Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.17.2.2
      1 /*	$NetBSD: intel_pm.c,v 1.17.2.2 2020/01/31 11:25:09 martin Exp $	*/
      2 
      3 /*
      4  * Copyright  2012 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: intel_pm.c,v 1.17.2.2 2020/01/31 11:25:09 martin Exp $");
     32 
     33 #include <linux/bitops.h>
     34 #include <linux/cpufreq.h>
     35 #include <linux/export.h>
     36 #include "i915_drv.h"
     37 #include "i915_trace.h"
     38 #include "intel_drv.h"
     39 #ifndef __NetBSD__
     40 #include "../../../platform/x86/intel_ips.h"
     41 #endif
     42 #include <linux/module.h>
     43 #include <linux/log2.h>
     44 #include <linux/math64.h>
     45 #include <linux/time.h>
     46 
     47 /**
     48  * RC6 is a special power stage which allows the GPU to enter an very
     49  * low-voltage mode when idle, using down to 0V while at this stage.  This
     50  * stage is entered automatically when the GPU is idle when RC6 support is
     51  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
     52  *
     53  * There are different RC6 modes available in Intel GPU, which differentiate
     54  * among each other with the latency required to enter and leave RC6 and
     55  * voltage consumed by the GPU in different states.
     56  *
     57  * The combination of the following flags define which states GPU is allowed
     58  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
     59  * RC6pp is deepest RC6. Their support by hardware varies according to the
     60  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
     61  * which brings the most power savings; deeper states save more power, but
     62  * require higher latency to switch to and wake up.
     63  */
     64 #define INTEL_RC6_ENABLE			(1<<0)
     65 #define INTEL_RC6p_ENABLE			(1<<1)
     66 #define INTEL_RC6pp_ENABLE			(1<<2)
     67 
     68 static void bxt_init_clock_gating(struct drm_device *dev)
     69 {
     70 	struct drm_i915_private *dev_priv = dev->dev_private;
     71 
     72 	/* WaDisableSDEUnitClockGating:bxt */
     73 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
     74 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
     75 
     76 	/*
     77 	 * FIXME:
     78 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
     79 	 */
     80 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
     81 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
     82 
     83 	/*
     84 	 * Lower the display internal timeout.
     85 	 * This is needed to avoid any hard hangs when DSI port PLL
     86 	 * is off and a MMIO access is attempted by any privilege
     87 	 * application, using batch buffers or any other means.
     88 	 */
     89 	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
     90 }
     91 
     92 static void i915_pineview_get_mem_freq(struct drm_device *dev)
     93 {
     94 	struct drm_i915_private *dev_priv = dev->dev_private;
     95 	u32 tmp;
     96 
     97 	tmp = I915_READ(CLKCFG);
     98 
     99 	switch (tmp & CLKCFG_FSB_MASK) {
    100 	case CLKCFG_FSB_533:
    101 		dev_priv->fsb_freq = 533; /* 133*4 */
    102 		break;
    103 	case CLKCFG_FSB_800:
    104 		dev_priv->fsb_freq = 800; /* 200*4 */
    105 		break;
    106 	case CLKCFG_FSB_667:
    107 		dev_priv->fsb_freq =  667; /* 167*4 */
    108 		break;
    109 	case CLKCFG_FSB_400:
    110 		dev_priv->fsb_freq = 400; /* 100*4 */
    111 		break;
    112 	}
    113 
    114 	switch (tmp & CLKCFG_MEM_MASK) {
    115 	case CLKCFG_MEM_533:
    116 		dev_priv->mem_freq = 533;
    117 		break;
    118 	case CLKCFG_MEM_667:
    119 		dev_priv->mem_freq = 667;
    120 		break;
    121 	case CLKCFG_MEM_800:
    122 		dev_priv->mem_freq = 800;
    123 		break;
    124 	}
    125 
    126 	/* detect pineview DDR3 setting */
    127 	tmp = I915_READ(CSHRDDR3CTL);
    128 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    129 }
    130 
    131 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    132 {
    133 	struct drm_i915_private *dev_priv = dev->dev_private;
    134 	u16 ddrpll, csipll;
    135 
    136 	ddrpll = I915_READ16(DDRMPLL1);
    137 	csipll = I915_READ16(CSIPLL0);
    138 
    139 	switch (ddrpll & 0xff) {
    140 	case 0xc:
    141 		dev_priv->mem_freq = 800;
    142 		break;
    143 	case 0x10:
    144 		dev_priv->mem_freq = 1066;
    145 		break;
    146 	case 0x14:
    147 		dev_priv->mem_freq = 1333;
    148 		break;
    149 	case 0x18:
    150 		dev_priv->mem_freq = 1600;
    151 		break;
    152 	default:
    153 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    154 				 ddrpll & 0xff);
    155 		dev_priv->mem_freq = 0;
    156 		break;
    157 	}
    158 
    159 	dev_priv->ips.r_t = dev_priv->mem_freq;
    160 
    161 	switch (csipll & 0x3ff) {
    162 	case 0x00c:
    163 		dev_priv->fsb_freq = 3200;
    164 		break;
    165 	case 0x00e:
    166 		dev_priv->fsb_freq = 3733;
    167 		break;
    168 	case 0x010:
    169 		dev_priv->fsb_freq = 4266;
    170 		break;
    171 	case 0x012:
    172 		dev_priv->fsb_freq = 4800;
    173 		break;
    174 	case 0x014:
    175 		dev_priv->fsb_freq = 5333;
    176 		break;
    177 	case 0x016:
    178 		dev_priv->fsb_freq = 5866;
    179 		break;
    180 	case 0x018:
    181 		dev_priv->fsb_freq = 6400;
    182 		break;
    183 	default:
    184 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    185 				 csipll & 0x3ff);
    186 		dev_priv->fsb_freq = 0;
    187 		break;
    188 	}
    189 
    190 	if (dev_priv->fsb_freq == 3200) {
    191 		dev_priv->ips.c_m = 0;
    192 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    193 		dev_priv->ips.c_m = 1;
    194 	} else {
    195 		dev_priv->ips.c_m = 2;
    196 	}
    197 }
    198 
    199 static const struct cxsr_latency cxsr_latency_table[] = {
    200 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    201 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    202 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    203 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    204 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    205 
    206 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    207 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    208 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    209 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    210 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    211 
    212 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    213 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    214 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    215 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    216 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    217 
    218 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    219 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    220 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    221 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    222 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    223 
    224 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    225 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    226 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    227 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    228 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    229 
    230 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    231 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    232 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    233 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    234 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    235 };
    236 
    237 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    238 							 int is_ddr3,
    239 							 int fsb,
    240 							 int mem)
    241 {
    242 	const struct cxsr_latency *latency;
    243 	int i;
    244 
    245 	if (fsb == 0 || mem == 0)
    246 		return NULL;
    247 
    248 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    249 		latency = &cxsr_latency_table[i];
    250 		if (is_desktop == latency->is_desktop &&
    251 		    is_ddr3 == latency->is_ddr3 &&
    252 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    253 			return latency;
    254 	}
    255 
    256 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    257 
    258 	return NULL;
    259 }
    260 
    261 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
    262 {
    263 	u32 val;
    264 
    265 	mutex_lock(&dev_priv->rps.hw_lock);
    266 
    267 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
    268 	if (enable)
    269 		val &= ~FORCE_DDR_HIGH_FREQ;
    270 	else
    271 		val |= FORCE_DDR_HIGH_FREQ;
    272 	val &= ~FORCE_DDR_LOW_FREQ;
    273 	val |= FORCE_DDR_FREQ_REQ_ACK;
    274 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
    275 
    276 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
    277 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
    278 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
    279 
    280 	mutex_unlock(&dev_priv->rps.hw_lock);
    281 }
    282 
    283 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
    284 {
    285 	u32 val;
    286 
    287 	mutex_lock(&dev_priv->rps.hw_lock);
    288 
    289 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
    290 	if (enable)
    291 		val |= DSP_MAXFIFO_PM5_ENABLE;
    292 	else
    293 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
    294 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
    295 
    296 	mutex_unlock(&dev_priv->rps.hw_lock);
    297 }
    298 
    299 #define FW_WM(value, plane) \
    300 	(((u32)(value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
    301 
    302 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
    303 {
    304 	struct drm_device *dev = dev_priv->dev;
    305 	u32 val;
    306 
    307 	if (IS_VALLEYVIEW(dev)) {
    308 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
    309 		POSTING_READ(FW_BLC_SELF_VLV);
    310 		dev_priv->wm.vlv.cxsr = enable;
    311 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
    312 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
    313 		POSTING_READ(FW_BLC_SELF);
    314 	} else if (IS_PINEVIEW(dev)) {
    315 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
    316 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
    317 		I915_WRITE(DSPFW3, val);
    318 		POSTING_READ(DSPFW3);
    319 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
    320 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
    321 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
    322 		I915_WRITE(FW_BLC_SELF, val);
    323 		POSTING_READ(FW_BLC_SELF);
    324 	} else if (IS_I915GM(dev)) {
    325 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
    326 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
    327 		I915_WRITE(INSTPM, val);
    328 		POSTING_READ(INSTPM);
    329 	} else {
    330 		return;
    331 	}
    332 
    333 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
    334 		      enable ? "enabled" : "disabled");
    335 }
    336 
    337 
    338 /*
    339  * Latency for FIFO fetches is dependent on several factors:
    340  *   - memory configuration (speed, channels)
    341  *   - chipset
    342  *   - current MCH state
    343  * It can be fairly high in some situations, so here we assume a fairly
    344  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    345  * set this value too high, the FIFO will fetch frequently to stay full)
    346  * and power consumption (set it too low to save power and we might see
    347  * FIFO underruns and display "flicker").
    348  *
    349  * A value of 5us seems to be a good balance; safe for very low end
    350  * platforms but not overly aggressive on lower latency configs.
    351  */
    352 static const int pessimal_latency_ns = 5000;
    353 
    354 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
    355 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
    356 
    357 static int vlv_get_fifo_size(struct drm_device *dev,
    358 			      enum i915_pipe pipe, int plane)
    359 {
    360 	struct drm_i915_private *dev_priv = dev->dev_private;
    361 	int sprite0_start, sprite1_start, size;
    362 
    363 	switch (pipe) {
    364 		uint32_t dsparb, dsparb2, dsparb3;
    365 	case PIPE_A:
    366 		dsparb = I915_READ(DSPARB);
    367 		dsparb2 = I915_READ(DSPARB2);
    368 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
    369 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
    370 		break;
    371 	case PIPE_B:
    372 		dsparb = I915_READ(DSPARB);
    373 		dsparb2 = I915_READ(DSPARB2);
    374 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
    375 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
    376 		break;
    377 	case PIPE_C:
    378 		dsparb2 = I915_READ(DSPARB2);
    379 		dsparb3 = I915_READ(DSPARB3);
    380 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
    381 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
    382 		break;
    383 	default:
    384 		return 0;
    385 	}
    386 
    387 	switch (plane) {
    388 	case 0:
    389 		size = sprite0_start;
    390 		break;
    391 	case 1:
    392 		size = sprite1_start - sprite0_start;
    393 		break;
    394 	case 2:
    395 		size = 512 - 1 - sprite1_start;
    396 		break;
    397 	default:
    398 		return 0;
    399 	}
    400 
    401 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
    402 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
    403 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
    404 		      size);
    405 
    406 	return size;
    407 }
    408 
    409 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    410 {
    411 	struct drm_i915_private *dev_priv = dev->dev_private;
    412 	uint32_t dsparb = I915_READ(DSPARB);
    413 	int size;
    414 
    415 	size = dsparb & 0x7f;
    416 	if (plane)
    417 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    418 
    419 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    420 		      plane ? "B" : "A", size);
    421 
    422 	return size;
    423 }
    424 
    425 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    426 {
    427 	struct drm_i915_private *dev_priv = dev->dev_private;
    428 	uint32_t dsparb = I915_READ(DSPARB);
    429 	int size;
    430 
    431 	size = dsparb & 0x1ff;
    432 	if (plane)
    433 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    434 	size >>= 1; /* Convert to cachelines */
    435 
    436 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    437 		      plane ? "B" : "A", size);
    438 
    439 	return size;
    440 }
    441 
    442 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    443 {
    444 	struct drm_i915_private *dev_priv = dev->dev_private;
    445 	uint32_t dsparb = I915_READ(DSPARB);
    446 	int size;
    447 
    448 	size = dsparb & 0x7f;
    449 	size >>= 2; /* Convert to cachelines */
    450 
    451 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    452 		      plane ? "B" : "A",
    453 		      size);
    454 
    455 	return size;
    456 }
    457 
    458 /* Pineview has different values for various configs */
    459 static const struct intel_watermark_params pineview_display_wm = {
    460 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    461 	.max_wm = PINEVIEW_MAX_WM,
    462 	.default_wm = PINEVIEW_DFT_WM,
    463 	.guard_size = PINEVIEW_GUARD_WM,
    464 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    465 };
    466 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    467 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    468 	.max_wm = PINEVIEW_MAX_WM,
    469 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
    470 	.guard_size = PINEVIEW_GUARD_WM,
    471 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    472 };
    473 static const struct intel_watermark_params pineview_cursor_wm = {
    474 	.fifo_size = PINEVIEW_CURSOR_FIFO,
    475 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    476 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    477 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    478 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    479 };
    480 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    481 	.fifo_size = PINEVIEW_CURSOR_FIFO,
    482 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    483 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    484 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    485 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    486 };
    487 static const struct intel_watermark_params g4x_wm_info = {
    488 	.fifo_size = G4X_FIFO_SIZE,
    489 	.max_wm = G4X_MAX_WM,
    490 	.default_wm = G4X_MAX_WM,
    491 	.guard_size = 2,
    492 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    493 };
    494 static const struct intel_watermark_params g4x_cursor_wm_info = {
    495 	.fifo_size = I965_CURSOR_FIFO,
    496 	.max_wm = I965_CURSOR_MAX_WM,
    497 	.default_wm = I965_CURSOR_DFT_WM,
    498 	.guard_size = 2,
    499 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    500 };
    501 static const struct intel_watermark_params valleyview_wm_info __unused = {
    502 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
    503 	.max_wm = VALLEYVIEW_MAX_WM,
    504 	.default_wm = VALLEYVIEW_MAX_WM,
    505 	.guard_size = 2,
    506 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    507 };
    508 static const struct intel_watermark_params valleyview_cursor_wm_info __unused = {
    509 	.fifo_size = I965_CURSOR_FIFO,
    510 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
    511 	.default_wm = I965_CURSOR_DFT_WM,
    512 	.guard_size = 2,
    513 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    514 };
    515 static const struct intel_watermark_params i965_cursor_wm_info = {
    516 	.fifo_size = I965_CURSOR_FIFO,
    517 	.max_wm = I965_CURSOR_MAX_WM,
    518 	.default_wm = I965_CURSOR_DFT_WM,
    519 	.guard_size = 2,
    520 	.cacheline_size = I915_FIFO_LINE_SIZE,
    521 };
    522 static const struct intel_watermark_params i945_wm_info = {
    523 	.fifo_size = I945_FIFO_SIZE,
    524 	.max_wm = I915_MAX_WM,
    525 	.default_wm = 1,
    526 	.guard_size = 2,
    527 	.cacheline_size = I915_FIFO_LINE_SIZE,
    528 };
    529 static const struct intel_watermark_params i915_wm_info = {
    530 	.fifo_size = I915_FIFO_SIZE,
    531 	.max_wm = I915_MAX_WM,
    532 	.default_wm = 1,
    533 	.guard_size = 2,
    534 	.cacheline_size = I915_FIFO_LINE_SIZE,
    535 };
    536 static const struct intel_watermark_params i830_a_wm_info = {
    537 	.fifo_size = I855GM_FIFO_SIZE,
    538 	.max_wm = I915_MAX_WM,
    539 	.default_wm = 1,
    540 	.guard_size = 2,
    541 	.cacheline_size = I830_FIFO_LINE_SIZE,
    542 };
    543 static const struct intel_watermark_params i830_bc_wm_info = {
    544 	.fifo_size = I855GM_FIFO_SIZE,
    545 	.max_wm = I915_MAX_WM/2,
    546 	.default_wm = 1,
    547 	.guard_size = 2,
    548 	.cacheline_size = I830_FIFO_LINE_SIZE,
    549 };
    550 static const struct intel_watermark_params i845_wm_info = {
    551 	.fifo_size = I830_FIFO_SIZE,
    552 	.max_wm = I915_MAX_WM,
    553 	.default_wm = 1,
    554 	.guard_size = 2,
    555 	.cacheline_size = I830_FIFO_LINE_SIZE,
    556 };
    557 
    558 /**
    559  * intel_calculate_wm - calculate watermark level
    560  * @clock_in_khz: pixel clock
    561  * @wm: chip FIFO params
    562  * @pixel_size: display pixel size
    563  * @latency_ns: memory latency for the platform
    564  *
    565  * Calculate the watermark level (the level at which the display plane will
    566  * start fetching from memory again).  Each chip has a different display
    567  * FIFO size and allocation, so the caller needs to figure that out and pass
    568  * in the correct intel_watermark_params structure.
