intel_pm.c revision 1.1.1.4 1 /* $NetBSD: intel_pm.c,v 1.1.1.4 2021/12/18 20:15:26 riastradh Exp $ */
2
3 /*
4 * Copyright 2012 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eugeni Dodonov <eugeni.dodonov (at) intel.com>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: intel_pm.c,v 1.1.1.4 2021/12/18 20:15:26 riastradh Exp $");
32
33 #include <linux/module.h>
34 #include <linux/pm_runtime.h>
35
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_fourcc.h>
38 #include <drm/drm_plane_helper.h>
39
40 #include "display/intel_atomic.h"
41 #include "display/intel_display_types.h"
42 #include "display/intel_fbc.h"
43 #include "display/intel_sprite.h"
44
45 #include "gt/intel_llc.h"
46
47 #include "i915_drv.h"
48 #include "i915_irq.h"
49 #include "i915_trace.h"
50 #include "intel_pm.h"
51 #include "intel_sideband.h"
52 #include "../../../platform/x86/intel_ips.h"
53
54 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
55 {
56 if (HAS_LLC(dev_priv)) {
57 /*
58 * WaCompressedResourceDisplayNewHashMode:skl,kbl
59 * Display WA #0390: skl,kbl
60 *
61 * Must match Sampler, Pixel Back End, and Media. See
62 * WaCompressedResourceSamplerPbeMediaNewHashMode.
63 */
64 I915_WRITE(CHICKEN_PAR1_1,
65 I915_READ(CHICKEN_PAR1_1) |
66 SKL_DE_COMPRESSED_HASH_MODE);
67 }
68
69 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
70 I915_WRITE(CHICKEN_PAR1_1,
71 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
72
73 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
74 I915_WRITE(GEN8_CHICKEN_DCPR_1,
75 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
76
77 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
78 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
79 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
80 DISP_FBC_WM_DIS |
81 DISP_FBC_MEMORY_WAKE);
82
83 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
84 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
85 ILK_DPFC_DISABLE_DUMMY0);
86
87 if (IS_SKYLAKE(dev_priv)) {
88 /* WaDisableDopClockGating */
89 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
90 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
91 }
92 }
93
94 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
95 {
96 gen9_init_clock_gating(dev_priv);
97
98 /* WaDisableSDEUnitClockGating:bxt */
99 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
100 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
101
102 /*
103 * FIXME:
104 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
105 */
106 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
107 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
108
109 /*
110 * Wa: Backlight PWM may stop in the asserted state, causing backlight
111 * to stay fully on.
112 */
113 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
114 PWM1_GATING_DIS | PWM2_GATING_DIS);
115
116 /*
117 * Lower the display internal timeout.
118 * This is needed to avoid any hard hangs when DSI port PLL
119 * is off and a MMIO access is attempted by any privilege
120 * application, using batch buffers or any other means.
121 */
122 I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
123 }
124
125 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
126 {
127 gen9_init_clock_gating(dev_priv);
128
129 /*
130 * WaDisablePWMClockGating:glk
131 * Backlight PWM may stop in the asserted state, causing backlight
132 * to stay fully on.
133 */
134 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
135 PWM1_GATING_DIS | PWM2_GATING_DIS);
136
137 /* WaDDIIOTimeout:glk */
138 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
139 u32 val = I915_READ(CHICKEN_MISC_2);
140 val &= ~(GLK_CL0_PWR_DOWN |
141 GLK_CL1_PWR_DOWN |
142 GLK_CL2_PWR_DOWN);
143 I915_WRITE(CHICKEN_MISC_2, val);
144 }
145
146 }
147
148 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
149 {
150 u32 tmp;
151
152 tmp = I915_READ(CLKCFG);
153
154 switch (tmp & CLKCFG_FSB_MASK) {
155 case CLKCFG_FSB_533:
156 dev_priv->fsb_freq = 533; /* 133*4 */
157 break;
158 case CLKCFG_FSB_800:
159 dev_priv->fsb_freq = 800; /* 200*4 */
160 break;
161 case CLKCFG_FSB_667:
162 dev_priv->fsb_freq = 667; /* 167*4 */
163 break;
164 case CLKCFG_FSB_400:
165 dev_priv->fsb_freq = 400; /* 100*4 */
166 break;
167 }
168
169 switch (tmp & CLKCFG_MEM_MASK) {
170 case CLKCFG_MEM_533:
171 dev_priv->mem_freq = 533;
172 break;
173 case CLKCFG_MEM_667:
174 dev_priv->mem_freq = 667;
175 break;
176 case CLKCFG_MEM_800:
177 dev_priv->mem_freq = 800;
178 break;
179 }
180
181 /* detect pineview DDR3 setting */
182 tmp = I915_READ(CSHRDDR3CTL);
183 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
184 }
185
186 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
187 {
188 u16 ddrpll, csipll;
189
190 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
191 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
192
193 switch (ddrpll & 0xff) {
194 case 0xc:
195 dev_priv->mem_freq = 800;
196 break;
197 case 0x10:
198 dev_priv->mem_freq = 1066;
199 break;
200 case 0x14:
201 dev_priv->mem_freq = 1333;
202 break;
203 case 0x18:
204 dev_priv->mem_freq = 1600;
205 break;
206 default:
207 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
208 ddrpll & 0xff);
209 dev_priv->mem_freq = 0;
210 break;
211 }
212
213 switch (csipll & 0x3ff) {
214 case 0x00c:
215 dev_priv->fsb_freq = 3200;
216 break;
217 case 0x00e:
218 dev_priv->fsb_freq = 3733;
219 break;
220 case 0x010:
221 dev_priv->fsb_freq = 4266;
222 break;
223 case 0x012:
224 dev_priv->fsb_freq = 4800;
225 break;
226 case 0x014:
227 dev_priv->fsb_freq = 5333;
228 break;
229 case 0x016:
230 dev_priv->fsb_freq = 5866;
231 break;
232 case 0x018:
233 dev_priv->fsb_freq = 6400;
234 break;
235 default:
236 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
237 csipll & 0x3ff);
238 dev_priv->fsb_freq = 0;
239 break;
240 }
241 }
242
243 static const struct cxsr_latency cxsr_latency_table[] = {
244 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
245 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
246 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
247 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
248 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
249
250 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
251 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
252 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
253 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
254 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
255
256 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
257 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
258 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
259 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
260 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
261
262 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
263 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
264 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
265 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
266 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
267
268 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
269 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
270 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
271 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
272 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
273
274 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
275 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
276 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
277 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
278 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
279 };
280
281 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
282 bool is_ddr3,
283 int fsb,
284 int mem)
285 {
286 const struct cxsr_latency *latency;
287 int i;
288
289 if (fsb == 0 || mem == 0)
290 return NULL;
291
292 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
293 latency = &cxsr_latency_table[i];
294 if (is_desktop == latency->is_desktop &&
295 is_ddr3 == latency->is_ddr3 &&
296 fsb == latency->fsb_freq && mem == latency->mem_freq)
297 return latency;
298 }
299
300 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
301
302 return NULL;
303 }
304
305 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
306 {
307 u32 val;
308
309 vlv_punit_get(dev_priv);
310
311 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
312 if (enable)
313 val &= ~FORCE_DDR_HIGH_FREQ;
314 else
315 val |= FORCE_DDR_HIGH_FREQ;
316 val &= ~FORCE_DDR_LOW_FREQ;
317 val |= FORCE_DDR_FREQ_REQ_ACK;
318 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
319
320 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
321 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
322 drm_err(&dev_priv->drm,
323 "timed out waiting for Punit DDR DVFS request\n");
324
325 vlv_punit_put(dev_priv);
326 }
327
328 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
329 {
330 u32 val;
331
332 vlv_punit_get(dev_priv);
333
334 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
335 if (enable)
336 val |= DSP_MAXFIFO_PM5_ENABLE;
337 else
338 val &= ~DSP_MAXFIFO_PM5_ENABLE;
339 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
340
341 vlv_punit_put(dev_priv);
342 }
343
344 #define FW_WM(value, plane) \
345 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
346
347 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
348 {
349 bool was_enabled;
350 u32 val;
351
352 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
353 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
354 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
355 POSTING_READ(FW_BLC_SELF_VLV);
356 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
357 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
358 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
359 POSTING_READ(FW_BLC_SELF);
360 } else if (IS_PINEVIEW(dev_priv)) {
361 val = I915_READ(DSPFW3);
362 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
363 if (enable)
364 val |= PINEVIEW_SELF_REFRESH_EN;
365 else
366 val &= ~PINEVIEW_SELF_REFRESH_EN;
367 I915_WRITE(DSPFW3, val);
368 POSTING_READ(DSPFW3);
369 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
370 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
371 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
372 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
373 I915_WRITE(FW_BLC_SELF, val);
374 POSTING_READ(FW_BLC_SELF);
375 } else if (IS_I915GM(dev_priv)) {
376 /*
377 * FIXME can't find a bit like this for 915G, and
378 * and yet it does have the related watermark in
379 * FW_BLC_SELF. What's going on?
380 */
381 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
382 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
383 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
384 I915_WRITE(INSTPM, val);
385 POSTING_READ(INSTPM);
386 } else {
387 return false;
388 }
389
390 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
391
392 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
393 enableddisabled(enable),
394 enableddisabled(was_enabled));
395
396 return was_enabled;
397 }
398
399 /**
400 * intel_set_memory_cxsr - Configure CxSR state
401 * @dev_priv: i915 device
402 * @enable: Allow vs. disallow CxSR
403 *
404 * Allow or disallow the system to enter a special CxSR
405 * (C-state self refresh) state. What typically happens in CxSR mode
406 * is that several display FIFOs may get combined into a single larger
407 * FIFO for a particular plane (so called max FIFO mode) to allow the
408 * system to defer memory fetches longer, and the memory will enter
409 * self refresh.
410 *
411 * Note that enabling CxSR does not guarantee that the system enter
412 * this special mode, nor does it guarantee that the system stays
413 * in that mode once entered. So this just allows/disallows the system
414 * to autonomously utilize the CxSR mode. Other factors such as core
415 * C-states will affect when/if the system actually enters/exits the
416 * CxSR mode.
417 *
418 * Note that on VLV/CHV this actually only controls the max FIFO mode,
419 * and the system is free to enter/exit memory self refresh at any time
420 * even when the use of CxSR has been disallowed.
421 *
422 * While the system is actually in the CxSR/max FIFO mode, some plane
423 * control registers will not get latched on vblank. Thus in order to
424 * guarantee the system will respond to changes in the plane registers
425 * we must always disallow CxSR prior to making changes to those registers.
426 * Unfortunately the system will re-evaluate the CxSR conditions at
427 * frame start which happens after vblank start (which is when the plane
428 * registers would get latched), so we can't proceed with the plane update
429 * during the same frame where we disallowed CxSR.
430 *
431 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
432 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
433 * the hardware w.r.t. HPLL SR when writing to plane registers.
434 * Disallowing just CxSR is sufficient.
435 */
436 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
437 {
438 bool ret;
439
440 mutex_lock(&dev_priv->wm.wm_mutex);
441 ret = _intel_set_memory_cxsr(dev_priv, enable);
442 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
443 dev_priv->wm.vlv.cxsr = enable;
444 else if (IS_G4X(dev_priv))
445 dev_priv->wm.g4x.cxsr = enable;
446 mutex_unlock(&dev_priv->wm.wm_mutex);
447
448 return ret;
449 }
450
451 /*
452 * Latency for FIFO fetches is dependent on several factors:
453 * - memory configuration (speed, channels)
454 * - chipset
455 * - current MCH state
456 * It can be fairly high in some situations, so here we assume a fairly
457 * pessimal value. It's a tradeoff between extra memory fetches (if we
458 * set this value too high, the FIFO will fetch frequently to stay full)
459 * and power consumption (set it too low to save power and we might see
460 * FIFO underruns and display "flicker").
461 *
462 * A value of 5us seems to be a good balance; safe for very low end
463 * platforms but not overly aggressive on lower latency configs.
464 */
465 static const int pessimal_latency_ns = 5000;
466
467 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
468 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
469
470 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
471 {
472 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
473 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
474 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
475 enum pipe pipe = crtc->pipe;
476 int sprite0_start, sprite1_start;
477
478 switch (pipe) {
479 u32 dsparb, dsparb2, dsparb3;
480 case PIPE_A:
481 dsparb = I915_READ(DSPARB);
482 dsparb2 = I915_READ(DSPARB2);
483 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
484 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
485 break;
486 case PIPE_B:
487 dsparb = I915_READ(DSPARB);
488 dsparb2 = I915_READ(DSPARB2);
489 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
490 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
491 break;
492 case PIPE_C:
493 dsparb2 = I915_READ(DSPARB2);
494 dsparb3 = I915_READ(DSPARB3);
495 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
496 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
497 break;
498 default:
499 MISSING_CASE(pipe);
500 return;
501 }
502
503 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
504 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
505 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
506 fifo_state->plane[PLANE_CURSOR] = 63;
507 }
508
509 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
510 enum i9xx_plane_id i9xx_plane)
511 {
512 u32 dsparb = I915_READ(DSPARB);
513 int size;
514
515 size = dsparb & 0x7f;
516 if (i9xx_plane == PLANE_B)
517 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
518
519 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
520 dsparb, plane_name(i9xx_plane), size);
521
522 return size;
523 }
524
525 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
526 enum i9xx_plane_id i9xx_plane)
527 {
528 u32 dsparb = I915_READ(DSPARB);
529 int size;
530
531 size = dsparb & 0x1ff;
532 if (i9xx_plane == PLANE_B)
533 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
534 size >>= 1; /* Convert to cachelines */
535
536 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
537 dsparb, plane_name(i9xx_plane), size);
538
539 return size;
540 }
541
542 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
543 enum i9xx_plane_id i9xx_plane)
544 {
545 u32 dsparb = I915_READ(DSPARB);
546 int size;
547
548 size = dsparb & 0x7f;
549 size >>= 2; /* Convert to cachelines */
550
551 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
552 dsparb, plane_name(i9xx_plane), size);
553
554 return size;
555 }
556
557 /* Pineview has different values for various configs */
558 static const struct intel_watermark_params pnv_display_wm = {
559 .fifo_size = PINEVIEW_DISPLAY_FIFO,
560 .max_wm = PINEVIEW_MAX_WM,
561 .default_wm = PINEVIEW_DFT_WM,
562 .guard_size = PINEVIEW_GUARD_WM,
563 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
564 };
565
566 static const struct intel_watermark_params pnv_display_hplloff_wm = {
567 .fifo_size = PINEVIEW_DISPLAY_FIFO,
568 .max_wm = PINEVIEW_MAX_WM,
569 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
570 .guard_size = PINEVIEW_GUARD_WM,
571 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
572 };
573
574 static const struct intel_watermark_params pnv_cursor_wm = {
575 .fifo_size = PINEVIEW_CURSOR_FIFO,
576 .max_wm = PINEVIEW_CURSOR_MAX_WM,
577 .default_wm = PINEVIEW_CURSOR_DFT_WM,
578 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
579 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
580 };
581
582 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
583 .fifo_size = PINEVIEW_CURSOR_FIFO,
584 .max_wm = PINEVIEW_CURSOR_MAX_WM,
585 .default_wm = PINEVIEW_CURSOR_DFT_WM,
586 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
587 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 };
589
590 static const struct intel_watermark_params i965_cursor_wm_info = {
591 .fifo_size = I965_CURSOR_FIFO,
592 .max_wm = I965_CURSOR_MAX_WM,
593 .default_wm = I965_CURSOR_DFT_WM,
594 .guard_size = 2,
595 .cacheline_size = I915_FIFO_LINE_SIZE,
596 };
597
598 static const struct intel_watermark_params i945_wm_info = {
599 .fifo_size = I945_FIFO_SIZE,
600 .max_wm = I915_MAX_WM,
601 .default_wm = 1,
602 .guard_size = 2,
603 .cacheline_size = I915_FIFO_LINE_SIZE,
604 };
605
606 static const struct intel_watermark_params i915_wm_info = {
607 .fifo_size = I915_FIFO_SIZE,
608 .max_wm = I915_MAX_WM,
609 .default_wm = 1,
610 .guard_size = 2,
611 .cacheline_size = I915_FIFO_LINE_SIZE,
612 };
613
614 static const struct intel_watermark_params i830_a_wm_info = {
615 .fifo_size = I855GM_FIFO_SIZE,
616 .max_wm = I915_MAX_WM,
617 .default_wm = 1,
618 .guard_size = 2,
619 .cacheline_size = I830_FIFO_LINE_SIZE,
620 };
621
622 static const struct intel_watermark_params i830_bc_wm_info = {
623 .fifo_size = I855GM_FIFO_SIZE,
624 .max_wm = I915_MAX_WM/2,
625 .default_wm = 1,
626 .guard_size = 2,
627 .cacheline_size = I830_FIFO_LINE_SIZE,
628 };
629
630 static const struct intel_watermark_params i845_wm_info = {
631 .fifo_size = I830_FIFO_SIZE,
632 .max_wm = I915_MAX_WM,
633 .default_wm = 1,
634 .guard_size = 2,
635 .cacheline_size = I830_FIFO_LINE_SIZE,
636 };
637
638 /**
639 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
640 * @pixel_rate: Pipe pixel rate in kHz
641 * @cpp: Plane bytes per pixel
642 * @latency: Memory wakeup latency in 0.1us units
643 *
644 * Compute the watermark using the method 1 or "small buffer"
645 * formula. The caller may additonally add extra cachelines
646 * to account for TLB misses and clock crossings.
647 *
648 * This method is concerned with the short term drain rate
649 * of the FIFO, ie. it does not account for blanking periods
650 * which would effectively reduce the average drain rate across
651 * a longer period. The name "small" refers to the fact the
652 * FIFO is relatively small compared to the amount of data
653 * fetched.
654 *
655 * The FIFO level vs. time graph might look something like:
656 *
657 * |\ |\
658 * | \ | \
659 * __---__---__ (- plane active, _ blanking)
660 * -> time
661 *
662 * or perhaps like this:
663 *
664 * |\|\ |\|\
665 * __----__----__ (- plane active, _ blanking)
666 * -> time
667 *
668 * Returns:
669 * The watermark in bytes
670 */
671 static unsigned int intel_wm_method1(unsigned int pixel_rate,
672 unsigned int cpp,
673 unsigned int latency)
674 {
675 u64 ret;
676
677 ret = mul_u32_u32(pixel_rate, cpp * latency);
678 ret = DIV_ROUND_UP_ULL(ret, 10000);
679
680 return ret;
681 }
682
683 /**
684 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
685 * @pixel_rate: Pipe pixel rate in kHz
686 * @htotal: Pipe horizontal total
687 * @width: Plane width in pixels
688 * @cpp: Plane bytes per pixel
689 * @latency: Memory wakeup latency in 0.1us units
690 *
691 * Compute the watermark using the method 2 or "large buffer"
692 * formula. The caller may additonally add extra cachelines
693 * to account for TLB misses and clock crossings.
694 *
695 * This method is concerned with the long term drain rate
696 * of the FIFO, ie. it does account for blanking periods
697 * which effectively reduce the average drain rate across
698 * a longer period. The name "large" refers to the fact the
699 * FIFO is relatively large compared to the amount of data
700 * fetched.
701 *
702 * The FIFO level vs. time graph might look something like:
703 *
704 * |\___ |\___
705 * | \___ | \___
706 * | \ | \
707 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
708 * -> time
709 *
710 * Returns:
711 * The watermark in bytes
712 */
713 static unsigned int intel_wm_method2(unsigned int pixel_rate,
714 unsigned int htotal,
715 unsigned int width,
716 unsigned int cpp,
717 unsigned int latency)
718 {
719 unsigned int ret;
720
721 /*
722 * FIXME remove once all users are computing
723 * watermarks in the correct place.
724 */
725 if (WARN_ON_ONCE(htotal == 0))
726 htotal = 1;
727
728 ret = (latency * pixel_rate) / (htotal * 10000);
729 ret = (ret + 1) * width * cpp;
730
731 return ret;
732 }
733
734 /**
735 * intel_calculate_wm - calculate watermark level
736 * @pixel_rate: pixel clock
737 * @wm: chip FIFO params
738 * @fifo_size: size of the FIFO buffer
739 * @cpp: bytes per pixel
740 * @latency_ns: memory latency for the platform
741 *
742 * Calculate the watermark level (the level at which the display plane will
743 * start fetching from memory again). Each chip has a different display
744 * FIFO size and allocation, so the caller needs to figure that out and pass
745 * in the correct intel_watermark_params structure.
746 *
747 * As the pixel clock runs, the FIFO will be drained at a rate that depends
748 * on the pixel size. When it reaches the watermark level, it'll start
749 * fetching FIFO line sized based chunks from memory until the FIFO fills
750 * past the watermark point. If the FIFO drains completely, a FIFO underrun
751 * will occur, and a display engine hang could result.
752 */
753 static unsigned int intel_calculate_wm(int pixel_rate,
754 const struct intel_watermark_params *wm,
755 int fifo_size, int cpp,
756 unsigned int latency_ns)
757 {
758 int entries, wm_size;
759
760 /*
761 * Note: we need to make sure we don't overflow for various clock &
762 * latency values.
763 * clocks go from a few thousand to several hundred thousand.
764 * latency is usually a few thousand
765 */
766 entries = intel_wm_method1(pixel_rate, cpp,
767 latency_ns / 100);
768 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
769 wm->guard_size;
770 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
771
772 wm_size = fifo_size - entries;
773 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
774
775 /* Don't promote wm_size to unsigned... */
776 if (wm_size > wm->max_wm)
777 wm_size = wm->max_wm;
778 if (wm_size <= 0)
779 wm_size = wm->default_wm;
780
781 /*
782 * Bspec seems to indicate that the value shouldn't be lower than
783 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
784 * Lets go for 8 which is the burst size since certain platforms
785 * already use a hardcoded 8 (which is what the spec says should be
786 * done).
787 */
788 if (wm_size <= 8)
789 wm_size = 8;
790
791 return wm_size;
792 }
793
794 static bool is_disabling(int old, int new, int threshold)
795 {
796 return old >= threshold && new < threshold;
797 }
798
799 static bool is_enabling(int old, int new, int threshold)
800 {
801 return old < threshold && new >= threshold;
802 }
803
804 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
805 {
806 return dev_priv->wm.max_level + 1;
807 }
808
809 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
810 const struct intel_plane_state *plane_state)
811 {
812 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
813
814 /* FIXME check the 'enable' instead */
815 if (!crtc_state->hw.active)
816 return false;
817
818 /*
819 * Treat cursor with fb as always visible since cursor updates
820 * can happen faster than the vrefresh rate, and the current
821 * watermark code doesn't handle that correctly. Cursor updates
822 * which set/clear the fb or change the cursor size are going
823 * to get throttled by intel_legacy_cursor_update() to work
824 * around this problem with the watermark code.
825 */
826 if (plane->id == PLANE_CURSOR)
827 return plane_state->hw.fb != NULL;
828 else
829 return plane_state->uapi.visible;
830 }
831
832 static bool intel_crtc_active(struct intel_crtc *crtc)
833 {
834 /* Be paranoid as we can arrive here with only partial
835 * state retrieved from the hardware during setup.
836 *
837 * We can ditch the adjusted_mode.crtc_clock check as soon
838 * as Haswell has gained clock readout/fastboot support.
839 *
840 * We can ditch the crtc->primary->state->fb check as soon as we can
841 * properly reconstruct framebuffers.
842 *
843 * FIXME: The intel_crtc->active here should be switched to
844 * crtc->state->active once we have proper CRTC states wired up
845 * for atomic.
846 */
847 return crtc->active && crtc->base.primary->state->fb &&
848 crtc->config->hw.adjusted_mode.crtc_clock;
849 }
850
851 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
852 {
853 struct intel_crtc *crtc, *enabled = NULL;
854
855 for_each_intel_crtc(&dev_priv->drm, crtc) {
856 if (intel_crtc_active(crtc)) {
857 if (enabled)
858 return NULL;
859 enabled = crtc;
860 }
861 }
862
863 return enabled;
864 }
865
866 static void pnv_update_wm(struct intel_crtc *unused_crtc)
867 {
868 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
869 struct intel_crtc *crtc;
870 const struct cxsr_latency *latency;
871 u32 reg;
872 unsigned int wm;
873
874 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
875 dev_priv->is_ddr3,
876 dev_priv->fsb_freq,
877 dev_priv->mem_freq);
878 if (!latency) {
879 drm_dbg_kms(&dev_priv->drm,
880 "Unknown FSB/MEM found, disable CxSR\n");
881 intel_set_memory_cxsr(dev_priv, false);
882 return;
883 }
884
885 crtc = single_enabled_crtc(dev_priv);
886 if (crtc) {
887 const struct drm_display_mode *adjusted_mode =
888 &crtc->config->hw.adjusted_mode;
889 const struct drm_framebuffer *fb =
890 crtc->base.primary->state->fb;
891 int cpp = fb->format->cpp[0];
892 int clock = adjusted_mode->crtc_clock;
893
894 /* Display SR */
895 wm = intel_calculate_wm(clock, &pnv_display_wm,
896 pnv_display_wm.fifo_size,
897 cpp, latency->display_sr);
898 reg = I915_READ(DSPFW1);
899 reg &= ~DSPFW_SR_MASK;
900 reg |= FW_WM(wm, SR);
901 I915_WRITE(DSPFW1, reg);
902 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
903
904 /* cursor SR */
905 wm = intel_calculate_wm(clock, &pnv_cursor_wm,
906 pnv_display_wm.fifo_size,
907 4, latency->cursor_sr);
908 reg = I915_READ(DSPFW3);
909 reg &= ~DSPFW_CURSOR_SR_MASK;
910 reg |= FW_WM(wm, CURSOR_SR);
911 I915_WRITE(DSPFW3, reg);
912
913 /* Display HPLL off SR */
914 wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
915 pnv_display_hplloff_wm.fifo_size,
916 cpp, latency->display_hpll_disable);
917 reg = I915_READ(DSPFW3);
918 reg &= ~DSPFW_HPLL_SR_MASK;
919 reg |= FW_WM(wm, HPLL_SR);
920 I915_WRITE(DSPFW3, reg);
921
922 /* cursor HPLL off SR */
923 wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
924 pnv_display_hplloff_wm.fifo_size,
925 4, latency->cursor_hpll_disable);
926 reg = I915_READ(DSPFW3);
927 reg &= ~DSPFW_HPLL_CURSOR_MASK;
928 reg |= FW_WM(wm, HPLL_CURSOR);
929 I915_WRITE(DSPFW3, reg);
930 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
931
932 intel_set_memory_cxsr(dev_priv, true);
933 } else {
934 intel_set_memory_cxsr(dev_priv, false);
935 }
936 }
937
938 /*
939 * Documentation says:
940 * "If the line size is small, the TLB fetches can get in the way of the
941 * data fetches, causing some lag in the pixel data return which is not
942 * accounted for in the above formulas. The following adjustment only
943 * needs to be applied if eight whole lines fit in the buffer at once.
