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
   2794 		return NULL;
   2795 	}
   2796 
   2797 	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
   2798 	if (ret) {
   2799 		DRM_ERROR("failed to pin power context: %d\n", ret);
   2800 		goto err_unref;
   2801 	}
   2802 
   2803 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
   2804 	if (ret) {
   2805 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
   2806 		goto err_unpin;
   2807 	}
   2808 
   2809 	return ctx;
   2810 
   2811 err_unpin:
   2812 	i915_gem_object_ggtt_unpin(ctx);
   2813 err_unref:
   2814 	drm_gem_object_unreference(&ctx->base);
   2815 	return NULL;
   2816 }
   2817 
   2818 /**
   2819  * Lock protecting IPS related data structures
   2820  */
   2821 DEFINE_SPINLOCK(mchdev_lock);
   2822 
   2823 /* Global for IPS driver to get at the current i915 device. Protected by
   2824  * mchdev_lock. */
   2825 static struct drm_i915_private *i915_mch_dev;
   2826 
   2827 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   2828 {
   2829 	struct drm_i915_private *dev_priv = dev->dev_private;
   2830 	u16 rgvswctl;
   2831 
   2832 	assert_spin_locked(&mchdev_lock);
   2833 
   2834 	rgvswctl = I915_READ16(MEMSWCTL);
   2835 	if (rgvswctl & MEMCTL_CMD_STS) {
   2836 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   2837 		return false; /* still busy with another command */
   2838 	}
   2839 
   2840 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   2841 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   2842 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2843 	POSTING_READ16(MEMSWCTL);
   2844 
   2845 	rgvswctl |= MEMCTL_CMD_STS;
   2846 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2847 
   2848 	return true;
   2849 }
   2850 
   2851 static void ironlake_enable_drps(struct drm_device *dev)
   2852 {
   2853 	struct drm_i915_private *dev_priv = dev->dev_private;
   2854 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   2855 	u8 fmax, fmin, fstart, vstart;
   2856 
   2857 	spin_lock_irq(&mchdev_lock);
   2858 
   2859 	/* Enable temp reporting */
   2860 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   2861 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   2862 
   2863 	/* 100ms RC evaluation intervals */
   2864 	I915_WRITE(RCUPEI, 100000);
   2865 	I915_WRITE(RCDNEI, 100000);
   2866 
   2867 	/* Set max/min thresholds to 90ms and 80ms respectively */
   2868 	I915_WRITE(RCBMAXAVG, 90000);
   2869 	I915_WRITE(RCBMINAVG, 80000);
   2870 
   2871 	I915_WRITE(MEMIHYST, 1);
   2872 
   2873 	/* Set up min, max, and cur for interrupt handling */
   2874 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   2875 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   2876 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   2877 		MEMMODE_FSTART_SHIFT;
   2878 
   2879 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
   2880 		PXVFREQ_PX_SHIFT;
   2881 
   2882 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   2883 	dev_priv->ips.fstart = fstart;
   2884 
   2885 	dev_priv->ips.max_delay = fstart;
   2886 	dev_priv->ips.min_delay = fmin;
   2887 	dev_priv->ips.cur_delay = fstart;
   2888 
   2889 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   2890 			 fmax, fmin, fstart);
   2891 
   2892 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   2893 
   2894 	/*
   2895 	 * Interrupts will be enabled in ironlake_irq_postinstall
   2896 	 */
   2897 
   2898 	I915_WRITE(VIDSTART, vstart);
   2899 	POSTING_READ(VIDSTART);
   2900 
   2901 	rgvmodectl |= MEMMODE_SWMODE_EN;
   2902 	I915_WRITE(MEMMODECTL, rgvmodectl);
   2903 
   2904 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   2905 		DRM_ERROR("stuck trying to change perf mode\n");
   2906 	mdelay(1);
   2907 
   2908 	ironlake_set_drps(dev, fstart);
   2909 
   2910 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
   2911 		I915_READ(0x112e0);
   2912 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   2913 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
   2914 	getrawmonotonic(&dev_priv->ips.last_time2);
   2915 
   2916 	spin_unlock_irq(&mchdev_lock);
   2917 }
   2918 
   2919 static void ironlake_disable_drps(struct drm_device *dev)
   2920 {
   2921 	struct drm_i915_private *dev_priv = dev->dev_private;
   2922 	u16 rgvswctl;
   2923 
   2924 	spin_lock_irq(&mchdev_lock);
   2925 
   2926 	rgvswctl = I915_READ16(MEMSWCTL);
   2927 
   2928 	/* Ack interrupts, disable EFC interrupt */
   2929 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   2930 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   2931 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   2932 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   2933 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   2934 
   2935 	/* Go back to the starting frequency */
   2936 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   2937 	mdelay(1);
   2938 	rgvswctl |= MEMCTL_CMD_STS;
   2939 	I915_WRITE(MEMSWCTL, rgvswctl);
   2940 	mdelay(1);
   2941 
   2942 	spin_unlock_irq(&mchdev_lock);
   2943 }
   2944 
   2945 /* There's a funny hw issue where the hw returns all 0 when reading from
   2946  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   2947  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   2948  * all limits and the gpu stuck at whatever frequency it is at atm).
   2949  */
   2950 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
   2951 {
   2952 	u32 limits;
   2953 
   2954 	/* Only set the down limit when we've reached the lowest level to avoid
   2955 	 * getting more interrupts, otherwise leave this clear. This prevents a
   2956 	 * race in the hw when coming out of rc6: There's a tiny window where
   2957 	 * the hw runs at the minimal clock before selecting the desired
   2958 	 * frequency, if the down threshold expires in that window we will not
   2959 	 * receive a down interrupt. */
   2960 	limits = dev_priv->rps.max_freq_softlimit << 24;
   2961 	if (val <= dev_priv->rps.min_freq_softlimit)
   2962 		limits |= dev_priv->rps.min_freq_softlimit << 16;
   2963 
   2964 	return limits;
   2965 }
   2966 
   2967 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
   2968 {
   2969 	int new_power;
   2970 
   2971 	new_power = dev_priv->rps.power;
   2972 	switch (dev_priv->rps.power) {
   2973 	case LOW_POWER:
   2974 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
   2975 			new_power = BETWEEN;
   2976 		break;
   2977 
   2978 	case BETWEEN:
   2979 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
   2980 			new_power = LOW_POWER;
   2981 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
   2982 			new_power = HIGH_POWER;
   2983 		break;
   2984 
   2985 	case HIGH_POWER:
   2986 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
   2987 			new_power = BETWEEN;
   2988 		break;
   2989 	}
   2990 	/* Max/min bins are special */
   2991 	if (val == dev_priv->rps.min_freq_softlimit)
   2992 		new_power = LOW_POWER;
   2993 	if (val == dev_priv->rps.max_freq_softlimit)
   2994 		new_power = HIGH_POWER;
   2995 	if (new_power == dev_priv->rps.power)
   2996 		return;
   2997 
   2998 	/* Note the units here are not exactly 1us, but 1280ns. */
   2999 	switch (new_power) {
   3000 	case LOW_POWER:
   3001 		/* Upclock if more than 95% busy over 16ms */
   3002 		I915_WRITE(GEN6_RP_UP_EI, 12500);
   3003 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
   3004 
   3005 		/* Downclock if less than 85% busy over 32ms */
   3006 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3007 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
   3008 
   3009 		I915_WRITE(GEN6_RP_CONTROL,
   3010 			   GEN6_RP_MEDIA_TURBO |
   3011 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3012 			   GEN6_RP_MEDIA_IS_GFX |
   3013 			   GEN6_RP_ENABLE |
   3014 			   GEN6_RP_UP_BUSY_AVG |
   3015 			   GEN6_RP_DOWN_IDLE_AVG);
   3016 		break;
   3017 
   3018 	case BETWEEN:
   3019 		/* Upclock if more than 90% busy over 13ms */
   3020 		I915_WRITE(GEN6_RP_UP_EI, 10250);
   3021 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
   3022 
   3023 		/* Downclock if less than 75% busy over 32ms */
   3024 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3025 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
   3026 
   3027 		I915_WRITE(GEN6_RP_CONTROL,
   3028 			   GEN6_RP_MEDIA_TURBO |
   3029 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3030 			   GEN6_RP_MEDIA_IS_GFX |
   3031 			   GEN6_RP_ENABLE |
   3032 			   GEN6_RP_UP_BUSY_AVG |
   3033 			   GEN6_RP_DOWN_IDLE_AVG);
   3034 		break;
   3035 
   3036 	case HIGH_POWER:
   3037 		/* Upclock if more than 85% busy over 10ms */
   3038 		I915_WRITE(GEN6_RP_UP_EI, 8000);
   3039 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
   3040 
   3041 		/* Downclock if less than 60% busy over 32ms */
   3042 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3043 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
   3044 
   3045 		I915_WRITE(GEN6_RP_CONTROL,
   3046 			   GEN6_RP_MEDIA_TURBO |
   3047 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3048 			   GEN6_RP_MEDIA_IS_GFX |
   3049 			   GEN6_RP_ENABLE |
   3050 			   GEN6_RP_UP_BUSY_AVG |
   3051 			   GEN6_RP_DOWN_IDLE_AVG);
   3052 		break;
   3053 	}
   3054 
   3055 	dev_priv->rps.power = new_power;
   3056 	dev_priv->rps.last_adj = 0;
   3057 }
   3058 
   3059 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
   3060 {
   3061 	u32 mask = 0;
   3062 
   3063 	if (val > dev_priv->rps.min_freq_softlimit)
   3064 		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
   3065 	if (val < dev_priv->rps.max_freq_softlimit)
   3066 		mask |= GEN6_PM_RP_UP_THRESHOLD;
   3067 
   3068 	/* IVB and SNB hard hangs on looping batchbuffer
   3069 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
   3070 	 */
   3071 	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
   3072 		mask |= GEN6_PM_RP_UP_EI_EXPIRED;
   3073 
   3074 	return ~mask;
   3075 }
   3076 
   3077 /* gen6_set_rps is called to update the frequency request, but should also be
   3078  * called when the range (min_delay and max_delay) is modified so that we can
   3079  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
   3080 void gen6_set_rps(struct drm_device *dev, u8 val)
   3081 {
   3082 	struct drm_i915_private *dev_priv = dev->dev_private;
   3083 
   3084 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3085 	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
   3086 	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
   3087 
   3088 	/* min/max delay may still have been modified so be sure to
   3089 	 * write the limits value.
   3090 	 */
   3091 	if (val != dev_priv->rps.cur_freq) {
   3092 		gen6_set_rps_thresholds(dev_priv, val);
   3093 
   3094 		if (IS_HASWELL(dev))
   3095 			I915_WRITE(GEN6_RPNSWREQ,
   3096 				   HSW_FREQUENCY(val));
   3097 		else
   3098 			I915_WRITE(GEN6_RPNSWREQ,
   3099 				   GEN6_FREQUENCY(val) |
   3100 				   GEN6_OFFSET(0) |
   3101 				   GEN6_AGGRESSIVE_TURBO);
   3102 	}
   3103 
   3104 	/* Make sure we continue to get interrupts
   3105 	 * until we hit the minimum or maximum frequencies.
   3106 	 */
   3107 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
   3108 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   3109 
   3110 	POSTING_READ(GEN6_RPNSWREQ);
   3111 
   3112 	dev_priv->rps.cur_freq = val;
   3113 	trace_intel_gpu_freq_change(val * 50);
   3114 }
   3115 
   3116 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
   3117  *
   3118  * * If Gfx is Idle, then
   3119  * 1. Mask Turbo interrupts
   3120  * 2. Bring up Gfx clock
   3121  * 3. Change the freq to Rpn and wait till P-Unit updates freq
   3122  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
   3123  * 5. Unmask Turbo interrupts
   3124 */
   3125 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
   3126 {
   3127 	/*
   3128 	 * When we are idle.  Drop to min voltage state.
