intel_pm.c revision 1.1.1.3 1 /* $NetBSD: intel_pm.c,v 1.1.1.3 2018/08/27 01:34:55 riastradh Exp $ */
2
3 /*
4 * Copyright 2012 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eugeni Dodonov <eugeni.dodonov (at) intel.com>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: intel_pm.c,v 1.1.1.3 2018/08/27 01:34:55 riastradh Exp $");
32
33 #include <linux/cpufreq.h>
34 #include "i915_drv.h"
35 #include "intel_drv.h"
36 #include "../../../platform/x86/intel_ips.h"
37 #include <linux/module.h>
38
39 /**
40 * RC6 is a special power stage which allows the GPU to enter an very
41 * low-voltage mode when idle, using down to 0V while at this stage. This
42 * stage is entered automatically when the GPU is idle when RC6 support is
43 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44 *
45 * There are different RC6 modes available in Intel GPU, which differentiate
46 * among each other with the latency required to enter and leave RC6 and
47 * voltage consumed by the GPU in different states.
48 *
49 * The combination of the following flags define which states GPU is allowed
50 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51 * RC6pp is deepest RC6. Their support by hardware varies according to the
52 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53 * which brings the most power savings; deeper states save more power, but
54 * require higher latency to switch to and wake up.
55 */
56 #define INTEL_RC6_ENABLE (1<<0)
57 #define INTEL_RC6p_ENABLE (1<<1)
58 #define INTEL_RC6pp_ENABLE (1<<2)
59
60 static void bxt_init_clock_gating(struct drm_device *dev)
61 {
62 struct drm_i915_private *dev_priv = dev->dev_private;
63
64 /* WaDisableSDEUnitClockGating:bxt */
65 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
66 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
67
68 /*
69 * FIXME:
70 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
71 */
72 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
73 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
74 }
75
76 static void i915_pineview_get_mem_freq(struct drm_device *dev)
77 {
78 struct drm_i915_private *dev_priv = dev->dev_private;
79 u32 tmp;
80
81 tmp = I915_READ(CLKCFG);
82
83 switch (tmp & CLKCFG_FSB_MASK) {
84 case CLKCFG_FSB_533:
85 dev_priv->fsb_freq = 533; /* 133*4 */
86 break;
87 case CLKCFG_FSB_800:
88 dev_priv->fsb_freq = 800; /* 200*4 */
89 break;
90 case CLKCFG_FSB_667:
91 dev_priv->fsb_freq = 667; /* 167*4 */
92 break;
93 case CLKCFG_FSB_400:
94 dev_priv->fsb_freq = 400; /* 100*4 */
95 break;
96 }
97
98 switch (tmp & CLKCFG_MEM_MASK) {
99 case CLKCFG_MEM_533:
100 dev_priv->mem_freq = 533;
101 break;
102 case CLKCFG_MEM_667:
103 dev_priv->mem_freq = 667;
104 break;
105 case CLKCFG_MEM_800:
106 dev_priv->mem_freq = 800;
107 break;
108 }
109
110 /* detect pineview DDR3 setting */
111 tmp = I915_READ(CSHRDDR3CTL);
112 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
113 }
114
115 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
116 {
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 u16 ddrpll, csipll;
119
120 ddrpll = I915_READ16(DDRMPLL1);
121 csipll = I915_READ16(CSIPLL0);
122
123 switch (ddrpll & 0xff) {
124 case 0xc:
125 dev_priv->mem_freq = 800;
126 break;
127 case 0x10:
128 dev_priv->mem_freq = 1066;
129 break;
130 case 0x14:
131 dev_priv->mem_freq = 1333;
132 break;
133 case 0x18:
134 dev_priv->mem_freq = 1600;
135 break;
136 default:
137 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
138 ddrpll & 0xff);
139 dev_priv->mem_freq = 0;
140 break;
141 }
142
143 dev_priv->ips.r_t = dev_priv->mem_freq;
144
145 switch (csipll & 0x3ff) {
146 case 0x00c:
147 dev_priv->fsb_freq = 3200;
148 break;
149 case 0x00e:
150 dev_priv->fsb_freq = 3733;
151 break;
152 case 0x010:
153 dev_priv->fsb_freq = 4266;
154 break;
155 case 0x012:
156 dev_priv->fsb_freq = 4800;
157 break;
158 case 0x014:
159 dev_priv->fsb_freq = 5333;
160 break;
161 case 0x016:
162 dev_priv->fsb_freq = 5866;
163 break;
164 case 0x018:
165 dev_priv->fsb_freq = 6400;
166 break;
167 default:
168 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
169 csipll & 0x3ff);
170 dev_priv->fsb_freq = 0;
171 break;
172 }
173
174 if (dev_priv->fsb_freq == 3200) {
175 dev_priv->ips.c_m = 0;
176 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
177 dev_priv->ips.c_m = 1;
178 } else {
179 dev_priv->ips.c_m = 2;
180 }
181 }
182
183 static const struct cxsr_latency cxsr_latency_table[] = {
184 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
185 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
186 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
187 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
188 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
189
190 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
191 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
192 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
193 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
194 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
195
196 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
197 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
198 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
199 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
200 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
201
202 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
203 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
204 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
205 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
206 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
207
208 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
209 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
210 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
211 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
212 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
213
214 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
215 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
216 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
217 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
218 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
219 };
220
221 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
222 int is_ddr3,
223 int fsb,
224 int mem)
225 {
226 const struct cxsr_latency *latency;
227 int i;
228
229 if (fsb == 0 || mem == 0)
230 return NULL;
231
232 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
233 latency = &cxsr_latency_table[i];
234 if (is_desktop == latency->is_desktop &&
235 is_ddr3 == latency->is_ddr3 &&
236 fsb == latency->fsb_freq && mem == latency->mem_freq)
237 return latency;
238 }
239
240 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
241
242 return NULL;
243 }
244
245 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
246 {
247 u32 val;
248
249 mutex_lock(&dev_priv->rps.hw_lock);
250
251 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
252 if (enable)
253 val &= ~FORCE_DDR_HIGH_FREQ;
254 else
255 val |= FORCE_DDR_HIGH_FREQ;
256 val &= ~FORCE_DDR_LOW_FREQ;
257 val |= FORCE_DDR_FREQ_REQ_ACK;
258 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
259
260 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
261 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
262 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
263
264 mutex_unlock(&dev_priv->rps.hw_lock);
265 }
266
267 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
268 {
269 u32 val;
270
271 mutex_lock(&dev_priv->rps.hw_lock);
272
273 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
274 if (enable)
275 val |= DSP_MAXFIFO_PM5_ENABLE;
276 else
277 val &= ~DSP_MAXFIFO_PM5_ENABLE;
278 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
279
280 mutex_unlock(&dev_priv->rps.hw_lock);
281 }
282
283 #define FW_WM(value, plane) \
284 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
285
286 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
287 {
288 struct drm_device *dev = dev_priv->dev;
289 u32 val;
290
291 if (IS_VALLEYVIEW(dev)) {
292 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
293 POSTING_READ(FW_BLC_SELF_VLV);
294 dev_priv->wm.vlv.cxsr = enable;
295 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
296 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
297 POSTING_READ(FW_BLC_SELF);
298 } else if (IS_PINEVIEW(dev)) {
299 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
300 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
301 I915_WRITE(DSPFW3, val);
302 POSTING_READ(DSPFW3);
303 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
304 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
305 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
306 I915_WRITE(FW_BLC_SELF, val);
307 POSTING_READ(FW_BLC_SELF);
308 } else if (IS_I915GM(dev)) {
309 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
310 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
311 I915_WRITE(INSTPM, val);
312 POSTING_READ(INSTPM);
313 } else {
314 return;
315 }
316
317 DRM_DEBUG_KMS("memory self-refresh is %s\n",
318 enable ? "enabled" : "disabled");
319 }
320
321
322 /*
323 * Latency for FIFO fetches is dependent on several factors:
324 * - memory configuration (speed, channels)
325 * - chipset
326 * - current MCH state
327 * It can be fairly high in some situations, so here we assume a fairly
328 * pessimal value. It's a tradeoff between extra memory fetches (if we
329 * set this value too high, the FIFO will fetch frequently to stay full)
330 * and power consumption (set it too low to save power and we might see
331 * FIFO underruns and display "flicker").
332 *
333 * A value of 5us seems to be a good balance; safe for very low end
334 * platforms but not overly aggressive on lower latency configs.
335 */
336 static const int pessimal_latency_ns = 5000;
337
338 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
339 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
340
341 static int vlv_get_fifo_size(struct drm_device *dev,
342 enum pipe pipe, int plane)
343 {
344 struct drm_i915_private *dev_priv = dev->dev_private;
345 int sprite0_start, sprite1_start, size;
346
347 switch (pipe) {
348 uint32_t dsparb, dsparb2, dsparb3;
349 case PIPE_A:
350 dsparb = I915_READ(DSPARB);
351 dsparb2 = I915_READ(DSPARB2);
352 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
353 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
354 break;
355 case PIPE_B:
356 dsparb = I915_READ(DSPARB);
357 dsparb2 = I915_READ(DSPARB2);
358 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
359 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
360 break;
361 case PIPE_C:
362 dsparb2 = I915_READ(DSPARB2);
363 dsparb3 = I915_READ(DSPARB3);
364 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
365 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
366 break;
367 default:
368 return 0;
369 }
370
371 switch (plane) {
372 case 0:
373 size = sprite0_start;
374 break;
375 case 1:
376 size = sprite1_start - sprite0_start;
377 break;
378 case 2:
379 size = 512 - 1 - sprite1_start;
380 break;
381 default:
382 return 0;
383 }
384
385 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
386 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
387 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
388 size);
389
390 return size;
391 }
392
393 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
394 {
395 struct drm_i915_private *dev_priv = dev->dev_private;
396 uint32_t dsparb = I915_READ(DSPARB);
397 int size;
398
399 size = dsparb & 0x7f;
400 if (plane)
401 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
402
403 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
404 plane ? "B" : "A", size);
405
406 return size;
407 }
408
409 static int i830_get_fifo_size(struct drm_device *dev, int plane)
410 {
411 struct drm_i915_private *dev_priv = dev->dev_private;
412 uint32_t dsparb = I915_READ(DSPARB);
413 int size;
414
415 size = dsparb & 0x1ff;
416 if (plane)
417 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
418 size >>= 1; /* Convert to cachelines */
419
420 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
421 plane ? "B" : "A", size);
422
423 return size;
424 }
425
426 static int i845_get_fifo_size(struct drm_device *dev, int plane)
427 {
428 struct drm_i915_private *dev_priv = dev->dev_private;
429 uint32_t dsparb = I915_READ(DSPARB);
430 int size;
431
432 size = dsparb & 0x7f;
433 size >>= 2; /* Convert to cachelines */
434
435 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
436 plane ? "B" : "A",
437 size);
438
439 return size;
440 }
441
442 /* Pineview has different values for various configs */
443 static const struct intel_watermark_params pineview_display_wm = {
444 .fifo_size = PINEVIEW_DISPLAY_FIFO,
445 .max_wm = PINEVIEW_MAX_WM,
446 .default_wm = PINEVIEW_DFT_WM,
447 .guard_size = PINEVIEW_GUARD_WM,
448 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
449 };
450 static const struct intel_watermark_params pineview_display_hplloff_wm = {
451 .fifo_size = PINEVIEW_DISPLAY_FIFO,
452 .max_wm = PINEVIEW_MAX_WM,
453 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
454 .guard_size = PINEVIEW_GUARD_WM,
455 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
456 };
457 static const struct intel_watermark_params pineview_cursor_wm = {
458 .fifo_size = PINEVIEW_CURSOR_FIFO,
459 .max_wm = PINEVIEW_CURSOR_MAX_WM,
460 .default_wm = PINEVIEW_CURSOR_DFT_WM,
461 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
462 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
463 };
464 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
465 .fifo_size = PINEVIEW_CURSOR_FIFO,
466 .max_wm = PINEVIEW_CURSOR_MAX_WM,
467 .default_wm = PINEVIEW_CURSOR_DFT_WM,
468 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
469 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
470 };
471 static const struct intel_watermark_params g4x_wm_info = {
472 .fifo_size = G4X_FIFO_SIZE,
473 .max_wm = G4X_MAX_WM,
474 .default_wm = G4X_MAX_WM,
475 .guard_size = 2,
476 .cacheline_size = G4X_FIFO_LINE_SIZE,
477 };
478 static const struct intel_watermark_params g4x_cursor_wm_info = {
479 .fifo_size = I965_CURSOR_FIFO,
480 .max_wm = I965_CURSOR_MAX_WM,
481 .default_wm = I965_CURSOR_DFT_WM,
482 .guard_size = 2,
483 .cacheline_size = G4X_FIFO_LINE_SIZE,
484 };
485 static const struct intel_watermark_params valleyview_wm_info = {
486 .fifo_size = VALLEYVIEW_FIFO_SIZE,
487 .max_wm = VALLEYVIEW_MAX_WM,
488 .default_wm = VALLEYVIEW_MAX_WM,
489 .guard_size = 2,
490 .cacheline_size = G4X_FIFO_LINE_SIZE,
491 };
492 static const struct intel_watermark_params valleyview_cursor_wm_info = {
493 .fifo_size = I965_CURSOR_FIFO,
494 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
495 .default_wm = I965_CURSOR_DFT_WM,
496 .guard_size = 2,
497 .cacheline_size = G4X_FIFO_LINE_SIZE,
498 };
499 static const struct intel_watermark_params i965_cursor_wm_info = {
500 .fifo_size = I965_CURSOR_FIFO,
501 .max_wm = I965_CURSOR_MAX_WM,
502 .default_wm = I965_CURSOR_DFT_WM,
503 .guard_size = 2,
504 .cacheline_size = I915_FIFO_LINE_SIZE,
505 };
506 static const struct intel_watermark_params i945_wm_info = {
507 .fifo_size = I945_FIFO_SIZE,
508 .max_wm = I915_MAX_WM,
509 .default_wm = 1,
510 .guard_size = 2,
511 .cacheline_size = I915_FIFO_LINE_SIZE,
512 };
513 static const struct intel_watermark_params i915_wm_info = {
514 .fifo_size = I915_FIFO_SIZE,
515 .max_wm = I915_MAX_WM,
516 .default_wm = 1,
517 .guard_size = 2,
518 .cacheline_size = I915_FIFO_LINE_SIZE,
519 };
520 static const struct intel_watermark_params i830_a_wm_info = {
521 .fifo_size = I855GM_FIFO_SIZE,
522 .max_wm = I915_MAX_WM,
523 .default_wm = 1,
524 .guard_size = 2,
525 .cacheline_size = I830_FIFO_LINE_SIZE,
526 };
527 static const struct intel_watermark_params i830_bc_wm_info = {
528 .fifo_size = I855GM_FIFO_SIZE,
529 .max_wm = I915_MAX_WM/2,
530 .default_wm = 1,
531 .guard_size = 2,
532 .cacheline_size = I830_FIFO_LINE_SIZE,
533 };
534 static const struct intel_watermark_params i845_wm_info = {
535 .fifo_size = I830_FIFO_SIZE,
536 .max_wm = I915_MAX_WM,
537 .default_wm = 1,
538 .guard_size = 2,
539 .cacheline_size = I830_FIFO_LINE_SIZE,
540 };
541
542 /**
543 * intel_calculate_wm - calculate watermark level
544 * @clock_in_khz: pixel clock
545 * @wm: chip FIFO params
546 * @pixel_size: display pixel size
547 * @latency_ns: memory latency for the platform
548 *
549 * Calculate the watermark level (the level at which the display plane will
550 * start fetching from memory again). Each chip has a different display
551 * FIFO size and allocation, so the caller needs to figure that out and pass
552 * in the correct intel_watermark_params structure.
553 *
554 * As the pixel clock runs, the FIFO will be drained at a rate that depends
555 * on the pixel size. When it reaches the watermark level, it'll start
556 * fetching FIFO line sized based chunks from memory until the FIFO fills
557 * past the watermark point. If the FIFO drains completely, a FIFO underrun
558 * will occur, and a display engine hang could result.
559 */
560 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
561 const struct intel_watermark_params *wm,
562 int fifo_size,
563 int pixel_size,
564 unsigned long latency_ns)
565 {
566 long entries_required, wm_size;
567
568 /*
569 * Note: we need to make sure we don't overflow for various clock &
570 * latency values.
571 * clocks go from a few thousand to several hundred thousand.
572 * latency is usually a few thousand
573 */
574 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
575 1000;
576 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
577
578 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
579
580 wm_size = fifo_size - (entries_required + wm->guard_size);
581
582 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
583
584 /* Don't promote wm_size to unsigned... */
585 if (wm_size > (long)wm->max_wm)
586 wm_size = wm->max_wm;
587 if (wm_size <= 0)
588 wm_size = wm->default_wm;
589
590 /*
591 * Bspec seems to indicate that the value shouldn't be lower than
592 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
593 * Lets go for 8 which is the burst size since certain platforms
594 * already use a hardcoded 8 (which is what the spec says should be
595 * done).
596 */
597 if (wm_size <= 8)
598 wm_size = 8;
599
600 return wm_size;
601 }
602
603 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
604 {
605 struct drm_crtc *crtc, *enabled = NULL;
606
607 for_each_crtc(dev, crtc) {
608 if (intel_crtc_active(crtc)) {
609 if (enabled)
610 return NULL;
611 enabled = crtc;
612 }
613 }
614
615 return enabled;
616 }
617
618 static void pineview_update_wm(struct drm_crtc *unused_crtc)
619 {
620 struct drm_device *dev = unused_crtc->dev;
621 struct drm_i915_private *dev_priv = dev->dev_private;
622 struct drm_crtc *crtc;
623 const struct cxsr_latency *latency;
624 u32 reg;
625 unsigned long wm;
626
627 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
628 dev_priv->fsb_freq, dev_priv->mem_freq);
629 if (!latency) {
630 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
631 intel_set_memory_cxsr(dev_priv, false);
632 return;
633 }
634
635 crtc = single_enabled_crtc(dev);
636 if (crtc) {
637 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
638 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
639 int clock = adjusted_mode->crtc_clock;
640
641 /* Display SR */
642 wm = intel_calculate_wm(clock, &pineview_display_wm,
643 pineview_display_wm.fifo_size,
644 pixel_size, latency->display_sr);
645 reg = I915_READ(DSPFW1);
646 reg &= ~DSPFW_SR_MASK;
647 reg |= FW_WM(wm, SR);
648 I915_WRITE(DSPFW1, reg);
649 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
650
651 /* cursor SR */
652 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
653 pineview_display_wm.fifo_size,
654 pixel_size, latency->cursor_sr);
655 reg = I915_READ(DSPFW3);
656 reg &= ~DSPFW_CURSOR_SR_MASK;
657 reg |= FW_WM(wm, CURSOR_SR);
658 I915_WRITE(DSPFW3, reg);
659
660 /* Display HPLL off SR */
661 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
662 pineview_display_hplloff_wm.fifo_size,
663 pixel_size, latency->display_hpll_disable);
664 reg = I915_READ(DSPFW3);
665 reg &= ~DSPFW_HPLL_SR_MASK;
666 reg |= FW_WM(wm, HPLL_SR);
667 I915_WRITE(DSPFW3, reg);
668
669 /* cursor HPLL off SR */
670 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
671 pineview_display_hplloff_wm.fifo_size,
672 pixel_size, latency->cursor_hpll_disable);
673 reg = I915_READ(DSPFW3);
674 reg &= ~DSPFW_HPLL_CURSOR_MASK;
675 reg |= FW_WM(wm, HPLL_CURSOR);
676 I915_WRITE(DSPFW3, reg);
677 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
678
679 intel_set_memory_cxsr(dev_priv, true);
680 } else {
681 intel_set_memory_cxsr(dev_priv, false);
682 }
683 }
684
685 static bool g4x_compute_wm0(struct drm_device *dev,
686 int plane,
687 const struct intel_watermark_params *display,
688 int display_latency_ns,
689 const struct intel_watermark_params *cursor,
690 int cursor_latency_ns,
691 int *plane_wm,
692 int *cursor_wm)
693 {
694 struct drm_crtc *crtc;
695 const struct drm_display_mode *adjusted_mode;
696 int htotal, hdisplay, clock, pixel_size;
697 int line_time_us, line_count;
698 int entries, tlb_miss;
699
700 crtc = intel_get_crtc_for_plane(dev, plane);
701 if (!intel_crtc_active(crtc)) {
702 *cursor_wm = cursor->guard_size;
703 *plane_wm = display->guard_size;
704 return false;
705 }
706
707 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
708 clock = adjusted_mode->crtc_clock;
709 htotal = adjusted_mode->crtc_htotal;
710 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
711 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
712
713 /* Use the small buffer method to calculate plane watermark */
714 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
715 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
716 if (tlb_miss > 0)
717 entries += tlb_miss;
718 entries = DIV_ROUND_UP(entries, display->cacheline_size);
719 *plane_wm = entries + display->guard_size;
720 if (*plane_wm > (int)display->max_wm)
721 *plane_wm = display->max_wm;
722
723 /* Use the large buffer method to calculate cursor watermark */
724 line_time_us = max(htotal * 1000 / clock, 1);
725 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
726 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
727 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
728 if (tlb_miss > 0)
729 entries += tlb_miss;
730 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
731 *cursor_wm = entries + cursor->guard_size;
732 if (*cursor_wm > (int)cursor->max_wm)
733 *cursor_wm = (int)cursor->max_wm;
734
735 return true;
736 }
737
738 /*
739 * Check the wm result.
740 *
741 * If any calculated watermark values is larger than the maximum value that
742 * can be programmed into the associated watermark register, that watermark
743 * must be disabled.
744 */
745 static bool g4x_check_srwm(struct drm_device *dev,
746 int display_wm, int cursor_wm,
747 const struct intel_watermark_params *display,
748 const struct intel_watermark_params *cursor)
749 {
750 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
751 display_wm, cursor_wm);
752
753 if (display_wm > display->max_wm) {
754 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
755 display_wm, display->max_wm);
756 return false;
757 }
758
759 if (cursor_wm > cursor->max_wm) {
760 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
761 cursor_wm, cursor->max_wm);
762 return false;
763 }
764
765 if (!(display_wm || cursor_wm)) {
766 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
767 return false;
768 }
769
770 return true;
771 }
772
773 static bool g4x_compute_srwm(struct drm_device *dev,
774 int plane,
775 int latency_ns,
776 const struct intel_watermark_params *display,
777 const struct intel_watermark_params *cursor,
778 int *display_wm, int *cursor_wm)
779 {
780 struct drm_crtc *crtc;
781 const struct drm_display_mode *adjusted_mode;
782 int hdisplay, htotal, pixel_size, clock;
783 unsigned long line_time_us;
784 int line_count, line_size;
785 int small, large;
786 int entries;
787
788 if (!latency_ns) {
789 *display_wm = *cursor_wm = 0;
790 return false;
791 }
792
793 crtc = intel_get_crtc_for_plane(dev, plane);
794 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
795 clock = adjusted_mode->crtc_clock;
796 htotal = adjusted_mode->crtc_htotal;
797 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
798 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
799
800 line_time_us = max(htotal * 1000 / clock, 1);
801 line_count = (latency_ns / line_time_us + 1000) / 1000;
802 line_size = hdisplay * pixel_size;
803
804 /* Use the minimum of the small and large buffer method for primary */
805 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
806 large = line_count * line_size;
807
808 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
809 *display_wm = entries + display->guard_size;
810
811 /* calculate the self-refresh watermark for display cursor */
812 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
813 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
814 *cursor_wm = entries + cursor->guard_size;
815
816 return g4x_check_srwm(dev,
817 *display_wm, *cursor_wm,
818 display, cursor);
819 }
820
821 #define FW_WM_VLV(value, plane) \
822 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
823
824 static void vlv_write_wm_values(struct intel_crtc *crtc,
825 const struct vlv_wm_values *wm)
826 {
827 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
828 enum pipe pipe = crtc->pipe;
829
830 I915_WRITE(VLV_DDL(pipe),
831 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
832 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
833 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
834 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
835
836 I915_WRITE(DSPFW1,
837 FW_WM(wm->sr.plane, SR) |
838 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
839 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
840 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
841 I915_WRITE(DSPFW2,
842 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
843 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
844 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
845 I915_WRITE(DSPFW3,
846 FW_WM(wm->sr.cursor, CURSOR_SR));
847
848 if (IS_CHERRYVIEW(dev_priv)) {
849 I915_WRITE(DSPFW7_CHV,
850 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
851 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
852 I915_WRITE(DSPFW8_CHV,
853 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
854 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
855 I915_WRITE(DSPFW9_CHV,
856 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
857 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
858 I915_WRITE(DSPHOWM,
859 FW_WM(wm->sr.plane >> 9, SR_HI) |
860 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
861 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
862 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
863 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
864 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
865 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
866 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
867 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
868 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
869 } else {
870 I915_WRITE(DSPFW7,
871 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
872 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
873 I915_WRITE(DSPHOWM,
874 FW_WM(wm->sr.plane >> 9, SR_HI) |
875 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
876 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
877 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
878 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
879 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
880 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
881 }
882
883 /* zero (unused) WM1 watermarks */
884 I915_WRITE(DSPFW4, 0);
885 I915_WRITE(DSPFW5, 0);
886 I915_WRITE(DSPFW6, 0);
887 I915_WRITE(DSPHOWM1, 0);
888
889 POSTING_READ(DSPFW1);
890 }
891
892 #undef FW_WM_VLV
893
894 enum vlv_wm_level {
895 VLV_WM_LEVEL_PM2,
896 VLV_WM_LEVEL_PM5,
897 VLV_WM_LEVEL_DDR_DVFS,
898 };
899
900 /* latency must be in 0.1us units. */
901 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
902 unsigned int pipe_htotal,
903 unsigned int horiz_pixels,
904 unsigned int bytes_per_pixel,
905 unsigned int latency)
906 {
907 unsigned int ret;
908
909 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
910 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
911 ret = DIV_ROUND_UP(ret, 64);
912
913 return ret;
914 }
915
916 static void vlv_setup_wm_latency(struct drm_device *dev)
917 {
918 struct drm_i915_private *dev_priv = dev->dev_private;
919
920 /* all latencies in usec */
921 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
922
923 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
924
925 if (IS_CHERRYVIEW(dev_priv)) {
926 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
927 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
928
929 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
930 }
931 }
932
933 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
934 struct intel_crtc *crtc,
935 const struct intel_plane_state *state,
936 int level)
937 {
938 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
939 int clock, htotal, pixel_size, width, wm;
940
941 if (dev_priv->wm.pri_latency[level] == 0)
942 return USHRT_MAX;
943
944 if (!state->visible)
945 return 0;
946
947 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
948 clock = crtc->config->base.adjusted_mode.crtc_clock;
949 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
950 width = crtc->config->pipe_src_w;
951 if (WARN_ON(htotal == 0))
952 htotal = 1;
953
954 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
955 /*
956 * FIXME the formula gives values that are
957 * too big for the cursor FIFO, and hence we
958 * would never be able to use cursors. For
959 * now just hardcode the watermark.
