Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.12
      1 /*	$NetBSD: intel_pm.c,v 1.12 2018/08/27 07:26:59 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2012 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: intel_pm.c,v 1.12 2018/08/27 07:26:59 riastradh Exp $");
     32 
     33 #include <linux/bitops.h>
     34 #include <linux/cpufreq.h>
     35 #include <linux/export.h>
     36 #include "i915_drv.h"
     37 #include "intel_drv.h"
     38 #ifndef __NetBSD__
     39 #include "../../../platform/x86/intel_ips.h"
     40 #endif
     41 #include <linux/module.h>
     42 #include <linux/log2.h>
     43 #include <linux/math64.h>
     44 #include <linux/time.h>
     45 
     46 /**
     47  * RC6 is a special power stage which allows the GPU to enter an very
     48  * low-voltage mode when idle, using down to 0V while at this stage.  This
     49  * stage is entered automatically when the GPU is idle when RC6 support is
     50  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
     51  *
     52  * There are different RC6 modes available in Intel GPU, which differentiate
     53  * among each other with the latency required to enter and leave RC6 and
     54  * voltage consumed by the GPU in different states.
     55  *
     56  * The combination of the following flags define which states GPU is allowed
     57  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
     58  * RC6pp is deepest RC6. Their support by hardware varies according to the
     59  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
     60  * which brings the most power savings; deeper states save more power, but
     61  * require higher latency to switch to and wake up.
     62  */
     63 #define INTEL_RC6_ENABLE			(1<<0)
     64 #define INTEL_RC6p_ENABLE			(1<<1)
     65 #define INTEL_RC6pp_ENABLE			(1<<2)
     66 
     67 static void bxt_init_clock_gating(struct drm_device *dev)
     68 {
     69 	struct drm_i915_private *dev_priv = dev->dev_private;
     70 
     71 	/* WaDisableSDEUnitClockGating:bxt */
     72 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
     73 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
     74 
     75 	/*
     76 	 * FIXME:
     77 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
     78 	 */
     79 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
     80 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
     81 }
     82 
     83 static void i915_pineview_get_mem_freq(struct drm_device *dev)
     84 {
     85 	struct drm_i915_private *dev_priv = dev->dev_private;
     86 	u32 tmp;
     87 
     88 	tmp = I915_READ(CLKCFG);
     89 
     90 	switch (tmp & CLKCFG_FSB_MASK) {
     91 	case CLKCFG_FSB_533:
     92 		dev_priv->fsb_freq = 533; /* 133*4 */
     93 		break;
     94 	case CLKCFG_FSB_800:
     95 		dev_priv->fsb_freq = 800; /* 200*4 */
     96 		break;
     97 	case CLKCFG_FSB_667:
     98 		dev_priv->fsb_freq =  667; /* 167*4 */
     99 		break;
    100 	case CLKCFG_FSB_400:
    101 		dev_priv->fsb_freq = 400; /* 100*4 */
    102 		break;
    103 	}
    104 
    105 	switch (tmp & CLKCFG_MEM_MASK) {
    106 	case CLKCFG_MEM_533:
    107 		dev_priv->mem_freq = 533;
    108 		break;
    109 	case CLKCFG_MEM_667:
    110 		dev_priv->mem_freq = 667;
    111 		break;
    112 	case CLKCFG_MEM_800:
    113 		dev_priv->mem_freq = 800;
    114 		break;
    115 	}
    116 
    117 	/* detect pineview DDR3 setting */
    118 	tmp = I915_READ(CSHRDDR3CTL);
    119 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    120 }
    121 
    122 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    123 {
    124 	struct drm_i915_private *dev_priv = dev->dev_private;
    125 	u16 ddrpll, csipll;
    126 
    127 	ddrpll = I915_READ16(DDRMPLL1);
    128 	csipll = I915_READ16(CSIPLL0);
    129 
    130 	switch (ddrpll & 0xff) {
    131 	case 0xc:
    132 		dev_priv->mem_freq = 800;
    133 		break;
    134 	case 0x10:
    135 		dev_priv->mem_freq = 1066;
    136 		break;
    137 	case 0x14:
    138 		dev_priv->mem_freq = 1333;
    139 		break;
    140 	case 0x18:
    141 		dev_priv->mem_freq = 1600;
    142 		break;
    143 	default:
    144 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    145 				 ddrpll & 0xff);
    146 		dev_priv->mem_freq = 0;
    147 		break;
    148 	}
    149 
    150 	dev_priv->ips.r_t = dev_priv->mem_freq;
    151 
    152 	switch (csipll & 0x3ff) {
    153 	case 0x00c:
    154 		dev_priv->fsb_freq = 3200;
    155 		break;
    156 	case 0x00e:
    157 		dev_priv->fsb_freq = 3733;
    158 		break;
    159 	case 0x010:
    160 		dev_priv->fsb_freq = 4266;
    161 		break;
    162 	case 0x012:
    163 		dev_priv->fsb_freq = 4800;
    164 		break;
    165 	case 0x014:
    166 		dev_priv->fsb_freq = 5333;
    167 		break;
    168 	case 0x016:
    169 		dev_priv->fsb_freq = 5866;
    170 		break;
    171 	case 0x018:
    172 		dev_priv->fsb_freq = 6400;
    173 		break;
    174 	default:
    175 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    176 				 csipll & 0x3ff);
    177 		dev_priv->fsb_freq = 0;
    178 		break;
    179 	}
    180 
    181 	if (dev_priv->fsb_freq == 3200) {
    182 		dev_priv->ips.c_m = 0;
    183 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    184 		dev_priv->ips.c_m = 1;
    185 	} else {
    186 		dev_priv->ips.c_m = 2;
    187 	}
    188 }
    189 
    190 static const struct cxsr_latency cxsr_latency_table[] = {
    191 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    192 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    193 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    194 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    195 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    196 
    197 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    198 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    199 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    200 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    201 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    202 
    203 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    204 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    205 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    206 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    207 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    208 
    209 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    210 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    211 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    212 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    213 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    214 
    215 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    216 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    217 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    218 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    219 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    220 
    221 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    222 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    223 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    224 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    225 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    226 };
    227 
    228 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    229 							 int is_ddr3,
    230 							 int fsb,
    231 							 int mem)
    232 {
    233 	const struct cxsr_latency *latency;
    234 	int i;
    235 
    236 	if (fsb == 0 || mem == 0)
    237 		return NULL;
    238 
    239 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    240 		latency = &cxsr_latency_table[i];
    241 		if (is_desktop == latency->is_desktop &&
    242 		    is_ddr3 == latency->is_ddr3 &&
    243 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    244 			return latency;
    245 	}
    246 
    247 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    248 
    249 	return NULL;
    250 }
    251 
    252 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
    253 {
    254 	u32 val;
    255 
    256 	mutex_lock(&dev_priv->rps.hw_lock);
    257 
    258 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
    259 	if (enable)
    260 		val &= ~FORCE_DDR_HIGH_FREQ;
    261 	else
    262 		val |= FORCE_DDR_HIGH_FREQ;
    263 	val &= ~FORCE_DDR_LOW_FREQ;
    264 	val |= FORCE_DDR_FREQ_REQ_ACK;
    265 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
    266 
    267 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
    268 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
    269 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
    270 
    271 	mutex_unlock(&dev_priv->rps.hw_lock);
    272 }
    273 
    274 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
    275 {
    276 	u32 val;
    277 
    278 	mutex_lock(&dev_priv->rps.hw_lock);
    279 
    280 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
    281 	if (enable)
    282 		val |= DSP_MAXFIFO_PM5_ENABLE;
    283 	else
    284 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
    285 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
    286 
    287 	mutex_unlock(&dev_priv->rps.hw_lock);
    288 }
    289 
    290 #define FW_WM(value, plane) \
    291 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
    292 
    293 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
    294 {
    295 	struct drm_device *dev = dev_priv->dev;
    296 	u32 val;
    297 
    298 	if (IS_VALLEYVIEW(dev)) {
    299 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
    300 		POSTING_READ(FW_BLC_SELF_VLV);
    301 		dev_priv->wm.vlv.cxsr = enable;
    302 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
    303 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
    304 		POSTING_READ(FW_BLC_SELF);
    305 	} else if (IS_PINEVIEW(dev)) {
    306 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
    307 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
    308 		I915_WRITE(DSPFW3, val);
    309 		POSTING_READ(DSPFW3);
    310 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
    311 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
    312 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
    313 		I915_WRITE(FW_BLC_SELF, val);
    314 		POSTING_READ(FW_BLC_SELF);
    315 	} else if (IS_I915GM(dev)) {
    316 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
    317 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
    318 		I915_WRITE(INSTPM, val);
    319 		POSTING_READ(INSTPM);
    320 	} else {
    321 		return;
    322 	}
    323 
    324 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
    325 		      enable ? "enabled" : "disabled");
    326 }
    327 
    328 
    329 /*
    330  * Latency for FIFO fetches is dependent on several factors:
    331  *   - memory configuration (speed, channels)
    332  *   - chipset
    333  *   - current MCH state
    334  * It can be fairly high in some situations, so here we assume a fairly
    335  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    336  * set this value too high, the FIFO will fetch frequently to stay full)
    337  * and power consumption (set it too low to save power and we might see
    338  * FIFO underruns and display "flicker").
    339  *
    340  * A value of 5us seems to be a good balance; safe for very low end
    341  * platforms but not overly aggressive on lower latency configs.
    342  */
    343 static const int pessimal_latency_ns = 5000;
    344 
    345 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
    346 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
    347 
    348 static int vlv_get_fifo_size(struct drm_device *dev,
    349 			      enum i915_pipe pipe, int plane)
    350 {
    351 	struct drm_i915_private *dev_priv = dev->dev_private;
    352 	int sprite0_start, sprite1_start, size;
    353 
    354 	switch (pipe) {
    355 		uint32_t dsparb, dsparb2, dsparb3;
    356 	case PIPE_A:
    357 		dsparb = I915_READ(DSPARB);
    358 		dsparb2 = I915_READ(DSPARB2);
    359 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
    360 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
    361 		break;
    362 	case PIPE_B:
    363 		dsparb = I915_READ(DSPARB);
    364 		dsparb2 = I915_READ(DSPARB2);
    365 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
    366 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
    367 		break;
    368 	case PIPE_C:
    369 		dsparb2 = I915_READ(DSPARB2);
    370 		dsparb3 = I915_READ(DSPARB3);
    371 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
    372 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
    373 		break;
    374 	default:
    375 		return 0;
    376 	}
    377 
    378 	switch (plane) {
    379 	case 0:
    380 		size = sprite0_start;
    381 		break;
    382 	case 1:
    383 		size = sprite1_start - sprite0_start;
    384 		break;
    385 	case 2:
    386 		size = 512 - 1 - sprite1_start;
    387 		break;
    388 	default:
    389 		return 0;
    390 	}
    391 
    392 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
    393 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
    394 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
    395 		      size);
    396 
    397 	return size;
    398 }
    399 
    400 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    401 {
    402 	struct drm_i915_private *dev_priv = dev->dev_private;
    403 	uint32_t dsparb = I915_READ(DSPARB);
    404 	int size;
    405 
    406 	size = dsparb & 0x7f;
    407 	if (plane)
    408 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    409 
    410 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    411 		      plane ? "B" : "A", size);
    412 
    413 	return size;
    414 }
    415 
    416 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    417 {
    418 	struct drm_i915_private *dev_priv = dev->dev_private;
    419 	uint32_t dsparb = I915_READ(DSPARB);
    420 	int size;
    421 
    422 	size = dsparb & 0x1ff;
    423 	if (plane)
    424 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    425 	size >>= 1; /* Convert to cachelines */
    426 
    427 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    428 		      plane ? "B" : "A", size);
    429 
    430 	return size;
    431 }
    432 
    433 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    434 {
    435 	struct drm_i915_private *dev_priv = dev->dev_private;
    436 	uint32_t dsparb = I915_READ(DSPARB);
    437 	int size;
    438 
    439 	size = dsparb & 0x7f;
    440 	size >>= 2; /* Convert to cachelines */
    441 
    442 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    443 		      plane ? "B" : "A",
    444 		      size);
    445 
    446 	return size;
    447 }
    448 
    449 /* Pineview has different values for various configs */
    450 static const struct intel_watermark_params pineview_display_wm = {
    451 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    452 	.max_wm = PINEVIEW_MAX_WM,
    453 	.default_wm = PINEVIEW_DFT_WM,
    454 	.guard_size = PINEVIEW_GUARD_WM,
    455 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    456 };
    457 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    458 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    459 	.max_wm = PINEVIEW_MAX_WM,
    460 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
    461 	.guard_size = PINEVIEW_GUARD_WM,
    462 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    463 };
    464 static const struct intel_watermark_params pineview_cursor_wm = {
    465 	.fifo_size = PINEVIEW_CURSOR_FIFO,
    466 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    467 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    468 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    469 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    470 };
    471 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    472 	.fifo_size = PINEVIEW_CURSOR_FIFO,
    473 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    474 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    475 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    476 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    477 };
    478 static const struct intel_watermark_params g4x_wm_info = {
    479 	.fifo_size = G4X_FIFO_SIZE,
    480 	.max_wm = G4X_MAX_WM,
    481 	.default_wm = G4X_MAX_WM,
    482 	.guard_size = 2,
    483 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    484 };
    485 static const struct intel_watermark_params g4x_cursor_wm_info = {
    486 	.fifo_size = I965_CURSOR_FIFO,
    487 	.max_wm = I965_CURSOR_MAX_WM,
    488 	.default_wm = I965_CURSOR_DFT_WM,
    489 	.guard_size = 2,
    490 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    491 };
    492 static const struct intel_watermark_params valleyview_wm_info = {
    493 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
    494 	.max_wm = VALLEYVIEW_MAX_WM,
    495 	.default_wm = VALLEYVIEW_MAX_WM,
    496 	.guard_size = 2,
    497 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    498 };
    499 static const struct intel_watermark_params valleyview_cursor_wm_info = {
    500 	.fifo_size = I965_CURSOR_FIFO,
    501 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
    502 	.default_wm = I965_CURSOR_DFT_WM,
    503 	.guard_size = 2,
    504 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    505 };
    506 static const struct intel_watermark_params i965_cursor_wm_info = {
    507 	.fifo_size = I965_CURSOR_FIFO,
    508 	.max_wm = I965_CURSOR_MAX_WM,
    509 	.default_wm = I965_CURSOR_DFT_WM,
    510 	.guard_size = 2,
    511 	.cacheline_size = I915_FIFO_LINE_SIZE,
    512 };
    513 static const struct intel_watermark_params i945_wm_info = {
    514 	.fifo_size = I945_FIFO_SIZE,
    515 	.max_wm = I915_MAX_WM,
    516 	.default_wm = 1,
    517 	.guard_size = 2,
    518 	.cacheline_size = I915_FIFO_LINE_SIZE,
    519 };
    520 static const struct intel_watermark_params i915_wm_info = {
    521 	.fifo_size = I915_FIFO_SIZE,
    522 	.max_wm = I915_MAX_WM,
    523 	.default_wm = 1,
    524 	.guard_size = 2,
    525 	.cacheline_size = I915_FIFO_LINE_SIZE,
    526 };
    527 static const struct intel_watermark_params i830_a_wm_info = {
    528 	.fifo_size = I855GM_FIFO_SIZE,
    529 	.max_wm = I915_MAX_WM,
    530 	.default_wm = 1,
    531 	.guard_size = 2,
    532 	.cacheline_size = I830_FIFO_LINE_SIZE,
    533 };
    534 static const struct intel_watermark_params i830_bc_wm_info = {
    535 	.fifo_size = I855GM_FIFO_SIZE,
    536 	.max_wm = I915_MAX_WM/2,
    537 	.default_wm = 1,
    538 	.guard_size = 2,
    539 	.cacheline_size = I830_FIFO_LINE_SIZE,
    540 };
    541 static const struct intel_watermark_params i845_wm_info = {
    542 	.fifo_size = I830_FIFO_SIZE,
    543 	.max_wm = I915_MAX_WM,
    544 	.default_wm = 1,
    545 	.guard_size = 2,
    546 	.cacheline_size = I830_FIFO_LINE_SIZE,
    547 };
    548 
    549 /**
    550  * intel_calculate_wm - calculate watermark level
    551  * @clock_in_khz: pixel clock
    552  * @wm: chip FIFO params
    553  * @pixel_size: display pixel size
    554  * @latency_ns: memory latency for the platform
    555  *
    556  * Calculate the watermark level (the level at which the display plane will
    557  * start fetching from memory again).  Each chip has a different display
    558  * FIFO size and allocation, so the caller needs to figure that out and pass
    559  * in the correct intel_watermark_params structure.
    560  *
    561  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    562  * on the pixel size.  When it reaches the watermark level, it'll start
    563  * fetching FIFO line sized based chunks from memory until the FIFO fills
    564  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    565  * will occur, and a display engine hang could result.
    566  */
    567 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    568 					const struct intel_watermark_params *wm,
    569 					int fifo_size,
    570 					int pixel_size,
    571 					unsigned long latency_ns)
    572 {
    573 	long entries_required, wm_size;
    574 
    575 	/*
    576 	 * Note: we need to make sure we don't overflow for various clock &
    577 	 * latency values.
    578 	 * clocks go from a few thousand to several hundred thousand.
    579 	 * latency is usually a few thousand
    580 	 */
    581 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
    582 		1000;
    583 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
    584 
    585 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
    586 
    587 	wm_size = fifo_size - (entries_required + wm->guard_size);
    588 
    589 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
    590 
    591 	/* Don't promote wm_size to unsigned... */
    592 	if (wm_size > (long)wm->max_wm)
    593 		wm_size = wm->max_wm;
    594 	if (wm_size <= 0)
    595 		wm_size = wm->default_wm;
    596 
    597 	/*
    598 	 * Bspec seems to indicate that the value shouldn't be lower than
    599 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
    600 	 * Lets go for 8 which is the burst size since certain platforms
    601 	 * already use a hardcoded 8 (which is what the spec says should be
    602 	 * done).
    603 	 */
    604 	if (wm_size <= 8)
    605 		wm_size = 8;
    606 
    607 	return wm_size;
    608 }
    609 
    610 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
    611 {
    612 	struct drm_crtc *crtc, *enabled = NULL;
    613 
    614 	for_each_crtc(dev, crtc) {
    615 		if (intel_crtc_active(crtc)) {
    616 			if (enabled)
    617 				return NULL;
    618 			enabled = crtc;
    619 		}
    620 	}
    621 
    622 	return enabled;
    623 }
    624 
    625 static void pineview_update_wm(struct drm_crtc *unused_crtc)
    626 {
    627 	struct drm_device *dev = unused_crtc->dev;
    628 	struct drm_i915_private *dev_priv = dev->dev_private;
    629 	struct drm_crtc *crtc;
    630 	const struct cxsr_latency *latency;
    631 	u32 reg;
    632 	unsigned long wm;
    633 
    634 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
    635 					 dev_priv->fsb_freq, dev_priv->mem_freq);
    636 	if (!latency) {
    637 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    638 		intel_set_memory_cxsr(dev_priv, false);
    639 		return;
    640 	}
    641 
    642 	crtc = single_enabled_crtc(dev);
    643 	if (crtc) {
    644 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    645 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    646 		int clock = adjusted_mode->crtc_clock;
    647 
    648 		/* Display SR */
    649 		wm = intel_calculate_wm(clock, &pineview_display_wm,
    650 					pineview_display_wm.fifo_size,
    651 					pixel_size, latency->display_sr);
    652 		reg = I915_READ(DSPFW1);
    653 		reg &= ~DSPFW_SR_MASK;
    654 		reg |= FW_WM(wm, SR);
    655 		I915_WRITE(DSPFW1, reg);
    656 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
    657 
    658 		/* cursor SR */
    659 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
    660 					pineview_display_wm.fifo_size,
    661 					pixel_size, latency->cursor_sr);
    662 		reg = I915_READ(DSPFW3);
    663 		reg &= ~DSPFW_CURSOR_SR_MASK;
    664 		reg |= FW_WM(wm, CURSOR_SR);
    665 		I915_WRITE(DSPFW3, reg);
    666 
    667 		/* Display HPLL off SR */
    668 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
    669 					pineview_display_hplloff_wm.fifo_size,
    670 					pixel_size, latency->display_hpll_disable);
    671 		reg = I915_READ(DSPFW3);
    672 		reg &= ~DSPFW_HPLL_SR_MASK;
    673 		reg |= FW_WM(wm, HPLL_SR);
    674 		I915_WRITE(DSPFW3, reg);
    675 
    676 		/* cursor HPLL off SR */
    677 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
    678 					pineview_display_hplloff_wm.fifo_size,
    679 					pixel_size, latency->cursor_hpll_disable);
    680 		reg = I915_READ(DSPFW3);
    681 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
    682 		reg |= FW_WM(wm, HPLL_CURSOR);
    683 		I915_WRITE(DSPFW3, reg);
    684 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
    685 
    686 		intel_set_memory_cxsr(dev_priv, true);
    687 	} else {
    688 		intel_set_memory_cxsr(dev_priv, false);
    689 	}
    690 }
    691 
    692 static bool g4x_compute_wm0(struct drm_device *dev,
    693 			    int plane,
    694 			    const struct intel_watermark_params *display,
    695 			    int display_latency_ns,
    696 			    const struct intel_watermark_params *cursor,
    697 			    int cursor_latency_ns,
    698 			    int *plane_wm,
    699 			    int *cursor_wm)
    700 {
    701 	struct drm_crtc *crtc;
    702 	const struct drm_display_mode *adjusted_mode;
    703 	int htotal, hdisplay, clock, pixel_size;
    704 	int line_time_us, line_count;
    705 	int entries, tlb_miss;
    706 
    707 	crtc = intel_get_crtc_for_plane(dev, plane);
    708 	if (!intel_crtc_active(crtc)) {
    709 		*cursor_wm = cursor->guard_size;
    710 		*plane_wm = display->guard_size;
    711 		return false;
    712 	}
    713 
    714 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    715 	clock = adjusted_mode->crtc_clock;
    716 	htotal = adjusted_mode->crtc_htotal;
    717 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
    718 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    719 
    720 	/* Use the small buffer method to calculate plane watermark */
    721 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
    722 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
    723 	if (tlb_miss > 0)
    724 		entries += tlb_miss;
    725 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
    726 	*plane_wm = entries + display->guard_size;
    727 	if (*plane_wm > (int)display->max_wm)
    728 		*plane_wm = display->max_wm;
    729 
    730 	/* Use the large buffer method to calculate cursor watermark */
    731 	line_time_us = max(htotal * 1000 / clock, 1);
    732 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
    733 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
    734 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
    735 	if (tlb_miss > 0)
    736 		entries += tlb_miss;
    737 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
    738 	*cursor_wm = entries + cursor->guard_size;
    739 	if (*cursor_wm > (int)cursor->max_wm)
    740 		*cursor_wm = (int)cursor->max_wm;
    741 
    742 	return true;
    743 }
    744 
    745 /*
    746  * Check the wm result.
    747  *
    748  * If any calculated watermark values is larger than the maximum value that
    749  * can be programmed into the associated watermark register, that watermark
    750  * must be disabled.
    751  */
    752 static bool g4x_check_srwm(struct drm_device *dev,
    753 			   int display_wm, int cursor_wm,
    754 			   const struct intel_watermark_params *display,
    755 			   const struct intel_watermark_params *cursor)
    756 {
    757 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
    758 		      display_wm, cursor_wm);
    759 
    760 	if (display_wm > display->max_wm) {
    761 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
    762 			      display_wm, display->max_wm);
    763 		return false;
    764 	}
    765 
    766 	if (cursor_wm > cursor->max_wm) {
    767 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
    768 			      cursor_wm, cursor->max_wm);
    769 		return false;
    770 	}
    771 
    772 	if (!(display_wm || cursor_wm)) {
    773 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
    774 		return false;
    775 	}
    776 
    777 	return true;
    778 }
    779 
    780 static bool g4x_compute_srwm(struct drm_device *dev,
    781 			     int plane,
    782 			     int latency_ns,
    783 			     const struct intel_watermark_params *display,
    784 			     const struct intel_watermark_params *cursor,
    785 			     int *display_wm, int *cursor_wm)
    786 {
    787 	struct drm_crtc *crtc;
    788 	const struct drm_display_mode *adjusted_mode;
    789 	int hdisplay, htotal, pixel_size, clock;
    790 	unsigned long line_time_us;
    791 	int line_count, line_size;
    792 	int small, large;
    793 	int entries;
    794 
    795 	if (!latency_ns) {
    796 		*display_wm = *cursor_wm = 0;
    797 		return false;
    798 	}
    799 
    800 	crtc = intel_get_crtc_for_plane(dev, plane);
    801 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    802 	clock = adjusted_mode->crtc_clock;
    803 	htotal = adjusted_mode->crtc_htotal;
    804 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
    805 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    806 
    807 	line_time_us = max(htotal * 1000 / clock, 1);
    808 	line_count = (latency_ns / line_time_us + 1000) / 1000;
    809 	line_size = hdisplay * pixel_size;
    810 
    811 	/* Use the minimum of the small and large buffer method for primary */
    812 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
    813 	large = line_count * line_size;
    814 
    815 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
    816 	*display_wm = entries + display->guard_size;
    817 
    818 	/* calculate the self-refresh watermark for display cursor */
    819 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
    820 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
    821 	*cursor_wm = entries + cursor->guard_size;
    822 
    823 	return g4x_check_srwm(dev,
    824 			      *display_wm, *cursor_wm,
    825 			      display, cursor);
    826 }
    827 
    828 #define FW_WM_VLV(value, plane) \
    829 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
    830 
    831 static void vlv_write_wm_values(struct intel_crtc *crtc,
    832 				const struct vlv_wm_values *wm)
    833 {
    834 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
    835 	enum i915_pipe pipe = crtc->pipe;
    836 
    837 	I915_WRITE(VLV_DDL(pipe),
    838 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
    839 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
    840 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
    841 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
    842 
    843 	I915_WRITE(DSPFW1,
    844 		   FW_WM(wm->sr.plane, SR) |
    845 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
    846 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
    847 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
    848 	I915_WRITE(DSPFW2,
    849 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
    850 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
    851 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
    852 	I915_WRITE(DSPFW3,
    853 		   FW_WM(wm->sr.cursor, CURSOR_SR));
    854 
    855 	if (IS_CHERRYVIEW(dev_priv)) {
    856 		I915_WRITE(DSPFW7_CHV,
    857 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
    858 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
    859 		I915_WRITE(DSPFW8_CHV,
    860 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
    861 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
    862 		I915_WRITE(DSPFW9_CHV,
    863 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
    864 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
    865 		I915_WRITE(DSPHOWM,
    866 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
    867 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
    868 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
    869 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
    870 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
    871 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
    872 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
    873 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
    874 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
    875 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
    876 	} else {
    877 		I915_WRITE(DSPFW7,
    878 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
    879 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
    880 		I915_WRITE(DSPHOWM,
    881 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
    882 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
    883 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
    884 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
    885 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
    886 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
    887 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
    888 	}
    889 
    890 	/* zero (unused) WM1 watermarks */
    891 	I915_WRITE(DSPFW4, 0);
    892 	I915_WRITE(DSPFW5, 0);
    893 	I915_WRITE(DSPFW6, 0);
    894 	I915_WRITE(DSPHOWM1, 0);
    895 
    896 	POSTING_READ(DSPFW1);
    897 }
    898 
    899 #undef FW_WM_VLV
    900 
    901 enum vlv_wm_level {
    902 	VLV_WM_LEVEL_PM2,
    903 	VLV_WM_LEVEL_PM5,
    904 	VLV_WM_LEVEL_DDR_DVFS,
    905 };
    906 
    907 /* latency must be in 0.1us units. */
    908 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
    909 				   unsigned int pipe_htotal,
    910 				   unsigned int horiz_pixels,
    911 				   unsigned int bytes_per_pixel,
    912 				   unsigned int latency)
    913 {
    914 	unsigned int ret;
    915 
    916 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
    917 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
    918 	ret = DIV_ROUND_UP(ret, 64);
    919 
    920 	return ret;
    921 }
    922 
    923 static void vlv_setup_wm_latency(struct drm_device *dev)
    924 {
    925 	struct drm_i915_private *dev_priv = dev->dev_private;
    926 
    927 	/* all latencies in usec */
    928 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
    929 
    930 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
    931 
    932 	if (IS_CHERRYVIEW(dev_priv)) {
    933 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
    934 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
    935 
    936 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
    937 	}
    938 }
    939 
    940 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
    941 				     struct intel_crtc *crtc,
    942 				     const struct intel_plane_state *state,
    943 				     int level)
    944 {
    945 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
    946 	int clock, htotal, pixel_size, width, wm;
    947 
    948 	if (dev_priv->wm.pri_latency[level] == 0)
    949 		return USHRT_MAX;
    950 
    951 	if (!state->visible)
    952 		return 0;
    953 
    954 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
    955 	clock = crtc->config->base.adjusted_mode.crtc_clock;
    956 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
    957 	width = crtc->config->pipe_src_w;
    958 	if (WARN_ON(htotal == 0))
    959 		htotal = 1;
    960 
    961 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
    962 		/*
    963 		 * FIXME the formula gives values that are
    964 		 * too big for the cursor FIFO, and hence we
    965 		 * would never be able to use cursors. For
    966 		 * now just hardcode the watermark.