   3129 	 */
   3130 
   3131 	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
   3132 		return;
   3133 
   3134 	/* Mask turbo interrupt so that they will not come in between */
   3135 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
   3136 
   3137 	/* Bring up the Gfx clock */
   3138 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
   3139 		I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
   3140 				VLV_GFX_CLK_FORCE_ON_BIT);
   3141 
   3142 	if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
   3143 		I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
   3144 			DRM_ERROR("GFX_CLK_ON request timed out\n");
   3145 		return;
   3146 	}
   3147 
   3148 	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
   3149 
   3150 	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
   3151 					dev_priv->rps.min_freq_softlimit);
   3152 
   3153 	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
   3154 				& GENFREQSTATUS) == 0, 5))
   3155 		DRM_ERROR("timed out waiting for Punit\n");
   3156 
   3157 	/* Release the Gfx clock */
   3158 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
   3159 		I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
   3160 				~VLV_GFX_CLK_FORCE_ON_BIT);
   3161 
   3162 	I915_WRITE(GEN6_PMINTRMSK,
   3163 		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
   3164 }
   3165 
   3166 void gen6_rps_idle(struct drm_i915_private *dev_priv)
   3167 {
   3168 	struct drm_device *dev = dev_priv->dev;
   3169 
   3170 	mutex_lock(&dev_priv->rps.hw_lock);
   3171 	if (dev_priv->rps.enabled) {
   3172 		if (IS_VALLEYVIEW(dev))
   3173 			vlv_set_rps_idle(dev_priv);
   3174 		else
   3175 			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   3176 		dev_priv->rps.last_adj = 0;
   3177 	}
   3178 	mutex_unlock(&dev_priv->rps.hw_lock);
   3179 }
   3180 
   3181 void gen6_rps_boost(struct drm_i915_private *dev_priv)
   3182 {
   3183 	struct drm_device *dev = dev_priv->dev;
   3184 
   3185 	mutex_lock(&dev_priv->rps.hw_lock);
   3186 	if (dev_priv->rps.enabled) {
   3187 		if (IS_VALLEYVIEW(dev))
   3188 			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
   3189 		else
   3190 			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
   3191 		dev_priv->rps.last_adj = 0;
   3192 	}
   3193 	mutex_unlock(&dev_priv->rps.hw_lock);
   3194 }
   3195 
   3196 void valleyview_set_rps(struct drm_device *dev, u8 val)
   3197 {
   3198 	struct drm_i915_private *dev_priv = dev->dev_private;
   3199 
   3200 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3201 	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
   3202 	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
   3203 
   3204 	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
   3205 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   3206 			 dev_priv->rps.cur_freq,
   3207 			 vlv_gpu_freq(dev_priv, val), val);
   3208 
   3209 	if (val != dev_priv->rps.cur_freq)
   3210 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
   3211 
   3212 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   3213 
   3214 	dev_priv->rps.cur_freq = val;
   3215 	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
   3216 }
   3217 
   3218 static void gen6_disable_rps_interrupts(struct drm_device *dev)
   3219 {
   3220 	struct drm_i915_private *dev_priv = dev->dev_private;
   3221 
   3222 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
   3223 	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
   3224 				~dev_priv->pm_rps_events);
   3225 	/* Complete PM interrupt masking here doesn't race with the rps work
   3226 	 * item again unmasking PM interrupts because that is using a different
   3227 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
   3228 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
   3229 
   3230 	spin_lock_irq(&dev_priv->irq_lock);
   3231 	dev_priv->rps.pm_iir = 0;
   3232 	spin_unlock_irq(&dev_priv->irq_lock);
   3233 
   3234 	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
   3235 }
   3236 
   3237 static void gen6_disable_rps(struct drm_device *dev)
   3238 {
   3239 	struct drm_i915_private *dev_priv = dev->dev_private;
   3240 
   3241 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3242 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
   3243 
   3244 	gen6_disable_rps_interrupts(dev);
   3245 }
   3246 
   3247 static void valleyview_disable_rps(struct drm_device *dev)
   3248 {
   3249 	struct drm_i915_private *dev_priv = dev->dev_private;
   3250 
   3251 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3252 
   3253 	gen6_disable_rps_interrupts(dev);
   3254 }
   3255 
   3256 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
   3257 {
   3258 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
   3259 		 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   3260 		 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   3261 		 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   3262 }
   3263 
   3264 int intel_enable_rc6(const struct drm_device *dev)
   3265 {
   3266 	/* No RC6 before Ironlake */
   3267 	if (INTEL_INFO(dev)->gen < 5)
   3268 		return 0;
   3269 
   3270 	/* Respect the kernel parameter if it is set */
   3271 	if (i915.enable_rc6 >= 0)
   3272 		return i915.enable_rc6;
   3273 
   3274 	/* Disable RC6 on Ironlake */
   3275 	if (INTEL_INFO(dev)->gen == 5)
   3276 		return 0;
   3277 
   3278 	if (IS_IVYBRIDGE(dev))
   3279 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   3280 
   3281 	return INTEL_RC6_ENABLE;
   3282 }
   3283 
   3284 static void gen6_enable_rps_interrupts(struct drm_device *dev)
   3285 {
   3286 	struct drm_i915_private *dev_priv = dev->dev_private;
   3287 
   3288 	spin_lock_irq(&dev_priv->irq_lock);
   3289 	WARN_ON(dev_priv->rps.pm_iir);
   3290 	snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
   3291 	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
   3292 	spin_unlock_irq(&dev_priv->irq_lock);
   3293 }
   3294 
   3295 static void gen8_enable_rps(struct drm_device *dev)
   3296 {
   3297 	struct drm_i915_private *dev_priv = dev->dev_private;
   3298 	struct intel_ring_buffer *ring;
   3299 	uint32_t rc6_mask = 0, rp_state_cap;
   3300 	int unused;
   3301 
   3302 	/* 1a: Software RC state - RC0 */
   3303 	I915_WRITE(GEN6_RC_STATE, 0);
   3304 
   3305 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
   3306 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   3307 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3308 
   3309 	/* 2a: Disable RC states. */
   3310 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3311 
   3312 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   3313 
   3314 	/* 2b: Program RC6 thresholds.*/
   3315 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   3316 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   3317 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   3318 	for_each_ring(ring, dev_priv, unused)
   3319 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3320 	I915_WRITE(GEN6_RC_SLEEP, 0);
   3321 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
   3322 
   3323 	/* 3: Enable RC6 */
   3324 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   3325 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   3326 	intel_print_rc6_info(dev, rc6_mask);
   3327 	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   3328 				    GEN6_RC_CTL_EI_MODE(1) |
   3329 				    rc6_mask);
   3330 
   3331 	/* 4 Program defaults and thresholds for RPS*/
   3332 	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
   3333 	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
   3334 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
   3335 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
   3336 
   3337 	/* Docs recommend 900MHz, and 300 MHz respectively */
   3338 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   3339 		   dev_priv->rps.max_freq_softlimit << 24 |
   3340 		   dev_priv->rps.min_freq_softlimit << 16);
   3341 
   3342 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
   3343 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
   3344 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
   3345 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
   3346 
   3347 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3348 
   3349 	/* 5: Enable RPS */
   3350 	I915_WRITE(GEN6_RP_CONTROL,
   3351 		   GEN6_RP_MEDIA_TURBO |
   3352 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3353 		   GEN6_RP_MEDIA_IS_GFX |
   3354 		   GEN6_RP_ENABLE |
   3355 		   GEN6_RP_UP_BUSY_AVG |
   3356 		   GEN6_RP_DOWN_IDLE_AVG);
   3357 
   3358 	/* 6: Ring frequency + overclocking (our driver does this later */
   3359 
   3360 	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
   3361 
   3362 	gen6_enable_rps_interrupts(dev);
   3363 
   3364 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3365 }
   3366 
   3367 static void gen6_enable_rps(struct drm_device *dev)
   3368 {
   3369 	struct drm_i915_private *dev_priv = dev->dev_private;
   3370 	struct intel_ring_buffer *ring;
   3371 	u32 rp_state_cap;
   3372 	u32 gt_perf_status;
   3373 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
   3374 	u32 gtfifodbg;
   3375 	int rc6_mode;
   3376 	int i, ret;
   3377 
   3378 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3379 
   3380 	/* Here begins a magic sequence of register writes to enable
   3381 	 * auto-downclocking.
   3382 	 *
   3383 	 * Perhaps there might be some value in exposing these to
   3384 	 * userspace...
   3385 	 */
   3386 	I915_WRITE(GEN6_RC_STATE, 0);
   3387 
   3388 	/* Clear the DBG now so we don't confuse earlier errors */
   3389 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   3390 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   3391 		I915_WRITE(GTFIFODBG, gtfifodbg);
   3392 	}
   3393 
   3394 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3395 
   3396 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   3397 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
   3398 
   3399 	/* All of these values are in units of 50MHz */
   3400 	dev_priv->rps.cur_freq		= 0;
   3401 	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
   3402 	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
   3403 	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
   3404 	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
   3405 	/* XXX: only BYT has a special efficient freq */
   3406 	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
   3407 	/* hw_max = RP0 until we check for overclocking */
   3408 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
   3409 
   3410 	/* Preserve min/max settings in case of re-init */
   3411 	if (dev_priv->rps.max_freq_softlimit == 0)
   3412 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   3413 
   3414 	if (dev_priv->rps.min_freq_softlimit == 0)
   3415 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   3416 
   3417 	/* disable the counters and set deterministic thresholds */
   3418 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3419 
   3420 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   3421 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   3422 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   3423 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   3424 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   3425 
   3426 	for_each_ring(ring, dev_priv, i)
   3427 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3428 
   3429 	I915_WRITE(GEN6_RC_SLEEP, 0);
   3430 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   3431 	if (IS_IVYBRIDGE(dev))
   3432 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
   3433 	else
   3434 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   3435 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
   3436 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   3437 
   3438 	/* Check if we are enabling RC6 */
   3439 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   3440 	if (rc6_mode & INTEL_RC6_ENABLE)
   3441 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   3442 
   3443 	/* We don't use those on Haswell */
   3444 	if (!IS_HASWELL(dev)) {
   3445 		if (rc6_mode & INTEL_RC6p_ENABLE)
   3446 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   3447 
   3448 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   3449 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   3450 	}
   3451 
   3452 	intel_print_rc6_info(dev, rc6_mask);
   3453 
   3454 	I915_WRITE(GEN6_RC_CONTROL,
   3455 		   rc6_mask |
   3456 		   GEN6_RC_CTL_EI_MODE(1) |
   3457 		   GEN6_RC_CTL_HW_ENABLE);
   3458 
   3459 	/* Power down if completely idle for over 50ms */
   3460 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
   3461 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3462 
   3463 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   3464 	if (ret)
   3465 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   3466 
   3467 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   3468 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
   3469 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
   3470 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
   3471 				 (pcu_mbox & 0xff) * 50);
   3472 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
   3473 	}
   3474 
   3475 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   3476 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   3477 
   3478 	gen6_enable_rps_interrupts(dev);
   3479 
   3480 	rc6vids = 0;
   3481 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   3482 	if (IS_GEN6(dev) && ret) {
   3483 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   3484 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   3485 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   3486 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   3487 		rc6vids &= 0xffff00;
   3488 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   3489 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   3490 		if (ret)
   3491 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   3492 	}
   3493 
   3494 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3495 }
   3496 
   3497 void gen6_update_ring_freq(struct drm_device *dev)
   3498 {
   3499 	struct drm_i915_private *dev_priv = dev->dev_private;
   3500 	int min_freq = 15;
   3501 	unsigned int gpu_freq;
   3502 	unsigned int max_ia_freq, min_ring_freq;
   3503 	int scaling_factor = 180;
   3504 	struct cpufreq_policy *policy;
   3505 
   3506 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3507 
   3508 	policy = cpufreq_cpu_get(0);
   3509 	if (policy) {
   3510 		max_ia_freq = policy->cpuinfo.max_freq;
   3511 		cpufreq_cpu_put(policy);
   3512 	} else {
   3513 		/*
   3514 		 * Default to measured freq if none found, PCU will ensure we
   3515 		 * don't go over
   3516 		 */
   3517 		max_ia_freq = tsc_khz;
   3518 	}
   3519 
   3520 	/* Convert from kHz to MHz */
   3521 	max_ia_freq /= 1000;
   3522 
   3523 	min_ring_freq = I915_READ(DCLK) & 0xf;
   3524 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
   3525 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
   3526 
   3527 	/*
   3528 	 * For each potential GPU frequency, load a ring frequency we'd like
   3529 	 * to use for memory access.  We do this by specifying the IA frequency
   3530 	 * the PCU should use as a reference to determine the ring frequency.
   3531 	 */
   3532 	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
   3533 	     gpu_freq--) {
   3534 		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
   3535 		unsigned int ia_freq = 0, ring_freq = 0;
   3536 
   3537 		if (INTEL_INFO(dev)->gen >= 8) {
   3538 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
   3539 			ring_freq = max(min_ring_freq, gpu_freq);
   3540 		} else if (IS_HASWELL(dev)) {
   3541 			ring_freq = mult_frac(gpu_freq, 5, 4);
   3542 			ring_freq = max(min_ring_freq, ring_freq);
   3543 			/* leave ia_freq as the default, chosen by cpufreq */
   3544 		} else {
   3545 			/* On older processors, there is no separate ring
   3546 			 * clock domain, so in order to boost the bandwidth
   3547 			 * of the ring, we need to upclock the CPU (ia_freq).
   3548 			 *
   3549 			 * For GPU frequencies less than 750MHz,
   3550 			 * just use the lowest ring freq.
   3551 			 */
   3552 			if (gpu_freq < min_freq)
   3553 				ia_freq = 800;
   3554 			else
   3555 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   3556 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   3557 		}
   3558 
   3559 		sandybridge_pcode_write(dev_priv,
   3560 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   3561 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
   3562 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
   3563 					gpu_freq);
   3564 	}
   3565 }
   3566 
   3567 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
   3568 {
   3569 	u32 val, rp0;
   3570 
   3571 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   3572 
   3573 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
   3574 	/* Clamp to max */
   3575 	rp0 = min_t(u32, rp0, 0xea);
   3576 
   3577 	return rp0;
   3578 }
   3579 
   3580 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   3581 {
   3582 	u32 val, rpe;
   3583 
   3584 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
   3585 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
   3586 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
   3587 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
   3588 
   3589 	return rpe;
   3590 }
   3591 
   3592 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
   3593 {
   3594 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
   3595 }
   3596 
   3597 /* Check that the pctx buffer wasn't move under us. */
   3598 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
   3599 {
   3600 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   3601 
   3602 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
   3603 			     dev_priv->vlv_pctx->stolen->start);
   3604 }
   3605 
   3606 static void valleyview_setup_pctx(struct drm_device *dev)
   3607 {
   3608 	struct drm_i915_private *dev_priv = dev->dev_private;
   3609 	struct drm_i915_gem_object *pctx;
   3610 	unsigned long pctx_paddr;
   3611 	u32 pcbr;
   3612 	int pctx_size = 24*1024;
   3613 
   3614 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   3615 
   3616 	pcbr = I915_READ(VLV_PCBR);
   3617 	if (pcbr) {
   3618 		/* BIOS set it up already, grab the pre-alloc'd space */
   3619 		int pcbr_offset;
   3620 
   3621 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
   3622 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
   3623 								      pcbr_offset,
   3624 								      I915_GTT_OFFSET_NONE,
   3625 								      pctx_size);
   3626 		goto out;
   3627 	}
   3628 
   3629 	/*
   3630 	 * From the Gunit register HAS:
   3631 	 * The Gfx driver is expected to program this register and ensure
   3632 	 * proper allocation within Gfx stolen memory.  For example, this
   3633 	 * register should be programmed such than the PCBR range does not
   3634 	 * overlap with other ranges, such as the frame buffer, protected
   3635 	 * memory, or any other relevant ranges.