960 */
961 wm = 63;
962 } else {
963 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
964 dev_priv->wm.pri_latency[level] * 10);
965 }
966
967 return min_t(int, wm, USHRT_MAX);
968 }
969
970 static void vlv_compute_fifo(struct intel_crtc *crtc)
971 {
972 struct drm_device *dev = crtc->base.dev;
973 struct vlv_wm_state *wm_state = &crtc->wm_state;
974 struct intel_plane *plane;
975 unsigned int total_rate = 0;
976 const int fifo_size = 512 - 1;
977 int fifo_extra, fifo_left = fifo_size;
978
979 for_each_intel_plane_on_crtc(dev, crtc, plane) {
980 struct intel_plane_state *state =
981 to_intel_plane_state(plane->base.state);
982
983 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
984 continue;
985
986 if (state->visible) {
987 wm_state->num_active_planes++;
988 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
989 }
990 }
991
992 for_each_intel_plane_on_crtc(dev, crtc, plane) {
993 struct intel_plane_state *state =
994 to_intel_plane_state(plane->base.state);
995 unsigned int rate;
996
997 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
998 plane->wm.fifo_size = 63;
999 continue;
1000 }
1001
1002 if (!state->visible) {
1003 plane->wm.fifo_size = 0;
1004 continue;
1005 }
1006
1007 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008 plane->wm.fifo_size = fifo_size * rate / total_rate;
1009 fifo_left -= plane->wm.fifo_size;
1010 }
1011
1012 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1013
1014 /* spread the remainder evenly */
1015 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1016 int plane_extra;
1017
1018 if (fifo_left == 0)
1019 break;
1020
1021 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1022 continue;
1023
1024 /* give it all to the first plane if none are active */
1025 if (plane->wm.fifo_size == 0 &&
1026 wm_state->num_active_planes)
1027 continue;
1028
1029 plane_extra = min(fifo_extra, fifo_left);
1030 plane->wm.fifo_size += plane_extra;
1031 fifo_left -= plane_extra;
1032 }
1033
1034 WARN_ON(fifo_left != 0);
1035 }
1036
1037 static void vlv_invert_wms(struct intel_crtc *crtc)
1038 {
1039 struct vlv_wm_state *wm_state = &crtc->wm_state;
1040 int level;
1041
1042 for (level = 0; level < wm_state->num_levels; level++) {
1043 struct drm_device *dev = crtc->base.dev;
1044 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1045 struct intel_plane *plane;
1046
1047 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1048 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1049
1050 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1051 switch (plane->base.type) {
1052 int sprite;
1053 case DRM_PLANE_TYPE_CURSOR:
1054 wm_state->wm[level].cursor = plane->wm.fifo_size -
1055 wm_state->wm[level].cursor;
1056 break;
1057 case DRM_PLANE_TYPE_PRIMARY:
1058 wm_state->wm[level].primary = plane->wm.fifo_size -
1059 wm_state->wm[level].primary;
1060 break;
1061 case DRM_PLANE_TYPE_OVERLAY:
1062 sprite = plane->plane;
1063 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1064 wm_state->wm[level].sprite[sprite];
1065 break;
1066 }
1067 }
1068 }
1069 }
1070
1071 static void vlv_compute_wm(struct intel_crtc *crtc)
1072 {
1073 struct drm_device *dev = crtc->base.dev;
1074 struct vlv_wm_state *wm_state = &crtc->wm_state;
1075 struct intel_plane *plane;
1076 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1077 int level;
1078
1079 memset(wm_state, 0, sizeof(*wm_state));
1080
1081 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1082 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1083
1084 wm_state->num_active_planes = 0;
1085
1086 vlv_compute_fifo(crtc);
1087
1088 if (wm_state->num_active_planes != 1)
1089 wm_state->cxsr = false;
1090
1091 if (wm_state->cxsr) {
1092 for (level = 0; level < wm_state->num_levels; level++) {
1093 wm_state->sr[level].plane = sr_fifo_size;
1094 wm_state->sr[level].cursor = 63;
1095 }
1096 }
1097
1098 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1099 struct intel_plane_state *state =
1100 to_intel_plane_state(plane->base.state);
1101
1102 if (!state->visible)
1103 continue;
1104
1105 /* normal watermarks */
1106 for (level = 0; level < wm_state->num_levels; level++) {
1107 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1108 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1109
1110 /* hack */
1111 if (WARN_ON(level == 0 && wm > max_wm))
1112 wm = max_wm;
1113
1114 if (wm > plane->wm.fifo_size)
1115 break;
1116
1117 switch (plane->base.type) {
1118 int sprite;
1119 case DRM_PLANE_TYPE_CURSOR:
1120 wm_state->wm[level].cursor = wm;
1121 break;
1122 case DRM_PLANE_TYPE_PRIMARY:
1123 wm_state->wm[level].primary = wm;
1124 break;
1125 case DRM_PLANE_TYPE_OVERLAY:
1126 sprite = plane->plane;
1127 wm_state->wm[level].sprite[sprite] = wm;
1128 break;
1129 }
1130 }
1131
1132 wm_state->num_levels = level;
1133
1134 if (!wm_state->cxsr)
1135 continue;
1136
1137 /* maxfifo watermarks */
1138 switch (plane->base.type) {
1139 int sprite, level;
1140 case DRM_PLANE_TYPE_CURSOR:
1141 for (level = 0; level < wm_state->num_levels; level++)
1142 wm_state->sr[level].cursor =
1143 wm_state->wm[level].cursor;
1144 break;
1145 case DRM_PLANE_TYPE_PRIMARY:
1146 for (level = 0; level < wm_state->num_levels; level++)
1147 wm_state->sr[level].plane =
1148 min(wm_state->sr[level].plane,
1149 wm_state->wm[level].primary);
1150 break;
1151 case DRM_PLANE_TYPE_OVERLAY:
1152 sprite = plane->plane;
1153 for (level = 0; level < wm_state->num_levels; level++)
1154 wm_state->sr[level].plane =
1155 min(wm_state->sr[level].plane,
1156 wm_state->wm[level].sprite[sprite]);
1157 break;
1158 }
1159 }
1160
1161 /* clear any (partially) filled invalid levels */
1162 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1163 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1164 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1165 }
1166
1167 vlv_invert_wms(crtc);
1168 }
1169
1170 #define VLV_FIFO(plane, value) \
1171 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1172
1173 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1174 {
1175 struct drm_device *dev = crtc->base.dev;
1176 struct drm_i915_private *dev_priv = to_i915(dev);
1177 struct intel_plane *plane;
1178 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1179
1180 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1181 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1182 WARN_ON(plane->wm.fifo_size != 63);
1183 continue;
1184 }
1185
1186 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1187 sprite0_start = plane->wm.fifo_size;
1188 else if (plane->plane == 0)
1189 sprite1_start = sprite0_start + plane->wm.fifo_size;
1190 else
1191 fifo_size = sprite1_start + plane->wm.fifo_size;
1192 }
1193
1194 WARN_ON(fifo_size != 512 - 1);
1195
1196 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1197 pipe_name(crtc->pipe), sprite0_start,
1198 sprite1_start, fifo_size);
1199
1200 switch (crtc->pipe) {
1201 uint32_t dsparb, dsparb2, dsparb3;
1202 case PIPE_A:
1203 dsparb = I915_READ(DSPARB);
1204 dsparb2 = I915_READ(DSPARB2);
1205
1206 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1207 VLV_FIFO(SPRITEB, 0xff));
1208 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1209 VLV_FIFO(SPRITEB, sprite1_start));
1210
1211 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1212 VLV_FIFO(SPRITEB_HI, 0x1));
1213 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1214 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1215
1216 I915_WRITE(DSPARB, dsparb);
1217 I915_WRITE(DSPARB2, dsparb2);
1218 break;
1219 case PIPE_B:
1220 dsparb = I915_READ(DSPARB);
1221 dsparb2 = I915_READ(DSPARB2);
1222
1223 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1224 VLV_FIFO(SPRITED, 0xff));
1225 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1226 VLV_FIFO(SPRITED, sprite1_start));
1227
1228 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1229 VLV_FIFO(SPRITED_HI, 0xff));
1230 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1231 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1232
1233 I915_WRITE(DSPARB, dsparb);
1234 I915_WRITE(DSPARB2, dsparb2);
1235 break;
1236 case PIPE_C:
1237 dsparb3 = I915_READ(DSPARB3);
1238 dsparb2 = I915_READ(DSPARB2);
1239
1240 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1241 VLV_FIFO(SPRITEF, 0xff));
1242 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1243 VLV_FIFO(SPRITEF, sprite1_start));
1244
1245 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1246 VLV_FIFO(SPRITEF_HI, 0xff));
1247 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1248 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1249
1250 I915_WRITE(DSPARB3, dsparb3);
1251 I915_WRITE(DSPARB2, dsparb2);
1252 break;
1253 default:
1254 break;
1255 }
1256 }
1257
1258 #undef VLV_FIFO
1259
1260 static void vlv_merge_wm(struct drm_device *dev,
1261 struct vlv_wm_values *wm)
1262 {
1263 struct intel_crtc *crtc;
1264 int num_active_crtcs = 0;
1265
1266 wm->level = to_i915(dev)->wm.max_level;
1267 wm->cxsr = true;
1268
1269 for_each_intel_crtc(dev, crtc) {
1270 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1271
1272 if (!crtc->active)
1273 continue;
1274
1275 if (!wm_state->cxsr)
1276 wm->cxsr = false;
1277
1278 num_active_crtcs++;
1279 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1280 }
1281
1282 if (num_active_crtcs != 1)
1283 wm->cxsr = false;
1284
1285 if (num_active_crtcs > 1)
1286 wm->level = VLV_WM_LEVEL_PM2;
1287
1288 for_each_intel_crtc(dev, crtc) {
1289 struct vlv_wm_state *wm_state = &crtc->wm_state;
1290 enum pipe pipe = crtc->pipe;
1291
1292 if (!crtc->active)
1293 continue;
1294
1295 wm->pipe[pipe] = wm_state->wm[wm->level];
1296 if (wm->cxsr)
1297 wm->sr = wm_state->sr[wm->level];
1298
1299 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1300 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1301 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1302 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1303 }
1304 }
1305
1306 static void vlv_update_wm(struct drm_crtc *crtc)
1307 {
1308 struct drm_device *dev = crtc->dev;
1309 struct drm_i915_private *dev_priv = dev->dev_private;
1310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1311 enum pipe pipe = intel_crtc->pipe;
1312 struct vlv_wm_values wm = {};
1313
1314 vlv_compute_wm(intel_crtc);
1315 vlv_merge_wm(dev, &wm);
1316
1317 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1318 /* FIXME should be part of crtc atomic commit */
1319 vlv_pipe_set_fifo_size(intel_crtc);
1320 return;
1321 }
1322
1323 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1324 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1325 chv_set_memory_dvfs(dev_priv, false);
1326
1327 if (wm.level < VLV_WM_LEVEL_PM5 &&
1328 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1329 chv_set_memory_pm5(dev_priv, false);
1330
1331 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1332 intel_set_memory_cxsr(dev_priv, false);
1333
1334 /* FIXME should be part of crtc atomic commit */
1335 vlv_pipe_set_fifo_size(intel_crtc);
1336
1337 vlv_write_wm_values(intel_crtc, &wm);
1338
1339 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1340 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1341 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1342 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1343 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1344
1345 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1346 intel_set_memory_cxsr(dev_priv, true);
1347
1348 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1349 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1350 chv_set_memory_pm5(dev_priv, true);
1351
1352 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1353 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1354 chv_set_memory_dvfs(dev_priv, true);
1355
1356 dev_priv->wm.vlv = wm;
1357 }
1358
1359 #define single_plane_enabled(mask) is_power_of_2(mask)
1360
1361 static void g4x_update_wm(struct drm_crtc *crtc)
1362 {
1363 struct drm_device *dev = crtc->dev;
1364 static const int sr_latency_ns = 12000;
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1367 int plane_sr, cursor_sr;
1368 unsigned int enabled = 0;
1369 bool cxsr_enabled;
1370
1371 if (g4x_compute_wm0(dev, PIPE_A,
1372 &g4x_wm_info, pessimal_latency_ns,
1373 &g4x_cursor_wm_info, pessimal_latency_ns,
1374 &planea_wm, &cursora_wm))
1375 enabled |= 1 << PIPE_A;
1376
1377 if (g4x_compute_wm0(dev, PIPE_B,
1378 &g4x_wm_info, pessimal_latency_ns,
1379 &g4x_cursor_wm_info, pessimal_latency_ns,
1380 &planeb_wm, &cursorb_wm))
1381 enabled |= 1 << PIPE_B;
1382
1383 if (single_plane_enabled(enabled) &&
1384 g4x_compute_srwm(dev, ffs(enabled) - 1,
1385 sr_latency_ns,
1386 &g4x_wm_info,
1387 &g4x_cursor_wm_info,
1388 &plane_sr, &cursor_sr)) {
1389 cxsr_enabled = true;
1390 } else {
1391 cxsr_enabled = false;
1392 intel_set_memory_cxsr(dev_priv, false);
1393 plane_sr = cursor_sr = 0;
1394 }
1395
1396 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1397 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1398 planea_wm, cursora_wm,
1399 planeb_wm, cursorb_wm,
1400 plane_sr, cursor_sr);
1401
1402 I915_WRITE(DSPFW1,
1403 FW_WM(plane_sr, SR) |
1404 FW_WM(cursorb_wm, CURSORB) |
1405 FW_WM(planeb_wm, PLANEB) |
1406 FW_WM(planea_wm, PLANEA));
1407 I915_WRITE(DSPFW2,
1408 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1409 FW_WM(cursora_wm, CURSORA));
1410 /* HPLL off in SR has some issues on G4x... disable it */
1411 I915_WRITE(DSPFW3,
1412 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1413 FW_WM(cursor_sr, CURSOR_SR));
1414
1415 if (cxsr_enabled)
1416 intel_set_memory_cxsr(dev_priv, true);
1417 }
1418
1419 static void i965_update_wm(struct drm_crtc *unused_crtc)
1420 {
1421 struct drm_device *dev = unused_crtc->dev;
1422 struct drm_i915_private *dev_priv = dev->dev_private;
1423 struct drm_crtc *crtc;
1424 int srwm = 1;
1425 int cursor_sr = 16;
1426 bool cxsr_enabled;
1427
1428 /* Calc sr entries for one plane configs */
1429 crtc = single_enabled_crtc(dev);
1430 if (crtc) {
1431 /* self-refresh has much higher latency */
1432 static const int sr_latency_ns = 12000;
1433 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1434 int clock = adjusted_mode->crtc_clock;
1435 int htotal = adjusted_mode->crtc_htotal;
1436 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1437 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1438 unsigned long line_time_us;
1439 int entries;
1440
1441 line_time_us = max(htotal * 1000 / clock, 1);
1442
1443 /* Use ns/us then divide to preserve precision */
1444 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1445 pixel_size * hdisplay;
1446 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1447 srwm = I965_FIFO_SIZE - entries;
1448 if (srwm < 0)
1449 srwm = 1;
1450 srwm &= 0x1ff;
1451 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1452 entries, srwm);
1453
1454 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1455 pixel_size * crtc->cursor->state->crtc_w;
1456 entries = DIV_ROUND_UP(entries,
1457 i965_cursor_wm_info.cacheline_size);
1458 cursor_sr = i965_cursor_wm_info.fifo_size -
1459 (entries + i965_cursor_wm_info.guard_size);
1460
1461 if (cursor_sr > i965_cursor_wm_info.max_wm)
1462 cursor_sr = i965_cursor_wm_info.max_wm;
1463
1464 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1465 "cursor %d\n", srwm, cursor_sr);
1466
1467 cxsr_enabled = true;
1468 } else {
1469 cxsr_enabled = false;
1470 /* Turn off self refresh if both pipes are enabled */
1471 intel_set_memory_cxsr(dev_priv, false);
1472 }
1473
1474 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1475 srwm);
1476
1477 /* 965 has limitations... */
1478 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1479 FW_WM(8, CURSORB) |
1480 FW_WM(8, PLANEB) |
1481 FW_WM(8, PLANEA));
1482 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1483 FW_WM(8, PLANEC_OLD));
1484 /* update cursor SR watermark */
1485 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1486
1487 if (cxsr_enabled)
1488 intel_set_memory_cxsr(dev_priv, true);
1489 }
1490
1491 #undef FW_WM
1492
1493 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1494 {
1495 struct drm_device *dev = unused_crtc->dev;
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497 const struct intel_watermark_params *wm_info;
1498 uint32_t fwater_lo;
1499 uint32_t fwater_hi;
1500 int cwm, srwm = 1;
1501 int fifo_size;
1502 int planea_wm, planeb_wm;
1503 struct drm_crtc *crtc, *enabled = NULL;
1504
1505 if (IS_I945GM(dev))
1506 wm_info = &i945_wm_info;
1507 else if (!IS_GEN2(dev))
1508 wm_info = &i915_wm_info;
1509 else
1510 wm_info = &i830_a_wm_info;
1511
1512 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1513 crtc = intel_get_crtc_for_plane(dev, 0);
1514 if (intel_crtc_active(crtc)) {
1515 const struct drm_display_mode *adjusted_mode;
1516 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1517 if (IS_GEN2(dev))
1518 cpp = 4;
1519
1520 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1521 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1522 wm_info, fifo_size, cpp,
1523 pessimal_latency_ns);
1524 enabled = crtc;
1525 } else {
1526 planea_wm = fifo_size - wm_info->guard_size;
1527 if (planea_wm > (long)wm_info->max_wm)
1528 planea_wm = wm_info->max_wm;
1529 }
1530
1531 if (IS_GEN2(dev))
1532 wm_info = &i830_bc_wm_info;
1533
1534 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1535 crtc = intel_get_crtc_for_plane(dev, 1);
1536 if (intel_crtc_active(crtc)) {
1537 const struct drm_display_mode *adjusted_mode;
1538 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1539 if (IS_GEN2(dev))
1540 cpp = 4;
1541
1542 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1543 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1544 wm_info, fifo_size, cpp,
1545 pessimal_latency_ns);
1546 if (enabled == NULL)
1547 enabled = crtc;
1548 else
1549 enabled = NULL;
1550 } else {
1551 planeb_wm = fifo_size - wm_info->guard_size;
1552 if (planeb_wm > (long)wm_info->max_wm)
1553 planeb_wm = wm_info->max_wm;
1554 }
1555
1556 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1557
1558 if (IS_I915GM(dev) && enabled) {
1559 struct drm_i915_gem_object *obj;
1560
1561 obj = intel_fb_obj(enabled->primary->state->fb);
1562
1563 /* self-refresh seems busted with untiled */
1564 if (obj->tiling_mode == I915_TILING_NONE)
1565 enabled = NULL;
1566 }
1567
1568 /*
1569 * Overlay gets an aggressive default since video jitter is bad.
1570 */
1571 cwm = 2;
1572
1573 /* Play safe and disable self-refresh before adjusting watermarks. */
1574 intel_set_memory_cxsr(dev_priv, false);
1575
1576 /* Calc sr entries for one plane configs */
1577 if (HAS_FW_BLC(dev) && enabled) {
1578 /* self-refresh has much higher latency */
1579 static const int sr_latency_ns = 6000;
1580 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1581 int clock = adjusted_mode->crtc_clock;
1582 int htotal = adjusted_mode->crtc_htotal;
1583 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1584 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1585 unsigned long line_time_us;
1586 int entries;
1587
1588 line_time_us = max(htotal * 1000 / clock, 1);
1589
1590 /* Use ns/us then divide to preserve precision */
1591 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1592 pixel_size * hdisplay;
1593 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1594 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1595 srwm = wm_info->fifo_size - entries;
1596 if (srwm < 0)
1597 srwm = 1;
1598
1599 if (IS_I945G(dev) || IS_I945GM(dev))
1600 I915_WRITE(FW_BLC_SELF,
1601 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1602 else if (IS_I915GM(dev))
1603 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1604 }
1605
1606 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1607 planea_wm, planeb_wm, cwm, srwm);
1608
1609 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1610 fwater_hi = (cwm & 0x1f);
1611
1612 /* Set request length to 8 cachelines per fetch */
1613 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1614 fwater_hi = fwater_hi | (1 << 8);
1615
1616 I915_WRITE(FW_BLC, fwater_lo);
1617 I915_WRITE(FW_BLC2, fwater_hi);
1618
1619 if (enabled)
1620 intel_set_memory_cxsr(dev_priv, true);
1621 }
1622
1623 static void i845_update_wm(struct drm_crtc *unused_crtc)
1624 {
1625 struct drm_device *dev = unused_crtc->dev;
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 struct drm_crtc *crtc;
1628 const struct drm_display_mode *adjusted_mode;
1629 uint32_t fwater_lo;
1630 int planea_wm;
1631
1632 crtc = single_enabled_crtc(dev);
1633 if (crtc == NULL)
1634 return;
1635
1636 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1637 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1638 &i845_wm_info,
1639 dev_priv->display.get_fifo_size(dev, 0),
1640 4, pessimal_latency_ns);
1641 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1642 fwater_lo |= (3<<8) | planea_wm;
1643
1644 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1645
1646 I915_WRITE(FW_BLC, fwater_lo);
1647 }
1648
1649 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1650 {
1651 uint32_t pixel_rate;
1652
1653 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1654
1655 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1656 * adjust the pixel_rate here. */
1657
1658 if (pipe_config->pch_pfit.enabled) {
1659 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1660 uint32_t pfit_size = pipe_config->pch_pfit.size;
1661
1662 pipe_w = pipe_config->pipe_src_w;
1663 pipe_h = pipe_config->pipe_src_h;
1664
1665 pfit_w = (pfit_size >> 16) & 0xFFFF;
1666 pfit_h = pfit_size & 0xFFFF;
1667 if (pipe_w < pfit_w)
1668 pipe_w = pfit_w;
1669 if (pipe_h < pfit_h)
1670 pipe_h = pfit_h;
1671
1672 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1673 pfit_w * pfit_h);
1674 }
1675
1676 return pixel_rate;
1677 }
1678
1679 /* latency must be in 0.1us units. */
1680 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1681 uint32_t latency)
1682 {
1683 uint64_t ret;
1684
1685 if (WARN(latency == 0, "Latency value missing\n"))
1686 return UINT_MAX;
1687
1688 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1689 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1690
1691 return ret;
1692 }
1693
1694 /* latency must be in 0.1us units. */
1695 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1696 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1697 uint32_t latency)
1698 {
1699 uint32_t ret;
1700
1701 if (WARN(latency == 0, "Latency value missing\n"))
1702 return UINT_MAX;
1703
1704 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1705 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1706 ret = DIV_ROUND_UP(ret, 64) + 2;
1707 return ret;
1708 }
1709
1710 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1711 uint8_t bytes_per_pixel)
1712 {
1713 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1714 }
1715
1716 struct skl_pipe_wm_parameters {
1717 bool active;
1718 uint32_t pipe_htotal;
1719 uint32_t pixel_rate; /* in KHz */
1720 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1721 };
1722
1723 struct ilk_wm_maximums {
1724 uint16_t pri;
1725 uint16_t spr;
1726 uint16_t cur;
1727 uint16_t fbc;
1728 };
1729
1730 /* used in computing the new watermarks state */
1731 struct intel_wm_config {
1732 unsigned int num_pipes_active;
1733 bool sprites_enabled;
1734 bool sprites_scaled;
1735 };
1736
1737 /*
1738 * For both WM_PIPE and WM_LP.
1739 * mem_value must be in 0.1us units.
1740 */
1741 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1742 const struct intel_plane_state *pstate,
1743 uint32_t mem_value,
1744 bool is_lp)
1745 {
1746 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1747 uint32_t method1, method2;
1748
1749 if (!cstate->base.active || !pstate->visible)
1750 return 0;
1751
1752 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1753
1754 if (!is_lp)
1755 return method1;
1756
1757 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1758 cstate->base.adjusted_mode.crtc_htotal,
1759 drm_rect_width(&pstate->dst),
1760 bpp,
1761 mem_value);
1762
1763 return min(method1, method2);
1764 }
1765
1766 /*
1767 * For both WM_PIPE and WM_LP.
1768 * mem_value must be in 0.1us units.
1769 */
1770 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1771 const struct intel_plane_state *pstate,
1772 uint32_t mem_value)
1773 {
1774 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1775 uint32_t method1, method2;
1776
1777 if (!cstate->base.active || !pstate->visible)
1778 return 0;
1779
1780 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1781 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1782 cstate->base.adjusted_mode.crtc_htotal,
1783 drm_rect_width(&pstate->dst),
1784 bpp,
1785 mem_value);
1786 return min(method1, method2);
1787 }
1788
1789 /*
1790 * For both WM_PIPE and WM_LP.
1791 * mem_value must be in 0.1us units.
1792 */
1793 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1794 const struct intel_plane_state *pstate,
1795 uint32_t mem_value)
1796 {
1797 /*
1798 * We treat the cursor plane as always-on for the purposes of watermark
1799 * calculation. Until we have two-stage watermark programming merged,
1800 * this is necessary to avoid flickering.