    967 		 */
    968 		wm = 63;
    969 	} else {
    970 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
    971 				    dev_priv->wm.pri_latency[level] * 10);
    972 	}
    973 
    974 	return min_t(int, wm, USHRT_MAX);
    975 }
    976 
    977 static void vlv_compute_fifo(struct intel_crtc *crtc)
    978 {
    979 	struct drm_device *dev = crtc->base.dev;
    980 	struct vlv_wm_state *wm_state = &crtc->wm_state;
    981 	struct intel_plane *plane;
    982 	unsigned int total_rate = 0;
    983 	const int fifo_size = 512 - 1;
    984 	int fifo_extra, fifo_left = fifo_size;
    985 
    986 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
    987 		struct intel_plane_state *state =
    988 			to_intel_plane_state(plane->base.state);
    989 
    990 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
    991 			continue;
    992 
    993 		if (state->visible) {
    994 			wm_state->num_active_planes++;
    995 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
    996 		}
    997 	}
    998 
    999 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1000 		struct intel_plane_state *state =
   1001 			to_intel_plane_state(plane->base.state);
   1002 		unsigned int rate;
   1003 
   1004 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
   1005 			plane->wm.fifo_size = 63;
   1006 			continue;
   1007 		}
   1008 
   1009 		if (!state->visible) {
   1010 			plane->wm.fifo_size = 0;
   1011 			continue;
   1012 		}
   1013 
   1014 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
   1015 		plane->wm.fifo_size = fifo_size * rate / total_rate;
   1016 		fifo_left -= plane->wm.fifo_size;
   1017 	}
   1018 
   1019 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
   1020 
   1021 	/* spread the remainder evenly */
   1022 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1023 		int plane_extra;
   1024 
   1025 		if (fifo_left == 0)
   1026 			break;
   1027 
   1028 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
   1029 			continue;
   1030 
   1031 		/* give it all to the first plane if none are active */
   1032 		if (plane->wm.fifo_size == 0 &&
   1033 		    wm_state->num_active_planes)
   1034 			continue;
   1035 
   1036 		plane_extra = min(fifo_extra, fifo_left);
   1037 		plane->wm.fifo_size += plane_extra;
   1038 		fifo_left -= plane_extra;
   1039 	}
   1040 
   1041 	WARN_ON(fifo_left != 0);
   1042 }
   1043 
   1044 static void vlv_invert_wms(struct intel_crtc *crtc)
   1045 {
   1046 	struct vlv_wm_state *wm_state = &crtc->wm_state;
   1047 	int level;
   1048 
   1049 	for (level = 0; level < wm_state->num_levels; level++) {
   1050 		struct drm_device *dev = crtc->base.dev;
   1051 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
   1052 		struct intel_plane *plane;
   1053 
   1054 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
   1055 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
   1056 
   1057 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1058 			switch (plane->base.type) {
   1059 				int sprite;
   1060 			case DRM_PLANE_TYPE_CURSOR:
   1061 				wm_state->wm[level].cursor = plane->wm.fifo_size -
   1062 					wm_state->wm[level].cursor;
   1063 				break;
   1064 			case DRM_PLANE_TYPE_PRIMARY:
   1065 				wm_state->wm[level].primary = plane->wm.fifo_size -
   1066 					wm_state->wm[level].primary;
   1067 				break;
   1068 			case DRM_PLANE_TYPE_OVERLAY:
   1069 				sprite = plane->plane;
   1070 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
   1071 					wm_state->wm[level].sprite[sprite];
   1072 				break;
   1073 			}
   1074 		}
   1075 	}
   1076 }
   1077 
   1078 static void vlv_compute_wm(struct intel_crtc *crtc)
   1079 {
   1080 	struct drm_device *dev = crtc->base.dev;
   1081 	struct vlv_wm_state *wm_state = &crtc->wm_state;
   1082 	struct intel_plane *plane;
   1083 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
   1084 	int level;
   1085 
   1086 	memset(wm_state, 0, sizeof(*wm_state));
   1087 
   1088 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
   1089 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
   1090 
   1091 	wm_state->num_active_planes = 0;
   1092 
   1093 	vlv_compute_fifo(crtc);
   1094 
   1095 	if (wm_state->num_active_planes != 1)
   1096 		wm_state->cxsr = false;
   1097 
   1098 	if (wm_state->cxsr) {
   1099 		for (level = 0; level < wm_state->num_levels; level++) {
   1100 			wm_state->sr[level].plane = sr_fifo_size;
   1101 			wm_state->sr[level].cursor = 63;
   1102 		}
   1103 	}
   1104 
   1105 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1106 		struct intel_plane_state *state =
   1107 			to_intel_plane_state(plane->base.state);
   1108 
   1109 		if (!state->visible)
   1110 			continue;
   1111 
   1112 		/* normal watermarks */
   1113 		for (level = 0; level < wm_state->num_levels; level++) {
   1114 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
   1115 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
   1116 
   1117 			/* hack */
   1118 			if (WARN_ON(level == 0 && wm > max_wm))
   1119 				wm = max_wm;
   1120 
   1121 			if (wm > plane->wm.fifo_size)
   1122 				break;
   1123 
   1124 			switch (plane->base.type) {
   1125 				int sprite;
   1126 			case DRM_PLANE_TYPE_CURSOR:
   1127 				wm_state->wm[level].cursor = wm;
   1128 				break;
   1129 			case DRM_PLANE_TYPE_PRIMARY:
   1130 				wm_state->wm[level].primary = wm;
   1131 				break;
   1132 			case DRM_PLANE_TYPE_OVERLAY:
   1133 				sprite = plane->plane;
   1134 				wm_state->wm[level].sprite[sprite] = wm;
   1135 				break;
   1136 			}
   1137 		}
   1138 
   1139 		wm_state->num_levels = level;
   1140 
   1141 		if (!wm_state->cxsr)
   1142 			continue;
   1143 
   1144 		/* maxfifo watermarks */
   1145 		switch (plane->base.type) {
   1146 			int sprite, level;
   1147 		case DRM_PLANE_TYPE_CURSOR:
   1148 			for (level = 0; level < wm_state->num_levels; level++)
   1149 				wm_state->sr[level].cursor =
   1150 					wm_state->wm[level].cursor;
   1151 			break;
   1152 		case DRM_PLANE_TYPE_PRIMARY:
   1153 			for (level = 0; level < wm_state->num_levels; level++)
   1154 				wm_state->sr[level].plane =
   1155 					min(wm_state->sr[level].plane,
   1156 					    wm_state->wm[level].primary);
   1157 			break;
   1158 		case DRM_PLANE_TYPE_OVERLAY:
   1159 			sprite = plane->plane;
   1160 			for (level = 0; level < wm_state->num_levels; level++)
   1161 				wm_state->sr[level].plane =
   1162 					min(wm_state->sr[level].plane,
   1163 					    wm_state->wm[level].sprite[sprite]);
   1164 			break;
   1165 		}
   1166 	}
   1167 
   1168 	/* clear any (partially) filled invalid levels */
   1169 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
   1170 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
   1171 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
   1172 	}
   1173 
   1174 	vlv_invert_wms(crtc);
   1175 }
   1176 
   1177 #define VLV_FIFO(plane, value) \
   1178 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
   1179 
   1180 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
   1181 {
   1182 	struct drm_device *dev = crtc->base.dev;
   1183 	struct drm_i915_private *dev_priv = to_i915(dev);
   1184 	struct intel_plane *plane;
   1185 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
   1186 
   1187 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1188 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
   1189 			WARN_ON(plane->wm.fifo_size != 63);
   1190 			continue;
   1191 		}
   1192 
   1193 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
   1194 			sprite0_start = plane->wm.fifo_size;
   1195 		else if (plane->plane == 0)
   1196 			sprite1_start = sprite0_start + plane->wm.fifo_size;
   1197 		else
   1198 			fifo_size = sprite1_start + plane->wm.fifo_size;
   1199 	}
   1200 
   1201 	WARN_ON(fifo_size != 512 - 1);
   1202 
   1203 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
   1204 		      pipe_name(crtc->pipe), sprite0_start,
   1205 		      sprite1_start, fifo_size);
   1206 
   1207 	switch (crtc->pipe) {
   1208 		uint32_t dsparb, dsparb2, dsparb3;
   1209 	case PIPE_A:
   1210 		dsparb = I915_READ(DSPARB);
   1211 		dsparb2 = I915_READ(DSPARB2);
   1212 
   1213 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
   1214 			    VLV_FIFO(SPRITEB, 0xff));
   1215 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
   1216 			   VLV_FIFO(SPRITEB, sprite1_start));
   1217 
   1218 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
   1219 			     VLV_FIFO(SPRITEB_HI, 0x1));
   1220 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
   1221 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
   1222 
   1223 		I915_WRITE(DSPARB, dsparb);
   1224 		I915_WRITE(DSPARB2, dsparb2);
   1225 		break;
   1226 	case PIPE_B:
   1227 		dsparb = I915_READ(DSPARB);
   1228 		dsparb2 = I915_READ(DSPARB2);
   1229 
   1230 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
   1231 			    VLV_FIFO(SPRITED, 0xff));
   1232 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
   1233 			   VLV_FIFO(SPRITED, sprite1_start));
   1234 
   1235 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
   1236 			     VLV_FIFO(SPRITED_HI, 0xff));
   1237 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
   1238 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
   1239 
   1240 		I915_WRITE(DSPARB, dsparb);
   1241 		I915_WRITE(DSPARB2, dsparb2);
   1242 		break;
   1243 	case PIPE_C:
   1244 		dsparb3 = I915_READ(DSPARB3);
   1245 		dsparb2 = I915_READ(DSPARB2);
   1246 
   1247 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
   1248 			     VLV_FIFO(SPRITEF, 0xff));
   1249 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
   1250 			    VLV_FIFO(SPRITEF, sprite1_start));
   1251 
   1252 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
   1253 			     VLV_FIFO(SPRITEF_HI, 0xff));
   1254 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
   1255 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
   1256 
   1257 		I915_WRITE(DSPARB3, dsparb3);
   1258 		I915_WRITE(DSPARB2, dsparb2);
   1259 		break;
   1260 	default:
   1261 		break;
   1262 	}
   1263 }
   1264 
   1265 #undef VLV_FIFO
   1266 
   1267 static void vlv_merge_wm(struct drm_device *dev,
   1268 			 struct vlv_wm_values *wm)
   1269 {
   1270 	struct intel_crtc *crtc;
   1271 	int num_active_crtcs = 0;
   1272 
   1273 	wm->level = to_i915(dev)->wm.max_level;
   1274 	wm->cxsr = true;
   1275 
   1276 	for_each_intel_crtc(dev, crtc) {
   1277 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
   1278 
   1279 		if (!crtc->active)
   1280 			continue;
   1281 
   1282 		if (!wm_state->cxsr)
   1283 			wm->cxsr = false;
   1284 
   1285 		num_active_crtcs++;
   1286 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
   1287 	}
   1288 
   1289 	if (num_active_crtcs != 1)
   1290 		wm->cxsr = false;
   1291 
   1292 	if (num_active_crtcs > 1)
   1293 		wm->level = VLV_WM_LEVEL_PM2;
   1294 
   1295 	for_each_intel_crtc(dev, crtc) {
   1296 		struct vlv_wm_state *wm_state = &crtc->wm_state;
   1297 		enum i915_pipe pipe = crtc->pipe;
   1298 
   1299 		if (!crtc->active)
   1300 			continue;
   1301 
   1302 		wm->pipe[pipe] = wm_state->wm[wm->level];
   1303 		if (wm->cxsr)
   1304 			wm->sr = wm_state->sr[wm->level];
   1305 
   1306 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
   1307 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
   1308 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
   1309 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
   1310 	}
   1311 }
   1312 
   1313 static void vlv_update_wm(struct drm_crtc *crtc)
   1314 {
   1315 	struct drm_device *dev = crtc->dev;
   1316 	struct drm_i915_private *dev_priv = dev->dev_private;
   1317 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   1318 	enum i915_pipe pipe = intel_crtc->pipe;
   1319 	struct vlv_wm_values wm = {};
   1320 
   1321 	vlv_compute_wm(intel_crtc);
   1322 	vlv_merge_wm(dev, &wm);
   1323 
   1324 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
   1325 		/* FIXME should be part of crtc atomic commit */
   1326 		vlv_pipe_set_fifo_size(intel_crtc);
   1327 		return;
   1328 	}
   1329 
   1330 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
   1331 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
   1332 		chv_set_memory_dvfs(dev_priv, false);
   1333 
   1334 	if (wm.level < VLV_WM_LEVEL_PM5 &&
   1335 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
   1336 		chv_set_memory_pm5(dev_priv, false);
   1337 
   1338 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
   1339 		intel_set_memory_cxsr(dev_priv, false);
   1340 
   1341 	/* FIXME should be part of crtc atomic commit */
   1342 	vlv_pipe_set_fifo_size(intel_crtc);
   1343 
   1344 	vlv_write_wm_values(intel_crtc, &wm);
   1345 
   1346 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
   1347 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
   1348 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
   1349 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
   1350 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
   1351 
   1352 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
   1353 		intel_set_memory_cxsr(dev_priv, true);
   1354 
   1355 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
   1356 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
   1357 		chv_set_memory_pm5(dev_priv, true);
   1358 
   1359 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
   1360 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
   1361 		chv_set_memory_dvfs(dev_priv, true);
   1362 
   1363 	dev_priv->wm.vlv = wm;
   1364 }
   1365 
   1366 #define single_plane_enabled(mask) is_power_of_2(mask)
   1367 
   1368 static void g4x_update_wm(struct drm_crtc *crtc)
   1369 {
   1370 	struct drm_device *dev = crtc->dev;
   1371 	static const int sr_latency_ns = 12000;
   1372 	struct drm_i915_private *dev_priv = dev->dev_private;
   1373 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1374 	int plane_sr, cursor_sr;
   1375 	unsigned int enabled = 0;
   1376 	bool cxsr_enabled;
   1377 
   1378 	if (g4x_compute_wm0(dev, PIPE_A,
   1379 			    &g4x_wm_info, pessimal_latency_ns,
   1380 			    &g4x_cursor_wm_info, pessimal_latency_ns,
   1381 			    &planea_wm, &cursora_wm))
   1382 		enabled |= 1 << PIPE_A;
   1383 
   1384 	if (g4x_compute_wm0(dev, PIPE_B,
   1385 			    &g4x_wm_info, pessimal_latency_ns,
   1386 			    &g4x_cursor_wm_info, pessimal_latency_ns,
   1387 			    &planeb_wm, &cursorb_wm))
   1388 		enabled |= 1 << PIPE_B;
   1389 
   1390 	if (single_plane_enabled(enabled) &&
   1391 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1392 			     sr_latency_ns,
   1393 			     &g4x_wm_info,
   1394 			     &g4x_cursor_wm_info,
   1395 			     &plane_sr, &cursor_sr)) {
   1396 		cxsr_enabled = true;
   1397 	} else {
   1398 		cxsr_enabled = false;
   1399 		intel_set_memory_cxsr(dev_priv, false);
   1400 		plane_sr = cursor_sr = 0;
   1401 	}
   1402 
   1403 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
   1404 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1405 		      planea_wm, cursora_wm,
   1406 		      planeb_wm, cursorb_wm,
   1407 		      plane_sr, cursor_sr);
   1408 
   1409 	I915_WRITE(DSPFW1,
   1410 		   FW_WM(plane_sr, SR) |
   1411 		   FW_WM(cursorb_wm, CURSORB) |
   1412 		   FW_WM(planeb_wm, PLANEB) |
   1413 		   FW_WM(planea_wm, PLANEA));
   1414 	I915_WRITE(DSPFW2,
   1415 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1416 		   FW_WM(cursora_wm, CURSORA));
   1417 	/* HPLL off in SR has some issues on G4x... disable it */
   1418 	I915_WRITE(DSPFW3,
   1419 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1420 		   FW_WM(cursor_sr, CURSOR_SR));
   1421 
   1422 	if (cxsr_enabled)
   1423 		intel_set_memory_cxsr(dev_priv, true);
   1424 }
   1425 
   1426 static void i965_update_wm(struct drm_crtc *unused_crtc)
   1427 {
   1428 	struct drm_device *dev = unused_crtc->dev;
   1429 	struct drm_i915_private *dev_priv = dev->dev_private;
   1430 	struct drm_crtc *crtc;
   1431 	int srwm = 1;
   1432 	int cursor_sr = 16;
   1433 	bool cxsr_enabled;
   1434 
   1435 	/* Calc sr entries for one plane configs */
   1436 	crtc = single_enabled_crtc(dev);
   1437 	if (crtc) {
   1438 		/* self-refresh has much higher latency */
   1439 		static const int sr_latency_ns = 12000;
   1440 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1441 		int clock = adjusted_mode->crtc_clock;
   1442 		int htotal = adjusted_mode->crtc_htotal;
   1443 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
   1444 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
   1445 		unsigned long line_time_us;
   1446 		int entries;
   1447 
   1448 		line_time_us = max(htotal * 1000 / clock, 1);
   1449 
   1450 		/* Use ns/us then divide to preserve precision */
   1451 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1452 			pixel_size * hdisplay;
   1453 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1454 		srwm = I965_FIFO_SIZE - entries;
   1455 		if (srwm < 0)
   1456 			srwm = 1;
   1457 		srwm &= 0x1ff;
   1458 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1459 			      entries, srwm);
   1460 
   1461 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1462 			pixel_size * crtc->cursor->state->crtc_w;
   1463 		entries = DIV_ROUND_UP(entries,
   1464 					  i965_cursor_wm_info.cacheline_size);
   1465 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1466 			(entries + i965_cursor_wm_info.guard_size);
   1467 
   1468 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1469 			cursor_sr = i965_cursor_wm_info.max_wm;
   1470 
   1471 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1472 			      "cursor %d\n", srwm, cursor_sr);
   1473 
   1474 		cxsr_enabled = true;
   1475 	} else {
   1476 		cxsr_enabled = false;
   1477 		/* Turn off self refresh if both pipes are enabled */
   1478 		intel_set_memory_cxsr(dev_priv, false);
   1479 	}
   1480 
   1481 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1482 		      srwm);
   1483 
   1484 	/* 965 has limitations... */
   1485 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
   1486 		   FW_WM(8, CURSORB) |
   1487 		   FW_WM(8, PLANEB) |
   1488 		   FW_WM(8, PLANEA));
   1489 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
   1490 		   FW_WM(8, PLANEC_OLD));
   1491 	/* update cursor SR watermark */
   1492 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
   1493 
   1494 	if (cxsr_enabled)
   1495 		intel_set_memory_cxsr(dev_priv, true);
   1496 }
   1497 
   1498 #undef FW_WM
   1499 
   1500 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
   1501 {
   1502 	struct drm_device *dev = unused_crtc->dev;
   1503 	struct drm_i915_private *dev_priv = dev->dev_private;
   1504 	const struct intel_watermark_params *wm_info;
   1505 	uint32_t fwater_lo;
   1506 	uint32_t fwater_hi;
   1507 	int cwm, srwm = 1;
   1508 	int fifo_size;
   1509 	int planea_wm, planeb_wm;
   1510 	struct drm_crtc *crtc, *enabled = NULL;
   1511 
   1512 	if (IS_I945GM(dev))
   1513 		wm_info = &i945_wm_info;
   1514 	else if (!IS_GEN2(dev))
   1515 		wm_info = &i915_wm_info;
   1516 	else
   1517 		wm_info = &i830_a_wm_info;
   1518 
   1519 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1520 	crtc = intel_get_crtc_for_plane(dev, 0);
   1521 	if (intel_crtc_active(crtc)) {
   1522 		const struct drm_display_mode *adjusted_mode;
   1523 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
   1524 		if (IS_GEN2(dev))
   1525 			cpp = 4;
   1526 
   1527 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1528 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1529 					       wm_info, fifo_size, cpp,
   1530 					       pessimal_latency_ns);
   1531 		enabled = crtc;
   1532 	} else {
   1533 		planea_wm = fifo_size - wm_info->guard_size;
   1534 		if (planea_wm > (long)wm_info->max_wm)
   1535 			planea_wm = wm_info->max_wm;
   1536 	}
   1537 
   1538 	if (IS_GEN2(dev))
   1539 		wm_info = &i830_bc_wm_info;
   1540 
   1541 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1542 	crtc = intel_get_crtc_for_plane(dev, 1);
   1543 	if (intel_crtc_active(crtc)) {
   1544 		const struct drm_display_mode *adjusted_mode;
   1545 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
   1546 		if (IS_GEN2(dev))
   1547 			cpp = 4;
   1548 
   1549 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1550 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1551 					       wm_info, fifo_size, cpp,
   1552 					       pessimal_latency_ns);
   1553 		if (enabled == NULL)
   1554 			enabled = crtc;
   1555 		else
   1556 			enabled = NULL;
   1557 	} else {
   1558 		planeb_wm = fifo_size - wm_info->guard_size;
   1559 		if (planeb_wm > (long)wm_info->max_wm)
   1560 			planeb_wm = wm_info->max_wm;
   1561 	}
   1562 
   1563 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1564 
   1565 	if (IS_I915GM(dev) && enabled) {
   1566 		struct drm_i915_gem_object *obj;
   1567 
   1568 		obj = intel_fb_obj(enabled->primary->state->fb);
   1569 
   1570 		/* self-refresh seems busted with untiled */
   1571 		if (obj->tiling_mode == I915_TILING_NONE)
   1572 			enabled = NULL;
   1573 	}
   1574 
   1575 	/*
   1576 	 * Overlay gets an aggressive default since video jitter is bad.
   1577 	 */
   1578 	cwm = 2;
   1579 
   1580 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1581 	intel_set_memory_cxsr(dev_priv, false);
   1582 
   1583 	/* Calc sr entries for one plane configs */
   1584 	if (HAS_FW_BLC(dev) && enabled) {
   1585 		/* self-refresh has much higher latency */
   1586 		static const int sr_latency_ns = 6000;
   1587 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
   1588 		int clock = adjusted_mode->crtc_clock;
   1589 		int htotal = adjusted_mode->crtc_htotal;
   1590 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
   1591 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
   1592 		unsigned long line_time_us;
   1593 		int entries;
   1594 
   1595 		line_time_us = max(htotal * 1000 / clock, 1);
   1596 
   1597 		/* Use ns/us then divide to preserve precision */
   1598 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1599 			pixel_size * hdisplay;
   1600 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1601 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1602 		srwm = wm_info->fifo_size - entries;
   1603 		if (srwm < 0)
   1604 			srwm = 1;
   1605 
   1606 		if (IS_I945G(dev) || IS_I945GM(dev))
   1607 			I915_WRITE(FW_BLC_SELF,
   1608 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1609 		else if (IS_I915GM(dev))
   1610 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1611 	}
   1612 
   1613 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1614 		      planea_wm, planeb_wm, cwm, srwm);
   1615 
   1616 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1617 	fwater_hi = (cwm & 0x1f);
   1618 
   1619 	/* Set request length to 8 cachelines per fetch */
   1620 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1621 	fwater_hi = fwater_hi | (1 << 8);
   1622 
   1623 	I915_WRITE(FW_BLC, fwater_lo);
   1624 	I915_WRITE(FW_BLC2, fwater_hi);
   1625 
   1626 	if (enabled)
   1627 		intel_set_memory_cxsr(dev_priv, true);
   1628 }
   1629 
   1630 static void i845_update_wm(struct drm_crtc *unused_crtc)
   1631 {
   1632 	struct drm_device *dev = unused_crtc->dev;
   1633 	struct drm_i915_private *dev_priv = dev->dev_private;
   1634 	struct drm_crtc *crtc;
   1635 	const struct drm_display_mode *adjusted_mode;
   1636 	uint32_t fwater_lo;
   1637 	int planea_wm;
   1638 
   1639 	crtc = single_enabled_crtc(dev);
   1640 	if (crtc == NULL)
   1641 		return;
   1642 
   1643 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1644 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1645 				       &i845_wm_info,
   1646 				       dev_priv->display.get_fifo_size(dev, 0),
   1647 				       4, pessimal_latency_ns);
   1648 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1649 	fwater_lo |= (3<<8) | planea_wm;
   1650 
   1651 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1652 
   1653 	I915_WRITE(FW_BLC, fwater_lo);
   1654 }
   1655 
   1656 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
   1657 {
   1658 	uint32_t pixel_rate;
   1659 
   1660 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
   1661 
   1662 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
   1663 	 * adjust the pixel_rate here. */
   1664 
   1665 	if (pipe_config->pch_pfit.enabled) {
   1666 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
   1667 		uint32_t pfit_size = pipe_config->pch_pfit.size;
   1668 
   1669 		pipe_w = pipe_config->pipe_src_w;
   1670 		pipe_h = pipe_config->pipe_src_h;
   1671 
   1672 		pfit_w = (pfit_size >> 16) & 0xFFFF;
   1673 		pfit_h = pfit_size & 0xFFFF;
   1674 		if (pipe_w < pfit_w)
   1675 			pipe_w = pfit_w;
   1676 		if (pipe_h < pfit_h)
   1677 			pipe_h = pfit_h;
   1678 
   1679 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
   1680 				     pfit_w * pfit_h);
   1681 	}
   1682 
   1683 	return pixel_rate;
   1684 }
   1685 
   1686 /* latency must be in 0.1us units. */
   1687 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   1688 			       uint32_t latency)
   1689 {
   1690 	uint64_t ret;
   1691 
   1692 	if (WARN(latency == 0, "Latency value missing\n"))
   1693 		return UINT_MAX;
   1694 
   1695 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
   1696 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
   1697 
   1698 	return ret;
   1699 }
   1700 
   1701 /* latency must be in 0.1us units. */
   1702 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   1703 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   1704 			       uint32_t latency)
   1705 {
   1706 	uint32_t ret;
   1707 
   1708 	if (WARN(latency == 0, "Latency value missing\n"))
   1709 		return UINT_MAX;
   1710 
   1711 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
   1712 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
   1713 	ret = DIV_ROUND_UP(ret, 64) + 2;
   1714 	return ret;
   1715 }
   1716 
   1717 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
   1718 			   uint8_t bytes_per_pixel)
   1719 {
   1720 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
   1721 }
   1722 
   1723 struct skl_pipe_wm_parameters {
   1724 	bool active;
   1725 	uint32_t pipe_htotal;
   1726 	uint32_t pixel_rate; /* in KHz */
   1727 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
   1728 };
   1729 
   1730 struct ilk_wm_maximums {
   1731 	uint16_t pri;
   1732 	uint16_t spr;
   1733 	uint16_t cur;
   1734 	uint16_t fbc;
   1735 };
   1736 
   1737 /* used in computing the new watermarks state */
   1738 struct intel_wm_config {
   1739 	unsigned int num_pipes_active;
   1740 	bool sprites_enabled;
   1741 	bool sprites_scaled;
   1742 };
   1743 
   1744 /*
   1745  * For both WM_PIPE and WM_LP.
   1746  * mem_value must be in 0.1us units.
   1747  */
   1748 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
   1749 				   const struct intel_plane_state *pstate,
   1750 				   uint32_t mem_value,
   1751 				   bool is_lp)
   1752 {
   1753 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1754 	uint32_t method1, method2;
   1755 
   1756 	if (!cstate->base.active || !pstate->visible)
   1757 		return 0;
   1758 
   1759 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
   1760 
   1761 	if (!is_lp)
   1762 		return method1;
   1763 
   1764 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1765 				 cstate->base.adjusted_mode.crtc_htotal,
   1766 				 drm_rect_width(&pstate->dst),
   1767 				 bpp,
   1768 				 mem_value);
   1769 
   1770 	return min(method1, method2);
   1771 }
   1772 
   1773 /*
   1774  * For both WM_PIPE and WM_LP.
   1775  * mem_value must be in 0.1us units.
   1776  */
   1777 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
   1778 				   const struct intel_plane_state *pstate,
   1779 				   uint32_t mem_value)
   1780 {
   1781 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1782 	uint32_t method1, method2;
   1783 
   1784 	if (!cstate->base.active || !pstate->visible)
   1785 		return 0;
   1786 
   1787 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
   1788 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1789 				 cstate->base.adjusted_mode.crtc_htotal,
   1790 				 drm_rect_width(&pstate->dst),
   1791 				 bpp,
   1792 				 mem_value);
   1793 	return min(method1, method2);
   1794 }
   1795 
   1796 /*
   1797  * For both WM_PIPE and WM_LP.
   1798  * mem_value must be in 0.1us units.
   1799  */
   1800 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
   1801 				   const struct intel_plane_state *pstate,
   1802 				   uint32_t mem_value)
   1803 {
   1804 	/*
   1805 	 * We treat the cursor plane as always-on for the purposes of watermark
   1806 	 * calculation.  Until we have two-stage watermark programming merged,
   1807 	 * this is necessary to avoid flickering.
   1808 	 */
   1809 	int cpp = 4;
   1810 	int width = pstate->visible ? pstate->base.crtc_w : 64;
   1811 
   1812 	if (!cstate->base.active)
   1813 		return 0;
   1814 
   1815 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1816 			      cstate->base.adjusted_mode.crtc_htotal,
   1817 			      width, cpp, mem_value);
   1818 }
   1819 
   1820 /* Only for WM_LP. */
   1821 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
   1822 				   const struct intel_plane_state *pstate,
   1823 				   uint32_t pri_val)
   1824 {
   1825 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1826 
   1827 	if (!cstate->base.active || !pstate->visible)
   1828 		return 0;
   1829 
   1830 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
   1831 }
   1832 
   1833 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
   1834 {
   1835 	if (INTEL_INFO(dev)->gen >= 8)
   1836 		return 3072;
   1837 	else if (INTEL_INFO(dev)->gen >= 7)
   1838 		return 768;
   1839 	else
   1840 		return 512;
   1841 }
   1842 
   1843 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
   1844 					 int level, bool is_sprite)
   1845 {
   1846 	if (INTEL_INFO(dev)->gen >= 8)
   1847 		/* BDW primary/sprite plane watermarks */
   1848 		return level == 0 ? 255 : 2047;
   1849 	else if (INTEL_INFO(dev)->gen >= 7)
   1850 		/* IVB/HSW primary/sprite plane watermarks */
   1851 		return level == 0 ? 127 : 1023;
   1852 	else if (!is_sprite)
   1853 		/* ILK/SNB primary plane watermarks */
   1854 		return level == 0 ? 127 : 511;
   1855 	else
   1856 		/* ILK/SNB sprite plane watermarks */
   1857 		return level == 0 ? 63 : 255;
   1858 }
   1859 
   1860 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
   1861 					  int level)
   1862 {
   1863 	if (INTEL_INFO(dev)->gen >= 7)
   1864 		return level == 0 ? 63 : 255;
   1865 	else
   1866 		return level == 0 ? 31 : 63;
   1867 }
   1868 
   1869 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
   1870 {
   1871 	if (INTEL_INFO(dev)->gen >= 8)
   1872 		return 31;
   1873 	else
   1874 		return 15;
   1875 }
   1876 
   1877 /* Calculate the maximum primary/sprite plane watermark */
   1878 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
   1879 				     int level,
   1880 				     const struct intel_wm_config *config,
   1881 				     enum intel_ddb_partitioning ddb_partitioning,
   1882 				     bool is_sprite)
   1883 {
   1884 	unsigned int fifo_size = ilk_display_fifo_size(dev);
   1885 
   1886 	/* if sprites aren't enabled, sprites get nothing */
   1887 	if (is_sprite && !config->sprites_enabled)
   1888 		return 0;
   1889 
   1890 	/* HSW allows LP1+ watermarks even with multiple pipes */
   1891 	if (level == 0 || config->num_pipes_active > 1) {
   1892 		fifo_size /= INTEL_INFO(dev)->num_pipes;
   1893 
   1894 		/*
   1895 		 * For some reason the non self refresh
   1896 		 * FIFO size is only half of the self
   1897 		 * refresh FIFO size on ILK/SNB.