   3636 	 */
   3637 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
   3638 	if (!pctx) {
   3639 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
   3640 		return;
   3641 	}
   3642 
   3643 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
   3644 	I915_WRITE(VLV_PCBR, pctx_paddr);
   3645 
   3646 out:
   3647 	dev_priv->vlv_pctx = pctx;
   3648 }
   3649 
   3650 static void valleyview_cleanup_pctx(struct drm_device *dev)
   3651 {
   3652 	struct drm_i915_private *dev_priv = dev->dev_private;
   3653 
   3654 	if (WARN_ON(!dev_priv->vlv_pctx))
   3655 		return;
   3656 
   3657 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
   3658 	dev_priv->vlv_pctx = NULL;
   3659 }
   3660 
   3661 static void valleyview_enable_rps(struct drm_device *dev)
   3662 {
   3663 	struct drm_i915_private *dev_priv = dev->dev_private;
   3664 	struct intel_ring_buffer *ring;
   3665 	u32 gtfifodbg, val, rc6_mode = 0;
   3666 	int i;
   3667 
   3668 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3669 
   3670 	valleyview_check_pctx(dev_priv);
   3671 
   3672 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   3673 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   3674 				 gtfifodbg);
   3675 		I915_WRITE(GTFIFODBG, gtfifodbg);
   3676 	}
   3677 
   3678 	/* If VLV, Forcewake all wells, else re-direct to regular path */
   3679 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3680 
   3681 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   3682 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   3683 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   3684 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   3685 
   3686 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3687 
   3688 	I915_WRITE(GEN6_RP_CONTROL,
   3689 		   GEN6_RP_MEDIA_TURBO |
   3690 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3691 		   GEN6_RP_MEDIA_IS_GFX |
   3692 		   GEN6_RP_ENABLE |
   3693 		   GEN6_RP_UP_BUSY_AVG |
   3694 		   GEN6_RP_DOWN_IDLE_CONT);
   3695 
   3696 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
   3697 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   3698 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   3699 
   3700 	for_each_ring(ring, dev_priv, i)
   3701 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3702 
   3703 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
   3704 
   3705 	/* allows RC6 residency counter to work */
   3706 	I915_WRITE(VLV_COUNTER_CONTROL,
   3707 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
   3708 				      VLV_MEDIA_RC6_COUNT_EN |
   3709 				      VLV_RENDER_RC6_COUNT_EN));
   3710 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   3711 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
   3712 
   3713 	intel_print_rc6_info(dev, rc6_mode);
   3714 
   3715 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   3716 
   3717 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   3718 
   3719 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
   3720 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   3721 
   3722 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   3723 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   3724 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   3725 			 dev_priv->rps.cur_freq);
   3726 
   3727 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
   3728 	dev_priv->rps.rp0_freq  = dev_priv->rps.max_freq;
   3729 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   3730 			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   3731 			 dev_priv->rps.max_freq);
   3732 
   3733 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
   3734 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   3735 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   3736 			 dev_priv->rps.efficient_freq);
   3737 
   3738 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
   3739 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   3740 			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   3741 			 dev_priv->rps.min_freq);
   3742 
   3743 	/* Preserve min/max settings in case of re-init */
   3744 	if (dev_priv->rps.max_freq_softlimit == 0)
   3745 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   3746 
   3747 	if (dev_priv->rps.min_freq_softlimit == 0)
   3748 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   3749 
   3750 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   3751 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   3752 			 dev_priv->rps.efficient_freq);
   3753 
   3754 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   3755 
   3756 	gen6_enable_rps_interrupts(dev);
   3757 
   3758 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3759 }
   3760 
   3761 void ironlake_teardown_rc6(struct drm_device *dev)
   3762 {
   3763 	struct drm_i915_private *dev_priv = dev->dev_private;
   3764 
   3765 	if (dev_priv->ips.renderctx) {
   3766 		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
   3767 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
   3768 		dev_priv->ips.renderctx = NULL;
   3769 	}
   3770 
   3771 	if (dev_priv->ips.pwrctx) {
   3772 		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
   3773 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
   3774 		dev_priv->ips.pwrctx = NULL;
   3775 	}
   3776 }
   3777 
   3778 static void ironlake_disable_rc6(struct drm_device *dev)
   3779 {
   3780 	struct drm_i915_private *dev_priv = dev->dev_private;
   3781 
   3782 	if (I915_READ(PWRCTXA)) {
   3783 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
   3784 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
   3785 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
   3786 			 50);
   3787 
   3788 		I915_WRITE(PWRCTXA, 0);
   3789 		POSTING_READ(PWRCTXA);
   3790 
   3791 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   3792 		POSTING_READ(RSTDBYCTL);
   3793 	}
   3794 }
   3795 
   3796 static int ironlake_setup_rc6(struct drm_device *dev)
   3797 {
   3798 	struct drm_i915_private *dev_priv = dev->dev_private;
   3799 
   3800 	if (dev_priv->ips.renderctx == NULL)
   3801 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
   3802 	if (!dev_priv->ips.renderctx)
   3803 		return -ENOMEM;
   3804 
   3805 	if (dev_priv->ips.pwrctx == NULL)
   3806 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
   3807 	if (!dev_priv->ips.pwrctx) {
   3808 		ironlake_teardown_rc6(dev);
   3809 		return -ENOMEM;
   3810 	}
   3811 
   3812 	return 0;
   3813 }
   3814 
   3815 static void ironlake_enable_rc6(struct drm_device *dev)
   3816 {
   3817 	struct drm_i915_private *dev_priv = dev->dev_private;
   3818 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
   3819 	bool was_interruptible;
   3820 	int ret;
   3821 
   3822 	/* rc6 disabled by default due to repeated reports of hanging during
   3823 	 * boot and resume.
   3824 	 */
   3825 	if (!intel_enable_rc6(dev))
   3826 		return;
   3827 
   3828 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   3829 
   3830 	ret = ironlake_setup_rc6(dev);
   3831 	if (ret)
   3832 		return;
   3833 
   3834 	was_interruptible = dev_priv->mm.interruptible;
   3835 	dev_priv->mm.interruptible = false;
   3836 
   3837 	/*
   3838 	 * GPU can automatically power down the render unit if given a page
   3839 	 * to save state.
   3840 	 */
   3841 	ret = intel_ring_begin(ring, 6);
   3842 	if (ret) {
   3843 		ironlake_teardown_rc6(dev);
   3844 		dev_priv->mm.interruptible = was_interruptible;
   3845 		return;
   3846 	}
   3847 
   3848 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
   3849 	intel_ring_emit(ring, MI_SET_CONTEXT);
   3850 	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
   3851 			MI_MM_SPACE_GTT |
   3852 			MI_SAVE_EXT_STATE_EN |
   3853 			MI_RESTORE_EXT_STATE_EN |
   3854 			MI_RESTORE_INHIBIT);
   3855 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
   3856 	intel_ring_emit(ring, MI_NOOP);
   3857 	intel_ring_emit(ring, MI_FLUSH);
   3858 	intel_ring_advance(ring);
   3859 
   3860 	/*
   3861 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
   3862 	 * does an implicit flush, combined with MI_FLUSH above, it should be
   3863 	 * safe to assume that renderctx is valid
   3864 	 */
   3865 	ret = intel_ring_idle(ring);
   3866 	dev_priv->mm.interruptible = was_interruptible;
   3867 	if (ret) {
   3868 		DRM_ERROR("failed to enable ironlake power savings\n");
   3869 		ironlake_teardown_rc6(dev);
   3870 		return;
   3871 	}
   3872 
   3873 	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
   3874 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   3875 
   3876 	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
   3877 }
   3878 
   3879 static unsigned long intel_pxfreq(u32 vidfreq)
   3880 {
   3881 	unsigned long freq;
   3882 	int div = (vidfreq & 0x3f0000) >> 16;
   3883 	int post = (vidfreq & 0x3000) >> 12;
   3884 	int pre = (vidfreq & 0x7);
   3885 
   3886 	if (!pre)
   3887 		return 0;
   3888 
   3889 	freq = ((div * 133333) / ((1<<post) * pre));
   3890 
   3891 	return freq;
   3892 }
   3893 
   3894 static const struct cparams {
   3895 	u16 i;
   3896 	u16 t;
   3897 	u16 m;
   3898 	u16 c;
   3899 } cparams[] = {
   3900 	{ 1, 1333, 301, 28664 },
   3901 	{ 1, 1066, 294, 24460 },
   3902 	{ 1, 800, 294, 25192 },
   3903 	{ 0, 1333, 276, 27605 },
   3904 	{ 0, 1066, 276, 27605 },
   3905 	{ 0, 800, 231, 23784 },
   3906 };
   3907 
   3908 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   3909 {
   3910 	u64 total_count, diff, ret;
   3911 	u32 count1, count2, count3, m = 0, c = 0;
   3912 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   3913 	int i;
   3914 
   3915 	assert_spin_locked(&mchdev_lock);
   3916 
   3917 	diff1 = now - dev_priv->ips.last_time1;
   3918 
   3919 	/* Prevent division-by-zero if we are asking too fast.
   3920 	 * Also, we don't get interesting results if we are polling
   3921 	 * faster than once in 10ms, so just return the saved value
   3922 	 * in such cases.
   3923 	 */
   3924 	if (diff1 <= 10)
   3925 		return dev_priv->ips.chipset_power;
   3926 
   3927 	count1 = I915_READ(DMIEC);
   3928 	count2 = I915_READ(DDREC);
   3929 	count3 = I915_READ(CSIEC);
   3930 
   3931 	total_count = count1 + count2 + count3;
   3932 
   3933 	/* FIXME: handle per-counter overflow */
   3934 	if (total_count < dev_priv->ips.last_count1) {
   3935 		diff = ~0UL - dev_priv->ips.last_count1;
   3936 		diff += total_count;
   3937 	} else {
   3938 		diff = total_count - dev_priv->ips.last_count1;
   3939 	}
   3940 
   3941 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   3942 		if (cparams[i].i == dev_priv->ips.c_m &&
   3943 		    cparams[i].t == dev_priv->ips.r_t) {
   3944 			m = cparams[i].m;
   3945 			c = cparams[i].c;
   3946 			break;
   3947 		}
   3948 	}
   3949 
   3950 	diff = div_u64(diff, diff1);
   3951 	ret = ((m * diff) + c);
   3952 	ret = div_u64(ret, 10);
   3953 
   3954 	dev_priv->ips.last_count1 = total_count;
   3955 	dev_priv->ips.last_time1 = now;
   3956 
   3957 	dev_priv->ips.chipset_power = ret;
   3958 
   3959 	return ret;
   3960 }
   3961 
   3962 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   3963 {
   3964 	struct drm_device *dev = dev_priv->dev;
   3965 	unsigned long val;
   3966 
   3967 	if (INTEL_INFO(dev)->gen != 5)
   3968 		return 0;
   3969 
   3970 	spin_lock_irq(&mchdev_lock);
   3971 
   3972 	val = __i915_chipset_val(dev_priv);
   3973 
   3974 	spin_unlock_irq(&mchdev_lock);
   3975 
   3976 	return val;
   3977 }
   3978 
   3979 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   3980 {
   3981 	unsigned long m, x, b;
   3982 	u32 tsfs;
   3983 
   3984 	tsfs = I915_READ(TSFS);
   3985 
   3986 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   3987 	x = I915_READ8(TR1);
   3988 
   3989 	b = tsfs & TSFS_INTR_MASK;
   3990 
   3991 	return ((m * x) / 127) - b;
   3992 }
   3993 
   3994 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   3995 {
   3996 	struct drm_device *dev = dev_priv->dev;
   3997 	static const struct v_table {
   3998 		u16 vd; /* in .1 mil */
   3999 		u16 vm; /* in .1 mil */
   4000 	} v_table[] = {
   4001 		{ 0, 0, },
   4002 		{ 375, 0, },
   4003 		{ 500, 0, },
   4004 		{ 625, 0, },
   4005 		{ 750, 0, },
   4006 		{ 875, 0, },
   4007 		{ 1000, 0, },
   4008 		{ 1125, 0, },
   4009 		{ 4125, 3000, },
   4010 		{ 4125, 3000, },
   4011 		{ 4125, 3000, },
   4012 		{ 4125, 3000, },
   4013 		{ 4125, 3000, },
   4014 		{ 4125, 3000, },
   4015 		{ 4125, 3000, },
   4016 		{ 4125, 3000, },
   4017 		{ 4125, 3000, },
   4018 		{ 4125, 3000, },
   4019 		{ 4125, 3000, },
   4020 		{ 4125, 3000, },
   4021 		{ 4125, 3000, },
   4022 		{ 4125, 3000, },
   4023 		{ 4125, 3000, },
   4024 		{ 4125, 3000, },
   4025 		{ 4125, 3000, },
   4026 		{ 4125, 3000, },
   4027 		{ 4125, 3000, },
   4028 		{ 4125, 3000, },
   4029 		{ 4125, 3000, },
   4030 		{ 4125, 3000, },
   4031 		{ 4125, 3000, },
   4032 		{ 4125, 3000, },
   4033 		{ 4250, 3125, },
   4034 		{ 4375, 3250, },
   4035 		{ 4500, 3375, },
   4036 		{ 4625, 3500, },
   4037 		{ 4750, 3625, },
   4038 		{ 4875, 3750, },
   4039 		{ 5000, 3875, },
   4040 		{ 5125, 4000, },
   4041 		{ 5250, 4125, },
   4042 		{ 5375, 4250, },
   4043 		{ 5500, 4375, },
   4044 		{ 5625, 4500, },
   4045 		{ 5750, 4625, },
   4046 		{ 5875, 4750, },
   4047 		{ 6000, 4875, },
   4048 		{ 6125, 5000, },
   4049 		{ 6250, 5125, },
   4050 		{ 6375, 5250, },
   4051 		{ 6500, 5375, },
   4052 		{ 6625, 5500, },
   4053 		{ 6750, 5625, },
   4054 		{ 6875, 5750, },
   4055 		{ 7000, 5875, },
   4056 		{ 7125, 6000, },
   4057 		{ 7250, 6125, },
   4058 		{ 7375, 6250, },
   4059 		{ 7500, 6375, },
   4060 		{ 7625, 6500, },
   4061 		{ 7750, 6625, },
   4062 		{ 7875, 6750, },
   4063 		{ 8000, 6875, },
   4064 		{ 8125, 7000, },
   4065 		{ 8250, 7125, },
   4066 		{ 8375, 7250, },
   4067 		{ 8500, 7375, },
   4068 		{ 8625, 7500, },
   4069 		{ 8750, 7625, },
   4070 		{ 8875, 7750, },
   4071 		{ 9000, 7875, },
   4072 		{ 9125, 8000, },
   4073 		{ 9250, 8125, },
   4074 		{ 9375, 8250, },
   4075 		{ 9500, 8375, },
   4076 		{ 9625, 8500, },
   4077 		{ 9750, 8625, },
   4078 		{ 9875, 8750, },
   4079 		{ 10000, 8875, },