944 * The WM is adjusted upwards by the difference between the FIFO size
945 * and the size of 8 whole lines. This adjustment is always performed
946 * in the actual pixel depth regardless of whether FBC is enabled or not."
947 */
948 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
949 {
950 int tlb_miss = fifo_size * 64 - width * cpp * 8;
951
952 return max(0, tlb_miss);
953 }
954
955 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
956 const struct g4x_wm_values *wm)
957 {
958 enum pipe pipe;
959
960 for_each_pipe(dev_priv, pipe)
961 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
962
963 I915_WRITE(DSPFW1,
964 FW_WM(wm->sr.plane, SR) |
965 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
966 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
967 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
968 I915_WRITE(DSPFW2,
969 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
970 FW_WM(wm->sr.fbc, FBC_SR) |
971 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
972 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
973 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
974 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
975 I915_WRITE(DSPFW3,
976 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
977 FW_WM(wm->sr.cursor, CURSOR_SR) |
978 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
979 FW_WM(wm->hpll.plane, HPLL_SR));
980
981 POSTING_READ(DSPFW1);
982 }
983
984 #define FW_WM_VLV(value, plane) \
985 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
986
987 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
988 const struct vlv_wm_values *wm)
989 {
990 enum pipe pipe;
991
992 for_each_pipe(dev_priv, pipe) {
993 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
994
995 I915_WRITE(VLV_DDL(pipe),
996 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
997 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
998 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
999 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1000 }
1001
1002 /*
1003 * Zero the (unused) WM1 watermarks, and also clear all the
1004 * high order bits so that there are no out of bounds values
1005 * present in the registers during the reprogramming.
1006 */
1007 I915_WRITE(DSPHOWM, 0);
1008 I915_WRITE(DSPHOWM1, 0);
1009 I915_WRITE(DSPFW4, 0);
1010 I915_WRITE(DSPFW5, 0);
1011 I915_WRITE(DSPFW6, 0);
1012
1013 I915_WRITE(DSPFW1,
1014 FW_WM(wm->sr.plane, SR) |
1015 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1016 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1017 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1018 I915_WRITE(DSPFW2,
1019 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1020 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1021 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1022 I915_WRITE(DSPFW3,
1023 FW_WM(wm->sr.cursor, CURSOR_SR));
1024
1025 if (IS_CHERRYVIEW(dev_priv)) {
1026 I915_WRITE(DSPFW7_CHV,
1027 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1028 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1029 I915_WRITE(DSPFW8_CHV,
1030 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1031 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1032 I915_WRITE(DSPFW9_CHV,
1033 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1034 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1035 I915_WRITE(DSPHOWM,
1036 FW_WM(wm->sr.plane >> 9, SR_HI) |
1037 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1038 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1039 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1040 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1041 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1042 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1043 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1044 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1045 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1046 } else {
1047 I915_WRITE(DSPFW7,
1048 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1049 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1050 I915_WRITE(DSPHOWM,
1051 FW_WM(wm->sr.plane >> 9, SR_HI) |
1052 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1053 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1054 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1055 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1056 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1057 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1058 }
1059
1060 POSTING_READ(DSPFW1);
1061 }
1062
1063 #undef FW_WM_VLV
1064
1065 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1066 {
1067 /* all latencies in usec */
1068 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1069 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1070 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1071
1072 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1073 }
1074
1075 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1076 {
1077 /*
1078 * DSPCNTR[13] supposedly controls whether the
1079 * primary plane can use the FIFO space otherwise
1080 * reserved for the sprite plane. It's not 100% clear
1081 * what the actual FIFO size is, but it looks like we
1082 * can happily set both primary and sprite watermarks
1083 * up to 127 cachelines. So that would seem to mean
1084 * that either DSPCNTR[13] doesn't do anything, or that
1085 * the total FIFO is >= 256 cachelines in size. Either
1086 * way, we don't seem to have to worry about this
1087 * repartitioning as the maximum watermark value the
1088 * register can hold for each plane is lower than the
1089 * minimum FIFO size.
1090 */
1091 switch (plane_id) {
1092 case PLANE_CURSOR:
1093 return 63;
1094 case PLANE_PRIMARY:
1095 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1096 case PLANE_SPRITE0:
1097 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1098 default:
1099 MISSING_CASE(plane_id);
1100 return 0;
1101 }
1102 }
1103
1104 static int g4x_fbc_fifo_size(int level)
1105 {
1106 switch (level) {
1107 case G4X_WM_LEVEL_SR:
1108 return 7;
1109 case G4X_WM_LEVEL_HPLL:
1110 return 15;
1111 default:
1112 MISSING_CASE(level);
1113 return 0;
1114 }
1115 }
1116
1117 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1118 const struct intel_plane_state *plane_state,
1119 int level)
1120 {
1121 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1122 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1123 const struct drm_display_mode *adjusted_mode =
1124 &crtc_state->hw.adjusted_mode;
1125 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1126 unsigned int clock, htotal, cpp, width, wm;
1127
1128 if (latency == 0)
1129 return USHRT_MAX;
1130
1131 if (!intel_wm_plane_visible(crtc_state, plane_state))
1132 return 0;
1133
1134 cpp = plane_state->hw.fb->format->cpp[0];
1135
1136 /*
1137 * Not 100% sure which way ELK should go here as the
1138 * spec only says CL/CTG should assume 32bpp and BW
1139 * doesn't need to. But as these things followed the
1140 * mobile vs. desktop lines on gen3 as well, let's
1141 * assume ELK doesn't need this.
1142 *
1143 * The spec also fails to list such a restriction for
1144 * the HPLL watermark, which seems a little strange.
1145 * Let's use 32bpp for the HPLL watermark as well.
1146 */
1147 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1148 level != G4X_WM_LEVEL_NORMAL)
1149 cpp = max(cpp, 4u);
1150
1151 clock = adjusted_mode->crtc_clock;
1152 htotal = adjusted_mode->crtc_htotal;
1153
1154 width = drm_rect_width(&plane_state->uapi.dst);
1155
1156 if (plane->id == PLANE_CURSOR) {
1157 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1158 } else if (plane->id == PLANE_PRIMARY &&
1159 level == G4X_WM_LEVEL_NORMAL) {
1160 wm = intel_wm_method1(clock, cpp, latency);
1161 } else {
1162 unsigned int small, large;
1163
1164 small = intel_wm_method1(clock, cpp, latency);
1165 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1166
1167 wm = min(small, large);
1168 }
1169
1170 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1171 width, cpp);
1172
1173 wm = DIV_ROUND_UP(wm, 64) + 2;
1174
1175 return min_t(unsigned int, wm, USHRT_MAX);
1176 }
1177
1178 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1179 int level, enum plane_id plane_id, u16 value)
1180 {
1181 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1182 bool dirty = false;
1183
1184 for (; level < intel_wm_num_levels(dev_priv); level++) {
1185 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1186
1187 dirty |= raw->plane[plane_id] != value;
1188 raw->plane[plane_id] = value;
1189 }
1190
1191 return dirty;
1192 }
1193
1194 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1195 int level, u16 value)
1196 {
1197 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1198 bool dirty = false;
1199
1200 /* NORMAL level doesn't have an FBC watermark */
1201 level = max(level, G4X_WM_LEVEL_SR);
1202
1203 for (; level < intel_wm_num_levels(dev_priv); level++) {
1204 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1205
1206 dirty |= raw->fbc != value;
1207 raw->fbc = value;
1208 }
1209
1210 return dirty;
1211 }
1212
1213 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1214 const struct intel_plane_state *plane_state,
1215 u32 pri_val);
1216
1217 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1218 const struct intel_plane_state *plane_state)
1219 {
1220 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1221 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1222 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1223 enum plane_id plane_id = plane->id;
1224 bool dirty = false;
1225 int level;
1226
1227 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1228 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1229 if (plane_id == PLANE_PRIMARY)
1230 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1231 goto out;
1232 }
1233
1234 for (level = 0; level < num_levels; level++) {
1235 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1236 int wm, max_wm;
1237
1238 wm = g4x_compute_wm(crtc_state, plane_state, level);
1239 max_wm = g4x_plane_fifo_size(plane_id, level);
1240
1241 if (wm > max_wm)
1242 break;
1243
1244 dirty |= raw->plane[plane_id] != wm;
1245 raw->plane[plane_id] = wm;
1246
1247 if (plane_id != PLANE_PRIMARY ||
1248 level == G4X_WM_LEVEL_NORMAL)
1249 continue;
1250
1251 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1252 raw->plane[plane_id]);
1253 max_wm = g4x_fbc_fifo_size(level);
1254
1255 /*
1256 * FBC wm is not mandatory as we
1257 * can always just disable its use.
1258 */
1259 if (wm > max_wm)
1260 wm = USHRT_MAX;
1261
1262 dirty |= raw->fbc != wm;
1263 raw->fbc = wm;
1264 }
1265
1266 /* mark watermarks as invalid */
1267 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1268
1269 if (plane_id == PLANE_PRIMARY)
1270 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1271
1272 out:
1273 if (dirty) {
1274 drm_dbg_kms(&dev_priv->drm,
1275 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1276 plane->base.name,
1277 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1278 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1279 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1280
1281 if (plane_id == PLANE_PRIMARY)
1282 drm_dbg_kms(&dev_priv->drm,
1283 "FBC watermarks: SR=%d, HPLL=%d\n",
1284 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1285 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1286 }
1287
1288 return dirty;
1289 }
1290
1291 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1292 enum plane_id plane_id, int level)
1293 {
1294 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1295
1296 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1297 }
1298
1299 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1300 int level)
1301 {
1302 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1303
1304 if (level > dev_priv->wm.max_level)
1305 return false;
1306
1307 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1308 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1309 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1310 }
1311
1312 /* mark all levels starting from 'level' as invalid */
1313 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1314 struct g4x_wm_state *wm_state, int level)
1315 {
1316 if (level <= G4X_WM_LEVEL_NORMAL) {
1317 enum plane_id plane_id;
1318
1319 for_each_plane_id_on_crtc(crtc, plane_id)
1320 wm_state->wm.plane[plane_id] = USHRT_MAX;
1321 }
1322
1323 if (level <= G4X_WM_LEVEL_SR) {
1324 wm_state->cxsr = false;
1325 wm_state->sr.cursor = USHRT_MAX;
1326 wm_state->sr.plane = USHRT_MAX;
1327 wm_state->sr.fbc = USHRT_MAX;
1328 }
1329
1330 if (level <= G4X_WM_LEVEL_HPLL) {
1331 wm_state->hpll_en = false;
1332 wm_state->hpll.cursor = USHRT_MAX;
1333 wm_state->hpll.plane = USHRT_MAX;
1334 wm_state->hpll.fbc = USHRT_MAX;
1335 }
1336 }
1337
1338 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1339 {
1340 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1341 struct intel_atomic_state *state =
1342 to_intel_atomic_state(crtc_state->uapi.state);
1343 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1344 int num_active_planes = hweight8(crtc_state->active_planes &
1345 ~BIT(PLANE_CURSOR));
1346 const struct g4x_pipe_wm *raw;
1347 const struct intel_plane_state *old_plane_state;
1348 const struct intel_plane_state *new_plane_state;
1349 struct intel_plane *plane;
1350 enum plane_id plane_id;
1351 int i, level;
1352 unsigned int dirty = 0;
1353
1354 for_each_oldnew_intel_plane_in_state(state, plane,
1355 old_plane_state,
1356 new_plane_state, i) {
1357 if (new_plane_state->hw.crtc != &crtc->base &&
1358 old_plane_state->hw.crtc != &crtc->base)
1359 continue;
1360
1361 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1362 dirty |= BIT(plane->id);
1363 }
1364
1365 if (!dirty)
1366 return 0;
1367
1368 level = G4X_WM_LEVEL_NORMAL;
1369 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1370 goto out;
1371
1372 raw = &crtc_state->wm.g4x.raw[level];
1373 for_each_plane_id_on_crtc(crtc, plane_id)
1374 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1375
1376 level = G4X_WM_LEVEL_SR;
1377
1378 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1379 goto out;
1380
1381 raw = &crtc_state->wm.g4x.raw[level];
1382 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1383 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1384 wm_state->sr.fbc = raw->fbc;
1385
1386 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1387
1388 level = G4X_WM_LEVEL_HPLL;
1389
1390 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1391 goto out;
1392
1393 raw = &crtc_state->wm.g4x.raw[level];
1394 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1395 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1396 wm_state->hpll.fbc = raw->fbc;
1397
1398 wm_state->hpll_en = wm_state->cxsr;
1399
1400 level++;
1401
1402 out:
1403 if (level == G4X_WM_LEVEL_NORMAL)
1404 return -EINVAL;
1405
1406 /* invalidate the higher levels */
1407 g4x_invalidate_wms(crtc, wm_state, level);
1408
1409 /*
1410 * Determine if the FBC watermark(s) can be used. IF
1411 * this isn't the case we prefer to disable the FBC
1412 ( watermark(s) rather than disable the SR/HPLL
1413 * level(s) entirely.
1414 */
1415 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1416
1417 if (level >= G4X_WM_LEVEL_SR &&
1418 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1419 wm_state->fbc_en = false;
1420 else if (level >= G4X_WM_LEVEL_HPLL &&
1421 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1422 wm_state->fbc_en = false;
1423
1424 return 0;
1425 }
1426
1427 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1428 {
1429 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1430 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1431 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1432 struct intel_atomic_state *intel_state =
1433 to_intel_atomic_state(new_crtc_state->uapi.state);
1434 const struct intel_crtc_state *old_crtc_state =
1435 intel_atomic_get_old_crtc_state(intel_state, crtc);
1436 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1437 enum plane_id plane_id;
1438
1439 if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1440 *intermediate = *optimal;
1441
1442 intermediate->cxsr = false;
1443 intermediate->hpll_en = false;
1444 goto out;
1445 }
1446
1447 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1448 !new_crtc_state->disable_cxsr;
1449 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1450 !new_crtc_state->disable_cxsr;
1451 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1452
1453 for_each_plane_id_on_crtc(crtc, plane_id) {
1454 intermediate->wm.plane[plane_id] =
1455 max(optimal->wm.plane[plane_id],
1456 active->wm.plane[plane_id]);
1457
1458 WARN_ON(intermediate->wm.plane[plane_id] >
1459 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1460 }
1461
1462 intermediate->sr.plane = max(optimal->sr.plane,
1463 active->sr.plane);
1464 intermediate->sr.cursor = max(optimal->sr.cursor,
1465 active->sr.cursor);
1466 intermediate->sr.fbc = max(optimal->sr.fbc,
1467 active->sr.fbc);
1468
1469 intermediate->hpll.plane = max(optimal->hpll.plane,
1470 active->hpll.plane);
1471 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1472 active->hpll.cursor);
1473 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1474 active->hpll.fbc);
1475
1476 WARN_ON((intermediate->sr.plane >
1477 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1478 intermediate->sr.cursor >
1479 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1480 intermediate->cxsr);
1481 WARN_ON((intermediate->sr.plane >
1482 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1483 intermediate->sr.cursor >
1484 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1485 intermediate->hpll_en);
1486
1487 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1488 intermediate->fbc_en && intermediate->cxsr);
1489 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1490 intermediate->fbc_en && intermediate->hpll_en);
1491
1492 out:
1493 /*
1494 * If our intermediate WM are identical to the final WM, then we can
1495 * omit the post-vblank programming; only update if it's different.
1496 */
1497 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1498 new_crtc_state->wm.need_postvbl_update = true;
1499
1500 return 0;
1501 }
1502
1503 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1504 struct g4x_wm_values *wm)
1505 {
1506 struct intel_crtc *crtc;
1507 int num_active_pipes = 0;
1508
1509 wm->cxsr = true;
1510 wm->hpll_en = true;
1511 wm->fbc_en = true;
1512
1513 for_each_intel_crtc(&dev_priv->drm, crtc) {
1514 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1515
1516 if (!crtc->active)
1517 continue;
1518
1519 if (!wm_state->cxsr)
1520 wm->cxsr = false;
1521 if (!wm_state->hpll_en)
1522 wm->hpll_en = false;
1523 if (!wm_state->fbc_en)
1524 wm->fbc_en = false;
1525
1526 num_active_pipes++;
1527 }
1528
1529 if (num_active_pipes != 1) {
1530 wm->cxsr = false;
1531 wm->hpll_en = false;
1532 wm->fbc_en = false;
1533 }
1534
1535 for_each_intel_crtc(&dev_priv->drm, crtc) {
1536 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1537 enum pipe pipe = crtc->pipe;
1538
1539 wm->pipe[pipe] = wm_state->wm;
1540 if (crtc->active && wm->cxsr)
1541 wm->sr = wm_state->sr;
1542 if (crtc->active && wm->hpll_en)
1543 wm->hpll = wm_state->hpll;
1544 }
1545 }
1546
1547 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1548 {
1549 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1550 struct g4x_wm_values new_wm = {};
1551
1552 g4x_merge_wm(dev_priv, &new_wm);
1553
1554 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1555 return;
1556
1557 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1558 _intel_set_memory_cxsr(dev_priv, false);
1559
1560 g4x_write_wm_values(dev_priv, &new_wm);
1561
1562 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1563 _intel_set_memory_cxsr(dev_priv, true);
1564
1565 *old_wm = new_wm;
1566 }
1567
1568 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1569 struct intel_crtc *crtc)
1570 {
1571 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1572 const struct intel_crtc_state *crtc_state =
1573 intel_atomic_get_new_crtc_state(state, crtc);
1574
1575 mutex_lock(&dev_priv->wm.wm_mutex);
1576 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1577 g4x_program_watermarks(dev_priv);
1578 mutex_unlock(&dev_priv->wm.wm_mutex);
1579 }
1580
1581 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1582 struct intel_crtc *crtc)
1583 {
1584 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1585 const struct intel_crtc_state *crtc_state =
1586 intel_atomic_get_new_crtc_state(state, crtc);
1587
1588 if (!crtc_state->wm.need_postvbl_update)
1589 return;
1590
1591 mutex_lock(&dev_priv->wm.wm_mutex);
1592 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1593 g4x_program_watermarks(dev_priv);
1594 mutex_unlock(&dev_priv->wm.wm_mutex);
1595 }
1596
1597 /* latency must be in 0.1us units. */
1598 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1599 unsigned int htotal,
1600 unsigned int width,
1601 unsigned int cpp,
1602 unsigned int latency)
1603 {
1604 unsigned int ret;
1605
1606 ret = intel_wm_method2(pixel_rate, htotal,
1607 width, cpp, latency);
1608 ret = DIV_ROUND_UP(ret, 64);
1609
1610 return ret;
1611 }
1612
1613 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1614 {
1615 /* all latencies in usec */
1616 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1617
1618 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1619
1620 if (IS_CHERRYVIEW(dev_priv)) {
1621 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1622 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1623
1624 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1625 }
1626 }
1627
1628 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1629 const struct intel_plane_state *plane_state,
1630 int level)
1631 {
1632 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1633 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1634 const struct drm_display_mode *adjusted_mode =
1635 &crtc_state->hw.adjusted_mode;
1636 unsigned int clock, htotal, cpp, width, wm;
1637
1638 if (dev_priv->wm.pri_latency[level] == 0)
1639 return USHRT_MAX;
1640
1641 if (!intel_wm_plane_visible(crtc_state, plane_state))
1642 return 0;
1643
1644 cpp = plane_state->hw.fb->format->cpp[0];
1645 clock = adjusted_mode->crtc_clock;
1646 htotal = adjusted_mode->crtc_htotal;
1647 width = crtc_state->pipe_src_w;
1648
1649 if (plane->id == PLANE_CURSOR) {
1650 /*
1651 * FIXME the formula gives values that are
1652 * too big for the cursor FIFO, and hence we
1653 * would never be able to use cursors. For
1654 * now just hardcode the watermark.
1655 */
1656 wm = 63;
1657 } else {
1658 wm = vlv_wm_method2(clock, htotal, width, cpp,
1659 dev_priv->wm.pri_latency[level] * 10);
1660 }
1661
1662 return min_t(unsigned int, wm, USHRT_MAX);
1663 }
1664
1665 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1666 {
1667 return (active_planes & (BIT(PLANE_SPRITE0) |
1668 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1669 }
1670
1671 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1672 {
1673 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1674 const struct g4x_pipe_wm *raw =
1675 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1676 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1677 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1678 int num_active_planes = hweight8(active_planes);
1679 const int fifo_size = 511;
1680 int fifo_extra, fifo_left = fifo_size;
1681 int sprite0_fifo_extra = 0;
1682 unsigned int total_rate;
1683 enum plane_id plane_id;
1684
1685 /*
1686 * When enabling sprite0 after sprite1 has already been enabled
1687 * we tend to get an underrun unless sprite0 already has some
1688 * FIFO space allcoated. Hence we always allocate at least one
1689 * cacheline for sprite0 whenever sprite1 is enabled.
1690 *
1691 * All other plane enable sequences appear immune to this problem.
1692 */
1693 if (vlv_need_sprite0_fifo_workaround(active_planes))
1694 sprite0_fifo_extra = 1;
1695
1696 total_rate = raw->plane[PLANE_PRIMARY] +
1697 raw->plane[PLANE_SPRITE0] +
1698 raw->plane[PLANE_SPRITE1] +
1699 sprite0_fifo_extra;
1700
1701 if (total_rate > fifo_size)
1702 return -EINVAL;
1703
1704 if (total_rate == 0)
1705 total_rate = 1;
1706
1707 for_each_plane_id_on_crtc(crtc, plane_id) {
1708 unsigned int rate;
1709
1710 if ((active_planes & BIT(plane_id)) == 0) {
1711 fifo_state->plane[plane_id] = 0;
1712 continue;
1713 }
1714
1715 rate = raw->plane[plane_id];
1716 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1717 fifo_left -= fifo_state->plane[plane_id];
1718 }
1719
1720 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1721 fifo_left -= sprite0_fifo_extra;
1722
1723 fifo_state->plane[PLANE_CURSOR] = 63;
1724
1725 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1726
1727 /* spread the remainder evenly */
1728 for_each_plane_id_on_crtc(crtc, plane_id) {
1729 int plane_extra;
1730
1731 if (fifo_left == 0)
1732 break;
1733
1734 if ((active_planes & BIT(plane_id)) == 0)
1735 continue;
1736
1737 plane_extra = min(fifo_extra, fifo_left);
1738 fifo_state->plane[plane_id] += plane_extra;
1739 fifo_left -= plane_extra;
1740 }
1741
1742 WARN_ON(active_planes != 0 && fifo_left != 0);
1743
1744 /* give it all to the first plane if none are active */
1745 if (active_planes == 0) {
1746 WARN_ON(fifo_left != fifo_size);
1747 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1748 }
1749
1750 return 0;
1751 }
1752
1753 /* mark all levels starting from 'level' as invalid */
1754 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1755 struct vlv_wm_state *wm_state, int level)
1756 {
1757 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1758
1759 for (; level < intel_wm_num_levels(dev_priv); level++) {
1760 enum plane_id plane_id;
1761
1762 for_each_plane_id_on_crtc(crtc, plane_id)
1763 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1764
1765 wm_state->sr[level].cursor = USHRT_MAX;
1766 wm_state->sr[level].plane = USHRT_MAX;
1767 }
1768 }
1769
1770 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1771 {
1772 if (wm > fifo_size)
1773 return USHRT_MAX;
1774 else
1775 return fifo_size - wm;
1776 }
1777
1778 /*
1779 * Starting from 'level' set all higher
1780 * levels to 'value' in the "raw" watermarks.
1781 */
1782 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1783 int level, enum plane_id plane_id, u16 value)
1784 {
1785 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1786 int num_levels = intel_wm_num_levels(dev_priv);
1787 bool dirty = false;
1788
1789 for (; level < num_levels; level++) {
1790 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1791
1792 dirty |= raw->plane[plane_id] != value;
1793 raw->plane[plane_id] = value;
1794 }
1795
1796 return dirty;
1797 }
1798
1799 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1800 const struct intel_plane_state *plane_state)
1801 {
1802 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1803 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1804 enum plane_id plane_id = plane->id;
1805 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1806 int level;
1807 bool dirty = false;
1808
1809 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1810 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1811 goto out;
1812 }
1813
1814 for (level = 0; level < num_levels; level++) {
1815 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1816 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1817 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1818
1819 if (wm > max_wm)
1820 break;
1821
1822 dirty |= raw->plane[plane_id] != wm;
1823 raw->plane[plane_id] = wm;
1824 }
1825
1826 /* mark all higher levels as invalid */
1827 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1828
1829 out:
1830 if (dirty)
1831 drm_dbg_kms(&dev_priv->drm,
1832 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1833 plane->base.name,
1834 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1835 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1836 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1837
1838 return dirty;
1839 }
1840
1841 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1842 enum plane_id plane_id, int level)
1843 {
1844 const struct g4x_pipe_wm *raw =
1845 &crtc_state->wm.vlv.raw[level];
1846 const struct vlv_fifo_state *fifo_state =
1847 &crtc_state->wm.vlv.fifo_state;
1848
1849 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1850 }
1851
1852 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1853 {
1854 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1855 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1856 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1857 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1858 }
1859
1860 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1861 {
1862 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1863 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1864 struct intel_atomic_state *state =
1865 to_intel_atomic_state(crtc_state->uapi.state);
1866 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1867 const struct vlv_fifo_state *fifo_state =
1868 &crtc_state->wm.vlv.fifo_state;
1869 int num_active_planes = hweight8(crtc_state->active_planes &
1870 ~BIT(PLANE_CURSOR));
1871 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1872 const struct intel_plane_state *old_plane_state;
1873 const struct intel_plane_state *new_plane_state;
1874 struct intel_plane *plane;
1875 enum plane_id plane_id;
1876 int level, ret, i;
1877 unsigned int dirty = 0;
1878
1879 for_each_oldnew_intel_plane_in_state(state, plane,
1880 old_plane_state,
1881 new_plane_state, i) {
1882 if (new_plane_state->hw.crtc != &crtc->base &&
1883 old_plane_state->hw.crtc != &crtc->base)
1884 continue;
1885
1886 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1887 dirty |= BIT(plane->id);
1888 }
1889
1890 /*
1891 * DSPARB registers may have been reset due to the
1892 * power well being turned off. Make sure we restore
1893 * them to a consistent state even if no primary/sprite
1894 * planes are initially active.