1801 */
1802 int cpp = 4;
1803 int width = pstate->visible ? pstate->base.crtc_w : 64;
1804
1805 if (!cstate->base.active)
1806 return 0;
1807
1808 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1809 cstate->base.adjusted_mode.crtc_htotal,
1810 width, cpp, mem_value);
1811 }
1812
1813 /* Only for WM_LP. */
1814 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1815 const struct intel_plane_state *pstate,
1816 uint32_t pri_val)
1817 {
1818 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1819
1820 if (!cstate->base.active || !pstate->visible)
1821 return 0;
1822
1823 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1824 }
1825
1826 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1827 {
1828 if (INTEL_INFO(dev)->gen >= 8)
1829 return 3072;
1830 else if (INTEL_INFO(dev)->gen >= 7)
1831 return 768;
1832 else
1833 return 512;
1834 }
1835
1836 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1837 int level, bool is_sprite)
1838 {
1839 if (INTEL_INFO(dev)->gen >= 8)
1840 /* BDW primary/sprite plane watermarks */
1841 return level == 0 ? 255 : 2047;
1842 else if (INTEL_INFO(dev)->gen >= 7)
1843 /* IVB/HSW primary/sprite plane watermarks */
1844 return level == 0 ? 127 : 1023;
1845 else if (!is_sprite)
1846 /* ILK/SNB primary plane watermarks */
1847 return level == 0 ? 127 : 511;
1848 else
1849 /* ILK/SNB sprite plane watermarks */
1850 return level == 0 ? 63 : 255;
1851 }
1852
1853 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1854 int level)
1855 {
1856 if (INTEL_INFO(dev)->gen >= 7)
1857 return level == 0 ? 63 : 255;
1858 else
1859 return level == 0 ? 31 : 63;
1860 }
1861
1862 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1863 {
1864 if (INTEL_INFO(dev)->gen >= 8)
1865 return 31;
1866 else
1867 return 15;
1868 }
1869
1870 /* Calculate the maximum primary/sprite plane watermark */
1871 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1872 int level,
1873 const struct intel_wm_config *config,
1874 enum intel_ddb_partitioning ddb_partitioning,
1875 bool is_sprite)
1876 {
1877 unsigned int fifo_size = ilk_display_fifo_size(dev);
1878
1879 /* if sprites aren't enabled, sprites get nothing */
1880 if (is_sprite && !config->sprites_enabled)
1881 return 0;
1882
1883 /* HSW allows LP1+ watermarks even with multiple pipes */
1884 if (level == 0 || config->num_pipes_active > 1) {
1885 fifo_size /= INTEL_INFO(dev)->num_pipes;
1886
1887 /*
1888 * For some reason the non self refresh
1889 * FIFO size is only half of the self
1890 * refresh FIFO size on ILK/SNB.
1891 */
1892 if (INTEL_INFO(dev)->gen <= 6)
1893 fifo_size /= 2;
1894 }
1895
1896 if (config->sprites_enabled) {
1897 /* level 0 is always calculated with 1:1 split */
1898 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1899 if (is_sprite)
1900 fifo_size *= 5;
1901 fifo_size /= 6;
1902 } else {
1903 fifo_size /= 2;
1904 }
1905 }
1906
1907 /* clamp to max that the registers can hold */
1908 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1909 }
1910
1911 /* Calculate the maximum cursor plane watermark */
1912 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1913 int level,
1914 const struct intel_wm_config *config)
1915 {
1916 /* HSW LP1+ watermarks w/ multiple pipes */
1917 if (level > 0 && config->num_pipes_active > 1)
1918 return 64;
1919
1920 /* otherwise just report max that registers can hold */
1921 return ilk_cursor_wm_reg_max(dev, level);
1922 }
1923
1924 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1925 int level,
1926 const struct intel_wm_config *config,
1927 enum intel_ddb_partitioning ddb_partitioning,
1928 struct ilk_wm_maximums *max)
1929 {
1930 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1931 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1932 max->cur = ilk_cursor_wm_max(dev, level, config);
1933 max->fbc = ilk_fbc_wm_reg_max(dev);
1934 }
1935
1936 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1937 int level,
1938 struct ilk_wm_maximums *max)
1939 {
1940 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1941 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1942 max->cur = ilk_cursor_wm_reg_max(dev, level);
1943 max->fbc = ilk_fbc_wm_reg_max(dev);
1944 }
1945
1946 static bool ilk_validate_wm_level(int level,
1947 const struct ilk_wm_maximums *max,
1948 struct intel_wm_level *result)
1949 {
1950 bool ret;
1951
1952 /* already determined to be invalid? */
1953 if (!result->enable)
1954 return false;
1955
1956 result->enable = result->pri_val <= max->pri &&
1957 result->spr_val <= max->spr &&
1958 result->cur_val <= max->cur;
1959
1960 ret = result->enable;
1961
1962 /*
1963 * HACK until we can pre-compute everything,
1964 * and thus fail gracefully if LP0 watermarks
1965 * are exceeded...
1966 */
1967 if (level == 0 && !result->enable) {
1968 if (result->pri_val > max->pri)
1969 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1970 level, result->pri_val, max->pri);
1971 if (result->spr_val > max->spr)
1972 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1973 level, result->spr_val, max->spr);
1974 if (result->cur_val > max->cur)
1975 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1976 level, result->cur_val, max->cur);
1977
1978 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1979 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1980 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1981 result->enable = true;
1982 }
1983
1984 return ret;
1985 }
1986
1987 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1988 const struct intel_crtc *intel_crtc,
1989 int level,
1990 struct intel_crtc_state *cstate,
1991 struct intel_wm_level *result)
1992 {
1993 struct intel_plane *intel_plane;
1994 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1995 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1996 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1997
1998 /* WM1+ latency values stored in 0.5us units */
1999 if (level > 0) {
2000 pri_latency *= 5;
2001 spr_latency *= 5;
2002 cur_latency *= 5;
2003 }
2004
2005 for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2006 struct intel_plane_state *pstate =
2007 to_intel_plane_state(intel_plane->base.state);
2008
2009 switch (intel_plane->base.type) {
2010 case DRM_PLANE_TYPE_PRIMARY:
2011 result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2012 pri_latency,
2013 level);
2014 result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2015 result->pri_val);
2016 break;
2017 case DRM_PLANE_TYPE_OVERLAY:
2018 result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2019 spr_latency);
2020 break;
2021 case DRM_PLANE_TYPE_CURSOR:
2022 result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2023 cur_latency);
2024 break;
2025 }
2026 }
2027
2028 result->enable = true;
2029 }
2030
2031 static uint32_t
2032 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2033 {
2034 struct drm_i915_private *dev_priv = dev->dev_private;
2035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2036 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2037 u32 linetime, ips_linetime;
2038
2039 if (!intel_crtc->active)
2040 return 0;
2041
2042 /* The WM are computed with base on how long it takes to fill a single
2043 * row at the given clock rate, multiplied by 8.
2044 * */
2045 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2046 adjusted_mode->crtc_clock);
2047 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2048 dev_priv->cdclk_freq);
2049
2050 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2051 PIPE_WM_LINETIME_TIME(linetime);
2052 }
2053
2054 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2055 {
2056 struct drm_i915_private *dev_priv = dev->dev_private;
2057
2058 if (IS_GEN9(dev)) {
2059 uint32_t val;
2060 int ret, i;
2061 int level, max_level = ilk_wm_max_level(dev);
2062
2063 /* read the first set of memory latencies[0:3] */
2064 val = 0; /* data0 to be programmed to 0 for first set */
2065 mutex_lock(&dev_priv->rps.hw_lock);
2066 ret = sandybridge_pcode_read(dev_priv,
2067 GEN9_PCODE_READ_MEM_LATENCY,
2068 &val);
2069 mutex_unlock(&dev_priv->rps.hw_lock);
2070
2071 if (ret) {
2072 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2073 return;
2074 }
2075
2076 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2077 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2078 GEN9_MEM_LATENCY_LEVEL_MASK;
2079 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2080 GEN9_MEM_LATENCY_LEVEL_MASK;
2081 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2082 GEN9_MEM_LATENCY_LEVEL_MASK;
2083
2084 /* read the second set of memory latencies[4:7] */
2085 val = 1; /* data0 to be programmed to 1 for second set */
2086 mutex_lock(&dev_priv->rps.hw_lock);
2087 ret = sandybridge_pcode_read(dev_priv,
2088 GEN9_PCODE_READ_MEM_LATENCY,
2089 &val);
2090 mutex_unlock(&dev_priv->rps.hw_lock);
2091 if (ret) {
2092 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2093 return;
2094 }
2095
2096 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2097 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2098 GEN9_MEM_LATENCY_LEVEL_MASK;
2099 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2100 GEN9_MEM_LATENCY_LEVEL_MASK;
2101 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2102 GEN9_MEM_LATENCY_LEVEL_MASK;
2103
2104 /*
2105 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2106 * need to be disabled. We make sure to sanitize the values out
2107 * of the punit to satisfy this requirement.
2108 */
2109 for (level = 1; level <= max_level; level++) {
2110 if (wm[level] == 0) {
2111 for (i = level + 1; i <= max_level; i++)
2112 wm[i] = 0;
2113 break;
2114 }
2115 }
2116
2117 /*
2118 * WaWmMemoryReadLatency:skl
2119 *
2120 * punit doesn't take into account the read latency so we need
2121 * to add 2us to the various latency levels we retrieve from the
2122 * punit when level 0 response data us 0us.
2123 */
2124 if (wm[0] == 0) {
2125 wm[0] += 2;
2126 for (level = 1; level <= max_level; level++) {
2127 if (wm[level] == 0)
2128 break;
2129 wm[level] += 2;
2130 }
2131 }
2132
2133 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2134 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2135
2136 wm[0] = (sskpd >> 56) & 0xFF;
2137 if (wm[0] == 0)
2138 wm[0] = sskpd & 0xF;
2139 wm[1] = (sskpd >> 4) & 0xFF;
2140 wm[2] = (sskpd >> 12) & 0xFF;
2141 wm[3] = (sskpd >> 20) & 0x1FF;
2142 wm[4] = (sskpd >> 32) & 0x1FF;
2143 } else if (INTEL_INFO(dev)->gen >= 6) {
2144 uint32_t sskpd = I915_READ(MCH_SSKPD);
2145
2146 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2147 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2148 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2149 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2150 } else if (INTEL_INFO(dev)->gen >= 5) {
2151 uint32_t mltr = I915_READ(MLTR_ILK);
2152
2153 /* ILK primary LP0 latency is 700 ns */
2154 wm[0] = 7;
2155 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2156 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2157 }
2158 }
2159
2160 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2161 {
2162 /* ILK sprite LP0 latency is 1300 ns */
2163 if (INTEL_INFO(dev)->gen == 5)
2164 wm[0] = 13;
2165 }
2166
2167 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2168 {
2169 /* ILK cursor LP0 latency is 1300 ns */
2170 if (INTEL_INFO(dev)->gen == 5)
2171 wm[0] = 13;
2172
2173 /* WaDoubleCursorLP3Latency:ivb */
2174 if (IS_IVYBRIDGE(dev))
2175 wm[3] *= 2;
2176 }
2177
2178 int ilk_wm_max_level(const struct drm_device *dev)
2179 {
2180 /* how many WM levels are we expecting */
2181 if (INTEL_INFO(dev)->gen >= 9)
2182 return 7;
2183 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2184 return 4;
2185 else if (INTEL_INFO(dev)->gen >= 6)
2186 return 3;
2187 else
2188 return 2;
2189 }
2190
2191 static void intel_print_wm_latency(struct drm_device *dev,
2192 const char *name,
2193 const uint16_t wm[8])
2194 {
2195 int level, max_level = ilk_wm_max_level(dev);
2196
2197 for (level = 0; level <= max_level; level++) {
2198 unsigned int latency = wm[level];
2199
2200 if (latency == 0) {
2201 DRM_ERROR("%s WM%d latency not provided\n",
2202 name, level);
2203 continue;
2204 }
2205
2206 /*
2207 * - latencies are in us on gen9.
2208 * - before then, WM1+ latency values are in 0.5us units
2209 */
2210 if (IS_GEN9(dev))
2211 latency *= 10;
2212 else if (level > 0)
2213 latency *= 5;
2214
2215 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2216 name, level, wm[level],
2217 latency / 10, latency % 10);
2218 }
2219 }
2220
2221 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2222 uint16_t wm[5], uint16_t min)
2223 {
2224 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2225
2226 if (wm[0] >= min)
2227 return false;
2228
2229 wm[0] = max(wm[0], min);
2230 for (level = 1; level <= max_level; level++)
2231 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2232
2233 return true;
2234 }
2235
2236 static void snb_wm_latency_quirk(struct drm_device *dev)
2237 {
2238 struct drm_i915_private *dev_priv = dev->dev_private;
2239 bool changed;
2240
2241 /*
2242 * The BIOS provided WM memory latency values are often
2243 * inadequate for high resolution displays. Adjust them.
2244 */
2245 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2246 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2247 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2248
2249 if (!changed)
2250 return;
2251
2252 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2253 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2254 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2255 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2256 }
2257
2258 static void ilk_setup_wm_latency(struct drm_device *dev)
2259 {
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261
2262 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2263
2264 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2265 sizeof(dev_priv->wm.pri_latency));
2266 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2267 sizeof(dev_priv->wm.pri_latency));
2268
2269 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2270 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2271
2272 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2273 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2274 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2275
2276 if (IS_GEN6(dev))
2277 snb_wm_latency_quirk(dev);
2278 }
2279
2280 static void skl_setup_wm_latency(struct drm_device *dev)
2281 {
2282 struct drm_i915_private *dev_priv = dev->dev_private;
2283
2284 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2285 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2286 }
2287
2288 static void ilk_compute_wm_config(struct drm_device *dev,
2289 struct intel_wm_config *config)
2290 {
2291 struct intel_crtc *intel_crtc;
2292
2293 /* Compute the currently _active_ config */
2294 for_each_intel_crtc(dev, intel_crtc) {
2295 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2296
2297 if (!wm->pipe_enabled)
2298 continue;
2299
2300 config->sprites_enabled |= wm->sprites_enabled;
2301 config->sprites_scaled |= wm->sprites_scaled;
2302 config->num_pipes_active++;
2303 }
2304 }
2305
2306 /* Compute new watermarks for the pipe */
2307 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
2308 struct intel_pipe_wm *pipe_wm)
2309 {
2310 struct drm_crtc *crtc = cstate->base.crtc;
2311 struct drm_device *dev = crtc->dev;
2312 const struct drm_i915_private *dev_priv = dev->dev_private;
2313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2314 struct intel_plane *intel_plane;
2315 struct intel_plane_state *sprstate = NULL;
2316 int level, max_level = ilk_wm_max_level(dev);
2317 /* LP0 watermark maximums depend on this pipe alone */
2318 struct intel_wm_config config = {
2319 .num_pipes_active = 1,
2320 };
2321 struct ilk_wm_maximums max;
2322
2323 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2324 if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2325 sprstate = to_intel_plane_state(intel_plane->base.state);
2326 break;
2327 }
2328 }
2329
2330 config.sprites_enabled = sprstate->visible;
2331 config.sprites_scaled = sprstate->visible &&
2332 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2333 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2334
2335 pipe_wm->pipe_enabled = cstate->base.active;
2336 pipe_wm->sprites_enabled = sprstate->visible;
2337 pipe_wm->sprites_scaled = config.sprites_scaled;
2338
2339 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2340 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2341 max_level = 1;
2342
2343 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2344 if (config.sprites_scaled)
2345 max_level = 0;
2346
2347 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2348
2349 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2350 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2351
2352 /* LP0 watermarks always use 1/2 DDB partitioning */
2353 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2354
2355 /* At least LP0 must be valid */
2356 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2357 return false;
2358
2359 ilk_compute_wm_reg_maximums(dev, 1, &max);
2360
2361 for (level = 1; level <= max_level; level++) {
2362 struct intel_wm_level wm = {};
2363
2364 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2365
2366 /*
2367 * Disable any watermark level that exceeds the
2368 * register maximums since such watermarks are
2369 * always invalid.
2370 */
2371 if (!ilk_validate_wm_level(level, &max, &wm))
2372 break;
2373
2374 pipe_wm->wm[level] = wm;
2375 }
2376
2377 return true;
2378 }
2379
2380 /*
2381 * Merge the watermarks from all active pipes for a specific level.
2382 */
2383 static void ilk_merge_wm_level(struct drm_device *dev,
2384 int level,
2385 struct intel_wm_level *ret_wm)
2386 {
2387 const struct intel_crtc *intel_crtc;
2388
2389 ret_wm->enable = true;
2390
2391 for_each_intel_crtc(dev, intel_crtc) {
2392 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2393 const struct intel_wm_level *wm = &active->wm[level];
2394
2395 if (!active->pipe_enabled)
2396 continue;
2397
2398 /*
2399 * The watermark values may have been used in the past,
2400 * so we must maintain them in the registers for some
2401 * time even if the level is now disabled.
2402 */
2403 if (!wm->enable)
2404 ret_wm->enable = false;
2405
2406 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2407 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2408 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2409 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2410 }
2411 }
2412
2413 /*
2414 * Merge all low power watermarks for all active pipes.
2415 */
2416 static void ilk_wm_merge(struct drm_device *dev,
2417 const struct intel_wm_config *config,
2418 const struct ilk_wm_maximums *max,
2419 struct intel_pipe_wm *merged)
2420 {
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 int level, max_level = ilk_wm_max_level(dev);
2423 int last_enabled_level = max_level;
2424
2425 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2426 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2427 config->num_pipes_active > 1)
2428 return;
2429
2430 /* ILK: FBC WM must be disabled always */
2431 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2432
2433 /* merge each WM1+ level */
2434 for (level = 1; level <= max_level; level++) {
2435 struct intel_wm_level *wm = &merged->wm[level];
2436
2437 ilk_merge_wm_level(dev, level, wm);
2438
2439 if (level > last_enabled_level)
2440 wm->enable = false;
2441 else if (!ilk_validate_wm_level(level, max, wm))
2442 /* make sure all following levels get disabled */
2443 last_enabled_level = level - 1;
2444
2445 /*
2446 * The spec says it is preferred to disable
2447 * FBC WMs instead of disabling a WM level.
2448 */
2449 if (wm->fbc_val > max->fbc) {
2450 if (wm->enable)
2451 merged->fbc_wm_enabled = false;
2452 wm->fbc_val = 0;
2453 }
2454 }
2455
2456 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2457 /*
2458 * FIXME this is racy. FBC might get enabled later.
2459 * What we should check here is whether FBC can be
2460 * enabled sometime later.
2461 */
2462 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2463 intel_fbc_enabled(dev_priv)) {
2464 for (level = 2; level <= max_level; level++) {
2465 struct intel_wm_level *wm = &merged->wm[level];
2466
2467 wm->enable = false;
2468 }
2469 }
2470 }
2471
2472 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2473 {
2474 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2475 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2476 }
2477
2478 /* The value we need to program into the WM_LPx latency field */
2479 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2480 {
2481 struct drm_i915_private *dev_priv = dev->dev_private;
2482
2483 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2484 return 2 * level;
2485 else
2486 return dev_priv->wm.pri_latency[level];
2487 }
2488
2489 static void ilk_compute_wm_results(struct drm_device *dev,
2490 const struct intel_pipe_wm *merged,
2491 enum intel_ddb_partitioning partitioning,
2492 struct ilk_wm_values *results)
2493 {
2494 struct intel_crtc *intel_crtc;
2495 int level, wm_lp;
2496
2497 results->enable_fbc_wm = merged->fbc_wm_enabled;
2498 results->partitioning = partitioning;
2499
2500 /* LP1+ register values */
2501 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2502 const struct intel_wm_level *r;
2503
2504 level = ilk_wm_lp_to_level(wm_lp, merged);
2505
2506 r = &merged->wm[level];
2507
2508 /*
2509 * Maintain the watermark values even if the level is
2510 * disabled. Doing otherwise could cause underruns.
2511 */
2512 results->wm_lp[wm_lp - 1] =
2513 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2514 (r->pri_val << WM1_LP_SR_SHIFT) |
2515 r->cur_val;
2516
2517 if (r->enable)
2518 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2519
2520 if (INTEL_INFO(dev)->gen >= 8)
2521 results->wm_lp[wm_lp - 1] |=
2522 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2523 else
2524 results->wm_lp[wm_lp - 1] |=
2525 r->fbc_val << WM1_LP_FBC_SHIFT;
2526
2527 /*
2528 * Always set WM1S_LP_EN when spr_val != 0, even if the
2529 * level is disabled. Doing otherwise could cause underruns.
2530 */
2531 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2532 WARN_ON(wm_lp != 1);
2533 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2534 } else
2535 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2536 }
2537
2538 /* LP0 register values */
2539 for_each_intel_crtc(dev, intel_crtc) {
2540 enum pipe pipe = intel_crtc->pipe;
2541 const struct intel_wm_level *r =
2542 &intel_crtc->wm.active.wm[0];
2543
2544 if (WARN_ON(!r->enable))
2545 continue;
2546
2547 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2548
2549 results->wm_pipe[pipe] =
2550 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2551 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2552 r->cur_val;
2553 }
2554 }
2555
2556 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2557 * case both are at the same level. Prefer r1 in case they're the same. */
2558 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2559 struct intel_pipe_wm *r1,
2560 struct intel_pipe_wm *r2)
2561 {
2562 int level, max_level = ilk_wm_max_level(dev);
2563 int level1 = 0, level2 = 0;
2564
2565 for (level = 1; level <= max_level; level++) {
2566 if (r1->wm[level].enable)
2567 level1 = level;
2568 if (r2->wm[level].enable)
2569 level2 = level;
2570 }
2571
2572 if (level1 == level2) {
2573 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2574 return r2;
2575 else
2576 return r1;
2577 } else if (level1 > level2) {
2578 return r1;
2579 } else {
2580 return r2;
2581 }
2582 }
2583
2584 /* dirty bits used to track which watermarks need changes */
2585 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2586 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2587 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2588 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2589 #define WM_DIRTY_FBC (1 << 24)
2590 #define WM_DIRTY_DDB (1 << 25)
2591
2592 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2593 const struct ilk_wm_values *old,
2594 const struct ilk_wm_values *new)
2595 {
2596 unsigned int dirty = 0;
2597 enum pipe pipe;
2598 int wm_lp;
2599
2600 for_each_pipe(dev_priv, pipe) {
2601 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2602 dirty |= WM_DIRTY_LINETIME(pipe);
2603 /* Must disable LP1+ watermarks too */
2604 dirty |= WM_DIRTY_LP_ALL;
2605 }
2606
2607 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2608 dirty |= WM_DIRTY_PIPE(pipe);
2609 /* Must disable LP1+ watermarks too */
2610 dirty |= WM_DIRTY_LP_ALL;
2611 }
2612 }
2613
2614 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2615 dirty |= WM_DIRTY_FBC;
2616 /* Must disable LP1+ watermarks too */
2617 dirty |= WM_DIRTY_LP_ALL;
2618 }
2619
2620 if (old->partitioning != new->partitioning) {
2621 dirty |= WM_DIRTY_DDB;
2622 /* Must disable LP1+ watermarks too */
2623 dirty |= WM_DIRTY_LP_ALL;
2624 }
2625
2626 /* LP1+ watermarks already deemed dirty, no need to continue */
2627 if (dirty & WM_DIRTY_LP_ALL)
2628 return dirty;
2629
2630 /* Find the lowest numbered LP1+ watermark in need of an update... */
2631 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2632 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2633 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2634 break;
2635 }
2636
2637 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2638 for (; wm_lp <= 3; wm_lp++)
2639 dirty |= WM_DIRTY_LP(wm_lp);
2640
2641 return dirty;
2642 }
2643
2644 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2645 unsigned int dirty)
2646 {
2647 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2648 bool changed = false;
2649
2650 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2651 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2652 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2653 changed = true;
2654 }
2655 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2656 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2657 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2658 changed = true;
2659 }
2660 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2661 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2662 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2663 changed = true;
2664 }
2665
2666 /*
2667 * Don't touch WM1S_LP_EN here.
2668 * Doing so could cause underruns.
2669 */
2670
2671 return changed;
2672 }
2673
2674 /*
2675 * The spec says we shouldn't write when we don't need, because every write
2676 * causes WMs to be re-evaluated, expending some power.
2677 */
2678 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2679 struct ilk_wm_values *results)
2680 {
2681 struct drm_device *dev = dev_priv->dev;
2682 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2683 unsigned int dirty;
2684 uint32_t val;
2685
2686 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2687 if (!dirty)
2688 return;
2689
2690 _ilk_disable_lp_wm(dev_priv, dirty);
2691
2692 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2693 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2694 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2695 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2696 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2697 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2698
2699 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2700 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2701 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2702 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2703 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2704 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2705
2706 if (dirty & WM_DIRTY_DDB) {
2707 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2708 val = I915_READ(WM_MISC);
2709 if (results->partitioning == INTEL_DDB_PART_1_2)
2710 val &= ~WM_MISC_DATA_PARTITION_5_6;
2711 else
2712 val |= WM_MISC_DATA_PARTITION_5_6;
2713 I915_WRITE(WM_MISC, val);
2714 } else {
2715 val = I915_READ(DISP_ARB_CTL2);
2716 if (results->partitioning == INTEL_DDB_PART_1_2)
2717 val &= ~DISP_DATA_PARTITION_5_6;
2718 else
2719 val |= DISP_DATA_PARTITION_5_6;
2720 I915_WRITE(DISP_ARB_CTL2, val);
2721 }
2722 }
2723
2724 if (dirty & WM_DIRTY_FBC) {
2725 val = I915_READ(DISP_ARB_CTL);
2726 if (results->enable_fbc_wm)
2727 val &= ~DISP_FBC_WM_DIS;
2728 else
2729 val |= DISP_FBC_WM_DIS;
2730 I915_WRITE(DISP_ARB_CTL, val);
2731 }
2732
2733 if (dirty & WM_DIRTY_LP(1) &&
2734 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2735 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2736
2737 if (INTEL_INFO(dev)->gen >= 7) {
2738 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2739 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2740 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2741 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2742 }
2743
2744 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2745 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2746 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2747 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2748 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2749 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2750
2751 dev_priv->wm.hw = *results;
2752 }
2753
2754 static bool ilk_disable_lp_wm(struct drm_device *dev)
2755 {
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757
2758 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2759 }
2760
2761 /*
2762 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2763 * different active planes.