   4080 		{ 10125, 9000, },
   4081 		{ 10250, 9125, },
   4082 		{ 10375, 9250, },
   4083 		{ 10500, 9375, },
   4084 		{ 10625, 9500, },
   4085 		{ 10750, 9625, },
   4086 		{ 10875, 9750, },
   4087 		{ 11000, 9875, },
   4088 		{ 11125, 10000, },
   4089 		{ 11250, 10125, },
   4090 		{ 11375, 10250, },
   4091 		{ 11500, 10375, },
   4092 		{ 11625, 10500, },
   4093 		{ 11750, 10625, },
   4094 		{ 11875, 10750, },
   4095 		{ 12000, 10875, },
   4096 		{ 12125, 11000, },
   4097 		{ 12250, 11125, },
   4098 		{ 12375, 11250, },
   4099 		{ 12500, 11375, },
   4100 		{ 12625, 11500, },
   4101 		{ 12750, 11625, },
   4102 		{ 12875, 11750, },
   4103 		{ 13000, 11875, },
   4104 		{ 13125, 12000, },
   4105 		{ 13250, 12125, },
   4106 		{ 13375, 12250, },
   4107 		{ 13500, 12375, },
   4108 		{ 13625, 12500, },
   4109 		{ 13750, 12625, },
   4110 		{ 13875, 12750, },
   4111 		{ 14000, 12875, },
   4112 		{ 14125, 13000, },
   4113 		{ 14250, 13125, },
   4114 		{ 14375, 13250, },
   4115 		{ 14500, 13375, },
   4116 		{ 14625, 13500, },
   4117 		{ 14750, 13625, },
   4118 		{ 14875, 13750, },
   4119 		{ 15000, 13875, },
   4120 		{ 15125, 14000, },
   4121 		{ 15250, 14125, },
   4122 		{ 15375, 14250, },
   4123 		{ 15500, 14375, },
   4124 		{ 15625, 14500, },
   4125 		{ 15750, 14625, },
   4126 		{ 15875, 14750, },
   4127 		{ 16000, 14875, },
   4128 		{ 16125, 15000, },
   4129 	};
   4130 	if (INTEL_INFO(dev)->is_mobile)
   4131 		return v_table[pxvid].vm;
   4132 	else
   4133 		return v_table[pxvid].vd;
   4134 }
   4135 
   4136 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   4137 {
   4138 	struct timespec now, diff1;
   4139 	u64 diff;
   4140 	unsigned long diffms;
   4141 	u32 count;
   4142 
   4143 	assert_spin_locked(&mchdev_lock);
   4144 
   4145 	getrawmonotonic(&now);
   4146 	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
   4147 
   4148 	/* Don't divide by 0 */
   4149 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
   4150 	if (!diffms)
   4151 		return;
   4152 
   4153 	count = I915_READ(GFXEC);
   4154 
   4155 	if (count < dev_priv->ips.last_count2) {
   4156 		diff = ~0UL - dev_priv->ips.last_count2;
   4157 		diff += count;
   4158 	} else {
   4159 		diff = count - dev_priv->ips.last_count2;
   4160 	}
   4161 
   4162 	dev_priv->ips.last_count2 = count;
   4163 	dev_priv->ips.last_time2 = now;
   4164 
   4165 	/* More magic constants... */
   4166 	diff = diff * 1181;
   4167 	diff = div_u64(diff, diffms * 10);
   4168 	dev_priv->ips.gfx_power = diff;
   4169 }
   4170 
   4171 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   4172 {
   4173 	struct drm_device *dev = dev_priv->dev;
   4174 
   4175 	if (INTEL_INFO(dev)->gen != 5)
   4176 		return;
   4177 
   4178 	spin_lock_irq(&mchdev_lock);
   4179 
   4180 	__i915_update_gfx_val(dev_priv);
   4181 
   4182 	spin_unlock_irq(&mchdev_lock);
   4183 }
   4184 
   4185 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   4186 {
   4187 	unsigned long t, corr, state1, corr2, state2;
   4188 	u32 pxvid, ext_v;
   4189 
   4190 	assert_spin_locked(&mchdev_lock);
   4191 
   4192 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
   4193 	pxvid = (pxvid >> 24) & 0x7f;
   4194 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   4195 
   4196 	state1 = ext_v;
   4197 
   4198 	t = i915_mch_val(dev_priv);
   4199 
   4200 	/* Revel in the empirically derived constants */
   4201 
   4202 	/* Correction factor in 1/100000 units */
   4203 	if (t > 80)
   4204 		corr = ((t * 2349) + 135940);
   4205 	else if (t >= 50)
   4206 		corr = ((t * 964) + 29317);
   4207 	else /* < 50 */
   4208 		corr = ((t * 301) + 1004);
   4209 
   4210 	corr = corr * ((150142 * state1) / 10000 - 78642);
   4211 	corr /= 100000;
   4212 	corr2 = (corr * dev_priv->ips.corr);
   4213 
   4214 	state2 = (corr2 * state1) / 10000;
   4215 	state2 /= 100; /* convert to mW */
   4216 
   4217 	__i915_update_gfx_val(dev_priv);
   4218 
   4219 	return dev_priv->ips.gfx_power + state2;
   4220 }
   4221 
   4222 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   4223 {
   4224 	struct drm_device *dev = dev_priv->dev;
   4225 	unsigned long val;
   4226 
   4227 	if (INTEL_INFO(dev)->gen != 5)
   4228 		return 0;
   4229 
   4230 	spin_lock_irq(&mchdev_lock);
   4231 
   4232 	val = __i915_gfx_val(dev_priv);
   4233 
   4234 	spin_unlock_irq(&mchdev_lock);
   4235 
   4236 	return val;
   4237 }
   4238 
   4239 /**
   4240  * i915_read_mch_val - return value for IPS use
   4241  *
   4242  * Calculate and return a value for the IPS driver to use when deciding whether
   4243  * we have thermal and power headroom to increase CPU or GPU power budget.
   4244  */
   4245 unsigned long i915_read_mch_val(void)
   4246 {
   4247 	struct drm_i915_private *dev_priv;
   4248 	unsigned long chipset_val, graphics_val, ret = 0;
   4249 
   4250 	spin_lock_irq(&mchdev_lock);
   4251 	if (!i915_mch_dev)
   4252 		goto out_unlock;
   4253 	dev_priv = i915_mch_dev;
   4254 
   4255 	chipset_val = __i915_chipset_val(dev_priv);
   4256 	graphics_val = __i915_gfx_val(dev_priv);
   4257 
   4258 	ret = chipset_val + graphics_val;
   4259 
   4260 out_unlock:
   4261 	spin_unlock_irq(&mchdev_lock);
   4262 
   4263 	return ret;
   4264 }
   4265 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   4266 
   4267 /**
   4268  * i915_gpu_raise - raise GPU frequency limit
   4269  *
   4270  * Raise the limit; IPS indicates we have thermal headroom.
   4271  */
   4272 bool i915_gpu_raise(void)
   4273 {
   4274 	struct drm_i915_private *dev_priv;
   4275 	bool ret = true;
   4276 
   4277 	spin_lock_irq(&mchdev_lock);
   4278 	if (!i915_mch_dev) {
   4279 		ret = false;
   4280 		goto out_unlock;
   4281 	}
   4282 	dev_priv = i915_mch_dev;
   4283 
   4284 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   4285 		dev_priv->ips.max_delay--;
   4286 
   4287 out_unlock:
   4288 	spin_unlock_irq(&mchdev_lock);
   4289 
   4290 	return ret;
   4291 }
   4292 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   4293 
   4294 /**
   4295  * i915_gpu_lower - lower GPU frequency limit
   4296  *
   4297  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   4298  * frequency maximum.
   4299  */
   4300 bool i915_gpu_lower(void)
   4301 {
   4302 	struct drm_i915_private *dev_priv;
   4303 	bool ret = true;
   4304 
   4305 	spin_lock_irq(&mchdev_lock);
   4306 	if (!i915_mch_dev) {
   4307 		ret = false;
   4308 		goto out_unlock;
   4309 	}
   4310 	dev_priv = i915_mch_dev;
   4311 
   4312 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   4313 		dev_priv->ips.max_delay++;
   4314 
   4315 out_unlock:
   4316 	spin_unlock_irq(&mchdev_lock);
   4317 
   4318 	return ret;
   4319 }
   4320 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   4321 
   4322 /**
   4323  * i915_gpu_busy - indicate GPU business to IPS
   4324  *
   4325  * Tell the IPS driver whether or not the GPU is busy.
   4326  */
   4327 bool i915_gpu_busy(void)
   4328 {
   4329 	struct drm_i915_private *dev_priv;
   4330 	struct intel_ring_buffer *ring;
   4331 	bool ret = false;
   4332 	int i;
   4333 
   4334 	spin_lock_irq(&mchdev_lock);
   4335 	if (!i915_mch_dev)
   4336 		goto out_unlock;
   4337 	dev_priv = i915_mch_dev;
   4338 
   4339 	for_each_ring(ring, dev_priv, i)
   4340 		ret |= !list_empty(&ring->request_list);
   4341 
   4342 out_unlock:
   4343 	spin_unlock_irq(&mchdev_lock);
   4344 
   4345 	return ret;
   4346 }
   4347 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   4348 
   4349 /**
   4350  * i915_gpu_turbo_disable - disable graphics turbo
   4351  *
   4352  * Disable graphics turbo by resetting the max frequency and setting the
   4353  * current frequency to the default.
   4354  */
   4355 bool i915_gpu_turbo_disable(void)
   4356 {
   4357 	struct drm_i915_private *dev_priv;
   4358 	bool ret = true;
   4359 
   4360 	spin_lock_irq(&mchdev_lock);
   4361 	if (!i915_mch_dev) {
   4362 		ret = false;
   4363 		goto out_unlock;
   4364 	}
   4365 	dev_priv = i915_mch_dev;
   4366 
   4367 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   4368 
   4369 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   4370 		ret = false;
   4371 
   4372 out_unlock:
   4373 	spin_unlock_irq(&mchdev_lock);
   4374 
   4375 	return ret;
   4376 }
   4377 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   4378 
   4379 /**
   4380  * Tells the intel_ips driver that the i915 driver is now loaded, if
   4381  * IPS got loaded first.
   4382  *
   4383  * This awkward dance is so that neither module has to depend on the
   4384  * other in order for IPS to do the appropriate communication of
   4385  * GPU turbo limits to i915.
   4386  */
   4387 static void
   4388 ips_ping_for_i915_load(void)
   4389 {
   4390 	void (*link)(void);
   4391 
   4392 	link = symbol_get(ips_link_to_i915_driver);
   4393 	if (link) {
   4394 		link();
   4395 		symbol_put(ips_link_to_i915_driver);
   4396 	}
   4397 }
   4398 
   4399 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   4400 {
   4401 	/* We only register the i915 ips part with intel-ips once everything is
   4402 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   4403 	spin_lock_irq(&mchdev_lock);
   4404 	i915_mch_dev = dev_priv;
   4405 	spin_unlock_irq(&mchdev_lock);
   4406 
   4407 	ips_ping_for_i915_load();
   4408 }
   4409 
   4410 void intel_gpu_ips_teardown(void)
   4411 {
   4412 	spin_lock_irq(&mchdev_lock);
   4413 	i915_mch_dev = NULL;
   4414 	spin_unlock_irq(&mchdev_lock);
   4415 }
   4416 
   4417 static void intel_init_emon(struct drm_device *dev)
   4418 {
   4419 	struct drm_i915_private *dev_priv = dev->dev_private;
   4420 	u32 lcfuse;
   4421 	u8 pxw[16];
   4422 	int i;
   4423 
   4424 	/* Disable to program */
   4425 	I915_WRITE(ECR, 0);
   4426 	POSTING_READ(ECR);
   4427 
   4428 	/* Program energy weights for various events */
   4429 	I915_WRITE(SDEW, 0x15040d00);
   4430 	I915_WRITE(CSIEW0, 0x007f0000);
   4431 	I915_WRITE(CSIEW1, 0x1e220004);
   4432 	I915_WRITE(CSIEW2, 0x04000004);
   4433 
   4434 	for (i = 0; i < 5; i++)
   4435 		I915_WRITE(PEW + (i * 4), 0);
   4436 	for (i = 0; i < 3; i++)
   4437 		I915_WRITE(DEW + (i * 4), 0);
   4438 
   4439 	/* Program P-state weights to account for frequency power adjustment */
   4440 	for (i = 0; i < 16; i++) {
   4441 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
   4442 		unsigned long freq = intel_pxfreq(pxvidfreq);
   4443 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   4444 			PXVFREQ_PX_SHIFT;
   4445 		unsigned long val;
   4446 
   4447 		val = vid * vid;
   4448 		val *= (freq / 1000);
   4449 		val *= 255;
   4450 		val /= (127*127*900);
   4451 		if (val > 0xff)
   4452 			DRM_ERROR("bad pxval: %ld\n", val);
   4453 		pxw[i] = val;
   4454 	}
   4455 	/* Render standby states get 0 weight */
   4456 	pxw[14] = 0;
   4457 	pxw[15] = 0;
   4458 
   4459 	for (i = 0; i < 4; i++) {
   4460 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
   4461 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
   4462 		I915_WRITE(PXW + (i * 4), val);
   4463 	}
   4464 
   4465 	/* Adjust magic regs to magic values (more experimental results) */
   4466 	I915_WRITE(OGW0, 0);
   4467 	I915_WRITE(OGW1, 0);
   4468 	I915_WRITE(EG0, 0x00007f00);
   4469 	I915_WRITE(EG1, 0x0000000e);
   4470 	I915_WRITE(EG2, 0x000e0000);
   4471 	I915_WRITE(EG3, 0x68000300);
   4472 	I915_WRITE(EG4, 0x42000000);
   4473 	I915_WRITE(EG5, 0x00140031);
   4474 	I915_WRITE(EG6, 0);
   4475 	I915_WRITE(EG7, 0);
   4476 
   4477 	for (i = 0; i < 8; i++)
   4478 		I915_WRITE(PXWL + (i * 4), 0);
   4479 
   4480 	/* Enable PMON + select events */
   4481 	I915_WRITE(ECR, 0x80000019);
   4482 
   4483 	lcfuse = I915_READ(LCFUSE02);
   4484 
   4485 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   4486 }
   4487 
   4488 void intel_init_gt_powersave(struct drm_device *dev)
   4489 {
   4490 	if (IS_VALLEYVIEW(dev))
   4491 		valleyview_setup_pctx(dev);
   4492 }
   4493 
   4494 void intel_cleanup_gt_powersave(struct drm_device *dev)
   4495 {
   4496 	if (IS_VALLEYVIEW(dev))
   4497 		valleyview_cleanup_pctx(dev);
   4498 }
   4499 
   4500 void intel_disable_gt_powersave(struct drm_device *dev)
   4501 {
   4502 	struct drm_i915_private *dev_priv = dev->dev_private;
   4503 
   4504 	/* Interrupts should be disabled already to avoid re-arming. */
   4505 	WARN_ON(dev->irq_enabled);
   4506 
   4507 	if (IS_IRONLAKE_M(dev)) {
   4508 		ironlake_disable_drps(dev);
   4509 		ironlake_disable_rc6(dev);
   4510 	} else if (INTEL_INFO(dev)->gen >= 6) {
   4511 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
   4512 		cancel_work_sync(&dev_priv->rps.work);
   4513 		mutex_lock(&dev_priv->rps.hw_lock);
   4514 		if (IS_VALLEYVIEW(dev))
   4515 			valleyview_disable_rps(dev);
   4516 		else
   4517 			gen6_disable_rps(dev);
   4518 		dev_priv->rps.enabled = false;
   4519 		mutex_unlock(&dev_priv->rps.hw_lock);
   4520 	}
   4521 }
   4522 
   4523 static void intel_gen6_powersave_work(struct work_struct *work)
   4524 {
   4525 	struct drm_i915_private *dev_priv =
   4526 		container_of(work, struct drm_i915_private,
   4527 			     rps.delayed_resume_work.work);
   4528 	struct drm_device *dev = dev_priv->dev;
   4529 
   4530 	mutex_lock(&dev_priv->rps.hw_lock);
   4531 
   4532 	if (IS_VALLEYVIEW(dev)) {
   4533 		valleyview_enable_rps(dev);
   4534 	} else if (IS_BROADWELL(dev)) {
   4535 		gen8_enable_rps(dev);
   4536 		gen6_update_ring_freq(dev);
   4537 	} else {
   4538 		gen6_enable_rps(dev);
   4539 		gen6_update_ring_freq(dev);
   4540 	}
   4541 	dev_priv->rps.enabled = true;
   4542 	mutex_unlock(&dev_priv->rps.hw_lock);
   4543 }
   4544 
   4545 void intel_enable_gt_powersave(struct drm_device *dev)
   4546 {
   4547 	struct drm_i915_private *dev_priv = dev->dev_private;
   4548 
   4549 	if (IS_IRONLAKE_M(dev)) {
   4550 		ironlake_enable_drps(dev);
   4551 		ironlake_enable_rc6(dev);
   4552 		intel_init_emon(dev);
   4553 	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
   4554 		/*
   4555 		 * PCU communication is slow and this doesn't need to be
   4556 		 * done at any specific time, so do this out of our fast path
   4557 		 * to make resume and init faster.