   1898 		 */
   1899 		if (INTEL_INFO(dev)->gen <= 6)
   1900 			fifo_size /= 2;
   1901 	}
   1902 
   1903 	if (config->sprites_enabled) {
   1904 		/* level 0 is always calculated with 1:1 split */
   1905 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
   1906 			if (is_sprite)
   1907 				fifo_size *= 5;
   1908 			fifo_size /= 6;
   1909 		} else {
   1910 			fifo_size /= 2;
   1911 		}
   1912 	}
   1913 
   1914 	/* clamp to max that the registers can hold */
   1915 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
   1916 }
   1917 
   1918 /* Calculate the maximum cursor plane watermark */
   1919 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
   1920 				      int level,
   1921 				      const struct intel_wm_config *config)
   1922 {
   1923 	/* HSW LP1+ watermarks w/ multiple pipes */
   1924 	if (level > 0 && config->num_pipes_active > 1)
   1925 		return 64;
   1926 
   1927 	/* otherwise just report max that registers can hold */
   1928 	return ilk_cursor_wm_reg_max(dev, level);
   1929 }
   1930 
   1931 static void ilk_compute_wm_maximums(const struct drm_device *dev,
   1932 				    int level,
   1933 				    const struct intel_wm_config *config,
   1934 				    enum intel_ddb_partitioning ddb_partitioning,
   1935 				    struct ilk_wm_maximums *max)
   1936 {
   1937 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
   1938 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
   1939 	max->cur = ilk_cursor_wm_max(dev, level, config);
   1940 	max->fbc = ilk_fbc_wm_reg_max(dev);
   1941 }
   1942 
   1943 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
   1944 					int level,
   1945 					struct ilk_wm_maximums *max)
   1946 {
   1947 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
   1948 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
   1949 	max->cur = ilk_cursor_wm_reg_max(dev, level);
   1950 	max->fbc = ilk_fbc_wm_reg_max(dev);
   1951 }
   1952 
   1953 static bool ilk_validate_wm_level(int level,
   1954 				  const struct ilk_wm_maximums *max,
   1955 				  struct intel_wm_level *result)
   1956 {
   1957 	bool ret;
   1958 
   1959 	/* already determined to be invalid? */
   1960 	if (!result->enable)
   1961 		return false;
   1962 
   1963 	result->enable = result->pri_val <= max->pri &&
   1964 			 result->spr_val <= max->spr &&
   1965 			 result->cur_val <= max->cur;
   1966 
   1967 	ret = result->enable;
   1968 
   1969 	/*
   1970 	 * HACK until we can pre-compute everything,
   1971 	 * and thus fail gracefully if LP0 watermarks
   1972 	 * are exceeded...
   1973 	 */
   1974 	if (level == 0 && !result->enable) {
   1975 		if (result->pri_val > max->pri)
   1976 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
   1977 				      level, result->pri_val, max->pri);
   1978 		if (result->spr_val > max->spr)
   1979 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
   1980 				      level, result->spr_val, max->spr);
   1981 		if (result->cur_val > max->cur)
   1982 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
   1983 				      level, result->cur_val, max->cur);
   1984 
   1985 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
   1986 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
   1987 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
   1988 		result->enable = true;
   1989 	}
   1990 
   1991 	return ret;
   1992 }
   1993 
   1994 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
   1995 				 const struct intel_crtc *intel_crtc,
   1996 				 int level,
   1997 				 struct intel_crtc_state *cstate,
   1998 				 struct intel_wm_level *result)
   1999 {
   2000 	struct intel_plane *intel_plane;
   2001 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
   2002 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
   2003 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
   2004 
   2005 	/* WM1+ latency values stored in 0.5us units */
   2006 	if (level > 0) {
   2007 		pri_latency *= 5;
   2008 		spr_latency *= 5;
   2009 		cur_latency *= 5;
   2010 	}
   2011 
   2012 	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
   2013 		struct intel_plane_state *pstate =
   2014 			to_intel_plane_state(intel_plane->base.state);
   2015 
   2016 		switch (intel_plane->base.type) {
   2017 		case DRM_PLANE_TYPE_PRIMARY:
   2018 			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
   2019 							     pri_latency,
   2020 							     level);
   2021 			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
   2022 							     result->pri_val);
   2023 			break;
   2024 		case DRM_PLANE_TYPE_OVERLAY:
   2025 			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
   2026 							     spr_latency);
   2027 			break;
   2028 		case DRM_PLANE_TYPE_CURSOR:
   2029 			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
   2030 							     cur_latency);
   2031 			break;
   2032 		}
   2033 	}
   2034 
   2035 	result->enable = true;
   2036 }
   2037 
   2038 static uint32_t
   2039 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
   2040 {
   2041 	struct drm_i915_private *dev_priv = dev->dev_private;
   2042 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2043 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
   2044 	u32 linetime, ips_linetime;
   2045 
   2046 	if (!intel_crtc->active)
   2047 		return 0;
   2048 
   2049 	/* The WM are computed with base on how long it takes to fill a single
   2050 	 * row at the given clock rate, multiplied by 8.
   2051 	 * */
   2052 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
   2053 				     adjusted_mode->crtc_clock);
   2054 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
   2055 					 dev_priv->cdclk_freq);
   2056 
   2057 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
   2058 	       PIPE_WM_LINETIME_TIME(linetime);
   2059 }
   2060 
   2061 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
   2062 {
   2063 	struct drm_i915_private *dev_priv = dev->dev_private;
   2064 
   2065 	if (IS_GEN9(dev)) {
   2066 		uint32_t val;
   2067 		int ret, i;
   2068 		int level, max_level = ilk_wm_max_level(dev);
   2069 
   2070 		/* read the first set of memory latencies[0:3] */
   2071 		val = 0; /* data0 to be programmed to 0 for first set */
   2072 		mutex_lock(&dev_priv->rps.hw_lock);
   2073 		ret = sandybridge_pcode_read(dev_priv,
   2074 					     GEN9_PCODE_READ_MEM_LATENCY,
   2075 					     &val);
   2076 		mutex_unlock(&dev_priv->rps.hw_lock);
   2077 
   2078 		if (ret) {
   2079 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
   2080 			return;
   2081 		}
   2082 
   2083 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
   2084 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2085 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2086 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2087 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2088 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2089 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2090 
   2091 		/* read the second set of memory latencies[4:7] */
   2092 		val = 1; /* data0 to be programmed to 1 for second set */
   2093 		mutex_lock(&dev_priv->rps.hw_lock);
   2094 		ret = sandybridge_pcode_read(dev_priv,
   2095 					     GEN9_PCODE_READ_MEM_LATENCY,
   2096 					     &val);
   2097 		mutex_unlock(&dev_priv->rps.hw_lock);
   2098 		if (ret) {
   2099 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
   2100 			return;
   2101 		}
   2102 
   2103 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
   2104 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2105 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2106 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2107 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2108 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2109 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2110 
   2111 		/*
   2112 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
   2113 		 * need to be disabled. We make sure to sanitize the values out
   2114 		 * of the punit to satisfy this requirement.
   2115 		 */
   2116 		for (level = 1; level <= max_level; level++) {
   2117 			if (wm[level] == 0) {
   2118 				for (i = level + 1; i <= max_level; i++)
   2119 					wm[i] = 0;
   2120 				break;
   2121 			}
   2122 		}
   2123 
   2124 		/*
   2125 		 * WaWmMemoryReadLatency:skl
   2126 		 *
   2127 		 * punit doesn't take into account the read latency so we need
   2128 		 * to add 2us to the various latency levels we retrieve from the
   2129 		 * punit when level 0 response data us 0us.
   2130 		 */
   2131 		if (wm[0] == 0) {
   2132 			wm[0] += 2;
   2133 			for (level = 1; level <= max_level; level++) {
   2134 				if (wm[level] == 0)
   2135 					break;
   2136 				wm[level] += 2;
   2137 			}
   2138 		}
   2139 
   2140 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2141 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
   2142 
   2143 		wm[0] = (sskpd >> 56) & 0xFF;
   2144 		if (wm[0] == 0)
   2145 			wm[0] = sskpd & 0xF;
   2146 		wm[1] = (sskpd >> 4) & 0xFF;
   2147 		wm[2] = (sskpd >> 12) & 0xFF;
   2148 		wm[3] = (sskpd >> 20) & 0x1FF;
   2149 		wm[4] = (sskpd >> 32) & 0x1FF;
   2150 	} else if (INTEL_INFO(dev)->gen >= 6) {
   2151 		uint32_t sskpd = I915_READ(MCH_SSKPD);
   2152 
   2153 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
   2154 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
   2155 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
   2156 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
   2157 	} else if (INTEL_INFO(dev)->gen >= 5) {
   2158 		uint32_t mltr = I915_READ(MLTR_ILK);
   2159 
   2160 		/* ILK primary LP0 latency is 700 ns */
   2161 		wm[0] = 7;
   2162 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
   2163 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
   2164 	}
   2165 }
   2166 
   2167 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2168 {
   2169 	/* ILK sprite LP0 latency is 1300 ns */
   2170 	if (INTEL_INFO(dev)->gen == 5)
   2171 		wm[0] = 13;
   2172 }
   2173 
   2174 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2175 {
   2176 	/* ILK cursor LP0 latency is 1300 ns */
   2177 	if (INTEL_INFO(dev)->gen == 5)
   2178 		wm[0] = 13;
   2179 
   2180 	/* WaDoubleCursorLP3Latency:ivb */
   2181 	if (IS_IVYBRIDGE(dev))
   2182 		wm[3] *= 2;
   2183 }
   2184 
   2185 int ilk_wm_max_level(const struct drm_device *dev)
   2186 {
   2187 	/* how many WM levels are we expecting */
   2188 	if (INTEL_INFO(dev)->gen >= 9)
   2189 		return 7;
   2190 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2191 		return 4;
   2192 	else if (INTEL_INFO(dev)->gen >= 6)
   2193 		return 3;
   2194 	else
   2195 		return 2;
   2196 }
   2197 
   2198 static void intel_print_wm_latency(struct drm_device *dev,
   2199 				   const char *name,
   2200 				   const uint16_t wm[8])
   2201 {
   2202 	int level, max_level = ilk_wm_max_level(dev);
   2203 
   2204 	for (level = 0; level <= max_level; level++) {
   2205 		unsigned int latency = wm[level];
   2206 
   2207 		if (latency == 0) {
   2208 			DRM_ERROR("%s WM%d latency not provided\n",
   2209 				  name, level);
   2210 			continue;
   2211 		}
   2212 
   2213 		/*
   2214 		 * - latencies are in us on gen9.
   2215 		 * - before then, WM1+ latency values are in 0.5us units
   2216 		 */
   2217 		if (IS_GEN9(dev))
   2218 			latency *= 10;
   2219 		else if (level > 0)
   2220 			latency *= 5;
   2221 
   2222 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
   2223 			      name, level, wm[level],
   2224 			      latency / 10, latency % 10);
   2225 	}
   2226 }
   2227 
   2228 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
   2229 				    uint16_t wm[5], uint16_t min)
   2230 {
   2231 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
   2232 
   2233 	if (wm[0] >= min)
   2234 		return false;
   2235 
   2236 	wm[0] = max(wm[0], min);
   2237 	for (level = 1; level <= max_level; level++)
   2238 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
   2239 
   2240 	return true;
   2241 }
   2242 
   2243 static void snb_wm_latency_quirk(struct drm_device *dev)
   2244 {
   2245 	struct drm_i915_private *dev_priv = dev->dev_private;
   2246 	bool changed;
   2247 
   2248 	/*
   2249 	 * The BIOS provided WM memory latency values are often
   2250 	 * inadequate for high resolution displays. Adjust them.
   2251 	 */
   2252 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
   2253 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
   2254 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
   2255 
   2256 	if (!changed)
   2257 		return;
   2258 
   2259 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
   2260 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2261 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2262 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2263 }
   2264 
   2265 static void ilk_setup_wm_latency(struct drm_device *dev)
   2266 {
   2267 	struct drm_i915_private *dev_priv = dev->dev_private;
   2268 
   2269 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
   2270 
   2271 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
   2272 	       sizeof(dev_priv->wm.pri_latency));
   2273 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
   2274 	       sizeof(dev_priv->wm.pri_latency));
   2275 
   2276 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
   2277 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
   2278 
   2279 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2280 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2281 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2282 
   2283 	if (IS_GEN6(dev))
   2284 		snb_wm_latency_quirk(dev);
   2285 }
   2286 
   2287 static void skl_setup_wm_latency(struct drm_device *dev)
   2288 {
   2289 	struct drm_i915_private *dev_priv = dev->dev_private;
   2290 
   2291 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
   2292 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
   2293 }
   2294 
   2295 static void ilk_compute_wm_config(struct drm_device *dev,
   2296 				  struct intel_wm_config *config)
   2297 {
   2298 	struct intel_crtc *intel_crtc;
   2299 
   2300 	/* Compute the currently _active_ config */
   2301 	for_each_intel_crtc(dev, intel_crtc) {
   2302 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
   2303 
   2304 		if (!wm->pipe_enabled)
   2305 			continue;
   2306 
   2307 		config->sprites_enabled |= wm->sprites_enabled;
   2308 		config->sprites_scaled |= wm->sprites_scaled;
   2309 		config->num_pipes_active++;
   2310 	}
   2311 }
   2312 
   2313 /* Compute new watermarks for the pipe */
   2314 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
   2315 				  struct intel_pipe_wm *pipe_wm)
   2316 {
   2317 	struct drm_crtc *crtc = cstate->base.crtc;
   2318 	struct drm_device *dev = crtc->dev;
   2319 	const struct drm_i915_private *dev_priv = dev->dev_private;
   2320 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2321 	struct intel_plane *intel_plane;
   2322 	struct intel_plane_state *sprstate = NULL;
   2323 	int level, max_level = ilk_wm_max_level(dev);
   2324 	/* LP0 watermark maximums depend on this pipe alone */
   2325 	struct intel_wm_config config = {
   2326 		.num_pipes_active = 1,
   2327 	};
   2328 	struct ilk_wm_maximums max;
   2329 
   2330 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
   2331 		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
   2332 			sprstate = to_intel_plane_state(intel_plane->base.state);
   2333 			break;
   2334 		}
   2335 	}
   2336 
   2337 	config.sprites_enabled = sprstate->visible;
   2338 	config.sprites_scaled = sprstate->visible &&
   2339 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
   2340 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
   2341 
   2342 	pipe_wm->pipe_enabled = cstate->base.active;
   2343 	pipe_wm->sprites_enabled = sprstate->visible;
   2344 	pipe_wm->sprites_scaled = config.sprites_scaled;
   2345 
   2346 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
   2347 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
   2348 		max_level = 1;
   2349 
   2350 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
   2351 	if (config.sprites_scaled)
   2352 		max_level = 0;
   2353 
   2354 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
   2355 
   2356 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2357 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
   2358 
   2359 	/* LP0 watermarks always use 1/2 DDB partitioning */
   2360 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
   2361 
   2362 	/* At least LP0 must be valid */
   2363 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
   2364 		return false;
   2365 
   2366 	ilk_compute_wm_reg_maximums(dev, 1, &max);
   2367 
   2368 	for (level = 1; level <= max_level; level++) {
   2369 		struct intel_wm_level wm = {};
   2370 
   2371 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
   2372 
   2373 		/*
   2374 		 * Disable any watermark level that exceeds the
   2375 		 * register maximums since such watermarks are
   2376 		 * always invalid.
   2377 		 */
   2378 		if (!ilk_validate_wm_level(level, &max, &wm))
   2379 			break;
   2380 
   2381 		pipe_wm->wm[level] = wm;
   2382 	}
   2383 
   2384 	return true;
   2385 }
   2386 
   2387 /*
   2388  * Merge the watermarks from all active pipes for a specific level.
   2389  */
   2390 static void ilk_merge_wm_level(struct drm_device *dev,
   2391 			       int level,
   2392 			       struct intel_wm_level *ret_wm)
   2393 {
   2394 	const struct intel_crtc *intel_crtc;
   2395 
   2396 	ret_wm->enable = true;
   2397 
   2398 	for_each_intel_crtc(dev, intel_crtc) {
   2399 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
   2400 		const struct intel_wm_level *wm = &active->wm[level];
   2401 
   2402 		if (!active->pipe_enabled)
   2403 			continue;
   2404 
   2405 		/*
   2406 		 * The watermark values may have been used in the past,
   2407 		 * so we must maintain them in the registers for some
   2408 		 * time even if the level is now disabled.
   2409 		 */
   2410 		if (!wm->enable)
   2411 			ret_wm->enable = false;
   2412 
   2413 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
   2414 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
   2415 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
   2416 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
   2417 	}
   2418 }
   2419 
   2420 /*
   2421  * Merge all low power watermarks for all active pipes.
   2422  */
   2423 static void ilk_wm_merge(struct drm_device *dev,
   2424 			 const struct intel_wm_config *config,
   2425 			 const struct ilk_wm_maximums *max,
   2426 			 struct intel_pipe_wm *merged)
   2427 {
   2428 	struct drm_i915_private *dev_priv = dev->dev_private;
   2429 	int level, max_level = ilk_wm_max_level(dev);
   2430 	int last_enabled_level = max_level;
   2431 
   2432 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
   2433 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
   2434 	    config->num_pipes_active > 1)
   2435 		return;
   2436 
   2437 	/* ILK: FBC WM must be disabled always */
   2438 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
   2439 
   2440 	/* merge each WM1+ level */
   2441 	for (level = 1; level <= max_level; level++) {
   2442 		struct intel_wm_level *wm = &merged->wm[level];
   2443 
   2444 		ilk_merge_wm_level(dev, level, wm);
   2445 
   2446 		if (level > last_enabled_level)
   2447 			wm->enable = false;
   2448 		else if (!ilk_validate_wm_level(level, max, wm))
   2449 			/* make sure all following levels get disabled */
   2450 			last_enabled_level = level - 1;
   2451 
   2452 		/*
   2453 		 * The spec says it is preferred to disable
   2454 		 * FBC WMs instead of disabling a WM level.
   2455 		 */
   2456 		if (wm->fbc_val > max->fbc) {
   2457 			if (wm->enable)
   2458 				merged->fbc_wm_enabled = false;
   2459 			wm->fbc_val = 0;
   2460 		}
   2461 	}
   2462 
   2463 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
   2464 	/*
   2465 	 * FIXME this is racy. FBC might get enabled later.
   2466 	 * What we should check here is whether FBC can be
   2467 	 * enabled sometime later.
   2468 	 */
   2469 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
   2470 	    intel_fbc_enabled(dev_priv)) {
   2471 		for (level = 2; level <= max_level; level++) {
   2472 			struct intel_wm_level *wm = &merged->wm[level];
   2473 
   2474 			wm->enable = false;
   2475 		}
   2476 	}
   2477 }
   2478 
   2479 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
   2480 {
   2481 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
   2482 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
   2483 }
   2484 
   2485 /* The value we need to program into the WM_LPx latency field */
   2486 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
   2487 {
   2488 	struct drm_i915_private *dev_priv = dev->dev_private;
   2489 
   2490 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2491 		return 2 * level;
   2492 	else
   2493 		return dev_priv->wm.pri_latency[level];
   2494 }
   2495 
   2496 static void ilk_compute_wm_results(struct drm_device *dev,
   2497 				   const struct intel_pipe_wm *merged,
   2498 				   enum intel_ddb_partitioning partitioning,
   2499 				   struct ilk_wm_values *results)
   2500 {
   2501 	struct intel_crtc *intel_crtc;
   2502 	int level, wm_lp;
   2503 
   2504 	results->enable_fbc_wm = merged->fbc_wm_enabled;
   2505 	results->partitioning = partitioning;
   2506 
   2507 	/* LP1+ register values */
   2508 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2509 		const struct intel_wm_level *r;
   2510 
   2511 		level = ilk_wm_lp_to_level(wm_lp, merged);
   2512 
   2513 		r = &merged->wm[level];
   2514 
   2515 		/*
   2516 		 * Maintain the watermark values even if the level is
   2517 		 * disabled. Doing otherwise could cause underruns.
   2518 		 */
   2519 		results->wm_lp[wm_lp - 1] =
   2520 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
   2521 			(r->pri_val << WM1_LP_SR_SHIFT) |
   2522 			r->cur_val;
   2523 
   2524 		if (r->enable)
   2525 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
   2526 
   2527 		if (INTEL_INFO(dev)->gen >= 8)
   2528 			results->wm_lp[wm_lp - 1] |=
   2529 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
   2530 		else
   2531 			results->wm_lp[wm_lp - 1] |=
   2532 				r->fbc_val << WM1_LP_FBC_SHIFT;
   2533 
   2534 		/*
   2535 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
   2536 		 * level is disabled. Doing otherwise could cause underruns.
   2537 		 */
   2538 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
   2539 			WARN_ON(wm_lp != 1);
   2540 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
   2541 		} else
   2542 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
   2543 	}
   2544 
   2545 	/* LP0 register values */
   2546 	for_each_intel_crtc(dev, intel_crtc) {
   2547 		enum i915_pipe pipe = intel_crtc->pipe;
   2548 		const struct intel_wm_level *r =
   2549 			&intel_crtc->wm.active.wm[0];
   2550 
   2551 		if (WARN_ON(!r->enable))
   2552 			continue;
   2553 
   2554 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
   2555 
   2556 		results->wm_pipe[pipe] =
   2557 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
   2558 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
   2559 			r->cur_val;
   2560 	}
   2561 }
   2562 
   2563 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
   2564  * case both are at the same level. Prefer r1 in case they're the same. */
   2565 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
   2566 						  struct intel_pipe_wm *r1,
   2567 						  struct intel_pipe_wm *r2)
   2568 {
   2569 	int level, max_level = ilk_wm_max_level(dev);
   2570 	int level1 = 0, level2 = 0;
   2571 
   2572 	for (level = 1; level <= max_level; level++) {
   2573 		if (r1->wm[level].enable)
   2574 			level1 = level;
   2575 		if (r2->wm[level].enable)
   2576 			level2 = level;
   2577 	}
   2578 
   2579 	if (level1 == level2) {
   2580 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
   2581 			return r2;
   2582 		else
   2583 			return r1;
   2584 	} else if (level1 > level2) {
   2585 		return r1;
   2586 	} else {
   2587 		return r2;
   2588 	}
   2589 }
   2590 
   2591 /* dirty bits used to track which watermarks need changes */
   2592 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
   2593 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
   2594 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
   2595 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
   2596 #define WM_DIRTY_FBC (1 << 24)
   2597 #define WM_DIRTY_DDB (1 << 25)
   2598 
   2599 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
   2600 					 const struct ilk_wm_values *old,
   2601 					 const struct ilk_wm_values *new)
   2602 {
   2603 	unsigned int dirty = 0;
   2604 	enum i915_pipe pipe;
   2605 	int wm_lp;
   2606 
   2607 	for_each_pipe(dev_priv, pipe) {
   2608 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
   2609 			dirty |= WM_DIRTY_LINETIME(pipe);
   2610 			/* Must disable LP1+ watermarks too */
   2611 			dirty |= WM_DIRTY_LP_ALL;
   2612 		}
   2613 
   2614 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
   2615 			dirty |= WM_DIRTY_PIPE(pipe);
   2616 			/* Must disable LP1+ watermarks too */
   2617 			dirty |= WM_DIRTY_LP_ALL;
   2618 		}
   2619 	}
   2620 
   2621 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
   2622 		dirty |= WM_DIRTY_FBC;
   2623 		/* Must disable LP1+ watermarks too */
   2624 		dirty |= WM_DIRTY_LP_ALL;
   2625 	}
   2626 
   2627 	if (old->partitioning != new->partitioning) {
   2628 		dirty |= WM_DIRTY_DDB;
   2629 		/* Must disable LP1+ watermarks too */
   2630 		dirty |= WM_DIRTY_LP_ALL;
   2631 	}
   2632 
   2633 	/* LP1+ watermarks already deemed dirty, no need to continue */
   2634 	if (dirty & WM_DIRTY_LP_ALL)
   2635 		return dirty;
   2636 
   2637 	/* Find the lowest numbered LP1+ watermark in need of an update... */
   2638 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2639 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
   2640 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
   2641 			break;
   2642 	}
   2643 
   2644 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
   2645 	for (; wm_lp <= 3; wm_lp++)
   2646 		dirty |= WM_DIRTY_LP(wm_lp);
   2647 
   2648 	return dirty;
   2649 }
   2650 
   2651 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
   2652 			       unsigned int dirty)
   2653 {
   2654 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2655 	bool changed = false;
   2656 
   2657 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
   2658 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
   2659 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
   2660 		changed = true;
   2661 	}
   2662 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
   2663 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
   2664 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
   2665 		changed = true;
   2666 	}
   2667 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
   2668 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
   2669 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
   2670 		changed = true;
   2671 	}
   2672 
   2673 	/*
   2674 	 * Don't touch WM1S_LP_EN here.
   2675 	 * Doing so could cause underruns.
   2676 	 */
   2677 
   2678 	return changed;
   2679 }
   2680 
   2681 /*
   2682  * The spec says we shouldn't write when we don't need, because every write
   2683  * causes WMs to be re-evaluated, expending some power.
   2684  */
   2685 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
   2686 				struct ilk_wm_values *results)
   2687 {
   2688 	struct drm_device *dev = dev_priv->dev;
   2689 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2690 	unsigned int dirty;
   2691 	uint32_t val;
   2692 
   2693 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
   2694 	if (!dirty)
   2695 		return;
   2696 
   2697 	_ilk_disable_lp_wm(dev_priv, dirty);
   2698 
   2699 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
   2700 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
   2701 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
   2702 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
   2703 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
   2704 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
   2705 
   2706 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
   2707 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
   2708 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
   2709 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
   2710 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
   2711 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
   2712 
   2713 	if (dirty & WM_DIRTY_DDB) {
   2714 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2715 			val = I915_READ(WM_MISC);
   2716 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2717 				val &= ~WM_MISC_DATA_PARTITION_5_6;
   2718 			else
   2719 				val |= WM_MISC_DATA_PARTITION_5_6;
   2720 			I915_WRITE(WM_MISC, val);
   2721 		} else {
   2722 			val = I915_READ(DISP_ARB_CTL2);
   2723 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2724 				val &= ~DISP_DATA_PARTITION_5_6;
   2725 			else
   2726 				val |= DISP_DATA_PARTITION_5_6;
   2727 			I915_WRITE(DISP_ARB_CTL2, val);
   2728 		}
   2729 	}
   2730 
   2731 	if (dirty & WM_DIRTY_FBC) {
   2732 		val = I915_READ(DISP_ARB_CTL);
   2733 		if (results->enable_fbc_wm)
   2734 			val &= ~DISP_FBC_WM_DIS;
   2735 		else
   2736 			val |= DISP_FBC_WM_DIS;
   2737 		I915_WRITE(DISP_ARB_CTL, val);
   2738 	}
   2739 
   2740 	if (dirty & WM_DIRTY_LP(1) &&
   2741 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
   2742 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
   2743 
   2744 	if (INTEL_INFO(dev)->gen >= 7) {
   2745 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
   2746 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
   2747 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
   2748 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
   2749 	}
   2750 
   2751 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
   2752 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
   2753 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
   2754 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
   2755 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
   2756 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
   2757 
   2758 	dev_priv->wm.hw = *results;
   2759 }
   2760 
   2761 static bool ilk_disable_lp_wm(struct drm_device *dev)
   2762 {
   2763 	struct drm_i915_private *dev_priv = dev->dev_private;
   2764 
   2765 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
   2766 }
   2767 
   2768 /*
   2769  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
   2770  * different active planes.