    569  *
    570  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    571  * on the pixel size.  When it reaches the watermark level, it'll start
    572  * fetching FIFO line sized based chunks from memory until the FIFO fills
    573  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    574  * will occur, and a display engine hang could result.
    575  */
    576 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    577 					const struct intel_watermark_params *wm,
    578 					int fifo_size,
    579 					int pixel_size,
    580 					unsigned long latency_ns)
    581 {
    582 	long entries_required, wm_size;
    583 
    584 	/*
    585 	 * Note: we need to make sure we don't overflow for various clock &
    586 	 * latency values.
    587 	 * clocks go from a few thousand to several hundred thousand.
    588 	 * latency is usually a few thousand
    589 	 */
    590 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
    591 		1000;
    592 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
    593 
    594 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
    595 
    596 	wm_size = fifo_size - (entries_required + wm->guard_size);
    597 
    598 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
    599 
    600 	/* Don't promote wm_size to unsigned... */
    601 	if (wm_size > (long)wm->max_wm)
    602 		wm_size = wm->max_wm;
    603 	if (wm_size <= 0)
    604 		wm_size = wm->default_wm;
    605 
    606 	/*
    607 	 * Bspec seems to indicate that the value shouldn't be lower than
    608 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
    609 	 * Lets go for 8 which is the burst size since certain platforms
    610 	 * already use a hardcoded 8 (which is what the spec says should be
    611 	 * done).
    612 	 */
    613 	if (wm_size <= 8)
    614 		wm_size = 8;
    615 
    616 	return wm_size;
    617 }
    618 
    619 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
    620 {
    621 	struct drm_crtc *crtc, *enabled = NULL;
    622 
    623 	for_each_crtc(dev, crtc) {
    624 		if (intel_crtc_active(crtc)) {
    625 			if (enabled)
    626 				return NULL;
    627 			enabled = crtc;
    628 		}
    629 	}
    630 
    631 	return enabled;
    632 }
    633 
    634 static void pineview_update_wm(struct drm_crtc *unused_crtc)
    635 {
    636 	struct drm_device *dev = unused_crtc->dev;
    637 	struct drm_i915_private *dev_priv = dev->dev_private;
    638 	struct drm_crtc *crtc;
    639 	const struct cxsr_latency *latency;
    640 	u32 reg;
    641 	unsigned long wm;
    642 
    643 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
    644 					 dev_priv->fsb_freq, dev_priv->mem_freq);
    645 	if (!latency) {
    646 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    647 		intel_set_memory_cxsr(dev_priv, false);
    648 		return;
    649 	}
    650 
    651 	crtc = single_enabled_crtc(dev);
    652 	if (crtc) {
    653 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    654 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    655 		int clock = adjusted_mode->crtc_clock;
    656 
    657 		/* Display SR */
    658 		wm = intel_calculate_wm(clock, &pineview_display_wm,
    659 					pineview_display_wm.fifo_size,
    660 					pixel_size, latency->display_sr);
    661 		reg = I915_READ(DSPFW1);
    662 		reg &= ~DSPFW_SR_MASK;
    663 		reg |= FW_WM(wm, SR);
    664 		I915_WRITE(DSPFW1, reg);
    665 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
    666 
    667 		/* cursor SR */
    668 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
    669 					pineview_display_wm.fifo_size,
    670 					pixel_size, latency->cursor_sr);
    671 		reg = I915_READ(DSPFW3);
    672 		reg &= ~DSPFW_CURSOR_SR_MASK;
    673 		reg |= FW_WM(wm, CURSOR_SR);
    674 		I915_WRITE(DSPFW3, reg);
    675 
    676 		/* Display HPLL off SR */
    677 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
    678 					pineview_display_hplloff_wm.fifo_size,
    679 					pixel_size, latency->display_hpll_disable);
    680 		reg = I915_READ(DSPFW3);
    681 		reg &= ~DSPFW_HPLL_SR_MASK;
    682 		reg |= FW_WM(wm, HPLL_SR);
    683 		I915_WRITE(DSPFW3, reg);
    684 
    685 		/* cursor HPLL off SR */
    686 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
    687 					pineview_display_hplloff_wm.fifo_size,
    688 					pixel_size, latency->cursor_hpll_disable);
    689 		reg = I915_READ(DSPFW3);
    690 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
    691 		reg |= FW_WM(wm, HPLL_CURSOR);
    692 		I915_WRITE(DSPFW3, reg);
    693 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
    694 
    695 		intel_set_memory_cxsr(dev_priv, true);
    696 	} else {
    697 		intel_set_memory_cxsr(dev_priv, false);
    698 	}
    699 }
    700 
    701 static bool g4x_compute_wm0(struct drm_device *dev,
    702 			    int plane,
    703 			    const struct intel_watermark_params *display,
    704 			    int display_latency_ns,
    705 			    const struct intel_watermark_params *cursor,
    706 			    int cursor_latency_ns,
    707 			    int *plane_wm,
    708 			    int *cursor_wm)
    709 {
    710 	struct drm_crtc *crtc;
    711 	const struct drm_display_mode *adjusted_mode;
    712 	int htotal, hdisplay, clock, pixel_size;
    713 	int line_time_us, line_count;
    714 	int entries, tlb_miss;
    715 
    716 	crtc = intel_get_crtc_for_plane(dev, plane);
    717 	if (!intel_crtc_active(crtc)) {
    718 		*cursor_wm = cursor->guard_size;
    719 		*plane_wm = display->guard_size;
    720 		return false;
    721 	}
    722 
    723 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    724 	clock = adjusted_mode->crtc_clock;
    725 	htotal = adjusted_mode->crtc_htotal;
    726 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
    727 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    728 
    729 	/* Use the small buffer method to calculate plane watermark */
    730 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
    731 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
    732 	if (tlb_miss > 0)
    733 		entries += tlb_miss;
    734 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
    735 	*plane_wm = entries + display->guard_size;
    736 	if (*plane_wm > (int)display->max_wm)
    737 		*plane_wm = display->max_wm;
    738 
    739 	/* Use the large buffer method to calculate cursor watermark */
    740 	line_time_us = max(htotal * 1000 / clock, 1);
    741 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
    742 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
    743 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
    744 	if (tlb_miss > 0)
    745 		entries += tlb_miss;
    746 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
    747 	*cursor_wm = entries + cursor->guard_size;
    748 	if (*cursor_wm > (int)cursor->max_wm)
    749 		*cursor_wm = (int)cursor->max_wm;
    750 
    751 	return true;
    752 }
    753 
    754 /*
    755  * Check the wm result.
    756  *
    757  * If any calculated watermark values is larger than the maximum value that
    758  * can be programmed into the associated watermark register, that watermark
    759  * must be disabled.
    760  */
    761 static bool g4x_check_srwm(struct drm_device *dev,
    762 			   int display_wm, int cursor_wm,
    763 			   const struct intel_watermark_params *display,
    764 			   const struct intel_watermark_params *cursor)
    765 {
    766 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
    767 		      display_wm, cursor_wm);
    768 
    769 	if (display_wm > display->max_wm) {
    770 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
    771 			      display_wm, display->max_wm);
    772 		return false;
    773 	}
    774 
    775 	if (cursor_wm > cursor->max_wm) {
    776 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
    777 			      cursor_wm, cursor->max_wm);
    778 		return false;
    779 	}
    780 
    781 	if (!(display_wm || cursor_wm)) {
    782 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
    783 		return false;
    784 	}
    785 
    786 	return true;
    787 }
    788 
    789 static bool g4x_compute_srwm(struct drm_device *dev,
    790 			     int plane,
    791 			     int latency_ns,
    792 			     const struct intel_watermark_params *display,
    793 			     const struct intel_watermark_params *cursor,
    794 			     int *display_wm, int *cursor_wm)
    795 {
    796 	struct drm_crtc *crtc;
    797 	const struct drm_display_mode *adjusted_mode;
    798 	int hdisplay, htotal, pixel_size, clock;
    799 	unsigned long line_time_us;
    800 	int line_count, line_size;
    801 	int small, large;
    802 	int entries;
    803 
    804 	if (!latency_ns) {
    805 		*display_wm = *cursor_wm = 0;
    806 		return false;
    807 	}
    808 
    809 	crtc = intel_get_crtc_for_plane(dev, plane);
    810 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    811 	clock = adjusted_mode->crtc_clock;
    812 	htotal = adjusted_mode->crtc_htotal;
    813 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
    814 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    815 
    816 	line_time_us = max(htotal * 1000 / clock, 1);
    817 	line_count = (latency_ns / line_time_us + 1000) / 1000;
    818 	line_size = hdisplay * pixel_size;
    819 
    820 	/* Use the minimum of the small and large buffer method for primary */
    821 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
    822 	large = line_count * line_size;
    823 
    824 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
    825 	*display_wm = entries + display->guard_size;
    826 
    827 	/* calculate the self-refresh watermark for display cursor */
    828 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
    829 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
    830 	*cursor_wm = entries + cursor->guard_size;
    831 
    832 	return g4x_check_srwm(dev,
    833 			      *display_wm, *cursor_wm,
    834 			      display, cursor);
    835 }
    836 
    837 #define FW_WM_VLV(value, plane) \
    838 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
    839 
    840 static void vlv_write_wm_values(struct intel_crtc *crtc,
    841 				const struct vlv_wm_values *wm)
    842 {
    843 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
    844 	enum i915_pipe pipe = crtc->pipe;
    845 
    846 	I915_WRITE(VLV_DDL(pipe),
    847 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
    848 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
    849 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
    850 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
    851 
    852 	I915_WRITE(DSPFW1,
    853 		   FW_WM(wm->sr.plane, SR) |
    854 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
    855 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
    856 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
    857 	I915_WRITE(DSPFW2,
    858 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
    859 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
    860 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
    861 	I915_WRITE(DSPFW3,
    862 		   FW_WM(wm->sr.cursor, CURSOR_SR));
    863 
    864 	if (IS_CHERRYVIEW(dev_priv)) {
    865 		I915_WRITE(DSPFW7_CHV,
    866 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
    867 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
    868 		I915_WRITE(DSPFW8_CHV,
    869 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
    870 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
    871 		I915_WRITE(DSPFW9_CHV,
    872 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
    873 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
    874 		I915_WRITE(DSPHOWM,
    875 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
    876 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
    877 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
    878 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
    879 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
    880 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
    881 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
    882 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
    883 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
    884 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
    885 	} else {
    886 		I915_WRITE(DSPFW7,
    887 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
    888 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
    889 		I915_WRITE(DSPHOWM,
    890 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
    891 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
    892 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
    893 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
    894 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
    895 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
    896 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
    897 	}
    898 
    899 	/* zero (unused) WM1 watermarks */
    900 	I915_WRITE(DSPFW4, 0);
    901 	I915_WRITE(DSPFW5, 0);
    902 	I915_WRITE(DSPFW6, 0);
    903 	I915_WRITE(DSPHOWM1, 0);
    904 
    905 	POSTING_READ(DSPFW1);
    906 }
    907 
    908 #undef FW_WM_VLV
    909 
    910 enum vlv_wm_level {
    911 	VLV_WM_LEVEL_PM2,
    912 	VLV_WM_LEVEL_PM5,
    913 	VLV_WM_LEVEL_DDR_DVFS,
    914 };
    915 
    916 /* latency must be in 0.1us units. */
    917 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
    918 				   unsigned int pipe_htotal,
    919 				   unsigned int horiz_pixels,
    920 				   unsigned int bytes_per_pixel,
    921 				   unsigned int latency)
    922 {
    923 	unsigned int ret;
    924 
    925 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
    926 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
    927 	ret = DIV_ROUND_UP(ret, 64);
    928 
    929 	return ret;
    930 }
    931 
    932 static void vlv_setup_wm_latency(struct drm_device *dev)
    933 {
    934 	struct drm_i915_private *dev_priv = dev->dev_private;
    935 
    936 	/* all latencies in usec */
    937 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
    938 
    939 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
    940 
    941 	if (IS_CHERRYVIEW(dev_priv)) {
    942 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
    943 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
    944 
    945 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
    946 	}
    947 }
    948 
    949 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
    950 				     struct intel_crtc *crtc,
    951 				     const struct intel_plane_state *state,
    952 				     int level)
    953 {
    954 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
    955 	int clock, htotal, pixel_size, width, wm;
    956 
    957 	if (dev_priv->wm.pri_latency[level] == 0)
    958 		return USHRT_MAX;
    959 
    960 	if (!state->visible)
    961 		return 0;
    962 
    963 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
    964 	clock = crtc->config->base.adjusted_mode.crtc_clock;
    965 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
    966 	width = crtc->config->pipe_src_w;
    967 	if (WARN_ON(htotal == 0))
    968 		htotal = 1;
    969 
    970 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
    971 		/*
    972 		 * FIXME the formula gives values that are
    973 		 * too big for the cursor FIFO, and hence we
    974 		 * would never be able to use cursors. For
    975 		 * now just hardcode the watermark.