1895 */
1896 if (needs_modeset)
1897 crtc_state->fifo_changed = true;
1898
1899 if (!dirty)
1900 return 0;
1901
1902 /* cursor changes don't warrant a FIFO recompute */
1903 if (dirty & ~BIT(PLANE_CURSOR)) {
1904 const struct intel_crtc_state *old_crtc_state =
1905 intel_atomic_get_old_crtc_state(state, crtc);
1906 const struct vlv_fifo_state *old_fifo_state =
1907 &old_crtc_state->wm.vlv.fifo_state;
1908
1909 ret = vlv_compute_fifo(crtc_state);
1910 if (ret)
1911 return ret;
1912
1913 if (needs_modeset ||
1914 memcmp(old_fifo_state, fifo_state,
1915 sizeof(*fifo_state)) != 0)
1916 crtc_state->fifo_changed = true;
1917 }
1918
1919 /* initially allow all levels */
1920 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1921 /*
1922 * Note that enabling cxsr with no primary/sprite planes
1923 * enabled can wedge the pipe. Hence we only allow cxsr
1924 * with exactly one enabled primary/sprite plane.
1925 */
1926 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1927
1928 for (level = 0; level < wm_state->num_levels; level++) {
1929 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1930 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1931
1932 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1933 break;
1934
1935 for_each_plane_id_on_crtc(crtc, plane_id) {
1936 wm_state->wm[level].plane[plane_id] =
1937 vlv_invert_wm_value(raw->plane[plane_id],
1938 fifo_state->plane[plane_id]);
1939 }
1940
1941 wm_state->sr[level].plane =
1942 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1943 raw->plane[PLANE_SPRITE0],
1944 raw->plane[PLANE_SPRITE1]),
1945 sr_fifo_size);
1946
1947 wm_state->sr[level].cursor =
1948 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1949 63);
1950 }
1951
1952 if (level == 0)
1953 return -EINVAL;
1954
1955 /* limit to only levels we can actually handle */
1956 wm_state->num_levels = level;
1957
1958 /* invalidate the higher levels */
1959 vlv_invalidate_wms(crtc, wm_state, level);
1960
1961 return 0;
1962 }
1963
1964 #define VLV_FIFO(plane, value) \
1965 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1966
1967 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1968 struct intel_crtc *crtc)
1969 {
1970 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1971 struct intel_uncore *uncore = &dev_priv->uncore;
1972 const struct intel_crtc_state *crtc_state =
1973 intel_atomic_get_new_crtc_state(state, crtc);
1974 const struct vlv_fifo_state *fifo_state =
1975 &crtc_state->wm.vlv.fifo_state;
1976 int sprite0_start, sprite1_start, fifo_size;
1977
1978 if (!crtc_state->fifo_changed)
1979 return;
1980
1981 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1982 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1983 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1984
1985 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1986 WARN_ON(fifo_size != 511);
1987
1988 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1989
1990 /*
1991 * uncore.lock serves a double purpose here. It allows us to
1992 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1993 * it protects the DSPARB registers from getting clobbered by
1994 * parallel updates from multiple pipes.
1995 *
1996 * intel_pipe_update_start() has already disabled interrupts
1997 * for us, so a plain spin_lock() is sufficient here.
1998 */
1999 spin_lock(&uncore->lock);
2000
2001 switch (crtc->pipe) {
2002 u32 dsparb, dsparb2, dsparb3;
2003 case PIPE_A:
2004 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2005 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2006
2007 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2008 VLV_FIFO(SPRITEB, 0xff));
2009 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2010 VLV_FIFO(SPRITEB, sprite1_start));
2011
2012 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2013 VLV_FIFO(SPRITEB_HI, 0x1));
2014 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2015 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2016
2017 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2018 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2019 break;
2020 case PIPE_B:
2021 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2022 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2023
2024 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2025 VLV_FIFO(SPRITED, 0xff));
2026 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2027 VLV_FIFO(SPRITED, sprite1_start));
2028
2029 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2030 VLV_FIFO(SPRITED_HI, 0xff));
2031 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2032 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2033
2034 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2035 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2036 break;
2037 case PIPE_C:
2038 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2039 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2040
2041 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2042 VLV_FIFO(SPRITEF, 0xff));
2043 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2044 VLV_FIFO(SPRITEF, sprite1_start));
2045
2046 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2047 VLV_FIFO(SPRITEF_HI, 0xff));
2048 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2049 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2050
2051 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2052 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2053 break;
2054 default:
2055 break;
2056 }
2057
2058 intel_uncore_posting_read_fw(uncore, DSPARB);
2059
2060 spin_unlock(&uncore->lock);
2061 }
2062
2063 #undef VLV_FIFO
2064
2065 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2066 {
2067 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2068 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2069 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2070 struct intel_atomic_state *intel_state =
2071 to_intel_atomic_state(new_crtc_state->uapi.state);
2072 const struct intel_crtc_state *old_crtc_state =
2073 intel_atomic_get_old_crtc_state(intel_state, crtc);
2074 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2075 int level;
2076
2077 if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2078 *intermediate = *optimal;
2079
2080 intermediate->cxsr = false;
2081 goto out;
2082 }
2083
2084 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2085 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2086 !new_crtc_state->disable_cxsr;
2087
2088 for (level = 0; level < intermediate->num_levels; level++) {
2089 enum plane_id plane_id;
2090
2091 for_each_plane_id_on_crtc(crtc, plane_id) {
2092 intermediate->wm[level].plane[plane_id] =
2093 min(optimal->wm[level].plane[plane_id],
2094 active->wm[level].plane[plane_id]);
2095 }
2096
2097 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2098 active->sr[level].plane);
2099 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2100 active->sr[level].cursor);
2101 }
2102
2103 vlv_invalidate_wms(crtc, intermediate, level);
2104
2105 out:
2106 /*
2107 * If our intermediate WM are identical to the final WM, then we can
2108 * omit the post-vblank programming; only update if it's different.
2109 */
2110 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2111 new_crtc_state->wm.need_postvbl_update = true;
2112
2113 return 0;
2114 }
2115
2116 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2117 struct vlv_wm_values *wm)
2118 {
2119 struct intel_crtc *crtc;
2120 int num_active_pipes = 0;
2121
2122 wm->level = dev_priv->wm.max_level;
2123 wm->cxsr = true;
2124
2125 for_each_intel_crtc(&dev_priv->drm, crtc) {
2126 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2127
2128 if (!crtc->active)
2129 continue;
2130
2131 if (!wm_state->cxsr)
2132 wm->cxsr = false;
2133
2134 num_active_pipes++;
2135 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2136 }
2137
2138 if (num_active_pipes != 1)
2139 wm->cxsr = false;
2140
2141 if (num_active_pipes > 1)
2142 wm->level = VLV_WM_LEVEL_PM2;
2143
2144 for_each_intel_crtc(&dev_priv->drm, crtc) {
2145 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2146 enum pipe pipe = crtc->pipe;
2147
2148 wm->pipe[pipe] = wm_state->wm[wm->level];
2149 if (crtc->active && wm->cxsr)
2150 wm->sr = wm_state->sr[wm->level];
2151
2152 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2153 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2154 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2155 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2156 }
2157 }
2158
2159 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2160 {
2161 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2162 struct vlv_wm_values new_wm = {};
2163
2164 vlv_merge_wm(dev_priv, &new_wm);
2165
2166 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2167 return;
2168
2169 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2170 chv_set_memory_dvfs(dev_priv, false);
2171
2172 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2173 chv_set_memory_pm5(dev_priv, false);
2174
2175 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2176 _intel_set_memory_cxsr(dev_priv, false);
2177
2178 vlv_write_wm_values(dev_priv, &new_wm);
2179
2180 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2181 _intel_set_memory_cxsr(dev_priv, true);
2182
2183 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2184 chv_set_memory_pm5(dev_priv, true);
2185
2186 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2187 chv_set_memory_dvfs(dev_priv, true);
2188
2189 *old_wm = new_wm;
2190 }
2191
2192 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2193 struct intel_crtc *crtc)
2194 {
2195 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2196 const struct intel_crtc_state *crtc_state =
2197 intel_atomic_get_new_crtc_state(state, crtc);
2198
2199 mutex_lock(&dev_priv->wm.wm_mutex);
2200 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2201 vlv_program_watermarks(dev_priv);
2202 mutex_unlock(&dev_priv->wm.wm_mutex);
2203 }
2204
2205 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2206 struct intel_crtc *crtc)
2207 {
2208 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2209 const struct intel_crtc_state *crtc_state =
2210 intel_atomic_get_new_crtc_state(state, crtc);
2211
2212 if (!crtc_state->wm.need_postvbl_update)
2213 return;
2214
2215 mutex_lock(&dev_priv->wm.wm_mutex);
2216 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2217 vlv_program_watermarks(dev_priv);
2218 mutex_unlock(&dev_priv->wm.wm_mutex);
2219 }
2220
2221 static void i965_update_wm(struct intel_crtc *unused_crtc)
2222 {
2223 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2224 struct intel_crtc *crtc;
2225 int srwm = 1;
2226 int cursor_sr = 16;
2227 bool cxsr_enabled;
2228
2229 /* Calc sr entries for one plane configs */
2230 crtc = single_enabled_crtc(dev_priv);
2231 if (crtc) {
2232 /* self-refresh has much higher latency */
2233 static const int sr_latency_ns = 12000;
2234 const struct drm_display_mode *adjusted_mode =
2235 &crtc->config->hw.adjusted_mode;
2236 const struct drm_framebuffer *fb =
2237 crtc->base.primary->state->fb;
2238 int clock = adjusted_mode->crtc_clock;
2239 int htotal = adjusted_mode->crtc_htotal;
2240 int hdisplay = crtc->config->pipe_src_w;
2241 int cpp = fb->format->cpp[0];
2242 int entries;
2243
2244 entries = intel_wm_method2(clock, htotal,
2245 hdisplay, cpp, sr_latency_ns / 100);
2246 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2247 srwm = I965_FIFO_SIZE - entries;
2248 if (srwm < 0)
2249 srwm = 1;
2250 srwm &= 0x1ff;
2251 drm_dbg_kms(&dev_priv->drm,
2252 "self-refresh entries: %d, wm: %d\n",
2253 entries, srwm);
2254
2255 entries = intel_wm_method2(clock, htotal,
2256 crtc->base.cursor->state->crtc_w, 4,
2257 sr_latency_ns / 100);
2258 entries = DIV_ROUND_UP(entries,
2259 i965_cursor_wm_info.cacheline_size) +
2260 i965_cursor_wm_info.guard_size;
2261
2262 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2263 if (cursor_sr > i965_cursor_wm_info.max_wm)
2264 cursor_sr = i965_cursor_wm_info.max_wm;
2265
2266 drm_dbg_kms(&dev_priv->drm,
2267 "self-refresh watermark: display plane %d "
2268 "cursor %d\n", srwm, cursor_sr);
2269
2270 cxsr_enabled = true;
2271 } else {
2272 cxsr_enabled = false;
2273 /* Turn off self refresh if both pipes are enabled */
2274 intel_set_memory_cxsr(dev_priv, false);
2275 }
2276
2277 drm_dbg_kms(&dev_priv->drm,
2278 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2279 srwm);
2280
2281 /* 965 has limitations... */
2282 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2283 FW_WM(8, CURSORB) |
2284 FW_WM(8, PLANEB) |
2285 FW_WM(8, PLANEA));
2286 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2287 FW_WM(8, PLANEC_OLD));
2288 /* update cursor SR watermark */
2289 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2290
2291 if (cxsr_enabled)
2292 intel_set_memory_cxsr(dev_priv, true);
2293 }
2294
2295 #undef FW_WM
2296
2297 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2298 {
2299 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2300 const struct intel_watermark_params *wm_info;
2301 u32 fwater_lo;
2302 u32 fwater_hi;
2303 int cwm, srwm = 1;
2304 int fifo_size;
2305 int planea_wm, planeb_wm;
2306 struct intel_crtc *crtc, *enabled = NULL;
2307
2308 if (IS_I945GM(dev_priv))
2309 wm_info = &i945_wm_info;
2310 else if (!IS_GEN(dev_priv, 2))
2311 wm_info = &i915_wm_info;
2312 else
2313 wm_info = &i830_a_wm_info;
2314
2315 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2316 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2317 if (intel_crtc_active(crtc)) {
2318 const struct drm_display_mode *adjusted_mode =
2319 &crtc->config->hw.adjusted_mode;
2320 const struct drm_framebuffer *fb =
2321 crtc->base.primary->state->fb;
2322 int cpp;
2323
2324 if (IS_GEN(dev_priv, 2))
2325 cpp = 4;
2326 else
2327 cpp = fb->format->cpp[0];
2328
2329 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2330 wm_info, fifo_size, cpp,
2331 pessimal_latency_ns);
2332 enabled = crtc;
2333 } else {
2334 planea_wm = fifo_size - wm_info->guard_size;
2335 if (planea_wm > (long)wm_info->max_wm)
2336 planea_wm = wm_info->max_wm;
2337 }
2338
2339 if (IS_GEN(dev_priv, 2))
2340 wm_info = &i830_bc_wm_info;
2341
2342 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2343 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2344 if (intel_crtc_active(crtc)) {
2345 const struct drm_display_mode *adjusted_mode =
2346 &crtc->config->hw.adjusted_mode;
2347 const struct drm_framebuffer *fb =
2348 crtc->base.primary->state->fb;
2349 int cpp;
2350
2351 if (IS_GEN(dev_priv, 2))
2352 cpp = 4;
2353 else
2354 cpp = fb->format->cpp[0];
2355
2356 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2357 wm_info, fifo_size, cpp,
2358 pessimal_latency_ns);
2359 if (enabled == NULL)
2360 enabled = crtc;
2361 else
2362 enabled = NULL;
2363 } else {
2364 planeb_wm = fifo_size - wm_info->guard_size;
2365 if (planeb_wm > (long)wm_info->max_wm)
2366 planeb_wm = wm_info->max_wm;
2367 }
2368
2369 drm_dbg_kms(&dev_priv->drm,
2370 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2371
2372 if (IS_I915GM(dev_priv) && enabled) {
2373 struct drm_i915_gem_object *obj;
2374
2375 obj = intel_fb_obj(enabled->base.primary->state->fb);
2376
2377 /* self-refresh seems busted with untiled */
2378 if (!i915_gem_object_is_tiled(obj))
2379 enabled = NULL;
2380 }
2381
2382 /*
2383 * Overlay gets an aggressive default since video jitter is bad.
2384 */
2385 cwm = 2;
2386
2387 /* Play safe and disable self-refresh before adjusting watermarks. */
2388 intel_set_memory_cxsr(dev_priv, false);
2389
2390 /* Calc sr entries for one plane configs */
2391 if (HAS_FW_BLC(dev_priv) && enabled) {
2392 /* self-refresh has much higher latency */
2393 static const int sr_latency_ns = 6000;
2394 const struct drm_display_mode *adjusted_mode =
2395 &enabled->config->hw.adjusted_mode;
2396 const struct drm_framebuffer *fb =
2397 enabled->base.primary->state->fb;
2398 int clock = adjusted_mode->crtc_clock;
2399 int htotal = adjusted_mode->crtc_htotal;
2400 int hdisplay = enabled->config->pipe_src_w;
2401 int cpp;
2402 int entries;
2403
2404 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2405 cpp = 4;
2406 else
2407 cpp = fb->format->cpp[0];
2408
2409 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2410 sr_latency_ns / 100);
2411 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2412 drm_dbg_kms(&dev_priv->drm,
2413 "self-refresh entries: %d\n", entries);
2414 srwm = wm_info->fifo_size - entries;
2415 if (srwm < 0)
2416 srwm = 1;
2417
2418 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2419 I915_WRITE(FW_BLC_SELF,
2420 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2421 else
2422 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2423 }
2424
2425 drm_dbg_kms(&dev_priv->drm,
2426 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2427 planea_wm, planeb_wm, cwm, srwm);
2428
2429 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2430 fwater_hi = (cwm & 0x1f);
2431
2432 /* Set request length to 8 cachelines per fetch */
2433 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2434 fwater_hi = fwater_hi | (1 << 8);
2435
2436 I915_WRITE(FW_BLC, fwater_lo);
2437 I915_WRITE(FW_BLC2, fwater_hi);
2438
2439 if (enabled)
2440 intel_set_memory_cxsr(dev_priv, true);
2441 }
2442
2443 static void i845_update_wm(struct intel_crtc *unused_crtc)
2444 {
2445 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2446 struct intel_crtc *crtc;
2447 const struct drm_display_mode *adjusted_mode;
2448 u32 fwater_lo;
2449 int planea_wm;
2450
2451 crtc = single_enabled_crtc(dev_priv);
2452 if (crtc == NULL)
2453 return;
2454
2455 adjusted_mode = &crtc->config->hw.adjusted_mode;
2456 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2457 &i845_wm_info,
2458 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2459 4, pessimal_latency_ns);
2460 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2461 fwater_lo |= (3<<8) | planea_wm;
2462
2463 drm_dbg_kms(&dev_priv->drm,
2464 "Setting FIFO watermarks - A: %d\n", planea_wm);
2465
2466 I915_WRITE(FW_BLC, fwater_lo);
2467 }
2468
2469 /* latency must be in 0.1us units. */
2470 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2471 unsigned int cpp,
2472 unsigned int latency)
2473 {
2474 unsigned int ret;
2475
2476 ret = intel_wm_method1(pixel_rate, cpp, latency);
2477 ret = DIV_ROUND_UP(ret, 64) + 2;
2478
2479 return ret;
2480 }
2481
2482 /* latency must be in 0.1us units. */
2483 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2484 unsigned int htotal,
2485 unsigned int width,
2486 unsigned int cpp,
2487 unsigned int latency)
2488 {
2489 unsigned int ret;
2490
2491 ret = intel_wm_method2(pixel_rate, htotal,
2492 width, cpp, latency);
2493 ret = DIV_ROUND_UP(ret, 64) + 2;
2494
2495 return ret;
2496 }
2497
2498 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2499 {
2500 /*
2501 * Neither of these should be possible since this function shouldn't be
2502 * called if the CRTC is off or the plane is invisible. But let's be
2503 * extra paranoid to avoid a potential divide-by-zero if we screw up
2504 * elsewhere in the driver.
2505 */
2506 if (WARN_ON(!cpp))
2507 return 0;
2508 if (WARN_ON(!horiz_pixels))
2509 return 0;
2510
2511 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2512 }
2513
2514 struct ilk_wm_maximums {
2515 u16 pri;
2516 u16 spr;
2517 u16 cur;
2518 u16 fbc;
2519 };
2520
2521 /*
2522 * For both WM_PIPE and WM_LP.
2523 * mem_value must be in 0.1us units.
2524 */
2525 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2526 const struct intel_plane_state *plane_state,
2527 u32 mem_value, bool is_lp)
2528 {
2529 u32 method1, method2;
2530 int cpp;
2531
2532 if (mem_value == 0)
2533 return U32_MAX;
2534
2535 if (!intel_wm_plane_visible(crtc_state, plane_state))
2536 return 0;
2537
2538 cpp = plane_state->hw.fb->format->cpp[0];
2539
2540 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2541
2542 if (!is_lp)
2543 return method1;
2544
2545 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2546 crtc_state->hw.adjusted_mode.crtc_htotal,
2547 drm_rect_width(&plane_state->uapi.dst),
2548 cpp, mem_value);
2549
2550 return min(method1, method2);
2551 }
2552
2553 /*
2554 * For both WM_PIPE and WM_LP.
2555 * mem_value must be in 0.1us units.
2556 */
2557 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2558 const struct intel_plane_state *plane_state,
2559 u32 mem_value)
2560 {
2561 u32 method1, method2;
2562 int cpp;
2563
2564 if (mem_value == 0)
2565 return U32_MAX;
2566
2567 if (!intel_wm_plane_visible(crtc_state, plane_state))
2568 return 0;
2569
2570 cpp = plane_state->hw.fb->format->cpp[0];
2571
2572 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2573 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2574 crtc_state->hw.adjusted_mode.crtc_htotal,
2575 drm_rect_width(&plane_state->uapi.dst),
2576 cpp, mem_value);
2577 return min(method1, method2);
2578 }
2579
2580 /*
2581 * For both WM_PIPE and WM_LP.
2582 * mem_value must be in 0.1us units.
2583 */
2584 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2585 const struct intel_plane_state *plane_state,
2586 u32 mem_value)
2587 {
2588 int cpp;
2589
2590 if (mem_value == 0)
2591 return U32_MAX;
2592
2593 if (!intel_wm_plane_visible(crtc_state, plane_state))
2594 return 0;
2595
2596 cpp = plane_state->hw.fb->format->cpp[0];
2597
2598 return ilk_wm_method2(crtc_state->pixel_rate,
2599 crtc_state->hw.adjusted_mode.crtc_htotal,
2600 drm_rect_width(&plane_state->uapi.dst),
2601 cpp, mem_value);
2602 }
2603
2604 /* Only for WM_LP. */
2605 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2606 const struct intel_plane_state *plane_state,
2607 u32 pri_val)
2608 {
2609 int cpp;
2610
2611 if (!intel_wm_plane_visible(crtc_state, plane_state))
2612 return 0;
2613
2614 cpp = plane_state->hw.fb->format->cpp[0];
2615
2616 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2617 cpp);
2618 }
2619
2620 static unsigned int
2621 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2622 {
2623 if (INTEL_GEN(dev_priv) >= 8)
2624 return 3072;
2625 else if (INTEL_GEN(dev_priv) >= 7)
2626 return 768;
2627 else
2628 return 512;
2629 }
2630
2631 static unsigned int
2632 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2633 int level, bool is_sprite)
2634 {
2635 if (INTEL_GEN(dev_priv) >= 8)
2636 /* BDW primary/sprite plane watermarks */
2637 return level == 0 ? 255 : 2047;
2638 else if (INTEL_GEN(dev_priv) >= 7)
2639 /* IVB/HSW primary/sprite plane watermarks */
2640 return level == 0 ? 127 : 1023;
2641 else if (!is_sprite)
2642 /* ILK/SNB primary plane watermarks */
2643 return level == 0 ? 127 : 511;
2644 else
2645 /* ILK/SNB sprite plane watermarks */
2646 return level == 0 ? 63 : 255;
2647 }
2648
2649 static unsigned int
2650 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2651 {
2652 if (INTEL_GEN(dev_priv) >= 7)
2653 return level == 0 ? 63 : 255;
2654 else
2655 return level == 0 ? 31 : 63;
2656 }
2657
2658 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2659 {
2660 if (INTEL_GEN(dev_priv) >= 8)
2661 return 31;
2662 else
2663 return 15;
2664 }
2665
2666 /* Calculate the maximum primary/sprite plane watermark */
2667 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2668 int level,
2669 const struct intel_wm_config *config,
2670 enum intel_ddb_partitioning ddb_partitioning,
2671 bool is_sprite)
2672 {
2673 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2674
2675 /* if sprites aren't enabled, sprites get nothing */
2676 if (is_sprite && !config->sprites_enabled)
2677 return 0;
2678
2679 /* HSW allows LP1+ watermarks even with multiple pipes */
2680 if (level == 0 || config->num_pipes_active > 1) {
2681 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2682
2683 /*
2684 * For some reason the non self refresh
2685 * FIFO size is only half of the self
2686 * refresh FIFO size on ILK/SNB.
2687 */
2688 if (INTEL_GEN(dev_priv) <= 6)
2689 fifo_size /= 2;
2690 }
2691
2692 if (config->sprites_enabled) {
2693 /* level 0 is always calculated with 1:1 split */
2694 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2695 if (is_sprite)
2696 fifo_size *= 5;
2697 fifo_size /= 6;
2698 } else {
2699 fifo_size /= 2;
2700 }
2701 }
2702
2703 /* clamp to max that the registers can hold */
2704 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2705 }
2706
2707 /* Calculate the maximum cursor plane watermark */
2708 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2709 int level,
2710 const struct intel_wm_config *config)
2711 {
2712 /* HSW LP1+ watermarks w/ multiple pipes */
2713 if (level > 0 && config->num_pipes_active > 1)
2714 return 64;
2715
2716 /* otherwise just report max that registers can hold */
2717 return ilk_cursor_wm_reg_max(dev_priv, level);
2718 }
2719
2720 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2721 int level,
2722 const struct intel_wm_config *config,
2723 enum intel_ddb_partitioning ddb_partitioning,
2724 struct ilk_wm_maximums *max)
2725 {
2726 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2727 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2728 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2729 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2730 }
2731
2732 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2733 int level,
2734 struct ilk_wm_maximums *max)
2735 {
2736 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2737 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2738 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2739 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2740 }
2741
2742 static bool ilk_validate_wm_level(int level,
2743 const struct ilk_wm_maximums *max,
2744 struct intel_wm_level *result)
2745 {
2746 bool ret;
2747
2748 /* already determined to be invalid? */
2749 if (!result->enable)
2750 return false;
2751
2752 result->enable = result->pri_val <= max->pri &&
2753 result->spr_val <= max->spr &&
2754 result->cur_val <= max->cur;
2755
2756 ret = result->enable;
2757
2758 /*
2759 * HACK until we can pre-compute everything,
2760 * and thus fail gracefully if LP0 watermarks
2761 * are exceeded...