   2771  */
   2772 
   2773 #define SKL_DDB_SIZE		896	/* in blocks */
   2774 #define BXT_DDB_SIZE		512
   2775 
   2776 static void
   2777 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
   2778 				   struct drm_crtc *for_crtc,
   2779 				   const struct intel_wm_config *config,
   2780 				   const struct skl_pipe_wm_parameters *params,
   2781 				   struct skl_ddb_entry *alloc /* out */)
   2782 {
   2783 	struct drm_crtc *crtc;
   2784 	unsigned int pipe_size, ddb_size;
   2785 	int nth_active_pipe;
   2786 
   2787 	if (!params->active) {
   2788 		alloc->start = 0;
   2789 		alloc->end = 0;
   2790 		return;
   2791 	}
   2792 
   2793 	if (IS_BROXTON(dev))
   2794 		ddb_size = BXT_DDB_SIZE;
   2795 	else
   2796 		ddb_size = SKL_DDB_SIZE;
   2797 
   2798 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
   2799 
   2800 	nth_active_pipe = 0;
   2801 	for_each_crtc(dev, crtc) {
   2802 		if (!to_intel_crtc(crtc)->active)
   2803 			continue;
   2804 
   2805 		if (crtc == for_crtc)
   2806 			break;
   2807 
   2808 		nth_active_pipe++;
   2809 	}
   2810 
   2811 	pipe_size = ddb_size / config->num_pipes_active;
   2812 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
   2813 	alloc->end = alloc->start + pipe_size;
   2814 }
   2815 
   2816 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
   2817 {
   2818 	if (config->num_pipes_active == 1)
   2819 		return 32;
   2820 
   2821 	return 8;
   2822 }
   2823 
   2824 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
   2825 {
   2826 	entry->start = reg & 0x3ff;
   2827 	entry->end = (reg >> 16) & 0x3ff;
   2828 	if (entry->end)
   2829 		entry->end += 1;
   2830 }
   2831 
   2832 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
   2833 			  struct skl_ddb_allocation *ddb /* out */)
   2834 {
   2835 	enum i915_pipe pipe;
   2836 	int plane;
   2837 	u32 val;
   2838 
   2839 	memset(ddb, 0, sizeof(*ddb));
   2840 
   2841 	for_each_pipe(dev_priv, pipe) {
   2842 		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
   2843 			continue;
   2844 
   2845 		for_each_plane(dev_priv, pipe, plane) {
   2846 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
   2847 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
   2848 						   val);
   2849 		}
   2850 
   2851 		val = I915_READ(CUR_BUF_CFG(pipe));
   2852 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
   2853 					   val);
   2854 	}
   2855 }
   2856 
   2857 static unsigned int
   2858 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
   2859 {
   2860 
   2861 	/* for planar format */
   2862 	if (p->y_bytes_per_pixel) {
   2863 		if (y)  /* y-plane data rate */
   2864 			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
   2865 		else    /* uv-plane data rate */
   2866 			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
   2867 	}
   2868 
   2869 	/* for packed formats */
   2870 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
   2871 }
   2872 
   2873 /*
   2874  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
   2875  * a 8192x4096@32bpp framebuffer:
   2876  *   3 * 4096 * 8192  * 4 < 2^32
   2877  */
   2878 static unsigned int
   2879 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
   2880 				 const struct skl_pipe_wm_parameters *params)
   2881 {
   2882 	unsigned int total_data_rate = 0;
   2883 	int plane;
   2884 
   2885 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
   2886 		const struct intel_plane_wm_parameters *p;
   2887 
   2888 		p = &params->plane[plane];
   2889 		if (!p->enabled)
   2890 			continue;
   2891 
   2892 		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
   2893 		if (p->y_bytes_per_pixel) {
   2894 			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
   2895 		}
   2896 	}
   2897 
   2898 	return total_data_rate;
   2899 }
   2900 
   2901 static void
   2902 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
   2903 		      const struct intel_wm_config *config,
   2904 		      const struct skl_pipe_wm_parameters *params,
   2905 		      struct skl_ddb_allocation *ddb /* out */)
   2906 {
   2907 	struct drm_device *dev = crtc->dev;
   2908 	struct drm_i915_private *dev_priv = dev->dev_private;
   2909 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2910 	enum i915_pipe pipe = intel_crtc->pipe;
   2911 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
   2912 	uint16_t alloc_size, start, cursor_blocks;
   2913 	uint16_t minimum[I915_MAX_PLANES];
   2914 	uint16_t y_minimum[I915_MAX_PLANES];
   2915 	unsigned int total_data_rate;
   2916 	int plane;
   2917 
   2918 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
   2919 	alloc_size = skl_ddb_entry_size(alloc);
   2920 	if (alloc_size == 0) {
   2921 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
   2922 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
   2923 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
   2924 		return;
   2925 	}
   2926 
   2927 	cursor_blocks = skl_cursor_allocation(config);
   2928 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
   2929 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
   2930 
   2931 	alloc_size -= cursor_blocks;
   2932 	alloc->end -= cursor_blocks;
   2933 
   2934 	/* 1. Allocate the mininum required blocks for each active plane */
   2935 	for_each_plane(dev_priv, pipe, plane) {
   2936 		const struct intel_plane_wm_parameters *p;
   2937 
   2938 		p = &params->plane[plane];
   2939 		if (!p->enabled)
   2940 			continue;
   2941 
   2942 		minimum[plane] = 8;
   2943 		alloc_size -= minimum[plane];
   2944 		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
   2945 		alloc_size -= y_minimum[plane];
   2946 	}
   2947 
   2948 	/*
   2949 	 * 2. Distribute the remaining space in proportion to the amount of
   2950 	 * data each plane needs to fetch from memory.
   2951 	 *
   2952 	 * FIXME: we may not allocate every single block here.
   2953 	 */
   2954 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
   2955 
   2956 	start = alloc->start;
   2957 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
   2958 		const struct intel_plane_wm_parameters *p;
   2959 		unsigned int data_rate, y_data_rate;
   2960 		uint16_t plane_blocks, y_plane_blocks = 0;
   2961 
   2962 		p = &params->plane[plane];
   2963 		if (!p->enabled)
   2964 			continue;
   2965 
   2966 		data_rate = skl_plane_relative_data_rate(p, 0);
   2967 
   2968 		/*
   2969 		 * allocation for (packed formats) or (uv-plane part of planar format):
   2970 		 * promote the expression to 64 bits to avoid overflowing, the
   2971 		 * result is < available as data_rate / total_data_rate < 1
   2972 		 */
   2973 		plane_blocks = minimum[plane];
   2974 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
   2975 					total_data_rate);
   2976 
   2977 		ddb->plane[pipe][plane].start = start;
   2978 		ddb->plane[pipe][plane].end = start + plane_blocks;
   2979 
   2980 		start += plane_blocks;
   2981 
   2982 		/*
   2983 		 * allocation for y_plane part of planar format:
   2984 		 */
   2985 		if (p->y_bytes_per_pixel) {
   2986 			y_data_rate = skl_plane_relative_data_rate(p, 1);
   2987 			y_plane_blocks = y_minimum[plane];
   2988 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
   2989 						total_data_rate);
   2990 
   2991 			ddb->y_plane[pipe][plane].start = start;
   2992 			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
   2993 
   2994 			start += y_plane_blocks;
   2995 		}
   2996 
   2997 	}
   2998 
   2999 }
   3000 
   3001 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
   3002 {
   3003 	/* TODO: Take into account the scalers once we support them */
   3004 	return config->base.adjusted_mode.crtc_clock;
   3005 }
   3006 
   3007 /*
   3008  * The max latency should be 257 (max the punit can code is 255 and we add 2us
   3009  * for the read latency) and bytes_per_pixel should always be <= 8, so that
   3010  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
   3011  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
   3012 */
   3013 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   3014 			       uint32_t latency)
   3015 {
   3016 	uint32_t wm_intermediate_val, ret;
   3017 
   3018 	if (latency == 0)
   3019 		return UINT_MAX;
   3020 
   3021 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
   3022 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
   3023 
   3024 	return ret;
   3025 }
   3026 
   3027 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   3028 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   3029 			       uint64_t tiling, uint32_t latency)
   3030 {
   3031 	uint32_t ret;
   3032 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
   3033 	uint32_t wm_intermediate_val;
   3034 
   3035 	if (latency == 0)
   3036 		return UINT_MAX;
   3037 
   3038 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
   3039 
   3040 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
   3041 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
   3042 		plane_bytes_per_line *= 4;
   3043 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3044 		plane_blocks_per_line /= 4;
   3045 	} else {
   3046 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3047 	}
   3048 
   3049 	wm_intermediate_val = latency * pixel_rate;
   3050 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
   3051 				plane_blocks_per_line;
   3052 
   3053 	return ret;
   3054 }
   3055 
   3056 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
   3057 				       const struct intel_crtc *intel_crtc)
   3058 {
   3059 	struct drm_device *dev = intel_crtc->base.dev;
   3060 	struct drm_i915_private *dev_priv = dev->dev_private;
   3061 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
   3062 	enum i915_pipe pipe = intel_crtc->pipe;
   3063 
   3064 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
   3065 		   sizeof(new_ddb->plane[pipe])))
   3066 		return true;
   3067 
   3068 	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
   3069 		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
   3070 		return true;
   3071 
   3072 	return false;
   3073 }
   3074 
   3075 static void skl_compute_wm_global_parameters(struct drm_device *dev,
   3076 					     struct intel_wm_config *config)
   3077 {
   3078 	struct drm_crtc *crtc;
   3079 	struct drm_plane *plane;
   3080 
   3081 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   3082 		config->num_pipes_active += to_intel_crtc(crtc)->active;
   3083 
   3084 	/* FIXME: I don't think we need those two global parameters on SKL */
   3085 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
   3086 		struct intel_plane *intel_plane = to_intel_plane(plane);
   3087 
   3088 		config->sprites_enabled |= intel_plane->wm.enabled;
   3089 		config->sprites_scaled |= intel_plane->wm.scaled;
   3090 	}
   3091 }
   3092 
   3093 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
   3094 					   struct skl_pipe_wm_parameters *p)
   3095 {
   3096 	struct drm_device *dev = crtc->dev;
   3097 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3098 	enum i915_pipe pipe = intel_crtc->pipe;
   3099 	struct drm_plane *plane;
   3100 	struct drm_framebuffer *fb;
   3101 	int i = 1; /* Index for sprite planes start */
   3102 
   3103 	p->active = intel_crtc->active;
   3104 	if (p->active) {
   3105 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
   3106 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
   3107 
   3108 		fb = crtc->primary->state->fb;
   3109 		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
   3110 		if (fb) {
   3111 			p->plane[0].enabled = true;
   3112 			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
   3113 				drm_format_plane_cpp(fb->pixel_format, 1) :
   3114 				drm_format_plane_cpp(fb->pixel_format, 0);
   3115 			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
   3116 				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
   3117 			p->plane[0].tiling = fb->modifier[0];
   3118 		} else {
   3119 			p->plane[0].enabled = false;
   3120 			p->plane[0].bytes_per_pixel = 0;
   3121 			p->plane[0].y_bytes_per_pixel = 0;
   3122 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
   3123 		}
   3124 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
   3125 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
   3126 		p->plane[0].rotation = crtc->primary->state->rotation;
   3127 
   3128 		fb = crtc->cursor->state->fb;
   3129 		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
   3130 		if (fb) {
   3131 			p->plane[PLANE_CURSOR].enabled = true;
   3132 			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
   3133 			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
   3134 			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
   3135 		} else {
   3136 			p->plane[PLANE_CURSOR].enabled = false;
   3137 			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
   3138 			p->plane[PLANE_CURSOR].horiz_pixels = 64;
   3139 			p->plane[PLANE_CURSOR].vert_pixels = 64;
   3140 		}
   3141 	}
   3142 
   3143 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
   3144 		struct intel_plane *intel_plane = to_intel_plane(plane);
   3145 
   3146 		if (intel_plane->pipe == pipe &&
   3147 			plane->type == DRM_PLANE_TYPE_OVERLAY)
   3148 			p->plane[i++] = intel_plane->wm;
   3149 	}
   3150 }
   3151 
   3152 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
   3153 				 struct skl_pipe_wm_parameters *p,
   3154 				 struct intel_plane_wm_parameters *p_params,
   3155 				 uint16_t ddb_allocation,
   3156 				 int level,
   3157 				 uint16_t *out_blocks, /* out */
   3158 				 uint8_t *out_lines /* out */)
   3159 {
   3160 	uint32_t latency = dev_priv->wm.skl_latency[level];
   3161 	uint32_t method1, method2;
   3162 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
   3163 	uint32_t res_blocks, res_lines;
   3164 	uint32_t selected_result;
   3165 	uint8_t bytes_per_pixel;
   3166 
   3167 	if (latency == 0 || !p->active || !p_params->enabled)
   3168 		return false;
   3169 
   3170 	bytes_per_pixel = p_params->y_bytes_per_pixel ?
   3171 		p_params->y_bytes_per_pixel :
   3172 		p_params->bytes_per_pixel;
   3173 	method1 = skl_wm_method1(p->pixel_rate,
   3174 				 bytes_per_pixel,
   3175 				 latency);
   3176 	method2 = skl_wm_method2(p->pixel_rate,
   3177 				 p->pipe_htotal,
   3178 				 p_params->horiz_pixels,
   3179 				 bytes_per_pixel,
   3180 				 p_params->tiling,
   3181 				 latency);
   3182 
   3183 	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
   3184 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3185 
   3186 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
   3187 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
   3188 		uint32_t min_scanlines = 4;
   3189 		uint32_t y_tile_minimum;
   3190 		if (intel_rotation_90_or_270(p_params->rotation)) {
   3191 			switch (p_params->bytes_per_pixel) {
   3192 			case 1:
   3193 				min_scanlines = 16;
   3194 				break;
   3195 			case 2:
   3196 				min_scanlines = 8;
   3197 				break;
   3198 			case 8:
   3199 				WARN(1, "Unsupported pixel depth for rotation");
   3200 			}
   3201 		}
   3202 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
   3203 		selected_result = max(method2, y_tile_minimum);
   3204 	} else {
   3205 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
   3206 			selected_result = min(method1, method2);
   3207 		else
   3208 			selected_result = method1;
   3209 	}
   3210 
   3211 	res_blocks = selected_result + 1;
   3212 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
   3213 
   3214 	if (level >= 1 && level <= 7) {
   3215 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
   3216 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
   3217 			res_lines += 4;
   3218 		else
   3219 			res_blocks++;
   3220 	}
   3221 
   3222 	if (res_blocks >= ddb_allocation || res_lines > 31)
   3223 		return false;
   3224 
   3225 	*out_blocks = res_blocks;
   3226 	*out_lines = res_lines;
   3227 
   3228 	return true;
   3229 }
   3230 
   3231 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
   3232 				 struct skl_ddb_allocation *ddb,
   3233 				 struct skl_pipe_wm_parameters *p,
   3234 				 enum i915_pipe pipe,
   3235 				 int level,
   3236 				 int num_planes,
   3237 				 struct skl_wm_level *result)
   3238 {
   3239 	uint16_t ddb_blocks;
   3240 	int i;
   3241 
   3242 	for (i = 0; i < num_planes; i++) {
   3243 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
   3244 
   3245 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
   3246 						p, &p->plane[i],
   3247 						ddb_blocks,
   3248 						level,
   3249 						&result->plane_res_b[i],
   3250 						&result->plane_res_l[i]);
   3251 	}
   3252 
   3253 	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
   3254 	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
   3255 						 &p->plane[PLANE_CURSOR],
   3256 						 ddb_blocks, level,
   3257 						 &result->plane_res_b[PLANE_CURSOR],
   3258 						 &result->plane_res_l[PLANE_CURSOR]);
   3259 }
   3260 
   3261 static uint32_t
   3262 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
   3263 {
   3264 	if (!to_intel_crtc(crtc)->active)
   3265 		return 0;
   3266 
   3267 	if (WARN_ON(p->pixel_rate == 0))
   3268 		return 0;
   3269 
   3270 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
   3271 }
   3272 
   3273 static void skl_compute_transition_wm(struct drm_crtc *crtc,
   3274 				      struct skl_pipe_wm_parameters *params,
   3275 				      struct skl_wm_level *trans_wm /* out */)
   3276 {
   3277 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3278 	int i;
   3279 
   3280 	if (!params->active)
   3281 		return;
   3282 
   3283 	/* Until we know more, just disable transition WMs */
   3284 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3285 		trans_wm->plane_en[i] = false;
   3286 	trans_wm->plane_en[PLANE_CURSOR] = false;
   3287 }
   3288 
   3289 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
   3290 				struct skl_ddb_allocation *ddb,
   3291 				struct skl_pipe_wm_parameters *params,
   3292 				struct skl_pipe_wm *pipe_wm)
   3293 {
   3294 	struct drm_device *dev = crtc->dev;
   3295 	const struct drm_i915_private *dev_priv = dev->dev_private;
   3296 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3297 	int level, max_level = ilk_wm_max_level(dev);
   3298 
   3299 	for (level = 0; level <= max_level; level++) {
   3300 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
   3301 				     level, intel_num_planes(intel_crtc),
   3302 				     &pipe_wm->wm[level]);
   3303 	}
   3304 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
   3305 
   3306 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
   3307 }
   3308 
   3309 static void skl_compute_wm_results(struct drm_device *dev,
   3310 				   struct skl_pipe_wm_parameters *p,
   3311 				   struct skl_pipe_wm *p_wm,
   3312 				   struct skl_wm_values *r,
   3313 				   struct intel_crtc *intel_crtc)
   3314 {
   3315 	int level, max_level = ilk_wm_max_level(dev);
   3316 	enum i915_pipe pipe = intel_crtc->pipe;
   3317 	uint32_t temp;
   3318 	int i;
   3319 
   3320 	for (level = 0; level <= max_level; level++) {
   3321 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3322 			temp = 0;
   3323 
   3324 			temp |= p_wm->wm[level].plane_res_l[i] <<
   3325 					PLANE_WM_LINES_SHIFT;
   3326 			temp |= p_wm->wm[level].plane_res_b[i];
   3327 			if (p_wm->wm[level].plane_en[i])
   3328 				temp |= PLANE_WM_EN;
   3329 
   3330 			r->plane[pipe][i][level] = temp;
   3331 		}
   3332 
   3333 		temp = 0;
   3334 
   3335 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
   3336 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
   3337 
   3338 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
   3339 			temp |= PLANE_WM_EN;
   3340 
   3341 		r->plane[pipe][PLANE_CURSOR][level] = temp;
   3342 
   3343 	}
   3344 
   3345 	/* transition WMs */
   3346 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3347 		temp = 0;
   3348 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
   3349 		temp |= p_wm->trans_wm.plane_res_b[i];
   3350 		if (p_wm->trans_wm.plane_en[i])
   3351 			temp |= PLANE_WM_EN;
   3352 
   3353 		r->plane_trans[pipe][i] = temp;
   3354 	}
   3355 
   3356 	temp = 0;
   3357 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
   3358 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
   3359 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
   3360 		temp |= PLANE_WM_EN;
   3361 
   3362 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
   3363 
   3364 	r->wm_linetime[pipe] = p_wm->linetime;
   3365 }
   3366 
   3367 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
   3368 				const struct skl_ddb_entry *entry)
   3369 {
   3370 	if (entry->end)
   3371 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
   3372 	else
   3373 		I915_WRITE(reg, 0);
   3374 }
   3375 
   3376 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
   3377 				const struct skl_wm_values *new)
   3378 {
   3379 	struct drm_device *dev = dev_priv->dev;
   3380 	struct intel_crtc *crtc;
   3381 
   3382 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
   3383 		int i, level, max_level = ilk_wm_max_level(dev);
   3384 		enum i915_pipe pipe = crtc->pipe;
   3385 
   3386 		if (!new->dirty[pipe])
   3387 			continue;
   3388 
   3389 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
   3390 
   3391 		for (level = 0; level <= max_level; level++) {
   3392 			for (i = 0; i < intel_num_planes(crtc); i++)
   3393 				I915_WRITE(PLANE_WM(pipe, i, level),
   3394 					   new->plane[pipe][i][level]);
   3395 			I915_WRITE(CUR_WM(pipe, level),
   3396 				   new->plane[pipe][PLANE_CURSOR][level]);
   3397 		}
   3398 		for (i = 0; i < intel_num_planes(crtc); i++)
   3399 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
   3400 				   new->plane_trans[pipe][i]);
   3401 		I915_WRITE(CUR_WM_TRANS(pipe),
   3402 			   new->plane_trans[pipe][PLANE_CURSOR]);
   3403 
   3404 		for (i = 0; i < intel_num_planes(crtc); i++) {
   3405 			skl_ddb_entry_write(dev_priv,
   3406 					    PLANE_BUF_CFG(pipe, i),
   3407 					    &new->ddb.plane[pipe][i]);
   3408 			skl_ddb_entry_write(dev_priv,
   3409 					    PLANE_NV12_BUF_CFG(pipe, i),
   3410 					    &new->ddb.y_plane[pipe][i]);
   3411 		}
   3412 
   3413 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
   3414 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
   3415 	}
   3416 }
   3417 
   3418 /*
   3419  * When setting up a new DDB allocation arrangement, we need to correctly
   3420  * sequence the times at which the new allocations for the pipes are taken into
   3421  * account or we'll have pipes fetching from space previously allocated to
   3422  * another pipe.
   3423  *
   3424  * Roughly the sequence looks like:
   3425  *  1. re-allocate the pipe(s) with the allocation being reduced and not
   3426  *     overlapping with a previous light-up pipe (another way to put it is:
   3427  *     pipes with their new allocation strickly included into their old ones).
   3428  *  2. re-allocate the other pipes that get their allocation reduced
   3429  *  3. allocate the pipes having their allocation increased
   3430  *
   3431  * Steps 1. and 2. are here to take care of the following case:
   3432  * - Initially DDB looks like this:
   3433  *     |   B    |   C    |
   3434  * - enable pipe A.
   3435  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
   3436  *   allocation
   3437  *     |  A  |  B  |  C  |
   3438  *
   3439  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
   3440  */
   3441 
   3442 static void
   3443 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int pass)
   3444 {
   3445 	int plane;
   3446 
   3447 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
   3448 
   3449 	for_each_plane(dev_priv, pipe, plane) {
   3450 		I915_WRITE(PLANE_SURF(pipe, plane),
   3451 			   I915_READ(PLANE_SURF(pipe, plane)));
   3452 	}
   3453 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
   3454 }
   3455 
   3456 static bool
   3457 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
   3458 			    const struct skl_ddb_allocation *new,
   3459 			    enum i915_pipe pipe)
   3460 {
   3461 	uint16_t old_size, new_size;
   3462 
   3463 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
   3464 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
   3465 
   3466 	return old_size != new_size &&
   3467 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
   3468 	       new->pipe[pipe].end <= old->pipe[pipe].end;
   3469 }
   3470 
   3471 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
   3472 				struct skl_wm_values *new_values)
   3473 {
   3474 	struct drm_device *dev = dev_priv->dev;
   3475 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
   3476 	bool reallocated[I915_MAX_PIPES] = {};
   3477 	struct intel_crtc *crtc;
   3478 	enum i915_pipe pipe;
   3479 
   3480 	new_ddb = &new_values->ddb;
   3481 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
   3482 
   3483 	/*
   3484 	 * First pass: flush the pipes with the new allocation contained into
   3485 	 * the old space.
   3486 	 *
   3487 	 * We'll wait for the vblank on those pipes to ensure we can safely
   3488 	 * re-allocate the freed space without this pipe fetching from it.
   3489 	 */
   3490 	for_each_intel_crtc(dev, crtc) {
   3491 		if (!crtc->active)
   3492 			continue;
   3493 
   3494 		pipe = crtc->pipe;
   3495 
   3496 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
   3497 			continue;
   3498 
   3499 		skl_wm_flush_pipe(dev_priv, pipe, 1);
   3500 		intel_wait_for_vblank(dev, pipe);
   3501 
   3502 		reallocated[pipe] = true;
   3503 	}
   3504 
   3505 
   3506 	/*
   3507 	 * Second pass: flush the pipes that are having their allocation
   3508 	 * reduced, but overlapping with a previous allocation.
   3509 	 *
   3510 	 * Here as well we need to wait for the vblank to make sure the freed
   3511 	 * space is not used anymore.
   3512 	 */
   3513 	for_each_intel_crtc(dev, crtc) {
   3514 		if (!crtc->active)
   3515 			continue;
   3516 
   3517 		pipe = crtc->pipe;
   3518 
   3519 		if (reallocated[pipe])
   3520 			continue;
   3521 
   3522 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
   3523 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
   3524 			skl_wm_flush_pipe(dev_priv, pipe, 2);
   3525 			intel_wait_for_vblank(dev, pipe);
   3526 			reallocated[pipe] = true;
   3527 		}
   3528 	}
   3529 
   3530 	/*
   3531 	 * Third pass: flush the pipes that got more space allocated.
   3532 	 *
   3533 	 * We don't need to actively wait for the update here, next vblank
   3534 	 * will just get more DDB space with the correct WM values.
   3535 	 */
   3536 	for_each_intel_crtc(dev, crtc) {
   3537 		if (!crtc->active)
   3538 			continue;
   3539 
   3540 		pipe = crtc->pipe;
   3541 
   3542 		/*
   3543 		 * At this point, only the pipes more space than before are
   3544 		 * left to re-allocate.
   3545 		 */
   3546 		if (reallocated[pipe])
   3547 			continue;
   3548 
   3549 		skl_wm_flush_pipe(dev_priv, pipe, 3);
   3550 	}
   3551 }
   3552 
   3553 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
   3554 			       struct skl_pipe_wm_parameters *params,
   3555 			       struct intel_wm_config *config,
   3556 			       struct skl_ddb_allocation *ddb, /* out */
   3557 			       struct skl_pipe_wm *pipe_wm /* out */)
   3558 {
   3559 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3560 
   3561 	skl_compute_wm_pipe_parameters(crtc, params);
   3562 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
   3563 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
   3564 
   3565 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
   3566 		return false;
   3567 
   3568 	intel_crtc->wm.skl_active = *pipe_wm;
   3569 
   3570 	return true;
   3571 }
   3572 
   3573 static void skl_update_other_pipe_wm(struct drm_device *dev,
   3574 				     struct drm_crtc *crtc,
   3575 				     struct intel_wm_config *config,
   3576 				     struct skl_wm_values *r)
   3577 {
   3578 	struct intel_crtc *intel_crtc;
   3579 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
   3580 
   3581 	/*
   3582 	 * If the WM update hasn't changed the allocation for this_crtc (the
   3583 	 * crtc we are currently computing the new WM values for), other
   3584 	 * enabled crtcs will keep the same allocation and we don't need to
   3585 	 * recompute anything for them.
   3586 	 */
   3587 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
   3588 		return;
   3589 
   3590 	/*
   3591 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
   3592 	 * other active pipes need new DDB allocation and WM values.
   3593 	 */
   3594 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
   3595 				base.head) {
   3596 		struct skl_pipe_wm_parameters params = {};
   3597 		struct skl_pipe_wm pipe_wm = {};
   3598 		bool wm_changed;
   3599 
   3600 		if (this_crtc->pipe == intel_crtc->pipe)
   3601 			continue;
   3602 
   3603 		if (!intel_crtc->active)
   3604 			continue;
   3605 
   3606 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
   3607 						&params, config,
   3608 						&r->ddb, &pipe_wm);
   3609 
   3610 		/*
   3611 		 * If we end up re-computing the other pipe WM values, it's
   3612 		 * because it was really needed, so we expect the WM values to
   3613 		 * be different.
   3614 		 */
   3615 		WARN_ON(!wm_changed);
   3616 
   3617 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
   3618 		r->dirty[intel_crtc->pipe] = true;
   3619 	}
   3620 }
   3621 
   3622 static void skl_clear_wm(struct skl_wm_values *watermarks, enum i915_pipe pipe)
   3623 {
   3624 	watermarks->wm_linetime[pipe] = 0;
   3625 	memset(watermarks->plane[pipe], 0,
   3626 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
   3627 	memset(watermarks->plane_trans[pipe],
   3628 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
   3629 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
   3630 
   3631 	/* Clear ddb entries for pipe */
   3632 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
   3633 	memset(&watermarks->ddb.plane[pipe], 0,
   3634 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
   3635 	memset(&watermarks->ddb.y_plane[pipe], 0,
   3636 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
   3637 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
   3638 	       sizeof(struct skl_ddb_entry));
   3639 
   3640 }
   3641 
   3642 static void skl_update_wm(struct drm_crtc *crtc)
   3643 {
   3644 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3645 	struct drm_device *dev = crtc->dev;
   3646 	struct drm_i915_private *dev_priv = dev->dev_private;
   3647 	struct skl_pipe_wm_parameters params = {};
   3648 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
   3649 	struct skl_pipe_wm pipe_wm = {};
   3650 	struct intel_wm_config config = {};
   3651 
   3652 
   3653 	/* Clear all dirty flags */
   3654 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
   3655 
   3656 	skl_clear_wm(results, intel_crtc->pipe);
   3657 
   3658 	skl_compute_wm_global_parameters(dev, &config);
   3659 
   3660 	if (!skl_update_pipe_wm(crtc, &params, &config,
   3661 				&results->ddb, &pipe_wm))
   3662 		return;
   3663 
   3664 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
   3665 	results->dirty[intel_crtc->pipe] = true;
   3666 
   3667 	skl_update_other_pipe_wm(dev, crtc, &config, results);
   3668 	skl_write_wm_values(dev_priv, results);
   3669 	skl_flush_wm_values(dev_priv, results);
   3670 
   3671 	/* store the new configuration */
   3672 	dev_priv->wm.skl_hw = *results;
   3673 }
   3674 
   3675 static void
   3676 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
   3677 		     uint32_t sprite_width, uint32_t sprite_height,
   3678 		     int pixel_size, bool enabled, bool scaled)
   3679 {
   3680 	struct intel_plane *intel_plane = to_intel_plane(plane);
   3681 	struct drm_framebuffer *fb = plane->state->fb;
   3682 
   3683 	intel_plane->wm.enabled = enabled;
   3684 	intel_plane->wm.scaled = scaled;
   3685 	intel_plane->wm.horiz_pixels = sprite_width;
   3686 	intel_plane->wm.vert_pixels = sprite_height;
   3687 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
   3688 
   3689 	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
   3690 	intel_plane->wm.bytes_per_pixel =
   3691 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
   3692 		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
   3693 	intel_plane->wm.y_bytes_per_pixel =
   3694 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
   3695 		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
   3696 
   3697 	/*
   3698 	 * Framebuffer can be NULL on plane disable, but it does not
   3699 	 * matter for watermarks if we assume no tiling in that case.