    976 		 */
    977 		wm = 63;
    978 	} else {
    979 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
    980 				    dev_priv->wm.pri_latency[level] * 10);
    981 	}
    982 
    983 	return min_t(int, wm, USHRT_MAX);
    984 }
    985 
    986 static void vlv_compute_fifo(struct intel_crtc *crtc)
    987 {
    988 	struct drm_device *dev = crtc->base.dev;
    989 	struct vlv_wm_state *wm_state = &crtc->wm_state;
    990 	struct intel_plane *plane;
    991 	unsigned int total_rate = 0;
    992 	const int fifo_size = 512 - 1;
    993 	int fifo_extra, fifo_left = fifo_size;
    994 
    995 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
    996 		struct intel_plane_state *state =
    997 			to_intel_plane_state(plane->base.state);
    998 
    999 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
   1000 			continue;
   1001 
   1002 		if (state->visible) {
   1003 			wm_state->num_active_planes++;
   1004 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
   1005 		}
   1006 	}
   1007 
   1008 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1009 		struct intel_plane_state *state =
   1010 			to_intel_plane_state(plane->base.state);
   1011 		unsigned int rate;
   1012 
   1013 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
   1014 			plane->wm.fifo_size = 63;
   1015 			continue;
   1016 		}
   1017 
   1018 		if (!state->visible) {
   1019 			plane->wm.fifo_size = 0;
   1020 			continue;
   1021 		}
   1022 
   1023 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
   1024 		plane->wm.fifo_size = fifo_size * rate / total_rate;
   1025 		fifo_left -= plane->wm.fifo_size;
   1026 	}
   1027 
   1028 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
   1029 
   1030 	/* spread the remainder evenly */
   1031 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1032 		int plane_extra;
   1033 
   1034 		if (fifo_left == 0)
   1035 			break;
   1036 
   1037 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
   1038 			continue;
   1039 
   1040 		/* give it all to the first plane if none are active */
   1041 		if (plane->wm.fifo_size == 0 &&
   1042 		    wm_state->num_active_planes)
   1043 			continue;
   1044 
   1045 		plane_extra = min(fifo_extra, fifo_left);
   1046 		plane->wm.fifo_size += plane_extra;
   1047 		fifo_left -= plane_extra;
   1048 	}
   1049 
   1050 	WARN_ON(fifo_left != 0);
   1051 }
   1052 
   1053 static void vlv_invert_wms(struct intel_crtc *crtc)
   1054 {
   1055 	struct vlv_wm_state *wm_state = &crtc->wm_state;
   1056 	int level;
   1057 
   1058 	for (level = 0; level < wm_state->num_levels; level++) {
   1059 		struct drm_device *dev = crtc->base.dev;
   1060 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
   1061 		struct intel_plane *plane;
   1062 
   1063 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
   1064 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
   1065 
   1066 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1067 			switch (plane->base.type) {
   1068 				int sprite;
   1069 			case DRM_PLANE_TYPE_CURSOR:
   1070 				wm_state->wm[level].cursor = plane->wm.fifo_size -
   1071 					wm_state->wm[level].cursor;
   1072 				break;
   1073 			case DRM_PLANE_TYPE_PRIMARY:
   1074 				wm_state->wm[level].primary = plane->wm.fifo_size -
   1075 					wm_state->wm[level].primary;
   1076 				break;
   1077 			case DRM_PLANE_TYPE_OVERLAY:
   1078 				sprite = plane->plane;
   1079 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
   1080 					wm_state->wm[level].sprite[sprite];
   1081 				break;
   1082 			}
   1083 		}
   1084 	}
   1085 }
   1086 
   1087 static void vlv_compute_wm(struct intel_crtc *crtc)
   1088 {
   1089 	struct drm_device *dev = crtc->base.dev;
   1090 	struct vlv_wm_state *wm_state = &crtc->wm_state;
   1091 	struct intel_plane *plane;
   1092 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
   1093 	int level;
   1094 
   1095 	memset(wm_state, 0, sizeof(*wm_state));
   1096 
   1097 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
   1098 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
   1099 
   1100 	wm_state->num_active_planes = 0;
   1101 
   1102 	vlv_compute_fifo(crtc);
   1103 
   1104 	if (wm_state->num_active_planes != 1)
   1105 		wm_state->cxsr = false;
   1106 
   1107 	if (wm_state->cxsr) {
   1108 		for (level = 0; level < wm_state->num_levels; level++) {
   1109 			wm_state->sr[level].plane = sr_fifo_size;
   1110 			wm_state->sr[level].cursor = 63;
   1111 		}
   1112 	}
   1113 
   1114 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1115 		struct intel_plane_state *state =
   1116 			to_intel_plane_state(plane->base.state);
   1117 
   1118 		if (!state->visible)
   1119 			continue;
   1120 
   1121 		/* normal watermarks */
   1122 		for (level = 0; level < wm_state->num_levels; level++) {
   1123 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
   1124 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
   1125 
   1126 			/* hack */
   1127 			if (WARN_ON(level == 0 && wm > max_wm))
   1128 				wm = max_wm;
   1129 
   1130 			if (wm > plane->wm.fifo_size)
   1131 				break;
   1132 
   1133 			switch (plane->base.type) {
   1134 				int sprite;
   1135 			case DRM_PLANE_TYPE_CURSOR:
   1136 				wm_state->wm[level].cursor = wm;
   1137 				break;
   1138 			case DRM_PLANE_TYPE_PRIMARY:
   1139 				wm_state->wm[level].primary = wm;
   1140 				break;
   1141 			case DRM_PLANE_TYPE_OVERLAY:
   1142 				sprite = plane->plane;
   1143 				wm_state->wm[level].sprite[sprite] = wm;
   1144 				break;
   1145 			}
   1146 		}
   1147 
   1148 		wm_state->num_levels = level;
   1149 
   1150 		if (!wm_state->cxsr)
   1151 			continue;
   1152 
   1153 		/* maxfifo watermarks */
   1154 		switch (plane->base.type) {
   1155 			int sprite, level;
   1156 		case DRM_PLANE_TYPE_CURSOR:
   1157 			for (level = 0; level < wm_state->num_levels; level++)
   1158 				wm_state->sr[level].cursor =
   1159 					wm_state->wm[level].cursor;
   1160 			break;
   1161 		case DRM_PLANE_TYPE_PRIMARY:
   1162 			for (level = 0; level < wm_state->num_levels; level++)
   1163 				wm_state->sr[level].plane =
   1164 					min(wm_state->sr[level].plane,
   1165 					    wm_state->wm[level].primary);
   1166 			break;
   1167 		case DRM_PLANE_TYPE_OVERLAY:
   1168 			sprite = plane->plane;
   1169 			for (level = 0; level < wm_state->num_levels; level++)
   1170 				wm_state->sr[level].plane =
   1171 					min(wm_state->sr[level].plane,
   1172 					    wm_state->wm[level].sprite[sprite]);
   1173 			break;
   1174 		}
   1175 	}
   1176 
   1177 	/* clear any (partially) filled invalid levels */
   1178 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
   1179 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
   1180 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
   1181 	}
   1182 
   1183 	vlv_invert_wms(crtc);
   1184 }
   1185 
   1186 #define VLV_FIFO(plane, value) \
   1187 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
   1188 
   1189 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
   1190 {
   1191 	struct drm_device *dev = crtc->base.dev;
   1192 	struct drm_i915_private *dev_priv = to_i915(dev);
   1193 	struct intel_plane *plane;
   1194 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
   1195 
   1196 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1197 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
   1198 			WARN_ON(plane->wm.fifo_size != 63);
   1199 			continue;
   1200 		}
   1201 
   1202 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
   1203 			sprite0_start = plane->wm.fifo_size;
   1204 		else if (plane->plane == 0)
   1205 			sprite1_start = sprite0_start + plane->wm.fifo_size;
   1206 		else
   1207 			fifo_size = sprite1_start + plane->wm.fifo_size;
   1208 	}
   1209 
   1210 	WARN_ON(fifo_size != 512 - 1);
   1211 
   1212 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
   1213 		      pipe_name(crtc->pipe), sprite0_start,
   1214 		      sprite1_start, fifo_size);
   1215 
   1216 	switch (crtc->pipe) {
   1217 		uint32_t dsparb, dsparb2, dsparb3;
   1218 	case PIPE_A:
   1219 		dsparb = I915_READ(DSPARB);
   1220 		dsparb2 = I915_READ(DSPARB2);
   1221 
   1222 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
   1223 			    VLV_FIFO(SPRITEB, 0xff));
   1224 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
   1225 			   VLV_FIFO(SPRITEB, sprite1_start));
   1226 
   1227 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
   1228 			     VLV_FIFO(SPRITEB_HI, 0x1));
   1229 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
   1230 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
   1231 
   1232 		I915_WRITE(DSPARB, dsparb);
   1233 		I915_WRITE(DSPARB2, dsparb2);
   1234 		break;
   1235 	case PIPE_B:
   1236 		dsparb = I915_READ(DSPARB);
   1237 		dsparb2 = I915_READ(DSPARB2);
   1238 
   1239 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
   1240 			    VLV_FIFO(SPRITED, 0xff));
   1241 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
   1242 			   VLV_FIFO(SPRITED, sprite1_start));
   1243 
   1244 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
   1245 			     VLV_FIFO(SPRITED_HI, 0xff));
   1246 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
   1247 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
   1248 
   1249 		I915_WRITE(DSPARB, dsparb);
   1250 		I915_WRITE(DSPARB2, dsparb2);
   1251 		break;
   1252 	case PIPE_C:
   1253 		dsparb3 = I915_READ(DSPARB3);
   1254 		dsparb2 = I915_READ(DSPARB2);
   1255 
   1256 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
   1257 			     VLV_FIFO(SPRITEF, 0xff));
   1258 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
   1259 			    VLV_FIFO(SPRITEF, sprite1_start));
   1260 
   1261 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
   1262 			     VLV_FIFO(SPRITEF_HI, 0xff));
   1263 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
   1264 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
   1265 
   1266 		I915_WRITE(DSPARB3, dsparb3);
   1267 		I915_WRITE(DSPARB2, dsparb2);
   1268 		break;
   1269 	default:
   1270 		break;
   1271 	}
   1272 }
   1273 
   1274 #undef VLV_FIFO
   1275 
   1276 static void vlv_merge_wm(struct drm_device *dev,
   1277 			 struct vlv_wm_values *wm)
   1278 {
   1279 	struct intel_crtc *crtc;
   1280 	int num_active_crtcs = 0;
   1281 
   1282 	wm->level = to_i915(dev)->wm.max_level;
   1283 	wm->cxsr = true;
   1284 
   1285 	for_each_intel_crtc(dev, crtc) {
   1286 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
   1287 
   1288 		if (!crtc->active)
   1289 			continue;
   1290 
   1291 		if (!wm_state->cxsr)
   1292 			wm->cxsr = false;
   1293 
   1294 		num_active_crtcs++;
   1295 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
   1296 	}
   1297 
   1298 	if (num_active_crtcs != 1)
   1299 		wm->cxsr = false;
   1300 
   1301 	if (num_active_crtcs > 1)
   1302 		wm->level = VLV_WM_LEVEL_PM2;
   1303 
   1304 	for_each_intel_crtc(dev, crtc) {
   1305 		struct vlv_wm_state *wm_state = &crtc->wm_state;
   1306 		enum i915_pipe pipe = crtc->pipe;
   1307 
   1308 		if (!crtc->active)
   1309 			continue;
   1310 
   1311 		wm->pipe[pipe] = wm_state->wm[wm->level];
   1312 		if (wm->cxsr)
   1313 			wm->sr = wm_state->sr[wm->level];
   1314 
   1315 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
   1316 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
   1317 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
   1318 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
   1319 	}
   1320 }
   1321 
   1322 static void vlv_update_wm(struct drm_crtc *crtc)
   1323 {
   1324 	struct drm_device *dev = crtc->dev;
   1325 	struct drm_i915_private *dev_priv = dev->dev_private;
   1326 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   1327 	enum i915_pipe pipe = intel_crtc->pipe;
   1328 	struct vlv_wm_values wm = {};
   1329 
   1330 	vlv_compute_wm(intel_crtc);
   1331 	vlv_merge_wm(dev, &wm);
   1332 
   1333 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
   1334 		/* FIXME should be part of crtc atomic commit */
   1335 		vlv_pipe_set_fifo_size(intel_crtc);
   1336 		return;
   1337 	}
   1338 
   1339 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
   1340 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
   1341 		chv_set_memory_dvfs(dev_priv, false);
   1342 
   1343 	if (wm.level < VLV_WM_LEVEL_PM5 &&
   1344 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
   1345 		chv_set_memory_pm5(dev_priv, false);
   1346 
   1347 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
   1348 		intel_set_memory_cxsr(dev_priv, false);
   1349 
   1350 	/* FIXME should be part of crtc atomic commit */
   1351 	vlv_pipe_set_fifo_size(intel_crtc);
   1352 
   1353 	vlv_write_wm_values(intel_crtc, &wm);
   1354 
   1355 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
   1356 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
   1357 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
   1358 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
   1359 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
   1360 
   1361 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
   1362 		intel_set_memory_cxsr(dev_priv, true);
   1363 
   1364 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
   1365 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
   1366 		chv_set_memory_pm5(dev_priv, true);
   1367 
   1368 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
   1369 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
   1370 		chv_set_memory_dvfs(dev_priv, true);
   1371 
   1372 	dev_priv->wm.vlv = wm;
   1373 }
   1374 
   1375 #define single_plane_enabled(mask) is_power_of_2(mask)
   1376 
   1377 static void g4x_update_wm(struct drm_crtc *crtc)
   1378 {
   1379 	struct drm_device *dev = crtc->dev;
   1380 	static const int sr_latency_ns = 12000;