2762 */
2763 if (level == 0 && !result->enable) {
2764 if (result->pri_val > max->pri)
2765 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2766 level, result->pri_val, max->pri);
2767 if (result->spr_val > max->spr)
2768 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2769 level, result->spr_val, max->spr);
2770 if (result->cur_val > max->cur)
2771 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2772 level, result->cur_val, max->cur);
2773
2774 result->pri_val = min_t(u32, result->pri_val, max->pri);
2775 result->spr_val = min_t(u32, result->spr_val, max->spr);
2776 result->cur_val = min_t(u32, result->cur_val, max->cur);
2777 result->enable = true;
2778 }
2779
2780 return ret;
2781 }
2782
2783 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2784 const struct intel_crtc *intel_crtc,
2785 int level,
2786 struct intel_crtc_state *crtc_state,
2787 const struct intel_plane_state *pristate,
2788 const struct intel_plane_state *sprstate,
2789 const struct intel_plane_state *curstate,
2790 struct intel_wm_level *result)
2791 {
2792 u16 pri_latency = dev_priv->wm.pri_latency[level];
2793 u16 spr_latency = dev_priv->wm.spr_latency[level];
2794 u16 cur_latency = dev_priv->wm.cur_latency[level];
2795
2796 /* WM1+ latency values stored in 0.5us units */
2797 if (level > 0) {
2798 pri_latency *= 5;
2799 spr_latency *= 5;
2800 cur_latency *= 5;
2801 }
2802
2803 if (pristate) {
2804 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2805 pri_latency, level);
2806 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2807 }
2808
2809 if (sprstate)
2810 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2811
2812 if (curstate)
2813 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2814
2815 result->enable = true;
2816 }
2817
2818 static u32
2819 hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2820 {
2821 const struct intel_atomic_state *intel_state =
2822 to_intel_atomic_state(crtc_state->uapi.state);
2823 const struct drm_display_mode *adjusted_mode =
2824 &crtc_state->hw.adjusted_mode;
2825 u32 linetime, ips_linetime;
2826
2827 if (!crtc_state->hw.active)
2828 return 0;
2829 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2830 return 0;
2831 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2832 return 0;
2833
2834 /* The WM are computed with base on how long it takes to fill a single
2835 * row at the given clock rate, multiplied by 8.
2836 * */
2837 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2838 adjusted_mode->crtc_clock);
2839 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2840 intel_state->cdclk.logical.cdclk);
2841
2842 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2843 PIPE_WM_LINETIME_TIME(linetime);
2844 }
2845
2846 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2847 u16 wm[8])
2848 {
2849 struct intel_uncore *uncore = &dev_priv->uncore;
2850
2851 if (INTEL_GEN(dev_priv) >= 9) {
2852 u32 val;
2853 int ret, i;
2854 int level, max_level = ilk_wm_max_level(dev_priv);
2855
2856 /* read the first set of memory latencies[0:3] */
2857 val = 0; /* data0 to be programmed to 0 for first set */
2858 ret = sandybridge_pcode_read(dev_priv,
2859 GEN9_PCODE_READ_MEM_LATENCY,
2860 &val, NULL);
2861
2862 if (ret) {
2863 drm_err(&dev_priv->drm,
2864 "SKL Mailbox read error = %d\n", ret);
2865 return;
2866 }
2867
2868 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2869 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2870 GEN9_MEM_LATENCY_LEVEL_MASK;
2871 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2872 GEN9_MEM_LATENCY_LEVEL_MASK;
2873 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2874 GEN9_MEM_LATENCY_LEVEL_MASK;
2875
2876 /* read the second set of memory latencies[4:7] */
2877 val = 1; /* data0 to be programmed to 1 for second set */
2878 ret = sandybridge_pcode_read(dev_priv,
2879 GEN9_PCODE_READ_MEM_LATENCY,
2880 &val, NULL);
2881 if (ret) {
2882 drm_err(&dev_priv->drm,
2883 "SKL Mailbox read error = %d\n", ret);
2884 return;
2885 }
2886
2887 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2888 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2889 GEN9_MEM_LATENCY_LEVEL_MASK;
2890 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2891 GEN9_MEM_LATENCY_LEVEL_MASK;
2892 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2893 GEN9_MEM_LATENCY_LEVEL_MASK;
2894
2895 /*
2896 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2897 * need to be disabled. We make sure to sanitize the values out
2898 * of the punit to satisfy this requirement.
2899 */
2900 for (level = 1; level <= max_level; level++) {
2901 if (wm[level] == 0) {
2902 for (i = level + 1; i <= max_level; i++)
2903 wm[i] = 0;
2904 break;
2905 }
2906 }
2907
2908 /*
2909 * WaWmMemoryReadLatency:skl+,glk
2910 *
2911 * punit doesn't take into account the read latency so we need
2912 * to add 2us to the various latency levels we retrieve from the
2913 * punit when level 0 response data us 0us.
2914 */
2915 if (wm[0] == 0) {
2916 wm[0] += 2;
2917 for (level = 1; level <= max_level; level++) {
2918 if (wm[level] == 0)
2919 break;
2920 wm[level] += 2;
2921 }
2922 }
2923
2924 /*
2925 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2926 * If we could not get dimm info enable this WA to prevent from
2927 * any underrun. If not able to get Dimm info assume 16GB dimm
2928 * to avoid any underrun.
2929 */
2930 if (dev_priv->dram_info.is_16gb_dimm)
2931 wm[0] += 1;
2932
2933 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2934 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2935
2936 wm[0] = (sskpd >> 56) & 0xFF;
2937 if (wm[0] == 0)
2938 wm[0] = sskpd & 0xF;
2939 wm[1] = (sskpd >> 4) & 0xFF;
2940 wm[2] = (sskpd >> 12) & 0xFF;
2941 wm[3] = (sskpd >> 20) & 0x1FF;
2942 wm[4] = (sskpd >> 32) & 0x1FF;
2943 } else if (INTEL_GEN(dev_priv) >= 6) {
2944 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2945
2946 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2947 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2948 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2949 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2950 } else if (INTEL_GEN(dev_priv) >= 5) {
2951 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2952
2953 /* ILK primary LP0 latency is 700 ns */
2954 wm[0] = 7;
2955 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2956 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2957 } else {
2958 MISSING_CASE(INTEL_DEVID(dev_priv));
2959 }
2960 }
2961
2962 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2963 u16 wm[5])
2964 {
2965 /* ILK sprite LP0 latency is 1300 ns */
2966 if (IS_GEN(dev_priv, 5))
2967 wm[0] = 13;
2968 }
2969
2970 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2971 u16 wm[5])
2972 {
2973 /* ILK cursor LP0 latency is 1300 ns */
2974 if (IS_GEN(dev_priv, 5))
2975 wm[0] = 13;
2976 }
2977
2978 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2979 {
2980 /* how many WM levels are we expecting */
2981 if (INTEL_GEN(dev_priv) >= 9)
2982 return 7;
2983 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2984 return 4;
2985 else if (INTEL_GEN(dev_priv) >= 6)
2986 return 3;
2987 else
2988 return 2;
2989 }
2990
2991 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2992 const char *name,
2993 const u16 wm[8])
2994 {
2995 int level, max_level = ilk_wm_max_level(dev_priv);
2996
2997 for (level = 0; level <= max_level; level++) {
2998 unsigned int latency = wm[level];
2999
3000 if (latency == 0) {
3001 drm_dbg_kms(&dev_priv->drm,
3002 "%s WM%d latency not provided\n",
3003 name, level);
3004 continue;
3005 }
3006
3007 /*
3008 * - latencies are in us on gen9.
3009 * - before then, WM1+ latency values are in 0.5us units
3010 */
3011 if (INTEL_GEN(dev_priv) >= 9)
3012 latency *= 10;
3013 else if (level > 0)
3014 latency *= 5;
3015
3016 drm_dbg_kms(&dev_priv->drm,
3017 "%s WM%d latency %u (%u.%u usec)\n", name, level,
3018 wm[level], latency / 10, latency % 10);
3019 }
3020 }
3021
3022 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3023 u16 wm[5], u16 min)
3024 {
3025 int level, max_level = ilk_wm_max_level(dev_priv);
3026
3027 if (wm[0] >= min)
3028 return false;
3029
3030 wm[0] = max(wm[0], min);
3031 for (level = 1; level <= max_level; level++)
3032 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3033
3034 return true;
3035 }
3036
3037 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3038 {
3039 bool changed;
3040
3041 /*
3042 * The BIOS provided WM memory latency values are often
3043 * inadequate for high resolution displays. Adjust them.
3044 */
3045 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3046 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3047 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3048
3049 if (!changed)
3050 return;
3051
3052 drm_dbg_kms(&dev_priv->drm,
3053 "WM latency values increased to avoid potential underruns\n");
3054 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3055 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3056 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3057 }
3058
3059 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3060 {
3061 /*
3062 * On some SNB machines (Thinkpad X220 Tablet at least)
3063 * LP3 usage can cause vblank interrupts to be lost.
3064 * The DEIIR bit will go high but it looks like the CPU
3065 * never gets interrupted.
3066 *
3067 * It's not clear whether other interrupt source could
3068 * be affected or if this is somehow limited to vblank
3069 * interrupts only. To play it safe we disable LP3
3070 * watermarks entirely.
3071 */
3072 if (dev_priv->wm.pri_latency[3] == 0 &&
3073 dev_priv->wm.spr_latency[3] == 0 &&
3074 dev_priv->wm.cur_latency[3] == 0)
3075 return;
3076
3077 dev_priv->wm.pri_latency[3] = 0;
3078 dev_priv->wm.spr_latency[3] = 0;
3079 dev_priv->wm.cur_latency[3] = 0;
3080
3081 drm_dbg_kms(&dev_priv->drm,
3082 "LP3 watermarks disabled due to potential for lost interrupts\n");
3083 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3084 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3085 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3086 }
3087
3088 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3089 {
3090 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3091
3092 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3093 sizeof(dev_priv->wm.pri_latency));
3094 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3095 sizeof(dev_priv->wm.pri_latency));
3096
3097 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3098 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3099
3100 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3101 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3102 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3103
3104 if (IS_GEN(dev_priv, 6)) {
3105 snb_wm_latency_quirk(dev_priv);
3106 snb_wm_lp3_irq_quirk(dev_priv);
3107 }
3108 }
3109
3110 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3111 {
3112 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3113 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3114 }
3115
3116 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3117 struct intel_pipe_wm *pipe_wm)
3118 {
3119 /* LP0 watermark maximums depend on this pipe alone */
3120 const struct intel_wm_config config = {
3121 .num_pipes_active = 1,
3122 .sprites_enabled = pipe_wm->sprites_enabled,
3123 .sprites_scaled = pipe_wm->sprites_scaled,
3124 };
3125 struct ilk_wm_maximums max;
3126
3127 /* LP0 watermarks always use 1/2 DDB partitioning */
3128 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3129
3130 /* At least LP0 must be valid */
3131 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3132 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3133 return false;
3134 }
3135
3136 return true;
3137 }
3138
3139 /* Compute new watermarks for the pipe */
3140 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3141 {
3142 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
3144 struct intel_pipe_wm *pipe_wm;
3145 struct intel_plane *plane;
3146 const struct intel_plane_state *plane_state;
3147 const struct intel_plane_state *pristate = NULL;
3148 const struct intel_plane_state *sprstate = NULL;
3149 const struct intel_plane_state *curstate = NULL;
3150 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3151 struct ilk_wm_maximums max;
3152
3153 pipe_wm = &crtc_state->wm.ilk.optimal;
3154
3155 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3156 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3157 pristate = plane_state;
3158 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3159 sprstate = plane_state;
3160 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3161 curstate = plane_state;
3162 }
3163
3164 pipe_wm->pipe_enabled = crtc_state->hw.active;
3165 if (sprstate) {
3166 pipe_wm->sprites_enabled = sprstate->uapi.visible;
3167 pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3168 (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3169 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3170 }
3171
3172 usable_level = max_level;
3173
3174 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3175 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3176 usable_level = 1;
3177
3178 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3179 if (pipe_wm->sprites_scaled)
3180 usable_level = 0;
3181
3182 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3183 ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3184 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3185
3186 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3187 pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3188
3189 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3190 return -EINVAL;
3191
3192 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3193
3194 for (level = 1; level <= usable_level; level++) {
3195 struct intel_wm_level *wm = &pipe_wm->wm[level];
3196
3197 ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3198 pristate, sprstate, curstate, wm);
3199
3200 /*
3201 * Disable any watermark level that exceeds the
3202 * register maximums since such watermarks are
3203 * always invalid.
3204 */
3205 if (!ilk_validate_wm_level(level, &max, wm)) {
3206 memset(wm, 0, sizeof(*wm));
3207 break;
3208 }
3209 }
3210
3211 return 0;
3212 }
3213
3214 /*
3215 * Build a set of 'intermediate' watermark values that satisfy both the old
3216 * state and the new state. These can be programmed to the hardware
3217 * immediately.
3218 */
3219 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3220 {
3221 struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3222 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3223 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3224 struct intel_atomic_state *intel_state =
3225 to_intel_atomic_state(newstate->uapi.state);
3226 const struct intel_crtc_state *oldstate =
3227 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3228 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3229 int level, max_level = ilk_wm_max_level(dev_priv);
3230
3231 /*
3232 * Start with the final, target watermarks, then combine with the
3233 * currently active watermarks to get values that are safe both before
3234 * and after the vblank.
3235 */
3236 *a = newstate->wm.ilk.optimal;
3237 if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3238 intel_state->skip_intermediate_wm)
3239 return 0;
3240
3241 a->pipe_enabled |= b->pipe_enabled;
3242 a->sprites_enabled |= b->sprites_enabled;
3243 a->sprites_scaled |= b->sprites_scaled;
3244
3245 for (level = 0; level <= max_level; level++) {
3246 struct intel_wm_level *a_wm = &a->wm[level];
3247 const struct intel_wm_level *b_wm = &b->wm[level];
3248
3249 a_wm->enable &= b_wm->enable;
3250 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3251 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3252 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3253 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3254 }
3255
3256 /*
3257 * We need to make sure that these merged watermark values are
3258 * actually a valid configuration themselves. If they're not,
3259 * there's no safe way to transition from the old state to
3260 * the new state, so we need to fail the atomic transaction.
3261 */
3262 if (!ilk_validate_pipe_wm(dev_priv, a))
3263 return -EINVAL;
3264
3265 /*
3266 * If our intermediate WM are identical to the final WM, then we can
3267 * omit the post-vblank programming; only update if it's different.
3268 */
3269 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3270 newstate->wm.need_postvbl_update = true;
3271
3272 return 0;
3273 }
3274
3275 /*
3276 * Merge the watermarks from all active pipes for a specific level.
3277 */
3278 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3279 int level,
3280 struct intel_wm_level *ret_wm)
3281 {
3282 const struct intel_crtc *intel_crtc;
3283
3284 ret_wm->enable = true;
3285
3286 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3287 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3288 const struct intel_wm_level *wm = &active->wm[level];
3289
3290 if (!active->pipe_enabled)
3291 continue;
3292
3293 /*
3294 * The watermark values may have been used in the past,
3295 * so we must maintain them in the registers for some
3296 * time even if the level is now disabled.
3297 */
3298 if (!wm->enable)
3299 ret_wm->enable = false;
3300
3301 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3302 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3303 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3304 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3305 }
3306 }
3307
3308 /*
3309 * Merge all low power watermarks for all active pipes.
3310 */
3311 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3312 const struct intel_wm_config *config,
3313 const struct ilk_wm_maximums *max,
3314 struct intel_pipe_wm *merged)
3315 {
3316 int level, max_level = ilk_wm_max_level(dev_priv);
3317 int last_enabled_level = max_level;
3318
3319 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3320 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3321 config->num_pipes_active > 1)
3322 last_enabled_level = 0;
3323
3324 /* ILK: FBC WM must be disabled always */
3325 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3326
3327 /* merge each WM1+ level */
3328 for (level = 1; level <= max_level; level++) {
3329 struct intel_wm_level *wm = &merged->wm[level];
3330
3331 ilk_merge_wm_level(dev_priv, level, wm);
3332
3333 if (level > last_enabled_level)
3334 wm->enable = false;
3335 else if (!ilk_validate_wm_level(level, max, wm))
3336 /* make sure all following levels get disabled */
3337 last_enabled_level = level - 1;
3338
3339 /*
3340 * The spec says it is preferred to disable
3341 * FBC WMs instead of disabling a WM level.
3342 */
3343 if (wm->fbc_val > max->fbc) {
3344 if (wm->enable)
3345 merged->fbc_wm_enabled = false;
3346 wm->fbc_val = 0;
3347 }
3348 }
3349
3350 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3351 /*
3352 * FIXME this is racy. FBC might get enabled later.
3353 * What we should check here is whether FBC can be
3354 * enabled sometime later.
3355 */
3356 if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3357 intel_fbc_is_active(dev_priv)) {
3358 for (level = 2; level <= max_level; level++) {
3359 struct intel_wm_level *wm = &merged->wm[level];
3360
3361 wm->enable = false;
3362 }
3363 }
3364 }
3365
3366 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3367 {
3368 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3369 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3370 }
3371
3372 /* The value we need to program into the WM_LPx latency field */
3373 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3374 int level)
3375 {
3376 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3377 return 2 * level;
3378 else
3379 return dev_priv->wm.pri_latency[level];
3380 }
3381
3382 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3383 const struct intel_pipe_wm *merged,
3384 enum intel_ddb_partitioning partitioning,
3385 struct ilk_wm_values *results)
3386 {
3387 struct intel_crtc *intel_crtc;
3388 int level, wm_lp;
3389
3390 results->enable_fbc_wm = merged->fbc_wm_enabled;
3391 results->partitioning = partitioning;
3392
3393 /* LP1+ register values */
3394 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3395 const struct intel_wm_level *r;
3396
3397 level = ilk_wm_lp_to_level(wm_lp, merged);
3398
3399 r = &merged->wm[level];
3400
3401 /*
3402 * Maintain the watermark values even if the level is
3403 * disabled. Doing otherwise could cause underruns.
3404 */
3405 results->wm_lp[wm_lp - 1] =
3406 (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3407 (r->pri_val << WM1_LP_SR_SHIFT) |
3408 r->cur_val;
3409
3410 if (r->enable)
3411 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3412
3413 if (INTEL_GEN(dev_priv) >= 8)
3414 results->wm_lp[wm_lp - 1] |=
3415 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3416 else
3417 results->wm_lp[wm_lp - 1] |=
3418 r->fbc_val << WM1_LP_FBC_SHIFT;
3419
3420 /*
3421 * Always set WM1S_LP_EN when spr_val != 0, even if the
3422 * level is disabled. Doing otherwise could cause underruns.
3423 */
3424 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3425 WARN_ON(wm_lp != 1);
3426 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3427 } else
3428 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3429 }
3430
3431 /* LP0 register values */
3432 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3433 enum pipe pipe = intel_crtc->pipe;
3434 const struct intel_wm_level *r =
3435 &intel_crtc->wm.active.ilk.wm[0];
3436
3437 if (WARN_ON(!r->enable))
3438 continue;
3439
3440 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3441
3442 results->wm_pipe[pipe] =
3443 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3444 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3445 r->cur_val;
3446 }
3447 }
3448
3449 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3450 * case both are at the same level. Prefer r1 in case they're the same. */
3451 static struct intel_pipe_wm *
3452 ilk_find_best_result(struct drm_i915_private *dev_priv,
3453 struct intel_pipe_wm *r1,
3454 struct intel_pipe_wm *r2)
3455 {
3456 int level, max_level = ilk_wm_max_level(dev_priv);
3457 int level1 = 0, level2 = 0;
3458
3459 for (level = 1; level <= max_level; level++) {
3460 if (r1->wm[level].enable)
3461 level1 = level;
3462 if (r2->wm[level].enable)
3463 level2 = level;
3464 }
3465
3466 if (level1 == level2) {
3467 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3468 return r2;
3469 else
3470 return r1;
3471 } else if (level1 > level2) {
3472 return r1;
3473 } else {
3474 return r2;
3475 }
3476 }
3477
3478 /* dirty bits used to track which watermarks need changes */
3479 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3480 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3481 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3482 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3483 #define WM_DIRTY_FBC (1 << 24)
3484 #define WM_DIRTY_DDB (1 << 25)
3485
3486 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3487 const struct ilk_wm_values *old,
3488 const struct ilk_wm_values *new)
3489 {
3490 unsigned int dirty = 0;
3491 enum pipe pipe;
3492 int wm_lp;
3493
3494 for_each_pipe(dev_priv, pipe) {
3495 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3496 dirty |= WM_DIRTY_LINETIME(pipe);
3497 /* Must disable LP1+ watermarks too */
3498 dirty |= WM_DIRTY_LP_ALL;
3499 }
3500
3501 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3502 dirty |= WM_DIRTY_PIPE(pipe);
3503 /* Must disable LP1+ watermarks too */
3504 dirty |= WM_DIRTY_LP_ALL;
3505 }
3506 }
3507
3508 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3509 dirty |= WM_DIRTY_FBC;
3510 /* Must disable LP1+ watermarks too */
3511 dirty |= WM_DIRTY_LP_ALL;
3512 }
3513
3514 if (old->partitioning != new->partitioning) {
3515 dirty |= WM_DIRTY_DDB;
3516 /* Must disable LP1+ watermarks too */
3517 dirty |= WM_DIRTY_LP_ALL;
3518 }
3519
3520 /* LP1+ watermarks already deemed dirty, no need to continue */
3521 if (dirty & WM_DIRTY_LP_ALL)
3522 return dirty;
3523
3524 /* Find the lowest numbered LP1+ watermark in need of an update... */
3525 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3526 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3527 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3528 break;
3529 }
3530
3531 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3532 for (; wm_lp <= 3; wm_lp++)
3533 dirty |= WM_DIRTY_LP(wm_lp);
3534
3535 return dirty;
3536 }
3537
3538 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3539 unsigned int dirty)
3540 {
3541 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3542 bool changed = false;
3543
3544 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3545 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3546 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3547 changed = true;
3548 }
3549 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3550 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3551 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3552 changed = true;
3553 }
3554 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3555 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3556 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3557 changed = true;
3558 }
3559
3560 /*
3561 * Don't touch WM1S_LP_EN here.
3562 * Doing so could cause underruns.
3563 */
3564
3565 return changed;
3566 }
3567
3568 /*
3569 * The spec says we shouldn't write when we don't need, because every write
3570 * causes WMs to be re-evaluated, expending some power.
3571 */
3572 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3573 struct ilk_wm_values *results)
3574 {
3575 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3576 unsigned int dirty;
3577 u32 val;
3578
3579 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3580 if (!dirty)
3581 return;
3582
3583 _ilk_disable_lp_wm(dev_priv, dirty);
3584
3585 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3586 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3587 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3588 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3589 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3590 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3591
3592 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3593 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3594 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3595 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3596 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3597 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3598
3599 if (dirty & WM_DIRTY_DDB) {
3600 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3601 val = I915_READ(WM_MISC);
3602 if (results->partitioning == INTEL_DDB_PART_1_2)
3603 val &= ~WM_MISC_DATA_PARTITION_5_6;
3604 else
3605 val |= WM_MISC_DATA_PARTITION_5_6;
3606 I915_WRITE(WM_MISC, val);
3607 } else {
3608 val = I915_READ(DISP_ARB_CTL2);
3609 if (results->partitioning == INTEL_DDB_PART_1_2)
3610 val &= ~DISP_DATA_PARTITION_5_6;
3611 else
3612 val |= DISP_DATA_PARTITION_5_6;
3613 I915_WRITE(DISP_ARB_CTL2, val);
3614 }
3615 }
3616
3617 if (dirty & WM_DIRTY_FBC) {
3618 val = I915_READ(DISP_ARB_CTL);
3619 if (results->enable_fbc_wm)
3620 val &= ~DISP_FBC_WM_DIS;
3621 else
3622 val |= DISP_FBC_WM_DIS;
3623 I915_WRITE(DISP_ARB_CTL, val);
3624 }
3625
3626 if (dirty & WM_DIRTY_LP(1) &&
3627 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3628 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3629
3630 if (INTEL_GEN(dev_priv) >= 7) {
3631 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3632 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3633 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3634 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3635 }
3636
3637 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3638 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3639 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3640 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3641 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3642 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3643
3644 dev_priv->wm.hw = *results;
3645 }
3646
3647 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3648 {
3649 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3650 }
3651
3652 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3653 {
3654 u8 enabled_slices;
3655
3656 /* Slice 1 will always be enabled */
3657 enabled_slices = 1;
3658
3659 /* Gen prior to GEN11 have only one DBuf slice */
3660 if (INTEL_GEN(dev_priv) < 11)
3661 return enabled_slices;
3662
3663 /*
3664 * FIXME: for now we'll only ever use 1 slice; pretend that we have
3665 * only that 1 slice enabled until we have a proper way for on-demand
3666 * toggling of the second slice.
3667 */
3668 if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3669 enabled_slices++;
3670
3671 return enabled_slices;
3672 }
3673
3674 /*
3675 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3676 * so assume we'll always need it in order to avoid underruns.