2764 */
2765
2766 #define SKL_DDB_SIZE 896 /* in blocks */
2767 #define BXT_DDB_SIZE 512
2768
2769 static void
2770 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2771 struct drm_crtc *for_crtc,
2772 const struct intel_wm_config *config,
2773 const struct skl_pipe_wm_parameters *params,
2774 struct skl_ddb_entry *alloc /* out */)
2775 {
2776 struct drm_crtc *crtc;
2777 unsigned int pipe_size, ddb_size;
2778 int nth_active_pipe;
2779
2780 if (!params->active) {
2781 alloc->start = 0;
2782 alloc->end = 0;
2783 return;
2784 }
2785
2786 if (IS_BROXTON(dev))
2787 ddb_size = BXT_DDB_SIZE;
2788 else
2789 ddb_size = SKL_DDB_SIZE;
2790
2791 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2792
2793 nth_active_pipe = 0;
2794 for_each_crtc(dev, crtc) {
2795 if (!to_intel_crtc(crtc)->active)
2796 continue;
2797
2798 if (crtc == for_crtc)
2799 break;
2800
2801 nth_active_pipe++;
2802 }
2803
2804 pipe_size = ddb_size / config->num_pipes_active;
2805 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2806 alloc->end = alloc->start + pipe_size;
2807 }
2808
2809 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2810 {
2811 if (config->num_pipes_active == 1)
2812 return 32;
2813
2814 return 8;
2815 }
2816
2817 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2818 {
2819 entry->start = reg & 0x3ff;
2820 entry->end = (reg >> 16) & 0x3ff;
2821 if (entry->end)
2822 entry->end += 1;
2823 }
2824
2825 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2826 struct skl_ddb_allocation *ddb /* out */)
2827 {
2828 enum pipe pipe;
2829 int plane;
2830 u32 val;
2831
2832 memset(ddb, 0, sizeof(*ddb));
2833
2834 for_each_pipe(dev_priv, pipe) {
2835 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2836 continue;
2837
2838 for_each_plane(dev_priv, pipe, plane) {
2839 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2840 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2841 val);
2842 }
2843
2844 val = I915_READ(CUR_BUF_CFG(pipe));
2845 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2846 val);
2847 }
2848 }
2849
2850 static unsigned int
2851 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2852 {
2853
2854 /* for planar format */
2855 if (p->y_bytes_per_pixel) {
2856 if (y) /* y-plane data rate */
2857 return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2858 else /* uv-plane data rate */
2859 return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2860 }
2861
2862 /* for packed formats */
2863 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2864 }
2865
2866 /*
2867 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2868 * a 8192x4096@32bpp framebuffer:
2869 * 3 * 4096 * 8192 * 4 < 2^32
2870 */
2871 static unsigned int
2872 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2873 const struct skl_pipe_wm_parameters *params)
2874 {
2875 unsigned int total_data_rate = 0;
2876 int plane;
2877
2878 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2879 const struct intel_plane_wm_parameters *p;
2880
2881 p = ¶ms->plane[plane];
2882 if (!p->enabled)
2883 continue;
2884
2885 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2886 if (p->y_bytes_per_pixel) {
2887 total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2888 }
2889 }
2890
2891 return total_data_rate;
2892 }
2893
2894 static void
2895 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2896 const struct intel_wm_config *config,
2897 const struct skl_pipe_wm_parameters *params,
2898 struct skl_ddb_allocation *ddb /* out */)
2899 {
2900 struct drm_device *dev = crtc->dev;
2901 struct drm_i915_private *dev_priv = dev->dev_private;
2902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903 enum pipe pipe = intel_crtc->pipe;
2904 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2905 uint16_t alloc_size, start, cursor_blocks;
2906 uint16_t minimum[I915_MAX_PLANES];
2907 uint16_t y_minimum[I915_MAX_PLANES];
2908 unsigned int total_data_rate;
2909 int plane;
2910
2911 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2912 alloc_size = skl_ddb_entry_size(alloc);
2913 if (alloc_size == 0) {
2914 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2915 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2916 sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2917 return;
2918 }
2919
2920 cursor_blocks = skl_cursor_allocation(config);
2921 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2922 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2923
2924 alloc_size -= cursor_blocks;
2925 alloc->end -= cursor_blocks;
2926
2927 /* 1. Allocate the mininum required blocks for each active plane */
2928 for_each_plane(dev_priv, pipe, plane) {
2929 const struct intel_plane_wm_parameters *p;
2930
2931 p = ¶ms->plane[plane];
2932 if (!p->enabled)
2933 continue;
2934
2935 minimum[plane] = 8;
2936 alloc_size -= minimum[plane];
2937 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2938 alloc_size -= y_minimum[plane];
2939 }
2940
2941 /*
2942 * 2. Distribute the remaining space in proportion to the amount of
2943 * data each plane needs to fetch from memory.
2944 *
2945 * FIXME: we may not allocate every single block here.
2946 */
2947 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2948
2949 start = alloc->start;
2950 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2951 const struct intel_plane_wm_parameters *p;
2952 unsigned int data_rate, y_data_rate;
2953 uint16_t plane_blocks, y_plane_blocks = 0;
2954
2955 p = ¶ms->plane[plane];
2956 if (!p->enabled)
2957 continue;
2958
2959 data_rate = skl_plane_relative_data_rate(p, 0);
2960
2961 /*
2962 * allocation for (packed formats) or (uv-plane part of planar format):
2963 * promote the expression to 64 bits to avoid overflowing, the
2964 * result is < available as data_rate / total_data_rate < 1
2965 */
2966 plane_blocks = minimum[plane];
2967 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2968 total_data_rate);
2969
2970 ddb->plane[pipe][plane].start = start;
2971 ddb->plane[pipe][plane].end = start + plane_blocks;
2972
2973 start += plane_blocks;
2974
2975 /*
2976 * allocation for y_plane part of planar format:
2977 */
2978 if (p->y_bytes_per_pixel) {
2979 y_data_rate = skl_plane_relative_data_rate(p, 1);
2980 y_plane_blocks = y_minimum[plane];
2981 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2982 total_data_rate);
2983
2984 ddb->y_plane[pipe][plane].start = start;
2985 ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2986
2987 start += y_plane_blocks;
2988 }
2989
2990 }
2991
2992 }
2993
2994 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2995 {
2996 /* TODO: Take into account the scalers once we support them */
2997 return config->base.adjusted_mode.crtc_clock;
2998 }
2999
3000 /*
3001 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3002 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3003 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3004 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3005 */
3006 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3007 uint32_t latency)
3008 {
3009 uint32_t wm_intermediate_val, ret;
3010
3011 if (latency == 0)
3012 return UINT_MAX;
3013
3014 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3015 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3016
3017 return ret;
3018 }
3019
3020 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3021 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3022 uint64_t tiling, uint32_t latency)
3023 {
3024 uint32_t ret;
3025 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3026 uint32_t wm_intermediate_val;
3027
3028 if (latency == 0)
3029 return UINT_MAX;
3030
3031 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3032
3033 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3034 tiling == I915_FORMAT_MOD_Yf_TILED) {
3035 plane_bytes_per_line *= 4;
3036 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3037 plane_blocks_per_line /= 4;
3038 } else {
3039 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3040 }
3041
3042 wm_intermediate_val = latency * pixel_rate;
3043 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3044 plane_blocks_per_line;
3045
3046 return ret;
3047 }
3048
3049 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3050 const struct intel_crtc *intel_crtc)
3051 {
3052 struct drm_device *dev = intel_crtc->base.dev;
3053 struct drm_i915_private *dev_priv = dev->dev_private;
3054 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3055 enum pipe pipe = intel_crtc->pipe;
3056
3057 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3058 sizeof(new_ddb->plane[pipe])))
3059 return true;
3060
3061 if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3062 sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3063 return true;
3064
3065 return false;
3066 }
3067
3068 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3069 struct intel_wm_config *config)
3070 {
3071 struct drm_crtc *crtc;
3072 struct drm_plane *plane;
3073
3074 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3075 config->num_pipes_active += to_intel_crtc(crtc)->active;
3076
3077 /* FIXME: I don't think we need those two global parameters on SKL */
3078 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3079 struct intel_plane *intel_plane = to_intel_plane(plane);
3080
3081 config->sprites_enabled |= intel_plane->wm.enabled;
3082 config->sprites_scaled |= intel_plane->wm.scaled;
3083 }
3084 }
3085
3086 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3087 struct skl_pipe_wm_parameters *p)
3088 {
3089 struct drm_device *dev = crtc->dev;
3090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3091 enum pipe pipe = intel_crtc->pipe;
3092 struct drm_plane *plane;
3093 struct drm_framebuffer *fb;
3094 int i = 1; /* Index for sprite planes start */
3095
3096 p->active = intel_crtc->active;
3097 if (p->active) {
3098 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3099 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3100
3101 fb = crtc->primary->state->fb;
3102 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3103 if (fb) {
3104 p->plane[0].enabled = true;
3105 p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3106 drm_format_plane_cpp(fb->pixel_format, 1) :
3107 drm_format_plane_cpp(fb->pixel_format, 0);
3108 p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3109 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3110 p->plane[0].tiling = fb->modifier[0];
3111 } else {
3112 p->plane[0].enabled = false;
3113 p->plane[0].bytes_per_pixel = 0;
3114 p->plane[0].y_bytes_per_pixel = 0;
3115 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3116 }
3117 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3118 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3119 p->plane[0].rotation = crtc->primary->state->rotation;
3120
3121 fb = crtc->cursor->state->fb;
3122 p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3123 if (fb) {
3124 p->plane[PLANE_CURSOR].enabled = true;
3125 p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3126 p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3127 p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3128 } else {
3129 p->plane[PLANE_CURSOR].enabled = false;
3130 p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3131 p->plane[PLANE_CURSOR].horiz_pixels = 64;
3132 p->plane[PLANE_CURSOR].vert_pixels = 64;
3133 }
3134 }
3135
3136 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3137 struct intel_plane *intel_plane = to_intel_plane(plane);
3138
3139 if (intel_plane->pipe == pipe &&
3140 plane->type == DRM_PLANE_TYPE_OVERLAY)
3141 p->plane[i++] = intel_plane->wm;
3142 }
3143 }
3144
3145 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3146 struct skl_pipe_wm_parameters *p,
3147 struct intel_plane_wm_parameters *p_params,
3148 uint16_t ddb_allocation,
3149 int level,
3150 uint16_t *out_blocks, /* out */
3151 uint8_t *out_lines /* out */)
3152 {
3153 uint32_t latency = dev_priv->wm.skl_latency[level];
3154 uint32_t method1, method2;
3155 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3156 uint32_t res_blocks, res_lines;
3157 uint32_t selected_result;
3158 uint8_t bytes_per_pixel;
3159
3160 if (latency == 0 || !p->active || !p_params->enabled)
3161 return false;
3162
3163 bytes_per_pixel = p_params->y_bytes_per_pixel ?
3164 p_params->y_bytes_per_pixel :
3165 p_params->bytes_per_pixel;
3166 method1 = skl_wm_method1(p->pixel_rate,
3167 bytes_per_pixel,
3168 latency);
3169 method2 = skl_wm_method2(p->pixel_rate,
3170 p->pipe_htotal,
3171 p_params->horiz_pixels,
3172 bytes_per_pixel,
3173 p_params->tiling,
3174 latency);
3175
3176 plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3177 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3178
3179 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3180 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3181 uint32_t min_scanlines = 4;
3182 uint32_t y_tile_minimum;
3183 if (intel_rotation_90_or_270(p_params->rotation)) {
3184 switch (p_params->bytes_per_pixel) {
3185 case 1:
3186 min_scanlines = 16;
3187 break;
3188 case 2:
3189 min_scanlines = 8;
3190 break;
3191 case 8:
3192 WARN(1, "Unsupported pixel depth for rotation");
3193 }
3194 }
3195 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3196 selected_result = max(method2, y_tile_minimum);
3197 } else {
3198 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3199 selected_result = min(method1, method2);
3200 else
3201 selected_result = method1;
3202 }
3203
3204 res_blocks = selected_result + 1;
3205 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3206
3207 if (level >= 1 && level <= 7) {
3208 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3209 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3210 res_lines += 4;
3211 else
3212 res_blocks++;
3213 }
3214
3215 if (res_blocks >= ddb_allocation || res_lines > 31)
3216 return false;
3217
3218 *out_blocks = res_blocks;
3219 *out_lines = res_lines;
3220
3221 return true;
3222 }
3223
3224 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3225 struct skl_ddb_allocation *ddb,
3226 struct skl_pipe_wm_parameters *p,
3227 enum pipe pipe,
3228 int level,
3229 int num_planes,
3230 struct skl_wm_level *result)
3231 {
3232 uint16_t ddb_blocks;
3233 int i;
3234
3235 for (i = 0; i < num_planes; i++) {
3236 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3237
3238 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3239 p, &p->plane[i],
3240 ddb_blocks,
3241 level,
3242 &result->plane_res_b[i],
3243 &result->plane_res_l[i]);
3244 }
3245
3246 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3247 result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3248 &p->plane[PLANE_CURSOR],
3249 ddb_blocks, level,
3250 &result->plane_res_b[PLANE_CURSOR],
3251 &result->plane_res_l[PLANE_CURSOR]);
3252 }
3253
3254 static uint32_t
3255 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3256 {
3257 if (!to_intel_crtc(crtc)->active)
3258 return 0;
3259
3260 if (WARN_ON(p->pixel_rate == 0))
3261 return 0;
3262
3263 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3264 }
3265
3266 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3267 struct skl_pipe_wm_parameters *params,
3268 struct skl_wm_level *trans_wm /* out */)
3269 {
3270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271 int i;
3272
3273 if (!params->active)
3274 return;
3275
3276 /* Until we know more, just disable transition WMs */
3277 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3278 trans_wm->plane_en[i] = false;
3279 trans_wm->plane_en[PLANE_CURSOR] = false;
3280 }
3281
3282 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3283 struct skl_ddb_allocation *ddb,
3284 struct skl_pipe_wm_parameters *params,
3285 struct skl_pipe_wm *pipe_wm)
3286 {
3287 struct drm_device *dev = crtc->dev;
3288 const struct drm_i915_private *dev_priv = dev->dev_private;
3289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290 int level, max_level = ilk_wm_max_level(dev);
3291
3292 for (level = 0; level <= max_level; level++) {
3293 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3294 level, intel_num_planes(intel_crtc),
3295 &pipe_wm->wm[level]);
3296 }
3297 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3298
3299 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3300 }
3301
3302 static void skl_compute_wm_results(struct drm_device *dev,
3303 struct skl_pipe_wm_parameters *p,
3304 struct skl_pipe_wm *p_wm,
3305 struct skl_wm_values *r,
3306 struct intel_crtc *intel_crtc)
3307 {
3308 int level, max_level = ilk_wm_max_level(dev);
3309 enum pipe pipe = intel_crtc->pipe;
3310 uint32_t temp;
3311 int i;
3312
3313 for (level = 0; level <= max_level; level++) {
3314 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3315 temp = 0;
3316
3317 temp |= p_wm->wm[level].plane_res_l[i] <<
3318 PLANE_WM_LINES_SHIFT;
3319 temp |= p_wm->wm[level].plane_res_b[i];
3320 if (p_wm->wm[level].plane_en[i])
3321 temp |= PLANE_WM_EN;
3322
3323 r->plane[pipe][i][level] = temp;
3324 }
3325
3326 temp = 0;
3327
3328 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3329 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3330
3331 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3332 temp |= PLANE_WM_EN;
3333
3334 r->plane[pipe][PLANE_CURSOR][level] = temp;
3335
3336 }
3337
3338 /* transition WMs */
3339 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3340 temp = 0;
3341 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3342 temp |= p_wm->trans_wm.plane_res_b[i];
3343 if (p_wm->trans_wm.plane_en[i])
3344 temp |= PLANE_WM_EN;
3345
3346 r->plane_trans[pipe][i] = temp;
3347 }
3348
3349 temp = 0;
3350 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3351 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3352 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3353 temp |= PLANE_WM_EN;
3354
3355 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3356
3357 r->wm_linetime[pipe] = p_wm->linetime;
3358 }
3359
3360 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3361 const struct skl_ddb_entry *entry)
3362 {
3363 if (entry->end)
3364 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3365 else
3366 I915_WRITE(reg, 0);
3367 }
3368
3369 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3370 const struct skl_wm_values *new)
3371 {
3372 struct drm_device *dev = dev_priv->dev;
3373 struct intel_crtc *crtc;
3374
3375 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3376 int i, level, max_level = ilk_wm_max_level(dev);
3377 enum pipe pipe = crtc->pipe;
3378
3379 if (!new->dirty[pipe])
3380 continue;
3381
3382 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3383
3384 for (level = 0; level <= max_level; level++) {
3385 for (i = 0; i < intel_num_planes(crtc); i++)
3386 I915_WRITE(PLANE_WM(pipe, i, level),
3387 new->plane[pipe][i][level]);
3388 I915_WRITE(CUR_WM(pipe, level),
3389 new->plane[pipe][PLANE_CURSOR][level]);
3390 }
3391 for (i = 0; i < intel_num_planes(crtc); i++)
3392 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3393 new->plane_trans[pipe][i]);
3394 I915_WRITE(CUR_WM_TRANS(pipe),
3395 new->plane_trans[pipe][PLANE_CURSOR]);
3396
3397 for (i = 0; i < intel_num_planes(crtc); i++) {
3398 skl_ddb_entry_write(dev_priv,
3399 PLANE_BUF_CFG(pipe, i),
3400 &new->ddb.plane[pipe][i]);
3401 skl_ddb_entry_write(dev_priv,
3402 PLANE_NV12_BUF_CFG(pipe, i),
3403 &new->ddb.y_plane[pipe][i]);
3404 }
3405
3406 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3407 &new->ddb.plane[pipe][PLANE_CURSOR]);
3408 }
3409 }
3410
3411 /*
3412 * When setting up a new DDB allocation arrangement, we need to correctly
3413 * sequence the times at which the new allocations for the pipes are taken into
3414 * account or we'll have pipes fetching from space previously allocated to
3415 * another pipe.
3416 *
3417 * Roughly the sequence looks like:
3418 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3419 * overlapping with a previous light-up pipe (another way to put it is:
3420 * pipes with their new allocation strickly included into their old ones).
3421 * 2. re-allocate the other pipes that get their allocation reduced
3422 * 3. allocate the pipes having their allocation increased
3423 *
3424 * Steps 1. and 2. are here to take care of the following case:
3425 * - Initially DDB looks like this:
3426 * | B | C |
3427 * - enable pipe A.
3428 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3429 * allocation
3430 * | A | B | C |
3431 *
3432 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3433 */
3434
3435 static void
3436 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3437 {
3438 int plane;
3439
3440 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3441
3442 for_each_plane(dev_priv, pipe, plane) {
3443 I915_WRITE(PLANE_SURF(pipe, plane),
3444 I915_READ(PLANE_SURF(pipe, plane)));
3445 }
3446 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3447 }
3448
3449 static bool
3450 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3451 const struct skl_ddb_allocation *new,
3452 enum pipe pipe)
3453 {
3454 uint16_t old_size, new_size;
3455
3456 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3457 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3458
3459 return old_size != new_size &&
3460 new->pipe[pipe].start >= old->pipe[pipe].start &&
3461 new->pipe[pipe].end <= old->pipe[pipe].end;
3462 }
3463
3464 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3465 struct skl_wm_values *new_values)
3466 {
3467 struct drm_device *dev = dev_priv->dev;
3468 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3469 bool reallocated[I915_MAX_PIPES] = {};
3470 struct intel_crtc *crtc;
3471 enum pipe pipe;
3472
3473 new_ddb = &new_values->ddb;
3474 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3475
3476 /*
3477 * First pass: flush the pipes with the new allocation contained into
3478 * the old space.
3479 *
3480 * We'll wait for the vblank on those pipes to ensure we can safely
3481 * re-allocate the freed space without this pipe fetching from it.
3482 */
3483 for_each_intel_crtc(dev, crtc) {
3484 if (!crtc->active)
3485 continue;
3486
3487 pipe = crtc->pipe;
3488
3489 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3490 continue;
3491
3492 skl_wm_flush_pipe(dev_priv, pipe, 1);
3493 intel_wait_for_vblank(dev, pipe);
3494
3495 reallocated[pipe] = true;
3496 }
3497
3498
3499 /*
3500 * Second pass: flush the pipes that are having their allocation
3501 * reduced, but overlapping with a previous allocation.
3502 *
3503 * Here as well we need to wait for the vblank to make sure the freed
3504 * space is not used anymore.
3505 */
3506 for_each_intel_crtc(dev, crtc) {
3507 if (!crtc->active)
3508 continue;
3509
3510 pipe = crtc->pipe;
3511
3512 if (reallocated[pipe])
3513 continue;
3514
3515 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3516 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3517 skl_wm_flush_pipe(dev_priv, pipe, 2);
3518 intel_wait_for_vblank(dev, pipe);
3519 reallocated[pipe] = true;
3520 }
3521 }
3522
3523 /*
3524 * Third pass: flush the pipes that got more space allocated.
3525 *
3526 * We don't need to actively wait for the update here, next vblank
3527 * will just get more DDB space with the correct WM values.
3528 */
3529 for_each_intel_crtc(dev, crtc) {
3530 if (!crtc->active)
3531 continue;
3532
3533 pipe = crtc->pipe;
3534
3535 /*
3536 * At this point, only the pipes more space than before are
3537 * left to re-allocate.
3538 */
3539 if (reallocated[pipe])
3540 continue;
3541
3542 skl_wm_flush_pipe(dev_priv, pipe, 3);
3543 }
3544 }
3545
3546 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3547 struct skl_pipe_wm_parameters *params,
3548 struct intel_wm_config *config,
3549 struct skl_ddb_allocation *ddb, /* out */
3550 struct skl_pipe_wm *pipe_wm /* out */)
3551 {
3552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553
3554 skl_compute_wm_pipe_parameters(crtc, params);
3555 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3556 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3557
3558 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3559 return false;
3560
3561 intel_crtc->wm.skl_active = *pipe_wm;
3562
3563 return true;
3564 }
3565
3566 static void skl_update_other_pipe_wm(struct drm_device *dev,
3567 struct drm_crtc *crtc,
3568 struct intel_wm_config *config,
3569 struct skl_wm_values *r)
3570 {
3571 struct intel_crtc *intel_crtc;
3572 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3573
3574 /*
3575 * If the WM update hasn't changed the allocation for this_crtc (the
3576 * crtc we are currently computing the new WM values for), other
3577 * enabled crtcs will keep the same allocation and we don't need to
3578 * recompute anything for them.
3579 */
3580 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3581 return;
3582
3583 /*
3584 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3585 * other active pipes need new DDB allocation and WM values.
3586 */
3587 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3588 base.head) {
3589 struct skl_pipe_wm_parameters params = {};
3590 struct skl_pipe_wm pipe_wm = {};
3591 bool wm_changed;
3592
3593 if (this_crtc->pipe == intel_crtc->pipe)
3594 continue;
3595
3596 if (!intel_crtc->active)
3597 continue;
3598
3599 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3600 ¶ms, config,
3601 &r->ddb, &pipe_wm);
3602
3603 /*
3604 * If we end up re-computing the other pipe WM values, it's
3605 * because it was really needed, so we expect the WM values to
3606 * be different.
3607 */
3608 WARN_ON(!wm_changed);
3609
3610 skl_compute_wm_results(dev, ¶ms, &pipe_wm, r, intel_crtc);
3611 r->dirty[intel_crtc->pipe] = true;
3612 }
3613 }
3614
3615 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3616 {
3617 watermarks->wm_linetime[pipe] = 0;
3618 memset(watermarks->plane[pipe], 0,
3619 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3620 memset(watermarks->plane_trans[pipe],
3621 0, sizeof(uint32_t) * I915_MAX_PLANES);
3622 watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3623
3624 /* Clear ddb entries for pipe */
3625 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3626 memset(&watermarks->ddb.plane[pipe], 0,
3627 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3628 memset(&watermarks->ddb.y_plane[pipe], 0,
3629 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3630 memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3631 sizeof(struct skl_ddb_entry));
3632
3633 }
3634
3635 static void skl_update_wm(struct drm_crtc *crtc)
3636 {
3637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3638 struct drm_device *dev = crtc->dev;
3639 struct drm_i915_private *dev_priv = dev->dev_private;
3640 struct skl_pipe_wm_parameters params = {};
3641 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3642 struct skl_pipe_wm pipe_wm = {};
3643 struct intel_wm_config config = {};
3644
3645
3646 /* Clear all dirty flags */
3647 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3648
3649 skl_clear_wm(results, intel_crtc->pipe);
3650
3651 skl_compute_wm_global_parameters(dev, &config);
3652
3653 if (!skl_update_pipe_wm(crtc, ¶ms, &config,
3654 &results->ddb, &pipe_wm))
3655 return;
3656
3657 skl_compute_wm_results(dev, ¶ms, &pipe_wm, results, intel_crtc);
3658 results->dirty[intel_crtc->pipe] = true;
3659
3660 skl_update_other_pipe_wm(dev, crtc, &config, results);
3661 skl_write_wm_values(dev_priv, results);
3662 skl_flush_wm_values(dev_priv, results);
3663
3664 /* store the new configuration */
3665 dev_priv->wm.skl_hw = *results;
3666 }
3667
3668 static void
3669 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3670 uint32_t sprite_width, uint32_t sprite_height,
3671 int pixel_size, bool enabled, bool scaled)
3672 {
3673 struct intel_plane *intel_plane = to_intel_plane(plane);
3674 struct drm_framebuffer *fb = plane->state->fb;
3675
3676 intel_plane->wm.enabled = enabled;
3677 intel_plane->wm.scaled = scaled;
3678 intel_plane->wm.horiz_pixels = sprite_width;
3679 intel_plane->wm.vert_pixels = sprite_height;
3680 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3681
3682 /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3683 intel_plane->wm.bytes_per_pixel =
3684 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3685 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3686 intel_plane->wm.y_bytes_per_pixel =
3687 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3688 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3689
3690 /*
3691 * Framebuffer can be NULL on plane disable, but it does not
3692 * matter for watermarks if we assume no tiling in that case.