   1381 	struct drm_i915_private *dev_priv = dev->dev_private;
   1382 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1383 	int plane_sr, cursor_sr;
   1384 	unsigned int enabled = 0;
   1385 	bool cxsr_enabled;
   1386 
   1387 	if (g4x_compute_wm0(dev, PIPE_A,
   1388 			    &g4x_wm_info, pessimal_latency_ns,
   1389 			    &g4x_cursor_wm_info, pessimal_latency_ns,
   1390 			    &planea_wm, &cursora_wm))
   1391 		enabled |= 1 << PIPE_A;
   1392 
   1393 	if (g4x_compute_wm0(dev, PIPE_B,
   1394 			    &g4x_wm_info, pessimal_latency_ns,
   1395 			    &g4x_cursor_wm_info, pessimal_latency_ns,
   1396 			    &planeb_wm, &cursorb_wm))
   1397 		enabled |= 1 << PIPE_B;
   1398 
   1399 	if (single_plane_enabled(enabled) &&
   1400 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1401 			     sr_latency_ns,
   1402 			     &g4x_wm_info,
   1403 			     &g4x_cursor_wm_info,
   1404 			     &plane_sr, &cursor_sr)) {
   1405 		cxsr_enabled = true;
   1406 	} else {
   1407 		cxsr_enabled = false;
   1408 		intel_set_memory_cxsr(dev_priv, false);
   1409 		plane_sr = cursor_sr = 0;
   1410 	}
   1411 
   1412 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
   1413 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1414 		      planea_wm, cursora_wm,
   1415 		      planeb_wm, cursorb_wm,
   1416 		      plane_sr, cursor_sr);
   1417 
   1418 	I915_WRITE(DSPFW1,
   1419 		   FW_WM(plane_sr, SR) |
   1420 		   FW_WM(cursorb_wm, CURSORB) |
   1421 		   FW_WM(planeb_wm, PLANEB) |
   1422 		   FW_WM(planea_wm, PLANEA));
   1423 	I915_WRITE(DSPFW2,
   1424 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1425 		   FW_WM(cursora_wm, CURSORA));
   1426 	/* HPLL off in SR has some issues on G4x... disable it */
   1427 	I915_WRITE(DSPFW3,
   1428 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1429 		   FW_WM(cursor_sr, CURSOR_SR));
   1430 
   1431 	if (cxsr_enabled)
   1432 		intel_set_memory_cxsr(dev_priv, true);
   1433 }
   1434 
   1435 static void i965_update_wm(struct drm_crtc *unused_crtc)
   1436 {
   1437 	struct drm_device *dev = unused_crtc->dev;
   1438 	struct drm_i915_private *dev_priv = dev->dev_private;
   1439 	struct drm_crtc *crtc;
   1440 	int srwm = 1;
   1441 	int cursor_sr = 16;
   1442 	bool cxsr_enabled;
   1443 
   1444 	/* Calc sr entries for one plane configs */
   1445 	crtc = single_enabled_crtc(dev);
   1446 	if (crtc) {
   1447 		/* self-refresh has much higher latency */
   1448 		static const int sr_latency_ns = 12000;
   1449 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1450 		int clock = adjusted_mode->crtc_clock;
   1451 		int htotal = adjusted_mode->crtc_htotal;
   1452 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
   1453 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
   1454 		unsigned long line_time_us;
   1455 		int entries;
   1456 
   1457 		line_time_us = max(htotal * 1000 / clock, 1);
   1458 
   1459 		/* Use ns/us then divide to preserve precision */
   1460 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1461 			pixel_size * hdisplay;
   1462 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1463 		srwm = I965_FIFO_SIZE - entries;
   1464 		if (srwm < 0)
   1465 			srwm = 1;
   1466 		srwm &= 0x1ff;
   1467 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1468 			      entries, srwm);
   1469 
   1470 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1471 			pixel_size * crtc->cursor->state->crtc_w;
   1472 		entries = DIV_ROUND_UP(entries,
   1473 					  i965_cursor_wm_info.cacheline_size);
   1474 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1475 			(entries + i965_cursor_wm_info.guard_size);
   1476 
   1477 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1478 			cursor_sr = i965_cursor_wm_info.max_wm;
   1479 
   1480 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1481 			      "cursor %d\n", srwm, cursor_sr);
   1482 
   1483 		cxsr_enabled = true;
   1484 	} else {
   1485 		cxsr_enabled = false;
   1486 		/* Turn off self refresh if both pipes are enabled */
   1487 		intel_set_memory_cxsr(dev_priv, false);
   1488 	}
   1489 
   1490 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1491 		      srwm);
   1492 
   1493 	/* 965 has limitations... */
   1494 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
   1495 		   FW_WM(8, CURSORB) |
   1496 		   FW_WM(8, PLANEB) |
   1497 		   FW_WM(8, PLANEA));
   1498 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
   1499 		   FW_WM(8, PLANEC_OLD));
   1500 	/* update cursor SR watermark */
   1501 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
   1502 
   1503 	if (cxsr_enabled)
   1504 		intel_set_memory_cxsr(dev_priv, true);
   1505 }
   1506 
   1507 #undef FW_WM
   1508 
   1509 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
   1510 {
   1511 	struct drm_device *dev = unused_crtc->dev;
   1512 	struct drm_i915_private *dev_priv = dev->dev_private;
   1513 	const struct intel_watermark_params *wm_info;
   1514 	uint32_t fwater_lo;
   1515 	uint32_t fwater_hi;
   1516 	int cwm, srwm = 1;
   1517 	int fifo_size;
   1518 	int planea_wm, planeb_wm;
   1519 	struct drm_crtc *crtc, *enabled = NULL;
   1520 
   1521 	if (IS_I945GM(dev))
   1522 		wm_info = &i945_wm_info;
   1523 	else if (!IS_GEN2(dev))
   1524 		wm_info = &i915_wm_info;
   1525 	else
   1526 		wm_info = &i830_a_wm_info;
   1527 
   1528 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1529 	crtc = intel_get_crtc_for_plane(dev, 0);
   1530 	if (intel_crtc_active(crtc)) {
   1531 		const struct drm_display_mode *adjusted_mode;
   1532 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
   1533 		if (IS_GEN2(dev))
   1534 			cpp = 4;
   1535 
   1536 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1537 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1538 					       wm_info, fifo_size, cpp,
   1539 					       pessimal_latency_ns);
   1540 		enabled = crtc;
   1541 	} else {
   1542 		planea_wm = fifo_size - wm_info->guard_size;
   1543 		if (planea_wm > (long)wm_info->max_wm)
   1544 			planea_wm = wm_info->max_wm;
   1545 	}
   1546 
   1547 	if (IS_GEN2(dev))
   1548 		wm_info = &i830_bc_wm_info;
   1549 
   1550 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1551 	crtc = intel_get_crtc_for_plane(dev, 1);
   1552 	if (intel_crtc_active(crtc)) {
   1553 		const struct drm_display_mode *adjusted_mode;
   1554 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
   1555 		if (IS_GEN2(dev))
   1556 			cpp = 4;
   1557 
   1558 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1559 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1560 					       wm_info, fifo_size, cpp,
   1561 					       pessimal_latency_ns);
   1562 		if (enabled == NULL)
   1563 			enabled = crtc;
   1564 		else
   1565 			enabled = NULL;
   1566 	} else {
   1567 		planeb_wm = fifo_size - wm_info->guard_size;
   1568 		if (planeb_wm > (long)wm_info->max_wm)
   1569 			planeb_wm = wm_info->max_wm;
   1570 	}
   1571 
   1572 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1573 
   1574 	if (IS_I915GM(dev) && enabled) {
   1575 		struct drm_i915_gem_object *obj;
   1576 
   1577 		obj = intel_fb_obj(enabled->primary->state->fb);
   1578 
   1579 		/* self-refresh seems busted with untiled */
   1580 		if (obj->tiling_mode == I915_TILING_NONE)
   1581 			enabled = NULL;
   1582 	}
   1583 
   1584 	/*
   1585 	 * Overlay gets an aggressive default since video jitter is bad.
   1586 	 */
   1587 	cwm = 2;
   1588 
   1589 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1590 	intel_set_memory_cxsr(dev_priv, false);
   1591 
   1592 	/* Calc sr entries for one plane configs */
   1593 	if (HAS_FW_BLC(dev) && enabled) {
   1594 		/* self-refresh has much higher latency */
   1595 		static const int sr_latency_ns = 6000;
   1596 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
   1597 		int clock = adjusted_mode->crtc_clock;
   1598 		int htotal = adjusted_mode->crtc_htotal;
   1599 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
   1600 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
   1601 		unsigned long line_time_us;
   1602 		int entries;
   1603 
   1604 		line_time_us = max(htotal * 1000 / clock, 1);
   1605 
   1606 		/* Use ns/us then divide to preserve precision */
   1607 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1608 			pixel_size * hdisplay;
   1609 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1610 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1611 		srwm = wm_info->fifo_size - entries;
   1612 		if (srwm < 0)
   1613 			srwm = 1;
   1614 
   1615 		if (IS_I945G(dev) || IS_I945GM(dev))
   1616 			I915_WRITE(FW_BLC_SELF,
   1617 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1618 		else if (IS_I915GM(dev))
   1619 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1620 	}
   1621 
   1622 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1623 		      planea_wm, planeb_wm, cwm, srwm);
   1624 
   1625 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1626 	fwater_hi = (cwm & 0x1f);
   1627 
   1628 	/* Set request length to 8 cachelines per fetch */
   1629 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1630 	fwater_hi = fwater_hi | (1 << 8);
   1631 
   1632 	I915_WRITE(FW_BLC, fwater_lo);
   1633 	I915_WRITE(FW_BLC2, fwater_hi);
   1634 
   1635 	if (enabled)
   1636 		intel_set_memory_cxsr(dev_priv, true);
   1637 }
   1638 
   1639 static void i845_update_wm(struct drm_crtc *unused_crtc)
   1640 {
   1641 	struct drm_device *dev = unused_crtc->dev;
   1642 	struct drm_i915_private *dev_priv = dev->dev_private;
   1643 	struct drm_crtc *crtc;
   1644 	const struct drm_display_mode *adjusted_mode;
   1645 	uint32_t fwater_lo;
   1646 	int planea_wm;
   1647 
   1648 	crtc = single_enabled_crtc(dev);
   1649 	if (crtc == NULL)
   1650 		return;
   1651 
   1652 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1653 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1654 				       &i845_wm_info,
   1655 				       dev_priv->display.get_fifo_size(dev, 0),
   1656 				       4, pessimal_latency_ns);
   1657 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1658 	fwater_lo |= (3<<8) | planea_wm;
   1659 
   1660 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1661 
   1662 	I915_WRITE(FW_BLC, fwater_lo);
   1663 }
   1664 
   1665 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
   1666 {
   1667 	uint32_t pixel_rate;
   1668 
   1669 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
   1670 
   1671 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
   1672 	 * adjust the pixel_rate here. */
   1673 
   1674 	if (pipe_config->pch_pfit.enabled) {
   1675 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
   1676 		uint32_t pfit_size = pipe_config->pch_pfit.size;
   1677 
   1678 		pipe_w = pipe_config->pipe_src_w;
   1679 		pipe_h = pipe_config->pipe_src_h;
   1680 
   1681 		pfit_w = (pfit_size >> 16) & 0xFFFF;
   1682 		pfit_h = pfit_size & 0xFFFF;
   1683 		if (pipe_w < pfit_w)
   1684 			pipe_w = pfit_w;
   1685 		if (pipe_h < pfit_h)
   1686 			pipe_h = pfit_h;
   1687 
   1688 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
   1689 				     pfit_w * pfit_h);
   1690 	}
   1691 
   1692 	return pixel_rate;
   1693 }
   1694 
   1695 /* latency must be in 0.1us units. */
   1696 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   1697 			       uint32_t latency)
   1698 {
   1699 	uint64_t ret;
   1700 
   1701 	if (WARN(latency == 0, "Latency value missing\n"))
   1702 		return UINT_MAX;
   1703 
   1704 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
   1705 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
   1706 
   1707 	return ret;
   1708 }
   1709 
   1710 /* latency must be in 0.1us units. */
   1711 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   1712 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   1713 			       uint32_t latency)
   1714 {
   1715 	uint32_t ret;
   1716 
   1717 	if (WARN(latency == 0, "Latency value missing\n"))
   1718 		return UINT_MAX;
   1719 
   1720 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
   1721 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
   1722 	ret = DIV_ROUND_UP(ret, 64) + 2;
   1723 	return ret;
   1724 }
   1725 
   1726 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
   1727 			   uint8_t bytes_per_pixel)
   1728 {
   1729 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
   1730 }
   1731 
   1732 struct skl_pipe_wm_parameters {
   1733 	bool active;
   1734 	uint32_t pipe_htotal;
   1735 	uint32_t pixel_rate; /* in KHz */
   1736 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
   1737 };
   1738 
   1739 struct ilk_wm_maximums {
   1740 	uint16_t pri;
   1741 	uint16_t spr;
   1742 	uint16_t cur;
   1743 	uint16_t fbc;
   1744 };
   1745 
   1746 /* used in computing the new watermarks state */
   1747 struct intel_wm_config {
   1748 	unsigned int num_pipes_active;
   1749 	bool sprites_enabled;
   1750 	bool sprites_scaled;
   1751 };
   1752 
   1753 /*
   1754  * For both WM_PIPE and WM_LP.
   1755  * mem_value must be in 0.1us units.
   1756  */
   1757 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
   1758 				   const struct intel_plane_state *pstate,
   1759 				   uint32_t mem_value,
   1760 				   bool is_lp)
   1761 {
   1762 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1763 	uint32_t method1, method2;
   1764 
   1765 	if (!cstate->base.active || !pstate->visible)
   1766 		return 0;
   1767 
   1768 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
   1769 
   1770 	if (!is_lp)
   1771 		return method1;
   1772 
   1773 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1774 				 cstate->base.adjusted_mode.crtc_htotal,
   1775 				 drm_rect_width(&pstate->dst),
   1776 				 bpp,
   1777 				 mem_value);
   1778 
   1779 	return min(method1, method2);
   1780 }
   1781 
   1782 /*
   1783  * For both WM_PIPE and WM_LP.