3677 */
3678 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3679 {
3680 return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3681 }
3682
3683 static bool
3684 intel_has_sagv(struct drm_i915_private *dev_priv)
3685 {
3686 /* HACK! */
3687 if (IS_GEN(dev_priv, 12))
3688 return false;
3689
3690 return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3691 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3692 }
3693
3694 static void
3695 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3696 {
3697 if (INTEL_GEN(dev_priv) >= 12) {
3698 u32 val = 0;
3699 int ret;
3700
3701 ret = sandybridge_pcode_read(dev_priv,
3702 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3703 &val, NULL);
3704 if (!ret) {
3705 dev_priv->sagv_block_time_us = val;
3706 return;
3707 }
3708
3709 drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3710 } else if (IS_GEN(dev_priv, 11)) {
3711 dev_priv->sagv_block_time_us = 10;
3712 return;
3713 } else if (IS_GEN(dev_priv, 10)) {
3714 dev_priv->sagv_block_time_us = 20;
3715 return;
3716 } else if (IS_GEN(dev_priv, 9)) {
3717 dev_priv->sagv_block_time_us = 30;
3718 return;
3719 } else {
3720 MISSING_CASE(INTEL_GEN(dev_priv));
3721 }
3722
3723 /* Default to an unusable block time */
3724 dev_priv->sagv_block_time_us = -1;
3725 }
3726
3727 /*
3728 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3729 * depending on power and performance requirements. The display engine access
3730 * to system memory is blocked during the adjustment time. Because of the
3731 * blocking time, having this enabled can cause full system hangs and/or pipe
3732 * underruns if we don't meet all of the following requirements:
3733 *
3734 * - <= 1 pipe enabled
3735 * - All planes can enable watermarks for latencies >= SAGV engine block time
3736 * - We're not using an interlaced display configuration
3737 */
3738 int
3739 intel_enable_sagv(struct drm_i915_private *dev_priv)
3740 {
3741 int ret;
3742
3743 if (!intel_has_sagv(dev_priv))
3744 return 0;
3745
3746 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3747 return 0;
3748
3749 drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3750 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3751 GEN9_SAGV_ENABLE);
3752
3753 /* We don't need to wait for SAGV when enabling */
3754
3755 /*
3756 * Some skl systems, pre-release machines in particular,
3757 * don't actually have SAGV.
3758 */
3759 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3760 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3761 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3762 return 0;
3763 } else if (ret < 0) {
3764 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3765 return ret;
3766 }
3767
3768 dev_priv->sagv_status = I915_SAGV_ENABLED;
3769 return 0;
3770 }
3771
3772 int
3773 intel_disable_sagv(struct drm_i915_private *dev_priv)
3774 {
3775 int ret;
3776
3777 if (!intel_has_sagv(dev_priv))
3778 return 0;
3779
3780 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3781 return 0;
3782
3783 drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3784 /* bspec says to keep retrying for at least 1 ms */
3785 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3786 GEN9_SAGV_DISABLE,
3787 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3788 1);
3789 /*
3790 * Some skl systems, pre-release machines in particular,
3791 * don't actually have SAGV.
3792 */
3793 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3794 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3795 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3796 return 0;
3797 } else if (ret < 0) {
3798 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3799 return ret;
3800 }
3801
3802 dev_priv->sagv_status = I915_SAGV_DISABLED;
3803 return 0;
3804 }
3805
3806 bool intel_can_enable_sagv(struct intel_atomic_state *state)
3807 {
3808 struct drm_device *dev = state->base.dev;
3809 struct drm_i915_private *dev_priv = to_i915(dev);
3810 struct intel_crtc *crtc;
3811 struct intel_plane *plane;
3812 struct intel_crtc_state *crtc_state;
3813 enum pipe pipe;
3814 int level, latency;
3815
3816 if (!intel_has_sagv(dev_priv))
3817 return false;
3818
3819 /*
3820 * If there are no active CRTCs, no additional checks need be performed
3821 */
3822 if (hweight8(state->active_pipes) == 0)
3823 return true;
3824
3825 /*
3826 * SKL+ workaround: bspec recommends we disable SAGV when we have
3827 * more then one pipe enabled
3828 */
3829 if (hweight8(state->active_pipes) > 1)
3830 return false;
3831
3832 /* Since we're now guaranteed to only have one active CRTC... */
3833 pipe = ffs(state->active_pipes) - 1;
3834 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3835 crtc_state = to_intel_crtc_state(crtc->base.state);
3836
3837 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3838 return false;
3839
3840 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3841 struct skl_plane_wm *wm =
3842 &crtc_state->wm.skl.optimal.planes[plane->id];
3843
3844 /* Skip this plane if it's not enabled */
3845 if (!wm->wm[0].plane_en)
3846 continue;
3847
3848 /* Find the highest enabled wm level for this plane */
3849 for (level = ilk_wm_max_level(dev_priv);
3850 !wm->wm[level].plane_en; --level)
3851 { }
3852
3853 latency = dev_priv->wm.skl_latency[level];
3854
3855 if (skl_needs_memory_bw_wa(dev_priv) &&
3856 plane->base.state->fb->modifier ==
3857 I915_FORMAT_MOD_X_TILED)
3858 latency += 15;
3859
3860 /*
3861 * If any of the planes on this pipe don't enable wm levels that
3862 * incur memory latencies higher than sagv_block_time_us we
3863 * can't enable SAGV.
3864 */
3865 if (latency < dev_priv->sagv_block_time_us)
3866 return false;
3867 }
3868
3869 return true;
3870 }
3871
3872 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3873 const struct intel_crtc_state *crtc_state,
3874 const u64 total_data_rate,
3875 const int num_active,
3876 struct skl_ddb_allocation *ddb)
3877 {
3878 const struct drm_display_mode *adjusted_mode;
3879 u64 total_data_bw;
3880 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3881
3882 WARN_ON(ddb_size == 0);
3883
3884 if (INTEL_GEN(dev_priv) < 11)
3885 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3886
3887 adjusted_mode = &crtc_state->hw.adjusted_mode;
3888 total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3889
3890 /*
3891 * 12GB/s is maximum BW supported by single DBuf slice.
3892 *
3893 * FIXME dbuf slice code is broken:
3894 * - must wait for planes to stop using the slice before powering it off
3895 * - plane straddling both slices is illegal in multi-pipe scenarios
3896 * - should validate we stay within the hw bandwidth limits
3897 */
3898 if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3899 ddb->enabled_slices = 2;
3900 } else {
3901 ddb->enabled_slices = 1;
3902 ddb_size /= 2;
3903 }
3904
3905 return ddb_size;
3906 }
3907
3908 static void
3909 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3910 const struct intel_crtc_state *crtc_state,
3911 const u64 total_data_rate,
3912 struct skl_ddb_allocation *ddb,
3913 struct skl_ddb_entry *alloc, /* out */
3914 int *num_active /* out */)
3915 {
3916 struct drm_atomic_state *state = crtc_state->uapi.state;
3917 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3918 struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3919 const struct intel_crtc *crtc;
3920 u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3921 enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3922 u16 ddb_size;
3923 u32 i;
3924
3925 if (WARN_ON(!state) || !crtc_state->hw.active) {
3926 alloc->start = 0;
3927 alloc->end = 0;
3928 *num_active = hweight8(dev_priv->active_pipes);
3929 return;
3930 }
3931
3932 if (intel_state->active_pipe_changes)
3933 *num_active = hweight8(intel_state->active_pipes);
3934 else
3935 *num_active = hweight8(dev_priv->active_pipes);
3936
3937 ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3938 *num_active, ddb);
3939
3940 /*
3941 * If the state doesn't change the active CRTC's or there is no
3942 * modeset request, then there's no need to recalculate;
3943 * the existing pipe allocation limits should remain unchanged.
3944 * Note that we're safe from racing commits since any racing commit
3945 * that changes the active CRTC list or do modeset would need to
3946 * grab _all_ crtc locks, including the one we currently hold.
3947 */
3948 if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3949 /*
3950 * alloc may be cleared by clear_intel_crtc_state,
3951 * copy from old state to be sure
3952 */
3953 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3954 return;
3955 }
3956
3957 /*
3958 * Watermark/ddb requirement highly depends upon width of the
3959 * framebuffer, So instead of allocating DDB equally among pipes
3960 * distribute DDB based on resolution/width of the display.
3961 */
3962 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3963 const struct drm_display_mode *adjusted_mode =
3964 &crtc_state->hw.adjusted_mode;
3965 enum pipe pipe = crtc->pipe;
3966 int hdisplay, vdisplay;
3967
3968 if (!crtc_state->hw.enable)
3969 continue;
3970
3971 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3972 total_width += hdisplay;
3973
3974 if (pipe < for_pipe)
3975 width_before_pipe += hdisplay;
3976 else if (pipe == for_pipe)
3977 pipe_width = hdisplay;
3978 }
3979
3980 alloc->start = ddb_size * width_before_pipe / total_width;
3981 alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3982 }
3983
3984 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
3985 int width, const struct drm_format_info *format,
3986 u64 modifier, unsigned int rotation,
3987 u32 plane_pixel_rate, struct skl_wm_params *wp,
3988 int color_plane);
3989 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3990 int level,
3991 const struct skl_wm_params *wp,
3992 const struct skl_wm_level *result_prev,
3993 struct skl_wm_level *result /* out */);
3994
3995 static unsigned int
3996 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
3997 int num_active)
3998 {
3999 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4000 int level, max_level = ilk_wm_max_level(dev_priv);
4001 struct skl_wm_level wm = {};
4002 int ret, min_ddb_alloc = 0;
4003 struct skl_wm_params wp;
4004
4005 ret = skl_compute_wm_params(crtc_state, 256,
4006 drm_format_info(DRM_FORMAT_ARGB8888),
4007 DRM_FORMAT_MOD_LINEAR,
4008 DRM_MODE_ROTATE_0,
4009 crtc_state->pixel_rate, &wp, 0);
4010 WARN_ON(ret);
4011
4012 for (level = 0; level <= max_level; level++) {
4013 skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
4014 if (wm.min_ddb_alloc == U16_MAX)
4015 break;
4016
4017 min_ddb_alloc = wm.min_ddb_alloc;
4018 }
4019
4020 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4021 }
4022
4023 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4024 struct skl_ddb_entry *entry, u32 reg)
4025 {
4026
4027 entry->start = reg & DDB_ENTRY_MASK;
4028 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4029
4030 if (entry->end)
4031 entry->end += 1;
4032 }
4033
4034 static void
4035 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4036 const enum pipe pipe,
4037 const enum plane_id plane_id,
4038 struct skl_ddb_entry *ddb_y,
4039 struct skl_ddb_entry *ddb_uv)
4040 {
4041 u32 val, val2;
4042 u32 fourcc = 0;
4043
4044 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4045 if (plane_id == PLANE_CURSOR) {
4046 val = I915_READ(CUR_BUF_CFG(pipe));
4047 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4048 return;
4049 }
4050
4051 val = I915_READ(PLANE_CTL(pipe, plane_id));
4052
4053 /* No DDB allocated for disabled planes */
4054 if (val & PLANE_CTL_ENABLE)
4055 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4056 val & PLANE_CTL_ORDER_RGBX,
4057 val & PLANE_CTL_ALPHA_MASK);
4058
4059 if (INTEL_GEN(dev_priv) >= 11) {
4060 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4061 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4062 } else {
4063 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4064 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4065
4066 if (fourcc &&
4067 drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4068 swap(val, val2);
4069
4070 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4071 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4072 }
4073 }
4074
4075 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4076 struct skl_ddb_entry *ddb_y,
4077 struct skl_ddb_entry *ddb_uv)
4078 {
4079 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4080 enum intel_display_power_domain power_domain;
4081 enum pipe pipe = crtc->pipe;
4082 intel_wakeref_t wakeref;
4083 enum plane_id plane_id;
4084
4085 power_domain = POWER_DOMAIN_PIPE(pipe);
4086 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4087 if (!wakeref)
4088 return;
4089
4090 for_each_plane_id_on_crtc(crtc, plane_id)
4091 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4092 plane_id,
4093 &ddb_y[plane_id],
4094 &ddb_uv[plane_id]);
4095
4096 intel_display_power_put(dev_priv, power_domain, wakeref);
4097 }
4098
4099 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4100 struct skl_ddb_allocation *ddb /* out */)
4101 {
4102 ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4103 }
4104
4105 /*
4106 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4107 * The bspec defines downscale amount as:
4108 *
4109 * """
4110 * Horizontal down scale amount = maximum[1, Horizontal source size /
4111 * Horizontal destination size]
4112 * Vertical down scale amount = maximum[1, Vertical source size /
4113 * Vertical destination size]
4114 * Total down scale amount = Horizontal down scale amount *
4115 * Vertical down scale amount
4116 * """
4117 *
4118 * Return value is provided in 16.16 fixed point form to retain fractional part.
4119 * Caller should take care of dividing & rounding off the value.
4120 */
4121 static uint_fixed_16_16_t
4122 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4123 const struct intel_plane_state *plane_state)
4124 {
4125 u32 src_w, src_h, dst_w, dst_h;
4126 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4127 uint_fixed_16_16_t downscale_h, downscale_w;
4128
4129 if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4130 return u32_to_fixed16(0);
4131
4132 /*
4133 * Src coordinates are already rotated by 270 degrees for
4134 * the 90/270 degree plane rotation cases (to match the
4135 * GTT mapping), hence no need to account for rotation here.
4136 *
4137 * n.b., src is 16.16 fixed point, dst is whole integer.
4138 */
4139 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4140 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4141 dst_w = drm_rect_width(&plane_state->uapi.dst);
4142 dst_h = drm_rect_height(&plane_state->uapi.dst);
4143
4144 fp_w_ratio = div_fixed16(src_w, dst_w);
4145 fp_h_ratio = div_fixed16(src_h, dst_h);
4146 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4147 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4148
4149 return mul_fixed16(downscale_w, downscale_h);
4150 }
4151
4152 static u64
4153 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4154 const struct intel_plane_state *plane_state,
4155 int color_plane)
4156 {
4157 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4158 const struct drm_framebuffer *fb = plane_state->hw.fb;
4159 u32 data_rate;
4160 u32 width = 0, height = 0;
4161 uint_fixed_16_16_t down_scale_amount;
4162 u64 rate;
4163
4164 if (!plane_state->uapi.visible)
4165 return 0;
4166
4167 if (plane->id == PLANE_CURSOR)
4168 return 0;
4169
4170 if (color_plane == 1 &&
4171 !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4172 return 0;
4173
4174 /*
4175 * Src coordinates are already rotated by 270 degrees for
4176 * the 90/270 degree plane rotation cases (to match the
4177 * GTT mapping), hence no need to account for rotation here.
4178 */
4179 width = drm_rect_width(&plane_state->uapi.src) >> 16;
4180 height = drm_rect_height(&plane_state->uapi.src) >> 16;
4181
4182 /* UV plane does 1/2 pixel sub-sampling */
4183 if (color_plane == 1) {
4184 width /= 2;
4185 height /= 2;
4186 }
4187
4188 data_rate = width * height;
4189
4190 down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4191
4192 rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4193
4194 rate *= fb->format->cpp[color_plane];
4195 return rate;
4196 }
4197
4198 static u64
4199 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4200 u64 *plane_data_rate,
4201 u64 *uv_plane_data_rate)
4202 {
4203 struct drm_atomic_state *state = crtc_state->uapi.state;
4204 struct intel_plane *plane;
4205 const struct intel_plane_state *plane_state;
4206 u64 total_data_rate = 0;
4207
4208 if (WARN_ON(!state))
4209 return 0;
4210
4211 /* Calculate and cache data rate for each plane */
4212 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4213 enum plane_id plane_id = plane->id;
4214 u64 rate;
4215
4216 /* packed/y */
4217 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4218 plane_data_rate[plane_id] = rate;
4219 total_data_rate += rate;
4220
4221 /* uv-plane */
4222 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4223 uv_plane_data_rate[plane_id] = rate;
4224 total_data_rate += rate;
4225 }
4226
4227 return total_data_rate;
4228 }
4229
4230 static u64
4231 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4232 u64 *plane_data_rate)
4233 {
4234 struct intel_plane *plane;
4235 const struct intel_plane_state *plane_state;
4236 u64 total_data_rate = 0;
4237
4238 if (WARN_ON(!crtc_state->uapi.state))
4239 return 0;
4240
4241 /* Calculate and cache data rate for each plane */
4242 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4243 enum plane_id plane_id = plane->id;
4244 u64 rate;
4245
4246 if (!plane_state->planar_linked_plane) {
4247 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4248 plane_data_rate[plane_id] = rate;
4249 total_data_rate += rate;
4250 } else {
4251 enum plane_id y_plane_id;
4252
4253 /*
4254 * The slave plane might not iterate in
4255 * intel_atomic_crtc_state_for_each_plane_state(),
4256 * and needs the master plane state which may be
4257 * NULL if we try get_new_plane_state(), so we
4258 * always calculate from the master.
4259 */
4260 if (plane_state->planar_slave)
4261 continue;
4262
4263 /* Y plane rate is calculated on the slave */
4264 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4265 y_plane_id = plane_state->planar_linked_plane->id;
4266 plane_data_rate[y_plane_id] = rate;
4267 total_data_rate += rate;
4268
4269 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4270 plane_data_rate[plane_id] = rate;
4271 total_data_rate += rate;
4272 }
4273 }
4274
4275 return total_data_rate;
4276 }
4277
4278 static int
4279 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4280 struct skl_ddb_allocation *ddb /* out */)
4281 {
4282 struct drm_atomic_state *state = crtc_state->uapi.state;
4283 struct drm_crtc *crtc = crtc_state->uapi.crtc;
4284 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4286 struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4287 u16 alloc_size, start = 0;
4288 u16 total[I915_MAX_PLANES] = {};
4289 u16 uv_total[I915_MAX_PLANES] = {};
4290 u64 total_data_rate;
4291 enum plane_id plane_id;
4292 int num_active;
4293 u64 plane_data_rate[I915_MAX_PLANES] = {};
4294 u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4295 u32 blocks;
4296 int level;
4297
4298 /* Clear the partitioning for disabled planes. */
4299 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4300 memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4301
4302 if (WARN_ON(!state))
4303 return 0;
4304
4305 if (!crtc_state->hw.active) {
4306 alloc->start = alloc->end = 0;
4307 return 0;
4308 }
4309
4310 if (INTEL_GEN(dev_priv) >= 11)
4311 total_data_rate =
4312 icl_get_total_relative_data_rate(crtc_state,
4313 plane_data_rate);
4314 else
4315 total_data_rate =
4316 skl_get_total_relative_data_rate(crtc_state,
4317 plane_data_rate,
4318 uv_plane_data_rate);
4319
4320
4321 skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4322 ddb, alloc, &num_active);
4323 alloc_size = skl_ddb_entry_size(alloc);
4324 if (alloc_size == 0)
4325 return 0;
4326
4327 /* Allocate fixed number of blocks for cursor. */
4328 total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4329 alloc_size -= total[PLANE_CURSOR];
4330 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4331 alloc->end - total[PLANE_CURSOR];
4332 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4333
4334 if (total_data_rate == 0)
4335 return 0;
4336
4337 /*
4338 * Find the highest watermark level for which we can satisfy the block
4339 * requirement of active planes.
4340 */
4341 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4342 blocks = 0;
4343 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4344 const struct skl_plane_wm *wm =
4345 &crtc_state->wm.skl.optimal.planes[plane_id];
4346
4347 if (plane_id == PLANE_CURSOR) {
4348 if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4349 WARN_ON(wm->wm[level].min_ddb_alloc != U16_MAX);
4350 blocks = U32_MAX;
4351 break;
4352 }
4353 continue;
4354 }
4355
4356 blocks += wm->wm[level].min_ddb_alloc;
4357 blocks += wm->uv_wm[level].min_ddb_alloc;
4358 }
4359
4360 if (blocks <= alloc_size) {
4361 alloc_size -= blocks;
4362 break;
4363 }
4364 }
4365
4366 if (level < 0) {
4367 drm_dbg_kms(&dev_priv->drm,
4368 "Requested display configuration exceeds system DDB limitations");
4369 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
4370 blocks, alloc_size);
4371 return -EINVAL;
4372 }
4373
4374 /*
4375 * Grant each plane the blocks it requires at the highest achievable
4376 * watermark level, plus an extra share of the leftover blocks
4377 * proportional to its relative data rate.
4378 */
4379 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4380 const struct skl_plane_wm *wm =
4381 &crtc_state->wm.skl.optimal.planes[plane_id];
4382 u64 rate;
4383 u16 extra;
4384
4385 if (plane_id == PLANE_CURSOR)
4386 continue;
4387
4388 /*
4389 * We've accounted for all active planes; remaining planes are
4390 * all disabled.
4391 */
4392 if (total_data_rate == 0)
4393 break;
4394
4395 rate = plane_data_rate[plane_id];
4396 extra = min_t(u16, alloc_size,
4397 DIV64_U64_ROUND_UP(alloc_size * rate,
4398 total_data_rate));
4399 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4400 alloc_size -= extra;
4401 total_data_rate -= rate;
4402
4403 if (total_data_rate == 0)
4404 break;
4405
4406 rate = uv_plane_data_rate[plane_id];
4407 extra = min_t(u16, alloc_size,
4408 DIV64_U64_ROUND_UP(alloc_size * rate,
4409 total_data_rate));
4410 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4411 alloc_size -= extra;
4412 total_data_rate -= rate;
4413 }
4414 WARN_ON(alloc_size != 0 || total_data_rate != 0);
4415
4416 /* Set the actual DDB start/end points for each plane */
4417 start = alloc->start;
4418 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4419 struct skl_ddb_entry *plane_alloc =
4420 &crtc_state->wm.skl.plane_ddb_y[plane_id];
4421 struct skl_ddb_entry *uv_plane_alloc =
4422 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4423
4424 if (plane_id == PLANE_CURSOR)
4425 continue;
4426
4427 /* Gen11+ uses a separate plane for UV watermarks */
4428 WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4429
4430 /* Leave disabled planes at (0,0) */
4431 if (total[plane_id]) {
4432 plane_alloc->start = start;
4433 start += total[plane_id];
4434 plane_alloc->end = start;
4435 }
4436
4437 if (uv_total[plane_id]) {
4438 uv_plane_alloc->start = start;
4439 start += uv_total[plane_id];
4440 uv_plane_alloc->end = start;
4441 }
4442 }
4443
4444 /*
4445 * When we calculated watermark values we didn't know how high
4446 * of a level we'd actually be able to hit, so we just marked
4447 * all levels as "enabled." Go back now and disable the ones
4448 * that aren't actually possible.
4449 */
4450 for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4451 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4452 struct skl_plane_wm *wm =
4453 &crtc_state->wm.skl.optimal.planes[plane_id];
4454
4455 /*
4456 * We only disable the watermarks for each plane if
4457 * they exceed the ddb allocation of said plane. This
4458 * is done so that we don't end up touching cursor
4459 * watermarks needlessly when some other plane reduces
4460 * our max possible watermark level.
4461 *
4462 * Bspec has this to say about the PLANE_WM enable bit:
4463 * "All the watermarks at this level for all enabled
4464 * planes must be enabled before the level will be used."
4465 * So this is actually safe to do.
4466 */
4467 if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4468 wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4469 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4470
4471 /*
4472 * Wa_1408961008:icl, ehl
4473 * Underruns with WM1+ disabled
4474 */
4475 if (IS_GEN(dev_priv, 11) &&
4476 level == 1 && wm->wm[0].plane_en) {
4477 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4478 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4479 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4480 }
4481 }
4482 }
4483
4484 /*
4485 * Go back and disable the transition watermark if it turns out we
4486 * don't have enough DDB blocks for it.
4487 */
4488 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4489 struct skl_plane_wm *wm =
4490 &crtc_state->wm.skl.optimal.planes[plane_id];
4491
4492 if (wm->trans_wm.plane_res_b >= total[plane_id])
4493 memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4494 }
4495
4496 return 0;
4497 }
4498
4499 /*
4500 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4501 * for the read latency) and cpp should always be <= 8, so that
4502 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4503 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4504 */
4505 static uint_fixed_16_16_t
4506 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4507 u8 cpp, u32 latency, u32 dbuf_block_size)
4508 {
4509 u32 wm_intermediate_val;
4510 uint_fixed_16_16_t ret;
4511
4512 if (latency == 0)
4513 return FP_16_16_MAX;
4514
4515 wm_intermediate_val = latency * pixel_rate * cpp;
4516 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4517
4518 if (INTEL_GEN(dev_priv) >= 10)
4519 ret = add_fixed16_u32(ret, 1);
4520
4521 return ret;
4522 }
4523
4524 static uint_fixed_16_16_t
4525 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4526 uint_fixed_16_16_t plane_blocks_per_line)
4527 {
4528 u32 wm_intermediate_val;
4529 uint_fixed_16_16_t ret;
4530
4531 if (latency == 0)
4532 return FP_16_16_MAX;
4533
4534 wm_intermediate_val = latency * pixel_rate;
4535 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4536 pipe_htotal * 1000);
4537 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4538 return ret;
4539 }
4540
4541 static uint_fixed_16_16_t
4542 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4543 {
4544 u32 pixel_rate;
4545 u32 crtc_htotal;
4546 uint_fixed_16_16_t linetime_us;
4547
4548 if (!crtc_state->hw.active)
4549 return u32_to_fixed16(0);
4550
4551 pixel_rate = crtc_state->pixel_rate;
4552
4553 if (WARN_ON(pixel_rate == 0))
4554 return u32_to_fixed16(0);
4555
4556 crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4557 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4558
4559 return linetime_us;
4560 }
4561
4562 static u32
4563 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
4564 const struct intel_plane_state *plane_state)
4565 {
4566 u64 adjusted_pixel_rate;
4567 uint_fixed_16_16_t downscale_amount;
4568
4569 /* Shouldn't reach here on disabled planes... */
4570 if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4571 return 0;
4572
4573 /*
4574 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4575 * with additional adjustments for plane-specific scaling.