   4558 		 */
   4559 		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   4560 				      round_jiffies_up_relative(HZ));
   4561 	}
   4562 }
   4563 
   4564 static void ibx_init_clock_gating(struct drm_device *dev)
   4565 {
   4566 	struct drm_i915_private *dev_priv = dev->dev_private;
   4567 
   4568 	/*
   4569 	 * On Ibex Peak and Cougar Point, we need to disable clock
   4570 	 * gating for the panel power sequencer or it will fail to
   4571 	 * start up when no ports are active.
   4572 	 */
   4573 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   4574 }
   4575 
   4576 static void g4x_disable_trickle_feed(struct drm_device *dev)
   4577 {
   4578 	struct drm_i915_private *dev_priv = dev->dev_private;
   4579 	int pipe;
   4580 
   4581 	for_each_pipe(pipe) {
   4582 		I915_WRITE(DSPCNTR(pipe),
   4583 			   I915_READ(DSPCNTR(pipe)) |
   4584 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   4585 		intel_flush_primary_plane(dev_priv, pipe);
   4586 	}
   4587 }
   4588 
   4589 static void ilk_init_lp_watermarks(struct drm_device *dev)
   4590 {
   4591 	struct drm_i915_private *dev_priv = dev->dev_private;
   4592 
   4593 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
   4594 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
   4595 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
   4596 
   4597 	/*
   4598 	 * Don't touch WM1S_LP_EN here.
   4599 	 * Doing so could cause underruns.
   4600 	 */
   4601 }
   4602 
   4603 static void ironlake_init_clock_gating(struct drm_device *dev)
   4604 {
   4605 	struct drm_i915_private *dev_priv = dev->dev_private;
   4606 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   4607 
   4608 	/*
   4609 	 * Required for FBC
   4610 	 * WaFbcDisableDpfcClockGating:ilk
   4611 	 */
   4612 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   4613 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   4614 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   4615 
   4616 	I915_WRITE(PCH_3DCGDIS0,
   4617 		   MARIUNIT_CLOCK_GATE_DISABLE |
   4618 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   4619 	I915_WRITE(PCH_3DCGDIS1,
   4620 		   VFMUNIT_CLOCK_GATE_DISABLE);
   4621 
   4622 	/*
   4623 	 * According to the spec the following bits should be set in
   4624 	 * order to enable memory self-refresh
   4625 	 * The bit 22/21 of 0x42004
   4626 	 * The bit 5 of 0x42020
   4627 	 * The bit 15 of 0x45000
   4628 	 */
   4629 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4630 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   4631 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   4632 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   4633 	I915_WRITE(DISP_ARB_CTL,
   4634 		   (I915_READ(DISP_ARB_CTL) |
   4635 		    DISP_FBC_WM_DIS));
   4636 
   4637 	ilk_init_lp_watermarks(dev);
   4638 
   4639 	/*
   4640 	 * Based on the document from hardware guys the following bits
   4641 	 * should be set unconditionally in order to enable FBC.
   4642 	 * The bit 22 of 0x42000
   4643 	 * The bit 22 of 0x42004
   4644 	 * The bit 7,8,9 of 0x42020.
   4645 	 */
   4646 	if (IS_IRONLAKE_M(dev)) {
   4647 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
   4648 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   4649 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   4650 			   ILK_FBCQ_DIS);
   4651 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4652 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4653 			   ILK_DPARB_GATE);
   4654 	}
   4655 
   4656 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   4657 
   4658 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4659 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4660 		   ILK_ELPIN_409_SELECT);
   4661 	I915_WRITE(_3D_CHICKEN2,
   4662 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   4663 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   4664 
   4665 	/* WaDisableRenderCachePipelinedFlush:ilk */
   4666 	I915_WRITE(CACHE_MODE_0,
   4667 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   4668 
   4669 	g4x_disable_trickle_feed(dev);
   4670 
   4671 	ibx_init_clock_gating(dev);
   4672 }
   4673 
   4674 static void cpt_init_clock_gating(struct drm_device *dev)
   4675 {
   4676 	struct drm_i915_private *dev_priv = dev->dev_private;
   4677 	int pipe;
   4678 	uint32_t val;
   4679 
   4680 	/*
   4681 	 * On Ibex Peak and Cougar Point, we need to disable clock
   4682 	 * gating for the panel power sequencer or it will fail to
   4683 	 * start up when no ports are active.
   4684 	 */
   4685 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
   4686 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
   4687 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
   4688 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   4689 		   DPLS_EDP_PPS_FIX_DIS);
   4690 	/* The below fixes the weird display corruption, a few pixels shifted
   4691 	 * downward, on (only) LVDS of some HP laptops with IVY.
   4692 	 */
   4693 	for_each_pipe(pipe) {
   4694 		val = I915_READ(TRANS_CHICKEN2(pipe));
   4695 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
   4696 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   4697 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
   4698 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   4699 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
   4700 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
   4701 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
   4702 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
   4703 	}
   4704 	/* WADP0ClockGatingDisable */
   4705 	for_each_pipe(pipe) {
   4706 		I915_WRITE(TRANS_CHICKEN1(pipe),
   4707 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   4708 	}
   4709 }
   4710 
   4711 static void gen6_check_mch_setup(struct drm_device *dev)
   4712 {
   4713 	struct drm_i915_private *dev_priv = dev->dev_private;
   4714 	uint32_t tmp;
   4715 
   4716 	tmp = I915_READ(MCH_SSKPD);
   4717 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
   4718 		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
   4719 		DRM_INFO("This can cause pipe underruns and display issues.\n");
   4720 		DRM_INFO("Please upgrade your BIOS to fix this.\n");
   4721 	}
   4722 }
   4723 
   4724 static void gen6_init_clock_gating(struct drm_device *dev)
   4725 {
   4726 	struct drm_i915_private *dev_priv = dev->dev_private;
   4727 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   4728 
   4729 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   4730 
   4731 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4732 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4733 		   ILK_ELPIN_409_SELECT);
   4734 
   4735 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
   4736 	I915_WRITE(_3D_CHICKEN,
   4737 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   4738 
   4739 	/* WaSetupGtModeTdRowDispatch:snb */
   4740 	if (IS_SNB_GT1(dev))
   4741 		I915_WRITE(GEN6_GT_MODE,
   4742 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
   4743 
   4744 	/*
   4745 	 * BSpec recoomends 8x4 when MSAA is used,
   4746 	 * however in practice 16x4 seems fastest.
   4747 	 *
   4748 	 * Note that PS/WM thread counts depend on the WIZ hashing
   4749 	 * disable bit, which we don't touch here, but it's good
   4750 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   4751 	 */
   4752 	I915_WRITE(GEN6_GT_MODE,
   4753 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   4754 
   4755 	ilk_init_lp_watermarks(dev);
   4756 
   4757 	I915_WRITE(CACHE_MODE_0,
   4758 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   4759 
   4760 	I915_WRITE(GEN6_UCGCTL1,
   4761 		   I915_READ(GEN6_UCGCTL1) |
   4762 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   4763 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   4764 
   4765 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   4766 	 * gating disable must be set.  Failure to set it results in
   4767 	 * flickering pixels due to Z write ordering failures after
   4768 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   4769 	 * Sanctuary and Tropics, and apparently anything else with
   4770 	 * alpha test or pixel discard.
   4771 	 *
   4772 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   4773 	 * but we didn't debug actual testcases to find it out.
   4774 	 *
   4775 	 * WaDisableRCCUnitClockGating:snb
   4776 	 * WaDisableRCPBUnitClockGating:snb
   4777 	 */
   4778 	I915_WRITE(GEN6_UCGCTL2,
   4779 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   4780 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   4781 
   4782 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
   4783 	I915_WRITE(_3D_CHICKEN3,
   4784 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
   4785 
   4786 	/*
   4787 	 * Bspec says:
   4788 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
   4789 	 * 3DSTATE_SF number of SF output attributes is more than 16."
   4790 	 */
   4791 	I915_WRITE(_3D_CHICKEN3,
   4792 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
   4793 
   4794 	/*
   4795 	 * According to the spec the following bits should be
   4796 	 * set in order to enable memory self-refresh and fbc:
   4797 	 * The bit21 and bit22 of 0x42000
   4798 	 * The bit21 and bit22 of 0x42004
   4799 	 * The bit5 and bit7 of 0x42020
   4800 	 * The bit14 of 0x70180
   4801 	 * The bit14 of 0x71180
   4802 	 *
   4803 	 * WaFbcAsynchFlipDisableFbcQueue:snb
   4804 	 */
   4805 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   4806 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   4807 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   4808 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4809 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4810 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   4811 	I915_WRITE(ILK_DSPCLK_GATE_D,
   4812 		   I915_READ(ILK_DSPCLK_GATE_D) |
   4813 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   4814 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   4815 
   4816 	g4x_disable_trickle_feed(dev);
   4817 
   4818 	cpt_init_clock_gating(dev);
   4819 
   4820 	gen6_check_mch_setup(dev);
   4821 }
   4822 
   4823 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   4824 {
   4825 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   4826 
   4827 	/*
   4828 	 * WaVSThreadDispatchOverride:ivb,vlv
   4829 	 *
   4830 	 * This actually overrides the dispatch
   4831 	 * mode for all thread types.
   4832 	 */
   4833 	reg &= ~GEN7_FF_SCHED_MASK;
   4834 	reg |= GEN7_FF_TS_SCHED_HW;
   4835 	reg |= GEN7_FF_VS_SCHED_HW;
   4836 	reg |= GEN7_FF_DS_SCHED_HW;
   4837 
   4838 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   4839 }
   4840 
   4841 static void lpt_init_clock_gating(struct drm_device *dev)
   4842 {
   4843 	struct drm_i915_private *dev_priv = dev->dev_private;
   4844 
   4845 	/*
   4846 	 * TODO: this bit should only be enabled when really needed, then
   4847 	 * disabled when not needed anymore in order to save power.
   4848 	 */
   4849 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
   4850 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   4851 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   4852 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   4853 
   4854 	/* WADPOClockGatingDisable:hsw */
   4855 	I915_WRITE(_TRANSA_CHICKEN1,
   4856 		   I915_READ(_TRANSA_CHICKEN1) |
   4857 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   4858 }
   4859 
   4860 static void lpt_suspend_hw(struct drm_device *dev)
   4861 {
   4862 	struct drm_i915_private *dev_priv = dev->dev_private;
   4863 
   4864 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
   4865 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
   4866 
   4867 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
   4868 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
   4869 	}
   4870 }
   4871 
   4872 static void gen8_init_clock_gating(struct drm_device *dev)
   4873 {
   4874 	struct drm_i915_private *dev_priv = dev->dev_private;
   4875 	enum pipe pipe;
   4876 
   4877 	I915_WRITE(WM3_LP_ILK, 0);
   4878 	I915_WRITE(WM2_LP_ILK, 0);
   4879 	I915_WRITE(WM1_LP_ILK, 0);
   4880 
   4881 	/* FIXME(BDW): Check all the w/a, some might only apply to
   4882 	 * pre-production hw. */
   4883 
   4884 	/* WaDisablePartialInstShootdown:bdw */
   4885 	I915_WRITE(GEN8_ROW_CHICKEN,
   4886 		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
   4887 
   4888 	/* WaDisableThreadStallDopClockGating:bdw */
   4889 	/* FIXME: Unclear whether we really need this on production bdw. */
   4890 	I915_WRITE(GEN8_ROW_CHICKEN,
   4891 		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
   4892 
   4893 	/*
   4894 	 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
   4895 	 * pre-production hardware
   4896 	 */
   4897 	I915_WRITE(HALF_SLICE_CHICKEN3,
   4898 		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
   4899 	I915_WRITE(HALF_SLICE_CHICKEN3,
   4900 		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
   4901 	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
   4902 
   4903 	I915_WRITE(_3D_CHICKEN3,
   4904 		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
   4905 
   4906 	I915_WRITE(COMMON_SLICE_CHICKEN2,
   4907 		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
   4908 
   4909 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   4910 		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
   4911 
   4912 	/* WaSwitchSolVfFArbitrationPriority:bdw */
   4913 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   4914 
   4915 	/* WaPsrDPAMaskVBlankInSRD:bdw */
   4916 	I915_WRITE(CHICKEN_PAR1_1,
   4917 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
   4918 
   4919 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
   4920 	for_each_pipe(pipe) {
   4921 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
   4922 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
   4923 			   BDW_DPRS_MASK_VBLANK_SRD);
   4924 	}
   4925 
   4926 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
   4927 	 * workaround for for a possible hang in the unlikely event a TLB
   4928 	 * invalidation occurs during a PSD flush.