   1784  * mem_value must be in 0.1us units.
   1785  */
   1786 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
   1787 				   const struct intel_plane_state *pstate,
   1788 				   uint32_t mem_value)
   1789 {
   1790 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1791 	uint32_t method1, method2;
   1792 
   1793 	if (!cstate->base.active || !pstate->visible)
   1794 		return 0;
   1795 
   1796 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
   1797 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1798 				 cstate->base.adjusted_mode.crtc_htotal,
   1799 				 drm_rect_width(&pstate->dst),
   1800 				 bpp,
   1801 				 mem_value);
   1802 	return min(method1, method2);
   1803 }
   1804 
   1805 /*
   1806  * For both WM_PIPE and WM_LP.
   1807  * mem_value must be in 0.1us units.
   1808  */
   1809 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
   1810 				   const struct intel_plane_state *pstate,
   1811 				   uint32_t mem_value)
   1812 {
   1813 	/*
   1814 	 * We treat the cursor plane as always-on for the purposes of watermark
   1815 	 * calculation.  Until we have two-stage watermark programming merged,
   1816 	 * this is necessary to avoid flickering.
   1817 	 */
   1818 	int cpp = 4;
   1819 	int width = pstate->visible ? pstate->base.crtc_w : 64;
   1820 
   1821 	if (!cstate->base.active)
   1822 		return 0;
   1823 
   1824 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1825 			      cstate->base.adjusted_mode.crtc_htotal,
   1826 			      width, cpp, mem_value);
   1827 }
   1828 
   1829 /* Only for WM_LP. */
   1830 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
   1831 				   const struct intel_plane_state *pstate,
   1832 				   uint32_t pri_val)
   1833 {
   1834 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1835 
   1836 	if (!cstate->base.active || !pstate->visible)
   1837 		return 0;
   1838 
   1839 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
   1840 }
   1841 
   1842 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
   1843 {
   1844 	if (INTEL_INFO(dev)->gen >= 8)
   1845 		return 3072;
   1846 	else if (INTEL_INFO(dev)->gen >= 7)
   1847 		return 768;
   1848 	else
   1849 		return 512;
   1850 }
   1851 
   1852 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
   1853 					 int level, bool is_sprite)
   1854 {
   1855 	if (INTEL_INFO(dev)->gen >= 8)
   1856 		/* BDW primary/sprite plane watermarks */
   1857 		return level == 0 ? 255 : 2047;
   1858 	else if (INTEL_INFO(dev)->gen >= 7)
   1859 		/* IVB/HSW primary/sprite plane watermarks */
   1860 		return level == 0 ? 127 : 1023;
   1861 	else if (!is_sprite)
   1862 		/* ILK/SNB primary plane watermarks */
   1863 		return level == 0 ? 127 : 511;
   1864 	else
   1865 		/* ILK/SNB sprite plane watermarks */
   1866 		return level == 0 ? 63 : 255;
   1867 }
   1868 
   1869 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
   1870 					  int level)
   1871 {
   1872 	if (INTEL_INFO(dev)->gen >= 7)
   1873 		return level == 0 ? 63 : 255;
   1874 	else
   1875 		return level == 0 ? 31 : 63;
   1876 }
   1877 
   1878 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
   1879 {
   1880 	if (INTEL_INFO(dev)->gen >= 8)
   1881 		return 31;
   1882 	else
   1883 		return 15;
   1884 }
   1885 
   1886 /* Calculate the maximum primary/sprite plane watermark */
   1887 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
   1888 				     int level,
   1889 				     const struct intel_wm_config *config,
   1890 				     enum intel_ddb_partitioning ddb_partitioning,
   1891 				     bool is_sprite)
   1892 {
   1893 	unsigned int fifo_size = ilk_display_fifo_size(dev);
   1894 
   1895 	/* if sprites aren't enabled, sprites get nothing */
   1896 	if (is_sprite && !config->sprites_enabled)
   1897 		return 0;
   1898 
   1899 	/* HSW allows LP1+ watermarks even with multiple pipes */
   1900 	if (level == 0 || config->num_pipes_active > 1) {
   1901 		fifo_size /= INTEL_INFO(dev)->num_pipes;
   1902 
   1903 		/*
   1904 		 * For some reason the non self refresh
   1905 		 * FIFO size is only half of the self
   1906 		 * refresh FIFO size on ILK/SNB.
   1907 		 */
   1908 		if (INTEL_INFO(dev)->gen <= 6)
   1909 			fifo_size /= 2;
   1910 	}
   1911 
   1912 	if (config->sprites_enabled) {
   1913 		/* level 0 is always calculated with 1:1 split */
   1914 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
   1915 			if (is_sprite)
   1916 				fifo_size *= 5;
   1917 			fifo_size /= 6;
   1918 		} else {
   1919 			fifo_size /= 2;
   1920 		}
   1921 	}
   1922 
   1923 	/* clamp to max that the registers can hold */
   1924 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
   1925 }
   1926 
   1927 /* Calculate the maximum cursor plane watermark */
   1928 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
   1929 				      int level,
   1930 				      const struct intel_wm_config *config)
   1931 {
   1932 	/* HSW LP1+ watermarks w/ multiple pipes */
   1933 	if (level > 0 && config->num_pipes_active > 1)
   1934 		return 64;
   1935 
   1936 	/* otherwise just report max that registers can hold */
   1937 	return ilk_cursor_wm_reg_max(dev, level);
   1938 }
   1939 
   1940 static void ilk_compute_wm_maximums(const struct drm_device *dev,
   1941 				    int level,
   1942 				    const struct intel_wm_config *config,
   1943 				    enum intel_ddb_partitioning ddb_partitioning,
   1944 				    struct ilk_wm_maximums *max)
   1945 {
   1946 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
   1947 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
   1948 	max->cur = ilk_cursor_wm_max(dev, level, config);
   1949 	max->fbc = ilk_fbc_wm_reg_max(dev);
   1950 }
   1951 
   1952 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
   1953 					int level,
   1954 					struct ilk_wm_maximums *max)
   1955 {
   1956 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
   1957 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
   1958 	max->cur = ilk_cursor_wm_reg_max(dev, level);
   1959 	max->fbc = ilk_fbc_wm_reg_max(dev);
   1960 }
   1961 
   1962 static bool ilk_validate_wm_level(int level,
   1963 				  const struct ilk_wm_maximums *max,
   1964 				  struct intel_wm_level *result)
   1965 {
   1966 	bool ret;
   1967 
   1968 	/* already determined to be invalid? */
   1969 	if (!result->enable)
   1970 		return false;
   1971 
   1972 	result->enable = result->pri_val <= max->pri &&
   1973 			 result->spr_val <= max->spr &&
   1974 			 result->cur_val <= max->cur;
   1975 
   1976 	ret = result->enable;
   1977 
   1978 	/*
   1979 	 * HACK until we can pre-compute everything,
   1980 	 * and thus fail gracefully if LP0 watermarks
   1981 	 * are exceeded...
   1982 	 */
   1983 	if (level == 0 && !result->enable) {
   1984 		if (result->pri_val > max->pri)
   1985 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
   1986 				      level, result->pri_val, max->pri);
   1987 		if (result->spr_val > max->spr)
   1988 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
   1989 				      level, result->spr_val, max->spr);
   1990 		if (result->cur_val > max->cur)
   1991 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
   1992 				      level, result->cur_val, max->cur);
   1993 
   1994 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
   1995 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
   1996 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
   1997 		result->enable = true;
   1998 	}
   1999 
   2000 	return ret;
   2001 }
   2002 
   2003 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
   2004 				 const struct intel_crtc *intel_crtc,
   2005 				 int level,
   2006 				 struct intel_crtc_state *cstate,
   2007 				 struct intel_wm_level *result)
   2008 {
   2009 	struct intel_plane *intel_plane;
   2010 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
   2011 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
   2012 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
   2013 
   2014 	/* WM1+ latency values stored in 0.5us units */
   2015 	if (level > 0) {
   2016 		pri_latency *= 5;
   2017 		spr_latency *= 5;
   2018 		cur_latency *= 5;
   2019 	}
   2020 
   2021 	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
   2022 		struct intel_plane_state *pstate =
   2023 			to_intel_plane_state(intel_plane->base.state);
   2024 
   2025 		switch (intel_plane->base.type) {
   2026 		case DRM_PLANE_TYPE_PRIMARY:
   2027 			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
   2028 							     pri_latency,
   2029 							     level);
   2030 			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
   2031 							     result->pri_val);
   2032 			break;
   2033 		case DRM_PLANE_TYPE_OVERLAY:
   2034 			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
   2035 							     spr_latency);
   2036 			break;
   2037 		case DRM_PLANE_TYPE_CURSOR:
   2038 			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
   2039 							     cur_latency);
   2040 			break;
   2041 		}
   2042 	}
   2043 
   2044 	result->enable = true;
   2045 }
   2046 
   2047 static uint32_t
   2048 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
   2049 {
   2050 	struct drm_i915_private *dev_priv = dev->dev_private;
   2051 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2052 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
   2053 	u32 linetime, ips_linetime;
   2054 
   2055 	if (!intel_crtc->active)
   2056 		return 0;
   2057 
   2058 	/* The WM are computed with base on how long it takes to fill a single
   2059 	 * row at the given clock rate, multiplied by 8.
   2060 	 * */
   2061 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
   2062 				     adjusted_mode->crtc_clock);
   2063 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
   2064 					 dev_priv->cdclk_freq);
   2065 
   2066 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
   2067 	       PIPE_WM_LINETIME_TIME(linetime);
   2068 }
   2069 
   2070 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
   2071 {
   2072 	struct drm_i915_private *dev_priv = dev->dev_private;
   2073 
   2074 	if (IS_GEN9(dev)) {
   2075 		uint32_t val;
   2076 		int ret, i;
   2077 		int level, max_level = ilk_wm_max_level(dev);
   2078 
   2079 		/* read the first set of memory latencies[0:3] */
   2080 		val = 0; /* data0 to be programmed to 0 for first set */
   2081 		mutex_lock(&dev_priv->rps.hw_lock);
   2082 		ret = sandybridge_pcode_read(dev_priv,
   2083 					     GEN9_PCODE_READ_MEM_LATENCY,
   2084 					     &val);
   2085 		mutex_unlock(&dev_priv->rps.hw_lock);
   2086 
   2087 		if (ret) {
   2088 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
   2089 			return;
   2090 		}
   2091 
   2092 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
   2093 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2094 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2095 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2096 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2097 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2098 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2099 
   2100 		/* read the second set of memory latencies[4:7] */
   2101 		val = 1; /* data0 to be programmed to 1 for second set */
   2102 		mutex_lock(&dev_priv->rps.hw_lock);
   2103 		ret = sandybridge_pcode_read(dev_priv,
   2104 					     GEN9_PCODE_READ_MEM_LATENCY,
   2105 					     &val);
   2106 		mutex_unlock(&dev_priv->rps.hw_lock);
   2107 		if (ret) {
   2108 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
   2109 			return;
   2110 		}
   2111 
   2112 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
   2113 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2114 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2115 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2116 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2117 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2118 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2119 
   2120 		/*
   2121 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
   2122 		 * need to be disabled. We make sure to sanitize the values out
   2123 		 * of the punit to satisfy this requirement.
   2124 		 */
   2125 		for (level = 1; level <= max_level; level++) {
   2126 			if (wm[level] == 0) {
   2127 				for (i = level + 1; i <= max_level; i++)
   2128 					wm[i] = 0;
   2129 				break;
   2130 			}
   2131 		}
   2132 
   2133 		/*
   2134 		 * WaWmMemoryReadLatency:skl
   2135 		 *
   2136 		 * punit doesn't take into account the read latency so we need
   2137 		 * to add 2us to the various latency levels we retrieve from the
   2138 		 * punit when level 0 response data us 0us.
   2139 		 */
   2140 		if (wm[0] == 0) {
   2141 			wm[0] += 2;
   2142 			for (level = 1; level <= max_level; level++) {
   2143 				if (wm[level] == 0)
   2144 					break;
   2145 				wm[level] += 2;
   2146 			}
   2147 		}
   2148 
   2149 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2150 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
   2151 
   2152 		wm[0] = (sskpd >> 56) & 0xFF;
   2153 		if (wm[0] == 0)
   2154 			wm[0] = sskpd & 0xF;
   2155 		wm[1] = (sskpd >> 4) & 0xFF;
   2156 		wm[2] = (sskpd >> 12) & 0xFF;
   2157 		wm[3] = (sskpd >> 20) & 0x1FF;
   2158 		wm[4] = (sskpd >> 32) & 0x1FF;
   2159 	} else if (INTEL_INFO(dev)->gen >= 6) {
   2160 		uint32_t sskpd = I915_READ(MCH_SSKPD);
   2161 
   2162 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
   2163 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
   2164 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
   2165 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
   2166 	} else if (INTEL_INFO(dev)->gen >= 5) {
   2167 		uint32_t mltr = I915_READ(MLTR_ILK);
   2168 
   2169 		/* ILK primary LP0 latency is 700 ns */
   2170 		wm[0] = 7;
   2171 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
   2172 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
   2173 	}
   2174 }
   2175 
   2176 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2177 {
   2178 	/* ILK sprite LP0 latency is 1300 ns */
   2179 	if (INTEL_INFO(dev)->gen == 5)
   2180 		wm[0] = 13;
   2181 }
   2182 
   2183 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2184 {
   2185 	/* ILK cursor LP0 latency is 1300 ns */
   2186 	if (INTEL_INFO(dev)->gen == 5)
   2187 		wm[0] = 13;
   2188 
   2189 	/* WaDoubleCursorLP3Latency:ivb */
   2190 	if (IS_IVYBRIDGE(dev))
   2191 		wm[3] *= 2;
   2192 }
   2193 
   2194 int ilk_wm_max_level(const struct drm_device *dev)
   2195 {
   2196 	/* how many WM levels are we expecting */
   2197 	if (INTEL_INFO(dev)->gen >= 9)
   2198 		return 7;
   2199 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2200 		return 4;
   2201 	else if (INTEL_INFO(dev)->gen >= 6)
   2202 		return 3;
   2203 	else
   2204 		return 2;
   2205 }
   2206 
   2207 static void intel_print_wm_latency(struct drm_device *dev,
   2208 				   const char *name,
   2209 				   const uint16_t wm[8])
   2210 {
   2211 	int level, max_level = ilk_wm_max_level(dev);
   2212 
   2213 	for (level = 0; level <= max_level; level++) {
   2214 		unsigned int latency = wm[level];
   2215 
   2216 		if (latency == 0) {
   2217 			DRM_ERROR("%s WM%d latency not provided\n",
   2218 				  name, level);
   2219 			continue;
   2220 		}
   2221 
   2222 		/*
   2223 		 * - latencies are in us on gen9.