4576 */
4577 adjusted_pixel_rate = crtc_state->pixel_rate;
4578 downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4579
4580 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4581 downscale_amount);
4582 }
4583
4584 static int
4585 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4586 int width, const struct drm_format_info *format,
4587 u64 modifier, unsigned int rotation,
4588 u32 plane_pixel_rate, struct skl_wm_params *wp,
4589 int color_plane)
4590 {
4591 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4592 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4593 u32 interm_pbpl;
4594
4595 /* only planar format has two planes */
4596 if (color_plane == 1 &&
4597 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4598 drm_dbg_kms(&dev_priv->drm,
4599 "Non planar format have single plane\n");
4600 return -EINVAL;
4601 }
4602
4603 wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4604 modifier == I915_FORMAT_MOD_Yf_TILED ||
4605 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4606 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4607 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4608 wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4609 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4610 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4611
4612 wp->width = width;
4613 if (color_plane == 1 && wp->is_planar)
4614 wp->width /= 2;
4615
4616 wp->cpp = format->cpp[color_plane];
4617 wp->plane_pixel_rate = plane_pixel_rate;
4618
4619 if (INTEL_GEN(dev_priv) >= 11 &&
4620 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
4621 wp->dbuf_block_size = 256;
4622 else
4623 wp->dbuf_block_size = 512;
4624
4625 if (drm_rotation_90_or_270(rotation)) {
4626 switch (wp->cpp) {
4627 case 1:
4628 wp->y_min_scanlines = 16;
4629 break;
4630 case 2:
4631 wp->y_min_scanlines = 8;
4632 break;
4633 case 4:
4634 wp->y_min_scanlines = 4;
4635 break;
4636 default:
4637 MISSING_CASE(wp->cpp);
4638 return -EINVAL;
4639 }
4640 } else {
4641 wp->y_min_scanlines = 4;
4642 }
4643
4644 if (skl_needs_memory_bw_wa(dev_priv))
4645 wp->y_min_scanlines *= 2;
4646
4647 wp->plane_bytes_per_line = wp->width * wp->cpp;
4648 if (wp->y_tiled) {
4649 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4650 wp->y_min_scanlines,
4651 wp->dbuf_block_size);
4652
4653 if (INTEL_GEN(dev_priv) >= 10)
4654 interm_pbpl++;
4655
4656 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4657 wp->y_min_scanlines);
4658 } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4659 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4660 wp->dbuf_block_size);
4661 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4662 } else {
4663 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4664 wp->dbuf_block_size) + 1;
4665 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4666 }
4667
4668 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4669 wp->plane_blocks_per_line);
4670
4671 wp->linetime_us = fixed16_to_u32_round_up(
4672 intel_get_linetime_us(crtc_state));
4673
4674 return 0;
4675 }
4676
4677 static int
4678 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4679 const struct intel_plane_state *plane_state,
4680 struct skl_wm_params *wp, int color_plane)
4681 {
4682 const struct drm_framebuffer *fb = plane_state->hw.fb;
4683 int width;
4684
4685 /*
4686 * Src coordinates are already rotated by 270 degrees for
4687 * the 90/270 degree plane rotation cases (to match the
4688 * GTT mapping), hence no need to account for rotation here.
4689 */
4690 width = drm_rect_width(&plane_state->uapi.src) >> 16;
4691
4692 return skl_compute_wm_params(crtc_state, width,
4693 fb->format, fb->modifier,
4694 plane_state->hw.rotation,
4695 skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4696 wp, color_plane);
4697 }
4698
4699 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4700 {
4701 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4702 return true;
4703
4704 /* The number of lines are ignored for the level 0 watermark. */
4705 return level > 0;
4706 }
4707
4708 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4709 int level,
4710 const struct skl_wm_params *wp,
4711 const struct skl_wm_level *result_prev,
4712 struct skl_wm_level *result /* out */)
4713 {
4714 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4715 u32 latency = dev_priv->wm.skl_latency[level];
4716 uint_fixed_16_16_t method1, method2;
4717 uint_fixed_16_16_t selected_result;
4718 u32 res_blocks, res_lines, min_ddb_alloc = 0;
4719
4720 if (latency == 0) {
4721 /* reject it */
4722 result->min_ddb_alloc = U16_MAX;
4723 return;
4724 }
4725
4726 /*
4727 * WaIncreaseLatencyIPCEnabled: kbl,cfl
4728 * Display WA #1141: kbl,cfl
4729 */
4730 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4731 dev_priv->ipc_enabled)
4732 latency += 4;
4733
4734 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4735 latency += 15;
4736
4737 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4738 wp->cpp, latency, wp->dbuf_block_size);
4739 method2 = skl_wm_method2(wp->plane_pixel_rate,
4740 crtc_state->hw.adjusted_mode.crtc_htotal,
4741 latency,
4742 wp->plane_blocks_per_line);
4743
4744 if (wp->y_tiled) {
4745 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4746 } else {
4747 if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
4748 wp->dbuf_block_size < 1) &&
4749 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4750 selected_result = method2;
4751 } else if (latency >= wp->linetime_us) {
4752 if (IS_GEN(dev_priv, 9) &&
4753 !IS_GEMINILAKE(dev_priv))
4754 selected_result = min_fixed16(method1, method2);
4755 else
4756 selected_result = method2;
4757 } else {
4758 selected_result = method1;
4759 }
4760 }
4761
4762 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4763 res_lines = div_round_up_fixed16(selected_result,
4764 wp->plane_blocks_per_line);
4765
4766 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
4767 /* Display WA #1125: skl,bxt,kbl */
4768 if (level == 0 && wp->rc_surface)
4769 res_blocks +=
4770 fixed16_to_u32_round_up(wp->y_tile_minimum);
4771
4772 /* Display WA #1126: skl,bxt,kbl */
4773 if (level >= 1 && level <= 7) {
4774 if (wp->y_tiled) {
4775 res_blocks +=
4776 fixed16_to_u32_round_up(wp->y_tile_minimum);
4777 res_lines += wp->y_min_scanlines;
4778 } else {
4779 res_blocks++;
4780 }
4781
4782 /*
4783 * Make sure result blocks for higher latency levels are
4784 * atleast as high as level below the current level.
4785 * Assumption in DDB algorithm optimization for special
4786 * cases. Also covers Display WA #1125 for RC.
4787 */
4788 if (result_prev->plane_res_b > res_blocks)
4789 res_blocks = result_prev->plane_res_b;
4790 }
4791 }
4792
4793 if (INTEL_GEN(dev_priv) >= 11) {
4794 if (wp->y_tiled) {
4795 int extra_lines;
4796
4797 if (res_lines % wp->y_min_scanlines == 0)
4798 extra_lines = wp->y_min_scanlines;
4799 else
4800 extra_lines = wp->y_min_scanlines * 2 -
4801 res_lines % wp->y_min_scanlines;
4802
4803 min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
4804 wp->plane_blocks_per_line);
4805 } else {
4806 min_ddb_alloc = res_blocks +
4807 DIV_ROUND_UP(res_blocks, 10);
4808 }
4809 }
4810
4811 if (!skl_wm_has_lines(dev_priv, level))
4812 res_lines = 0;
4813
4814 if (res_lines > 31) {
4815 /* reject it */
4816 result->min_ddb_alloc = U16_MAX;
4817 return;
4818 }
4819
4820 /*
4821 * If res_lines is valid, assume we can use this watermark level
4822 * for now. We'll come back and disable it after we calculate the
4823 * DDB allocation if it turns out we don't actually have enough
4824 * blocks to satisfy it.
4825 */
4826 result->plane_res_b = res_blocks;
4827 result->plane_res_l = res_lines;
4828 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
4829 result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4830 result->plane_en = true;
4831 }
4832
4833 static void
4834 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4835 const struct skl_wm_params *wm_params,
4836 struct skl_wm_level *levels)
4837 {
4838 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4839 int level, max_level = ilk_wm_max_level(dev_priv);
4840 struct skl_wm_level *result_prev = &levels[0];
4841
4842 for (level = 0; level <= max_level; level++) {
4843 struct skl_wm_level *result = &levels[level];
4844
4845 skl_compute_plane_wm(crtc_state, level, wm_params,
4846 result_prev, result);
4847
4848 result_prev = result;
4849 }
4850 }
4851
4852 static u32
4853 skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4854 {
4855 struct drm_atomic_state *state = crtc_state->uapi.state;
4856 struct drm_i915_private *dev_priv = to_i915(state->dev);
4857 uint_fixed_16_16_t linetime_us;
4858 u32 linetime_wm;
4859
4860 linetime_us = intel_get_linetime_us(crtc_state);
4861 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4862
4863 /* Display WA #1135: BXT:ALL GLK:ALL */
4864 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4865 linetime_wm /= 2;
4866
4867 return linetime_wm;
4868 }
4869
4870 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4871 const struct skl_wm_params *wp,
4872 struct skl_plane_wm *wm)
4873 {
4874 struct drm_device *dev = crtc_state->uapi.crtc->dev;
4875 const struct drm_i915_private *dev_priv = to_i915(dev);
4876 u16 trans_min, trans_y_tile_min;
4877 const u16 trans_amount = 10; /* This is configurable amount */
4878 u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4879
4880 /* Transition WM are not recommended by HW team for GEN9 */
4881 if (INTEL_GEN(dev_priv) <= 9)
4882 return;
4883
4884 /* Transition WM don't make any sense if ipc is disabled */
4885 if (!dev_priv->ipc_enabled)
4886 return;
4887
4888 trans_min = 14;
4889 if (INTEL_GEN(dev_priv) >= 11)
4890 trans_min = 4;
4891
4892 trans_offset_b = trans_min + trans_amount;
4893
4894 /*
4895 * The spec asks for Selected Result Blocks for wm0 (the real value),
4896 * not Result Blocks (the integer value). Pay attention to the capital
4897 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4898 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4899 * and since we later will have to get the ceiling of the sum in the
4900 * transition watermarks calculation, we can just pretend Selected
4901 * Result Blocks is Result Blocks minus 1 and it should work for the
4902 * current platforms.
4903 */
4904 wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4905
4906 if (wp->y_tiled) {
4907 trans_y_tile_min =
4908 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4909 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4910 trans_offset_b;
4911 } else {
4912 res_blocks = wm0_sel_res_b + trans_offset_b;
4913
4914 /* WA BUG:1938466 add one block for non y-tile planes */
4915 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4916 res_blocks += 1;
4917
4918 }
4919
4920 /*
4921 * Just assume we can enable the transition watermark. After
4922 * computing the DDB we'll come back and disable it if that
4923 * assumption turns out to be false.
4924 */
4925 wm->trans_wm.plane_res_b = res_blocks + 1;
4926 wm->trans_wm.plane_en = true;
4927 }
4928
4929 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4930 const struct intel_plane_state *plane_state,
4931 enum plane_id plane_id, int color_plane)
4932 {
4933 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4934 struct skl_wm_params wm_params;
4935 int ret;
4936
4937 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4938 &wm_params, color_plane);
4939 if (ret)
4940 return ret;
4941
4942 skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4943 skl_compute_transition_wm(crtc_state, &wm_params, wm);
4944
4945 return 0;
4946 }
4947
4948 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4949 const struct intel_plane_state *plane_state,
4950 enum plane_id plane_id)
4951 {
4952 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4953 struct skl_wm_params wm_params;
4954 int ret;
4955
4956 wm->is_planar = true;
4957
4958 /* uv plane watermarks must also be validated for NV12/Planar */
4959 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4960 &wm_params, 1);
4961 if (ret)
4962 return ret;
4963
4964 skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
4965
4966 return 0;
4967 }
4968
4969 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
4970 const struct intel_plane_state *plane_state)
4971 {
4972 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4973 const struct drm_framebuffer *fb = plane_state->hw.fb;
4974 enum plane_id plane_id = plane->id;
4975 int ret;
4976
4977 if (!intel_wm_plane_visible(crtc_state, plane_state))
4978 return 0;
4979
4980 ret = skl_build_plane_wm_single(crtc_state, plane_state,
4981 plane_id, 0);
4982 if (ret)
4983 return ret;
4984
4985 if (fb->format->is_yuv && fb->format->num_planes > 1) {
4986 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4987 plane_id);
4988 if (ret)
4989 return ret;
4990 }
4991
4992 return 0;
4993 }
4994
4995 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
4996 const struct intel_plane_state *plane_state)
4997 {
4998 enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
4999 int ret;
5000
5001 /* Watermarks calculated in master */
5002 if (plane_state->planar_slave)
5003 return 0;
5004
5005 if (plane_state->planar_linked_plane) {
5006 const struct drm_framebuffer *fb = plane_state->hw.fb;
5007 enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5008
5009 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5010 WARN_ON(!fb->format->is_yuv ||
5011 fb->format->num_planes == 1);
5012
5013 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5014 y_plane_id, 0);
5015 if (ret)
5016 return ret;
5017
5018 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5019 plane_id, 1);
5020 if (ret)
5021 return ret;
5022 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5023 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5024 plane_id, 0);
5025 if (ret)
5026 return ret;
5027 }
5028
5029 return 0;
5030 }
5031
5032 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5033 {
5034 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5035 struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5036 struct intel_plane *plane;
5037 const struct intel_plane_state *plane_state;
5038 int ret;
5039
5040 /*
5041 * We'll only calculate watermarks for planes that are actually
5042 * enabled, so make sure all other planes are set as disabled.
5043 */
5044 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5045
5046 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
5047 crtc_state) {
5048
5049 if (INTEL_GEN(dev_priv) >= 11)
5050 ret = icl_build_plane_wm(crtc_state, plane_state);
5051 else
5052 ret = skl_build_plane_wm(crtc_state, plane_state);
5053 if (ret)
5054 return ret;
5055 }
5056
5057 pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5058
5059 return 0;
5060 }
5061
5062 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5063 i915_reg_t reg,
5064 const struct skl_ddb_entry *entry)
5065 {
5066 if (entry->end)
5067 I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5068 else
5069 I915_WRITE_FW(reg, 0);
5070 }
5071
5072 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5073 i915_reg_t reg,
5074 const struct skl_wm_level *level)
5075 {
5076 u32 val = 0;
5077
5078 if (level->plane_en)
5079 val |= PLANE_WM_EN;
5080 if (level->ignore_lines)
5081 val |= PLANE_WM_IGNORE_LINES;
5082 val |= level->plane_res_b;
5083 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5084
5085 I915_WRITE_FW(reg, val);
5086 }
5087
5088 void skl_write_plane_wm(struct intel_plane *plane,
5089 const struct intel_crtc_state *crtc_state)
5090 {
5091 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5092 int level, max_level = ilk_wm_max_level(dev_priv);
5093 enum plane_id plane_id = plane->id;
5094 enum pipe pipe = plane->pipe;
5095 const struct skl_plane_wm *wm =
5096 &crtc_state->wm.skl.optimal.planes[plane_id];
5097 const struct skl_ddb_entry *ddb_y =
5098 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5099 const struct skl_ddb_entry *ddb_uv =
5100 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5101
5102 for (level = 0; level <= max_level; level++) {
5103 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5104 &wm->wm[level]);
5105 }
5106 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5107 &wm->trans_wm);
5108
5109 if (INTEL_GEN(dev_priv) >= 11) {
5110 skl_ddb_entry_write(dev_priv,
5111 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5112 return;
5113 }
5114
5115 if (wm->is_planar)
5116 swap(ddb_y, ddb_uv);
5117
5118 skl_ddb_entry_write(dev_priv,
5119 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5120 skl_ddb_entry_write(dev_priv,
5121 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5122 }
5123
5124 void skl_write_cursor_wm(struct intel_plane *plane,
5125 const struct intel_crtc_state *crtc_state)
5126 {
5127 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5128 int level, max_level = ilk_wm_max_level(dev_priv);
5129 enum plane_id plane_id = plane->id;
5130 enum pipe pipe = plane->pipe;
5131 const struct skl_plane_wm *wm =
5132 &crtc_state->wm.skl.optimal.planes[plane_id];
5133 const struct skl_ddb_entry *ddb =
5134 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5135
5136 for (level = 0; level <= max_level; level++) {
5137 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5138 &wm->wm[level]);
5139 }
5140 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5141
5142 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5143 }
5144
5145 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5146 const struct skl_wm_level *l2)
5147 {
5148 return l1->plane_en == l2->plane_en &&
5149 l1->ignore_lines == l2->ignore_lines &&
5150 l1->plane_res_l == l2->plane_res_l &&
5151 l1->plane_res_b == l2->plane_res_b;
5152 }
5153
5154 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5155 const struct skl_plane_wm *wm1,
5156 const struct skl_plane_wm *wm2)
5157 {
5158 int level, max_level = ilk_wm_max_level(dev_priv);
5159
5160 for (level = 0; level <= max_level; level++) {
5161 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5162 !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5163 return false;
5164 }
5165
5166 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5167 }
5168
5169 static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
5170 const struct skl_pipe_wm *wm1,
5171 const struct skl_pipe_wm *wm2)
5172 {
5173 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5174 enum plane_id plane_id;
5175
5176 for_each_plane_id_on_crtc(crtc, plane_id) {
5177 if (!skl_plane_wm_equals(dev_priv,
5178 &wm1->planes[plane_id],
5179 &wm2->planes[plane_id]))
5180 return false;
5181 }
5182
5183 return wm1->linetime == wm2->linetime;
5184 }
5185
5186 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5187 const struct skl_ddb_entry *b)
5188 {
5189 return a->start < b->end && b->start < a->end;
5190 }
5191
5192 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5193 const struct skl_ddb_entry *entries,
5194 int num_entries, int ignore_idx)
5195 {
5196 int i;
5197
5198 for (i = 0; i < num_entries; i++) {
5199 if (i != ignore_idx &&
5200 skl_ddb_entries_overlap(ddb, &entries[i]))
5201 return true;
5202 }
5203
5204 return false;
5205 }
5206
5207 static int
5208 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5209 struct intel_crtc_state *new_crtc_state)
5210 {
5211 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5212 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5213 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5214 struct intel_plane *plane;
5215
5216 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5217 struct intel_plane_state *plane_state;
5218 enum plane_id plane_id = plane->id;
5219
5220 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5221 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5222 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5223 &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5224 continue;
5225
5226 plane_state = intel_atomic_get_plane_state(state, plane);
5227 if (IS_ERR(plane_state))
5228 return PTR_ERR(plane_state);
5229
5230 new_crtc_state->update_planes |= BIT(plane_id);
5231 }
5232
5233 return 0;
5234 }
5235
5236 static int
5237 skl_compute_ddb(struct intel_atomic_state *state)
5238 {
5239 const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5240 struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5241 struct intel_crtc_state *old_crtc_state;
5242 struct intel_crtc_state *new_crtc_state;
5243 struct intel_crtc *crtc;
5244 int ret, i;
5245
5246 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5247
5248 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5249 new_crtc_state, i) {
5250 ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5251 if (ret)
5252 return ret;
5253
5254 ret = skl_ddb_add_affected_planes(old_crtc_state,
5255 new_crtc_state);
5256 if (ret)
5257 return ret;
5258 }
5259
5260 return 0;
5261 }
5262
5263 static char enast(bool enable)
5264 {
5265 return enable ? '*' : ' ';
5266 }
5267
5268 static void
5269 skl_print_wm_changes(struct intel_atomic_state *state)
5270 {
5271 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5272 const struct intel_crtc_state *old_crtc_state;
5273 const struct intel_crtc_state *new_crtc_state;
5274 struct intel_plane *plane;
5275 struct intel_crtc *crtc;
5276 int i;
5277
5278 if (!drm_debug_enabled(DRM_UT_KMS))
5279 return;
5280
5281 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5282 new_crtc_state, i) {
5283 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5284
5285 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5286 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5287
5288 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5289 enum plane_id plane_id = plane->id;
5290 const struct skl_ddb_entry *old, *new;
5291
5292 old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5293 new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5294
5295 if (skl_ddb_entry_equal(old, new))
5296 continue;
5297
5298 drm_dbg_kms(&dev_priv->drm,
5299 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5300 plane->base.base.id, plane->base.name,
5301 old->start, old->end, new->start, new->end,
5302 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5303 }
5304
5305 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5306 enum plane_id plane_id = plane->id;
5307 const struct skl_plane_wm *old_wm, *new_wm;
5308
5309 old_wm = &old_pipe_wm->planes[plane_id];
5310 new_wm = &new_pipe_wm->planes[plane_id];
5311
5312 if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5313 continue;
5314
5315 drm_dbg_kms(&dev_priv->drm,
5316 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5317 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5318 plane->base.base.id, plane->base.name,
5319 enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5320 enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5321 enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5322 enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5323 enast(old_wm->trans_wm.plane_en),
5324 enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5325 enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5326 enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5327 enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5328 enast(new_wm->trans_wm.plane_en));
5329
5330 drm_dbg_kms(&dev_priv->drm,
5331 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5332 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5333 plane->base.base.id, plane->base.name,
5334 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5335 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5336 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5337 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5338 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5339 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5340 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5341 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5342 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5343
5344 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5345 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5346 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5347 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5348 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5349 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5350 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5351 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5352 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5353
5354 drm_dbg_kms(&dev_priv->drm,
5355 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5356 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5357 plane->base.base.id, plane->base.name,
5358 old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5359 old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5360 old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5361 old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5362 old_wm->trans_wm.plane_res_b,
5363 new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5364 new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5365 new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5366 new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5367 new_wm->trans_wm.plane_res_b);
5368
5369 drm_dbg_kms(&dev_priv->drm,
5370 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5371 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5372 plane->base.base.id, plane->base.name,
5373 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5374 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5375 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5376 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5377 old_wm->trans_wm.min_ddb_alloc,
5378 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5379 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5380 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5381 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5382 new_wm->trans_wm.min_ddb_alloc);
5383 }
5384 }
5385 }
5386
5387 static int intel_add_all_pipes(struct intel_atomic_state *state)
5388 {
5389 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5390 struct intel_crtc *crtc;
5391
5392 for_each_intel_crtc(&dev_priv->drm, crtc) {
5393 struct intel_crtc_state *crtc_state;
5394
5395 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5396 if (IS_ERR(crtc_state))
5397 return PTR_ERR(crtc_state);
5398 }
5399
5400 return 0;
5401 }
5402
5403 static int
5404 skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5405 {
5406 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5407 int ret;
5408
5409 /*
5410 * If this is our first atomic update following hardware readout,
5411 * we can't trust the DDB that the BIOS programmed for us. Let's
5412 * pretend that all pipes switched active status so that we'll
5413 * ensure a full DDB recompute.
5414 */
5415 if (dev_priv->wm.distrust_bios_wm) {
5416 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5417 state->base.acquire_ctx);
5418 if (ret)
5419 return ret;
5420
5421 state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5422
5423 /*
5424 * We usually only initialize state->active_pipes if we
5425 * we're doing a modeset; make sure this field is always
5426 * initialized during the sanitization process that happens
5427 * on the first commit too.
5428 */
5429 if (!state->modeset)
5430 state->active_pipes = dev_priv->active_pipes;
5431 }
5432
5433 /*
5434 * If the modeset changes which CRTC's are active, we need to
5435 * recompute the DDB allocation for *all* active pipes, even
5436 * those that weren't otherwise being modified in any way by this
5437 * atomic commit. Due to the shrinking of the per-pipe allocations
5438 * when new active CRTC's are added, it's possible for a pipe that
5439 * we were already using and aren't changing at all here to suddenly
5440 * become invalid if its DDB needs exceeds its new allocation.
5441 *
5442 * Note that if we wind up doing a full DDB recompute, we can't let
5443 * any other display updates race with this transaction, so we need
5444 * to grab the lock on *all* CRTC's.
5445 */
5446 if (state->active_pipe_changes || state->modeset) {
5447 state->wm_results.dirty_pipes = INTEL_INFO(dev_priv)->pipe_mask;
5448
5449 ret = intel_add_all_pipes(state);
5450 if (ret)
5451 return ret;
5452 }
5453
5454 return 0;
5455 }
5456
5457 /*
5458 * To make sure the cursor watermark registers are always consistent
5459 * with our computed state the following scenario needs special
5460 * treatment:
5461 *
5462 * 1. enable cursor
5463 * 2. move cursor entirely offscreen
5464 * 3. disable cursor
5465 *
5466 * Step 2. does call .disable_plane() but does not zero the watermarks
5467 * (since we consider an offscreen cursor still active for the purposes
5468 * of watermarks). Step 3. would not normally call .disable_plane()
5469 * because the actual plane visibility isn't changing, and we don't
5470 * deallocate the cursor ddb until the pipe gets disabled. So we must
5471 * force step 3. to call .disable_plane() to update the watermark
5472 * registers properly.
5473 *
5474 * Other planes do not suffer from this issues as their watermarks are
5475 * calculated based on the actual plane visibility. The only time this
5476 * can trigger for the other planes is during the initial readout as the
5477 * default value of the watermarks registers is not zero.
5478 */
5479 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5480 struct intel_crtc *crtc)
5481 {
5482 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5483 const struct intel_crtc_state *old_crtc_state =
5484 intel_atomic_get_old_crtc_state(state, crtc);
5485 struct intel_crtc_state *new_crtc_state =
5486 intel_atomic_get_new_crtc_state(state, crtc);
5487 struct intel_plane *plane;
5488
5489 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5490 struct intel_plane_state *plane_state;
5491 enum plane_id plane_id = plane->id;
5492
5493 /*
5494 * Force a full wm update for every plane on modeset.
5495 * Required because the reset value of the wm registers
5496 * is non-zero, whereas we want all disabled planes to
5497 * have zero watermarks. So if we turn off the relevant
5498 * power well the hardware state will go out of sync
5499 * with the software state.
5500 */
5501 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5502 skl_plane_wm_equals(dev_priv,
5503 &old_crtc_state->wm.skl.optimal.planes[plane_id],
5504 &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5505 continue;
5506
5507 plane_state = intel_atomic_get_plane_state(state, plane);
5508 if (IS_ERR(plane_state))
5509 return PTR_ERR(plane_state);
5510
5511 new_crtc_state->update_planes |= BIT(plane_id);
5512 }
5513
5514 return 0;
5515 }
5516
5517 static int
5518 skl_compute_wm(struct intel_atomic_state *state)
5519 {
5520 struct intel_crtc *crtc;
5521 struct intel_crtc_state *new_crtc_state;
5522 struct intel_crtc_state *old_crtc_state;
5523 struct skl_ddb_values *results = &state->wm_results;
5524 int ret, i;
5525
5526 /* Clear all dirty flags */
5527 results->dirty_pipes = 0;
5528
5529 ret = skl_ddb_add_affected_pipes(state);
5530 if (ret)
5531 return ret;
5532
5533 /*
5534 * Calculate WM's for all pipes that are part of this transaction.