   4929 	 */
   4930 	I915_WRITE(HDC_CHICKEN0,
   4931 		   I915_READ(HDC_CHICKEN0) |
   4932 		   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
   4933 
   4934 	/* WaVSRefCountFullforceMissDisable:bdw */
   4935 	/* WaDSRefCountFullforceMissDisable:bdw */
   4936 	I915_WRITE(GEN7_FF_THREAD_MODE,
   4937 		   I915_READ(GEN7_FF_THREAD_MODE) &
   4938 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   4939 
   4940 	/*
   4941 	 * BSpec recommends 8x4 when MSAA is used,
   4942 	 * however in practice 16x4 seems fastest.
   4943 	 *
   4944 	 * Note that PS/WM thread counts depend on the WIZ hashing
   4945 	 * disable bit, which we don't touch here, but it's good
   4946 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   4947 	 */
   4948 	I915_WRITE(GEN7_GT_MODE,
   4949 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   4950 
   4951 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   4952 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   4953 
   4954 	/* WaDisableSDEUnitClockGating:bdw */
   4955 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   4956 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   4957 
   4958 	/* Wa4x4STCOptimizationDisable:bdw */
   4959 	I915_WRITE(CACHE_MODE_1,
   4960 		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
   4961 }
   4962 
   4963 static void haswell_init_clock_gating(struct drm_device *dev)
   4964 {
   4965 	struct drm_i915_private *dev_priv = dev->dev_private;
   4966 
   4967 	ilk_init_lp_watermarks(dev);
   4968 
   4969 	/* L3 caching of data atomics doesn't work -- disable it. */
   4970 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
   4971 	I915_WRITE(HSW_ROW_CHICKEN3,
   4972 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
   4973 
   4974 	/* This is required by WaCatErrorRejectionIssue:hsw */
   4975 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   4976 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   4977 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   4978 
   4979 	/* WaVSRefCountFullforceMissDisable:hsw */
   4980 	I915_WRITE(GEN7_FF_THREAD_MODE,
   4981 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
   4982 
   4983 	/* enable HiZ Raw Stall Optimization */
   4984 	I915_WRITE(CACHE_MODE_0_GEN7,
   4985 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   4986 
   4987 	/* WaDisable4x2SubspanOptimization:hsw */
   4988 	I915_WRITE(CACHE_MODE_1,
   4989 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   4990 
   4991 	/*
   4992 	 * BSpec recommends 8x4 when MSAA is used,
   4993 	 * however in practice 16x4 seems fastest.
   4994 	 *
   4995 	 * Note that PS/WM thread counts depend on the WIZ hashing
   4996 	 * disable bit, which we don't touch here, but it's good
   4997 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   4998 	 */
   4999 	I915_WRITE(GEN7_GT_MODE,
   5000 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   5001 
   5002 	/* WaSwitchSolVfFArbitrationPriority:hsw */
   5003 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   5004 
   5005 	/* WaRsPkgCStateDisplayPMReq:hsw */
   5006 	I915_WRITE(CHICKEN_PAR1_1,
   5007 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
   5008 
   5009 	lpt_init_clock_gating(dev);
   5010 }
   5011 
   5012 static void ivybridge_init_clock_gating(struct drm_device *dev)
   5013 {
   5014 	struct drm_i915_private *dev_priv = dev->dev_private;
   5015 	uint32_t snpcr;
   5016 
   5017 	ilk_init_lp_watermarks(dev);
   5018 
   5019 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   5020 
   5021 	/* WaDisableEarlyCull:ivb */
   5022 	I915_WRITE(_3D_CHICKEN3,
   5023 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   5024 
   5025 	/* WaDisableBackToBackFlipFix:ivb */
   5026 	I915_WRITE(IVB_CHICKEN3,
   5027 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   5028 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   5029 
   5030 	/* WaDisablePSDDualDispatchEnable:ivb */
   5031 	if (IS_IVB_GT1(dev))
   5032 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   5033 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   5034 
   5035 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
   5036 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   5037 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   5038 
   5039 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
   5040 	I915_WRITE(GEN7_L3CNTLREG1,
   5041 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   5042 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   5043 		   GEN7_WA_L3_CHICKEN_MODE);
   5044 	if (IS_IVB_GT1(dev))
   5045 		I915_WRITE(GEN7_ROW_CHICKEN2,
   5046 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5047 	else {
   5048 		/* must write both registers */
   5049 		I915_WRITE(GEN7_ROW_CHICKEN2,
   5050 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5051 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   5052 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5053 	}
   5054 
   5055 	/* WaForceL3Serialization:ivb */
   5056 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   5057 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   5058 
   5059 	/*
   5060 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   5061 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
   5062 	 */
   5063 	I915_WRITE(GEN6_UCGCTL2,
   5064 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   5065 
   5066 	/* This is required by WaCatErrorRejectionIssue:ivb */
   5067 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   5068 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   5069 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   5070 
   5071 	g4x_disable_trickle_feed(dev);
   5072 
   5073 	gen7_setup_fixed_func_scheduler(dev_priv);
   5074 
   5075 	if (0) { /* causes HiZ corruption on ivb:gt1 */
   5076 		/* enable HiZ Raw Stall Optimization */
   5077 		I915_WRITE(CACHE_MODE_0_GEN7,
   5078 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   5079 	}
   5080 
   5081 	/* WaDisable4x2SubspanOptimization:ivb */
   5082 	I915_WRITE(CACHE_MODE_1,
   5083 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   5084 
   5085 	/*
   5086 	 * BSpec recommends 8x4 when MSAA is used,
   5087 	 * however in practice 16x4 seems fastest.
   5088 	 *
   5089 	 * Note that PS/WM thread counts depend on the WIZ hashing
   5090 	 * disable bit, which we don't touch here, but it's good
   5091 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   5092 	 */
   5093 	I915_WRITE(GEN7_GT_MODE,
   5094 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   5095 
   5096 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   5097 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   5098 	snpcr |= GEN6_MBC_SNPCR_MED;
   5099 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   5100 
   5101 	if (!HAS_PCH_NOP(dev))
   5102 		cpt_init_clock_gating(dev);
   5103 
   5104 	gen6_check_mch_setup(dev);
   5105 }
   5106 
   5107 static void valleyview_init_clock_gating(struct drm_device *dev)
   5108 {
   5109 	struct drm_i915_private *dev_priv = dev->dev_private;
   5110 	u32 val;
   5111 
   5112 	mutex_lock(&dev_priv->rps.hw_lock);
   5113 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5114 	mutex_unlock(&dev_priv->rps.hw_lock);
   5115 	switch ((val >> 6) & 3) {
   5116 	case 0:
   5117 	case 1:
   5118 		dev_priv->mem_freq = 800;
   5119 		break;
   5120 	case 2:
   5121 		dev_priv->mem_freq = 1066;
   5122 		break;
   5123 	case 3:
   5124 		dev_priv->mem_freq = 1333;
   5125 		break;
   5126 	}
   5127 	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
   5128 
   5129 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
   5130 
   5131 	/* WaDisableEarlyCull:vlv */
   5132 	I915_WRITE(_3D_CHICKEN3,
   5133 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   5134 
   5135 	/* WaDisableBackToBackFlipFix:vlv */
   5136 	I915_WRITE(IVB_CHICKEN3,
   5137 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   5138 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   5139 
   5140 	/* WaPsdDispatchEnable:vlv */
   5141 	/* WaDisablePSDDualDispatchEnable:vlv */
   5142 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   5143 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
   5144 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   5145 
   5146 	/* WaForceL3Serialization:vlv */
   5147 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   5148 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   5149 
   5150 	/* WaDisableDopClockGating:vlv */
   5151 	I915_WRITE(GEN7_ROW_CHICKEN2,
   5152 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5153 
   5154 	/* This is required by WaCatErrorRejectionIssue:vlv */
   5155 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   5156 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   5157 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   5158 
   5159 	gen7_setup_fixed_func_scheduler(dev_priv);
   5160 
   5161 	/*
   5162 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   5163 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
   5164 	 */
   5165 	I915_WRITE(GEN6_UCGCTL2,
   5166 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   5167 
   5168 	/* WaDisableL3Bank2xClockGate:vlv */
   5169 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   5170 
   5171 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
   5172 
   5173 	/*
   5174 	 * BSpec says this must be set, even though
   5175 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
   5176 	 */
   5177 	I915_WRITE(CACHE_MODE_1,
   5178 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   5179 
   5180 	/*
   5181 	 * WaIncreaseL3CreditsForVLVB0:vlv
   5182 	 * This is the hardware default actually.
   5183 	 */
   5184 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
   5185 
   5186 	/*
   5187 	 * WaDisableVLVClockGating_VBIIssue:vlv
   5188 	 * Disable clock gating on th GCFG unit to prevent a delay
   5189 	 * in the reporting of vblank events.
   5190 	 */
   5191 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   5192 }
   5193 
   5194 static void g4x_init_clock_gating(struct drm_device *dev)
   5195 {
   5196 	struct drm_i915_private *dev_priv = dev->dev_private;
   5197 	uint32_t dspclk_gate;
   5198 
   5199 	I915_WRITE(RENCLK_GATE_D1, 0);
   5200 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   5201 		   GS_UNIT_CLOCK_GATE_DISABLE |
   5202 		   CL_UNIT_CLOCK_GATE_DISABLE);
   5203 	I915_WRITE(RAMCLK_GATE_D, 0);
   5204 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   5205 		OVRUNIT_CLOCK_GATE_DISABLE |
   5206 		OVCUNIT_CLOCK_GATE_DISABLE;
   5207 	if (IS_GM45(dev))
   5208 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   5209 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   5210 
   5211 	/* WaDisableRenderCachePipelinedFlush */
   5212 	I915_WRITE(CACHE_MODE_0,
   5213 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   5214 
   5215 	g4x_disable_trickle_feed(dev);
   5216 }
   5217 
   5218 static void crestline_init_clock_gating(struct drm_device *dev)
   5219 {
   5220 	struct drm_i915_private *dev_priv = dev->dev_private;
   5221 
   5222 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   5223 	I915_WRITE(RENCLK_GATE_D2, 0);
   5224 	I915_WRITE(DSPCLK_GATE_D, 0);
   5225 	I915_WRITE(RAMCLK_GATE_D, 0);
   5226 	I915_WRITE16(DEUC, 0);
   5227 	I915_WRITE(MI_ARB_STATE,
   5228 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   5229 }
   5230 
   5231 static void broadwater_init_clock_gating(struct drm_device *dev)
   5232 {
   5233 	struct drm_i915_private *dev_priv = dev->dev_private;
   5234 
   5235 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   5236 		   I965_RCC_CLOCK_GATE_DISABLE |
   5237 		   I965_RCPB_CLOCK_GATE_DISABLE |
   5238 		   I965_ISC_CLOCK_GATE_DISABLE |
   5239 		   I965_FBC_CLOCK_GATE_DISABLE);
   5240 	I915_WRITE(RENCLK_GATE_D2, 0);
   5241 	I915_WRITE(MI_ARB_STATE,
   5242 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   5243 }
   5244 
   5245 static void gen3_init_clock_gating(struct drm_device *dev)
   5246 {
   5247 	struct drm_i915_private *dev_priv = dev->dev_private;
   5248 	u32 dstate = I915_READ(D_STATE);
   5249 
   5250 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   5251 		DSTATE_DOT_CLOCK_GATING;
   5252 	I915_WRITE(D_STATE, dstate);
   5253 
   5254 	if (IS_PINEVIEW(dev))
   5255 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   5256 
   5257 	/* IIR "flip pending" means done if this bit is set */
   5258 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   5259 }
   5260 
   5261 static void i85x_init_clock_gating(struct drm_device *dev)
   5262 {
   5263 	struct drm_i915_private *dev_priv = dev->dev_private;
   5264 
   5265 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   5266 }
   5267 
   5268 static void i830_init_clock_gating(struct drm_device *dev)
   5269 {
   5270 	struct drm_i915_private *dev_priv = dev->dev_private;
   5271 
   5272 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   5273 }
   5274 
   5275 void intel_init_clock_gating(struct drm_device *dev)
   5276 {
   5277 	struct drm_i915_private *dev_priv = dev->dev_private;
   5278 
   5279 	dev_priv->display.init_clock_gating(dev);
   5280 }
   5281 
   5282 void intel_suspend_hw(struct drm_device *dev)
   5283 {
   5284 	if (HAS_PCH_LPT(dev))
   5285 		lpt_suspend_hw(dev);
   5286 }
   5287 
   5288 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
   5289 	for (i = 0;							\
   5290 	     i < (power_domains)->power_well_count &&			\
   5291 		 ((power_well) = &(power_domains)->power_wells[i]);	\
   5292 	     i++)							\
   5293 		if ((power_well)->domains & (domain_mask))
   5294 
   5295 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
   5296 	for (i = (power_domains)->power_well_count - 1;			 \
   5297 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
   5298 	     i--)							 \
   5299 		if ((power_well)->domains & (domain_mask))
   5300 
   5301 /**
   5302  * We should only use the power well if we explicitly asked the hardware to
   5303  * enable it, so check if it's enabled and also check if we've requested it to
   5304  * be enabled.
   5305  */
   5306 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
   5307 				   struct i915_power_well *power_well)
   5308 {
   5309 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
   5310 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
   5311 }
   5312 
   5313 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
   5314 				    enum intel_display_power_domain domain)
   5315 {
   5316 	struct i915_power_domains *power_domains;
   5317 
   5318 	power_domains = &dev_priv->power_domains;
   5319 
   5320 	return power_domains->domain_use_count[domain];
   5321 }
   5322 
   5323 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
   5324 				 enum intel_display_power_domain domain)
   5325 {
   5326 	struct i915_power_domains *power_domains;
   5327 	struct i915_power_well *power_well;
   5328 	bool is_enabled;
   5329 	int i;
   5330 
   5331 	if (dev_priv->pm.suspended)
   5332 		return false;
   5333 
   5334 	power_domains = &dev_priv->power_domains;
   5335 
   5336 	is_enabled = true;
   5337 
   5338 	mutex_lock(&power_domains->lock);
   5339 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
   5340 		if (power_well->always_on)
   5341 			continue;
   5342 
   5343 		if (!power_well->ops->is_enabled(dev_priv, power_well)) {
   5344 			is_enabled = false;
   5345 			break;
   5346 		}
   5347 	}
   5348 	mutex_unlock(&power_domains->lock);
   5349 
   5350 	return is_enabled;
   5351 }
   5352 
   5353 /*
   5354  * Starting with Haswell, we have a "Power Down Well" that can be turned off
   5355  * when not needed anymore. We have 4 registers that can request the power well
   5356  * to be enabled, and it will only be disabled if none of the registers is
   5357  * requesting it to be enabled.