   3700 	 */
   3701 	if (fb)
   3702 		intel_plane->wm.tiling = fb->modifier[0];
   3703 	intel_plane->wm.rotation = plane->state->rotation;
   3704 
   3705 	skl_update_wm(crtc);
   3706 }
   3707 
   3708 static void ilk_update_wm(struct drm_crtc *crtc)
   3709 {
   3710 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3711 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
   3712 	struct drm_device *dev = crtc->dev;
   3713 	struct drm_i915_private *dev_priv = dev->dev_private;
   3714 	struct ilk_wm_maximums max;
   3715 	static const struct ilk_wm_values zero_values;
   3716 	struct ilk_wm_values results = zero_values;
   3717 	enum intel_ddb_partitioning partitioning;
   3718 	static const struct intel_pipe_wm zero_wm;
   3719 	struct intel_pipe_wm pipe_wm = zero_wm;
   3720 	struct intel_pipe_wm lp_wm_1_2 = zero_wm, lp_wm_5_6 = zero_wm,
   3721 	    *best_lp_wm;
   3722 	static const struct intel_wm_config zero_config;
   3723 	struct intel_wm_config config = zero_config;
   3724 
   3725 	WARN_ON(cstate->base.active != intel_crtc->active);
   3726 
   3727 	intel_compute_pipe_wm(cstate, &pipe_wm);
   3728 
   3729 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
   3730 		return;
   3731 
   3732 	intel_crtc->wm.active = pipe_wm;
   3733 
   3734 	ilk_compute_wm_config(dev, &config);
   3735 
   3736 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
   3737 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
   3738 
   3739 	/* 5/6 split only in single pipe config on IVB+ */
   3740 	if (INTEL_INFO(dev)->gen >= 7 &&
   3741 	    config.num_pipes_active == 1 && config.sprites_enabled) {
   3742 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
   3743 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
   3744 
   3745 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
   3746 	} else {
   3747 		best_lp_wm = &lp_wm_1_2;
   3748 	}
   3749 
   3750 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
   3751 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
   3752 
   3753 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
   3754 
   3755 	ilk_write_wm_values(dev_priv, &results);
   3756 }
   3757 
   3758 static void
   3759 ilk_update_sprite_wm(struct drm_plane *plane,
   3760 		     struct drm_crtc *crtc,
   3761 		     uint32_t sprite_width, uint32_t sprite_height,
   3762 		     int pixel_size, bool enabled, bool scaled)
   3763 {
   3764 	struct drm_device *dev = plane->dev;
   3765 	struct intel_plane *intel_plane = to_intel_plane(plane);
   3766 
   3767 	/*
   3768 	 * IVB workaround: must disable low power watermarks for at least
   3769 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
   3770 	 * when scaling is disabled.
   3771 	 *
   3772 	 * WaCxSRDisabledForSpriteScaling:ivb
   3773 	 */
   3774 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
   3775 		intel_wait_for_vblank(dev, intel_plane->pipe);
   3776 
   3777 	ilk_update_wm(crtc);
   3778 }
   3779 
   3780 static void skl_pipe_wm_active_state(uint32_t val,
   3781 				     struct skl_pipe_wm *active,
   3782 				     bool is_transwm,
   3783 				     bool is_cursor,
   3784 				     int i,
   3785 				     int level)
   3786 {
   3787 	bool is_enabled = (val & PLANE_WM_EN) != 0;
   3788 
   3789 	if (!is_transwm) {
   3790 		if (!is_cursor) {
   3791 			active->wm[level].plane_en[i] = is_enabled;
   3792 			active->wm[level].plane_res_b[i] =
   3793 					val & PLANE_WM_BLOCKS_MASK;
   3794 			active->wm[level].plane_res_l[i] =
   3795 					(val >> PLANE_WM_LINES_SHIFT) &
   3796 						PLANE_WM_LINES_MASK;
   3797 		} else {
   3798 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
   3799 			active->wm[level].plane_res_b[PLANE_CURSOR] =
   3800 					val & PLANE_WM_BLOCKS_MASK;
   3801 			active->wm[level].plane_res_l[PLANE_CURSOR] =
   3802 					(val >> PLANE_WM_LINES_SHIFT) &
   3803 						PLANE_WM_LINES_MASK;
   3804 		}
   3805 	} else {
   3806 		if (!is_cursor) {
   3807 			active->trans_wm.plane_en[i] = is_enabled;
   3808 			active->trans_wm.plane_res_b[i] =
   3809 					val & PLANE_WM_BLOCKS_MASK;
   3810 			active->trans_wm.plane_res_l[i] =
   3811 					(val >> PLANE_WM_LINES_SHIFT) &
   3812 						PLANE_WM_LINES_MASK;
   3813 		} else {
   3814 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
   3815 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
   3816 					val & PLANE_WM_BLOCKS_MASK;
   3817 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
   3818 					(val >> PLANE_WM_LINES_SHIFT) &
   3819 						PLANE_WM_LINES_MASK;
   3820 		}
   3821 	}
   3822 }
   3823 
   3824 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   3825 {
   3826 	struct drm_device *dev = crtc->dev;
   3827 	struct drm_i915_private *dev_priv = dev->dev_private;
   3828 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
   3829 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3830 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
   3831 	enum i915_pipe pipe = intel_crtc->pipe;
   3832 	int level, i, max_level;
   3833 	uint32_t temp;
   3834 
   3835 	max_level = ilk_wm_max_level(dev);
   3836 
   3837 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   3838 
   3839 	for (level = 0; level <= max_level; level++) {
   3840 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3841 			hw->plane[pipe][i][level] =
   3842 					I915_READ(PLANE_WM(pipe, i, level));
   3843 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
   3844 	}
   3845 
   3846 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3847 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
   3848 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
   3849 
   3850 	if (!intel_crtc->active)
   3851 		return;
   3852 
   3853 	hw->dirty[pipe] = true;
   3854 
   3855 	active->linetime = hw->wm_linetime[pipe];
   3856 
   3857 	for (level = 0; level <= max_level; level++) {
   3858 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3859 			temp = hw->plane[pipe][i][level];
   3860 			skl_pipe_wm_active_state(temp, active, false,
   3861 						false, i, level);
   3862 		}
   3863 		temp = hw->plane[pipe][PLANE_CURSOR][level];
   3864 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
   3865 	}
   3866 
   3867 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3868 		temp = hw->plane_trans[pipe][i];
   3869 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
   3870 	}
   3871 
   3872 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
   3873 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
   3874 }
   3875 
   3876 void skl_wm_get_hw_state(struct drm_device *dev)
   3877 {
   3878 	struct drm_i915_private *dev_priv = dev->dev_private;
   3879 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
   3880 	struct drm_crtc *crtc;
   3881 
   3882 	skl_ddb_get_hw_state(dev_priv, ddb);
   3883 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   3884 		skl_pipe_wm_get_hw_state(crtc);
   3885 }
   3886 
   3887 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   3888 {
   3889 	struct drm_device *dev = crtc->dev;
   3890 	struct drm_i915_private *dev_priv = dev->dev_private;
   3891 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   3892 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3893 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
   3894 	enum i915_pipe pipe = intel_crtc->pipe;
   3895 	static const unsigned int wm0_pipe_reg[] = {
   3896 		[PIPE_A] = WM0_PIPEA_ILK,
   3897 		[PIPE_B] = WM0_PIPEB_ILK,
   3898 		[PIPE_C] = WM0_PIPEC_IVB,
   3899 	};
   3900 
   3901 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
   3902 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   3903 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   3904 
   3905 	memset(active, 0, sizeof(*active));
   3906 
   3907 	active->pipe_enabled = intel_crtc->active;
   3908 
   3909 	if (active->pipe_enabled) {
   3910 		u32 tmp = hw->wm_pipe[pipe];
   3911 
   3912 		/*
   3913 		 * For active pipes LP0 watermark is marked as
   3914 		 * enabled, and LP1+ watermaks as disabled since
   3915 		 * we can't really reverse compute them in case
   3916 		 * multiple pipes are active.
   3917 		 */
   3918 		active->wm[0].enable = true;
   3919 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
   3920 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
   3921 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
   3922 		active->linetime = hw->wm_linetime[pipe];
   3923 	} else {
   3924 		int level, max_level = ilk_wm_max_level(dev);
   3925 
   3926 		/*
   3927 		 * For inactive pipes, all watermark levels
   3928 		 * should be marked as enabled but zeroed,
   3929 		 * which is what we'd compute them to.
   3930 		 */
   3931 		for (level = 0; level <= max_level; level++)
   3932 			active->wm[level].enable = true;
   3933 	}
   3934 }
   3935 
   3936 #define _FW_WM(value, plane) \
   3937 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
   3938 #define _FW_WM_VLV(value, plane) \
   3939 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
   3940 
   3941 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
   3942 			       struct vlv_wm_values *wm)
   3943 {
   3944 	enum i915_pipe pipe;
   3945 	uint32_t tmp;
   3946 
   3947 	for_each_pipe(dev_priv, pipe) {
   3948 		tmp = I915_READ(VLV_DDL(pipe));
   3949 
   3950 		wm->ddl[pipe].primary =
   3951 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3952 		wm->ddl[pipe].cursor =
   3953 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3954 		wm->ddl[pipe].sprite[0] =
   3955 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3956 		wm->ddl[pipe].sprite[1] =
   3957 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3958 	}
   3959 
   3960 	tmp = I915_READ(DSPFW1);
   3961 	wm->sr.plane = _FW_WM(tmp, SR);
   3962 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
   3963 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
   3964 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
   3965 
   3966 	tmp = I915_READ(DSPFW2);
   3967 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
   3968 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
   3969 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
   3970 
   3971 	tmp = I915_READ(DSPFW3);
   3972 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
   3973 
   3974 	if (IS_CHERRYVIEW(dev_priv)) {
   3975 		tmp = I915_READ(DSPFW7_CHV);
   3976 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
   3977 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
   3978 
   3979 		tmp = I915_READ(DSPFW8_CHV);
   3980 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
   3981 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
   3982 
   3983 		tmp = I915_READ(DSPFW9_CHV);
   3984 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
   3985 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
   3986 
   3987 		tmp = I915_READ(DSPHOWM);
   3988 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   3989 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
   3990 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
   3991 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
   3992 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   3993 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   3994 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
   3995 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   3996 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   3997 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
   3998 	} else {
   3999 		tmp = I915_READ(DSPFW7);
   4000 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
   4001 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
   4002 
   4003 		tmp = I915_READ(DSPHOWM);
   4004 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   4005 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   4006 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   4007 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
   4008 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   4009 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   4010 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
   4011 	}
   4012 }
   4013 
   4014 #undef _FW_WM
   4015 #undef _FW_WM_VLV
   4016 
   4017 void vlv_wm_get_hw_state(struct drm_device *dev)
   4018 {
   4019 	struct drm_i915_private *dev_priv = to_i915(dev);
   4020 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
   4021 	struct intel_plane *plane;
   4022 	enum i915_pipe pipe;
   4023 	u32 val;
   4024 
   4025 	vlv_read_wm_values(dev_priv, wm);
   4026 
   4027 	for_each_intel_plane(dev, plane) {
   4028 		switch (plane->base.type) {
   4029 			int sprite;
   4030 		case DRM_PLANE_TYPE_CURSOR:
   4031 			plane->wm.fifo_size = 63;
   4032 			break;
   4033 		case DRM_PLANE_TYPE_PRIMARY:
   4034 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
   4035 			break;
   4036 		case DRM_PLANE_TYPE_OVERLAY:
   4037 			sprite = plane->plane;
   4038 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
   4039 			break;
   4040 		}
   4041 	}
   4042 
   4043 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
   4044 	wm->level = VLV_WM_LEVEL_PM2;
   4045 
   4046 	if (IS_CHERRYVIEW(dev_priv)) {
   4047 		mutex_lock(&dev_priv->rps.hw_lock);
   4048 
   4049 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
   4050 		if (val & DSP_MAXFIFO_PM5_ENABLE)
   4051 			wm->level = VLV_WM_LEVEL_PM5;
   4052 
   4053 		/*
   4054 		 * If DDR DVFS is disabled in the BIOS, Punit
   4055 		 * will never ack the request. So if that happens
   4056 		 * assume we don't have to enable/disable DDR DVFS
   4057 		 * dynamically. To test that just set the REQ_ACK
   4058 		 * bit to poke the Punit, but don't change the
   4059 		 * HIGH/LOW bits so that we don't actually change
   4060 		 * the current state.
   4061 		 */
   4062 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   4063 		val |= FORCE_DDR_FREQ_REQ_ACK;
   4064 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
   4065 
   4066 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
   4067 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
   4068 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
   4069 				      "assuming DDR DVFS is disabled\n");
   4070 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
   4071 		} else {
   4072 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   4073 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
   4074 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
   4075 		}
   4076 
   4077 		mutex_unlock(&dev_priv->rps.hw_lock);
   4078 	}
   4079 
   4080 	for_each_pipe(dev_priv, pipe)
   4081 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
   4082 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
   4083 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
   4084 
   4085 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
   4086 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
   4087 }
   4088 
   4089 void ilk_wm_get_hw_state(struct drm_device *dev)
   4090 {
   4091 	struct drm_i915_private *dev_priv = dev->dev_private;
   4092 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   4093 	struct drm_crtc *crtc;
   4094 
   4095 	for_each_crtc(dev, crtc)
   4096 		ilk_pipe_wm_get_hw_state(crtc);
   4097 
   4098 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
   4099 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
   4100 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
   4101 
   4102 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
   4103 	if (INTEL_INFO(dev)->gen >= 7) {
   4104 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
   4105 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
   4106 	}
   4107 
   4108 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4109 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
   4110 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   4111 	else if (IS_IVYBRIDGE(dev))
   4112 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
   4113 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   4114 
   4115 	hw->enable_fbc_wm =
   4116 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
   4117 }
   4118 
   4119 /**
   4120  * intel_update_watermarks - update FIFO watermark values based on current modes
   4121  *
   4122  * Calculate watermark values for the various WM regs based on current mode
   4123  * and plane configuration.
   4124  *
   4125  * There are several cases to deal with here:
   4126  *   - normal (i.e. non-self-refresh)
   4127  *   - self-refresh (SR) mode
   4128  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   4129  *   - lines are small relative to FIFO size (buffer can hold more than 2
   4130  *     lines), so need to account for TLB latency
   4131  *
   4132  *   The normal calculation is:
   4133  *     watermark = dotclock * bytes per pixel * latency
   4134  *   where latency is platform & configuration dependent (we assume pessimal
   4135  *   values here).
   4136  *
   4137  *   The SR calculation is:
   4138  *     watermark = (trunc(latency/line time)+1) * surface width *
   4139  *       bytes per pixel
   4140  *   where
   4141  *     line time = htotal / dotclock
   4142  *     surface width = hdisplay for normal plane and 64 for cursor
   4143  *   and latency is assumed to be high, as above.
   4144  *
   4145  * The final value programmed to the register should always be rounded up,
   4146  * and include an extra 2 entries to account for clock crossings.
   4147  *
   4148  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   4149  * to set the non-SR watermarks to 8.
   4150  */
   4151 void intel_update_watermarks(struct drm_crtc *crtc)
   4152 {
   4153 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
   4154 
   4155 	if (dev_priv->display.update_wm)
   4156 		dev_priv->display.update_wm(crtc);
   4157 }
   4158 
   4159 void intel_update_sprite_watermarks(struct drm_plane *plane,
   4160 				    struct drm_crtc *crtc,
   4161 				    uint32_t sprite_width,
   4162 				    uint32_t sprite_height,
   4163 				    int pixel_size,
   4164 				    bool enabled, bool scaled)
   4165 {
   4166 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
   4167 
   4168 	if (dev_priv->display.update_sprite_wm)
   4169 		dev_priv->display.update_sprite_wm(plane, crtc,
   4170 						   sprite_width, sprite_height,
   4171 						   pixel_size, enabled, scaled);
   4172 }
   4173 
   4174 /**
   4175  * Lock protecting IPS related data structures
   4176  */
   4177 DEFINE_SPINLOCK(mchdev_lock);
   4178 
   4179 /* Global for IPS driver to get at the current i915 device. Protected by
   4180  * mchdev_lock. */
   4181 static struct drm_i915_private *i915_mch_dev;
   4182 
   4183 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   4184 {
   4185 	struct drm_i915_private *dev_priv = dev->dev_private;
   4186 	u16 rgvswctl;
   4187 
   4188 	assert_spin_locked(&mchdev_lock);
   4189 
   4190 	rgvswctl = I915_READ16(MEMSWCTL);
   4191 	if (rgvswctl & MEMCTL_CMD_STS) {
   4192 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   4193 		return false; /* still busy with another command */
   4194 	}
   4195 
   4196 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   4197 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   4198 	I915_WRITE16(MEMSWCTL, rgvswctl);
   4199 	POSTING_READ16(MEMSWCTL);
   4200 
   4201 	rgvswctl |= MEMCTL_CMD_STS;
   4202 	I915_WRITE16(MEMSWCTL, rgvswctl);
   4203 
   4204 	return true;
   4205 }
   4206 
   4207 static void ironlake_enable_drps(struct drm_device *dev)
   4208 {
   4209 	struct drm_i915_private *dev_priv = dev->dev_private;
   4210 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   4211 	u8 fmax, fmin, fstart, vstart;
   4212 
   4213 	spin_lock_irq(&mchdev_lock);
   4214 
   4215 	/* Enable temp reporting */
   4216 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   4217 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   4218 
   4219 	/* 100ms RC evaluation intervals */
   4220 	I915_WRITE(RCUPEI, 100000);
   4221 	I915_WRITE(RCDNEI, 100000);
   4222 
   4223 	/* Set max/min thresholds to 90ms and 80ms respectively */
   4224 	I915_WRITE(RCBMAXAVG, 90000);
   4225 	I915_WRITE(RCBMINAVG, 80000);
   4226 
   4227 	I915_WRITE(MEMIHYST, 1);
   4228 
   4229 	/* Set up min, max, and cur for interrupt handling */
   4230 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   4231 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   4232 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   4233 		MEMMODE_FSTART_SHIFT;
   4234 
   4235 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
   4236 		PXVFREQ_PX_SHIFT;
   4237 
   4238 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   4239 	dev_priv->ips.fstart = fstart;
   4240 
   4241 	dev_priv->ips.max_delay = fstart;
   4242 	dev_priv->ips.min_delay = fmin;
   4243 	dev_priv->ips.cur_delay = fstart;
   4244 
   4245 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   4246 			 fmax, fmin, fstart);
   4247 
   4248 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   4249 
   4250 	/*
   4251 	 * Interrupts will be enabled in ironlake_irq_postinstall
   4252 	 */
   4253 
   4254 	I915_WRITE(VIDSTART, vstart);
   4255 	POSTING_READ(VIDSTART);
   4256 
   4257 	rgvmodectl |= MEMMODE_SWMODE_EN;
   4258 	I915_WRITE(MEMMODECTL, rgvmodectl);
   4259 
   4260 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   4261 		DRM_ERROR("stuck trying to change perf mode\n");
   4262 	mdelay(1);
   4263 
   4264 	ironlake_set_drps(dev, fstart);
   4265 
   4266 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
   4267 		I915_READ(DDREC) + I915_READ(CSIEC);
   4268 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   4269 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
   4270 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
   4271 
   4272 	spin_unlock_irq(&mchdev_lock);
   4273 }
   4274 
   4275 static void ironlake_disable_drps(struct drm_device *dev)
   4276 {
   4277 	struct drm_i915_private *dev_priv = dev->dev_private;
   4278 	u16 rgvswctl;
   4279 
   4280 	spin_lock_irq(&mchdev_lock);
   4281 
   4282 	rgvswctl = I915_READ16(MEMSWCTL);
   4283 
   4284 	/* Ack interrupts, disable EFC interrupt */
   4285 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   4286 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   4287 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   4288 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   4289 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   4290 
   4291 	/* Go back to the starting frequency */
   4292 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   4293 	mdelay(1);
   4294 	rgvswctl |= MEMCTL_CMD_STS;
   4295 	I915_WRITE(MEMSWCTL, rgvswctl);
   4296 	mdelay(1);
   4297 
   4298 	spin_unlock_irq(&mchdev_lock);
   4299 }
   4300 
   4301 /* There's a funny hw issue where the hw returns all 0 when reading from
   4302  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   4303  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   4304  * all limits and the gpu stuck at whatever frequency it is at atm).
   4305  */
   4306 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
   4307 {
   4308 	u32 limits;
   4309 
   4310 	/* Only set the down limit when we've reached the lowest level to avoid
   4311 	 * getting more interrupts, otherwise leave this clear. This prevents a
   4312 	 * race in the hw when coming out of rc6: There's a tiny window where
   4313 	 * the hw runs at the minimal clock before selecting the desired
   4314 	 * frequency, if the down threshold expires in that window we will not
   4315 	 * receive a down interrupt. */
   4316 	if (IS_GEN9(dev_priv->dev)) {
   4317 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
   4318 		if (val <= dev_priv->rps.min_freq_softlimit)
   4319 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
   4320 	} else {
   4321 		limits = dev_priv->rps.max_freq_softlimit << 24;
   4322 		if (val <= dev_priv->rps.min_freq_softlimit)
   4323 			limits |= dev_priv->rps.min_freq_softlimit << 16;
   4324 	}
   4325 
   4326 	return limits;
   4327 }
   4328 
   4329 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
   4330 {
   4331 	int new_power;
   4332 	u32 threshold_up = 0, threshold_down = 0; /* in % */
   4333 	u32 ei_up = 0, ei_down = 0;
   4334 
   4335 	new_power = dev_priv->rps.power;
   4336 	switch (dev_priv->rps.power) {
   4337 	case LOW_POWER:
   4338 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
   4339 			new_power = BETWEEN;
   4340 		break;
   4341 
   4342 	case BETWEEN:
   4343 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
   4344 			new_power = LOW_POWER;
   4345 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
   4346 			new_power = HIGH_POWER;
   4347 		break;
   4348 
   4349 	case HIGH_POWER:
   4350 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
   4351 			new_power = BETWEEN;
   4352 		break;
   4353 	}
   4354 	/* Max/min bins are special */
   4355 	if (val <= dev_priv->rps.min_freq_softlimit)
   4356 		new_power = LOW_POWER;
   4357 	if (val >= dev_priv->rps.max_freq_softlimit)
   4358 		new_power = HIGH_POWER;
   4359 	if (new_power == dev_priv->rps.power)
   4360 		return;
   4361 
   4362 	/* Note the units here are not exactly 1us, but 1280ns. */
   4363 	switch (new_power) {
   4364 	case LOW_POWER:
   4365 		/* Upclock if more than 95% busy over 16ms */
   4366 		ei_up = 16000;
   4367 		threshold_up = 95;
   4368 
   4369 		/* Downclock if less than 85% busy over 32ms */
   4370 		ei_down = 32000;
   4371 		threshold_down = 85;
   4372 		break;
   4373 
   4374 	case BETWEEN:
   4375 		/* Upclock if more than 90% busy over 13ms */
   4376 		ei_up = 13000;
   4377 		threshold_up = 90;
   4378 
   4379 		/* Downclock if less than 75% busy over 32ms */
   4380 		ei_down = 32000;
   4381 		threshold_down = 75;
   4382 		break;
   4383 
   4384 	case HIGH_POWER:
   4385 		/* Upclock if more than 85% busy over 10ms */
   4386 		ei_up = 10000;
   4387 		threshold_up = 85;
   4388 
   4389 		/* Downclock if less than 60% busy over 32ms */
   4390 		ei_down = 32000;
   4391 		threshold_down = 60;
   4392 		break;
   4393 	}
   4394 
   4395 	/* When byt can survive without system hang with dynamic
   4396 	 * sw freq adjustments, this restriction can be lifted.
   4397 	 */
   4398 	if (IS_VALLEYVIEW(dev_priv))
   4399 		goto skip_hw_write;
   4400 
   4401 	I915_WRITE(GEN6_RP_UP_EI,
   4402 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
   4403 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
   4404 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
   4405 
   4406 	I915_WRITE(GEN6_RP_DOWN_EI,
   4407 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
   4408 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
   4409 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
   4410 
   4411 	 I915_WRITE(GEN6_RP_CONTROL,
   4412 		    GEN6_RP_MEDIA_TURBO |
   4413 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
   4414 		    GEN6_RP_MEDIA_IS_GFX |
   4415 		    GEN6_RP_ENABLE |
   4416 		    GEN6_RP_UP_BUSY_AVG |
   4417 		    GEN6_RP_DOWN_IDLE_AVG);
   4418 
   4419 skip_hw_write:
   4420 	dev_priv->rps.power = new_power;
   4421 	dev_priv->rps.up_threshold = threshold_up;
   4422 	dev_priv->rps.down_threshold = threshold_down;
   4423 	dev_priv->rps.last_adj = 0;
   4424 }
   4425 
   4426 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
   4427 {
   4428 	u32 mask = 0;
   4429 
   4430 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
   4431 	if (val > dev_priv->rps.min_freq_softlimit)
   4432 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
   4433 	if (val < dev_priv->rps.max_freq_softlimit)
   4434 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
   4435 
   4436 	mask &= dev_priv->pm_rps_events;
   4437 
   4438 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
   4439 }
   4440 
   4441 /* gen6_set_rps is called to update the frequency request, but should also be
   4442  * called when the range (min_delay and max_delay) is modified so that we can
   4443  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
   4444 static void gen6_set_rps(struct drm_device *dev, u8 val)
   4445 {
   4446 	struct drm_i915_private *dev_priv = dev->dev_private;
   4447 
   4448 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
   4449 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
   4450 		return;
   4451 
   4452 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4453 	WARN_ON(val > dev_priv->rps.max_freq);
   4454 	WARN_ON(val < dev_priv->rps.min_freq);
   4455 
   4456 	/* min/max delay may still have been modified so be sure to
   4457 	 * write the limits value.
   4458 	 */
   4459 	if (val != dev_priv->rps.cur_freq) {
   4460 		gen6_set_rps_thresholds(dev_priv, val);
   4461 
   4462 		if (IS_GEN9(dev))
   4463 			I915_WRITE(GEN6_RPNSWREQ,
   4464 				   GEN9_FREQUENCY(val));
   4465 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4466 			I915_WRITE(GEN6_RPNSWREQ,
   4467 				   HSW_FREQUENCY(val));
   4468 		else
   4469 			I915_WRITE(GEN6_RPNSWREQ,
   4470 				   GEN6_FREQUENCY(val) |
   4471 				   GEN6_OFFSET(0) |
   4472 				   GEN6_AGGRESSIVE_TURBO);
   4473 	}
   4474 
   4475 	/* Make sure we continue to get interrupts
   4476 	 * until we hit the minimum or maximum frequencies.
   4477 	 */
   4478 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
   4479 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   4480 
   4481 	POSTING_READ(GEN6_RPNSWREQ);
   4482 
   4483 	dev_priv->rps.cur_freq = val;
   4484 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
   4485 }
   4486 
   4487 static void valleyview_set_rps(struct drm_device *dev, u8 val)
   4488 {
   4489 	struct drm_i915_private *dev_priv = dev->dev_private;
   4490 
   4491 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4492 	WARN_ON(val > dev_priv->rps.max_freq);
   4493 	WARN_ON(val < dev_priv->rps.min_freq);
   4494 
   4495 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
   4496 		      "Odd GPU freq value\n"))
   4497 		val &= ~1;
   4498 
   4499 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   4500 
   4501 	if (val != dev_priv->rps.cur_freq) {
   4502 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
   4503 		if (!IS_CHERRYVIEW(dev_priv))
   4504 			gen6_set_rps_thresholds(dev_priv, val);
   4505 	}
   4506 
   4507 	dev_priv->rps.cur_freq = val;
   4508 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
   4509 }
   4510 
   4511 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
   4512  *
   4513  * * If Gfx is Idle, then
   4514  * 1. Forcewake Media well.
   4515  * 2. Request idle freq.
   4516  * 3. Release Forcewake of Media well.
   4517 */
   4518 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
   4519 {
   4520 	u32 val = dev_priv->rps.idle_freq;
   4521 
   4522 	if (dev_priv->rps.cur_freq <= val)
   4523 		return;
   4524 
   4525 	/* Wake up the media well, as that takes a lot less
   4526 	 * power than the Render well. */
   4527 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
   4528 	valleyview_set_rps(dev_priv->dev, val);
   4529 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
   4530 }
   4531 
   4532 void gen6_rps_busy(struct drm_i915_private *dev_priv)
   4533 {
   4534 	mutex_lock(&dev_priv->rps.hw_lock);
   4535 	if (dev_priv->rps.enabled) {
   4536 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
   4537 			gen6_rps_reset_ei(dev_priv);
   4538 		I915_WRITE(GEN6_PMINTRMSK,
   4539 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
   4540 	}
   4541 	mutex_unlock(&dev_priv->rps.hw_lock);
   4542 }
   4543 
   4544 void gen6_rps_idle(struct drm_i915_private *dev_priv)
   4545 {
   4546 	struct drm_device *dev = dev_priv->dev;
   4547 
   4548 	mutex_lock(&dev_priv->rps.hw_lock);
   4549 	if (dev_priv->rps.enabled) {
   4550 		if (IS_VALLEYVIEW(dev))
   4551 			vlv_set_rps_idle(dev_priv);
   4552 		else
   4553 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   4554 		dev_priv->rps.last_adj = 0;
   4555 		I915_WRITE(GEN6_PMINTRMSK,
   4556 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
   4557 	}
   4558 	mutex_unlock(&dev_priv->rps.hw_lock);
   4559 
   4560 	spin_lock(&dev_priv->rps.client_lock);
   4561 	while (!list_empty(&dev_priv->rps.clients))
   4562 		list_del_init(dev_priv->rps.clients.next);
   4563 	spin_unlock(&dev_priv->rps.client_lock);
   4564 }
   4565 
   4566 void gen6_rps_boost(struct drm_i915_private *dev_priv,
   4567 		    struct intel_rps_client *rps,
   4568 		    unsigned long submitted)
   4569 {
   4570 	/* This is intentionally racy! We peek at the state here, then
   4571 	 * validate inside the RPS worker.
   4572 	 */
   4573 	if (!(dev_priv->mm.busy &&
   4574 	      dev_priv->rps.enabled &&
   4575 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
   4576 		return;
   4577 
   4578 	/* Force a RPS boost (and don't count it against the client) if
   4579 	 * the GPU is severely congested.