   2224 		 * - before then, WM1+ latency values are in 0.5us units
   2225 		 */
   2226 		if (IS_GEN9(dev))
   2227 			latency *= 10;
   2228 		else if (level > 0)
   2229 			latency *= 5;
   2230 
   2231 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
   2232 			      name, level, wm[level],
   2233 			      latency / 10, latency % 10);
   2234 	}
   2235 }
   2236 
   2237 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
   2238 				    uint16_t wm[5], uint16_t min)
   2239 {
   2240 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
   2241 
   2242 	if (wm[0] >= min)
   2243 		return false;
   2244 
   2245 	wm[0] = max(wm[0], min);
   2246 	for (level = 1; level <= max_level; level++)
   2247 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
   2248 
   2249 	return true;
   2250 }
   2251 
   2252 static void snb_wm_latency_quirk(struct drm_device *dev)
   2253 {
   2254 	struct drm_i915_private *dev_priv = dev->dev_private;
   2255 	bool changed;
   2256 
   2257 	/*
   2258 	 * The BIOS provided WM memory latency values are often
   2259 	 * inadequate for high resolution displays. Adjust them.
   2260 	 */
   2261 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
   2262 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
   2263 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
   2264 
   2265 	if (!changed)
   2266 		return;
   2267 
   2268 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
   2269 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2270 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2271 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2272 }
   2273 
   2274 static void ilk_setup_wm_latency(struct drm_device *dev)
   2275 {
   2276 	struct drm_i915_private *dev_priv = dev->dev_private;
   2277 
   2278 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
   2279 
   2280 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
   2281 	       sizeof(dev_priv->wm.pri_latency));
   2282 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
   2283 	       sizeof(dev_priv->wm.pri_latency));
   2284 
   2285 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
   2286 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
   2287 
   2288 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2289 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2290 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2291 
   2292 	if (IS_GEN6(dev))
   2293 		snb_wm_latency_quirk(dev);
   2294 }
   2295 
   2296 static void skl_setup_wm_latency(struct drm_device *dev)
   2297 {
   2298 	struct drm_i915_private *dev_priv = dev->dev_private;
   2299 
   2300 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
   2301 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
   2302 }
   2303 
   2304 static void ilk_compute_wm_config(struct drm_device *dev,
   2305 				  struct intel_wm_config *config)
   2306 {
   2307 	struct intel_crtc *intel_crtc;
   2308 
   2309 	/* Compute the currently _active_ config */
   2310 	for_each_intel_crtc(dev, intel_crtc) {
   2311 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
   2312 
   2313 		if (!wm->pipe_enabled)
   2314 			continue;
   2315 
   2316 		config->sprites_enabled |= wm->sprites_enabled;
   2317 		config->sprites_scaled |= wm->sprites_scaled;
   2318 		config->num_pipes_active++;
   2319 	}
   2320 }
   2321 
   2322 /* Compute new watermarks for the pipe */
   2323 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
   2324 				  struct intel_pipe_wm *pipe_wm)
   2325 {
   2326 	struct drm_crtc *crtc = cstate->base.crtc;
   2327 	struct drm_device *dev = crtc->dev;
   2328 	const struct drm_i915_private *dev_priv = dev->dev_private;
   2329 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2330 	struct intel_plane *intel_plane;
   2331 	struct intel_plane_state *sprstate = NULL;
   2332 	int level, max_level = ilk_wm_max_level(dev);
   2333 	/* LP0 watermark maximums depend on this pipe alone */
   2334 	struct intel_wm_config config = {
   2335 		.num_pipes_active = 1,
   2336 	};
   2337 	struct ilk_wm_maximums max;
   2338 
   2339 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
   2340 		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
   2341 			sprstate = to_intel_plane_state(intel_plane->base.state);
   2342 			break;
   2343 		}
   2344 	}
   2345 
   2346 	config.sprites_enabled = sprstate->visible;
   2347 	config.sprites_scaled = sprstate->visible &&
   2348 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
   2349 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
   2350 
   2351 	pipe_wm->pipe_enabled = cstate->base.active;
   2352 	pipe_wm->sprites_enabled = sprstate->visible;
   2353 	pipe_wm->sprites_scaled = config.sprites_scaled;
   2354 
   2355 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
   2356 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
   2357 		max_level = 1;
   2358 
   2359 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
   2360 	if (config.sprites_scaled)
   2361 		max_level = 0;
   2362 
   2363 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
   2364 
   2365 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2366 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
   2367 
   2368 	/* LP0 watermarks always use 1/2 DDB partitioning */
   2369 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
   2370 
   2371 	/* At least LP0 must be valid */
   2372 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
   2373 		return false;
   2374 
   2375 	ilk_compute_wm_reg_maximums(dev, 1, &max);
   2376 
   2377 	for (level = 1; level <= max_level; level++) {
   2378 		struct intel_wm_level wm = {};
   2379 
   2380 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
   2381 
   2382 		/*
   2383 		 * Disable any watermark level that exceeds the
   2384 		 * register maximums since such watermarks are
   2385 		 * always invalid.
   2386 		 */
   2387 		if (!ilk_validate_wm_level(level, &max, &wm))
   2388 			break;
   2389 
   2390 		pipe_wm->wm[level] = wm;
   2391 	}
   2392 
   2393 	return true;
   2394 }
   2395 
   2396 /*
   2397  * Merge the watermarks from all active pipes for a specific level.
   2398  */
   2399 static void ilk_merge_wm_level(struct drm_device *dev,
   2400 			       int level,
   2401 			       struct intel_wm_level *ret_wm)
   2402 {
   2403 	const struct intel_crtc *intel_crtc;
   2404 
   2405 	ret_wm->enable = true;
   2406 
   2407 	for_each_intel_crtc(dev, intel_crtc) {
   2408 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
   2409 		const struct intel_wm_level *wm = &active->wm[level];
   2410 
   2411 		if (!active->pipe_enabled)
   2412 			continue;
   2413 
   2414 		/*
   2415 		 * The watermark values may have been used in the past,
   2416 		 * so we must maintain them in the registers for some
   2417 		 * time even if the level is now disabled.
   2418 		 */
   2419 		if (!wm->enable)
   2420 			ret_wm->enable = false;
   2421 
   2422 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
   2423 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
   2424 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
   2425 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
   2426 	}
   2427 }
   2428 
   2429 /*
   2430  * Merge all low power watermarks for all active pipes.
   2431  */
   2432 static void ilk_wm_merge(struct drm_device *dev,
   2433 			 const struct intel_wm_config *config,
   2434 			 const struct ilk_wm_maximums *max,
   2435 			 struct intel_pipe_wm *merged)
   2436 {
   2437 	struct drm_i915_private *dev_priv = dev->dev_private;
   2438 	int level, max_level = ilk_wm_max_level(dev);
   2439 	int last_enabled_level = max_level;
   2440 
   2441 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
   2442 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
   2443 	    config->num_pipes_active > 1)
   2444 		return;
   2445 
   2446 	/* ILK: FBC WM must be disabled always */
   2447 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
   2448 
   2449 	/* merge each WM1+ level */
   2450 	for (level = 1; level <= max_level; level++) {
   2451 		struct intel_wm_level *wm = &merged->wm[level];
   2452 
   2453 		ilk_merge_wm_level(dev, level, wm);
   2454 
   2455 		if (level > last_enabled_level)
   2456 			wm->enable = false;
   2457 		else if (!ilk_validate_wm_level(level, max, wm))
   2458 			/* make sure all following levels get disabled */
   2459 			last_enabled_level = level - 1;
   2460 
   2461 		/*
   2462 		 * The spec says it is preferred to disable
   2463 		 * FBC WMs instead of disabling a WM level.
   2464 		 */
   2465 		if (wm->fbc_val > max->fbc) {
   2466 			if (wm->enable)
   2467 				merged->fbc_wm_enabled = false;
   2468 			wm->fbc_val = 0;
   2469 		}
   2470 	}
   2471 
   2472 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
   2473 	/*
   2474 	 * FIXME this is racy. FBC might get enabled later.
   2475 	 * What we should check here is whether FBC can be
   2476 	 * enabled sometime later.
   2477 	 */
   2478 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
   2479 	    intel_fbc_enabled(dev_priv)) {
   2480 		for (level = 2; level <= max_level; level++) {
   2481 			struct intel_wm_level *wm = &merged->wm[level];
   2482 
   2483 			wm->enable = false;
   2484 		}
   2485 	}
   2486 }
   2487 
   2488 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
   2489 {
   2490 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
   2491 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
   2492 }
   2493 
   2494 /* The value we need to program into the WM_LPx latency field */
   2495 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
   2496 {
   2497 	struct drm_i915_private *dev_priv = dev->dev_private;
   2498 
   2499 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2500 		return 2 * level;
   2501 	else
   2502 		return dev_priv->wm.pri_latency[level];
   2503 }
   2504 
   2505 static void ilk_compute_wm_results(struct drm_device *dev,
   2506 				   const struct intel_pipe_wm *merged,
   2507 				   enum intel_ddb_partitioning partitioning,
   2508 				   struct ilk_wm_values *results)
   2509 {
   2510 	struct intel_crtc *intel_crtc;
   2511 	int level, wm_lp;
   2512 
   2513 	results->enable_fbc_wm = merged->fbc_wm_enabled;
   2514 	results->partitioning = partitioning;
   2515 
   2516 	/* LP1+ register values */
   2517 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2518 		const struct intel_wm_level *r;
   2519 
   2520 		level = ilk_wm_lp_to_level(wm_lp, merged);
   2521 
   2522 		r = &merged->wm[level];
   2523 
   2524 		/*
   2525 		 * Maintain the watermark values even if the level is
   2526 		 * disabled. Doing otherwise could cause underruns.
   2527 		 */
   2528 		results->wm_lp[wm_lp - 1] =
   2529 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
   2530 			(r->pri_val << WM1_LP_SR_SHIFT) |
   2531 			r->cur_val;
   2532 
   2533 		if (r->enable)
   2534 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
   2535 
   2536 		if (INTEL_INFO(dev)->gen >= 8)
   2537 			results->wm_lp[wm_lp - 1] |=
   2538 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
   2539 		else
   2540 			results->wm_lp[wm_lp - 1] |=
   2541 				r->fbc_val << WM1_LP_FBC_SHIFT;
   2542 
   2543 		/*
   2544 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
   2545 		 * level is disabled. Doing otherwise could cause underruns.
   2546 		 */
   2547 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
   2548 			WARN_ON(wm_lp != 1);
   2549 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
   2550 		} else
   2551 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
   2552 	}
   2553 
   2554 	/* LP0 register values */
   2555 	for_each_intel_crtc(dev, intel_crtc) {
   2556 		enum i915_pipe pipe = intel_crtc->pipe;
   2557 		const struct intel_wm_level *r =
   2558 			&intel_crtc->wm.active.wm[0];
   2559 
   2560 		if (WARN_ON(!r->enable))
   2561 			continue;
   2562 
   2563 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
   2564 
   2565 		results->wm_pipe[pipe] =
   2566 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
   2567 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
   2568 			r->cur_val;
   2569 	}
   2570 }
   2571 
   2572 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
   2573  * case both are at the same level. Prefer r1 in case they're the same. */
   2574 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
   2575 						  struct intel_pipe_wm *r1,
   2576 						  struct intel_pipe_wm *r2)
   2577 {
   2578 	int level, max_level = ilk_wm_max_level(dev);
   2579 	int level1 = 0, level2 = 0;
   2580 
   2581 	for (level = 1; level <= max_level; level++) {
   2582 		if (r1->wm[level].enable)
   2583 			level1 = level;
   2584 		if (r2->wm[level].enable)
   2585 			level2 = level;
   2586 	}
   2587 
   2588 	if (level1 == level2) {
   2589 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
   2590 			return r2;
   2591 		else
   2592 			return r1;
   2593 	} else if (level1 > level2) {
   2594 		return r1;
   2595 	} else {
   2596 		return r2;
   2597 	}
   2598 }
   2599 
   2600 /* dirty bits used to track which watermarks need changes */
   2601 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
   2602 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
   2603 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
   2604 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
   2605 #define WM_DIRTY_FBC (1 << 24)
   2606 #define WM_DIRTY_DDB (1 << 25)
   2607 
   2608 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
   2609 					 const struct ilk_wm_values *old,
   2610 					 const struct ilk_wm_values *new)
   2611 {
   2612 	unsigned int dirty = 0;
   2613 	enum i915_pipe pipe;
   2614 	int wm_lp;
   2615 
   2616 	for_each_pipe(dev_priv, pipe) {
   2617 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
   2618 			dirty |= WM_DIRTY_LINETIME(pipe);
   2619 			/* Must disable LP1+ watermarks too */
   2620 			dirty |= WM_DIRTY_LP_ALL;
   2621 		}
   2622 
   2623 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
   2624 			dirty |= WM_DIRTY_PIPE(pipe);
   2625 			/* Must disable LP1+ watermarks too */
   2626 			dirty |= WM_DIRTY_LP_ALL;
   2627 		}
   2628 	}
   2629 
   2630 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
   2631 		dirty |= WM_DIRTY_FBC;
   2632 		/* Must disable LP1+ watermarks too */
   2633 		dirty |= WM_DIRTY_LP_ALL;
   2634 	}
   2635 
   2636 	if (old->partitioning != new->partitioning) {
   2637 		dirty |= WM_DIRTY_DDB;
   2638 		/* Must disable LP1+ watermarks too */
   2639 		dirty |= WM_DIRTY_LP_ALL;
   2640 	}
   2641 
   2642 	/* LP1+ watermarks already deemed dirty, no need to continue */
   2643 	if (dirty & WM_DIRTY_LP_ALL)
   2644 		return dirty;
   2645 
   2646 	/* Find the lowest numbered LP1+ watermark in need of an update... */
   2647 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2648 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
   2649 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
   2650 			break;
   2651 	}
   2652 
   2653 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
   2654 	for (; wm_lp <= 3; wm_lp++)
   2655 		dirty |= WM_DIRTY_LP(wm_lp);
   2656 
   2657 	return dirty;
   2658 }
   2659 
   2660 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
   2661 			       unsigned int dirty)
   2662 {
   2663 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2664 	bool changed = false;
   2665 
   2666 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
   2667 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
   2668 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
   2669 		changed = true;
   2670 	}
   2671 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
   2672 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
   2673 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
   2674 		changed = true;
   2675 	}
   2676 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
   2677 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
   2678 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
   2679 		changed = true;
   2680 	}
   2681 
   2682 	/*
   2683 	 * Don't touch WM1S_LP_EN here.