3693 */
3694 if (fb)
3695 intel_plane->wm.tiling = fb->modifier[0];
3696 intel_plane->wm.rotation = plane->state->rotation;
3697
3698 skl_update_wm(crtc);
3699 }
3700
3701 static void ilk_update_wm(struct drm_crtc *crtc)
3702 {
3703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3704 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3705 struct drm_device *dev = crtc->dev;
3706 struct drm_i915_private *dev_priv = dev->dev_private;
3707 struct ilk_wm_maximums max;
3708 struct ilk_wm_values results = {};
3709 enum intel_ddb_partitioning partitioning;
3710 struct intel_pipe_wm pipe_wm = {};
3711 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3712 struct intel_wm_config config = {};
3713
3714 WARN_ON(cstate->base.active != intel_crtc->active);
3715
3716 intel_compute_pipe_wm(cstate, &pipe_wm);
3717
3718 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3719 return;
3720
3721 intel_crtc->wm.active = pipe_wm;
3722
3723 ilk_compute_wm_config(dev, &config);
3724
3725 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3726 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3727
3728 /* 5/6 split only in single pipe config on IVB+ */
3729 if (INTEL_INFO(dev)->gen >= 7 &&
3730 config.num_pipes_active == 1 && config.sprites_enabled) {
3731 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3732 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3733
3734 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3735 } else {
3736 best_lp_wm = &lp_wm_1_2;
3737 }
3738
3739 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3740 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3741
3742 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3743
3744 ilk_write_wm_values(dev_priv, &results);
3745 }
3746
3747 static void
3748 ilk_update_sprite_wm(struct drm_plane *plane,
3749 struct drm_crtc *crtc,
3750 uint32_t sprite_width, uint32_t sprite_height,
3751 int pixel_size, bool enabled, bool scaled)
3752 {
3753 struct drm_device *dev = plane->dev;
3754 struct intel_plane *intel_plane = to_intel_plane(plane);
3755
3756 /*
3757 * IVB workaround: must disable low power watermarks for at least
3758 * one frame before enabling scaling. LP watermarks can be re-enabled
3759 * when scaling is disabled.
3760 *
3761 * WaCxSRDisabledForSpriteScaling:ivb
3762 */
3763 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3764 intel_wait_for_vblank(dev, intel_plane->pipe);
3765
3766 ilk_update_wm(crtc);
3767 }
3768
3769 static void skl_pipe_wm_active_state(uint32_t val,
3770 struct skl_pipe_wm *active,
3771 bool is_transwm,
3772 bool is_cursor,
3773 int i,
3774 int level)
3775 {
3776 bool is_enabled = (val & PLANE_WM_EN) != 0;
3777
3778 if (!is_transwm) {
3779 if (!is_cursor) {
3780 active->wm[level].plane_en[i] = is_enabled;
3781 active->wm[level].plane_res_b[i] =
3782 val & PLANE_WM_BLOCKS_MASK;
3783 active->wm[level].plane_res_l[i] =
3784 (val >> PLANE_WM_LINES_SHIFT) &
3785 PLANE_WM_LINES_MASK;
3786 } else {
3787 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3788 active->wm[level].plane_res_b[PLANE_CURSOR] =
3789 val & PLANE_WM_BLOCKS_MASK;
3790 active->wm[level].plane_res_l[PLANE_CURSOR] =
3791 (val >> PLANE_WM_LINES_SHIFT) &
3792 PLANE_WM_LINES_MASK;
3793 }
3794 } else {
3795 if (!is_cursor) {
3796 active->trans_wm.plane_en[i] = is_enabled;
3797 active->trans_wm.plane_res_b[i] =
3798 val & PLANE_WM_BLOCKS_MASK;
3799 active->trans_wm.plane_res_l[i] =
3800 (val >> PLANE_WM_LINES_SHIFT) &
3801 PLANE_WM_LINES_MASK;
3802 } else {
3803 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3804 active->trans_wm.plane_res_b[PLANE_CURSOR] =
3805 val & PLANE_WM_BLOCKS_MASK;
3806 active->trans_wm.plane_res_l[PLANE_CURSOR] =
3807 (val >> PLANE_WM_LINES_SHIFT) &
3808 PLANE_WM_LINES_MASK;
3809 }
3810 }
3811 }
3812
3813 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3814 {
3815 struct drm_device *dev = crtc->dev;
3816 struct drm_i915_private *dev_priv = dev->dev_private;
3817 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3819 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3820 enum pipe pipe = intel_crtc->pipe;
3821 int level, i, max_level;
3822 uint32_t temp;
3823
3824 max_level = ilk_wm_max_level(dev);
3825
3826 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3827
3828 for (level = 0; level <= max_level; level++) {
3829 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3830 hw->plane[pipe][i][level] =
3831 I915_READ(PLANE_WM(pipe, i, level));
3832 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3833 }
3834
3835 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3836 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3837 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3838
3839 if (!intel_crtc->active)
3840 return;
3841
3842 hw->dirty[pipe] = true;
3843
3844 active->linetime = hw->wm_linetime[pipe];
3845
3846 for (level = 0; level <= max_level; level++) {
3847 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3848 temp = hw->plane[pipe][i][level];
3849 skl_pipe_wm_active_state(temp, active, false,
3850 false, i, level);
3851 }
3852 temp = hw->plane[pipe][PLANE_CURSOR][level];
3853 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3854 }
3855
3856 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3857 temp = hw->plane_trans[pipe][i];
3858 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3859 }
3860
3861 temp = hw->plane_trans[pipe][PLANE_CURSOR];
3862 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3863 }
3864
3865 void skl_wm_get_hw_state(struct drm_device *dev)
3866 {
3867 struct drm_i915_private *dev_priv = dev->dev_private;
3868 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3869 struct drm_crtc *crtc;
3870
3871 skl_ddb_get_hw_state(dev_priv, ddb);
3872 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3873 skl_pipe_wm_get_hw_state(crtc);
3874 }
3875
3876 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3877 {
3878 struct drm_device *dev = crtc->dev;
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3882 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3883 enum pipe pipe = intel_crtc->pipe;
3884 static const unsigned int wm0_pipe_reg[] = {
3885 [PIPE_A] = WM0_PIPEA_ILK,
3886 [PIPE_B] = WM0_PIPEB_ILK,
3887 [PIPE_C] = WM0_PIPEC_IVB,
3888 };
3889
3890 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3891 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3892 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3893
3894 memset(active, 0, sizeof(*active));
3895
3896 active->pipe_enabled = intel_crtc->active;
3897
3898 if (active->pipe_enabled) {
3899 u32 tmp = hw->wm_pipe[pipe];
3900
3901 /*
3902 * For active pipes LP0 watermark is marked as
3903 * enabled, and LP1+ watermaks as disabled since
3904 * we can't really reverse compute them in case
3905 * multiple pipes are active.
3906 */
3907 active->wm[0].enable = true;
3908 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3909 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3910 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3911 active->linetime = hw->wm_linetime[pipe];
3912 } else {
3913 int level, max_level = ilk_wm_max_level(dev);
3914
3915 /*
3916 * For inactive pipes, all watermark levels
3917 * should be marked as enabled but zeroed,
3918 * which is what we'd compute them to.
3919 */
3920 for (level = 0; level <= max_level; level++)
3921 active->wm[level].enable = true;
3922 }
3923 }
3924
3925 #define _FW_WM(value, plane) \
3926 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3927 #define _FW_WM_VLV(value, plane) \
3928 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3929
3930 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3931 struct vlv_wm_values *wm)
3932 {
3933 enum pipe pipe;
3934 uint32_t tmp;
3935
3936 for_each_pipe(dev_priv, pipe) {
3937 tmp = I915_READ(VLV_DDL(pipe));
3938
3939 wm->ddl[pipe].primary =
3940 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3941 wm->ddl[pipe].cursor =
3942 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3943 wm->ddl[pipe].sprite[0] =
3944 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3945 wm->ddl[pipe].sprite[1] =
3946 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3947 }
3948
3949 tmp = I915_READ(DSPFW1);
3950 wm->sr.plane = _FW_WM(tmp, SR);
3951 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3952 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3953 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3954
3955 tmp = I915_READ(DSPFW2);
3956 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3957 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3958 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3959
3960 tmp = I915_READ(DSPFW3);
3961 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3962
3963 if (IS_CHERRYVIEW(dev_priv)) {
3964 tmp = I915_READ(DSPFW7_CHV);
3965 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3966 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3967
3968 tmp = I915_READ(DSPFW8_CHV);
3969 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3970 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3971
3972 tmp = I915_READ(DSPFW9_CHV);
3973 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3974 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3975
3976 tmp = I915_READ(DSPHOWM);
3977 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3978 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3979 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3980 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3981 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3982 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3983 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3984 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3985 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3986 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3987 } else {
3988 tmp = I915_READ(DSPFW7);
3989 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3990 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3991
3992 tmp = I915_READ(DSPHOWM);
3993 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3994 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3995 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3996 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3997 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3998 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3999 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4000 }
4001 }
4002
4003 #undef _FW_WM
4004 #undef _FW_WM_VLV
4005
4006 void vlv_wm_get_hw_state(struct drm_device *dev)
4007 {
4008 struct drm_i915_private *dev_priv = to_i915(dev);
4009 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4010 struct intel_plane *plane;
4011 enum pipe pipe;
4012 u32 val;
4013
4014 vlv_read_wm_values(dev_priv, wm);
4015
4016 for_each_intel_plane(dev, plane) {
4017 switch (plane->base.type) {
4018 int sprite;
4019 case DRM_PLANE_TYPE_CURSOR:
4020 plane->wm.fifo_size = 63;
4021 break;
4022 case DRM_PLANE_TYPE_PRIMARY:
4023 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4024 break;
4025 case DRM_PLANE_TYPE_OVERLAY:
4026 sprite = plane->plane;
4027 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4028 break;
4029 }
4030 }
4031
4032 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4033 wm->level = VLV_WM_LEVEL_PM2;
4034
4035 if (IS_CHERRYVIEW(dev_priv)) {
4036 mutex_lock(&dev_priv->rps.hw_lock);
4037
4038 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4039 if (val & DSP_MAXFIFO_PM5_ENABLE)
4040 wm->level = VLV_WM_LEVEL_PM5;
4041
4042 /*
4043 * If DDR DVFS is disabled in the BIOS, Punit
4044 * will never ack the request. So if that happens
4045 * assume we don't have to enable/disable DDR DVFS
4046 * dynamically. To test that just set the REQ_ACK
4047 * bit to poke the Punit, but don't change the
4048 * HIGH/LOW bits so that we don't actually change
4049 * the current state.
4050 */
4051 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4052 val |= FORCE_DDR_FREQ_REQ_ACK;
4053 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4054
4055 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4056 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4057 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4058 "assuming DDR DVFS is disabled\n");
4059 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4060 } else {
4061 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4062 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4063 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4064 }
4065
4066 mutex_unlock(&dev_priv->rps.hw_lock);
4067 }
4068
4069 for_each_pipe(dev_priv, pipe)
4070 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4071 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4072 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4073
4074 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4075 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4076 }
4077
4078 void ilk_wm_get_hw_state(struct drm_device *dev)
4079 {
4080 struct drm_i915_private *dev_priv = dev->dev_private;
4081 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4082 struct drm_crtc *crtc;
4083
4084 for_each_crtc(dev, crtc)
4085 ilk_pipe_wm_get_hw_state(crtc);
4086
4087 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4088 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4089 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4090
4091 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4092 if (INTEL_INFO(dev)->gen >= 7) {
4093 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4094 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4095 }
4096
4097 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4098 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4099 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4100 else if (IS_IVYBRIDGE(dev))
4101 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4102 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4103
4104 hw->enable_fbc_wm =
4105 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4106 }
4107
4108 /**
4109 * intel_update_watermarks - update FIFO watermark values based on current modes
4110 *
4111 * Calculate watermark values for the various WM regs based on current mode
4112 * and plane configuration.
4113 *
4114 * There are several cases to deal with here:
4115 * - normal (i.e. non-self-refresh)
4116 * - self-refresh (SR) mode
4117 * - lines are large relative to FIFO size (buffer can hold up to 2)
4118 * - lines are small relative to FIFO size (buffer can hold more than 2
4119 * lines), so need to account for TLB latency
4120 *
4121 * The normal calculation is:
4122 * watermark = dotclock * bytes per pixel * latency
4123 * where latency is platform & configuration dependent (we assume pessimal
4124 * values here).
4125 *
4126 * The SR calculation is:
4127 * watermark = (trunc(latency/line time)+1) * surface width *
4128 * bytes per pixel
4129 * where
4130 * line time = htotal / dotclock
4131 * surface width = hdisplay for normal plane and 64 for cursor
4132 * and latency is assumed to be high, as above.
4133 *
4134 * The final value programmed to the register should always be rounded up,
4135 * and include an extra 2 entries to account for clock crossings.
4136 *
4137 * We don't use the sprite, so we can ignore that. And on Crestline we have
4138 * to set the non-SR watermarks to 8.
4139 */
4140 void intel_update_watermarks(struct drm_crtc *crtc)
4141 {
4142 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4143
4144 if (dev_priv->display.update_wm)
4145 dev_priv->display.update_wm(crtc);
4146 }
4147
4148 void intel_update_sprite_watermarks(struct drm_plane *plane,
4149 struct drm_crtc *crtc,
4150 uint32_t sprite_width,
4151 uint32_t sprite_height,
4152 int pixel_size,
4153 bool enabled, bool scaled)
4154 {
4155 struct drm_i915_private *dev_priv = plane->dev->dev_private;
4156
4157 if (dev_priv->display.update_sprite_wm)
4158 dev_priv->display.update_sprite_wm(plane, crtc,
4159 sprite_width, sprite_height,
4160 pixel_size, enabled, scaled);
4161 }
4162
4163 /**
4164 * Lock protecting IPS related data structures
4165 */
4166 DEFINE_SPINLOCK(mchdev_lock);
4167
4168 /* Global for IPS driver to get at the current i915 device. Protected by
4169 * mchdev_lock. */
4170 static struct drm_i915_private *i915_mch_dev;
4171
4172 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4173 {
4174 struct drm_i915_private *dev_priv = dev->dev_private;
4175 u16 rgvswctl;
4176
4177 assert_spin_locked(&mchdev_lock);
4178
4179 rgvswctl = I915_READ16(MEMSWCTL);
4180 if (rgvswctl & MEMCTL_CMD_STS) {
4181 DRM_DEBUG("gpu busy, RCS change rejected\n");
4182 return false; /* still busy with another command */
4183 }
4184
4185 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4186 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4187 I915_WRITE16(MEMSWCTL, rgvswctl);
4188 POSTING_READ16(MEMSWCTL);
4189
4190 rgvswctl |= MEMCTL_CMD_STS;
4191 I915_WRITE16(MEMSWCTL, rgvswctl);
4192
4193 return true;
4194 }
4195
4196 static void ironlake_enable_drps(struct drm_device *dev)
4197 {
4198 struct drm_i915_private *dev_priv = dev->dev_private;
4199 u32 rgvmodectl = I915_READ(MEMMODECTL);
4200 u8 fmax, fmin, fstart, vstart;
4201
4202 spin_lock_irq(&mchdev_lock);
4203
4204 /* Enable temp reporting */
4205 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4206 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4207
4208 /* 100ms RC evaluation intervals */
4209 I915_WRITE(RCUPEI, 100000);
4210 I915_WRITE(RCDNEI, 100000);
4211
4212 /* Set max/min thresholds to 90ms and 80ms respectively */
4213 I915_WRITE(RCBMAXAVG, 90000);
4214 I915_WRITE(RCBMINAVG, 80000);
4215
4216 I915_WRITE(MEMIHYST, 1);
4217
4218 /* Set up min, max, and cur for interrupt handling */
4219 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4220 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4221 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4222 MEMMODE_FSTART_SHIFT;
4223
4224 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4225 PXVFREQ_PX_SHIFT;
4226
4227 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4228 dev_priv->ips.fstart = fstart;
4229
4230 dev_priv->ips.max_delay = fstart;
4231 dev_priv->ips.min_delay = fmin;
4232 dev_priv->ips.cur_delay = fstart;
4233
4234 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4235 fmax, fmin, fstart);
4236
4237 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4238
4239 /*
4240 * Interrupts will be enabled in ironlake_irq_postinstall
4241 */
4242
4243 I915_WRITE(VIDSTART, vstart);
4244 POSTING_READ(VIDSTART);
4245
4246 rgvmodectl |= MEMMODE_SWMODE_EN;
4247 I915_WRITE(MEMMODECTL, rgvmodectl);
4248
4249 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4250 DRM_ERROR("stuck trying to change perf mode\n");
4251 mdelay(1);
4252
4253 ironlake_set_drps(dev, fstart);
4254
4255 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4256 I915_READ(DDREC) + I915_READ(CSIEC);
4257 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4258 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4259 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4260
4261 spin_unlock_irq(&mchdev_lock);
4262 }
4263
4264 static void ironlake_disable_drps(struct drm_device *dev)
4265 {
4266 struct drm_i915_private *dev_priv = dev->dev_private;
4267 u16 rgvswctl;
4268
4269 spin_lock_irq(&mchdev_lock);
4270
4271 rgvswctl = I915_READ16(MEMSWCTL);
4272
4273 /* Ack interrupts, disable EFC interrupt */
4274 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4275 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4276 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4277 I915_WRITE(DEIIR, DE_PCU_EVENT);
4278 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4279
4280 /* Go back to the starting frequency */
4281 ironlake_set_drps(dev, dev_priv->ips.fstart);
4282 mdelay(1);
4283 rgvswctl |= MEMCTL_CMD_STS;
4284 I915_WRITE(MEMSWCTL, rgvswctl);
4285 mdelay(1);
4286
4287 spin_unlock_irq(&mchdev_lock);
4288 }
4289
4290 /* There's a funny hw issue where the hw returns all 0 when reading from
4291 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4292 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4293 * all limits and the gpu stuck at whatever frequency it is at atm).
4294 */
4295 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4296 {
4297 u32 limits;
4298
4299 /* Only set the down limit when we've reached the lowest level to avoid
4300 * getting more interrupts, otherwise leave this clear. This prevents a
4301 * race in the hw when coming out of rc6: There's a tiny window where
4302 * the hw runs at the minimal clock before selecting the desired
4303 * frequency, if the down threshold expires in that window we will not
4304 * receive a down interrupt. */
4305 if (IS_GEN9(dev_priv->dev)) {
4306 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4307 if (val <= dev_priv->rps.min_freq_softlimit)
4308 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4309 } else {
4310 limits = dev_priv->rps.max_freq_softlimit << 24;
4311 if (val <= dev_priv->rps.min_freq_softlimit)
4312 limits |= dev_priv->rps.min_freq_softlimit << 16;
4313 }
4314
4315 return limits;
4316 }
4317
4318 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4319 {
4320 int new_power;
4321 u32 threshold_up = 0, threshold_down = 0; /* in % */
4322 u32 ei_up = 0, ei_down = 0;
4323
4324 new_power = dev_priv->rps.power;
4325 switch (dev_priv->rps.power) {
4326 case LOW_POWER:
4327 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4328 new_power = BETWEEN;
4329 break;
4330
4331 case BETWEEN:
4332 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4333 new_power = LOW_POWER;
4334 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4335 new_power = HIGH_POWER;
4336 break;
4337
4338 case HIGH_POWER:
4339 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4340 new_power = BETWEEN;
4341 break;
4342 }
4343 /* Max/min bins are special */
4344 if (val <= dev_priv->rps.min_freq_softlimit)
4345 new_power = LOW_POWER;
4346 if (val >= dev_priv->rps.max_freq_softlimit)
4347 new_power = HIGH_POWER;
4348 if (new_power == dev_priv->rps.power)
4349 return;
4350
4351 /* Note the units here are not exactly 1us, but 1280ns. */
4352 switch (new_power) {
4353 case LOW_POWER:
4354 /* Upclock if more than 95% busy over 16ms */
4355 ei_up = 16000;
4356 threshold_up = 95;
4357
4358 /* Downclock if less than 85% busy over 32ms */
4359 ei_down = 32000;
4360 threshold_down = 85;
4361 break;
4362
4363 case BETWEEN:
4364 /* Upclock if more than 90% busy over 13ms */
4365 ei_up = 13000;
4366 threshold_up = 90;
4367
4368 /* Downclock if less than 75% busy over 32ms */
4369 ei_down = 32000;
4370 threshold_down = 75;
4371 break;
4372
4373 case HIGH_POWER:
4374 /* Upclock if more than 85% busy over 10ms */
4375 ei_up = 10000;
4376 threshold_up = 85;
4377
4378 /* Downclock if less than 60% busy over 32ms */
4379 ei_down = 32000;
4380 threshold_down = 60;
4381 break;
4382 }
4383
4384 /* When byt can survive without system hang with dynamic
4385 * sw freq adjustments, this restriction can be lifted.
4386 */
4387 if (IS_VALLEYVIEW(dev_priv))
4388 goto skip_hw_write;
4389
4390 I915_WRITE(GEN6_RP_UP_EI,
4391 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4392 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4393 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4394
4395 I915_WRITE(GEN6_RP_DOWN_EI,
4396 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4397 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4398 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4399
4400 I915_WRITE(GEN6_RP_CONTROL,
4401 GEN6_RP_MEDIA_TURBO |
4402 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4403 GEN6_RP_MEDIA_IS_GFX |
4404 GEN6_RP_ENABLE |
4405 GEN6_RP_UP_BUSY_AVG |
4406 GEN6_RP_DOWN_IDLE_AVG);
4407
4408 skip_hw_write:
4409 dev_priv->rps.power = new_power;
4410 dev_priv->rps.up_threshold = threshold_up;
4411 dev_priv->rps.down_threshold = threshold_down;
4412 dev_priv->rps.last_adj = 0;
4413 }
4414
4415 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4416 {
4417 u32 mask = 0;
4418
4419 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4420 if (val > dev_priv->rps.min_freq_softlimit)
4421 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4422 if (val < dev_priv->rps.max_freq_softlimit)
4423 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4424
4425 mask &= dev_priv->pm_rps_events;
4426
4427 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4428 }
4429
4430 /* gen6_set_rps is called to update the frequency request, but should also be
4431 * called when the range (min_delay and max_delay) is modified so that we can
4432 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4433 static void gen6_set_rps(struct drm_device *dev, u8 val)
4434 {
4435 struct drm_i915_private *dev_priv = dev->dev_private;
4436
4437 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4438 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4439 return;
4440
4441 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4442 WARN_ON(val > dev_priv->rps.max_freq);
4443 WARN_ON(val < dev_priv->rps.min_freq);
4444
4445 /* min/max delay may still have been modified so be sure to
4446 * write the limits value.
4447 */
4448 if (val != dev_priv->rps.cur_freq) {
4449 gen6_set_rps_thresholds(dev_priv, val);
4450
4451 if (IS_GEN9(dev))
4452 I915_WRITE(GEN6_RPNSWREQ,
4453 GEN9_FREQUENCY(val));
4454 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4455 I915_WRITE(GEN6_RPNSWREQ,
4456 HSW_FREQUENCY(val));
4457 else
4458 I915_WRITE(GEN6_RPNSWREQ,
4459 GEN6_FREQUENCY(val) |
4460 GEN6_OFFSET(0) |
4461 GEN6_AGGRESSIVE_TURBO);
4462 }
4463
4464 /* Make sure we continue to get interrupts
4465 * until we hit the minimum or maximum frequencies.
4466 */
4467 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4468 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4469
4470 POSTING_READ(GEN6_RPNSWREQ);
4471
4472 dev_priv->rps.cur_freq = val;
4473 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4474 }
4475
4476 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4477 {
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479
4480 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4481 WARN_ON(val > dev_priv->rps.max_freq);
4482 WARN_ON(val < dev_priv->rps.min_freq);
4483
4484 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4485 "Odd GPU freq value\n"))
4486 val &= ~1;
4487
4488 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4489
4490 if (val != dev_priv->rps.cur_freq) {
4491 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4492 if (!IS_CHERRYVIEW(dev_priv))
4493 gen6_set_rps_thresholds(dev_priv, val);
4494 }
4495
4496 dev_priv->rps.cur_freq = val;
4497 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4498 }
4499
4500 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4501 *
4502 * * If Gfx is Idle, then
4503 * 1. Forcewake Media well.
4504 * 2. Request idle freq.
4505 * 3. Release Forcewake of Media well.
4506 */
4507 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4508 {
4509 u32 val = dev_priv->rps.idle_freq;
4510
4511 if (dev_priv->rps.cur_freq <= val)
4512 return;
4513
4514 /* Wake up the media well, as that takes a lot less
4515 * power than the Render well. */
4516 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4517 valleyview_set_rps(dev_priv->dev, val);
4518 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4519 }
4520
4521 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4522 {
4523 mutex_lock(&dev_priv->rps.hw_lock);
4524 if (dev_priv->rps.enabled) {
4525 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
4526 gen6_rps_reset_ei(dev_priv);
4527 I915_WRITE(GEN6_PMINTRMSK,
4528 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4529 }
4530 mutex_unlock(&dev_priv->rps.hw_lock);
4531 }
4532
4533 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4534 {
4535 struct drm_device *dev = dev_priv->dev;
4536
4537 mutex_lock(&dev_priv->rps.hw_lock);
4538 if (dev_priv->rps.enabled) {
4539 if (IS_VALLEYVIEW(dev))
4540 vlv_set_rps_idle(dev_priv);
4541 else
4542 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4543 dev_priv->rps.last_adj = 0;
4544 I915_WRITE(GEN6_PMINTRMSK,
4545 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4546 }
4547 mutex_unlock(&dev_priv->rps.hw_lock);
4548
4549 spin_lock(&dev_priv->rps.client_lock);
4550 while (!list_empty(&dev_priv->rps.clients))
4551 list_del_init(dev_priv->rps.clients.next);
4552 spin_unlock(&dev_priv->rps.client_lock);
4553 }
4554
4555 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4556 struct intel_rps_client *rps,
4557 unsigned long submitted)
4558 {
4559 /* This is intentionally racy! We peek at the state here, then
4560 * validate inside the RPS worker.
4561 */
4562 if (!(dev_priv->mm.busy &&
4563 dev_priv->rps.enabled &&
4564 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4565 return;
4566
4567 /* Force a RPS boost (and don't count it against the client) if
4568 * the GPU is severely congested.