   5358  */
   5359 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
   5360 {
   5361 	struct drm_device *dev = dev_priv->dev;
   5362 	unsigned long irqflags;
   5363 
   5364 	/*
   5365 	 * After we re-enable the power well, if we touch VGA register 0x3d5
   5366 	 * we'll get unclaimed register interrupts. This stops after we write
   5367 	 * anything to the VGA MSR register. The vgacon module uses this
   5368 	 * register all the time, so if we unbind our driver and, as a
   5369 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
   5370 	 * console_unlock(). So make here we touch the VGA MSR register, making
   5371 	 * sure vgacon can keep working normally without triggering interrupts
   5372 	 * and error messages.
   5373 	 */
   5374 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
   5375 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
   5376 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
   5377 
   5378 	if (IS_BROADWELL(dev)) {
   5379 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
   5380 		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
   5381 			   dev_priv->de_irq_mask[PIPE_B]);
   5382 		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
   5383 			   ~dev_priv->de_irq_mask[PIPE_B] |
   5384 			   GEN8_PIPE_VBLANK);
   5385 		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
   5386 			   dev_priv->de_irq_mask[PIPE_C]);
   5387 		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
   5388 			   ~dev_priv->de_irq_mask[PIPE_C] |
   5389 			   GEN8_PIPE_VBLANK);
   5390 		POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
   5391 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
   5392 	}
   5393 }
   5394 
   5395 static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
   5396 {
   5397 	assert_spin_locked(&dev->vbl_lock);
   5398 
   5399 	dev->vblank[pipe].last = 0;
   5400 }
   5401 
   5402 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
   5403 {
   5404 	struct drm_device *dev = dev_priv->dev;
   5405 	enum pipe pipe;
   5406 	unsigned long irqflags;
   5407 
   5408 	/*
   5409 	 * After this, the registers on the pipes that are part of the power
   5410 	 * well will become zero, so we have to adjust our counters according to
   5411 	 * that.
   5412 	 *
   5413 	 * FIXME: Should we do this in general in drm_vblank_post_modeset?
   5414 	 */
   5415 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   5416 	for_each_pipe(pipe)
   5417 		if (pipe != PIPE_A)
   5418 			reset_vblank_counter(dev, pipe);
   5419 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   5420 }
   5421 
   5422 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
   5423 			       struct i915_power_well *power_well, bool enable)
   5424 {
   5425 	bool is_enabled, enable_requested;
   5426 	uint32_t tmp;
   5427 
   5428 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
   5429 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
   5430 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
   5431 
   5432 	if (enable) {
   5433 		if (!enable_requested)
   5434 			I915_WRITE(HSW_PWR_WELL_DRIVER,
   5435 				   HSW_PWR_WELL_ENABLE_REQUEST);
   5436 
   5437 		if (!is_enabled) {
   5438 			DRM_DEBUG_KMS("Enabling power well\n");
   5439 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
   5440 				      HSW_PWR_WELL_STATE_ENABLED), 20))
   5441 				DRM_ERROR("Timeout enabling power well\n");
   5442 		}
   5443 
   5444 		hsw_power_well_post_enable(dev_priv);
   5445 	} else {
   5446 		if (enable_requested) {
   5447 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
   5448 			POSTING_READ(HSW_PWR_WELL_DRIVER);
   5449 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
   5450 
   5451 			hsw_power_well_post_disable(dev_priv);
   5452 		}
   5453 	}
   5454 }
   5455 
   5456 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
   5457 				   struct i915_power_well *power_well)
   5458 {
   5459 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
   5460 
   5461 	/*
   5462 	 * We're taking over the BIOS, so clear any requests made by it since
   5463 	 * the driver is in charge now.
   5464 	 */
   5465 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
   5466 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
   5467 }
   5468 
   5469 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
   5470 				  struct i915_power_well *power_well)
   5471 {
   5472 	hsw_set_power_well(dev_priv, power_well, true);
   5473 }
   5474 
   5475 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
   5476 				   struct i915_power_well *power_well)
   5477 {
   5478 	hsw_set_power_well(dev_priv, power_well, false);
   5479 }
   5480 
   5481 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
   5482 					   struct i915_power_well *power_well)
   5483 {
   5484 }
   5485 
   5486 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
   5487 					     struct i915_power_well *power_well)
   5488 {
   5489 	return true;
   5490 }
   5491 
   5492 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
   5493 			       struct i915_power_well *power_well, bool enable)
   5494 {
   5495 	enum punit_power_well power_well_id = power_well->data;
   5496 	u32 mask;
   5497 	u32 state;
   5498 	u32 ctrl;
   5499 
   5500 	mask = PUNIT_PWRGT_MASK(power_well_id);
   5501 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
   5502 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
   5503 
   5504 	mutex_lock(&dev_priv->rps.hw_lock);
   5505 
   5506 #define COND \
   5507 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
   5508 
   5509 	if (COND)
   5510 		goto out;
   5511 
   5512 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
   5513 	ctrl &= ~mask;
   5514 	ctrl |= state;
   5515 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
   5516 
   5517 	if (wait_for(COND, 100))
   5518 		DRM_ERROR("timout setting power well state %08x (%08x)\n",
   5519 			  state,
   5520 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
   5521 
   5522 #undef COND
   5523 
   5524 out:
   5525 	mutex_unlock(&dev_priv->rps.hw_lock);
   5526 }
   5527 
   5528 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
   5529 				   struct i915_power_well *power_well)
   5530 {
   5531 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
   5532 }
   5533 
   5534 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
   5535 				  struct i915_power_well *power_well)
   5536 {
   5537 	vlv_set_power_well(dev_priv, power_well, true);
   5538 }
   5539 
   5540 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
   5541 				   struct i915_power_well *power_well)
   5542 {
   5543 	vlv_set_power_well(dev_priv, power_well, false);
   5544 }
   5545 
   5546 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
   5547 				   struct i915_power_well *power_well)
   5548 {
   5549 	int power_well_id = power_well->data;
   5550 	bool enabled = false;
   5551 	u32 mask;
   5552 	u32 state;
   5553 	u32 ctrl;
   5554 
   5555 	mask = PUNIT_PWRGT_MASK(power_well_id);
   5556 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
   5557 
   5558 	mutex_lock(&dev_priv->rps.hw_lock);
   5559 
   5560 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
   5561 	/*
   5562 	 * We only ever set the power-on and power-gate states, anything
   5563 	 * else is unexpected.
   5564 	 */
   5565 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
   5566 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
   5567 	if (state == ctrl)
   5568 		enabled = true;
   5569 
   5570 	/*
   5571 	 * A transient state at this point would mean some unexpected party
   5572 	 * is poking at the power controls too.
   5573 	 */
   5574 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
   5575 	WARN_ON(ctrl != state);
   5576 
   5577 	mutex_unlock(&dev_priv->rps.hw_lock);
   5578 
   5579 	return enabled;
   5580 }
   5581 
   5582 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
   5583 					  struct i915_power_well *power_well)
   5584 {
   5585 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
   5586 
   5587 	vlv_set_power_well(dev_priv, power_well, true);
   5588 
   5589 	spin_lock_irq(&dev_priv->irq_lock);
   5590 	valleyview_enable_display_irqs(dev_priv);
   5591 	spin_unlock_irq(&dev_priv->irq_lock);
   5592 
   5593 	/*
   5594 	 * During driver initialization we need to defer enabling hotplug
   5595 	 * processing until fbdev is set up.
   5596 	 */
   5597 	if (dev_priv->enable_hotplug_processing)
   5598 		intel_hpd_init(dev_priv->dev);
   5599 
   5600 	i915_redisable_vga_power_on(dev_priv->dev);
   5601 }
   5602 
   5603 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
   5604 					   struct i915_power_well *power_well)
   5605 {
   5606 	struct drm_device *dev = dev_priv->dev;
   5607 	enum pipe pipe;
   5608 
   5609 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
   5610 
   5611 	spin_lock_irq(&dev_priv->irq_lock);
   5612 	for_each_pipe(pipe)
   5613 		__intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
   5614 
   5615 	valleyview_disable_display_irqs(dev_priv);
   5616 	spin_unlock_irq(&dev_priv->irq_lock);
   5617 
   5618 	spin_lock_irq(&dev->vbl_lock);
   5619 	for_each_pipe(pipe)
   5620 		reset_vblank_counter(dev, pipe);
   5621 	spin_unlock_irq(&dev->vbl_lock);
   5622 
   5623 	vlv_set_power_well(dev_priv, power_well, false);
   5624 }
   5625 
   5626 static void check_power_well_state(struct drm_i915_private *dev_priv,
   5627 				   struct i915_power_well *power_well)
   5628 {
   5629 	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
   5630 
   5631 	if (power_well->always_on || !i915.disable_power_well) {
   5632 		if (!enabled)
   5633 			goto mismatch;
   5634 
   5635 		return;
   5636 	}
   5637 
   5638 	if (enabled != (power_well->count > 0))
   5639 		goto mismatch;
   5640 
   5641 	return;
   5642 
   5643 mismatch:
   5644 	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
   5645 		  power_well->name, power_well->always_on, enabled,
   5646 		  power_well->count, i915.disable_power_well);
   5647 }
   5648 
   5649 void intel_display_power_get(struct drm_i915_private *dev_priv,
   5650 			     enum intel_display_power_domain domain)
   5651 {
   5652 	struct i915_power_domains *power_domains;
   5653 	struct i915_power_well *power_well;
   5654 	int i;
   5655 
   5656 	intel_runtime_pm_get(dev_priv);
   5657 
   5658 	power_domains = &dev_priv->power_domains;
   5659 
   5660 	mutex_lock(&power_domains->lock);
   5661 
   5662 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
   5663 		if (!power_well->count++) {
   5664 			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
   5665 			power_well->ops->enable(dev_priv, power_well);
   5666 		}
   5667 
   5668 		check_power_well_state(dev_priv, power_well);
   5669 	}
   5670 
   5671 	power_domains->domain_use_count[domain]++;
   5672 
   5673 	mutex_unlock(&power_domains->lock);
   5674 }
   5675 
   5676 void intel_display_power_put(struct drm_i915_private *dev_priv,
   5677 			     enum intel_display_power_domain domain)
   5678 {
   5679 	struct i915_power_domains *power_domains;
   5680 	struct i915_power_well *power_well;
   5681 	int i;
   5682 
   5683 	power_domains = &dev_priv->power_domains;
   5684 
   5685 	mutex_lock(&power_domains->lock);
   5686 
   5687 	WARN_ON(!power_domains->domain_use_count[domain]);
   5688 	power_domains->domain_use_count[domain]--;
   5689 
   5690 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
   5691 		WARN_ON(!power_well->count);
   5692 
   5693 		if (!--power_well->count && i915.disable_power_well) {
   5694 			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
   5695 			power_well->ops->disable(dev_priv, power_well);
   5696 		}
   5697 
   5698 		check_power_well_state(dev_priv, power_well);
   5699 	}
   5700 
   5701 	mutex_unlock(&power_domains->lock);
   5702 
   5703 	intel_runtime_pm_put(dev_priv);
   5704 }
   5705 
   5706 static struct i915_power_domains *hsw_pwr;
   5707 
   5708 /* Display audio driver power well request */
   5709 void i915_request_power_well(void)
   5710 {
   5711 	struct drm_i915_private *dev_priv;
   5712 
   5713 	if (WARN_ON(!hsw_pwr))
   5714 		return;
   5715 
   5716 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
   5717 				power_domains);
   5718 	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
   5719 }
   5720 EXPORT_SYMBOL_GPL(i915_request_power_well);
   5721 
   5722 /* Display audio driver power well release */
   5723 void i915_release_power_well(void)
   5724 {
   5725 	struct drm_i915_private *dev_priv;
   5726 
   5727 	if (WARN_ON(!hsw_pwr))
   5728 		return;
   5729 
   5730 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
   5731 				power_domains);
   5732 	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
   5733 }
   5734 EXPORT_SYMBOL_GPL(i915_release_power_well);
   5735 
   5736 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
   5737 
   5738 #define HSW_ALWAYS_ON_POWER_DOMAINS (			\
   5739 	BIT(POWER_DOMAIN_PIPE_A) |			\
   5740 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
   5741 	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
   5742 	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
   5743 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
   5744 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
   5745 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
   5746 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
   5747 	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
   5748 	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
   5749 	BIT(POWER_DOMAIN_PORT_CRT) |			\
   5750 	BIT(POWER_DOMAIN_INIT))
   5751 #define HSW_DISPLAY_POWER_DOMAINS (				\
   5752 	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
   5753 	BIT(POWER_DOMAIN_INIT))
   5754 
   5755 #define BDW_ALWAYS_ON_POWER_DOMAINS (			\
   5756 	HSW_ALWAYS_ON_POWER_DOMAINS |			\
   5757 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
   5758 #define BDW_DISPLAY_POWER_DOMAINS (				\
   5759 	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
   5760 	BIT(POWER_DOMAIN_INIT))
   5761 
   5762 #define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
   5763 #define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
   5764 
   5765 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
   5766 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
   5767 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5768 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
   5769 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5770 	BIT(POWER_DOMAIN_PORT_CRT) |		\
   5771 	BIT(POWER_DOMAIN_INIT))
   5772 
   5773 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
   5774 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
   5775 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5776 	BIT(POWER_DOMAIN_INIT))
   5777 
   5778 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
   5779 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5780 	BIT(POWER_DOMAIN_INIT))
   5781 
   5782 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
   5783 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
   5784 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5785 	BIT(POWER_DOMAIN_INIT))
   5786 
   5787 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
   5788 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5789 	BIT(POWER_DOMAIN_INIT))
   5790 
   5791 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
   5792 	.sync_hw = i9xx_always_on_power_well_noop,
   5793 	.enable = i9xx_always_on_power_well_noop,
   5794 	.disable = i9xx_always_on_power_well_noop,