   2684 	 * Doing so could cause underruns.
   2685 	 */
   2686 
   2687 	return changed;
   2688 }
   2689 
   2690 /*
   2691  * The spec says we shouldn't write when we don't need, because every write
   2692  * causes WMs to be re-evaluated, expending some power.
   2693  */
   2694 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
   2695 				struct ilk_wm_values *results)
   2696 {
   2697 	struct drm_device *dev = dev_priv->dev;
   2698 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2699 	unsigned int dirty;
   2700 	uint32_t val;
   2701 
   2702 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
   2703 	if (!dirty)
   2704 		return;
   2705 
   2706 	_ilk_disable_lp_wm(dev_priv, dirty);
   2707 
   2708 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
   2709 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
   2710 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
   2711 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
   2712 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
   2713 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
   2714 
   2715 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
   2716 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
   2717 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
   2718 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
   2719 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
   2720 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
   2721 
   2722 	if (dirty & WM_DIRTY_DDB) {
   2723 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2724 			val = I915_READ(WM_MISC);
   2725 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2726 				val &= ~WM_MISC_DATA_PARTITION_5_6;
   2727 			else
   2728 				val |= WM_MISC_DATA_PARTITION_5_6;
   2729 			I915_WRITE(WM_MISC, val);
   2730 		} else {
   2731 			val = I915_READ(DISP_ARB_CTL2);
   2732 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2733 				val &= ~DISP_DATA_PARTITION_5_6;
   2734 			else
   2735 				val |= DISP_DATA_PARTITION_5_6;
   2736 			I915_WRITE(DISP_ARB_CTL2, val);
   2737 		}
   2738 	}
   2739 
   2740 	if (dirty & WM_DIRTY_FBC) {
   2741 		val = I915_READ(DISP_ARB_CTL);
   2742 		if (results->enable_fbc_wm)
   2743 			val &= ~DISP_FBC_WM_DIS;
   2744 		else
   2745 			val |= DISP_FBC_WM_DIS;
   2746 		I915_WRITE(DISP_ARB_CTL, val);
   2747 	}
   2748 
   2749 	if (dirty & WM_DIRTY_LP(1) &&
   2750 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
   2751 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
   2752 
   2753 	if (INTEL_INFO(dev)->gen >= 7) {
   2754 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
   2755 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
   2756 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
   2757 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
   2758 	}
   2759 
   2760 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
   2761 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
   2762 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
   2763 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
   2764 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
   2765 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
   2766 
   2767 	dev_priv->wm.hw = *results;
   2768 }
   2769 
   2770 static bool ilk_disable_lp_wm(struct drm_device *dev)
   2771 {
   2772 	struct drm_i915_private *dev_priv = dev->dev_private;
   2773 
   2774 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
   2775 }
   2776 
   2777 /*
   2778  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
   2779  * different active planes.
   2780  */
   2781 
   2782 #define SKL_DDB_SIZE		896	/* in blocks */
   2783 #define BXT_DDB_SIZE		512
   2784 
   2785 static void
   2786 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
   2787 				   struct drm_crtc *for_crtc,
   2788 				   const struct intel_wm_config *config,
   2789 				   const struct skl_pipe_wm_parameters *params,
   2790 				   struct skl_ddb_entry *alloc /* out */)
   2791 {
   2792 	struct drm_crtc *crtc;
   2793 	unsigned int pipe_size, ddb_size;
   2794 	int nth_active_pipe;
   2795 
   2796 	if (!params->active) {
   2797 		alloc->start = 0;
   2798 		alloc->end = 0;
   2799 		return;
   2800 	}
   2801 
   2802 	if (IS_BROXTON(dev))
   2803 		ddb_size = BXT_DDB_SIZE;
   2804 	else
   2805 		ddb_size = SKL_DDB_SIZE;
   2806 
   2807 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
   2808 
   2809 	nth_active_pipe = 0;
   2810 	for_each_crtc(dev, crtc) {
   2811 		if (!to_intel_crtc(crtc)->active)
   2812 			continue;
   2813 
   2814 		if (crtc == for_crtc)
   2815 			break;
   2816 
   2817 		nth_active_pipe++;
   2818 	}
   2819 
   2820 	pipe_size = ddb_size / config->num_pipes_active;
   2821 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
   2822 	alloc->end = alloc->start + pipe_size;
   2823 }
   2824 
   2825 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
   2826 {
   2827 	if (config->num_pipes_active == 1)
   2828 		return 32;
   2829 
   2830 	return 8;
   2831 }
   2832 
   2833 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
   2834 {
   2835 	entry->start = reg & 0x3ff;
   2836 	entry->end = (reg >> 16) & 0x3ff;
   2837 	if (entry->end)
   2838 		entry->end += 1;
   2839 }
   2840 
   2841 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
   2842 			  struct skl_ddb_allocation *ddb /* out */)
   2843 {
   2844 	enum i915_pipe pipe;
   2845 	int plane;
   2846 	u32 val;
   2847 
   2848 	memset(ddb, 0, sizeof(*ddb));
   2849 
   2850 	for_each_pipe(dev_priv, pipe) {
   2851 		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
   2852 			continue;
   2853 
   2854 		for_each_plane(dev_priv, pipe, plane) {
   2855 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
   2856 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
   2857 						   val);
   2858 		}
   2859 
   2860 		val = I915_READ(CUR_BUF_CFG(pipe));
   2861 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
   2862 					   val);
   2863 	}
   2864 }
   2865 
   2866 static unsigned int
   2867 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
   2868 {
   2869 
   2870 	/* for planar format */
   2871 	if (p->y_bytes_per_pixel) {
   2872 		if (y)  /* y-plane data rate */
   2873 			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
   2874 		else    /* uv-plane data rate */
   2875 			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
   2876 	}
   2877 
   2878 	/* for packed formats */
   2879 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
   2880 }
   2881 
   2882 /*
   2883  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
   2884  * a 8192x4096@32bpp framebuffer:
   2885  *   3 * 4096 * 8192  * 4 < 2^32
   2886  */
   2887 static unsigned int
   2888 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
   2889 				 const struct skl_pipe_wm_parameters *params)
   2890 {
   2891 	unsigned int total_data_rate = 0;
   2892 	int plane;
   2893 
   2894 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
   2895 		const struct intel_plane_wm_parameters *p;
   2896 
   2897 		p = &params->plane[plane];
   2898 		if (!p->enabled)
   2899 			continue;
   2900 
   2901 		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
   2902 		if (p->y_bytes_per_pixel) {
   2903 			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
   2904 		}
   2905 	}
   2906 
   2907 	return total_data_rate;
   2908 }
   2909 
   2910 static void
   2911 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
   2912 		      const struct intel_wm_config *config,
   2913 		      const struct skl_pipe_wm_parameters *params,
   2914 		      struct skl_ddb_allocation *ddb /* out */)
   2915 {
   2916 	struct drm_device *dev = crtc->dev;
   2917 	struct drm_i915_private *dev_priv = dev->dev_private;
   2918 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2919 	enum i915_pipe pipe = intel_crtc->pipe;
   2920 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
   2921 	uint16_t alloc_size, start, cursor_blocks;
   2922 	uint16_t minimum[I915_MAX_PLANES];
   2923 	uint16_t y_minimum[I915_MAX_PLANES];
   2924 	unsigned int total_data_rate;
   2925 	int plane;
   2926 
   2927 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
   2928 	alloc_size = skl_ddb_entry_size(alloc);
   2929 	if (alloc_size == 0) {
   2930 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
   2931 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
   2932 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
   2933 		return;
   2934 	}
   2935 
   2936 	cursor_blocks = skl_cursor_allocation(config);
   2937 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
   2938 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
   2939 
   2940 	alloc_size -= cursor_blocks;
   2941 	alloc->end -= cursor_blocks;
   2942 
   2943 	/* 1. Allocate the mininum required blocks for each active plane */
   2944 	for_each_plane(dev_priv, pipe, plane) {
   2945 		const struct intel_plane_wm_parameters *p;
   2946 
   2947 		p = &params->plane[plane];
   2948 		if (!p->enabled)
   2949 			continue;
   2950 
   2951 		minimum[plane] = 8;
   2952 		alloc_size -= minimum[plane];
   2953 		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
   2954 		alloc_size -= y_minimum[plane];
   2955 	}
   2956 
   2957 	/*
   2958 	 * 2. Distribute the remaining space in proportion to the amount of
   2959 	 * data each plane needs to fetch from memory.
   2960 	 *
   2961 	 * FIXME: we may not allocate every single block here.
   2962 	 */
   2963 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
   2964 
   2965 	start = alloc->start;
   2966 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
   2967 		const struct intel_plane_wm_parameters *p;
   2968 		unsigned int data_rate, y_data_rate;
   2969 		uint16_t plane_blocks, y_plane_blocks = 0;
   2970 
   2971 		p = &params->plane[plane];
   2972 		if (!p->enabled)
   2973 			continue;
   2974 
   2975 		data_rate = skl_plane_relative_data_rate(p, 0);
   2976 
   2977 		/*
   2978 		 * allocation for (packed formats) or (uv-plane part of planar format):
   2979 		 * promote the expression to 64 bits to avoid overflowing, the
   2980 		 * result is < available as data_rate / total_data_rate < 1
   2981 		 */
   2982 		plane_blocks = minimum[plane];
   2983 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
   2984 					total_data_rate);
   2985 
   2986 		ddb->plane[pipe][plane].start = start;
   2987 		ddb->plane[pipe][plane].end = start + plane_blocks;
   2988 
   2989 		start += plane_blocks;
   2990 
   2991 		/*
   2992 		 * allocation for y_plane part of planar format:
   2993 		 */
   2994 		if (p->y_bytes_per_pixel) {
   2995 			y_data_rate = skl_plane_relative_data_rate(p, 1);
   2996 			y_plane_blocks = y_minimum[plane];
   2997 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
   2998 						total_data_rate);
   2999 
   3000 			ddb->y_plane[pipe][plane].start = start;
   3001 			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
   3002 
   3003 			start += y_plane_blocks;
   3004 		}
   3005 
   3006 	}
   3007 
   3008 }
   3009 
   3010 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
   3011 {
   3012 	/* TODO: Take into account the scalers once we support them */
   3013 	return config->base.adjusted_mode.crtc_clock;
   3014 }
   3015 
   3016 /*
   3017  * The max latency should be 257 (max the punit can code is 255 and we add 2us
   3018  * for the read latency) and bytes_per_pixel should always be <= 8, so that
   3019  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
   3020  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
   3021 */
   3022 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   3023 			       uint32_t latency)
   3024 {
   3025 	uint32_t wm_intermediate_val, ret;
   3026 
   3027 	if (latency == 0)
   3028 		return UINT_MAX;
   3029 
   3030 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
   3031 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
   3032 
   3033 	return ret;
   3034 }
   3035 
   3036 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   3037 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   3038 			       uint64_t tiling, uint32_t latency)
   3039 {
   3040 	uint32_t ret;
   3041 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
   3042 	uint32_t wm_intermediate_val;
   3043 
   3044 	if (latency == 0)
   3045 		return UINT_MAX;
   3046 
   3047 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
   3048 
   3049 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
   3050 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
   3051 		plane_bytes_per_line *= 4;
   3052 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3053 		plane_blocks_per_line /= 4;
   3054 	} else {
   3055 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3056 	}
   3057 
   3058 	wm_intermediate_val = latency * pixel_rate;
   3059 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
   3060 				plane_blocks_per_line;
   3061 
   3062 	return ret;
   3063 }
   3064 
   3065 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
   3066 				       const struct intel_crtc *intel_crtc)
   3067 {
   3068 	struct drm_device *dev = intel_crtc->base.dev;
   3069 	struct drm_i915_private *dev_priv = dev->dev_private;
   3070 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
   3071 	enum i915_pipe pipe = intel_crtc->pipe;
   3072 
   3073 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
   3074 		   sizeof(new_ddb->plane[pipe])))
   3075 		return true;
   3076 
   3077 	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
   3078 		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
   3079 		return true;
   3080 
   3081 	return false;
   3082 }
   3083 
   3084 static void skl_compute_wm_global_parameters(struct drm_device *dev,
   3085 					     struct intel_wm_config *config)
   3086 {
   3087 	struct drm_crtc *crtc;
   3088 	struct drm_plane *plane;
   3089 
   3090 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   3091 		config->num_pipes_active += to_intel_crtc(crtc)->active;
   3092 
   3093 	/* FIXME: I don't think we need those two global parameters on SKL */
   3094 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
   3095 		struct intel_plane *intel_plane = to_intel_plane(plane);
   3096 
   3097 		config->sprites_enabled |= intel_plane->wm.enabled;
   3098 		config->sprites_scaled |= intel_plane->wm.scaled;
   3099 	}
   3100 }
   3101 
   3102 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
   3103 					   struct skl_pipe_wm_parameters *p)
   3104 {
   3105 	struct drm_device *dev = crtc->dev;
   3106 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3107 	enum i915_pipe pipe = intel_crtc->pipe;
   3108 	struct drm_plane *plane;
   3109 	struct drm_framebuffer *fb;
   3110 	int i = 1; /* Index for sprite planes start */
   3111 
   3112 	p->active = intel_crtc->active;
   3113 	if (p->active) {
   3114 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
   3115 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
   3116 
   3117 		fb = crtc->primary->state->fb;
   3118 		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
   3119 		if (fb) {
   3120 			p->plane[0].enabled = true;
   3121 			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
   3122 				drm_format_plane_cpp(fb->pixel_format, 1) :
   3123 				drm_format_plane_cpp(fb->pixel_format, 0);
   3124 			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
   3125 				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
   3126 			p->plane[0].tiling = fb->modifier[0];
   3127 		} else {
   3128 			p->plane[0].enabled = false;
   3129 			p->plane[0].bytes_per_pixel = 0;
   3130 			p->plane[0].y_bytes_per_pixel = 0;
   3131 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
   3132 		}
   3133 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
   3134 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
   3135 		p->plane[0].rotation = crtc->primary->state->rotation;
   3136 
   3137 		fb = crtc->cursor->state->fb;
   3138 		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
   3139 		if (fb) {
   3140 			p->plane[PLANE_CURSOR].enabled = true;
   3141 			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
   3142 			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
   3143 			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
   3144 		} else {
   3145 			p->plane[PLANE_CURSOR].enabled = false;
   3146 			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
   3147 			p->plane[PLANE_CURSOR].horiz_pixels = 64;
   3148 			p->plane[PLANE_CURSOR].vert_pixels = 64;
   3149 		}
   3150 	}
   3151 
   3152 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
   3153 		struct intel_plane *intel_plane = to_intel_plane(plane);
   3154 
   3155 		if (intel_plane->pipe == pipe &&
   3156 			plane->type == DRM_PLANE_TYPE_OVERLAY)
   3157 			p->plane[i++] = intel_plane->wm;
   3158 	}
   3159 }
   3160 
   3161 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
   3162 				 struct skl_pipe_wm_parameters *p,
   3163 				 struct intel_plane_wm_parameters *p_params,
   3164 				 uint16_t ddb_allocation,
   3165 				 int level,
   3166 				 uint16_t *out_blocks, /* out */
   3167 				 uint8_t *out_lines /* out */)
   3168 {
   3169 	uint32_t latency = dev_priv->wm.skl_latency[level];
   3170 	uint32_t method1, method2;
   3171 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
   3172 	uint32_t res_blocks, res_lines;
   3173 	uint32_t selected_result;
   3174 	uint8_t bytes_per_pixel;
   3175 
   3176 	if (latency == 0 || !p->active || !p_params->enabled)
   3177 		return false;
   3178 
   3179 	bytes_per_pixel = p_params->y_bytes_per_pixel ?