   4580 	 */
   4581 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
   4582 		rps = NULL;
   4583 
   4584 	spin_lock(&dev_priv->rps.client_lock);
   4585 	if (rps == NULL || list_empty(&rps->link)) {
   4586 		spin_lock_irq(&dev_priv->irq_lock);
   4587 		if (dev_priv->rps.interrupts_enabled) {
   4588 			dev_priv->rps.client_boost = true;
   4589 			queue_work(dev_priv->wq, &dev_priv->rps.work);
   4590 		}
   4591 		spin_unlock_irq(&dev_priv->irq_lock);
   4592 
   4593 		if (rps != NULL) {
   4594 			list_add(&rps->link, &dev_priv->rps.clients);
   4595 			rps->boosts++;
   4596 		} else
   4597 			dev_priv->rps.boosts++;
   4598 	}
   4599 	spin_unlock(&dev_priv->rps.client_lock);
   4600 }
   4601 
   4602 void intel_set_rps(struct drm_device *dev, u8 val)
   4603 {
   4604 	if (IS_VALLEYVIEW(dev))
   4605 		valleyview_set_rps(dev, val);
   4606 	else
   4607 		gen6_set_rps(dev, val);
   4608 }
   4609 
   4610 static void gen9_disable_rps(struct drm_device *dev)
   4611 {
   4612 	struct drm_i915_private *dev_priv = dev->dev_private;
   4613 
   4614 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4615 	I915_WRITE(GEN9_PG_ENABLE, 0);
   4616 }
   4617 
   4618 static void gen6_disable_rps(struct drm_device *dev)
   4619 {
   4620 	struct drm_i915_private *dev_priv = dev->dev_private;
   4621 
   4622 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4623 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
   4624 }
   4625 
   4626 static void cherryview_disable_rps(struct drm_device *dev)
   4627 {
   4628 	struct drm_i915_private *dev_priv = dev->dev_private;
   4629 
   4630 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4631 }
   4632 
   4633 static void valleyview_disable_rps(struct drm_device *dev)
   4634 {
   4635 	struct drm_i915_private *dev_priv = dev->dev_private;
   4636 
   4637 	/* we're doing forcewake before Disabling RC6,
   4638 	 * This what the BIOS expects when going into suspend */
   4639 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4640 
   4641 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4642 
   4643 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4644 }
   4645 
   4646 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
   4647 {
   4648 	if (IS_VALLEYVIEW(dev)) {
   4649 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
   4650 			mode = GEN6_RC_CTL_RC6_ENABLE;
   4651 		else
   4652 			mode = 0;
   4653 	}
   4654 	if (HAS_RC6p(dev))
   4655 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
   4656 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   4657 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   4658 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   4659 
   4660 	else
   4661 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
   4662 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
   4663 }
   4664 
   4665 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
   4666 {
   4667 	/* No RC6 before Ironlake and code is gone for ilk. */
   4668 	if (INTEL_INFO(dev)->gen < 6)
   4669 		return 0;
   4670 
   4671 	/* Respect the kernel parameter if it is set */
   4672 	if (enable_rc6 >= 0) {
   4673 		int mask;
   4674 
   4675 		if (HAS_RC6p(dev))
   4676 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
   4677 			       INTEL_RC6pp_ENABLE;
   4678 		else
   4679 			mask = INTEL_RC6_ENABLE;
   4680 
   4681 		if ((enable_rc6 & mask) != enable_rc6)
   4682 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
   4683 				      enable_rc6 & mask, enable_rc6, mask);
   4684 
   4685 		return enable_rc6 & mask;
   4686 	}
   4687 
   4688 	if (IS_IVYBRIDGE(dev))
   4689 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   4690 
   4691 	return INTEL_RC6_ENABLE;
   4692 }
   4693 
   4694 int intel_enable_rc6(const struct drm_device *dev)
   4695 {
   4696 	return i915.enable_rc6;
   4697 }
   4698 
   4699 static void gen6_init_rps_frequencies(struct drm_device *dev)
   4700 {
   4701 	struct drm_i915_private *dev_priv = dev->dev_private;
   4702 	uint32_t rp_state_cap;
   4703 	u32 ddcc_status = 0;
   4704 	int ret;
   4705 
   4706 	/* All of these values are in units of 50MHz */
   4707 	dev_priv->rps.cur_freq		= 0;
   4708 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
   4709 	if (IS_BROXTON(dev)) {
   4710 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
   4711 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
   4712 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
   4713 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
   4714 	} else {
   4715 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   4716 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
   4717 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
   4718 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
   4719 	}
   4720 
   4721 	/* hw_max = RP0 until we check for overclocking */
   4722 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
   4723 
   4724 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
   4725 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
   4726 		ret = sandybridge_pcode_read(dev_priv,
   4727 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
   4728 					&ddcc_status);
   4729 		if (0 == ret)
   4730 			dev_priv->rps.efficient_freq =
   4731 				clamp_t(u8,
   4732 					((ddcc_status >> 8) & 0xff),
   4733 					dev_priv->rps.min_freq,
   4734 					dev_priv->rps.max_freq);
   4735 	}
   4736 
   4737 	if (IS_SKYLAKE(dev)) {
   4738 		/* Store the frequency values in 16.66 MHZ units, which is
   4739 		   the natural hardware unit for SKL */
   4740 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
   4741 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
   4742 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
   4743 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
   4744 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
   4745 	}
   4746 
   4747 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   4748 
   4749 	/* Preserve min/max settings in case of re-init */
   4750 	if (dev_priv->rps.max_freq_softlimit == 0)
   4751 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   4752 
   4753 	if (dev_priv->rps.min_freq_softlimit == 0) {
   4754 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4755 			dev_priv->rps.min_freq_softlimit =
   4756 				max_t(int, dev_priv->rps.efficient_freq,
   4757 				      intel_freq_opcode(dev_priv, 450));
   4758 		else
   4759 			dev_priv->rps.min_freq_softlimit =
   4760 				dev_priv->rps.min_freq;
   4761 	}
   4762 }
   4763 
   4764 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
   4765 static void gen9_enable_rps(struct drm_device *dev)
   4766 {
   4767 	struct drm_i915_private *dev_priv = dev->dev_private;
   4768 
   4769 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4770 
   4771 	gen6_init_rps_frequencies(dev);
   4772 
   4773 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
   4774 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
   4775 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4776 		return;
   4777 	}
   4778 
   4779 	/* Program defaults and thresholds for RPS*/
   4780 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   4781 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
   4782 
   4783 	/* 1 second timeout*/
   4784 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
   4785 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
   4786 
   4787 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
   4788 
   4789 	/* Leaning on the below call to gen6_set_rps to program/setup the
   4790 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
   4791 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
   4792 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   4793 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   4794 
   4795 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4796 }
   4797 
   4798 static void gen9_enable_rc6(struct drm_device *dev)
   4799 {
   4800 	struct drm_i915_private *dev_priv = dev->dev_private;
   4801 	struct intel_engine_cs *ring;
   4802 	uint32_t rc6_mask = 0;
   4803 	int unused;
   4804 
   4805 	/* 1a: Software RC state - RC0 */
   4806 	I915_WRITE(GEN6_RC_STATE, 0);
   4807 
   4808 	/* 1b: Get forcewake during program sequence. Although the driver
   4809 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   4810 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4811 
   4812 	/* 2a: Disable RC states. */
   4813 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4814 
   4815 	/* 2b: Program RC6 thresholds.*/
   4816 
   4817 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
   4818 	if (IS_SKYLAKE(dev))
   4819 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
   4820 	else
   4821 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
   4822 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   4823 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   4824 	for_each_ring(ring, dev_priv, unused)
   4825 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4826 
   4827 	if (HAS_GUC_UCODE(dev))
   4828 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
   4829 
   4830 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4831 
   4832 	/* 2c: Program Coarse Power Gating Policies. */
   4833 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
   4834 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
   4835 
   4836 	/* 3a: Enable RC6 */
   4837 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   4838 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   4839 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
   4840 			"on" : "off");
   4841 	/* WaRsUseTimeoutMode */
   4842 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
   4843 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
   4844 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
   4845 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4846 			   GEN7_RC_CTL_TO_MODE |
   4847 			   rc6_mask);
   4848 	} else {
   4849 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
   4850 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4851 			   GEN6_RC_CTL_EI_MODE(1) |
   4852 			   rc6_mask);
   4853 	}
   4854 
   4855 	/*
   4856 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
   4857 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
   4858 	 */
   4859 	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
   4860 	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
   4861 		I915_WRITE(GEN9_PG_ENABLE, 0);
   4862 	else
   4863 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
   4864 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
   4865 
   4866 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4867 
   4868 }
   4869 
   4870 static void gen8_enable_rps(struct drm_device *dev)
   4871 {
   4872 	struct drm_i915_private *dev_priv = dev->dev_private;
   4873 	struct intel_engine_cs *ring;
   4874 	uint32_t rc6_mask = 0;
   4875 	int unused;
   4876 
   4877 	/* 1a: Software RC state - RC0 */
   4878 	I915_WRITE(GEN6_RC_STATE, 0);
   4879 
   4880 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
   4881 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   4882 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4883 
   4884 	/* 2a: Disable RC states. */
   4885 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4886 
   4887 	/* Initialize rps frequencies */
   4888 	gen6_init_rps_frequencies(dev);
   4889 
   4890 	/* 2b: Program RC6 thresholds.*/
   4891 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   4892 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   4893 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   4894 	for_each_ring(ring, dev_priv, unused)
   4895 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4896 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4897 	if (IS_BROADWELL(dev))
   4898 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
   4899 	else
   4900 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
   4901 
   4902 	/* 3: Enable RC6 */
   4903 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   4904 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   4905 	intel_print_rc6_info(dev, rc6_mask);
   4906 	if (IS_BROADWELL(dev))
   4907 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4908 				GEN7_RC_CTL_TO_MODE |
   4909 				rc6_mask);
   4910 	else
   4911 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4912 				GEN6_RC_CTL_EI_MODE(1) |
   4913 				rc6_mask);
   4914 
   4915 	/* 4 Program defaults and thresholds for RPS*/
   4916 	I915_WRITE(GEN6_RPNSWREQ,
   4917 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
   4918 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   4919 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
   4920 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
   4921 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
   4922 
   4923 	/* Docs recommend 900MHz, and 300 MHz respectively */
   4924 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   4925 		   dev_priv->rps.max_freq_softlimit << 24 |
   4926 		   dev_priv->rps.min_freq_softlimit << 16);
   4927 
   4928 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
   4929 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
   4930 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
   4931 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
   4932 
   4933 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   4934 
   4935 	/* 5: Enable RPS */
   4936 	I915_WRITE(GEN6_RP_CONTROL,
   4937 		   GEN6_RP_MEDIA_TURBO |
   4938 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   4939 		   GEN6_RP_MEDIA_IS_GFX |
   4940 		   GEN6_RP_ENABLE |
   4941 		   GEN6_RP_UP_BUSY_AVG |
   4942 		   GEN6_RP_DOWN_IDLE_AVG);
   4943 
   4944 	/* 6: Ring frequency + overclocking (our driver does this later */
   4945 
   4946 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   4947 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   4948 
   4949 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4950 }
   4951 
   4952 static void gen6_enable_rps(struct drm_device *dev)
   4953 {
   4954 	struct drm_i915_private *dev_priv = dev->dev_private;
   4955 	struct intel_engine_cs *ring;
   4956 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
   4957 	u32 gtfifodbg;
   4958 	int rc6_mode;
   4959 	int i, ret;
   4960 
   4961 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4962 
   4963 	/* Here begins a magic sequence of register writes to enable
   4964 	 * auto-downclocking.
   4965 	 *
   4966 	 * Perhaps there might be some value in exposing these to
   4967 	 * userspace...
   4968 	 */
   4969 	I915_WRITE(GEN6_RC_STATE, 0);
   4970 
   4971 	/* Clear the DBG now so we don't confuse earlier errors */
   4972 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   4973 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   4974 		I915_WRITE(GTFIFODBG, gtfifodbg);
   4975 	}
   4976 
   4977 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4978 
   4979 	/* Initialize rps frequencies */
   4980 	gen6_init_rps_frequencies(dev);
   4981 
   4982 	/* disable the counters and set deterministic thresholds */
   4983 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4984 
   4985 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   4986 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   4987 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   4988 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   4989 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   4990 
   4991 	for_each_ring(ring, dev_priv, i)
   4992 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4993 
   4994 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4995 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   4996 	if (IS_IVYBRIDGE(dev))
   4997 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
   4998 	else
   4999 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   5000 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
   5001 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   5002 
   5003 	/* Check if we are enabling RC6 */
   5004 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   5005 	if (rc6_mode & INTEL_RC6_ENABLE)
   5006 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   5007 
   5008 	/* We don't use those on Haswell */
   5009 	if (!IS_HASWELL(dev)) {
   5010 		if (rc6_mode & INTEL_RC6p_ENABLE)
   5011 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   5012 
   5013 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   5014 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   5015 	}
   5016 
   5017 	intel_print_rc6_info(dev, rc6_mask);
   5018 
   5019 	I915_WRITE(GEN6_RC_CONTROL,
   5020 		   rc6_mask |
   5021 		   GEN6_RC_CTL_EI_MODE(1) |
   5022 		   GEN6_RC_CTL_HW_ENABLE);
   5023 
   5024 	/* Power down if completely idle for over 50ms */
   5025 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
   5026 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5027 
   5028 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   5029 	if (ret)
   5030 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   5031 
   5032 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   5033 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
   5034 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
   5035 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
   5036 				 (pcu_mbox & 0xff) * 50);
   5037 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
   5038 	}
   5039 
   5040 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   5041 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   5042 
   5043 	rc6vids = 0;
   5044 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   5045 	if (IS_GEN6(dev) && ret) {
   5046 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   5047 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   5048 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   5049 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   5050 		rc6vids &= 0xffff00;
   5051 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   5052 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   5053 		if (ret)
   5054 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   5055 	}
   5056 
   5057 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5058 }
   5059 
   5060 static void __gen6_update_ring_freq(struct drm_device *dev)
   5061 {
   5062 	struct drm_i915_private *dev_priv = dev->dev_private;
   5063 	int min_freq = 15;
   5064 	unsigned int gpu_freq;
   5065 	unsigned int max_ia_freq, min_ring_freq;
   5066 	unsigned int max_gpu_freq, min_gpu_freq;
   5067 	int scaling_factor = 180;
   5068 #ifndef __NetBSD__
   5069 	struct cpufreq_policy *policy;
   5070 #endif
   5071 
   5072 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5073 
   5074 #ifdef __NetBSD__
   5075 	{
   5076 		extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
   5077 		max_ia_freq = (tsc_freq / 1000);
   5078 	}
   5079 #else
   5080 	policy = cpufreq_cpu_get(0);
   5081 	if (policy) {
   5082 		max_ia_freq = policy->cpuinfo.max_freq;
   5083 		cpufreq_cpu_put(policy);
   5084 	} else {
   5085 		/*
   5086 		 * Default to measured freq if none found, PCU will ensure we
   5087 		 * don't go over
   5088 		 */
   5089 		max_ia_freq = tsc_khz;
   5090 	}
   5091 #endif
   5092 
   5093 	/* Convert from kHz to MHz */
   5094 	max_ia_freq /= 1000;
   5095 
   5096 	min_ring_freq = I915_READ(DCLK) & 0xf;
   5097 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
   5098 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
   5099 
   5100 	if (IS_SKYLAKE(dev)) {
   5101 		/* Convert GT frequency to 50 HZ units */
   5102 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
   5103 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
   5104 	} else {
   5105 		min_gpu_freq = dev_priv->rps.min_freq;
   5106 		max_gpu_freq = dev_priv->rps.max_freq;
   5107 	}
   5108 
   5109 	/*
   5110 	 * For each potential GPU frequency, load a ring frequency we'd like
   5111 	 * to use for memory access.  We do this by specifying the IA frequency
   5112 	 * the PCU should use as a reference to determine the ring frequency.
   5113 	 */
   5114 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
   5115 		int diff = max_gpu_freq - gpu_freq;
   5116 		unsigned int ia_freq = 0, ring_freq = 0;
   5117 
   5118 		if (IS_SKYLAKE(dev)) {
   5119 			/*
   5120 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
   5121 			 * No floor required for ring frequency on SKL.
   5122 			 */
   5123 			ring_freq = gpu_freq;
   5124 		} else if (INTEL_INFO(dev)->gen >= 8) {
   5125 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
   5126 			ring_freq = max(min_ring_freq, gpu_freq);
   5127 		} else if (IS_HASWELL(dev)) {
   5128 			ring_freq = mult_frac(gpu_freq, 5, 4);
   5129 			ring_freq = max(min_ring_freq, ring_freq);
   5130 			/* leave ia_freq as the default, chosen by cpufreq */
   5131 		} else {
   5132 			/* On older processors, there is no separate ring
   5133 			 * clock domain, so in order to boost the bandwidth
   5134 			 * of the ring, we need to upclock the CPU (ia_freq).
   5135 			 *
   5136 			 * For GPU frequencies less than 750MHz,
   5137 			 * just use the lowest ring freq.
   5138 			 */
   5139 			if (gpu_freq < min_freq)
   5140 				ia_freq = 800;
   5141 			else
   5142 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   5143 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   5144 		}
   5145 
   5146 		sandybridge_pcode_write(dev_priv,
   5147 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   5148 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
   5149 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
   5150 					gpu_freq);
   5151 	}
   5152 }
   5153 
   5154 void gen6_update_ring_freq(struct drm_device *dev)
   5155 {
   5156 	struct drm_i915_private *dev_priv = dev->dev_private;
   5157 
   5158 	if (!HAS_CORE_RING_FREQ(dev))
   5159 		return;
   5160 
   5161 	mutex_lock(&dev_priv->rps.hw_lock);
   5162 	__gen6_update_ring_freq(dev);
   5163 	mutex_unlock(&dev_priv->rps.hw_lock);
   5164 }
   5165 
   5166 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
   5167 {
   5168 	struct drm_device *dev = dev_priv->dev;
   5169 	u32 val, rp0;
   5170 
   5171 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
   5172 
   5173 	switch (INTEL_INFO(dev)->eu_total) {
   5174 	case 8:
   5175 		/* (2 * 4) config */
   5176 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
   5177 		break;
   5178 	case 12:
   5179 		/* (2 * 6) config */
   5180 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
   5181 		break;
   5182 	case 16:
   5183 		/* (2 * 8) config */
   5184 	default:
   5185 		/* Setting (2 * 8) Min RP0 for any other combination */
   5186 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
   5187 		break;
   5188 	}
   5189 
   5190 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
   5191 
   5192 	return rp0;
   5193 }
   5194 
   5195 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   5196 {
   5197 	u32 val, rpe;
   5198 
   5199 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
   5200 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
   5201 
   5202 	return rpe;
   5203 }
   5204 
   5205 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
   5206 {
   5207 	u32 val, rp1;
   5208 
   5209 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
   5210 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
   5211 
   5212 	return rp1;
   5213 }
   5214 
   5215 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
   5216 {
   5217 	u32 val, rp1;
   5218 
   5219 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   5220 
   5221 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
   5222 
   5223 	return rp1;
   5224 }
   5225 
   5226 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
   5227 {
   5228 	u32 val, rp0;
   5229 
   5230 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   5231 
   5232 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
   5233 	/* Clamp to max */
   5234 	rp0 = min_t(u32, rp0, 0xea);
   5235 
   5236 	return rp0;
   5237 }
   5238 
   5239 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   5240 {
   5241 	u32 val, rpe;
   5242 
   5243 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
   5244 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
   5245 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
   5246 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
   5247 
   5248 	return rpe;
   5249 }
   5250 
   5251 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
   5252 {
   5253 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
   5254 }
   5255 
   5256 /* Check that the pctx buffer wasn't move under us. */
   5257 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
   5258 {
   5259 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   5260 
   5261 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
   5262 			     dev_priv->vlv_pctx->stolen->start);
   5263 }
   5264 
   5265 
   5266 /* Check that the pcbr address is not empty. */
   5267 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
   5268 {
   5269 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   5270 
   5271 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
   5272 }
   5273 
   5274 static void cherryview_setup_pctx(struct drm_device *dev)
   5275 {
   5276 	struct drm_i915_private *dev_priv = dev->dev_private;
   5277 	unsigned long pctx_paddr, paddr;
   5278 	struct i915_gtt *gtt = &dev_priv->gtt;
   5279 	u32 pcbr;
   5280 	int pctx_size = 32*1024;
   5281 
   5282 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   5283 
   5284 	pcbr = I915_READ(VLV_PCBR);
   5285 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
   5286 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
   5287 		paddr = (dev_priv->mm.stolen_base +
   5288 			 (gtt->stolen_size - pctx_size));
   5289 
   5290 		pctx_paddr = (paddr & (~4095));
   5291 		I915_WRITE(VLV_PCBR, pctx_paddr);
   5292 	}
   5293 
   5294 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
   5295 }
   5296 
   5297 static void valleyview_setup_pctx(struct drm_device *dev)
   5298 {
   5299 	struct drm_i915_private *dev_priv = dev->dev_private;
   5300 	struct drm_i915_gem_object *pctx;
   5301 	unsigned long pctx_paddr;
   5302 	u32 pcbr;
   5303 	int pctx_size = 24*1024;
   5304 
   5305 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   5306 
   5307 	pcbr = I915_READ(VLV_PCBR);
   5308 	if (pcbr) {
   5309 		/* BIOS set it up already, grab the pre-alloc'd space */
   5310 		int pcbr_offset;
   5311 
   5312 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
   5313 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
   5314 								      pcbr_offset,
   5315 								      I915_GTT_OFFSET_NONE,
   5316 								      pctx_size);
   5317 		goto out;
   5318 	}
   5319 
   5320 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
   5321 
   5322 	/*
   5323 	 * From the Gunit register HAS:
   5324 	 * The Gfx driver is expected to program this register and ensure
   5325 	 * proper allocation within Gfx stolen memory.  For example, this
   5326 	 * register should be programmed such than the PCBR range does not
   5327 	 * overlap with other ranges, such as the frame buffer, protected
   5328 	 * memory, or any other relevant ranges.
   5329 	 */
   5330 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
   5331 	if (!pctx) {
   5332 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
   5333 		return;
   5334 	}
   5335 
   5336 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
   5337 	I915_WRITE(VLV_PCBR, pctx_paddr);
   5338 
   5339 out:
   5340 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
   5341 	dev_priv->vlv_pctx = pctx;
   5342 }
   5343 
   5344 static void valleyview_cleanup_pctx(struct drm_device *dev)
   5345 {
   5346 	struct drm_i915_private *dev_priv = dev->dev_private;
   5347 
   5348 	if (WARN_ON(!dev_priv->vlv_pctx))
   5349 		return;
   5350 
   5351 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
   5352 	dev_priv->vlv_pctx = NULL;
   5353 }
   5354 
   5355 static void valleyview_init_gt_powersave(struct drm_device *dev)
   5356 {
   5357 	struct drm_i915_private *dev_priv = dev->dev_private;
   5358 	u32 val;
   5359 
   5360 	valleyview_setup_pctx(dev);
   5361 
   5362 	mutex_lock(&dev_priv->rps.hw_lock);
   5363 
   5364 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5365 	switch ((val >> 6) & 3) {
   5366 	case 0:
   5367 	case 1:
   5368 		dev_priv->mem_freq = 800;
   5369 		break;
   5370 	case 2:
   5371 		dev_priv->mem_freq = 1066;
   5372 		break;
   5373 	case 3:
   5374 		dev_priv->mem_freq = 1333;
   5375 		break;
   5376 	}
   5377 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
   5378 
   5379 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
   5380 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
   5381 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   5382 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   5383 			 dev_priv->rps.max_freq);
   5384 
   5385 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
   5386 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   5387 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5388 			 dev_priv->rps.efficient_freq);
   5389 
   5390 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
   5391 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
   5392 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
   5393 			 dev_priv->rps.rp1_freq);
   5394 
   5395 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
   5396 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   5397 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   5398 			 dev_priv->rps.min_freq);
   5399 
   5400 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   5401 
   5402 	/* Preserve min/max settings in case of re-init */
   5403 	if (dev_priv->rps.max_freq_softlimit == 0)
   5404 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   5405 
   5406 	if (dev_priv->rps.min_freq_softlimit == 0)
   5407 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   5408 
   5409 	mutex_unlock(&dev_priv->rps.hw_lock);
   5410 }
   5411 
   5412 static void cherryview_init_gt_powersave(struct drm_device *dev)
   5413 {
   5414 	struct drm_i915_private *dev_priv = dev->dev_private;
   5415 	u32 val;
   5416 
   5417 	cherryview_setup_pctx(dev);
   5418 
   5419 	mutex_lock(&dev_priv->rps.hw_lock);
   5420 
   5421 	mutex_lock(&dev_priv->sb_lock);
   5422 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
   5423 	mutex_unlock(&dev_priv->sb_lock);
   5424 
   5425 	switch ((val >> 2) & 0x7) {
   5426 	case 3:
   5427 		dev_priv->mem_freq = 2000;
   5428 		break;
   5429 	default:
   5430 		dev_priv->mem_freq = 1600;
   5431 		break;
   5432 	}
   5433 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
   5434 
   5435 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
   5436 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
   5437 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   5438 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   5439 			 dev_priv->rps.max_freq);
   5440 
   5441 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
   5442 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   5443 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5444 			 dev_priv->rps.efficient_freq);
   5445 
   5446 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
   5447 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
   5448 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
   5449 			 dev_priv->rps.rp1_freq);
   5450 
   5451 	/* PUnit validated range is only [RPe, RP0] */
   5452 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
   5453 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   5454 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   5455 			 dev_priv->rps.min_freq);
   5456 
   5457 	WARN_ONCE((dev_priv->rps.max_freq |
   5458 		   dev_priv->rps.efficient_freq |
   5459 		   dev_priv->rps.rp1_freq |
   5460 		   dev_priv->rps.min_freq) & 1,
   5461 		  "Odd GPU freq values\n");
   5462 
   5463 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   5464 
   5465 	/* Preserve min/max settings in case of re-init */
   5466 	if (dev_priv->rps.max_freq_softlimit == 0)
   5467 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   5468 
   5469 	if (dev_priv->rps.min_freq_softlimit == 0)
   5470 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   5471 
   5472 	mutex_unlock(&dev_priv->rps.hw_lock);
   5473 }
   5474 
   5475 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
   5476 {
   5477 	valleyview_cleanup_pctx(dev);
   5478 }
   5479 
   5480 static void cherryview_enable_rps(struct drm_device *dev)
   5481 {
   5482 	struct drm_i915_private *dev_priv = dev->dev_private;
   5483 	struct intel_engine_cs *ring;
   5484 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
   5485 	int i;
   5486 
   5487 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5488 
   5489 	gtfifodbg = I915_READ(GTFIFODBG);
   5490 	if (gtfifodbg) {
   5491 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   5492 				 gtfifodbg);
   5493 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5494 	}
   5495 
   5496 	cherryview_check_pctx(dev_priv);
   5497 
   5498 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
   5499 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   5500 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5501 
   5502 	/*  Disable RC states. */
   5503 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5504 
   5505 	/* 2a: Program RC6 thresholds.*/
   5506 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   5507 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   5508 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   5509 
   5510 	for_each_ring(ring, dev_priv, i)
   5511 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5512 	I915_WRITE(GEN6_RC_SLEEP, 0);
   5513 
   5514 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
   5515 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
   5516 
   5517 	/* allows RC6 residency counter to work */
   5518 	I915_WRITE(VLV_COUNTER_CONTROL,
   5519 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
   5520 				      VLV_MEDIA_RC6_COUNT_EN |
   5521 				      VLV_RENDER_RC6_COUNT_EN));
   5522 
   5523 	/* For now we assume BIOS is allocating and populating the PCBR  */
   5524 	pcbr = I915_READ(VLV_PCBR);
   5525 
   5526 	/* 3: Enable RC6 */
   5527 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
   5528 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
   5529 		rc6_mode = GEN7_RC_CTL_TO_MODE;
   5530 
   5531 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   5532 
   5533 	/* 4 Program defaults and thresholds for RPS*/
   5534 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   5535 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   5536 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   5537 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   5538 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   5539 
   5540 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5541 
   5542 	/* 5: Enable RPS */
   5543 	I915_WRITE(GEN6_RP_CONTROL,
   5544 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   5545 		   GEN6_RP_MEDIA_IS_GFX |
   5546 		   GEN6_RP_ENABLE |
   5547 		   GEN6_RP_UP_BUSY_AVG |
   5548 		   GEN6_RP_DOWN_IDLE_AVG);
   5549 
   5550 	/* Setting Fixed Bias */
   5551 	val = VLV_OVERRIDE_EN |
   5552 		  VLV_SOC_TDP_EN |
   5553 		  CHV_BIAS_CPU_50_SOC_50;
   5554 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
   5555 
   5556 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5557 
   5558 	/* RPS code assumes GPLL is used */
   5559 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
   5560 
   5561 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
   5562 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   5563 
   5564 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   5565 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   5566 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   5567 			 dev_priv->rps.cur_freq);
   5568 
   5569 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   5570 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5571 			 dev_priv->rps.efficient_freq);
   5572 
   5573 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   5574 
   5575 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5576 }
   5577 
   5578 static void valleyview_enable_rps(struct drm_device *dev)
   5579 {
   5580 	struct drm_i915_private *dev_priv = dev->dev_private;
   5581 	struct intel_engine_cs *ring;
   5582 	u32 gtfifodbg, val, rc6_mode = 0;
   5583 	int i;
   5584 
   5585 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5586 
   5587 	valleyview_check_pctx(dev_priv);
   5588 
   5589 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   5590 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   5591 				 gtfifodbg);
   5592 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5593 	}
   5594 
   5595 	/* If VLV, Forcewake all wells, else re-direct to regular path */
   5596 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5597 
   5598 	/*  Disable RC states. */
   5599 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5600 
   5601 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   5602 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   5603 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   5604 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   5605 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   5606 
   5607 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5608 
   5609 	I915_WRITE(GEN6_RP_CONTROL,
   5610 		   GEN6_RP_MEDIA_TURBO |
   5611 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   5612 		   GEN6_RP_MEDIA_IS_GFX |
   5613 		   GEN6_RP_ENABLE |
   5614 		   GEN6_RP_UP_BUSY_AVG |
   5615 		   GEN6_RP_DOWN_IDLE_CONT);
   5616 
   5617 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
   5618 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   5619 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   5620 
   5621 	for_each_ring(ring, dev_priv, i)
   5622 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5623 
   5624 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
   5625 
   5626 	/* allows RC6 residency counter to work */
   5627 	I915_WRITE(VLV_COUNTER_CONTROL,
   5628 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
   5629 				      VLV_RENDER_RC0_COUNT_EN |
   5630 				      VLV_MEDIA_RC6_COUNT_EN |
   5631 				      VLV_RENDER_RC6_COUNT_EN));
   5632 
   5633 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   5634 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
   5635 
   5636 	intel_print_rc6_info(dev, rc6_mode);
   5637 
   5638 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   5639 
   5640 	/* Setting Fixed Bias */
   5641 	val = VLV_OVERRIDE_EN |
   5642 		  VLV_SOC_TDP_EN |
   5643 		  VLV_BIAS_CPU_125_SOC_875;
   5644 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
   5645 
   5646 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5647 
   5648 	/* RPS code assumes GPLL is used */
   5649 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
   5650 
   5651 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
   5652 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   5653 
   5654 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   5655 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   5656 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   5657 			 dev_priv->rps.cur_freq);
   5658 
   5659 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   5660 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5661 			 dev_priv->rps.efficient_freq);
   5662 
   5663 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   5664 
   5665 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5666 }
   5667 
   5668 static unsigned long intel_pxfreq(u32 vidfreq)
   5669 {
   5670 	unsigned long freq;
   5671 	int div = (vidfreq & 0x3f0000) >> 16;
   5672 	int post = (vidfreq & 0x3000) >> 12;
   5673 	int pre = (vidfreq & 0x7);
   5674 
   5675 	if (!pre)
   5676 		return 0;
   5677 
   5678 	freq = ((div * 133333) / ((1<<post) * pre));
   5679 
   5680 	return freq;
   5681 }
   5682 
   5683 static const struct cparams {
   5684 	u16 i;
   5685 	u16 t;
   5686 	u16 m;
   5687 	u16 c;
   5688 } cparams[] = {
   5689 	{ 1, 1333, 301, 28664 },
   5690 	{ 1, 1066, 294, 24460 },
   5691 	{ 1, 800, 294, 25192 },
   5692 	{ 0, 1333, 276, 27605 },
   5693 	{ 0, 1066, 276, 27605 },
   5694 	{ 0, 800, 231, 23784 },
   5695 };
   5696 
   5697 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   5698 {
   5699 	u64 total_count, diff, ret;
   5700 	u32 count1, count2, count3, m = 0, c = 0;
   5701 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   5702 	int i;
   5703 
   5704 	assert_spin_locked(&mchdev_lock);
   5705 
   5706 	diff1 = now - dev_priv->ips.last_time1;
   5707 
   5708 	/* Prevent division-by-zero if we are asking too fast.