5535 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5536 * weren't otherwise being modified (and set bits in dirty_pipes) if
5537 * pipe allocations had to change.
5538 */
5539 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5540 new_crtc_state, i) {
5541 ret = skl_build_pipe_wm(new_crtc_state);
5542 if (ret)
5543 return ret;
5544
5545 ret = skl_wm_add_affected_planes(state, crtc);
5546 if (ret)
5547 return ret;
5548
5549 if (!skl_pipe_wm_equals(crtc,
5550 &old_crtc_state->wm.skl.optimal,
5551 &new_crtc_state->wm.skl.optimal))
5552 results->dirty_pipes |= BIT(crtc->pipe);
5553 }
5554
5555 ret = skl_compute_ddb(state);
5556 if (ret)
5557 return ret;
5558
5559 skl_print_wm_changes(state);
5560
5561 return 0;
5562 }
5563
5564 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5565 struct intel_crtc *crtc)
5566 {
5567 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5568 const struct intel_crtc_state *crtc_state =
5569 intel_atomic_get_new_crtc_state(state, crtc);
5570 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5571 enum pipe pipe = crtc->pipe;
5572
5573 if ((state->wm_results.dirty_pipes & BIT(crtc->pipe)) == 0)
5574 return;
5575
5576 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5577 }
5578
5579 static void skl_initial_wm(struct intel_atomic_state *state,
5580 struct intel_crtc *crtc)
5581 {
5582 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5583 const struct intel_crtc_state *crtc_state =
5584 intel_atomic_get_new_crtc_state(state, crtc);
5585 struct skl_ddb_values *results = &state->wm_results;
5586
5587 if ((results->dirty_pipes & BIT(crtc->pipe)) == 0)
5588 return;
5589
5590 mutex_lock(&dev_priv->wm.wm_mutex);
5591
5592 if (crtc_state->uapi.active_changed)
5593 skl_atomic_update_crtc_wm(state, crtc);
5594
5595 mutex_unlock(&dev_priv->wm.wm_mutex);
5596 }
5597
5598 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5599 struct intel_wm_config *config)
5600 {
5601 struct intel_crtc *crtc;
5602
5603 /* Compute the currently _active_ config */
5604 for_each_intel_crtc(&dev_priv->drm, crtc) {
5605 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5606
5607 if (!wm->pipe_enabled)
5608 continue;
5609
5610 config->sprites_enabled |= wm->sprites_enabled;
5611 config->sprites_scaled |= wm->sprites_scaled;
5612 config->num_pipes_active++;
5613 }
5614 }
5615
5616 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5617 {
5618 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5619 struct ilk_wm_maximums max;
5620 struct intel_wm_config config = {};
5621 struct ilk_wm_values results = {};
5622 enum intel_ddb_partitioning partitioning;
5623
5624 ilk_compute_wm_config(dev_priv, &config);
5625
5626 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5627 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5628
5629 /* 5/6 split only in single pipe config on IVB+ */
5630 if (INTEL_GEN(dev_priv) >= 7 &&
5631 config.num_pipes_active == 1 && config.sprites_enabled) {
5632 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5633 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5634
5635 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5636 } else {
5637 best_lp_wm = &lp_wm_1_2;
5638 }
5639
5640 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5641 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5642
5643 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5644
5645 ilk_write_wm_values(dev_priv, &results);
5646 }
5647
5648 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5649 struct intel_crtc *crtc)
5650 {
5651 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5652 const struct intel_crtc_state *crtc_state =
5653 intel_atomic_get_new_crtc_state(state, crtc);
5654
5655 mutex_lock(&dev_priv->wm.wm_mutex);
5656 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5657 ilk_program_watermarks(dev_priv);
5658 mutex_unlock(&dev_priv->wm.wm_mutex);
5659 }
5660
5661 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5662 struct intel_crtc *crtc)
5663 {
5664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5665 const struct intel_crtc_state *crtc_state =
5666 intel_atomic_get_new_crtc_state(state, crtc);
5667
5668 if (!crtc_state->wm.need_postvbl_update)
5669 return;
5670
5671 mutex_lock(&dev_priv->wm.wm_mutex);
5672 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
5673 ilk_program_watermarks(dev_priv);
5674 mutex_unlock(&dev_priv->wm.wm_mutex);
5675 }
5676
5677 static inline void skl_wm_level_from_reg_val(u32 val,
5678 struct skl_wm_level *level)
5679 {
5680 level->plane_en = val & PLANE_WM_EN;
5681 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5682 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5683 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5684 PLANE_WM_LINES_MASK;
5685 }
5686
5687 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5688 struct skl_pipe_wm *out)
5689 {
5690 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5691 enum pipe pipe = crtc->pipe;
5692 int level, max_level;
5693 enum plane_id plane_id;
5694 u32 val;
5695
5696 max_level = ilk_wm_max_level(dev_priv);
5697
5698 for_each_plane_id_on_crtc(crtc, plane_id) {
5699 struct skl_plane_wm *wm = &out->planes[plane_id];
5700
5701 for (level = 0; level <= max_level; level++) {
5702 if (plane_id != PLANE_CURSOR)
5703 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5704 else
5705 val = I915_READ(CUR_WM(pipe, level));
5706
5707 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5708 }
5709
5710 if (plane_id != PLANE_CURSOR)
5711 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5712 else
5713 val = I915_READ(CUR_WM_TRANS(pipe));
5714
5715 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5716 }
5717
5718 if (!crtc->active)
5719 return;
5720
5721 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5722 }
5723
5724 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5725 {
5726 struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5727 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5728 struct intel_crtc *crtc;
5729 struct intel_crtc_state *crtc_state;
5730
5731 skl_ddb_get_hw_state(dev_priv, ddb);
5732 for_each_intel_crtc(&dev_priv->drm, crtc) {
5733 crtc_state = to_intel_crtc_state(crtc->base.state);
5734
5735 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5736
5737 if (crtc->active)
5738 hw->dirty_pipes |= BIT(crtc->pipe);
5739 }
5740
5741 if (dev_priv->active_pipes) {
5742 /* Fully recompute DDB on first atomic commit */
5743 dev_priv->wm.distrust_bios_wm = true;
5744 }
5745 }
5746
5747 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5748 {
5749 struct drm_device *dev = crtc->base.dev;
5750 struct drm_i915_private *dev_priv = to_i915(dev);
5751 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5752 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
5753 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5754 enum pipe pipe = crtc->pipe;
5755 static const i915_reg_t wm0_pipe_reg[] = {
5756 [PIPE_A] = WM0_PIPEA_ILK,
5757 [PIPE_B] = WM0_PIPEB_ILK,
5758 [PIPE_C] = WM0_PIPEC_IVB,
5759 };
5760
5761 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5762 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5763 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5764
5765 memset(active, 0, sizeof(*active));
5766
5767 active->pipe_enabled = crtc->active;
5768
5769 if (active->pipe_enabled) {
5770 u32 tmp = hw->wm_pipe[pipe];
5771
5772 /*
5773 * For active pipes LP0 watermark is marked as
5774 * enabled, and LP1+ watermaks as disabled since
5775 * we can't really reverse compute them in case
5776 * multiple pipes are active.
5777 */
5778 active->wm[0].enable = true;
5779 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5780 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5781 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5782 active->linetime = hw->wm_linetime[pipe];
5783 } else {
5784 int level, max_level = ilk_wm_max_level(dev_priv);
5785
5786 /*
5787 * For inactive pipes, all watermark levels
5788 * should be marked as enabled but zeroed,
5789 * which is what we'd compute them to.
5790 */
5791 for (level = 0; level <= max_level; level++)
5792 active->wm[level].enable = true;
5793 }
5794
5795 crtc->wm.active.ilk = *active;
5796 }
5797
5798 #define _FW_WM(value, plane) \
5799 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5800 #define _FW_WM_VLV(value, plane) \
5801 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5802
5803 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5804 struct g4x_wm_values *wm)
5805 {
5806 u32 tmp;
5807
5808 tmp = I915_READ(DSPFW1);
5809 wm->sr.plane = _FW_WM(tmp, SR);
5810 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5811 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5812 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5813
5814 tmp = I915_READ(DSPFW2);
5815 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5816 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5817 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5818 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5819 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5820 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5821
5822 tmp = I915_READ(DSPFW3);
5823 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5824 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5825 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5826 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5827 }
5828
5829 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5830 struct vlv_wm_values *wm)
5831 {
5832 enum pipe pipe;
5833 u32 tmp;
5834
5835 for_each_pipe(dev_priv, pipe) {
5836 tmp = I915_READ(VLV_DDL(pipe));
5837
5838 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5839 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5840 wm->ddl[pipe].plane[PLANE_CURSOR] =
5841 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5842 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5843 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5844 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5845 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5846 }
5847
5848 tmp = I915_READ(DSPFW1);
5849 wm->sr.plane = _FW_WM(tmp, SR);
5850 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5851 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5852 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5853
5854 tmp = I915_READ(DSPFW2);
5855 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5856 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5857 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5858
5859 tmp = I915_READ(DSPFW3);
5860 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5861
5862 if (IS_CHERRYVIEW(dev_priv)) {
5863 tmp = I915_READ(DSPFW7_CHV);
5864 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5865 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5866
5867 tmp = I915_READ(DSPFW8_CHV);
5868 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5869 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5870
5871 tmp = I915_READ(DSPFW9_CHV);
5872 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5873 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5874
5875 tmp = I915_READ(DSPHOWM);
5876 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5877 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5878 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5879 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5880 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5881 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5882 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5883 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5884 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5885 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5886 } else {
5887 tmp = I915_READ(DSPFW7);
5888 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5889 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5890
5891 tmp = I915_READ(DSPHOWM);
5892 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5893 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5894 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5895 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5896 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5897 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5898 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5899 }
5900 }
5901
5902 #undef _FW_WM
5903 #undef _FW_WM_VLV
5904
5905 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5906 {
5907 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5908 struct intel_crtc *crtc;
5909
5910 g4x_read_wm_values(dev_priv, wm);
5911
5912 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5913
5914 for_each_intel_crtc(&dev_priv->drm, crtc) {
5915 struct intel_crtc_state *crtc_state =
5916 to_intel_crtc_state(crtc->base.state);
5917 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5918 struct g4x_pipe_wm *raw;
5919 enum pipe pipe = crtc->pipe;
5920 enum plane_id plane_id;
5921 int level, max_level;
5922
5923 active->cxsr = wm->cxsr;
5924 active->hpll_en = wm->hpll_en;
5925 active->fbc_en = wm->fbc_en;
5926
5927 active->sr = wm->sr;
5928 active->hpll = wm->hpll;
5929
5930 for_each_plane_id_on_crtc(crtc, plane_id) {
5931 active->wm.plane[plane_id] =
5932 wm->pipe[pipe].plane[plane_id];
5933 }
5934
5935 if (wm->cxsr && wm->hpll_en)
5936 max_level = G4X_WM_LEVEL_HPLL;
5937 else if (wm->cxsr)
5938 max_level = G4X_WM_LEVEL_SR;
5939 else
5940 max_level = G4X_WM_LEVEL_NORMAL;
5941
5942 level = G4X_WM_LEVEL_NORMAL;
5943 raw = &crtc_state->wm.g4x.raw[level];
5944 for_each_plane_id_on_crtc(crtc, plane_id)
5945 raw->plane[plane_id] = active->wm.plane[plane_id];
5946
5947 if (++level > max_level)
5948 goto out;
5949
5950 raw = &crtc_state->wm.g4x.raw[level];
5951 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5952 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5953 raw->plane[PLANE_SPRITE0] = 0;
5954 raw->fbc = active->sr.fbc;
5955
5956 if (++level > max_level)
5957 goto out;
5958
5959 raw = &crtc_state->wm.g4x.raw[level];
5960 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5961 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5962 raw->plane[PLANE_SPRITE0] = 0;
5963 raw->fbc = active->hpll.fbc;
5964
5965 out:
5966 for_each_plane_id_on_crtc(crtc, plane_id)
5967 g4x_raw_plane_wm_set(crtc_state, level,
5968 plane_id, USHRT_MAX);
5969 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5970
5971 crtc_state->wm.g4x.optimal = *active;
5972 crtc_state->wm.g4x.intermediate = *active;
5973
5974 drm_dbg_kms(&dev_priv->drm,
5975 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5976 pipe_name(pipe),
5977 wm->pipe[pipe].plane[PLANE_PRIMARY],
5978 wm->pipe[pipe].plane[PLANE_CURSOR],
5979 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5980 }
5981
5982 drm_dbg_kms(&dev_priv->drm,
5983 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5984 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5985 drm_dbg_kms(&dev_priv->drm,
5986 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5987 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5988 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
5989 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5990 }
5991
5992 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5993 {
5994 struct intel_plane *plane;
5995 struct intel_crtc *crtc;
5996
5997 mutex_lock(&dev_priv->wm.wm_mutex);
5998
5999 for_each_intel_plane(&dev_priv->drm, plane) {
6000 struct intel_crtc *crtc =
6001 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6002 struct intel_crtc_state *crtc_state =
6003 to_intel_crtc_state(crtc->base.state);
6004 struct intel_plane_state *plane_state =
6005 to_intel_plane_state(plane->base.state);
6006 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6007 enum plane_id plane_id = plane->id;
6008 int level;
6009
6010 if (plane_state->uapi.visible)
6011 continue;
6012
6013 for (level = 0; level < 3; level++) {
6014 struct g4x_pipe_wm *raw =
6015 &crtc_state->wm.g4x.raw[level];
6016
6017 raw->plane[plane_id] = 0;
6018 wm_state->wm.plane[plane_id] = 0;
6019 }
6020
6021 if (plane_id == PLANE_PRIMARY) {
6022 for (level = 0; level < 3; level++) {
6023 struct g4x_pipe_wm *raw =
6024 &crtc_state->wm.g4x.raw[level];
6025 raw->fbc = 0;
6026 }
6027
6028 wm_state->sr.fbc = 0;
6029 wm_state->hpll.fbc = 0;
6030 wm_state->fbc_en = false;
6031 }
6032 }
6033
6034 for_each_intel_crtc(&dev_priv->drm, crtc) {
6035 struct intel_crtc_state *crtc_state =
6036 to_intel_crtc_state(crtc->base.state);
6037
6038 crtc_state->wm.g4x.intermediate =
6039 crtc_state->wm.g4x.optimal;
6040 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6041 }
6042
6043 g4x_program_watermarks(dev_priv);
6044
6045 mutex_unlock(&dev_priv->wm.wm_mutex);
6046 }
6047
6048 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6049 {
6050 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6051 struct intel_crtc *crtc;
6052 u32 val;
6053
6054 vlv_read_wm_values(dev_priv, wm);
6055
6056 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6057 wm->level = VLV_WM_LEVEL_PM2;
6058
6059 if (IS_CHERRYVIEW(dev_priv)) {
6060 vlv_punit_get(dev_priv);
6061
6062 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6063 if (val & DSP_MAXFIFO_PM5_ENABLE)
6064 wm->level = VLV_WM_LEVEL_PM5;
6065
6066 /*
6067 * If DDR DVFS is disabled in the BIOS, Punit
6068 * will never ack the request. So if that happens
6069 * assume we don't have to enable/disable DDR DVFS
6070 * dynamically. To test that just set the REQ_ACK
6071 * bit to poke the Punit, but don't change the
6072 * HIGH/LOW bits so that we don't actually change
6073 * the current state.
6074 */
6075 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6076 val |= FORCE_DDR_FREQ_REQ_ACK;
6077 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6078
6079 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6080 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6081 drm_dbg_kms(&dev_priv->drm,
6082 "Punit not acking DDR DVFS request, "
6083 "assuming DDR DVFS is disabled\n");
6084 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6085 } else {
6086 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6087 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6088 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6089 }
6090
6091 vlv_punit_put(dev_priv);
6092 }
6093
6094 for_each_intel_crtc(&dev_priv->drm, crtc) {
6095 struct intel_crtc_state *crtc_state =
6096 to_intel_crtc_state(crtc->base.state);
6097 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6098 const struct vlv_fifo_state *fifo_state =
6099 &crtc_state->wm.vlv.fifo_state;
6100 enum pipe pipe = crtc->pipe;
6101 enum plane_id plane_id;
6102 int level;
6103
6104 vlv_get_fifo_size(crtc_state);
6105
6106 active->num_levels = wm->level + 1;
6107 active->cxsr = wm->cxsr;
6108
6109 for (level = 0; level < active->num_levels; level++) {
6110 struct g4x_pipe_wm *raw =
6111 &crtc_state->wm.vlv.raw[level];
6112
6113 active->sr[level].plane = wm->sr.plane;
6114 active->sr[level].cursor = wm->sr.cursor;
6115
6116 for_each_plane_id_on_crtc(crtc, plane_id) {
6117 active->wm[level].plane[plane_id] =
6118 wm->pipe[pipe].plane[plane_id];
6119
6120 raw->plane[plane_id] =
6121 vlv_invert_wm_value(active->wm[level].plane[plane_id],
6122 fifo_state->plane[plane_id]);
6123 }
6124 }
6125
6126 for_each_plane_id_on_crtc(crtc, plane_id)
6127 vlv_raw_plane_wm_set(crtc_state, level,
6128 plane_id, USHRT_MAX);
6129 vlv_invalidate_wms(crtc, active, level);
6130
6131 crtc_state->wm.vlv.optimal = *active;
6132 crtc_state->wm.vlv.intermediate = *active;
6133
6134 drm_dbg_kms(&dev_priv->drm,
6135 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6136 pipe_name(pipe),
6137 wm->pipe[pipe].plane[PLANE_PRIMARY],
6138 wm->pipe[pipe].plane[PLANE_CURSOR],
6139 wm->pipe[pipe].plane[PLANE_SPRITE0],
6140 wm->pipe[pipe].plane[PLANE_SPRITE1]);
6141 }
6142
6143 drm_dbg_kms(&dev_priv->drm,
6144 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6145 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6146 }
6147
6148 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6149 {
6150 struct intel_plane *plane;
6151 struct intel_crtc *crtc;
6152
6153 mutex_lock(&dev_priv->wm.wm_mutex);
6154
6155 for_each_intel_plane(&dev_priv->drm, plane) {
6156 struct intel_crtc *crtc =
6157 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6158 struct intel_crtc_state *crtc_state =
6159 to_intel_crtc_state(crtc->base.state);
6160 struct intel_plane_state *plane_state =
6161 to_intel_plane_state(plane->base.state);
6162 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6163 const struct vlv_fifo_state *fifo_state =
6164 &crtc_state->wm.vlv.fifo_state;
6165 enum plane_id plane_id = plane->id;
6166 int level;
6167
6168 if (plane_state->uapi.visible)
6169 continue;
6170
6171 for (level = 0; level < wm_state->num_levels; level++) {
6172 struct g4x_pipe_wm *raw =
6173 &crtc_state->wm.vlv.raw[level];
6174
6175 raw->plane[plane_id] = 0;
6176
6177 wm_state->wm[level].plane[plane_id] =
6178 vlv_invert_wm_value(raw->plane[plane_id],
6179 fifo_state->plane[plane_id]);
6180 }
6181 }
6182
6183 for_each_intel_crtc(&dev_priv->drm, crtc) {
6184 struct intel_crtc_state *crtc_state =
6185 to_intel_crtc_state(crtc->base.state);
6186
6187 crtc_state->wm.vlv.intermediate =
6188 crtc_state->wm.vlv.optimal;
6189 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6190 }
6191
6192 vlv_program_watermarks(dev_priv);
6193
6194 mutex_unlock(&dev_priv->wm.wm_mutex);
6195 }
6196
6197 /*
6198 * FIXME should probably kill this and improve
6199 * the real watermark readout/sanitation instead
6200 */
6201 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6202 {
6203 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6204 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6205 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6206
6207 /*
6208 * Don't touch WM1S_LP_EN here.
6209 * Doing so could cause underruns.
6210 */
6211 }
6212
6213 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6214 {
6215 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6216 struct intel_crtc *crtc;
6217
6218 ilk_init_lp_watermarks(dev_priv);
6219
6220 for_each_intel_crtc(&dev_priv->drm, crtc)
6221 ilk_pipe_wm_get_hw_state(crtc);
6222
6223 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6224 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6225 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6226
6227 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6228 if (INTEL_GEN(dev_priv) >= 7) {
6229 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6230 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6231 }
6232
6233 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6234 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6235 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6236 else if (IS_IVYBRIDGE(dev_priv))
6237 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6238 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6239
6240 hw->enable_fbc_wm =
6241 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6242 }
6243
6244 /**
6245 * intel_update_watermarks - update FIFO watermark values based on current modes
6246 * @crtc: the #intel_crtc on which to compute the WM
6247 *
6248 * Calculate watermark values for the various WM regs based on current mode
6249 * and plane configuration.
6250 *
6251 * There are several cases to deal with here:
6252 * - normal (i.e. non-self-refresh)
6253 * - self-refresh (SR) mode
6254 * - lines are large relative to FIFO size (buffer can hold up to 2)
6255 * - lines are small relative to FIFO size (buffer can hold more than 2
6256 * lines), so need to account for TLB latency
6257 *
6258 * The normal calculation is:
6259 * watermark = dotclock * bytes per pixel * latency
6260 * where latency is platform & configuration dependent (we assume pessimal
6261 * values here).
6262 *
6263 * The SR calculation is:
6264 * watermark = (trunc(latency/line time)+1) * surface width *
6265 * bytes per pixel
6266 * where
6267 * line time = htotal / dotclock
6268 * surface width = hdisplay for normal plane and 64 for cursor
6269 * and latency is assumed to be high, as above.
6270 *
6271 * The final value programmed to the register should always be rounded up,
6272 * and include an extra 2 entries to account for clock crossings.
6273 *
6274 * We don't use the sprite, so we can ignore that. And on Crestline we have
6275 * to set the non-SR watermarks to 8.
6276 */
6277 void intel_update_watermarks(struct intel_crtc *crtc)
6278 {
6279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6280
6281 if (dev_priv->display.update_wm)
6282 dev_priv->display.update_wm(crtc);
6283 }
6284
6285 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6286 {
6287 u32 val;
6288
6289 if (!HAS_IPC(dev_priv))
6290 return;
6291
6292 val = I915_READ(DISP_ARB_CTL2);
6293
6294 if (dev_priv->ipc_enabled)
6295 val |= DISP_IPC_ENABLE;
6296 else
6297 val &= ~DISP_IPC_ENABLE;
6298
6299 I915_WRITE(DISP_ARB_CTL2, val);
6300 }
6301
6302 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6303 {
6304 /* Display WA #0477 WaDisableIPC: skl */
6305 if (IS_SKYLAKE(dev_priv))
6306 return false;
6307
6308 /* Display WA #1141: SKL:all KBL:all CFL */
6309 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6310 return dev_priv->dram_info.symmetric_memory;
6311
6312 return true;
6313 }
6314
6315 void intel_init_ipc(struct drm_i915_private *dev_priv)
6316 {
6317 if (!HAS_IPC(dev_priv))
6318 return;
6319
6320 dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6321
6322 intel_enable_ipc(dev_priv);
6323 }
6324
6325 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6326 {
6327 /*
6328 * On Ibex Peak and Cougar Point, we need to disable clock
6329 * gating for the panel power sequencer or it will fail to
6330 * start up when no ports are active.
6331 */
6332 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6333 }
6334
6335 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6336 {
6337 enum pipe pipe;
6338
6339 for_each_pipe(dev_priv, pipe) {
6340 I915_WRITE(DSPCNTR(pipe),
6341 I915_READ(DSPCNTR(pipe)) |
6342 DISPPLANE_TRICKLE_FEED_DISABLE);
6343
6344 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6345 POSTING_READ(DSPSURF(pipe));
6346 }
6347 }
6348
6349 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6350 {
6351 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6352
6353 /*
6354 * Required for FBC
6355 * WaFbcDisableDpfcClockGating:ilk
6356 */
6357 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6358 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6359 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6360
6361 I915_WRITE(PCH_3DCGDIS0,
6362 MARIUNIT_CLOCK_GATE_DISABLE |
6363 SVSMUNIT_CLOCK_GATE_DISABLE);
6364 I915_WRITE(PCH_3DCGDIS1,
6365 VFMUNIT_CLOCK_GATE_DISABLE);
6366
6367 /*
6368 * According to the spec the following bits should be set in
6369 * order to enable memory self-refresh
6370 * The bit 22/21 of 0x42004
6371 * The bit 5 of 0x42020
6372 * The bit 15 of 0x45000
6373 */
6374 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6375 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6376 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6377 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6378 I915_WRITE(DISP_ARB_CTL,
6379 (I915_READ(DISP_ARB_CTL) |
6380 DISP_FBC_WM_DIS));
6381
6382 /*
6383 * Based on the document from hardware guys the following bits
6384 * should be set unconditionally in order to enable FBC.
6385 * The bit 22 of 0x42000
6386 * The bit 22 of 0x42004
6387 * The bit 7,8,9 of 0x42020.
6388 */
6389 if (IS_IRONLAKE_M(dev_priv)) {
6390 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6391 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6392 I915_READ(ILK_DISPLAY_CHICKEN1) |
6393 ILK_FBCQ_DIS);
6394 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6395 I915_READ(ILK_DISPLAY_CHICKEN2) |
6396 ILK_DPARB_GATE);
6397 }
6398
6399 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6400
6401 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6402 I915_READ(ILK_DISPLAY_CHICKEN2) |
6403 ILK_ELPIN_409_SELECT);
6404 I915_WRITE(_3D_CHICKEN2,
6405 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6406 _3D_CHICKEN2_WM_READ_PIPELINED);
6407
6408 /* WaDisableRenderCachePipelinedFlush:ilk */
6409 I915_WRITE(CACHE_MODE_0,
6410 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6411
6412 /* WaDisable_RenderCache_OperationalFlush:ilk */
6413 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6414
6415 g4x_disable_trickle_feed(dev_priv);
6416
6417 ibx_init_clock_gating(dev_priv);
6418 }
6419
6420 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6421 {
6422 enum pipe pipe;
6423 u32 val;
6424
6425 /*
6426 * On Ibex Peak and Cougar Point, we need to disable clock
6427 * gating for the panel power sequencer or it will fail to
6428 * start up when no ports are active.