4569 */
4570 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4571 rps = NULL;
4572
4573 spin_lock(&dev_priv->rps.client_lock);
4574 if (rps == NULL || list_empty(&rps->link)) {
4575 spin_lock_irq(&dev_priv->irq_lock);
4576 if (dev_priv->rps.interrupts_enabled) {
4577 dev_priv->rps.client_boost = true;
4578 queue_work(dev_priv->wq, &dev_priv->rps.work);
4579 }
4580 spin_unlock_irq(&dev_priv->irq_lock);
4581
4582 if (rps != NULL) {
4583 list_add(&rps->link, &dev_priv->rps.clients);
4584 rps->boosts++;
4585 } else
4586 dev_priv->rps.boosts++;
4587 }
4588 spin_unlock(&dev_priv->rps.client_lock);
4589 }
4590
4591 void intel_set_rps(struct drm_device *dev, u8 val)
4592 {
4593 if (IS_VALLEYVIEW(dev))
4594 valleyview_set_rps(dev, val);
4595 else
4596 gen6_set_rps(dev, val);
4597 }
4598
4599 static void gen9_disable_rps(struct drm_device *dev)
4600 {
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602
4603 I915_WRITE(GEN6_RC_CONTROL, 0);
4604 I915_WRITE(GEN9_PG_ENABLE, 0);
4605 }
4606
4607 static void gen6_disable_rps(struct drm_device *dev)
4608 {
4609 struct drm_i915_private *dev_priv = dev->dev_private;
4610
4611 I915_WRITE(GEN6_RC_CONTROL, 0);
4612 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4613 }
4614
4615 static void cherryview_disable_rps(struct drm_device *dev)
4616 {
4617 struct drm_i915_private *dev_priv = dev->dev_private;
4618
4619 I915_WRITE(GEN6_RC_CONTROL, 0);
4620 }
4621
4622 static void valleyview_disable_rps(struct drm_device *dev)
4623 {
4624 struct drm_i915_private *dev_priv = dev->dev_private;
4625
4626 /* we're doing forcewake before Disabling RC6,
4627 * This what the BIOS expects when going into suspend */
4628 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4629
4630 I915_WRITE(GEN6_RC_CONTROL, 0);
4631
4632 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4633 }
4634
4635 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4636 {
4637 if (IS_VALLEYVIEW(dev)) {
4638 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4639 mode = GEN6_RC_CTL_RC6_ENABLE;
4640 else
4641 mode = 0;
4642 }
4643 if (HAS_RC6p(dev))
4644 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4645 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4646 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4647 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4648
4649 else
4650 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4651 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4652 }
4653
4654 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4655 {
4656 /* No RC6 before Ironlake and code is gone for ilk. */
4657 if (INTEL_INFO(dev)->gen < 6)
4658 return 0;
4659
4660 /* Respect the kernel parameter if it is set */
4661 if (enable_rc6 >= 0) {
4662 int mask;
4663
4664 if (HAS_RC6p(dev))
4665 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4666 INTEL_RC6pp_ENABLE;
4667 else
4668 mask = INTEL_RC6_ENABLE;
4669
4670 if ((enable_rc6 & mask) != enable_rc6)
4671 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4672 enable_rc6 & mask, enable_rc6, mask);
4673
4674 return enable_rc6 & mask;
4675 }
4676
4677 if (IS_IVYBRIDGE(dev))
4678 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4679
4680 return INTEL_RC6_ENABLE;
4681 }
4682
4683 int intel_enable_rc6(const struct drm_device *dev)
4684 {
4685 return i915.enable_rc6;
4686 }
4687
4688 static void gen6_init_rps_frequencies(struct drm_device *dev)
4689 {
4690 struct drm_i915_private *dev_priv = dev->dev_private;
4691 uint32_t rp_state_cap;
4692 u32 ddcc_status = 0;
4693 int ret;
4694
4695 /* All of these values are in units of 50MHz */
4696 dev_priv->rps.cur_freq = 0;
4697 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4698 if (IS_BROXTON(dev)) {
4699 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4700 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4701 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4702 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4703 } else {
4704 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4705 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4706 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4707 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4708 }
4709
4710 /* hw_max = RP0 until we check for overclocking */
4711 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4712
4713 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4714 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4715 ret = sandybridge_pcode_read(dev_priv,
4716 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4717 &ddcc_status);
4718 if (0 == ret)
4719 dev_priv->rps.efficient_freq =
4720 clamp_t(u8,
4721 ((ddcc_status >> 8) & 0xff),
4722 dev_priv->rps.min_freq,
4723 dev_priv->rps.max_freq);
4724 }
4725
4726 if (IS_SKYLAKE(dev)) {
4727 /* Store the frequency values in 16.66 MHZ units, which is
4728 the natural hardware unit for SKL */
4729 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4730 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4731 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4732 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4733 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4734 }
4735
4736 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4737
4738 /* Preserve min/max settings in case of re-init */
4739 if (dev_priv->rps.max_freq_softlimit == 0)
4740 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4741
4742 if (dev_priv->rps.min_freq_softlimit == 0) {
4743 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4744 dev_priv->rps.min_freq_softlimit =
4745 max_t(int, dev_priv->rps.efficient_freq,
4746 intel_freq_opcode(dev_priv, 450));
4747 else
4748 dev_priv->rps.min_freq_softlimit =
4749 dev_priv->rps.min_freq;
4750 }
4751 }
4752
4753 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4754 static void gen9_enable_rps(struct drm_device *dev)
4755 {
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4759
4760 gen6_init_rps_frequencies(dev);
4761
4762 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4763 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4764 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4765 return;
4766 }
4767
4768 /* Program defaults and thresholds for RPS*/
4769 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4770 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4771
4772 /* 1 second timeout*/
4773 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4774 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4775
4776 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4777
4778 /* Leaning on the below call to gen6_set_rps to program/setup the
4779 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4780 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4781 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4782 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4783
4784 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4785 }
4786
4787 static void gen9_enable_rc6(struct drm_device *dev)
4788 {
4789 struct drm_i915_private *dev_priv = dev->dev_private;
4790 struct intel_engine_cs *ring;
4791 uint32_t rc6_mask = 0;
4792 int unused;
4793
4794 /* 1a: Software RC state - RC0 */
4795 I915_WRITE(GEN6_RC_STATE, 0);
4796
4797 /* 1b: Get forcewake during program sequence. Although the driver
4798 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4799 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4800
4801 /* 2a: Disable RC states. */
4802 I915_WRITE(GEN6_RC_CONTROL, 0);
4803
4804 /* 2b: Program RC6 thresholds.*/
4805
4806 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4807 if (IS_SKYLAKE(dev))
4808 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4809 else
4810 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4811 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4812 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4813 for_each_ring(ring, dev_priv, unused)
4814 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4815
4816 if (HAS_GUC_UCODE(dev))
4817 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4818
4819 I915_WRITE(GEN6_RC_SLEEP, 0);
4820
4821 /* 2c: Program Coarse Power Gating Policies. */
4822 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4823 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4824
4825 /* 3a: Enable RC6 */
4826 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4827 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4828 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4829 "on" : "off");
4830 /* WaRsUseTimeoutMode */
4831 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4832 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4833 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4834 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4835 GEN7_RC_CTL_TO_MODE |
4836 rc6_mask);
4837 } else {
4838 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4839 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4840 GEN6_RC_CTL_EI_MODE(1) |
4841 rc6_mask);
4842 }
4843
4844 /*
4845 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4846 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4847 */
4848 if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4849 ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4850 I915_WRITE(GEN9_PG_ENABLE, 0);
4851 else
4852 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4853 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4854
4855 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4856
4857 }
4858
4859 static void gen8_enable_rps(struct drm_device *dev)
4860 {
4861 struct drm_i915_private *dev_priv = dev->dev_private;
4862 struct intel_engine_cs *ring;
4863 uint32_t rc6_mask = 0;
4864 int unused;
4865
4866 /* 1a: Software RC state - RC0 */
4867 I915_WRITE(GEN6_RC_STATE, 0);
4868
4869 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4870 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4871 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4872
4873 /* 2a: Disable RC states. */
4874 I915_WRITE(GEN6_RC_CONTROL, 0);
4875
4876 /* Initialize rps frequencies */
4877 gen6_init_rps_frequencies(dev);
4878
4879 /* 2b: Program RC6 thresholds.*/
4880 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4881 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4882 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4883 for_each_ring(ring, dev_priv, unused)
4884 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4885 I915_WRITE(GEN6_RC_SLEEP, 0);
4886 if (IS_BROADWELL(dev))
4887 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4888 else
4889 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4890
4891 /* 3: Enable RC6 */
4892 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4893 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4894 intel_print_rc6_info(dev, rc6_mask);
4895 if (IS_BROADWELL(dev))
4896 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4897 GEN7_RC_CTL_TO_MODE |
4898 rc6_mask);
4899 else
4900 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4901 GEN6_RC_CTL_EI_MODE(1) |
4902 rc6_mask);
4903
4904 /* 4 Program defaults and thresholds for RPS*/
4905 I915_WRITE(GEN6_RPNSWREQ,
4906 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4907 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4908 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4909 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4910 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4911
4912 /* Docs recommend 900MHz, and 300 MHz respectively */
4913 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4914 dev_priv->rps.max_freq_softlimit << 24 |
4915 dev_priv->rps.min_freq_softlimit << 16);
4916
4917 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4918 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4919 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4920 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4921
4922 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4923
4924 /* 5: Enable RPS */
4925 I915_WRITE(GEN6_RP_CONTROL,
4926 GEN6_RP_MEDIA_TURBO |
4927 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4928 GEN6_RP_MEDIA_IS_GFX |
4929 GEN6_RP_ENABLE |
4930 GEN6_RP_UP_BUSY_AVG |
4931 GEN6_RP_DOWN_IDLE_AVG);
4932
4933 /* 6: Ring frequency + overclocking (our driver does this later */
4934
4935 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4936 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4937
4938 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4939 }
4940
4941 static void gen6_enable_rps(struct drm_device *dev)
4942 {
4943 struct drm_i915_private *dev_priv = dev->dev_private;
4944 struct intel_engine_cs *ring;
4945 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4946 u32 gtfifodbg;
4947 int rc6_mode;
4948 int i, ret;
4949
4950 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4951
4952 /* Here begins a magic sequence of register writes to enable
4953 * auto-downclocking.
4954 *
4955 * Perhaps there might be some value in exposing these to
4956 * userspace...
4957 */
4958 I915_WRITE(GEN6_RC_STATE, 0);
4959
4960 /* Clear the DBG now so we don't confuse earlier errors */
4961 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4962 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4963 I915_WRITE(GTFIFODBG, gtfifodbg);
4964 }
4965
4966 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4967
4968 /* Initialize rps frequencies */
4969 gen6_init_rps_frequencies(dev);
4970
4971 /* disable the counters and set deterministic thresholds */
4972 I915_WRITE(GEN6_RC_CONTROL, 0);
4973
4974 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4975 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4976 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4977 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4978 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4979
4980 for_each_ring(ring, dev_priv, i)
4981 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4982
4983 I915_WRITE(GEN6_RC_SLEEP, 0);
4984 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4985 if (IS_IVYBRIDGE(dev))
4986 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4987 else
4988 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4989 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4990 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4991
4992 /* Check if we are enabling RC6 */
4993 rc6_mode = intel_enable_rc6(dev_priv->dev);
4994 if (rc6_mode & INTEL_RC6_ENABLE)
4995 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4996
4997 /* We don't use those on Haswell */
4998 if (!IS_HASWELL(dev)) {
4999 if (rc6_mode & INTEL_RC6p_ENABLE)
5000 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5001
5002 if (rc6_mode & INTEL_RC6pp_ENABLE)
5003 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5004 }
5005
5006 intel_print_rc6_info(dev, rc6_mask);
5007
5008 I915_WRITE(GEN6_RC_CONTROL,
5009 rc6_mask |
5010 GEN6_RC_CTL_EI_MODE(1) |
5011 GEN6_RC_CTL_HW_ENABLE);
5012
5013 /* Power down if completely idle for over 50ms */
5014 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5015 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5016
5017 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5018 if (ret)
5019 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5020
5021 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5022 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5023 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5024 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5025 (pcu_mbox & 0xff) * 50);
5026 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5027 }
5028
5029 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5030 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5031
5032 rc6vids = 0;
5033 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5034 if (IS_GEN6(dev) && ret) {
5035 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5036 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5037 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5038 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5039 rc6vids &= 0xffff00;
5040 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5041 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5042 if (ret)
5043 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5044 }
5045
5046 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5047 }
5048
5049 static void __gen6_update_ring_freq(struct drm_device *dev)
5050 {
5051 struct drm_i915_private *dev_priv = dev->dev_private;
5052 int min_freq = 15;
5053 unsigned int gpu_freq;
5054 unsigned int max_ia_freq, min_ring_freq;
5055 unsigned int max_gpu_freq, min_gpu_freq;
5056 int scaling_factor = 180;
5057 struct cpufreq_policy *policy;
5058
5059 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5060
5061 policy = cpufreq_cpu_get(0);
5062 if (policy) {
5063 max_ia_freq = policy->cpuinfo.max_freq;
5064 cpufreq_cpu_put(policy);
5065 } else {
5066 /*
5067 * Default to measured freq if none found, PCU will ensure we
5068 * don't go over
5069 */
5070 max_ia_freq = tsc_khz;
5071 }
5072
5073 /* Convert from kHz to MHz */
5074 max_ia_freq /= 1000;
5075
5076 min_ring_freq = I915_READ(DCLK) & 0xf;
5077 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5078 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5079
5080 if (IS_SKYLAKE(dev)) {
5081 /* Convert GT frequency to 50 HZ units */
5082 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5083 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5084 } else {
5085 min_gpu_freq = dev_priv->rps.min_freq;
5086 max_gpu_freq = dev_priv->rps.max_freq;
5087 }
5088
5089 /*
5090 * For each potential GPU frequency, load a ring frequency we'd like
5091 * to use for memory access. We do this by specifying the IA frequency
5092 * the PCU should use as a reference to determine the ring frequency.
5093 */
5094 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5095 int diff = max_gpu_freq - gpu_freq;
5096 unsigned int ia_freq = 0, ring_freq = 0;
5097
5098 if (IS_SKYLAKE(dev)) {
5099 /*
5100 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5101 * No floor required for ring frequency on SKL.
5102 */
5103 ring_freq = gpu_freq;
5104 } else if (INTEL_INFO(dev)->gen >= 8) {
5105 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5106 ring_freq = max(min_ring_freq, gpu_freq);
5107 } else if (IS_HASWELL(dev)) {
5108 ring_freq = mult_frac(gpu_freq, 5, 4);
5109 ring_freq = max(min_ring_freq, ring_freq);
5110 /* leave ia_freq as the default, chosen by cpufreq */
5111 } else {
5112 /* On older processors, there is no separate ring
5113 * clock domain, so in order to boost the bandwidth
5114 * of the ring, we need to upclock the CPU (ia_freq).
5115 *
5116 * For GPU frequencies less than 750MHz,
5117 * just use the lowest ring freq.
5118 */
5119 if (gpu_freq < min_freq)
5120 ia_freq = 800;
5121 else
5122 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5123 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5124 }
5125
5126 sandybridge_pcode_write(dev_priv,
5127 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5128 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5129 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5130 gpu_freq);
5131 }
5132 }
5133
5134 void gen6_update_ring_freq(struct drm_device *dev)
5135 {
5136 struct drm_i915_private *dev_priv = dev->dev_private;
5137
5138 if (!HAS_CORE_RING_FREQ(dev))
5139 return;
5140
5141 mutex_lock(&dev_priv->rps.hw_lock);
5142 __gen6_update_ring_freq(dev);
5143 mutex_unlock(&dev_priv->rps.hw_lock);
5144 }
5145
5146 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5147 {
5148 struct drm_device *dev = dev_priv->dev;
5149 u32 val, rp0;
5150
5151 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5152
5153 switch (INTEL_INFO(dev)->eu_total) {
5154 case 8:
5155 /* (2 * 4) config */
5156 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5157 break;
5158 case 12:
5159 /* (2 * 6) config */
5160 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5161 break;
5162 case 16:
5163 /* (2 * 8) config */
5164 default:
5165 /* Setting (2 * 8) Min RP0 for any other combination */
5166 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5167 break;
5168 }
5169
5170 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5171
5172 return rp0;
5173 }
5174
5175 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5176 {
5177 u32 val, rpe;
5178
5179 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5180 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5181
5182 return rpe;
5183 }
5184
5185 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5186 {
5187 u32 val, rp1;
5188
5189 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5190 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5191
5192 return rp1;
5193 }
5194
5195 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5196 {
5197 u32 val, rp1;
5198
5199 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5200
5201 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5202
5203 return rp1;
5204 }
5205
5206 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5207 {
5208 u32 val, rp0;
5209
5210 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5211
5212 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5213 /* Clamp to max */
5214 rp0 = min_t(u32, rp0, 0xea);
5215
5216 return rp0;
5217 }
5218
5219 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5220 {
5221 u32 val, rpe;
5222
5223 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5224 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5225 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5226 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5227
5228 return rpe;
5229 }
5230
5231 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5232 {
5233 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5234 }
5235
5236 /* Check that the pctx buffer wasn't move under us. */
5237 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5238 {
5239 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5240
5241 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5242 dev_priv->vlv_pctx->stolen->start);
5243 }
5244
5245
5246 /* Check that the pcbr address is not empty. */
5247 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5248 {
5249 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5250
5251 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5252 }
5253
5254 static void cherryview_setup_pctx(struct drm_device *dev)
5255 {
5256 struct drm_i915_private *dev_priv = dev->dev_private;
5257 unsigned long pctx_paddr, paddr;
5258 struct i915_gtt *gtt = &dev_priv->gtt;
5259 u32 pcbr;
5260 int pctx_size = 32*1024;
5261
5262 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5263
5264 pcbr = I915_READ(VLV_PCBR);
5265 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5266 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5267 paddr = (dev_priv->mm.stolen_base +
5268 (gtt->stolen_size - pctx_size));
5269
5270 pctx_paddr = (paddr & (~4095));
5271 I915_WRITE(VLV_PCBR, pctx_paddr);
5272 }
5273
5274 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5275 }
5276
5277 static void valleyview_setup_pctx(struct drm_device *dev)
5278 {
5279 struct drm_i915_private *dev_priv = dev->dev_private;
5280 struct drm_i915_gem_object *pctx;
5281 unsigned long pctx_paddr;
5282 u32 pcbr;
5283 int pctx_size = 24*1024;
5284
5285 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5286
5287 pcbr = I915_READ(VLV_PCBR);
5288 if (pcbr) {
5289 /* BIOS set it up already, grab the pre-alloc'd space */
5290 int pcbr_offset;
5291
5292 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5293 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5294 pcbr_offset,
5295 I915_GTT_OFFSET_NONE,
5296 pctx_size);
5297 goto out;
5298 }
5299
5300 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5301
5302 /*
5303 * From the Gunit register HAS:
5304 * The Gfx driver is expected to program this register and ensure
5305 * proper allocation within Gfx stolen memory. For example, this
5306 * register should be programmed such than the PCBR range does not
5307 * overlap with other ranges, such as the frame buffer, protected
5308 * memory, or any other relevant ranges.
5309 */
5310 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5311 if (!pctx) {
5312 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5313 return;
5314 }
5315
5316 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5317 I915_WRITE(VLV_PCBR, pctx_paddr);
5318
5319 out:
5320 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5321 dev_priv->vlv_pctx = pctx;
5322 }
5323
5324 static void valleyview_cleanup_pctx(struct drm_device *dev)
5325 {
5326 struct drm_i915_private *dev_priv = dev->dev_private;
5327
5328 if (WARN_ON(!dev_priv->vlv_pctx))
5329 return;
5330
5331 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5332 dev_priv->vlv_pctx = NULL;
5333 }
5334
5335 static void valleyview_init_gt_powersave(struct drm_device *dev)
5336 {
5337 struct drm_i915_private *dev_priv = dev->dev_private;
5338 u32 val;
5339
5340 valleyview_setup_pctx(dev);
5341
5342 mutex_lock(&dev_priv->rps.hw_lock);
5343
5344 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5345 switch ((val >> 6) & 3) {
5346 case 0:
5347 case 1:
5348 dev_priv->mem_freq = 800;
5349 break;
5350 case 2:
5351 dev_priv->mem_freq = 1066;
5352 break;
5353 case 3:
5354 dev_priv->mem_freq = 1333;
5355 break;
5356 }
5357 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5358
5359 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5360 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5361 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5362 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5363 dev_priv->rps.max_freq);
5364
5365 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5366 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5367 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5368 dev_priv->rps.efficient_freq);
5369
5370 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5371 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5372 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5373 dev_priv->rps.rp1_freq);
5374
5375 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5376 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5377 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5378 dev_priv->rps.min_freq);
5379
5380 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5381
5382 /* Preserve min/max settings in case of re-init */
5383 if (dev_priv->rps.max_freq_softlimit == 0)
5384 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5385
5386 if (dev_priv->rps.min_freq_softlimit == 0)
5387 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5388
5389 mutex_unlock(&dev_priv->rps.hw_lock);
5390 }
5391
5392 static void cherryview_init_gt_powersave(struct drm_device *dev)
5393 {
5394 struct drm_i915_private *dev_priv = dev->dev_private;
5395 u32 val;
5396
5397 cherryview_setup_pctx(dev);
5398
5399 mutex_lock(&dev_priv->rps.hw_lock);
5400
5401 mutex_lock(&dev_priv->sb_lock);
5402 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5403 mutex_unlock(&dev_priv->sb_lock);
5404
5405 switch ((val >> 2) & 0x7) {
5406 case 3:
5407 dev_priv->mem_freq = 2000;
5408 break;
5409 default:
5410 dev_priv->mem_freq = 1600;
5411 break;
5412 }
5413 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5414
5415 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5416 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5417 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5418 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5419 dev_priv->rps.max_freq);
5420
5421 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5422 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5423 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5424 dev_priv->rps.efficient_freq);
5425
5426 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5427 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5428 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5429 dev_priv->rps.rp1_freq);
5430
5431 /* PUnit validated range is only [RPe, RP0] */
5432 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5433 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5434 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5435 dev_priv->rps.min_freq);
5436
5437 WARN_ONCE((dev_priv->rps.max_freq |
5438 dev_priv->rps.efficient_freq |
5439 dev_priv->rps.rp1_freq |
5440 dev_priv->rps.min_freq) & 1,
5441 "Odd GPU freq values\n");
5442
5443 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5444
5445 /* Preserve min/max settings in case of re-init */
5446 if (dev_priv->rps.max_freq_softlimit == 0)
5447 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5448
5449 if (dev_priv->rps.min_freq_softlimit == 0)
5450 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5451
5452 mutex_unlock(&dev_priv->rps.hw_lock);
5453 }
5454
5455 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5456 {
5457 valleyview_cleanup_pctx(dev);
5458 }
5459
5460 static void cherryview_enable_rps(struct drm_device *dev)
5461 {
5462 struct drm_i915_private *dev_priv = dev->dev_private;
5463 struct intel_engine_cs *ring;
5464 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5465 int i;
5466
5467 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5468
5469 gtfifodbg = I915_READ(GTFIFODBG);
5470 if (gtfifodbg) {
5471 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5472 gtfifodbg);
5473 I915_WRITE(GTFIFODBG, gtfifodbg);
5474 }
5475
5476 cherryview_check_pctx(dev_priv);
5477
5478 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5479 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5480 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5481
5482 /* Disable RC states. */
5483 I915_WRITE(GEN6_RC_CONTROL, 0);
5484
5485 /* 2a: Program RC6 thresholds.*/
5486 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5487 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5488 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5489
5490 for_each_ring(ring, dev_priv, i)
5491 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5492 I915_WRITE(GEN6_RC_SLEEP, 0);
5493
5494 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5495 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5496
5497 /* allows RC6 residency counter to work */
5498 I915_WRITE(VLV_COUNTER_CONTROL,
5499 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5500 VLV_MEDIA_RC6_COUNT_EN |
5501 VLV_RENDER_RC6_COUNT_EN));
5502
5503 /* For now we assume BIOS is allocating and populating the PCBR */
5504 pcbr = I915_READ(VLV_PCBR);
5505
5506 /* 3: Enable RC6 */
5507 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5508 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5509 rc6_mode = GEN7_RC_CTL_TO_MODE;
5510
5511 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5512
5513 /* 4 Program defaults and thresholds for RPS*/
5514 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5515 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5516 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5517 I915_WRITE(GEN6_RP_UP_EI, 66000);
5518 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5519
5520 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5521
5522 /* 5: Enable RPS */
5523 I915_WRITE(GEN6_RP_CONTROL,
5524 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5525 GEN6_RP_MEDIA_IS_GFX |
5526 GEN6_RP_ENABLE |
5527 GEN6_RP_UP_BUSY_AVG |
5528 GEN6_RP_DOWN_IDLE_AVG);
5529
5530 /* Setting Fixed Bias */
5531 val = VLV_OVERRIDE_EN |
5532 VLV_SOC_TDP_EN |
5533 CHV_BIAS_CPU_50_SOC_50;
5534 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5535
5536 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5537
5538 /* RPS code assumes GPLL is used */
5539 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5540
5541 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5542 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5543
5544 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5545 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5546 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5547 dev_priv->rps.cur_freq);
5548
5549 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5550 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5551 dev_priv->rps.efficient_freq);
5552
5553 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5554
5555 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5556 }
5557
5558 static void valleyview_enable_rps(struct drm_device *dev)
5559 {
5560 struct drm_i915_private *dev_priv = dev->dev_private;
5561 struct intel_engine_cs *ring;
5562 u32 gtfifodbg, val, rc6_mode = 0;
5563 int i;
5564
5565 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5566
5567 valleyview_check_pctx(dev_priv);
5568
5569 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5570 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5571 gtfifodbg);
5572 I915_WRITE(GTFIFODBG, gtfifodbg);
5573 }
5574
5575 /* If VLV, Forcewake all wells, else re-direct to regular path */
5576 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5577
5578 /* Disable RC states. */
5579 I915_WRITE(GEN6_RC_CONTROL, 0);
5580
5581 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5582 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5583 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5584 I915_WRITE(GEN6_RP_UP_EI, 66000);
5585 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5586
5587 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5588
5589 I915_WRITE(GEN6_RP_CONTROL,
5590 GEN6_RP_MEDIA_TURBO |
5591 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5592 GEN6_RP_MEDIA_IS_GFX |
5593 GEN6_RP_ENABLE |
5594 GEN6_RP_UP_BUSY_AVG |
5595 GEN6_RP_DOWN_IDLE_CONT);
5596
5597 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5598 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5599 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5600
5601 for_each_ring(ring, dev_priv, i)
5602 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5603
5604 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5605
5606 /* allows RC6 residency counter to work */
5607 I915_WRITE(VLV_COUNTER_CONTROL,
5608 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5609 VLV_RENDER_RC0_COUNT_EN |
5610 VLV_MEDIA_RC6_COUNT_EN |
5611 VLV_RENDER_RC6_COUNT_EN));
5612
5613 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5614 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5615
5616 intel_print_rc6_info(dev, rc6_mode);
5617
5618 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5619
5620 /* Setting Fixed Bias */
5621 val = VLV_OVERRIDE_EN |
5622 VLV_SOC_TDP_EN |
5623 VLV_BIAS_CPU_125_SOC_875;
5624 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5625
5626 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5627
5628 /* RPS code assumes GPLL is used */
5629 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5630
5631 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5632 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5633
5634 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5635 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5636 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5637 dev_priv->rps.cur_freq);
5638
5639 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5640 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5641 dev_priv->rps.efficient_freq);
5642
5643 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5644
5645 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5646 }
5647
5648 static unsigned long intel_pxfreq(u32 vidfreq)
5649 {
5650 unsigned long freq;
5651 int div = (vidfreq & 0x3f0000) >> 16;
5652 int post = (vidfreq & 0x3000) >> 12;
5653 int pre = (vidfreq & 0x7);
5654
5655 if (!pre)
5656 return 0;
5657
5658 freq = ((div * 133333) / ((1<<post) * pre));
5659
5660 return freq;
5661 }
5662
5663 static const struct cparams {
5664 u16 i;
5665 u16 t;
5666 u16 m;
5667 u16 c;
5668 } cparams[] = {
5669 { 1, 1333, 301, 28664 },
5670 { 1, 1066, 294, 24460 },
5671 { 1, 800, 294, 25192 },
5672 { 0, 1333, 276, 27605 },
5673 { 0, 1066, 276, 27605 },
5674 { 0, 800, 231, 23784 },
5675 };
5676
5677 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5678 {
5679 u64 total_count, diff, ret;
5680 u32 count1, count2, count3, m = 0, c = 0;
5681 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5682 int i;
5683
5684 assert_spin_locked(&mchdev_lock);
5685
5686 diff1 = now - dev_priv->ips.last_time1;
5687
5688 /* Prevent division-by-zero if we are asking too fast.