   5709 	 * Also, we don't get interesting results if we are polling
   5710 	 * faster than once in 10ms, so just return the saved value
   5711 	 * in such cases.
   5712 	 */
   5713 	if (diff1 <= 10)
   5714 		return dev_priv->ips.chipset_power;
   5715 
   5716 	count1 = I915_READ(DMIEC);
   5717 	count2 = I915_READ(DDREC);
   5718 	count3 = I915_READ(CSIEC);
   5719 
   5720 	total_count = count1 + count2 + count3;
   5721 
   5722 	/* FIXME: handle per-counter overflow */
   5723 	if (total_count < dev_priv->ips.last_count1) {
   5724 		diff = ~0UL - dev_priv->ips.last_count1;
   5725 		diff += total_count;
   5726 	} else {
   5727 		diff = total_count - dev_priv->ips.last_count1;
   5728 	}
   5729 
   5730 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   5731 		if (cparams[i].i == dev_priv->ips.c_m &&
   5732 		    cparams[i].t == dev_priv->ips.r_t) {
   5733 			m = cparams[i].m;
   5734 			c = cparams[i].c;
   5735 			break;
   5736 		}
   5737 	}
   5738 
   5739 	diff = div_u64(diff, diff1);
   5740 	ret = ((m * diff) + c);
   5741 	ret = div_u64(ret, 10);
   5742 
   5743 	dev_priv->ips.last_count1 = total_count;
   5744 	dev_priv->ips.last_time1 = now;
   5745 
   5746 	dev_priv->ips.chipset_power = ret;
   5747 
   5748 	return ret;
   5749 }
   5750 
   5751 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   5752 {
   5753 	struct drm_device *dev = dev_priv->dev;
   5754 	unsigned long val;
   5755 
   5756 	if (INTEL_INFO(dev)->gen != 5)
   5757 		return 0;
   5758 
   5759 	spin_lock_irq(&mchdev_lock);
   5760 
   5761 	val = __i915_chipset_val(dev_priv);
   5762 
   5763 	spin_unlock_irq(&mchdev_lock);
   5764 
   5765 	return val;
   5766 }
   5767 
   5768 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   5769 {
   5770 	unsigned long m, x, b;
   5771 	u32 tsfs;
   5772 
   5773 	tsfs = I915_READ(TSFS);
   5774 
   5775 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   5776 	x = I915_READ8(TR1);
   5777 
   5778 	b = tsfs & TSFS_INTR_MASK;
   5779 
   5780 	return ((m * x) / 127) - b;
   5781 }
   5782 
   5783 static int _pxvid_to_vd(u8 pxvid)
   5784 {
   5785 	if (pxvid == 0)
   5786 		return 0;
   5787 
   5788 	if (pxvid >= 8 && pxvid < 31)
   5789 		pxvid = 31;
   5790 
   5791 	return (pxvid + 2) * 125;
   5792 }
   5793 
   5794 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   5795 {
   5796 	struct drm_device *dev = dev_priv->dev;
   5797 	const int vd = _pxvid_to_vd(pxvid);
   5798 	const int vm = vd - 1125;
   5799 
   5800 	if (INTEL_INFO(dev)->is_mobile)
   5801 		return vm > 0 ? vm : 0;
   5802 
   5803 	return vd;
   5804 }
   5805 
   5806 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   5807 {
   5808 	u64 now, diff, diffms;
   5809 	u32 count;
   5810 
   5811 	assert_spin_locked(&mchdev_lock);
   5812 
   5813 	now = ktime_get_raw_ns();
   5814 	diffms = now - dev_priv->ips.last_time2;
   5815 	do_div(diffms, NSEC_PER_MSEC);
   5816 
   5817 	/* Don't divide by 0 */
   5818 	if (!diffms)
   5819 		return;
   5820 
   5821 	count = I915_READ(GFXEC);
   5822 
   5823 	if (count < dev_priv->ips.last_count2) {
   5824 		diff = ~0UL - dev_priv->ips.last_count2;
   5825 		diff += count;
   5826 	} else {
   5827 		diff = count - dev_priv->ips.last_count2;
   5828 	}
   5829 
   5830 	dev_priv->ips.last_count2 = count;
   5831 	dev_priv->ips.last_time2 = now;
   5832 
   5833 	/* More magic constants... */
   5834 	diff = diff * 1181;
   5835 	diff = div_u64(diff, diffms * 10);
   5836 	dev_priv->ips.gfx_power = diff;
   5837 }
   5838 
   5839 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   5840 {
   5841 	struct drm_device *dev = dev_priv->dev;
   5842 
   5843 	if (INTEL_INFO(dev)->gen != 5)
   5844 		return;
   5845 
   5846 	spin_lock_irq(&mchdev_lock);
   5847 
   5848 	__i915_update_gfx_val(dev_priv);
   5849 
   5850 	spin_unlock_irq(&mchdev_lock);
   5851 }
   5852 
   5853 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   5854 {
   5855 	unsigned long t, corr, state1, corr2, state2;
   5856 	u32 pxvid, ext_v;
   5857 
   5858 	assert_spin_locked(&mchdev_lock);
   5859 
   5860 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
   5861 	pxvid = (pxvid >> 24) & 0x7f;
   5862 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   5863 
   5864 	state1 = ext_v;
   5865 
   5866 	t = i915_mch_val(dev_priv);
   5867 
   5868 	/* Revel in the empirically derived constants */
   5869 
   5870 	/* Correction factor in 1/100000 units */
   5871 	if (t > 80)
   5872 		corr = ((t * 2349) + 135940);
   5873 	else if (t >= 50)
   5874 		corr = ((t * 964) + 29317);
   5875 	else /* < 50 */
   5876 		corr = ((t * 301) + 1004);
   5877 
   5878 	corr = corr * ((150142 * state1) / 10000 - 78642);
   5879 	corr /= 100000;
   5880 	corr2 = (corr * dev_priv->ips.corr);
   5881 
   5882 	state2 = (corr2 * state1) / 10000;
   5883 	state2 /= 100; /* convert to mW */
   5884 
   5885 	__i915_update_gfx_val(dev_priv);
   5886 
   5887 	return dev_priv->ips.gfx_power + state2;
   5888 }
   5889 
   5890 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   5891 {
   5892 	struct drm_device *dev = dev_priv->dev;
   5893 	unsigned long val;
   5894 
   5895 	if (INTEL_INFO(dev)->gen != 5)
   5896 		return 0;
   5897 
   5898 	spin_lock_irq(&mchdev_lock);
   5899 
   5900 	val = __i915_gfx_val(dev_priv);
   5901 
   5902 	spin_unlock_irq(&mchdev_lock);
   5903 
   5904 	return val;
   5905 }
   5906 
   5907 /**
   5908  * i915_read_mch_val - return value for IPS use
   5909  *
   5910  * Calculate and return a value for the IPS driver to use when deciding whether
   5911  * we have thermal and power headroom to increase CPU or GPU power budget.
   5912  */
   5913 unsigned long i915_read_mch_val(void)
   5914 {
   5915 	struct drm_i915_private *dev_priv;
   5916 	unsigned long chipset_val, graphics_val, ret = 0;
   5917 
   5918 	spin_lock_irq(&mchdev_lock);
   5919 	if (!i915_mch_dev)
   5920 		goto out_unlock;
   5921 	dev_priv = i915_mch_dev;
   5922 
   5923 	chipset_val = __i915_chipset_val(dev_priv);
   5924 	graphics_val = __i915_gfx_val(dev_priv);
   5925 
   5926 	ret = chipset_val + graphics_val;
   5927 
   5928 out_unlock:
   5929 	spin_unlock_irq(&mchdev_lock);
   5930 
   5931 	return ret;
   5932 }
   5933 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   5934 
   5935 /**
   5936  * i915_gpu_raise - raise GPU frequency limit
   5937  *
   5938  * Raise the limit; IPS indicates we have thermal headroom.
   5939  */
   5940 bool i915_gpu_raise(void)
   5941 {
   5942 	struct drm_i915_private *dev_priv;
   5943 	bool ret = true;
   5944 
   5945 	spin_lock_irq(&mchdev_lock);
   5946 	if (!i915_mch_dev) {
   5947 		ret = false;
   5948 		goto out_unlock;
   5949 	}
   5950 	dev_priv = i915_mch_dev;
   5951 
   5952 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   5953 		dev_priv->ips.max_delay--;
   5954 
   5955 out_unlock:
   5956 	spin_unlock_irq(&mchdev_lock);
   5957 
   5958 	return ret;
   5959 }
   5960 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   5961 
   5962 /**
   5963  * i915_gpu_lower - lower GPU frequency limit
   5964  *
   5965  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   5966  * frequency maximum.
   5967  */
   5968 bool i915_gpu_lower(void)
   5969 {
   5970 	struct drm_i915_private *dev_priv;
   5971 	bool ret = true;
   5972 
   5973 	spin_lock_irq(&mchdev_lock);
   5974 	if (!i915_mch_dev) {
   5975 		ret = false;
   5976 		goto out_unlock;
   5977 	}
   5978 	dev_priv = i915_mch_dev;
   5979 
   5980 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   5981 		dev_priv->ips.max_delay++;
   5982 
   5983 out_unlock:
   5984 	spin_unlock_irq(&mchdev_lock);
   5985 
   5986 	return ret;
   5987 }
   5988 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   5989 
   5990 /**
   5991  * i915_gpu_busy - indicate GPU business to IPS
   5992  *
   5993  * Tell the IPS driver whether or not the GPU is busy.
   5994  */
   5995 bool i915_gpu_busy(void)
   5996 {
   5997 	struct drm_i915_private *dev_priv;
   5998 	struct intel_engine_cs *ring;
   5999 	bool ret = false;
   6000 	int i;
   6001 
   6002 	spin_lock_irq(&mchdev_lock);
   6003 	if (!i915_mch_dev)
   6004 		goto out_unlock;
   6005 	dev_priv = i915_mch_dev;
   6006 
   6007 	for_each_ring(ring, dev_priv, i)
   6008 		ret |= !list_empty(&ring->request_list);
   6009 
   6010 out_unlock:
   6011 	spin_unlock_irq(&mchdev_lock);
   6012 
   6013 	return ret;
   6014 }
   6015 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   6016 
   6017 /**
   6018  * i915_gpu_turbo_disable - disable graphics turbo
   6019  *
   6020  * Disable graphics turbo by resetting the max frequency and setting the
   6021  * current frequency to the default.
   6022  */
   6023 bool i915_gpu_turbo_disable(void)
   6024 {
   6025 	struct drm_i915_private *dev_priv;
   6026 	bool ret = true;
   6027 
   6028 	spin_lock_irq(&mchdev_lock);
   6029 	if (!i915_mch_dev) {
   6030 		ret = false;
   6031 		goto out_unlock;
   6032 	}
   6033 	dev_priv = i915_mch_dev;
   6034 
   6035 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   6036 
   6037 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   6038 		ret = false;
   6039 
   6040 out_unlock:
   6041 	spin_unlock_irq(&mchdev_lock);
   6042 
   6043 	return ret;
   6044 }
   6045 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   6046 
   6047 /**
   6048  * Tells the intel_ips driver that the i915 driver is now loaded, if
   6049  * IPS got loaded first.
   6050  *
   6051  * This awkward dance is so that neither module has to depend on the
   6052  * other in order for IPS to do the appropriate communication of
   6053  * GPU turbo limits to i915.
   6054  */
   6055 static void
   6056 ips_ping_for_i915_load(void)
   6057 {
   6058 #ifndef __NetBSD__		/* XXX IPS GPU turbo limits what?  */
   6059 	void (*link)(void);
   6060 
   6061 	link = symbol_get(ips_link_to_i915_driver);
   6062 	if (link) {
   6063 		link();
   6064 		symbol_put(ips_link_to_i915_driver);
   6065 	}
   6066 #endif
   6067 }
   6068 
   6069 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   6070 {
   6071 	/* We only register the i915 ips part with intel-ips once everything is
   6072 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   6073 	spin_lock_irq(&mchdev_lock);
   6074 	i915_mch_dev = dev_priv;
   6075 	spin_unlock_irq(&mchdev_lock);
   6076 
   6077 	ips_ping_for_i915_load();
   6078 }
   6079 
   6080 void intel_gpu_ips_teardown(void)
   6081 {
   6082 	spin_lock_irq(&mchdev_lock);
   6083 	i915_mch_dev = NULL;
   6084 	spin_unlock_irq(&mchdev_lock);
   6085 }
   6086 
   6087 static void intel_init_emon(struct drm_device *dev)
   6088 {
   6089 	struct drm_i915_private *dev_priv = dev->dev_private;
   6090 	u32 lcfuse;
   6091 	u8 pxw[16];
   6092 	int i;
   6093 
   6094 	/* Disable to program */
   6095 	I915_WRITE(ECR, 0);
   6096 	POSTING_READ(ECR);
   6097 
   6098 	/* Program energy weights for various events */
   6099 	I915_WRITE(SDEW, 0x15040d00);
   6100 	I915_WRITE(CSIEW0, 0x007f0000);
   6101 	I915_WRITE(CSIEW1, 0x1e220004);
   6102 	I915_WRITE(CSIEW2, 0x04000004);
   6103 
   6104 	for (i = 0; i < 5; i++)
   6105 		I915_WRITE(PEW(i), 0);
   6106 	for (i = 0; i < 3; i++)
   6107 		I915_WRITE(DEW(i), 0);
   6108 
   6109 	/* Program P-state weights to account for frequency power adjustment */
   6110 	for (i = 0; i < 16; i++) {
   6111 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
   6112 		unsigned long freq = intel_pxfreq(pxvidfreq);
   6113 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   6114 			PXVFREQ_PX_SHIFT;
   6115 		unsigned long val;
   6116 
   6117 		val = vid * vid;
   6118 		val *= (freq / 1000);
   6119 		val *= 255;
   6120 		val /= (127*127*900);
   6121 		if (val > 0xff)
   6122 			DRM_ERROR("bad pxval: %ld\n", val);
   6123 		pxw[i] = val;
   6124 	}
   6125 	/* Render standby states get 0 weight */
   6126 	pxw[14] = 0;
   6127 	pxw[15] = 0;
   6128 
   6129 	for (i = 0; i < 4; i++) {
   6130 		u32 val = ((u32)pxw[i*4] << 24) | ((u32)pxw[(i*4)+1] << 16) |
   6131 			((u32)pxw[(i*4)+2] << 8) | ((u32)pxw[(i*4)+3]);
   6132 		I915_WRITE(PXW(i), val);
   6133 	}
   6134 
   6135 	/* Adjust magic regs to magic values (more experimental results) */
   6136 	I915_WRITE(OGW0, 0);
   6137 	I915_WRITE(OGW1, 0);
   6138 	I915_WRITE(EG0, 0x00007f00);
   6139 	I915_WRITE(EG1, 0x0000000e);
   6140 	I915_WRITE(EG2, 0x000e0000);
   6141 	I915_WRITE(EG3, 0x68000300);
   6142 	I915_WRITE(EG4, 0x42000000);
   6143 	I915_WRITE(EG5, 0x00140031);
   6144 	I915_WRITE(EG6, 0);
   6145 	I915_WRITE(EG7, 0);
   6146 
   6147 	for (i = 0; i < 8; i++)
   6148 		I915_WRITE(PXWL(i), 0);
   6149 
   6150 	/* Enable PMON + select events */
   6151 	I915_WRITE(ECR, 0x80000019);
   6152 
   6153 	lcfuse = I915_READ(LCFUSE02);
   6154 
   6155 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   6156 }
   6157 
   6158 void intel_init_gt_powersave(struct drm_device *dev)
   6159 {
   6160 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
   6161 
   6162 	if (IS_CHERRYVIEW(dev))
   6163 		cherryview_init_gt_powersave(dev);
   6164 	else if (IS_VALLEYVIEW(dev))
   6165 		valleyview_init_gt_powersave(dev);
   6166 }
   6167 
   6168 void intel_cleanup_gt_powersave(struct drm_device *dev)
   6169 {
   6170 	if (IS_CHERRYVIEW(dev))
   6171 		return;
   6172 	else if (IS_VALLEYVIEW(dev))
   6173 		valleyview_cleanup_gt_powersave(dev);
   6174 }
   6175 
   6176 static void gen6_suspend_rps(struct drm_device *dev)
   6177 {
   6178 	struct drm_i915_private *dev_priv = dev->dev_private;
   6179 
   6180 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
   6181 
   6182 	gen6_disable_rps_interrupts(dev);
   6183 }
   6184 
   6185 /**
   6186  * intel_suspend_gt_powersave - suspend PM work and helper threads
   6187  * @dev: drm device
   6188  *
   6189  * We don't want to disable RC6 or other features here, we just want
   6190  * to make sure any work we've queued has finished and won't bother
   6191  * us while we're suspended.
   6192  */
   6193 void intel_suspend_gt_powersave(struct drm_device *dev)
   6194 {
   6195 	struct drm_i915_private *dev_priv = dev->dev_private;
   6196 
   6197 	if (INTEL_INFO(dev)->gen < 6)
   6198 		return;
   6199 
   6200 	gen6_suspend_rps(dev);
   6201 
   6202 	/* Force GPU to min freq during suspend */
   6203 	gen6_rps_idle(dev_priv);
   6204 }
   6205 
   6206 void intel_disable_gt_powersave(struct drm_device *dev)
   6207 {
   6208 	struct drm_i915_private *dev_priv = dev->dev_private;
   6209 
   6210 	if (IS_IRONLAKE_M(dev)) {
   6211 		ironlake_disable_drps(dev);
   6212 	} else if (INTEL_INFO(dev)->gen >= 6) {
   6213 		intel_suspend_gt_powersave(dev);
   6214 
   6215 		mutex_lock(&dev_priv->rps.hw_lock);
   6216 		if (INTEL_INFO(dev)->gen >= 9)
   6217 			gen9_disable_rps(dev);
   6218 		else if (IS_CHERRYVIEW(dev))
   6219 			cherryview_disable_rps(dev);
   6220 		else if (IS_VALLEYVIEW(dev))
   6221 			valleyview_disable_rps(dev);
   6222 		else
   6223 			gen6_disable_rps(dev);
   6224 
   6225 		dev_priv->rps.enabled = false;
   6226 		mutex_unlock(&dev_priv->rps.hw_lock);
   6227 	}
   6228 }
   6229 
   6230 static void intel_gen6_powersave_work(struct work_struct *work)
   6231 {
   6232 	struct drm_i915_private *dev_priv =
   6233 		container_of(work, struct drm_i915_private,
   6234 			     rps.delayed_resume_work.work);
   6235 	struct drm_device *dev = dev_priv->dev;
   6236 
   6237 	mutex_lock(&dev_priv->rps.hw_lock);
   6238 
   6239 	gen6_reset_rps_interrupts(dev);
   6240 
   6241 	if (IS_CHERRYVIEW(dev)) {
   6242 		cherryview_enable_rps(dev);
   6243 	} else if (IS_VALLEYVIEW(dev)) {
   6244 		valleyview_enable_rps(dev);
   6245 	} else if (INTEL_INFO(dev)->gen >= 9) {
   6246 		gen9_enable_rc6(dev);
   6247 		gen9_enable_rps(dev);
   6248 		if (IS_SKYLAKE(dev))
   6249 			__gen6_update_ring_freq(dev);
   6250 	} else if (IS_BROADWELL(dev)) {
   6251 		gen8_enable_rps(dev);
   6252 		__gen6_update_ring_freq(dev);
   6253 	} else {
   6254 		gen6_enable_rps(dev);
   6255 		__gen6_update_ring_freq(dev);
   6256 	}
   6257 
   6258 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
   6259 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
   6260 
   6261 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
   6262 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
   6263 
   6264 	dev_priv->rps.enabled = true;
   6265 
   6266 	gen6_enable_rps_interrupts(dev);
   6267 
   6268 	mutex_unlock(&dev_priv->rps.hw_lock);
   6269 
   6270 	intel_runtime_pm_put(dev_priv);
   6271 }
   6272 
   6273 void intel_enable_gt_powersave(struct drm_device *dev)
   6274 {
   6275 	struct drm_i915_private *dev_priv = dev->dev_private;
   6276 
   6277 	/* Powersaving is controlled by the host when inside a VM */
   6278 	if (intel_vgpu_active(dev))
   6279 		return;
   6280 
   6281 	if (IS_IRONLAKE_M(dev)) {
   6282 		mutex_lock(&dev->struct_mutex);
   6283 		ironlake_enable_drps(dev);
   6284 		intel_init_emon(dev);
   6285 		mutex_unlock(&dev->struct_mutex);
   6286 	} else if (INTEL_INFO(dev)->gen >= 6) {
   6287 		/*
   6288 		 * PCU communication is slow and this doesn't need to be
   6289 		 * done at any specific time, so do this out of our fast path
   6290 		 * to make resume and init faster.
   6291 		 *
   6292 		 * We depend on the HW RC6 power context save/restore
   6293 		 * mechanism when entering D3 through runtime PM suspend. So
   6294 		 * disable RPM until RPS/RC6 is properly setup. We can only
   6295 		 * get here via the driver load/system resume/runtime resume
   6296 		 * paths, so the _noresume version is enough (and in case of
   6297 		 * runtime resume it's necessary).
   6298 		 */
   6299 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   6300 					   round_jiffies_up_relative(HZ)))
   6301 			intel_runtime_pm_get_noresume(dev_priv);
   6302 	}
   6303 }
   6304 
   6305 void intel_reset_gt_powersave(struct drm_device *dev)
   6306 {
   6307 	struct drm_i915_private *dev_priv = dev->dev_private;
   6308 
   6309 	if (INTEL_INFO(dev)->gen < 6)
   6310 		return;
   6311 
   6312 	gen6_suspend_rps(dev);
   6313 	dev_priv->rps.enabled = false;
   6314 }
   6315 
   6316 static void ibx_init_clock_gating(struct drm_device *dev)
   6317 {
   6318 	struct drm_i915_private *dev_priv = dev->dev_private;
   6319 
   6320 	/*
   6321 	 * On Ibex Peak and Cougar Point, we need to disable clock
   6322 	 * gating for the panel power sequencer or it will fail to
   6323 	 * start up when no ports are active.
   6324 	 */
   6325 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   6326 }
   6327 
   6328 static void g4x_disable_trickle_feed(struct drm_device *dev)
   6329 {
   6330 	struct drm_i915_private *dev_priv = dev->dev_private;
   6331 	enum i915_pipe pipe;
   6332 
   6333 	for_each_pipe(dev_priv, pipe) {
   6334 		I915_WRITE(DSPCNTR(pipe),
   6335 			   I915_READ(DSPCNTR(pipe)) |
   6336 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   6337 
   6338 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
   6339 		POSTING_READ(DSPSURF(pipe));
   6340 	}
   6341 }
   6342 
   6343 static void ilk_init_lp_watermarks(struct drm_device *dev)
   6344 {
   6345 	struct drm_i915_private *dev_priv = dev->dev_private;
   6346 
   6347 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
   6348 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
   6349 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
   6350 
   6351 	/*
   6352 	 * Don't touch WM1S_LP_EN here.
   6353 	 * Doing so could cause underruns.
   6354 	 */
   6355 }
   6356 
   6357 static void ironlake_init_clock_gating(struct drm_device *dev)
   6358 {
   6359 	struct drm_i915_private *dev_priv = dev->dev_private;
   6360 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   6361 
   6362 	/*
   6363 	 * Required for FBC
   6364 	 * WaFbcDisableDpfcClockGating:ilk
   6365 	 */
   6366 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   6367 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   6368 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   6369 
   6370 	I915_WRITE(PCH_3DCGDIS0,
   6371 		   MARIUNIT_CLOCK_GATE_DISABLE |
   6372 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   6373 	I915_WRITE(PCH_3DCGDIS1,
   6374 		   VFMUNIT_CLOCK_GATE_DISABLE);
   6375 
   6376 	/*
   6377 	 * According to the spec the following bits should be set in
   6378 	 * order to enable memory self-refresh
   6379 	 * The bit 22/21 of 0x42004
   6380 	 * The bit 5 of 0x42020
   6381 	 * The bit 15 of 0x45000
   6382 	 */
   6383 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6384 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   6385 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   6386 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   6387 	I915_WRITE(DISP_ARB_CTL,
   6388 		   (I915_READ(DISP_ARB_CTL) |
   6389 		    DISP_FBC_WM_DIS));
   6390 
   6391 	ilk_init_lp_watermarks(dev);
   6392 
   6393 	/*
   6394 	 * Based on the document from hardware guys the following bits
   6395 	 * should be set unconditionally in order to enable FBC.
   6396 	 * The bit 22 of 0x42000
   6397 	 * The bit 22 of 0x42004
   6398 	 * The bit 7,8,9 of 0x42020.
   6399 	 */
   6400 	if (IS_IRONLAKE_M(dev)) {
   6401 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
   6402 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   6403 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   6404 			   ILK_FBCQ_DIS);
   6405 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6406 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6407 			   ILK_DPARB_GATE);
   6408 	}
   6409 
   6410 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   6411 
   6412 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6413 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6414 		   ILK_ELPIN_409_SELECT);
   6415 	I915_WRITE(_3D_CHICKEN2,
   6416 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   6417 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   6418 
   6419 	/* WaDisableRenderCachePipelinedFlush:ilk */
   6420 	I915_WRITE(CACHE_MODE_0,
   6421 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   6422 
   6423 	/* WaDisable_RenderCache_OperationalFlush:ilk */
   6424 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6425 
   6426 	g4x_disable_trickle_feed(dev);
   6427 
   6428 	ibx_init_clock_gating(dev);
   6429 }
   6430 
   6431 static void cpt_init_clock_gating(struct drm_device *dev)
   6432 {
   6433 	struct drm_i915_private *dev_priv = dev->dev_private;
   6434 	int pipe;
   6435 	uint32_t val;
   6436 
   6437 	/*
   6438 	 * On Ibex Peak and Cougar Point, we need to disable clock
   6439 	 * gating for the panel power sequencer or it will fail to
   6440 	 * start up when no ports are active.
   6441 	 */
   6442 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
   6443 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
   6444 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
   6445 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   6446 		   DPLS_EDP_PPS_FIX_DIS);
   6447 	/* The below fixes the weird display corruption, a few pixels shifted
   6448 	 * downward, on (only) LVDS of some HP laptops with IVY.
   6449 	 */
   6450 	for_each_pipe(dev_priv, pipe) {
   6451 		val = I915_READ(TRANS_CHICKEN2(pipe));
   6452 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
   6453 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   6454 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
   6455 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   6456 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
   6457 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
   6458 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
   6459 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
   6460 	}
   6461 	/* WADP0ClockGatingDisable */
   6462 	for_each_pipe(dev_priv, pipe) {
   6463 		I915_WRITE(TRANS_CHICKEN1(pipe),
   6464 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   6465 	}
   6466 }
   6467 
   6468 static void gen6_check_mch_setup(struct drm_device *dev)
   6469 {
   6470 	struct drm_i915_private *dev_priv = dev->dev_private;
   6471 	uint32_t tmp;
   6472 
   6473 	tmp = I915_READ(MCH_SSKPD);
   6474 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
   6475 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
   6476 			      tmp);
   6477 }
   6478 
   6479 static void gen6_init_clock_gating(struct drm_device *dev)
   6480 {
   6481 	struct drm_i915_private *dev_priv = dev->dev_private;
   6482 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   6483 
   6484 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   6485 
   6486 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6487 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6488 		   ILK_ELPIN_409_SELECT);
   6489 
   6490 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
   6491 	I915_WRITE(_3D_CHICKEN,
   6492 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   6493 
   6494 	/* WaDisable_RenderCache_OperationalFlush:snb */
   6495 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6496 
   6497 	/*
   6498 	 * BSpec recoomends 8x4 when MSAA is used,
   6499 	 * however in practice 16x4 seems fastest.