6429 */
6430 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6431 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6432 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6433 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6434 DPLS_EDP_PPS_FIX_DIS);
6435 /* The below fixes the weird display corruption, a few pixels shifted
6436 * downward, on (only) LVDS of some HP laptops with IVY.
6437 */
6438 for_each_pipe(dev_priv, pipe) {
6439 val = I915_READ(TRANS_CHICKEN2(pipe));
6440 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6441 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6442 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6443 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6444 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6445 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6446 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6447 }
6448 /* WADP0ClockGatingDisable */
6449 for_each_pipe(dev_priv, pipe) {
6450 I915_WRITE(TRANS_CHICKEN1(pipe),
6451 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6452 }
6453 }
6454
6455 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6456 {
6457 u32 tmp;
6458
6459 tmp = I915_READ(MCH_SSKPD);
6460 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6461 drm_dbg_kms(&dev_priv->drm,
6462 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6463 tmp);
6464 }
6465
6466 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6467 {
6468 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6469
6470 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6471
6472 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6473 I915_READ(ILK_DISPLAY_CHICKEN2) |
6474 ILK_ELPIN_409_SELECT);
6475
6476 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6477 I915_WRITE(_3D_CHICKEN,
6478 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6479
6480 /* WaDisable_RenderCache_OperationalFlush:snb */
6481 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6482
6483 /*
6484 * BSpec recoomends 8x4 when MSAA is used,
6485 * however in practice 16x4 seems fastest.
6486 *
6487 * Note that PS/WM thread counts depend on the WIZ hashing
6488 * disable bit, which we don't touch here, but it's good
6489 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6490 */
6491 I915_WRITE(GEN6_GT_MODE,
6492 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6493
6494 I915_WRITE(CACHE_MODE_0,
6495 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6496
6497 I915_WRITE(GEN6_UCGCTL1,
6498 I915_READ(GEN6_UCGCTL1) |
6499 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6500 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6501
6502 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6503 * gating disable must be set. Failure to set it results in
6504 * flickering pixels due to Z write ordering failures after
6505 * some amount of runtime in the Mesa "fire" demo, and Unigine
6506 * Sanctuary and Tropics, and apparently anything else with
6507 * alpha test or pixel discard.
6508 *
6509 * According to the spec, bit 11 (RCCUNIT) must also be set,
6510 * but we didn't debug actual testcases to find it out.
6511 *
6512 * WaDisableRCCUnitClockGating:snb
6513 * WaDisableRCPBUnitClockGating:snb
6514 */
6515 I915_WRITE(GEN6_UCGCTL2,
6516 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6517 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6518
6519 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6520 I915_WRITE(_3D_CHICKEN3,
6521 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6522
6523 /*
6524 * Bspec says:
6525 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6526 * 3DSTATE_SF number of SF output attributes is more than 16."
6527 */
6528 I915_WRITE(_3D_CHICKEN3,
6529 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6530
6531 /*
6532 * According to the spec the following bits should be
6533 * set in order to enable memory self-refresh and fbc:
6534 * The bit21 and bit22 of 0x42000
6535 * The bit21 and bit22 of 0x42004
6536 * The bit5 and bit7 of 0x42020
6537 * The bit14 of 0x70180
6538 * The bit14 of 0x71180
6539 *
6540 * WaFbcAsynchFlipDisableFbcQueue:snb
6541 */
6542 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6543 I915_READ(ILK_DISPLAY_CHICKEN1) |
6544 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6545 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6546 I915_READ(ILK_DISPLAY_CHICKEN2) |
6547 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6548 I915_WRITE(ILK_DSPCLK_GATE_D,
6549 I915_READ(ILK_DSPCLK_GATE_D) |
6550 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6551 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6552
6553 g4x_disable_trickle_feed(dev_priv);
6554
6555 cpt_init_clock_gating(dev_priv);
6556
6557 gen6_check_mch_setup(dev_priv);
6558 }
6559
6560 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6561 {
6562 u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6563
6564 /*
6565 * WaVSThreadDispatchOverride:ivb,vlv
6566 *
6567 * This actually overrides the dispatch
6568 * mode for all thread types.
6569 */
6570 reg &= ~GEN7_FF_SCHED_MASK;
6571 reg |= GEN7_FF_TS_SCHED_HW;
6572 reg |= GEN7_FF_VS_SCHED_HW;
6573 reg |= GEN7_FF_DS_SCHED_HW;
6574
6575 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6576 }
6577
6578 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6579 {
6580 /*
6581 * TODO: this bit should only be enabled when really needed, then
6582 * disabled when not needed anymore in order to save power.
6583 */
6584 if (HAS_PCH_LPT_LP(dev_priv))
6585 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6586 I915_READ(SOUTH_DSPCLK_GATE_D) |
6587 PCH_LP_PARTITION_LEVEL_DISABLE);
6588
6589 /* WADPOClockGatingDisable:hsw */
6590 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6591 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6592 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6593 }
6594
6595 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6596 {
6597 if (HAS_PCH_LPT_LP(dev_priv)) {
6598 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6599
6600 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6601 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6602 }
6603 }
6604
6605 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6606 int general_prio_credits,
6607 int high_prio_credits)
6608 {
6609 u32 misccpctl;
6610 u32 val;
6611
6612 /* WaTempDisableDOPClkGating:bdw */
6613 misccpctl = I915_READ(GEN7_MISCCPCTL);
6614 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6615
6616 val = I915_READ(GEN8_L3SQCREG1);
6617 val &= ~L3_PRIO_CREDITS_MASK;
6618 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
6619 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
6620 I915_WRITE(GEN8_L3SQCREG1, val);
6621
6622 /*
6623 * Wait at least 100 clocks before re-enabling clock gating.
6624 * See the definition of L3SQCREG1 in BSpec.
6625 */
6626 POSTING_READ(GEN8_L3SQCREG1);
6627 udelay(1);
6628 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6629 }
6630
6631 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
6632 {
6633 /* This is not an Wa. Enable to reduce Sampler power */
6634 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
6635 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6636
6637 /* WaEnable32PlaneMode:icl */
6638 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
6639 _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
6640
6641 /*
6642 * Wa_1408615072:icl,ehl (vsunit)
6643 * Wa_1407596294:icl,ehl (hsunit)
6644 */
6645 intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE,
6646 0, VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
6647
6648 /* Wa_1407352427:icl,ehl */
6649 intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE2,
6650 0, PSDUNIT_CLKGATE_DIS);
6651 }
6652
6653 static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
6654 {
6655 u32 vd_pg_enable = 0;
6656 unsigned int i;
6657
6658 /* Wa_1408615072:tgl */
6659 intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE2,
6660 0, VSUNIT_CLKGATE_DIS_TGL);
6661
6662 /* This is not a WA. Enable VD HCP & MFX_ENC powergate */
6663 for (i = 0; i < I915_MAX_VCS; i++) {
6664 if (HAS_ENGINE(dev_priv, _VCS(i)))
6665 vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
6666 VDN_MFX_POWERGATE_ENABLE(i);
6667 }
6668
6669 I915_WRITE(POWERGATE_ENABLE,
6670 I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6671 }
6672
6673 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
6674 {
6675 if (!HAS_PCH_CNP(dev_priv))
6676 return;
6677
6678 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6679 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
6680 CNP_PWM_CGE_GATING_DISABLE);
6681 }
6682
6683 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6684 {
6685 u32 val;
6686 cnp_init_clock_gating(dev_priv);
6687
6688 /* This is not an Wa. Enable for better image quality */
6689 I915_WRITE(_3D_CHICKEN3,
6690 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
6691
6692 /* WaEnableChickenDCPR:cnl */
6693 I915_WRITE(GEN8_CHICKEN_DCPR_1,
6694 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
6695
6696 /* WaFbcWakeMemOn:cnl */
6697 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
6698 DISP_FBC_MEMORY_WAKE);
6699
6700 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
6701 /* ReadHitWriteOnlyDisable:cnl */
6702 val |= RCCUNIT_CLKGATE_DIS;
6703 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
6704 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6705 val |= SARBUNIT_CLKGATE_DIS;
6706 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6707
6708 /* Wa_2201832410:cnl */
6709 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
6710 val |= GWUNIT_CLKGATE_DIS;
6711 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
6712
6713 /* WaDisableVFclkgate:cnl */
6714 /* WaVFUnitClockGatingDisable:cnl */
6715 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
6716 val |= VFUNIT_CLKGATE_DIS;
6717 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6718 }
6719
6720 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
6721 {
6722 cnp_init_clock_gating(dev_priv);
6723 gen9_init_clock_gating(dev_priv);
6724
6725 /* WaFbcNukeOnHostModify:cfl */
6726 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6727 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6728 }
6729
6730 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6731 {
6732 gen9_init_clock_gating(dev_priv);
6733
6734 /* WaDisableSDEUnitClockGating:kbl */
6735 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6736 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6737 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6738
6739 /* WaDisableGamClockGating:kbl */
6740 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6741 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6742 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6743
6744 /* WaFbcNukeOnHostModify:kbl */
6745 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6746 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6747 }
6748
6749 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6750 {
6751 gen9_init_clock_gating(dev_priv);
6752
6753 /* WAC6entrylatency:skl */
6754 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
6755 FBC_LLC_FULLY_OPEN);
6756
6757 /* WaFbcNukeOnHostModify:skl */
6758 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6759 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6760 }
6761
6762 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
6763 {
6764 enum pipe pipe;
6765
6766 /* WaSwitchSolVfFArbitrationPriority:bdw */
6767 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6768
6769 /* WaPsrDPAMaskVBlankInSRD:bdw */
6770 I915_WRITE(CHICKEN_PAR1_1,
6771 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6772
6773 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6774 for_each_pipe(dev_priv, pipe) {
6775 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6776 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6777 BDW_DPRS_MASK_VBLANK_SRD);
6778 }
6779
6780 /* WaVSRefCountFullforceMissDisable:bdw */
6781 /* WaDSRefCountFullforceMissDisable:bdw */
6782 I915_WRITE(GEN7_FF_THREAD_MODE,
6783 I915_READ(GEN7_FF_THREAD_MODE) &
6784 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6785
6786 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6787 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6788
6789 /* WaDisableSDEUnitClockGating:bdw */
6790 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6791 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6792
6793 /* WaProgramL3SqcReg1Default:bdw */
6794 gen8_set_l3sqc_credits(dev_priv, 30, 2);
6795
6796 /* WaKVMNotificationOnConfigChange:bdw */
6797 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
6798 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
6799
6800 lpt_init_clock_gating(dev_priv);
6801
6802 /* WaDisableDopClockGating:bdw
6803 *
6804 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
6805 * clock gating.
6806 */
6807 I915_WRITE(GEN6_UCGCTL1,
6808 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6809 }
6810
6811 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
6812 {
6813 /* L3 caching of data atomics doesn't work -- disable it. */
6814 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6815 I915_WRITE(HSW_ROW_CHICKEN3,
6816 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6817
6818 /* This is required by WaCatErrorRejectionIssue:hsw */
6819 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6820 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6821 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6822
6823 /* WaVSRefCountFullforceMissDisable:hsw */
6824 I915_WRITE(GEN7_FF_THREAD_MODE,
6825 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6826
6827 /* WaDisable_RenderCache_OperationalFlush:hsw */
6828 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6829
6830 /* enable HiZ Raw Stall Optimization */
6831 I915_WRITE(CACHE_MODE_0_GEN7,
6832 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6833
6834 /* WaDisable4x2SubspanOptimization:hsw */
6835 I915_WRITE(CACHE_MODE_1,
6836 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6837
6838 /*
6839 * BSpec recommends 8x4 when MSAA is used,
6840 * however in practice 16x4 seems fastest.
6841 *
6842 * Note that PS/WM thread counts depend on the WIZ hashing
6843 * disable bit, which we don't touch here, but it's good
6844 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6845 */
6846 I915_WRITE(GEN7_GT_MODE,
6847 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6848
6849 /* WaSampleCChickenBitEnable:hsw */
6850 I915_WRITE(HALF_SLICE_CHICKEN3,
6851 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6852
6853 /* WaSwitchSolVfFArbitrationPriority:hsw */
6854 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6855
6856 lpt_init_clock_gating(dev_priv);
6857 }
6858
6859 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
6860 {
6861 u32 snpcr;
6862
6863 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6864
6865 /* WaDisableEarlyCull:ivb */
6866 I915_WRITE(_3D_CHICKEN3,
6867 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6868
6869 /* WaDisableBackToBackFlipFix:ivb */
6870 I915_WRITE(IVB_CHICKEN3,
6871 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6872 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6873
6874 /* WaDisablePSDDualDispatchEnable:ivb */
6875 if (IS_IVB_GT1(dev_priv))
6876 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6877 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6878
6879 /* WaDisable_RenderCache_OperationalFlush:ivb */
6880 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6881
6882 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6883 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6884 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6885
6886 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6887 I915_WRITE(GEN7_L3CNTLREG1,
6888 GEN7_WA_FOR_GEN7_L3_CONTROL);
6889 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6890 GEN7_WA_L3_CHICKEN_MODE);
6891 if (IS_IVB_GT1(dev_priv))
6892 I915_WRITE(GEN7_ROW_CHICKEN2,
6893 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6894 else {
6895 /* must write both registers */
6896 I915_WRITE(GEN7_ROW_CHICKEN2,
6897 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6898 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6899 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6900 }
6901
6902 /* WaForceL3Serialization:ivb */
6903 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6904 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6905
6906 /*
6907 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6908 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6909 */
6910 I915_WRITE(GEN6_UCGCTL2,
6911 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6912
6913 /* This is required by WaCatErrorRejectionIssue:ivb */
6914 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6915 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6916 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6917
6918 g4x_disable_trickle_feed(dev_priv);
6919
6920 gen7_setup_fixed_func_scheduler(dev_priv);
6921
6922 if (0) { /* causes HiZ corruption on ivb:gt1 */
6923 /* enable HiZ Raw Stall Optimization */
6924 I915_WRITE(CACHE_MODE_0_GEN7,
6925 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6926 }
6927
6928 /* WaDisable4x2SubspanOptimization:ivb */
6929 I915_WRITE(CACHE_MODE_1,
6930 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6931
6932 /*
6933 * BSpec recommends 8x4 when MSAA is used,
6934 * however in practice 16x4 seems fastest.
6935 *
6936 * Note that PS/WM thread counts depend on the WIZ hashing
6937 * disable bit, which we don't touch here, but it's good
6938 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6939 */
6940 I915_WRITE(GEN7_GT_MODE,
6941 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6942
6943 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6944 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6945 snpcr |= GEN6_MBC_SNPCR_MED;
6946 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6947
6948 if (!HAS_PCH_NOP(dev_priv))
6949 cpt_init_clock_gating(dev_priv);
6950
6951 gen6_check_mch_setup(dev_priv);
6952 }
6953
6954 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
6955 {
6956 /* WaDisableEarlyCull:vlv */
6957 I915_WRITE(_3D_CHICKEN3,
6958 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6959
6960 /* WaDisableBackToBackFlipFix:vlv */
6961 I915_WRITE(IVB_CHICKEN3,
6962 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6963 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6964
6965 /* WaPsdDispatchEnable:vlv */
6966 /* WaDisablePSDDualDispatchEnable:vlv */
6967 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6968 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6969 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6970
6971 /* WaDisable_RenderCache_OperationalFlush:vlv */
6972 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6973
6974 /* WaForceL3Serialization:vlv */
6975 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6976 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6977
6978 /* WaDisableDopClockGating:vlv */
6979 I915_WRITE(GEN7_ROW_CHICKEN2,
6980 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6981
6982 /* This is required by WaCatErrorRejectionIssue:vlv */
6983 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6984 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6985 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6986
6987 gen7_setup_fixed_func_scheduler(dev_priv);
6988
6989 /*
6990 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6991 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6992 */
6993 I915_WRITE(GEN6_UCGCTL2,
6994 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6995
6996 /* WaDisableL3Bank2xClockGate:vlv
6997 * Disabling L3 clock gating- MMIO 940c[25] = 1
6998 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6999 I915_WRITE(GEN7_UCGCTL4,
7000 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7001
7002 /*
7003 * BSpec says this must be set, even though
7004 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7005 */
7006 I915_WRITE(CACHE_MODE_1,
7007 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7008
7009 /*
7010 * BSpec recommends 8x4 when MSAA is used,
7011 * however in practice 16x4 seems fastest.
7012 *
7013 * Note that PS/WM thread counts depend on the WIZ hashing
7014 * disable bit, which we don't touch here, but it's good
7015 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7016 */
7017 I915_WRITE(GEN7_GT_MODE,
7018 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7019
7020 /*
7021 * WaIncreaseL3CreditsForVLVB0:vlv
7022 * This is the hardware default actually.
7023 */
7024 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7025
7026 /*
7027 * WaDisableVLVClockGating_VBIIssue:vlv
7028 * Disable clock gating on th GCFG unit to prevent a delay
7029 * in the reporting of vblank events.
7030 */
7031 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7032 }
7033
7034 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7035 {
7036 /* WaVSRefCountFullforceMissDisable:chv */
7037 /* WaDSRefCountFullforceMissDisable:chv */
7038 I915_WRITE(GEN7_FF_THREAD_MODE,
7039 I915_READ(GEN7_FF_THREAD_MODE) &
7040 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7041
7042 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7043 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7044 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7045
7046 /* WaDisableCSUnitClockGating:chv */
7047 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7048 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7049
7050 /* WaDisableSDEUnitClockGating:chv */
7051 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7052 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7053
7054 /*
7055 * WaProgramL3SqcReg1Default:chv
7056 * See gfxspecs/Related Documents/Performance Guide/
7057 * LSQC Setting Recommendations.
7058 */
7059 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7060 }
7061
7062 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7063 {
7064 u32 dspclk_gate;
7065
7066 I915_WRITE(RENCLK_GATE_D1, 0);
7067 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7068 GS_UNIT_CLOCK_GATE_DISABLE |
7069 CL_UNIT_CLOCK_GATE_DISABLE);
7070 I915_WRITE(RAMCLK_GATE_D, 0);
7071 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7072 OVRUNIT_CLOCK_GATE_DISABLE |
7073 OVCUNIT_CLOCK_GATE_DISABLE;
7074 if (IS_GM45(dev_priv))
7075 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7076 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7077
7078 /* WaDisableRenderCachePipelinedFlush */
7079 I915_WRITE(CACHE_MODE_0,
7080 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7081
7082 /* WaDisable_RenderCache_OperationalFlush:g4x */
7083 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7084
7085 g4x_disable_trickle_feed(dev_priv);
7086 }
7087
7088 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7089 {
7090 struct intel_uncore *uncore = &dev_priv->uncore;
7091
7092 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7093 intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7094 intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7095 intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7096 intel_uncore_write16(uncore, DEUC, 0);
7097 intel_uncore_write(uncore,
7098 MI_ARB_STATE,
7099 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7100
7101 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7102 intel_uncore_write(uncore,
7103 CACHE_MODE_0,
7104 _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7105 }
7106
7107 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7108 {
7109 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7110 I965_RCC_CLOCK_GATE_DISABLE |
7111 I965_RCPB_CLOCK_GATE_DISABLE |
7112 I965_ISC_CLOCK_GATE_DISABLE |
7113 I965_FBC_CLOCK_GATE_DISABLE);
7114 I915_WRITE(RENCLK_GATE_D2, 0);
7115 I915_WRITE(MI_ARB_STATE,
7116 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7117
7118 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7119 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7120 }
7121
7122 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7123 {
7124 u32 dstate = I915_READ(D_STATE);
7125
7126 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7127 DSTATE_DOT_CLOCK_GATING;
7128 I915_WRITE(D_STATE, dstate);
7129
7130 if (IS_PINEVIEW(dev_priv))
7131 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7132
7133 /* IIR "flip pending" means done if this bit is set */
7134 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7135
7136 /* interrupts should cause a wake up from C3 */
7137 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7138
7139 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7140 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7141
7142 I915_WRITE(MI_ARB_STATE,
7143 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7144 }
7145
7146 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7147 {
7148 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7149
7150 /* interrupts should cause a wake up from C3 */
7151 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7152 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7153
7154 I915_WRITE(MEM_MODE,
7155 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7156 }
7157
7158 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7159 {
7160 I915_WRITE(MEM_MODE,
7161 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7162 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7163 }
7164
7165 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7166 {
7167 dev_priv->display.init_clock_gating(dev_priv);
7168 }
7169
7170 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7171 {
7172 if (HAS_PCH_LPT(dev_priv))
7173 lpt_suspend_hw(dev_priv);
7174 }
7175
7176 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7177 {
7178 drm_dbg_kms(&dev_priv->drm,
7179 "No clock gating settings or workarounds applied.\n");
7180 }
7181
7182 /**
7183 * intel_init_clock_gating_hooks - setup the clock gating hooks
7184 * @dev_priv: device private
7185 *
7186 * Setup the hooks that configure which clocks of a given platform can be
7187 * gated and also apply various GT and display specific workarounds for these
7188 * platforms. Note that some GT specific workarounds are applied separately
7189 * when GPU contexts or batchbuffers start their execution.
7190 */
7191 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7192 {
7193 if (IS_GEN(dev_priv, 12))
7194 dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7195 else if (IS_GEN(dev_priv, 11))
7196 dev_priv->display.init_clock_gating = icl_init_clock_gating;
7197 else if (IS_CANNONLAKE(dev_priv))
7198 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7199 else if (IS_COFFEELAKE(dev_priv))
7200 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7201 else if (IS_SKYLAKE(dev_priv))
7202 dev_priv->display.init_clock_gating = skl_init_clock_gating;
7203 else if (IS_KABYLAKE(dev_priv))
7204 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7205 else if (IS_BROXTON(dev_priv))
7206 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7207 else if (IS_GEMINILAKE(dev_priv))
7208 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7209 else if (IS_BROADWELL(dev_priv))
7210 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7211 else if (IS_CHERRYVIEW(dev_priv))
7212 dev_priv->display.init_clock_gating = chv_init_clock_gating;
7213 else if (IS_HASWELL(dev_priv))
7214 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7215 else if (IS_IVYBRIDGE(dev_priv))
7216 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7217 else if (IS_VALLEYVIEW(dev_priv))
7218 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7219 else if (IS_GEN(dev_priv, 6))
7220 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7221 else if (IS_GEN(dev_priv, 5))
7222 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7223 else if (IS_G4X(dev_priv))
7224 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7225 else if (IS_I965GM(dev_priv))
7226 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7227 else if (IS_I965G(dev_priv))
7228 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7229 else if (IS_GEN(dev_priv, 3))
7230 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7231 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7232 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7233 else if (IS_GEN(dev_priv, 2))
7234 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7235 else {
7236 MISSING_CASE(INTEL_DEVID(dev_priv));
7237 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7238 }
7239 }
7240
7241 /* Set up chip specific power management-related functions */
7242 void intel_init_pm(struct drm_i915_private *dev_priv)
7243 {
7244 /* For cxsr */
7245 if (IS_PINEVIEW(dev_priv))
7246 pnv_get_mem_freq(dev_priv);
7247 else if (IS_GEN(dev_priv, 5))
7248 ilk_get_mem_freq(dev_priv);
7249
7250 if (intel_has_sagv(dev_priv))
7251 skl_setup_sagv_block_time(dev_priv);
7252
7253 /* For FIFO watermark updates */
7254 if (INTEL_GEN(dev_priv) >= 9) {
7255 skl_setup_wm_latency(dev_priv);
7256 dev_priv->display.initial_watermarks = skl_initial_wm;
7257 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7258 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7259 } else if (HAS_PCH_SPLIT(dev_priv)) {
7260 ilk_setup_wm_latency(dev_priv);
7261
7262 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7263 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7264 (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7265 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7266 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7267 dev_priv->display.compute_intermediate_wm =
7268 ilk_compute_intermediate_wm;
7269 dev_priv->display.initial_watermarks =
7270 ilk_initial_watermarks;
7271 dev_priv->display.optimize_watermarks =
7272 ilk_optimize_watermarks;
7273 } else {
7274 drm_dbg_kms(&dev_priv->drm,
7275 "Failed to read display plane latency. "
7276 "Disable CxSR\n");
7277 }
7278 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7279 vlv_setup_wm_latency(dev_priv);
7280 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7281 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7282 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7283 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7284 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7285 } else if (IS_G4X(dev_priv)) {
7286 g4x_setup_wm_latency(dev_priv);
7287 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7288 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7289 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7290 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7291 } else if (IS_PINEVIEW(dev_priv)) {
7292 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7293 dev_priv->is_ddr3,
7294 dev_priv->fsb_freq,
7295 dev_priv->mem_freq)) {
7296 drm_info(&dev_priv->drm,
7297 "failed to find known CxSR latency "
7298 "(found ddr%s fsb freq %d, mem freq %d), "
7299 "disabling CxSR\n",
7300 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7301 dev_priv->fsb_freq, dev_priv->mem_freq);
7302 /* Disable CxSR and never update its watermark again */
7303 intel_set_memory_cxsr(dev_priv, false);
7304 dev_priv->display.update_wm = NULL;
7305 } else
7306 dev_priv->display.update_wm = pnv_update_wm;
7307 } else if (IS_GEN(dev_priv, 4)) {
7308 dev_priv->display.update_wm = i965_update_wm;
7309 } else if (IS_GEN(dev_priv, 3)) {
7310 dev_priv->display.update_wm = i9xx_update_wm;
7311 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7312 } else if (IS_GEN(dev_priv, 2)) {
7313 if (INTEL_NUM_PIPES(dev_priv) == 1) {
7314 dev_priv->display.update_wm = i845_update_wm;
7315 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7316 } else {
7317 dev_priv->display.update_wm = i9xx_update_wm;
7318 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7319 }
7320 } else {
7321 drm_err(&dev_priv->drm,
7322 "unexpected fall-through in %s\n", __func__);
7323 }
7324 }
7325
7326 void intel_pm_setup(struct drm_i915_private *dev_priv)
7327 {
7328 dev_priv->runtime_pm.suspended = false;
7329 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7330 }
7331