5689 * Also, we don't get interesting results if we are polling
5690 * faster than once in 10ms, so just return the saved value
5691 * in such cases.
5692 */
5693 if (diff1 <= 10)
5694 return dev_priv->ips.chipset_power;
5695
5696 count1 = I915_READ(DMIEC);
5697 count2 = I915_READ(DDREC);
5698 count3 = I915_READ(CSIEC);
5699
5700 total_count = count1 + count2 + count3;
5701
5702 /* FIXME: handle per-counter overflow */
5703 if (total_count < dev_priv->ips.last_count1) {
5704 diff = ~0UL - dev_priv->ips.last_count1;
5705 diff += total_count;
5706 } else {
5707 diff = total_count - dev_priv->ips.last_count1;
5708 }
5709
5710 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5711 if (cparams[i].i == dev_priv->ips.c_m &&
5712 cparams[i].t == dev_priv->ips.r_t) {
5713 m = cparams[i].m;
5714 c = cparams[i].c;
5715 break;
5716 }
5717 }
5718
5719 diff = div_u64(diff, diff1);
5720 ret = ((m * diff) + c);
5721 ret = div_u64(ret, 10);
5722
5723 dev_priv->ips.last_count1 = total_count;
5724 dev_priv->ips.last_time1 = now;
5725
5726 dev_priv->ips.chipset_power = ret;
5727
5728 return ret;
5729 }
5730
5731 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5732 {
5733 struct drm_device *dev = dev_priv->dev;
5734 unsigned long val;
5735
5736 if (INTEL_INFO(dev)->gen != 5)
5737 return 0;
5738
5739 spin_lock_irq(&mchdev_lock);
5740
5741 val = __i915_chipset_val(dev_priv);
5742
5743 spin_unlock_irq(&mchdev_lock);
5744
5745 return val;
5746 }
5747
5748 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5749 {
5750 unsigned long m, x, b;
5751 u32 tsfs;
5752
5753 tsfs = I915_READ(TSFS);
5754
5755 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5756 x = I915_READ8(TR1);
5757
5758 b = tsfs & TSFS_INTR_MASK;
5759
5760 return ((m * x) / 127) - b;
5761 }
5762
5763 static int _pxvid_to_vd(u8 pxvid)
5764 {
5765 if (pxvid == 0)
5766 return 0;
5767
5768 if (pxvid >= 8 && pxvid < 31)
5769 pxvid = 31;
5770
5771 return (pxvid + 2) * 125;
5772 }
5773
5774 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5775 {
5776 struct drm_device *dev = dev_priv->dev;
5777 const int vd = _pxvid_to_vd(pxvid);
5778 const int vm = vd - 1125;
5779
5780 if (INTEL_INFO(dev)->is_mobile)
5781 return vm > 0 ? vm : 0;
5782
5783 return vd;
5784 }
5785
5786 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5787 {
5788 u64 now, diff, diffms;
5789 u32 count;
5790
5791 assert_spin_locked(&mchdev_lock);
5792
5793 now = ktime_get_raw_ns();
5794 diffms = now - dev_priv->ips.last_time2;
5795 do_div(diffms, NSEC_PER_MSEC);
5796
5797 /* Don't divide by 0 */
5798 if (!diffms)
5799 return;
5800
5801 count = I915_READ(GFXEC);
5802
5803 if (count < dev_priv->ips.last_count2) {
5804 diff = ~0UL - dev_priv->ips.last_count2;
5805 diff += count;
5806 } else {
5807 diff = count - dev_priv->ips.last_count2;
5808 }
5809
5810 dev_priv->ips.last_count2 = count;
5811 dev_priv->ips.last_time2 = now;
5812
5813 /* More magic constants... */
5814 diff = diff * 1181;
5815 diff = div_u64(diff, diffms * 10);
5816 dev_priv->ips.gfx_power = diff;
5817 }
5818
5819 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5820 {
5821 struct drm_device *dev = dev_priv->dev;
5822
5823 if (INTEL_INFO(dev)->gen != 5)
5824 return;
5825
5826 spin_lock_irq(&mchdev_lock);
5827
5828 __i915_update_gfx_val(dev_priv);
5829
5830 spin_unlock_irq(&mchdev_lock);
5831 }
5832
5833 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5834 {
5835 unsigned long t, corr, state1, corr2, state2;
5836 u32 pxvid, ext_v;
5837
5838 assert_spin_locked(&mchdev_lock);
5839
5840 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5841 pxvid = (pxvid >> 24) & 0x7f;
5842 ext_v = pvid_to_extvid(dev_priv, pxvid);
5843
5844 state1 = ext_v;
5845
5846 t = i915_mch_val(dev_priv);
5847
5848 /* Revel in the empirically derived constants */
5849
5850 /* Correction factor in 1/100000 units */
5851 if (t > 80)
5852 corr = ((t * 2349) + 135940);
5853 else if (t >= 50)
5854 corr = ((t * 964) + 29317);
5855 else /* < 50 */
5856 corr = ((t * 301) + 1004);
5857
5858 corr = corr * ((150142 * state1) / 10000 - 78642);
5859 corr /= 100000;
5860 corr2 = (corr * dev_priv->ips.corr);
5861
5862 state2 = (corr2 * state1) / 10000;
5863 state2 /= 100; /* convert to mW */
5864
5865 __i915_update_gfx_val(dev_priv);
5866
5867 return dev_priv->ips.gfx_power + state2;
5868 }
5869
5870 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5871 {
5872 struct drm_device *dev = dev_priv->dev;
5873 unsigned long val;
5874
5875 if (INTEL_INFO(dev)->gen != 5)
5876 return 0;
5877
5878 spin_lock_irq(&mchdev_lock);
5879
5880 val = __i915_gfx_val(dev_priv);
5881
5882 spin_unlock_irq(&mchdev_lock);
5883
5884 return val;
5885 }
5886
5887 /**
5888 * i915_read_mch_val - return value for IPS use
5889 *
5890 * Calculate and return a value for the IPS driver to use when deciding whether
5891 * we have thermal and power headroom to increase CPU or GPU power budget.
5892 */
5893 unsigned long i915_read_mch_val(void)
5894 {
5895 struct drm_i915_private *dev_priv;
5896 unsigned long chipset_val, graphics_val, ret = 0;
5897
5898 spin_lock_irq(&mchdev_lock);
5899 if (!i915_mch_dev)
5900 goto out_unlock;
5901 dev_priv = i915_mch_dev;
5902
5903 chipset_val = __i915_chipset_val(dev_priv);
5904 graphics_val = __i915_gfx_val(dev_priv);
5905
5906 ret = chipset_val + graphics_val;
5907
5908 out_unlock:
5909 spin_unlock_irq(&mchdev_lock);
5910
5911 return ret;
5912 }
5913 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5914
5915 /**
5916 * i915_gpu_raise - raise GPU frequency limit
5917 *
5918 * Raise the limit; IPS indicates we have thermal headroom.
5919 */
5920 bool i915_gpu_raise(void)
5921 {
5922 struct drm_i915_private *dev_priv;
5923 bool ret = true;
5924
5925 spin_lock_irq(&mchdev_lock);
5926 if (!i915_mch_dev) {
5927 ret = false;
5928 goto out_unlock;
5929 }
5930 dev_priv = i915_mch_dev;
5931
5932 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5933 dev_priv->ips.max_delay--;
5934
5935 out_unlock:
5936 spin_unlock_irq(&mchdev_lock);
5937
5938 return ret;
5939 }
5940 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5941
5942 /**
5943 * i915_gpu_lower - lower GPU frequency limit
5944 *
5945 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5946 * frequency maximum.
5947 */
5948 bool i915_gpu_lower(void)
5949 {
5950 struct drm_i915_private *dev_priv;
5951 bool ret = true;
5952
5953 spin_lock_irq(&mchdev_lock);
5954 if (!i915_mch_dev) {
5955 ret = false;
5956 goto out_unlock;
5957 }
5958 dev_priv = i915_mch_dev;
5959
5960 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5961 dev_priv->ips.max_delay++;
5962
5963 out_unlock:
5964 spin_unlock_irq(&mchdev_lock);
5965
5966 return ret;
5967 }
5968 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5969
5970 /**
5971 * i915_gpu_busy - indicate GPU business to IPS
5972 *
5973 * Tell the IPS driver whether or not the GPU is busy.
5974 */
5975 bool i915_gpu_busy(void)
5976 {
5977 struct drm_i915_private *dev_priv;
5978 struct intel_engine_cs *ring;
5979 bool ret = false;
5980 int i;
5981
5982 spin_lock_irq(&mchdev_lock);
5983 if (!i915_mch_dev)
5984 goto out_unlock;
5985 dev_priv = i915_mch_dev;
5986
5987 for_each_ring(ring, dev_priv, i)
5988 ret |= !list_empty(&ring->request_list);
5989
5990 out_unlock:
5991 spin_unlock_irq(&mchdev_lock);
5992
5993 return ret;
5994 }
5995 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5996
5997 /**
5998 * i915_gpu_turbo_disable - disable graphics turbo
5999 *
6000 * Disable graphics turbo by resetting the max frequency and setting the
6001 * current frequency to the default.
6002 */
6003 bool i915_gpu_turbo_disable(void)
6004 {
6005 struct drm_i915_private *dev_priv;
6006 bool ret = true;
6007
6008 spin_lock_irq(&mchdev_lock);
6009 if (!i915_mch_dev) {
6010 ret = false;
6011 goto out_unlock;
6012 }
6013 dev_priv = i915_mch_dev;
6014
6015 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6016
6017 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6018 ret = false;
6019
6020 out_unlock:
6021 spin_unlock_irq(&mchdev_lock);
6022
6023 return ret;
6024 }
6025 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6026
6027 /**
6028 * Tells the intel_ips driver that the i915 driver is now loaded, if
6029 * IPS got loaded first.
6030 *
6031 * This awkward dance is so that neither module has to depend on the
6032 * other in order for IPS to do the appropriate communication of
6033 * GPU turbo limits to i915.
6034 */
6035 static void
6036 ips_ping_for_i915_load(void)
6037 {
6038 void (*link)(void);
6039
6040 link = symbol_get(ips_link_to_i915_driver);
6041 if (link) {
6042 link();
6043 symbol_put(ips_link_to_i915_driver);
6044 }
6045 }
6046
6047 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6048 {
6049 /* We only register the i915 ips part with intel-ips once everything is
6050 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6051 spin_lock_irq(&mchdev_lock);
6052 i915_mch_dev = dev_priv;
6053 spin_unlock_irq(&mchdev_lock);
6054
6055 ips_ping_for_i915_load();
6056 }
6057
6058 void intel_gpu_ips_teardown(void)
6059 {
6060 spin_lock_irq(&mchdev_lock);
6061 i915_mch_dev = NULL;
6062 spin_unlock_irq(&mchdev_lock);
6063 }
6064
6065 static void intel_init_emon(struct drm_device *dev)
6066 {
6067 struct drm_i915_private *dev_priv = dev->dev_private;
6068 u32 lcfuse;
6069 u8 pxw[16];
6070 int i;
6071
6072 /* Disable to program */
6073 I915_WRITE(ECR, 0);
6074 POSTING_READ(ECR);
6075
6076 /* Program energy weights for various events */
6077 I915_WRITE(SDEW, 0x15040d00);
6078 I915_WRITE(CSIEW0, 0x007f0000);
6079 I915_WRITE(CSIEW1, 0x1e220004);
6080 I915_WRITE(CSIEW2, 0x04000004);
6081
6082 for (i = 0; i < 5; i++)
6083 I915_WRITE(PEW(i), 0);
6084 for (i = 0; i < 3; i++)
6085 I915_WRITE(DEW(i), 0);
6086
6087 /* Program P-state weights to account for frequency power adjustment */
6088 for (i = 0; i < 16; i++) {
6089 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6090 unsigned long freq = intel_pxfreq(pxvidfreq);
6091 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6092 PXVFREQ_PX_SHIFT;
6093 unsigned long val;
6094
6095 val = vid * vid;
6096 val *= (freq / 1000);
6097 val *= 255;
6098 val /= (127*127*900);
6099 if (val > 0xff)
6100 DRM_ERROR("bad pxval: %ld\n", val);
6101 pxw[i] = val;
6102 }
6103 /* Render standby states get 0 weight */
6104 pxw[14] = 0;
6105 pxw[15] = 0;
6106
6107 for (i = 0; i < 4; i++) {
6108 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6109 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6110 I915_WRITE(PXW(i), val);
6111 }
6112
6113 /* Adjust magic regs to magic values (more experimental results) */
6114 I915_WRITE(OGW0, 0);
6115 I915_WRITE(OGW1, 0);
6116 I915_WRITE(EG0, 0x00007f00);
6117 I915_WRITE(EG1, 0x0000000e);
6118 I915_WRITE(EG2, 0x000e0000);
6119 I915_WRITE(EG3, 0x68000300);
6120 I915_WRITE(EG4, 0x42000000);
6121 I915_WRITE(EG5, 0x00140031);
6122 I915_WRITE(EG6, 0);
6123 I915_WRITE(EG7, 0);
6124
6125 for (i = 0; i < 8; i++)
6126 I915_WRITE(PXWL(i), 0);
6127
6128 /* Enable PMON + select events */
6129 I915_WRITE(ECR, 0x80000019);
6130
6131 lcfuse = I915_READ(LCFUSE02);
6132
6133 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6134 }
6135
6136 void intel_init_gt_powersave(struct drm_device *dev)
6137 {
6138 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6139
6140 if (IS_CHERRYVIEW(dev))
6141 cherryview_init_gt_powersave(dev);
6142 else if (IS_VALLEYVIEW(dev))
6143 valleyview_init_gt_powersave(dev);
6144 }
6145
6146 void intel_cleanup_gt_powersave(struct drm_device *dev)
6147 {
6148 if (IS_CHERRYVIEW(dev))
6149 return;
6150 else if (IS_VALLEYVIEW(dev))
6151 valleyview_cleanup_gt_powersave(dev);
6152 }
6153
6154 static void gen6_suspend_rps(struct drm_device *dev)
6155 {
6156 struct drm_i915_private *dev_priv = dev->dev_private;
6157
6158 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6159
6160 gen6_disable_rps_interrupts(dev);
6161 }
6162
6163 /**
6164 * intel_suspend_gt_powersave - suspend PM work and helper threads
6165 * @dev: drm device
6166 *
6167 * We don't want to disable RC6 or other features here, we just want
6168 * to make sure any work we've queued has finished and won't bother
6169 * us while we're suspended.
6170 */
6171 void intel_suspend_gt_powersave(struct drm_device *dev)
6172 {
6173 struct drm_i915_private *dev_priv = dev->dev_private;
6174
6175 if (INTEL_INFO(dev)->gen < 6)
6176 return;
6177
6178 gen6_suspend_rps(dev);
6179
6180 /* Force GPU to min freq during suspend */
6181 gen6_rps_idle(dev_priv);
6182 }
6183
6184 void intel_disable_gt_powersave(struct drm_device *dev)
6185 {
6186 struct drm_i915_private *dev_priv = dev->dev_private;
6187
6188 if (IS_IRONLAKE_M(dev)) {
6189 ironlake_disable_drps(dev);
6190 } else if (INTEL_INFO(dev)->gen >= 6) {
6191 intel_suspend_gt_powersave(dev);
6192
6193 mutex_lock(&dev_priv->rps.hw_lock);
6194 if (INTEL_INFO(dev)->gen >= 9)
6195 gen9_disable_rps(dev);
6196 else if (IS_CHERRYVIEW(dev))
6197 cherryview_disable_rps(dev);
6198 else if (IS_VALLEYVIEW(dev))
6199 valleyview_disable_rps(dev);
6200 else
6201 gen6_disable_rps(dev);
6202
6203 dev_priv->rps.enabled = false;
6204 mutex_unlock(&dev_priv->rps.hw_lock);
6205 }
6206 }
6207
6208 static void intel_gen6_powersave_work(struct work_struct *work)
6209 {
6210 struct drm_i915_private *dev_priv =
6211 container_of(work, struct drm_i915_private,
6212 rps.delayed_resume_work.work);
6213 struct drm_device *dev = dev_priv->dev;
6214
6215 mutex_lock(&dev_priv->rps.hw_lock);
6216
6217 gen6_reset_rps_interrupts(dev);
6218
6219 if (IS_CHERRYVIEW(dev)) {
6220 cherryview_enable_rps(dev);
6221 } else if (IS_VALLEYVIEW(dev)) {
6222 valleyview_enable_rps(dev);
6223 } else if (INTEL_INFO(dev)->gen >= 9) {
6224 gen9_enable_rc6(dev);
6225 gen9_enable_rps(dev);
6226 if (IS_SKYLAKE(dev))
6227 __gen6_update_ring_freq(dev);
6228 } else if (IS_BROADWELL(dev)) {
6229 gen8_enable_rps(dev);
6230 __gen6_update_ring_freq(dev);
6231 } else {
6232 gen6_enable_rps(dev);
6233 __gen6_update_ring_freq(dev);
6234 }
6235
6236 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6237 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6238
6239 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6240 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6241
6242 dev_priv->rps.enabled = true;
6243
6244 gen6_enable_rps_interrupts(dev);
6245
6246 mutex_unlock(&dev_priv->rps.hw_lock);
6247
6248 intel_runtime_pm_put(dev_priv);
6249 }
6250
6251 void intel_enable_gt_powersave(struct drm_device *dev)
6252 {
6253 struct drm_i915_private *dev_priv = dev->dev_private;
6254
6255 /* Powersaving is controlled by the host when inside a VM */
6256 if (intel_vgpu_active(dev))
6257 return;
6258
6259 if (IS_IRONLAKE_M(dev)) {
6260 mutex_lock(&dev->struct_mutex);
6261 ironlake_enable_drps(dev);
6262 intel_init_emon(dev);
6263 mutex_unlock(&dev->struct_mutex);
6264 } else if (INTEL_INFO(dev)->gen >= 6) {
6265 /*
6266 * PCU communication is slow and this doesn't need to be
6267 * done at any specific time, so do this out of our fast path
6268 * to make resume and init faster.
6269 *
6270 * We depend on the HW RC6 power context save/restore
6271 * mechanism when entering D3 through runtime PM suspend. So
6272 * disable RPM until RPS/RC6 is properly setup. We can only
6273 * get here via the driver load/system resume/runtime resume
6274 * paths, so the _noresume version is enough (and in case of
6275 * runtime resume it's necessary).
6276 */
6277 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6278 round_jiffies_up_relative(HZ)))
6279 intel_runtime_pm_get_noresume(dev_priv);
6280 }
6281 }
6282
6283 void intel_reset_gt_powersave(struct drm_device *dev)
6284 {
6285 struct drm_i915_private *dev_priv = dev->dev_private;
6286
6287 if (INTEL_INFO(dev)->gen < 6)
6288 return;
6289
6290 gen6_suspend_rps(dev);
6291 dev_priv->rps.enabled = false;
6292 }
6293
6294 static void ibx_init_clock_gating(struct drm_device *dev)
6295 {
6296 struct drm_i915_private *dev_priv = dev->dev_private;
6297
6298 /*
6299 * On Ibex Peak and Cougar Point, we need to disable clock
6300 * gating for the panel power sequencer or it will fail to
6301 * start up when no ports are active.
6302 */
6303 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6304 }
6305
6306 static void g4x_disable_trickle_feed(struct drm_device *dev)
6307 {
6308 struct drm_i915_private *dev_priv = dev->dev_private;
6309 enum pipe pipe;
6310
6311 for_each_pipe(dev_priv, pipe) {
6312 I915_WRITE(DSPCNTR(pipe),
6313 I915_READ(DSPCNTR(pipe)) |
6314 DISPPLANE_TRICKLE_FEED_DISABLE);
6315
6316 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6317 POSTING_READ(DSPSURF(pipe));
6318 }
6319 }
6320
6321 static void ilk_init_lp_watermarks(struct drm_device *dev)
6322 {
6323 struct drm_i915_private *dev_priv = dev->dev_private;
6324
6325 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6326 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6327 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6328
6329 /*
6330 * Don't touch WM1S_LP_EN here.
6331 * Doing so could cause underruns.
6332 */
6333 }
6334
6335 static void ironlake_init_clock_gating(struct drm_device *dev)
6336 {
6337 struct drm_i915_private *dev_priv = dev->dev_private;
6338 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6339
6340 /*
6341 * Required for FBC
6342 * WaFbcDisableDpfcClockGating:ilk
6343 */
6344 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6345 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6346 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6347
6348 I915_WRITE(PCH_3DCGDIS0,
6349 MARIUNIT_CLOCK_GATE_DISABLE |
6350 SVSMUNIT_CLOCK_GATE_DISABLE);
6351 I915_WRITE(PCH_3DCGDIS1,
6352 VFMUNIT_CLOCK_GATE_DISABLE);
6353
6354 /*
6355 * According to the spec the following bits should be set in
6356 * order to enable memory self-refresh
6357 * The bit 22/21 of 0x42004
6358 * The bit 5 of 0x42020
6359 * The bit 15 of 0x45000
6360 */
6361 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6362 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6363 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6364 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6365 I915_WRITE(DISP_ARB_CTL,
6366 (I915_READ(DISP_ARB_CTL) |
6367 DISP_FBC_WM_DIS));
6368
6369 ilk_init_lp_watermarks(dev);
6370
6371 /*
6372 * Based on the document from hardware guys the following bits
6373 * should be set unconditionally in order to enable FBC.
6374 * The bit 22 of 0x42000
6375 * The bit 22 of 0x42004
6376 * The bit 7,8,9 of 0x42020.
6377 */
6378 if (IS_IRONLAKE_M(dev)) {
6379 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6380 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6381 I915_READ(ILK_DISPLAY_CHICKEN1) |
6382 ILK_FBCQ_DIS);
6383 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6384 I915_READ(ILK_DISPLAY_CHICKEN2) |
6385 ILK_DPARB_GATE);
6386 }
6387
6388 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6389
6390 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6391 I915_READ(ILK_DISPLAY_CHICKEN2) |
6392 ILK_ELPIN_409_SELECT);
6393 I915_WRITE(_3D_CHICKEN2,
6394 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6395 _3D_CHICKEN2_WM_READ_PIPELINED);
6396
6397 /* WaDisableRenderCachePipelinedFlush:ilk */
6398 I915_WRITE(CACHE_MODE_0,
6399 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6400
6401 /* WaDisable_RenderCache_OperationalFlush:ilk */
6402 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6403
6404 g4x_disable_trickle_feed(dev);
6405
6406 ibx_init_clock_gating(dev);
6407 }
6408
6409 static void cpt_init_clock_gating(struct drm_device *dev)
6410 {
6411 struct drm_i915_private *dev_priv = dev->dev_private;
6412 int pipe;
6413 uint32_t val;
6414
6415 /*
6416 * On Ibex Peak and Cougar Point, we need to disable clock
6417 * gating for the panel power sequencer or it will fail to
6418 * start up when no ports are active.
6419 */
6420 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6421 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6422 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6423 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6424 DPLS_EDP_PPS_FIX_DIS);
6425 /* The below fixes the weird display corruption, a few pixels shifted
6426 * downward, on (only) LVDS of some HP laptops with IVY.
6427 */
6428 for_each_pipe(dev_priv, pipe) {
6429 val = I915_READ(TRANS_CHICKEN2(pipe));
6430 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6431 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6432 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6433 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6434 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6435 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6436 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6437 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6438 }
6439 /* WADP0ClockGatingDisable */
6440 for_each_pipe(dev_priv, pipe) {
6441 I915_WRITE(TRANS_CHICKEN1(pipe),
6442 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6443 }
6444 }
6445
6446 static void gen6_check_mch_setup(struct drm_device *dev)
6447 {
6448 struct drm_i915_private *dev_priv = dev->dev_private;
6449 uint32_t tmp;
6450
6451 tmp = I915_READ(MCH_SSKPD);
6452 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6453 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6454 tmp);
6455 }
6456
6457 static void gen6_init_clock_gating(struct drm_device *dev)
6458 {
6459 struct drm_i915_private *dev_priv = dev->dev_private;
6460 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6461
6462 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6463
6464 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6465 I915_READ(ILK_DISPLAY_CHICKEN2) |
6466 ILK_ELPIN_409_SELECT);
6467
6468 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6469 I915_WRITE(_3D_CHICKEN,
6470 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6471
6472 /* WaDisable_RenderCache_OperationalFlush:snb */
6473 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6474
6475 /*
6476 * BSpec recoomends 8x4 when MSAA is used,
6477 * however in practice 16x4 seems fastest.