   5795 	.is_enabled = i9xx_always_on_power_well_enabled,
   5796 };
   5797 
   5798 static struct i915_power_well i9xx_always_on_power_well[] = {
   5799 	{
   5800 		.name = "always-on",
   5801 		.always_on = 1,
   5802 		.domains = POWER_DOMAIN_MASK,
   5803 		.ops = &i9xx_always_on_power_well_ops,
   5804 	},
   5805 };
   5806 
   5807 static const struct i915_power_well_ops hsw_power_well_ops = {
   5808 	.sync_hw = hsw_power_well_sync_hw,
   5809 	.enable = hsw_power_well_enable,
   5810 	.disable = hsw_power_well_disable,
   5811 	.is_enabled = hsw_power_well_enabled,
   5812 };
   5813 
   5814 static struct i915_power_well hsw_power_wells[] = {
   5815 	{
   5816 		.name = "always-on",
   5817 		.always_on = 1,
   5818 		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
   5819 		.ops = &i9xx_always_on_power_well_ops,
   5820 	},
   5821 	{
   5822 		.name = "display",
   5823 		.domains = HSW_DISPLAY_POWER_DOMAINS,
   5824 		.ops = &hsw_power_well_ops,
   5825 	},
   5826 };
   5827 
   5828 static struct i915_power_well bdw_power_wells[] = {
   5829 	{
   5830 		.name = "always-on",
   5831 		.always_on = 1,
   5832 		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
   5833 		.ops = &i9xx_always_on_power_well_ops,
   5834 	},
   5835 	{
   5836 		.name = "display",
   5837 		.domains = BDW_DISPLAY_POWER_DOMAINS,
   5838 		.ops = &hsw_power_well_ops,
   5839 	},
   5840 };
   5841 
   5842 static const struct i915_power_well_ops vlv_display_power_well_ops = {
   5843 	.sync_hw = vlv_power_well_sync_hw,
   5844 	.enable = vlv_display_power_well_enable,
   5845 	.disable = vlv_display_power_well_disable,
   5846 	.is_enabled = vlv_power_well_enabled,
   5847 };
   5848 
   5849 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
   5850 	.sync_hw = vlv_power_well_sync_hw,
   5851 	.enable = vlv_power_well_enable,
   5852 	.disable = vlv_power_well_disable,
   5853 	.is_enabled = vlv_power_well_enabled,
   5854 };
   5855 
   5856 static struct i915_power_well vlv_power_wells[] = {
   5857 	{
   5858 		.name = "always-on",
   5859 		.always_on = 1,
   5860 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
   5861 		.ops = &i9xx_always_on_power_well_ops,
   5862 	},
   5863 	{
   5864 		.name = "display",
   5865 		.domains = VLV_DISPLAY_POWER_DOMAINS,
   5866 		.data = PUNIT_POWER_WELL_DISP2D,
   5867 		.ops = &vlv_display_power_well_ops,
   5868 	},
   5869 	{
   5870 		.name = "dpio-common",
   5871 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
   5872 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
   5873 		.ops = &vlv_dpio_power_well_ops,
   5874 	},
   5875 	{
   5876 		.name = "dpio-tx-b-01",
   5877 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5878 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5879 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5880 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5881 		.ops = &vlv_dpio_power_well_ops,
   5882 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
   5883 	},
   5884 	{
   5885 		.name = "dpio-tx-b-23",
   5886 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5887 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5888 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5889 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5890 		.ops = &vlv_dpio_power_well_ops,
   5891 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
   5892 	},
   5893 	{
   5894 		.name = "dpio-tx-c-01",
   5895 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5896 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5897 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5898 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5899 		.ops = &vlv_dpio_power_well_ops,
   5900 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
   5901 	},
   5902 	{
   5903 		.name = "dpio-tx-c-23",
   5904 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5905 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5906 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5907 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5908 		.ops = &vlv_dpio_power_well_ops,
   5909 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
   5910 	},
   5911 };
   5912 
   5913 #define set_power_wells(power_domains, __power_wells) ({		\
   5914 	(power_domains)->power_wells = (__power_wells);			\
   5915 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
   5916 })
   5917 
   5918 int intel_power_domains_init(struct drm_i915_private *dev_priv)
   5919 {
   5920 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
   5921 
   5922 	mutex_init(&power_domains->lock);
   5923 
   5924 	/*
   5925 	 * The enabling order will be from lower to higher indexed wells,
   5926 	 * the disabling order is reversed.
   5927 	 */
   5928 	if (IS_HASWELL(dev_priv->dev)) {
   5929 		set_power_wells(power_domains, hsw_power_wells);
   5930 		hsw_pwr = power_domains;
   5931 	} else if (IS_BROADWELL(dev_priv->dev)) {
   5932 		set_power_wells(power_domains, bdw_power_wells);
   5933 		hsw_pwr = power_domains;
   5934 	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
   5935 		set_power_wells(power_domains, vlv_power_wells);
   5936 	} else {
   5937 		set_power_wells(power_domains, i9xx_always_on_power_well);
   5938 	}
   5939 
   5940 	return 0;
   5941 }
   5942 
   5943 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
   5944 {
   5945 	hsw_pwr = NULL;
   5946 }
   5947 
   5948 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
   5949 {
   5950 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
   5951 	struct i915_power_well *power_well;
   5952 	int i;
   5953 
   5954 	mutex_lock(&power_domains->lock);
   5955 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
   5956 		power_well->ops->sync_hw(dev_priv, power_well);
   5957 	mutex_unlock(&power_domains->lock);
   5958 }
   5959 
   5960 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
   5961 {
   5962 	/* For now, we need the power well to be always enabled. */
   5963 	intel_display_set_init_power(dev_priv, true);
   5964 	intel_power_domains_resume(dev_priv);
   5965 }
   5966 
   5967 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
   5968 {
   5969 	intel_runtime_pm_get(dev_priv);
   5970 }
   5971 
   5972 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
   5973 {
   5974 	intel_runtime_pm_put(dev_priv);
   5975 }
   5976 
   5977 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
   5978 {
   5979 	struct drm_device *dev = dev_priv->dev;
   5980 	struct device *device = &dev->pdev->dev;
   5981 
   5982 	if (!HAS_RUNTIME_PM(dev))
   5983 		return;
   5984 
   5985 	pm_runtime_get_sync(device);
   5986 	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
   5987 }
   5988 
   5989 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
   5990 {
   5991 	struct drm_device *dev = dev_priv->dev;
   5992 	struct device *device = &dev->pdev->dev;
   5993 
   5994 	if (!HAS_RUNTIME_PM(dev))
   5995 		return;
   5996 
   5997 	pm_runtime_mark_last_busy(device);
   5998 	pm_runtime_put_autosuspend(device);
   5999 }
   6000 
   6001 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
   6002 {
   6003 	struct drm_device *dev = dev_priv->dev;
   6004 	struct device *device = &dev->pdev->dev;
   6005 
   6006 	if (!HAS_RUNTIME_PM(dev))
   6007 		return;
   6008 
   6009 	pm_runtime_set_active(device);
   6010 
   6011 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
   6012 	pm_runtime_mark_last_busy(device);
   6013 	pm_runtime_use_autosuspend(device);
   6014 
   6015 	pm_runtime_put_autosuspend(device);
   6016 }
   6017 
   6018 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
   6019 {
   6020 	struct drm_device *dev = dev_priv->dev;
   6021 	struct device *device = &dev->pdev->dev;
   6022 
   6023 	if (!HAS_RUNTIME_PM(dev))
   6024 		return;
   6025 
   6026 	/* Make sure we're not suspended first. */
   6027 	pm_runtime_get_sync(device);
   6028 	pm_runtime_disable(device);
   6029 }
   6030 
   6031 /* Set up chip specific power management-related functions */
   6032 void intel_init_pm(struct drm_device *dev)
   6033 {
   6034 	struct drm_i915_private *dev_priv = dev->dev_private;
   6035 
   6036 	if (HAS_FBC(dev)) {
   6037 		if (INTEL_INFO(dev)->gen >= 7) {
   6038 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
   6039 			dev_priv->display.enable_fbc = gen7_enable_fbc;
   6040 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
   6041 		} else if (INTEL_INFO(dev)->gen >= 5) {
   6042 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
   6043 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
   6044 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
   6045 		} else if (IS_GM45(dev)) {
   6046 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
   6047 			dev_priv->display.enable_fbc = g4x_enable_fbc;
   6048 			dev_priv->display.disable_fbc = g4x_disable_fbc;
   6049 		} else {
   6050 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
   6051 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
   6052 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
   6053 
   6054 			/* This value was pulled out of someone's hat */
   6055 			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
   6056 		}
   6057 	}
   6058 
   6059 	/* For cxsr */
   6060 	if (IS_PINEVIEW(dev))
   6061 		i915_pineview_get_mem_freq(dev);
   6062 	else if (IS_GEN5(dev))
   6063 		i915_ironlake_get_mem_freq(dev);
   6064 
   6065 	/* For FIFO watermark updates */
   6066 	if (HAS_PCH_SPLIT(dev)) {
   6067 		ilk_setup_wm_latency(dev);
   6068 
   6069 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
   6070 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
   6071 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
   6072 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
   6073 			dev_priv->display.update_wm = ilk_update_wm;
   6074 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
   6075 		} else {
   6076 			DRM_DEBUG_KMS("Failed to read display plane latency. "
   6077 				      "Disable CxSR\n");
   6078 		}
   6079 
   6080 		if (IS_GEN5(dev))
   6081 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   6082 		else if (IS_GEN6(dev))
   6083 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   6084 		else if (IS_IVYBRIDGE(dev))
   6085 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   6086 		else if (IS_HASWELL(dev))
   6087 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   6088 		else if (INTEL_INFO(dev)->gen == 8)
   6089 			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
   6090 	} else if (IS_VALLEYVIEW(dev)) {
   6091 		dev_priv->display.update_wm = valleyview_update_wm;
   6092 		dev_priv->display.init_clock_gating =
   6093 			valleyview_init_clock_gating;
   6094 	} else if (IS_PINEVIEW(dev)) {
   6095 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   6096 					    dev_priv->is_ddr3,
   6097 					    dev_priv->fsb_freq,
   6098 					    dev_priv->mem_freq)) {
   6099 			DRM_INFO("failed to find known CxSR latency "
   6100 				 "(found ddr%s fsb freq %d, mem freq %d), "
   6101 				 "disabling CxSR\n",
   6102 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   6103 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   6104 			/* Disable CxSR and never update its watermark again */
   6105 			pineview_disable_cxsr(dev);
   6106 			dev_priv->display.update_wm = NULL;
   6107 		} else
   6108 			dev_priv->display.update_wm = pineview_update_wm;
   6109 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   6110 	} else if (IS_G4X(dev)) {
   6111 		dev_priv->display.update_wm = g4x_update_wm;
   6112 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   6113 	} else if (IS_GEN4(dev)) {
   6114 		dev_priv->display.update_wm = i965_update_wm;
   6115 		if (IS_CRESTLINE(dev))
   6116 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   6117 		else if (IS_BROADWATER(dev))
   6118 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   6119 	} else if (IS_GEN3(dev)) {
   6120 		dev_priv->display.update_wm = i9xx_update_wm;
   6121 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   6122 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   6123 	} else if (IS_GEN2(dev)) {
   6124 		if (INTEL_INFO(dev)->num_pipes == 1) {
   6125 			dev_priv->display.update_wm = i845_update_wm;
   6126 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   6127 		} else {
   6128 			dev_priv->display.update_wm = i9xx_update_wm;
   6129 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   6130 		}
   6131 
   6132 		if (IS_I85X(dev) || IS_I865G(dev))
   6133 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   6134 		else
   6135 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
   6136 	} else {
   6137 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
   6138 	}
   6139 }
   6140 
   6141 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
   6142 {
   6143 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   6144 
   6145 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   6146 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   6147 		return -EAGAIN;
   6148 	}
   6149 
   6150 	I915_WRITE(GEN6_PCODE_DATA, *val);
   6151 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   6152 
   6153 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   6154 		     500)) {
   6155 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   6156 		return -ETIMEDOUT;
   6157 	}
   6158 
   6159 	*val = I915_READ(GEN6_PCODE_DATA);
   6160 	I915_WRITE(GEN6_PCODE_DATA, 0);
   6161 
   6162 	return 0;
   6163 }
   6164 
   6165 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
   6166 {
   6167 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   6168 
   6169 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   6170 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   6171 		return -EAGAIN;
   6172 	}
   6173 
   6174 	I915_WRITE(GEN6_PCODE_DATA, val);
   6175 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   6176 
   6177 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   6178 		     500)) {
   6179 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   6180 		return -ETIMEDOUT;
   6181 	}
   6182 
   6183 	I915_WRITE(GEN6_PCODE_DATA, 0);
   6184 
   6185 	return 0;
   6186 }
   6187 
   6188 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
   6189 {
   6190 	int div;
   6191 
   6192 	/* 4 x czclk */
   6193 	switch (dev_priv->mem_freq) {
   6194 	case 800:
   6195 		div = 10;
   6196 		break;
   6197 	case 1066:
   6198 		div = 12;
   6199 		break;
   6200 	case 1333:
   6201 		div = 16;
   6202 		break;
   6203 	default:
   6204 		return -1;
   6205 	}
   6206 
   6207 	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
   6208 }
   6209 
   6210 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
   6211 {
   6212 	int mul;
   6213 
   6214 	/* 4 x czclk */
   6215 	switch (dev_priv->mem_freq) {
   6216 	case 800:
   6217 		mul = 10;
   6218 		break;
   6219 	case 1066:
   6220 		mul = 12;
   6221 		break;
   6222 	case 1333:
   6223 		mul = 16;
   6224 		break;
   6225 	default:
   6226 		return -1;
   6227 	}
   6228 
   6229 	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
   6230 }
   6231 
   6232 void intel_pm_setup(struct drm_device *dev)
   6233 {
   6234 	struct drm_i915_private *dev_priv = dev->dev_private;
   6235 
   6236 	mutex_init(&dev_priv->rps.hw_lock);
   6237 
   6238 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   6239 			  intel_gen6_powersave_work);
   6240 
   6241 	dev_priv->pm.suspended = false;
   6242 	dev_priv->pm.irqs_disabled = false;
   6243 }
   6244