   6500 	 *
   6501 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6502 	 * disable bit, which we don't touch here, but it's good
   6503 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6504 	 */
   6505 	I915_WRITE(GEN6_GT_MODE,
   6506 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6507 
   6508 	ilk_init_lp_watermarks(dev);
   6509 
   6510 	I915_WRITE(CACHE_MODE_0,
   6511 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   6512 
   6513 	I915_WRITE(GEN6_UCGCTL1,
   6514 		   I915_READ(GEN6_UCGCTL1) |
   6515 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   6516 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   6517 
   6518 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   6519 	 * gating disable must be set.  Failure to set it results in
   6520 	 * flickering pixels due to Z write ordering failures after
   6521 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   6522 	 * Sanctuary and Tropics, and apparently anything else with
   6523 	 * alpha test or pixel discard.
   6524 	 *
   6525 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   6526 	 * but we didn't debug actual testcases to find it out.
   6527 	 *
   6528 	 * WaDisableRCCUnitClockGating:snb
   6529 	 * WaDisableRCPBUnitClockGating:snb
   6530 	 */
   6531 	I915_WRITE(GEN6_UCGCTL2,
   6532 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   6533 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   6534 
   6535 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
   6536 	I915_WRITE(_3D_CHICKEN3,
   6537 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
   6538 
   6539 	/*
   6540 	 * Bspec says:
   6541 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
   6542 	 * 3DSTATE_SF number of SF output attributes is more than 16."
   6543 	 */
   6544 	I915_WRITE(_3D_CHICKEN3,
   6545 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
   6546 
   6547 	/*
   6548 	 * According to the spec the following bits should be
   6549 	 * set in order to enable memory self-refresh and fbc:
   6550 	 * The bit21 and bit22 of 0x42000
   6551 	 * The bit21 and bit22 of 0x42004
   6552 	 * The bit5 and bit7 of 0x42020
   6553 	 * The bit14 of 0x70180
   6554 	 * The bit14 of 0x71180
   6555 	 *
   6556 	 * WaFbcAsynchFlipDisableFbcQueue:snb
   6557 	 */
   6558 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   6559 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   6560 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   6561 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6562 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6563 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   6564 	I915_WRITE(ILK_DSPCLK_GATE_D,
   6565 		   I915_READ(ILK_DSPCLK_GATE_D) |
   6566 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   6567 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   6568 
   6569 	g4x_disable_trickle_feed(dev);
   6570 
   6571 	cpt_init_clock_gating(dev);
   6572 
   6573 	gen6_check_mch_setup(dev);
   6574 }
   6575 
   6576 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   6577 {
   6578 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   6579 
   6580 	/*
   6581 	 * WaVSThreadDispatchOverride:ivb,vlv
   6582 	 *
   6583 	 * This actually overrides the dispatch
   6584 	 * mode for all thread types.
   6585 	 */
   6586 	reg &= ~GEN7_FF_SCHED_MASK;
   6587 	reg |= GEN7_FF_TS_SCHED_HW;
   6588 	reg |= GEN7_FF_VS_SCHED_HW;
   6589 	reg |= GEN7_FF_DS_SCHED_HW;
   6590 
   6591 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   6592 }
   6593 
   6594 static void lpt_init_clock_gating(struct drm_device *dev)
   6595 {
   6596 	struct drm_i915_private *dev_priv = dev->dev_private;
   6597 
   6598 	/*
   6599 	 * TODO: this bit should only be enabled when really needed, then
   6600 	 * disabled when not needed anymore in order to save power.
   6601 	 */
   6602 	if (HAS_PCH_LPT_LP(dev))
   6603 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   6604 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   6605 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   6606 
   6607 	/* WADPOClockGatingDisable:hsw */
   6608 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
   6609 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
   6610 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   6611 }
   6612 
   6613 static void lpt_suspend_hw(struct drm_device *dev)
   6614 {
   6615 	struct drm_i915_private *dev_priv = dev->dev_private;
   6616 
   6617 	if (HAS_PCH_LPT_LP(dev)) {
   6618 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
   6619 
   6620 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
   6621 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
   6622 	}
   6623 }
   6624 
   6625 static void broadwell_init_clock_gating(struct drm_device *dev)
   6626 {
   6627 	struct drm_i915_private *dev_priv = dev->dev_private;
   6628 	enum i915_pipe pipe;
   6629 	uint32_t misccpctl;
   6630 
   6631 	ilk_init_lp_watermarks(dev);
   6632 
   6633 	/* WaSwitchSolVfFArbitrationPriority:bdw */
   6634 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   6635 
   6636 	/* WaPsrDPAMaskVBlankInSRD:bdw */
   6637 	I915_WRITE(CHICKEN_PAR1_1,
   6638 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
   6639 
   6640 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
   6641 	for_each_pipe(dev_priv, pipe) {
   6642 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
   6643 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
   6644 			   BDW_DPRS_MASK_VBLANK_SRD);
   6645 	}
   6646 
   6647 	/* WaVSRefCountFullforceMissDisable:bdw */
   6648 	/* WaDSRefCountFullforceMissDisable:bdw */
   6649 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6650 		   I915_READ(GEN7_FF_THREAD_MODE) &
   6651 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   6652 
   6653 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   6654 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   6655 
   6656 	/* WaDisableSDEUnitClockGating:bdw */
   6657 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   6658 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   6659 
   6660 	/*
   6661 	 * WaProgramL3SqcReg1Default:bdw
   6662 	 * WaTempDisableDOPClkGating:bdw
   6663 	 */
   6664 	misccpctl = I915_READ(GEN7_MISCCPCTL);
   6665 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
   6666 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
   6667 	/*
   6668 	 * Wait at least 100 clocks before re-enabling clock gating. See
   6669 	 * the definition of L3SQCREG1 in BSpec.
   6670 	 */
   6671 	POSTING_READ(GEN8_L3SQCREG1);
   6672 	udelay(1);
   6673 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
   6674 
   6675 	/*
   6676 	 * WaGttCachingOffByDefault:bdw
   6677 	 * GTT cache may not work with big pages, so if those
   6678 	 * are ever enabled GTT cache may need to be disabled.
   6679 	 */
   6680 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
   6681 
   6682 	lpt_init_clock_gating(dev);
   6683 }
   6684 
   6685 static void haswell_init_clock_gating(struct drm_device *dev)
   6686 {
   6687 	struct drm_i915_private *dev_priv = dev->dev_private;
   6688 
   6689 	ilk_init_lp_watermarks(dev);
   6690 
   6691 	/* L3 caching of data atomics doesn't work -- disable it. */
   6692 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
   6693 	I915_WRITE(HSW_ROW_CHICKEN3,
   6694 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
   6695 
   6696 	/* This is required by WaCatErrorRejectionIssue:hsw */
   6697 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6698 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6699 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6700 
   6701 	/* WaVSRefCountFullforceMissDisable:hsw */
   6702 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6703 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
   6704 
   6705 	/* WaDisable_RenderCache_OperationalFlush:hsw */
   6706 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6707 
   6708 	/* enable HiZ Raw Stall Optimization */
   6709 	I915_WRITE(CACHE_MODE_0_GEN7,
   6710 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   6711 
   6712 	/* WaDisable4x2SubspanOptimization:hsw */
   6713 	I915_WRITE(CACHE_MODE_1,
   6714 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6715 
   6716 	/*
   6717 	 * BSpec recommends 8x4 when MSAA is used,
   6718 	 * however in practice 16x4 seems fastest.
   6719 	 *
   6720 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6721 	 * disable bit, which we don't touch here, but it's good
   6722 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6723 	 */
   6724 	I915_WRITE(GEN7_GT_MODE,
   6725 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6726 
   6727 	/* WaSampleCChickenBitEnable:hsw */
   6728 	I915_WRITE(HALF_SLICE_CHICKEN3,
   6729 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
   6730 
   6731 	/* WaSwitchSolVfFArbitrationPriority:hsw */
   6732 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   6733 
   6734 	/* WaRsPkgCStateDisplayPMReq:hsw */
   6735 	I915_WRITE(CHICKEN_PAR1_1,
   6736 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
   6737 
   6738 	lpt_init_clock_gating(dev);
   6739 }
   6740 
   6741 static void ivybridge_init_clock_gating(struct drm_device *dev)
   6742 {
   6743 	struct drm_i915_private *dev_priv = dev->dev_private;
   6744 	uint32_t snpcr;
   6745 
   6746 	ilk_init_lp_watermarks(dev);
   6747 
   6748 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   6749 
   6750 	/* WaDisableEarlyCull:ivb */
   6751 	I915_WRITE(_3D_CHICKEN3,
   6752 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   6753 
   6754 	/* WaDisableBackToBackFlipFix:ivb */
   6755 	I915_WRITE(IVB_CHICKEN3,
   6756 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   6757 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   6758 
   6759 	/* WaDisablePSDDualDispatchEnable:ivb */
   6760 	if (IS_IVB_GT1(dev))
   6761 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   6762 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   6763 
   6764 	/* WaDisable_RenderCache_OperationalFlush:ivb */
   6765 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6766 
   6767 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
   6768 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   6769 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   6770 
   6771 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
   6772 	I915_WRITE(GEN7_L3CNTLREG1,
   6773 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   6774 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   6775 		   GEN7_WA_L3_CHICKEN_MODE);
   6776 	if (IS_IVB_GT1(dev))
   6777 		I915_WRITE(GEN7_ROW_CHICKEN2,
   6778 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6779 	else {
   6780 		/* must write both registers */
   6781 		I915_WRITE(GEN7_ROW_CHICKEN2,
   6782 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6783 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   6784 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6785 	}
   6786 
   6787 	/* WaForceL3Serialization:ivb */
   6788 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   6789 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   6790 
   6791 	/*
   6792 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   6793 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
   6794 	 */
   6795 	I915_WRITE(GEN6_UCGCTL2,
   6796 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   6797 
   6798 	/* This is required by WaCatErrorRejectionIssue:ivb */
   6799 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6800 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6801 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6802 
   6803 	g4x_disable_trickle_feed(dev);
   6804 
   6805 	gen7_setup_fixed_func_scheduler(dev_priv);
   6806 
   6807 	if (0) { /* causes HiZ corruption on ivb:gt1 */
   6808 		/* enable HiZ Raw Stall Optimization */
   6809 		I915_WRITE(CACHE_MODE_0_GEN7,
   6810 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   6811 	}
   6812 
   6813 	/* WaDisable4x2SubspanOptimization:ivb */
   6814 	I915_WRITE(CACHE_MODE_1,
   6815 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6816 
   6817 	/*
   6818 	 * BSpec recommends 8x4 when MSAA is used,
   6819 	 * however in practice 16x4 seems fastest.
   6820 	 *
   6821 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6822 	 * disable bit, which we don't touch here, but it's good
   6823 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6824 	 */
   6825 	I915_WRITE(GEN7_GT_MODE,
   6826 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6827 
   6828 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   6829 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   6830 	snpcr |= GEN6_MBC_SNPCR_MED;
   6831 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   6832 
   6833 	if (!HAS_PCH_NOP(dev))
   6834 		cpt_init_clock_gating(dev);
   6835 
   6836 	gen6_check_mch_setup(dev);
   6837 }
   6838 
   6839 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
   6840 {
   6841         u32 val;
   6842 
   6843         /*
   6844         * On driver load, a pipe may be active and driving a DSI display.
   6845         * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
   6846         * (and never recovering) in this case. intel_dsi_post_disable() will
   6847         * clear it when we turn off the display.
   6848         */
   6849         val = I915_READ(DSPCLK_GATE_D);
   6850         val &= DPOUNIT_CLOCK_GATE_DISABLE;
   6851         val |= VRHUNIT_CLOCK_GATE_DISABLE;
   6852         I915_WRITE(DSPCLK_GATE_D, val);
   6853 
   6854 	/*
   6855 	 * Disable trickle feed and enable pnd deadline calculation
   6856 	 */
   6857 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
   6858 	I915_WRITE(CBR1_VLV, 0);
   6859 }
   6860 
   6861 static void valleyview_init_clock_gating(struct drm_device *dev)
   6862 {
   6863 	struct drm_i915_private *dev_priv = dev->dev_private;
   6864 
   6865 	vlv_init_display_clock_gating(dev_priv);
   6866 
   6867 	/* WaDisableEarlyCull:vlv */
   6868 	I915_WRITE(_3D_CHICKEN3,
   6869 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   6870 
   6871 	/* WaDisableBackToBackFlipFix:vlv */
   6872 	I915_WRITE(IVB_CHICKEN3,
   6873 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   6874 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   6875 
   6876 	/* WaPsdDispatchEnable:vlv */
   6877 	/* WaDisablePSDDualDispatchEnable:vlv */
   6878 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   6879 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
   6880 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   6881 
   6882 	/* WaDisable_RenderCache_OperationalFlush:vlv */
   6883 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6884 
   6885 	/* WaForceL3Serialization:vlv */
   6886 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   6887 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   6888 
   6889 	/* WaDisableDopClockGating:vlv */
   6890 	I915_WRITE(GEN7_ROW_CHICKEN2,
   6891 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6892 
   6893 	/* This is required by WaCatErrorRejectionIssue:vlv */
   6894 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6895 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6896 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6897 
   6898 	gen7_setup_fixed_func_scheduler(dev_priv);
   6899 
   6900 	/*
   6901 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   6902 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
   6903 	 */
   6904 	I915_WRITE(GEN6_UCGCTL2,
   6905 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   6906 
   6907 	/* WaDisableL3Bank2xClockGate:vlv
   6908 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
   6909 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
   6910 	I915_WRITE(GEN7_UCGCTL4,
   6911 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   6912 
   6913 	/*
   6914 	 * BSpec says this must be set, even though
   6915 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
   6916 	 */
   6917 	I915_WRITE(CACHE_MODE_1,
   6918 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6919 
   6920 	/*
   6921 	 * BSpec recommends 8x4 when MSAA is used,
   6922 	 * however in practice 16x4 seems fastest.
   6923 	 *
   6924 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6925 	 * disable bit, which we don't touch here, but it's good
   6926 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6927 	 */
   6928 	I915_WRITE(GEN7_GT_MODE,
   6929 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6930 
   6931 	/*
   6932 	 * WaIncreaseL3CreditsForVLVB0:vlv
   6933 	 * This is the hardware default actually.
   6934 	 */
   6935 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
   6936 
   6937 	/*
   6938 	 * WaDisableVLVClockGating_VBIIssue:vlv
   6939 	 * Disable clock gating on th GCFG unit to prevent a delay
   6940 	 * in the reporting of vblank events.
   6941 	 */
   6942 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   6943 }
   6944 
   6945 static void cherryview_init_clock_gating(struct drm_device *dev)
   6946 {
   6947 	struct drm_i915_private *dev_priv = dev->dev_private;
   6948 
   6949 	vlv_init_display_clock_gating(dev_priv);
   6950 
   6951 	/* WaVSRefCountFullforceMissDisable:chv */
   6952 	/* WaDSRefCountFullforceMissDisable:chv */
   6953 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6954 		   I915_READ(GEN7_FF_THREAD_MODE) &
   6955 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   6956 
   6957 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
   6958 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   6959 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   6960 
   6961 	/* WaDisableCSUnitClockGating:chv */
   6962 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
   6963 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   6964 
   6965 	/* WaDisableSDEUnitClockGating:chv */
   6966 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   6967 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   6968 
   6969 	/*
   6970 	 * GTT cache may not work with big pages, so if those
   6971 	 * are ever enabled GTT cache may need to be disabled.
   6972 	 */
   6973 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
   6974 }
   6975 
   6976 static void g4x_init_clock_gating(struct drm_device *dev)
   6977 {
   6978 	struct drm_i915_private *dev_priv = dev->dev_private;
   6979 	uint32_t dspclk_gate;
   6980 
   6981 	I915_WRITE(RENCLK_GATE_D1, 0);
   6982 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   6983 		   GS_UNIT_CLOCK_GATE_DISABLE |
   6984 		   CL_UNIT_CLOCK_GATE_DISABLE);
   6985 	I915_WRITE(RAMCLK_GATE_D, 0);
   6986 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   6987 		OVRUNIT_CLOCK_GATE_DISABLE |
   6988 		OVCUNIT_CLOCK_GATE_DISABLE;
   6989 	if (IS_GM45(dev))
   6990 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   6991 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   6992 
   6993 	/* WaDisableRenderCachePipelinedFlush */
   6994 	I915_WRITE(CACHE_MODE_0,
   6995 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   6996 
   6997 	/* WaDisable_RenderCache_OperationalFlush:g4x */
   6998 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6999 
   7000 	g4x_disable_trickle_feed(dev);
   7001 }
   7002 
   7003 static void crestline_init_clock_gating(struct drm_device *dev)
   7004 {
   7005 	struct drm_i915_private *dev_priv = dev->dev_private;
   7006 
   7007 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   7008 	I915_WRITE(RENCLK_GATE_D2, 0);
   7009 	I915_WRITE(DSPCLK_GATE_D, 0);
   7010 	I915_WRITE(RAMCLK_GATE_D, 0);
   7011 	I915_WRITE16(DEUC, 0);
   7012 	I915_WRITE(MI_ARB_STATE,
   7013 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7014 
   7015 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
   7016 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7017 }
   7018 
   7019 static void broadwater_init_clock_gating(struct drm_device *dev)
   7020 {
   7021 	struct drm_i915_private *dev_priv = dev->dev_private;
   7022 
   7023 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   7024 		   I965_RCC_CLOCK_GATE_DISABLE |
   7025 		   I965_RCPB_CLOCK_GATE_DISABLE |
   7026 		   I965_ISC_CLOCK_GATE_DISABLE |
   7027 		   I965_FBC_CLOCK_GATE_DISABLE);
   7028 	I915_WRITE(RENCLK_GATE_D2, 0);
   7029 	I915_WRITE(MI_ARB_STATE,
   7030 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7031 
   7032 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
   7033 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7034 }
   7035 
   7036 static void gen3_init_clock_gating(struct drm_device *dev)
   7037 {
   7038 	struct drm_i915_private *dev_priv = dev->dev_private;
   7039 	u32 dstate = I915_READ(D_STATE);
   7040 
   7041 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   7042 		DSTATE_DOT_CLOCK_GATING;
   7043 	I915_WRITE(D_STATE, dstate);
   7044 
   7045 	if (IS_PINEVIEW(dev))
   7046 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   7047 
   7048 	/* IIR "flip pending" means done if this bit is set */
   7049 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   7050 
   7051 	/* interrupts should cause a wake up from C3 */
   7052 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
   7053 
   7054 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   7055 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   7056 
   7057 	I915_WRITE(MI_ARB_STATE,
   7058 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7059 }
   7060 
   7061 static void i85x_init_clock_gating(struct drm_device *dev)
   7062 {
   7063 	struct drm_i915_private *dev_priv = dev->dev_private;
   7064 
   7065 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   7066 
   7067 	/* interrupts should cause a wake up from C3 */
   7068 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
   7069 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
   7070 
   7071 	I915_WRITE(MEM_MODE,
   7072 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
   7073 }
   7074 
   7075 static void i830_init_clock_gating(struct drm_device *dev)
   7076 {
   7077 	struct drm_i915_private *dev_priv = dev->dev_private;
   7078 
   7079 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   7080 
   7081 	I915_WRITE(MEM_MODE,
   7082 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
   7083 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
   7084 }
   7085 
   7086 void intel_init_clock_gating(struct drm_device *dev)
   7087 {
   7088 	struct drm_i915_private *dev_priv = dev->dev_private;
   7089 
   7090 	if (dev_priv->display.init_clock_gating)
   7091 		dev_priv->display.init_clock_gating(dev);
   7092 }
   7093 
   7094 void intel_suspend_hw(struct drm_device *dev)
   7095 {
   7096 	if (HAS_PCH_LPT(dev))
   7097 		lpt_suspend_hw(dev);
   7098 }
   7099 
   7100 /* Set up chip specific power management-related functions */
   7101 void intel_init_pm(struct drm_device *dev)
   7102 {
   7103 	struct drm_i915_private *dev_priv = dev->dev_private;
   7104 
   7105 	intel_fbc_init(dev_priv);
   7106 
   7107 	/* For cxsr */
   7108 	if (IS_PINEVIEW(dev))
   7109 		i915_pineview_get_mem_freq(dev);
   7110 	else if (IS_GEN5(dev))
   7111 		i915_ironlake_get_mem_freq(dev);
   7112 
   7113 	/* For FIFO watermark updates */
   7114 	if (INTEL_INFO(dev)->gen >= 9) {
   7115 		skl_setup_wm_latency(dev);
   7116 
   7117 		if (IS_BROXTON(dev))
   7118 			dev_priv->display.init_clock_gating =
   7119 				bxt_init_clock_gating;
   7120 		dev_priv->display.update_wm = skl_update_wm;
   7121 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
   7122 	} else if (HAS_PCH_SPLIT(dev)) {
   7123 		ilk_setup_wm_latency(dev);
   7124 
   7125 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
   7126 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
   7127 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
   7128 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
   7129 			dev_priv->display.update_wm = ilk_update_wm;
   7130 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
   7131 		} else {
   7132 			DRM_DEBUG_KMS("Failed to read display plane latency. "
   7133 				      "Disable CxSR\n");
   7134 		}
   7135 
   7136 		if (IS_GEN5(dev))
   7137 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   7138 		else if (IS_GEN6(dev))
   7139 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   7140 		else if (IS_IVYBRIDGE(dev))
   7141 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   7142 		else if (IS_HASWELL(dev))
   7143 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   7144 		else if (INTEL_INFO(dev)->gen == 8)
   7145 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
   7146 	} else if (IS_CHERRYVIEW(dev)) {
   7147 		vlv_setup_wm_latency(dev);
   7148 
   7149 		dev_priv->display.update_wm = vlv_update_wm;
   7150 		dev_priv->display.init_clock_gating =
   7151 			cherryview_init_clock_gating;
   7152 	} else if (IS_VALLEYVIEW(dev)) {
   7153 		vlv_setup_wm_latency(dev);
   7154 
   7155 		dev_priv->display.update_wm = vlv_update_wm;
   7156 		dev_priv->display.init_clock_gating =
   7157 			valleyview_init_clock_gating;
   7158 	} else if (IS_PINEVIEW(dev)) {
   7159 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   7160 					    dev_priv->is_ddr3,
   7161 					    dev_priv->fsb_freq,
   7162 					    dev_priv->mem_freq)) {
   7163 			DRM_INFO("failed to find known CxSR latency "
   7164 				 "(found ddr%s fsb freq %d, mem freq %d), "
   7165 				 "disabling CxSR\n",
   7166 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   7167 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   7168 			/* Disable CxSR and never update its watermark again */
   7169 			intel_set_memory_cxsr(dev_priv, false);
   7170 			dev_priv->display.update_wm = NULL;
   7171 		} else
   7172 			dev_priv->display.update_wm = pineview_update_wm;
   7173 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   7174 	} else if (IS_G4X(dev)) {
   7175 		dev_priv->display.update_wm = g4x_update_wm;
   7176 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   7177 	} else if (IS_GEN4(dev)) {
   7178 		dev_priv->display.update_wm = i965_update_wm;
   7179 		if (IS_CRESTLINE(dev))
   7180 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   7181 		else if (IS_BROADWATER(dev))
   7182 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   7183 	} else if (IS_GEN3(dev)) {
   7184 		dev_priv->display.update_wm = i9xx_update_wm;
   7185 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   7186 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   7187 	} else if (IS_GEN2(dev)) {
   7188 		if (INTEL_INFO(dev)->num_pipes == 1) {
   7189 			dev_priv->display.update_wm = i845_update_wm;
   7190 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   7191 		} else {
   7192 			dev_priv->display.update_wm = i9xx_update_wm;
   7193 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   7194 		}
   7195 
   7196 		if (IS_I85X(dev) || IS_I865G(dev))
   7197 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   7198 		else
   7199 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
   7200 	} else {
   7201 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
   7202 	}
   7203 }
   7204 
   7205 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
   7206 {
   7207 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   7208 
   7209 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   7210 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   7211 		return -EAGAIN;
   7212 	}
   7213 
   7214 	I915_WRITE(GEN6_PCODE_DATA, *val);
   7215 	I915_WRITE(GEN6_PCODE_DATA1, 0);
   7216 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   7217 
   7218 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   7219 		     500)) {
   7220 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   7221 		return -ETIMEDOUT;
   7222 	}
   7223 
   7224 	*val = I915_READ(GEN6_PCODE_DATA);
   7225 	I915_WRITE(GEN6_PCODE_DATA, 0);
   7226 
   7227 	return 0;
   7228 }
   7229 
   7230 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
   7231 {
   7232 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   7233 
   7234 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   7235 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   7236 		return -EAGAIN;
   7237 	}
   7238 
   7239 	I915_WRITE(GEN6_PCODE_DATA, val);
   7240 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   7241 
   7242 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   7243 		     500)) {
   7244 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   7245 		return -ETIMEDOUT;
   7246 	}
   7247 
   7248 	I915_WRITE(GEN6_PCODE_DATA, 0);
   7249 
   7250 	return 0;
   7251 }
   7252 
   7253 static int vlv_gpu_freq_div(unsigned int czclk_freq)
   7254 {
   7255 	switch (czclk_freq) {
   7256 	case 200:
   7257 		return 10;
   7258 	case 267:
   7259 		return 12;
   7260 	case 320:
   7261 	case 333:
   7262 		return 16;
   7263 	case 400:
   7264 		return 20;
   7265 	default:
   7266 		return -1;
   7267 	}
   7268 }
   7269 
   7270 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7271 {
   7272 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7273 
   7274 	div = vlv_gpu_freq_div(czclk_freq);
   7275 	if (div < 0)
   7276 		return div;
   7277 
   7278 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
   7279 }
   7280 
   7281 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7282 {
   7283 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7284 
   7285 	mul = vlv_gpu_freq_div(czclk_freq);
   7286 	if (mul < 0)
   7287 		return mul;
   7288 
   7289 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
   7290 }
   7291 
   7292 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7293 {
   7294 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7295 
   7296 	div = vlv_gpu_freq_div(czclk_freq) / 2;
   7297 	if (div < 0)
   7298 		return div;
   7299 
   7300 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
   7301 }
   7302 
   7303 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7304 {
   7305 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7306 
   7307 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
   7308 	if (mul < 0)
   7309 		return mul;
   7310 
   7311 	/* CHV needs even values */
   7312 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
   7313 }
   7314 
   7315 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7316 {
   7317 	if (IS_GEN9(dev_priv->dev))
   7318 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
   7319 					 GEN9_FREQ_SCALER);
   7320 	else if (IS_CHERRYVIEW(dev_priv->dev))
   7321 		return chv_gpu_freq(dev_priv, val);
   7322 	else if (IS_VALLEYVIEW(dev_priv->dev))
   7323 		return byt_gpu_freq(dev_priv, val);
   7324 	else
   7325 		return val * GT_FREQUENCY_MULTIPLIER;
   7326 }
   7327 
   7328 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7329 {
   7330 	if (IS_GEN9(dev_priv->dev))
   7331 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
   7332 					 GT_FREQUENCY_MULTIPLIER);
   7333 	else if (IS_CHERRYVIEW(dev_priv->dev))
   7334 		return chv_freq_opcode(dev_priv, val);
   7335 	else if (IS_VALLEYVIEW(dev_priv->dev))
   7336 		return byt_freq_opcode(dev_priv, val);
   7337 	else
   7338 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
   7339 }
   7340 
   7341 struct request_boost {
   7342 	struct work_struct work;
   7343 	struct drm_i915_gem_request *req;
   7344 };
   7345 
   7346 static void __intel_rps_boost_work(struct work_struct *work)
   7347 {
   7348 	struct request_boost *boost = container_of(work, struct request_boost, work);
   7349 	struct drm_i915_gem_request *req = boost->req;
   7350 
   7351 	if (!i915_gem_request_completed(req, true))
   7352 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
   7353 			       req->emitted_jiffies);
   7354 
   7355 	i915_gem_request_unreference__unlocked(req);
   7356 	kfree(boost);
   7357 }
   7358 
   7359 void intel_queue_rps_boost_for_request(struct drm_device *dev,
   7360 				       struct drm_i915_gem_request *req)
   7361 {
   7362 	struct request_boost *boost;
   7363 
   7364 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
   7365 		return;
   7366 
   7367 	if (i915_gem_request_completed(req, true))
   7368 		return;
   7369 
   7370 	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
   7371 	if (boost == NULL)
   7372 		return;
   7373 
   7374 	i915_gem_request_reference(req);
   7375 	boost->req = req;
   7376 
   7377 	INIT_WORK(&boost->work, __intel_rps_boost_work);
   7378 	queue_work(to_i915(dev)->wq, &boost->work);
   7379 }
   7380 
   7381 void intel_pm_setup(struct drm_device *dev)
   7382 {
   7383 	struct drm_i915_private *dev_priv = dev->dev_private;
   7384 
   7385 #ifdef __NetBSD__
   7386 	linux_mutex_init(&dev_priv->rps.hw_lock);
   7387 #else
   7388 	mutex_init(&dev_priv->rps.hw_lock);
   7389 #endif
   7390 	spin_lock_init(&dev_priv->rps.client_lock);
   7391 
   7392 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   7393 			  intel_gen6_powersave_work);
   7394 	INIT_LIST_HEAD(&dev_priv->rps.clients);
   7395 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
   7396 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
   7397 
   7398 	dev_priv->pm.suspended = false;
   7399 }
   7400