6478 *
6479 * Note that PS/WM thread counts depend on the WIZ hashing
6480 * disable bit, which we don't touch here, but it's good
6481 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6482 */
6483 I915_WRITE(GEN6_GT_MODE,
6484 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6485
6486 ilk_init_lp_watermarks(dev);
6487
6488 I915_WRITE(CACHE_MODE_0,
6489 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6490
6491 I915_WRITE(GEN6_UCGCTL1,
6492 I915_READ(GEN6_UCGCTL1) |
6493 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6494 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6495
6496 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6497 * gating disable must be set. Failure to set it results in
6498 * flickering pixels due to Z write ordering failures after
6499 * some amount of runtime in the Mesa "fire" demo, and Unigine
6500 * Sanctuary and Tropics, and apparently anything else with
6501 * alpha test or pixel discard.
6502 *
6503 * According to the spec, bit 11 (RCCUNIT) must also be set,
6504 * but we didn't debug actual testcases to find it out.
6505 *
6506 * WaDisableRCCUnitClockGating:snb
6507 * WaDisableRCPBUnitClockGating:snb
6508 */
6509 I915_WRITE(GEN6_UCGCTL2,
6510 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6511 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6512
6513 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6514 I915_WRITE(_3D_CHICKEN3,
6515 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6516
6517 /*
6518 * Bspec says:
6519 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6520 * 3DSTATE_SF number of SF output attributes is more than 16."
6521 */
6522 I915_WRITE(_3D_CHICKEN3,
6523 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6524
6525 /*
6526 * According to the spec the following bits should be
6527 * set in order to enable memory self-refresh and fbc:
6528 * The bit21 and bit22 of 0x42000
6529 * The bit21 and bit22 of 0x42004
6530 * The bit5 and bit7 of 0x42020
6531 * The bit14 of 0x70180
6532 * The bit14 of 0x71180
6533 *
6534 * WaFbcAsynchFlipDisableFbcQueue:snb
6535 */
6536 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6537 I915_READ(ILK_DISPLAY_CHICKEN1) |
6538 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6539 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6540 I915_READ(ILK_DISPLAY_CHICKEN2) |
6541 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6542 I915_WRITE(ILK_DSPCLK_GATE_D,
6543 I915_READ(ILK_DSPCLK_GATE_D) |
6544 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6545 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6546
6547 g4x_disable_trickle_feed(dev);
6548
6549 cpt_init_clock_gating(dev);
6550
6551 gen6_check_mch_setup(dev);
6552 }
6553
6554 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6555 {
6556 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6557
6558 /*
6559 * WaVSThreadDispatchOverride:ivb,vlv
6560 *
6561 * This actually overrides the dispatch
6562 * mode for all thread types.
6563 */
6564 reg &= ~GEN7_FF_SCHED_MASK;
6565 reg |= GEN7_FF_TS_SCHED_HW;
6566 reg |= GEN7_FF_VS_SCHED_HW;
6567 reg |= GEN7_FF_DS_SCHED_HW;
6568
6569 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6570 }
6571
6572 static void lpt_init_clock_gating(struct drm_device *dev)
6573 {
6574 struct drm_i915_private *dev_priv = dev->dev_private;
6575
6576 /*
6577 * TODO: this bit should only be enabled when really needed, then
6578 * disabled when not needed anymore in order to save power.
6579 */
6580 if (HAS_PCH_LPT_LP(dev))
6581 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6582 I915_READ(SOUTH_DSPCLK_GATE_D) |
6583 PCH_LP_PARTITION_LEVEL_DISABLE);
6584
6585 /* WADPOClockGatingDisable:hsw */
6586 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6587 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6588 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6589 }
6590
6591 static void lpt_suspend_hw(struct drm_device *dev)
6592 {
6593 struct drm_i915_private *dev_priv = dev->dev_private;
6594
6595 if (HAS_PCH_LPT_LP(dev)) {
6596 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6597
6598 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6599 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6600 }
6601 }
6602
6603 static void broadwell_init_clock_gating(struct drm_device *dev)
6604 {
6605 struct drm_i915_private *dev_priv = dev->dev_private;
6606 enum pipe pipe;
6607 uint32_t misccpctl;
6608
6609 ilk_init_lp_watermarks(dev);
6610
6611 /* WaSwitchSolVfFArbitrationPriority:bdw */
6612 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6613
6614 /* WaPsrDPAMaskVBlankInSRD:bdw */
6615 I915_WRITE(CHICKEN_PAR1_1,
6616 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6617
6618 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6619 for_each_pipe(dev_priv, pipe) {
6620 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6621 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6622 BDW_DPRS_MASK_VBLANK_SRD);
6623 }
6624
6625 /* WaVSRefCountFullforceMissDisable:bdw */
6626 /* WaDSRefCountFullforceMissDisable:bdw */
6627 I915_WRITE(GEN7_FF_THREAD_MODE,
6628 I915_READ(GEN7_FF_THREAD_MODE) &
6629 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6630
6631 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6632 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6633
6634 /* WaDisableSDEUnitClockGating:bdw */
6635 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6636 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6637
6638 /*
6639 * WaProgramL3SqcReg1Default:bdw
6640 * WaTempDisableDOPClkGating:bdw
6641 */
6642 misccpctl = I915_READ(GEN7_MISCCPCTL);
6643 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6644 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6645 /*
6646 * Wait at least 100 clocks before re-enabling clock gating. See
6647 * the definition of L3SQCREG1 in BSpec.
6648 */
6649 POSTING_READ(GEN8_L3SQCREG1);
6650 udelay(1);
6651 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6652
6653 /*
6654 * WaGttCachingOffByDefault:bdw
6655 * GTT cache may not work with big pages, so if those
6656 * are ever enabled GTT cache may need to be disabled.
6657 */
6658 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6659
6660 lpt_init_clock_gating(dev);
6661 }
6662
6663 static void haswell_init_clock_gating(struct drm_device *dev)
6664 {
6665 struct drm_i915_private *dev_priv = dev->dev_private;
6666
6667 ilk_init_lp_watermarks(dev);
6668
6669 /* L3 caching of data atomics doesn't work -- disable it. */
6670 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6671 I915_WRITE(HSW_ROW_CHICKEN3,
6672 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6673
6674 /* This is required by WaCatErrorRejectionIssue:hsw */
6675 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6676 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6677 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6678
6679 /* WaVSRefCountFullforceMissDisable:hsw */
6680 I915_WRITE(GEN7_FF_THREAD_MODE,
6681 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6682
6683 /* WaDisable_RenderCache_OperationalFlush:hsw */
6684 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6685
6686 /* enable HiZ Raw Stall Optimization */
6687 I915_WRITE(CACHE_MODE_0_GEN7,
6688 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6689
6690 /* WaDisable4x2SubspanOptimization:hsw */
6691 I915_WRITE(CACHE_MODE_1,
6692 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6693
6694 /*
6695 * BSpec recommends 8x4 when MSAA is used,
6696 * however in practice 16x4 seems fastest.
6697 *
6698 * Note that PS/WM thread counts depend on the WIZ hashing
6699 * disable bit, which we don't touch here, but it's good
6700 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6701 */
6702 I915_WRITE(GEN7_GT_MODE,
6703 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6704
6705 /* WaSampleCChickenBitEnable:hsw */
6706 I915_WRITE(HALF_SLICE_CHICKEN3,
6707 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6708
6709 /* WaSwitchSolVfFArbitrationPriority:hsw */
6710 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6711
6712 /* WaRsPkgCStateDisplayPMReq:hsw */
6713 I915_WRITE(CHICKEN_PAR1_1,
6714 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6715
6716 lpt_init_clock_gating(dev);
6717 }
6718
6719 static void ivybridge_init_clock_gating(struct drm_device *dev)
6720 {
6721 struct drm_i915_private *dev_priv = dev->dev_private;
6722 uint32_t snpcr;
6723
6724 ilk_init_lp_watermarks(dev);
6725
6726 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6727
6728 /* WaDisableEarlyCull:ivb */
6729 I915_WRITE(_3D_CHICKEN3,
6730 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6731
6732 /* WaDisableBackToBackFlipFix:ivb */
6733 I915_WRITE(IVB_CHICKEN3,
6734 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6735 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6736
6737 /* WaDisablePSDDualDispatchEnable:ivb */
6738 if (IS_IVB_GT1(dev))
6739 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6740 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6741
6742 /* WaDisable_RenderCache_OperationalFlush:ivb */
6743 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6744
6745 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6746 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6747 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6748
6749 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6750 I915_WRITE(GEN7_L3CNTLREG1,
6751 GEN7_WA_FOR_GEN7_L3_CONTROL);
6752 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6753 GEN7_WA_L3_CHICKEN_MODE);
6754 if (IS_IVB_GT1(dev))
6755 I915_WRITE(GEN7_ROW_CHICKEN2,
6756 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6757 else {
6758 /* must write both registers */
6759 I915_WRITE(GEN7_ROW_CHICKEN2,
6760 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6762 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6763 }
6764
6765 /* WaForceL3Serialization:ivb */
6766 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6767 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6768
6769 /*
6770 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6771 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6772 */
6773 I915_WRITE(GEN6_UCGCTL2,
6774 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6775
6776 /* This is required by WaCatErrorRejectionIssue:ivb */
6777 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6778 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6779 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6780
6781 g4x_disable_trickle_feed(dev);
6782
6783 gen7_setup_fixed_func_scheduler(dev_priv);
6784
6785 if (0) { /* causes HiZ corruption on ivb:gt1 */
6786 /* enable HiZ Raw Stall Optimization */
6787 I915_WRITE(CACHE_MODE_0_GEN7,
6788 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6789 }
6790
6791 /* WaDisable4x2SubspanOptimization:ivb */
6792 I915_WRITE(CACHE_MODE_1,
6793 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6794
6795 /*
6796 * BSpec recommends 8x4 when MSAA is used,
6797 * however in practice 16x4 seems fastest.
6798 *
6799 * Note that PS/WM thread counts depend on the WIZ hashing
6800 * disable bit, which we don't touch here, but it's good
6801 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6802 */
6803 I915_WRITE(GEN7_GT_MODE,
6804 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6805
6806 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6807 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6808 snpcr |= GEN6_MBC_SNPCR_MED;
6809 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6810
6811 if (!HAS_PCH_NOP(dev))
6812 cpt_init_clock_gating(dev);
6813
6814 gen6_check_mch_setup(dev);
6815 }
6816
6817 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6818 {
6819 u32 val;
6820
6821 /*
6822 * On driver load, a pipe may be active and driving a DSI display.
6823 * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
6824 * (and never recovering) in this case. intel_dsi_post_disable() will
6825 * clear it when we turn off the display.
6826 */
6827 val = I915_READ(DSPCLK_GATE_D);
6828 val &= DPOUNIT_CLOCK_GATE_DISABLE;
6829 val |= VRHUNIT_CLOCK_GATE_DISABLE;
6830 I915_WRITE(DSPCLK_GATE_D, val);
6831
6832 /*
6833 * Disable trickle feed and enable pnd deadline calculation
6834 */
6835 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6836 I915_WRITE(CBR1_VLV, 0);
6837 }
6838
6839 static void valleyview_init_clock_gating(struct drm_device *dev)
6840 {
6841 struct drm_i915_private *dev_priv = dev->dev_private;
6842
6843 vlv_init_display_clock_gating(dev_priv);
6844
6845 /* WaDisableEarlyCull:vlv */
6846 I915_WRITE(_3D_CHICKEN3,
6847 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6848
6849 /* WaDisableBackToBackFlipFix:vlv */
6850 I915_WRITE(IVB_CHICKEN3,
6851 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6852 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6853
6854 /* WaPsdDispatchEnable:vlv */
6855 /* WaDisablePSDDualDispatchEnable:vlv */
6856 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6857 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6858 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6859
6860 /* WaDisable_RenderCache_OperationalFlush:vlv */
6861 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6862
6863 /* WaForceL3Serialization:vlv */
6864 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6865 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6866
6867 /* WaDisableDopClockGating:vlv */
6868 I915_WRITE(GEN7_ROW_CHICKEN2,
6869 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6870
6871 /* This is required by WaCatErrorRejectionIssue:vlv */
6872 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6873 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6874 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6875
6876 gen7_setup_fixed_func_scheduler(dev_priv);
6877
6878 /*
6879 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6880 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6881 */
6882 I915_WRITE(GEN6_UCGCTL2,
6883 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6884
6885 /* WaDisableL3Bank2xClockGate:vlv
6886 * Disabling L3 clock gating- MMIO 940c[25] = 1
6887 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6888 I915_WRITE(GEN7_UCGCTL4,
6889 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6890
6891 /*
6892 * BSpec says this must be set, even though
6893 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6894 */
6895 I915_WRITE(CACHE_MODE_1,
6896 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6897
6898 /*
6899 * BSpec recommends 8x4 when MSAA is used,
6900 * however in practice 16x4 seems fastest.
6901 *
6902 * Note that PS/WM thread counts depend on the WIZ hashing
6903 * disable bit, which we don't touch here, but it's good
6904 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6905 */
6906 I915_WRITE(GEN7_GT_MODE,
6907 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6908
6909 /*
6910 * WaIncreaseL3CreditsForVLVB0:vlv
6911 * This is the hardware default actually.
6912 */
6913 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6914
6915 /*
6916 * WaDisableVLVClockGating_VBIIssue:vlv
6917 * Disable clock gating on th GCFG unit to prevent a delay
6918 * in the reporting of vblank events.
6919 */
6920 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6921 }
6922
6923 static void cherryview_init_clock_gating(struct drm_device *dev)
6924 {
6925 struct drm_i915_private *dev_priv = dev->dev_private;
6926
6927 vlv_init_display_clock_gating(dev_priv);
6928
6929 /* WaVSRefCountFullforceMissDisable:chv */
6930 /* WaDSRefCountFullforceMissDisable:chv */
6931 I915_WRITE(GEN7_FF_THREAD_MODE,
6932 I915_READ(GEN7_FF_THREAD_MODE) &
6933 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6934
6935 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6936 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6937 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6938
6939 /* WaDisableCSUnitClockGating:chv */
6940 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6941 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6942
6943 /* WaDisableSDEUnitClockGating:chv */
6944 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6945 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6946
6947 /*
6948 * GTT cache may not work with big pages, so if those
6949 * are ever enabled GTT cache may need to be disabled.
6950 */
6951 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6952 }
6953
6954 static void g4x_init_clock_gating(struct drm_device *dev)
6955 {
6956 struct drm_i915_private *dev_priv = dev->dev_private;
6957 uint32_t dspclk_gate;
6958
6959 I915_WRITE(RENCLK_GATE_D1, 0);
6960 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6961 GS_UNIT_CLOCK_GATE_DISABLE |
6962 CL_UNIT_CLOCK_GATE_DISABLE);
6963 I915_WRITE(RAMCLK_GATE_D, 0);
6964 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6965 OVRUNIT_CLOCK_GATE_DISABLE |
6966 OVCUNIT_CLOCK_GATE_DISABLE;
6967 if (IS_GM45(dev))
6968 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6969 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6970
6971 /* WaDisableRenderCachePipelinedFlush */
6972 I915_WRITE(CACHE_MODE_0,
6973 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6974
6975 /* WaDisable_RenderCache_OperationalFlush:g4x */
6976 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6977
6978 g4x_disable_trickle_feed(dev);
6979 }
6980
6981 static void crestline_init_clock_gating(struct drm_device *dev)
6982 {
6983 struct drm_i915_private *dev_priv = dev->dev_private;
6984
6985 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6986 I915_WRITE(RENCLK_GATE_D2, 0);
6987 I915_WRITE(DSPCLK_GATE_D, 0);
6988 I915_WRITE(RAMCLK_GATE_D, 0);
6989 I915_WRITE16(DEUC, 0);
6990 I915_WRITE(MI_ARB_STATE,
6991 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6992
6993 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6994 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6995 }
6996
6997 static void broadwater_init_clock_gating(struct drm_device *dev)
6998 {
6999 struct drm_i915_private *dev_priv = dev->dev_private;
7000
7001 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7002 I965_RCC_CLOCK_GATE_DISABLE |
7003 I965_RCPB_CLOCK_GATE_DISABLE |
7004 I965_ISC_CLOCK_GATE_DISABLE |
7005 I965_FBC_CLOCK_GATE_DISABLE);
7006 I915_WRITE(RENCLK_GATE_D2, 0);
7007 I915_WRITE(MI_ARB_STATE,
7008 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7009
7010 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7011 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7012 }
7013
7014 static void gen3_init_clock_gating(struct drm_device *dev)
7015 {
7016 struct drm_i915_private *dev_priv = dev->dev_private;
7017 u32 dstate = I915_READ(D_STATE);
7018
7019 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7020 DSTATE_DOT_CLOCK_GATING;
7021 I915_WRITE(D_STATE, dstate);
7022
7023 if (IS_PINEVIEW(dev))
7024 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7025
7026 /* IIR "flip pending" means done if this bit is set */
7027 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7028
7029 /* interrupts should cause a wake up from C3 */
7030 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7031
7032 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7033 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7034
7035 I915_WRITE(MI_ARB_STATE,
7036 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7037 }
7038
7039 static void i85x_init_clock_gating(struct drm_device *dev)
7040 {
7041 struct drm_i915_private *dev_priv = dev->dev_private;
7042
7043 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7044
7045 /* interrupts should cause a wake up from C3 */
7046 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7047 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7048
7049 I915_WRITE(MEM_MODE,
7050 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7051 }
7052
7053 static void i830_init_clock_gating(struct drm_device *dev)
7054 {
7055 struct drm_i915_private *dev_priv = dev->dev_private;
7056
7057 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7058
7059 I915_WRITE(MEM_MODE,
7060 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7061 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7062 }
7063
7064 void intel_init_clock_gating(struct drm_device *dev)
7065 {
7066 struct drm_i915_private *dev_priv = dev->dev_private;
7067
7068 if (dev_priv->display.init_clock_gating)
7069 dev_priv->display.init_clock_gating(dev);
7070 }
7071
7072 void intel_suspend_hw(struct drm_device *dev)
7073 {
7074 if (HAS_PCH_LPT(dev))
7075 lpt_suspend_hw(dev);
7076 }
7077
7078 /* Set up chip specific power management-related functions */
7079 void intel_init_pm(struct drm_device *dev)
7080 {
7081 struct drm_i915_private *dev_priv = dev->dev_private;
7082
7083 intel_fbc_init(dev_priv);
7084
7085 /* For cxsr */
7086 if (IS_PINEVIEW(dev))
7087 i915_pineview_get_mem_freq(dev);
7088 else if (IS_GEN5(dev))
7089 i915_ironlake_get_mem_freq(dev);
7090
7091 /* For FIFO watermark updates */
7092 if (INTEL_INFO(dev)->gen >= 9) {
7093 skl_setup_wm_latency(dev);
7094
7095 if (IS_BROXTON(dev))
7096 dev_priv->display.init_clock_gating =
7097 bxt_init_clock_gating;
7098 dev_priv->display.update_wm = skl_update_wm;
7099 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7100 } else if (HAS_PCH_SPLIT(dev)) {
7101 ilk_setup_wm_latency(dev);
7102
7103 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7104 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7105 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7106 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7107 dev_priv->display.update_wm = ilk_update_wm;
7108 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7109 } else {
7110 DRM_DEBUG_KMS("Failed to read display plane latency. "
7111 "Disable CxSR\n");
7112 }
7113
7114 if (IS_GEN5(dev))
7115 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7116 else if (IS_GEN6(dev))
7117 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7118 else if (IS_IVYBRIDGE(dev))
7119 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7120 else if (IS_HASWELL(dev))
7121 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7122 else if (INTEL_INFO(dev)->gen == 8)
7123 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7124 } else if (IS_CHERRYVIEW(dev)) {
7125 vlv_setup_wm_latency(dev);
7126
7127 dev_priv->display.update_wm = vlv_update_wm;
7128 dev_priv->display.init_clock_gating =
7129 cherryview_init_clock_gating;
7130 } else if (IS_VALLEYVIEW(dev)) {
7131 vlv_setup_wm_latency(dev);
7132
7133 dev_priv->display.update_wm = vlv_update_wm;
7134 dev_priv->display.init_clock_gating =
7135 valleyview_init_clock_gating;
7136 } else if (IS_PINEVIEW(dev)) {
7137 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7138 dev_priv->is_ddr3,
7139 dev_priv->fsb_freq,
7140 dev_priv->mem_freq)) {
7141 DRM_INFO("failed to find known CxSR latency "
7142 "(found ddr%s fsb freq %d, mem freq %d), "
7143 "disabling CxSR\n",
7144 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7145 dev_priv->fsb_freq, dev_priv->mem_freq);
7146 /* Disable CxSR and never update its watermark again */
7147 intel_set_memory_cxsr(dev_priv, false);
7148 dev_priv->display.update_wm = NULL;
7149 } else
7150 dev_priv->display.update_wm = pineview_update_wm;
7151 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7152 } else if (IS_G4X(dev)) {
7153 dev_priv->display.update_wm = g4x_update_wm;
7154 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7155 } else if (IS_GEN4(dev)) {
7156 dev_priv->display.update_wm = i965_update_wm;
7157 if (IS_CRESTLINE(dev))
7158 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7159 else if (IS_BROADWATER(dev))
7160 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7161 } else if (IS_GEN3(dev)) {
7162 dev_priv->display.update_wm = i9xx_update_wm;
7163 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7164 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7165 } else if (IS_GEN2(dev)) {
7166 if (INTEL_INFO(dev)->num_pipes == 1) {
7167 dev_priv->display.update_wm = i845_update_wm;
7168 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7169 } else {
7170 dev_priv->display.update_wm = i9xx_update_wm;
7171 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7172 }
7173
7174 if (IS_I85X(dev) || IS_I865G(dev))
7175 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7176 else
7177 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7178 } else {
7179 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7180 }
7181 }
7182
7183 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7184 {
7185 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7186
7187 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7188 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7189 return -EAGAIN;
7190 }
7191
7192 I915_WRITE(GEN6_PCODE_DATA, *val);
7193 I915_WRITE(GEN6_PCODE_DATA1, 0);
7194 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7195
7196 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7197 500)) {
7198 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7199 return -ETIMEDOUT;
7200 }
7201
7202 *val = I915_READ(GEN6_PCODE_DATA);
7203 I915_WRITE(GEN6_PCODE_DATA, 0);
7204
7205 return 0;
7206 }
7207
7208 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7209 {
7210 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7211
7212 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7213 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7214 return -EAGAIN;
7215 }
7216
7217 I915_WRITE(GEN6_PCODE_DATA, val);
7218 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7219
7220 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7221 500)) {
7222 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7223 return -ETIMEDOUT;
7224 }
7225
7226 I915_WRITE(GEN6_PCODE_DATA, 0);
7227
7228 return 0;
7229 }
7230
7231 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7232 {
7233 switch (czclk_freq) {
7234 case 200:
7235 return 10;
7236 case 267:
7237 return 12;
7238 case 320:
7239 case 333:
7240 return 16;
7241 case 400:
7242 return 20;
7243 default:
7244 return -1;
7245 }
7246 }
7247
7248 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7249 {
7250 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7251
7252 div = vlv_gpu_freq_div(czclk_freq);
7253 if (div < 0)
7254 return div;
7255
7256 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7257 }
7258
7259 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7260 {
7261 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7262
7263 mul = vlv_gpu_freq_div(czclk_freq);
7264 if (mul < 0)
7265 return mul;
7266
7267 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7268 }
7269
7270 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7271 {
7272 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7273
7274 div = vlv_gpu_freq_div(czclk_freq) / 2;
7275 if (div < 0)
7276 return div;
7277
7278 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7279 }
7280
7281 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7282 {
7283 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7284
7285 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7286 if (mul < 0)
7287 return mul;
7288
7289 /* CHV needs even values */
7290 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7291 }
7292
7293 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7294 {
7295 if (IS_GEN9(dev_priv->dev))
7296 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7297 GEN9_FREQ_SCALER);
7298 else if (IS_CHERRYVIEW(dev_priv->dev))
7299 return chv_gpu_freq(dev_priv, val);
7300 else if (IS_VALLEYVIEW(dev_priv->dev))
7301 return byt_gpu_freq(dev_priv, val);
7302 else
7303 return val * GT_FREQUENCY_MULTIPLIER;
7304 }
7305
7306 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7307 {
7308 if (IS_GEN9(dev_priv->dev))
7309 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7310 GT_FREQUENCY_MULTIPLIER);
7311 else if (IS_CHERRYVIEW(dev_priv->dev))
7312 return chv_freq_opcode(dev_priv, val);
7313 else if (IS_VALLEYVIEW(dev_priv->dev))
7314 return byt_freq_opcode(dev_priv, val);
7315 else
7316 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7317 }
7318
7319 struct request_boost {
7320 struct work_struct work;
7321 struct drm_i915_gem_request *req;
7322 };
7323
7324 static void __intel_rps_boost_work(struct work_struct *work)
7325 {
7326 struct request_boost *boost = container_of(work, struct request_boost, work);
7327 struct drm_i915_gem_request *req = boost->req;
7328
7329 if (!i915_gem_request_completed(req, true))
7330 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7331 req->emitted_jiffies);
7332
7333 i915_gem_request_unreference__unlocked(req);
7334 kfree(boost);
7335 }
7336
7337 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7338 struct drm_i915_gem_request *req)
7339 {
7340 struct request_boost *boost;
7341
7342 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7343 return;
7344
7345 if (i915_gem_request_completed(req, true))
7346 return;
7347
7348 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7349 if (boost == NULL)
7350 return;
7351
7352 i915_gem_request_reference(req);
7353 boost->req = req;
7354
7355 INIT_WORK(&boost->work, __intel_rps_boost_work);
7356 queue_work(to_i915(dev)->wq, &boost->work);
7357 }
7358
7359 void intel_pm_setup(struct drm_device *dev)
7360 {
7361 struct drm_i915_private *dev_priv = dev->dev_private;
7362
7363 mutex_init(&dev_priv->rps.hw_lock);
7364 spin_lock_init(&dev_priv->rps.client_lock);
7365
7366 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7367 intel_gen6_powersave_work);
7368 INIT_LIST_HEAD(&dev_priv->rps.clients);
7369 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7370 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7371
7372 dev_priv->pm.suspended = false;
7373 }
7374