   3180 		p_params->y_bytes_per_pixel :
   3181 		p_params->bytes_per_pixel;
   3182 	method1 = skl_wm_method1(p->pixel_rate,
   3183 				 bytes_per_pixel,
   3184 				 latency);
   3185 	method2 = skl_wm_method2(p->pixel_rate,
   3186 				 p->pipe_htotal,
   3187 				 p_params->horiz_pixels,
   3188 				 bytes_per_pixel,
   3189 				 p_params->tiling,
   3190 				 latency);
   3191 
   3192 	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
   3193 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3194 
   3195 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
   3196 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
   3197 		uint32_t min_scanlines = 4;
   3198 		uint32_t y_tile_minimum;
   3199 		if (intel_rotation_90_or_270(p_params->rotation)) {
   3200 			switch (p_params->bytes_per_pixel) {
   3201 			case 1:
   3202 				min_scanlines = 16;
   3203 				break;
   3204 			case 2:
   3205 				min_scanlines = 8;
   3206 				break;
   3207 			case 8:
   3208 				WARN(1, "Unsupported pixel depth for rotation");
   3209 			}
   3210 		}
   3211 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
   3212 		selected_result = max(method2, y_tile_minimum);
   3213 	} else {
   3214 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
   3215 			selected_result = min(method1, method2);
   3216 		else
   3217 			selected_result = method1;
   3218 	}
   3219 
   3220 	res_blocks = selected_result + 1;
   3221 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
   3222 
   3223 	if (level >= 1 && level <= 7) {
   3224 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
   3225 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
   3226 			res_lines += 4;
   3227 		else
   3228 			res_blocks++;
   3229 	}
   3230 
   3231 	if (res_blocks >= ddb_allocation || res_lines > 31)
   3232 		return false;
   3233 
   3234 	*out_blocks = res_blocks;
   3235 	*out_lines = res_lines;
   3236 
   3237 	return true;
   3238 }
   3239 
   3240 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
   3241 				 struct skl_ddb_allocation *ddb,
   3242 				 struct skl_pipe_wm_parameters *p,
   3243 				 enum i915_pipe pipe,
   3244 				 int level,
   3245 				 int num_planes,
   3246 				 struct skl_wm_level *result)
   3247 {
   3248 	uint16_t ddb_blocks;
   3249 	int i;
   3250 
   3251 	for (i = 0; i < num_planes; i++) {
   3252 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
   3253 
   3254 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
   3255 						p, &p->plane[i],
   3256 						ddb_blocks,
   3257 						level,
   3258 						&result->plane_res_b[i],
   3259 						&result->plane_res_l[i]);
   3260 	}
   3261 
   3262 	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
   3263 	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
   3264 						 &p->plane[PLANE_CURSOR],
   3265 						 ddb_blocks, level,
   3266 						 &result->plane_res_b[PLANE_CURSOR],
   3267 						 &result->plane_res_l[PLANE_CURSOR]);
   3268 }
   3269 
   3270 static uint32_t
   3271 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
   3272 {
   3273 	if (!to_intel_crtc(crtc)->active)
   3274 		return 0;
   3275 
   3276 	if (WARN_ON(p->pixel_rate == 0))
   3277 		return 0;
   3278 
   3279 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
   3280 }
   3281 
   3282 static void skl_compute_transition_wm(struct drm_crtc *crtc,
   3283 				      struct skl_pipe_wm_parameters *params,
   3284 				      struct skl_wm_level *trans_wm /* out */)
   3285 {
   3286 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3287 	int i;
   3288 
   3289 	if (!params->active)
   3290 		return;
   3291 
   3292 	/* Until we know more, just disable transition WMs */
   3293 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3294 		trans_wm->plane_en[i] = false;
   3295 	trans_wm->plane_en[PLANE_CURSOR] = false;
   3296 }
   3297 
   3298 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
   3299 				struct skl_ddb_allocation *ddb,
   3300 				struct skl_pipe_wm_parameters *params,
   3301 				struct skl_pipe_wm *pipe_wm)
   3302 {
   3303 	struct drm_device *dev = crtc->dev;
   3304 	const struct drm_i915_private *dev_priv = dev->dev_private;
   3305 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3306 	int level, max_level = ilk_wm_max_level(dev);
   3307 
   3308 	for (level = 0; level <= max_level; level++) {
   3309 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
   3310 				     level, intel_num_planes(intel_crtc),
   3311 				     &pipe_wm->wm[level]);
   3312 	}
   3313 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
   3314 
   3315 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
   3316 }
   3317 
   3318 static void skl_compute_wm_results(struct drm_device *dev,
   3319 				   struct skl_pipe_wm_parameters *p,
   3320 				   struct skl_pipe_wm *p_wm,
   3321 				   struct skl_wm_values *r,
   3322 				   struct intel_crtc *intel_crtc)
   3323 {
   3324 	int level, max_level = ilk_wm_max_level(dev);
   3325 	enum i915_pipe pipe = intel_crtc->pipe;
   3326 	uint32_t temp;
   3327 	int i;
   3328 
   3329 	for (level = 0; level <= max_level; level++) {
   3330 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3331 			temp = 0;
   3332 
   3333 			temp |= p_wm->wm[level].plane_res_l[i] <<
   3334 					PLANE_WM_LINES_SHIFT;
   3335 			temp |= p_wm->wm[level].plane_res_b[i];
   3336 			if (p_wm->wm[level].plane_en[i])
   3337 				temp |= PLANE_WM_EN;
   3338 
   3339 			r->plane[pipe][i][level] = temp;
   3340 		}
   3341 
   3342 		temp = 0;
   3343 
   3344 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
   3345 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
   3346 
   3347 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
   3348 			temp |= PLANE_WM_EN;
   3349 
   3350 		r->plane[pipe][PLANE_CURSOR][level] = temp;
   3351 
   3352 	}
   3353 
   3354 	/* transition WMs */
   3355 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3356 		temp = 0;
   3357 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
   3358 		temp |= p_wm->trans_wm.plane_res_b[i];
   3359 		if (p_wm->trans_wm.plane_en[i])
   3360 			temp |= PLANE_WM_EN;
   3361 
   3362 		r->plane_trans[pipe][i] = temp;
   3363 	}
   3364 
   3365 	temp = 0;
   3366 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
   3367 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
   3368 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
   3369 		temp |= PLANE_WM_EN;
   3370 
   3371 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
   3372 
   3373 	r->wm_linetime[pipe] = p_wm->linetime;
   3374 }
   3375 
   3376 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
   3377 				const struct skl_ddb_entry *entry)
   3378 {
   3379 	if (entry->end)
   3380 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
   3381 	else
   3382 		I915_WRITE(reg, 0);
   3383 }
   3384 
   3385 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
   3386 				const struct skl_wm_values *new)
   3387 {
   3388 	struct drm_device *dev = dev_priv->dev;
   3389 	struct intel_crtc *crtc;
   3390 
   3391 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
   3392 		int i, level, max_level = ilk_wm_max_level(dev);
   3393 		enum i915_pipe pipe = crtc->pipe;
   3394 
   3395 		if (!new->dirty[pipe])
   3396 			continue;
   3397 
   3398 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
   3399 
   3400 		for (level = 0; level <= max_level; level++) {
   3401 			for (i = 0; i < intel_num_planes(crtc); i++)
   3402 				I915_WRITE(PLANE_WM(pipe, i, level),
   3403 					   new->plane[pipe][i][level]);
   3404 			I915_WRITE(CUR_WM(pipe, level),
   3405 				   new->plane[pipe][PLANE_CURSOR][level]);
   3406 		}
   3407 		for (i = 0; i < intel_num_planes(crtc); i++)
   3408 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
   3409 				   new->plane_trans[pipe][i]);
   3410 		I915_WRITE(CUR_WM_TRANS(pipe),
   3411 			   new->plane_trans[pipe][PLANE_CURSOR]);
   3412 
   3413 		for (i = 0; i < intel_num_planes(crtc); i++) {
   3414 			skl_ddb_entry_write(dev_priv,
   3415 					    PLANE_BUF_CFG(pipe, i),
   3416 					    &new->ddb.plane[pipe][i]);
   3417 			skl_ddb_entry_write(dev_priv,
   3418 					    PLANE_NV12_BUF_CFG(pipe, i),
   3419 					    &new->ddb.y_plane[pipe][i]);
   3420 		}
   3421 
   3422 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
   3423 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
   3424 	}
   3425 }
   3426 
   3427 /*
   3428  * When setting up a new DDB allocation arrangement, we need to correctly
   3429  * sequence the times at which the new allocations for the pipes are taken into
   3430  * account or we'll have pipes fetching from space previously allocated to
   3431  * another pipe.
   3432  *
   3433  * Roughly the sequence looks like:
   3434  *  1. re-allocate the pipe(s) with the allocation being reduced and not
   3435  *     overlapping with a previous light-up pipe (another way to put it is:
   3436  *     pipes with their new allocation strickly included into their old ones).
   3437  *  2. re-allocate the other pipes that get their allocation reduced
   3438  *  3. allocate the pipes having their allocation increased
   3439  *
   3440  * Steps 1. and 2. are here to take care of the following case:
   3441  * - Initially DDB looks like this:
   3442  *     |   B    |   C    |
   3443  * - enable pipe A.
   3444  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
   3445  *   allocation
   3446  *     |  A  |  B  |  C  |
   3447  *
   3448  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
   3449  */
   3450 
   3451 static void
   3452 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int pass)
   3453 {
   3454 	int plane;
   3455 
   3456 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
   3457 
   3458 	for_each_plane(dev_priv, pipe, plane) {
   3459 		I915_WRITE(PLANE_SURF(pipe, plane),
   3460 			   I915_READ(PLANE_SURF(pipe, plane)));
   3461 	}
   3462 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
   3463 }
   3464 
   3465 static bool
   3466 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
   3467 			    const struct skl_ddb_allocation *new,
   3468 			    enum i915_pipe pipe)
   3469 {
   3470 	uint16_t old_size, new_size;
   3471 
   3472 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
   3473 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
   3474 
   3475 	return old_size != new_size &&
   3476 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
   3477 	       new->pipe[pipe].end <= old->pipe[pipe].end;
   3478 }
   3479 
   3480 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
   3481 				struct skl_wm_values *new_values)
   3482 {
   3483 	struct drm_device *dev = dev_priv->dev;
   3484 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
   3485 	bool reallocated[I915_MAX_PIPES] = {};
   3486 	struct intel_crtc *crtc;
   3487 	enum i915_pipe pipe;
   3488 
   3489 	new_ddb = &new_values->ddb;
   3490 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
   3491 
   3492 	/*
   3493 	 * First pass: flush the pipes with the new allocation contained into
   3494 	 * the old space.
   3495 	 *
   3496 	 * We'll wait for the vblank on those pipes to ensure we can safely
   3497 	 * re-allocate the freed space without this pipe fetching from it.
   3498 	 */
   3499 	for_each_intel_crtc(dev, crtc) {
   3500 		if (!crtc->active)
   3501 			continue;
   3502 
   3503 		pipe = crtc->pipe;
   3504 
   3505 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
   3506 			continue;
   3507 
   3508 		skl_wm_flush_pipe(dev_priv, pipe, 1);
   3509 		intel_wait_for_vblank(dev, pipe);
   3510 
   3511 		reallocated[pipe] = true;
   3512 	}
   3513 
   3514 
   3515 	/*
   3516 	 * Second pass: flush the pipes that are having their allocation
   3517 	 * reduced, but overlapping with a previous allocation.
   3518 	 *
   3519 	 * Here as well we need to wait for the vblank to make sure the freed
   3520 	 * space is not used anymore.
   3521 	 */
   3522 	for_each_intel_crtc(dev, crtc) {
   3523 		if (!crtc->active)
   3524 			continue;
   3525 
   3526 		pipe = crtc->pipe;
   3527 
   3528 		if (reallocated[pipe])
   3529 			continue;
   3530 
   3531 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
   3532 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
   3533 			skl_wm_flush_pipe(dev_priv, pipe, 2);
   3534 			intel_wait_for_vblank(dev, pipe);
   3535 			reallocated[pipe] = true;
   3536 		}
   3537 	}
   3538 
   3539 	/*
   3540 	 * Third pass: flush the pipes that got more space allocated.
   3541 	 *
   3542 	 * We don't need to actively wait for the update here, next vblank
   3543 	 * will just get more DDB space with the correct WM values.
   3544 	 */
   3545 	for_each_intel_crtc(dev, crtc) {
   3546 		if (!crtc->active)
   3547 			continue;
   3548 
   3549 		pipe = crtc->pipe;
   3550 
   3551 		/*
   3552 		 * At this point, only the pipes more space than before are
   3553 		 * left to re-allocate.
   3554 		 */
   3555 		if (reallocated[pipe])
   3556 			continue;
   3557 
   3558 		skl_wm_flush_pipe(dev_priv, pipe, 3);
   3559 	}
   3560 }
   3561 
   3562 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
   3563 			       struct skl_pipe_wm_parameters *params,
   3564 			       struct intel_wm_config *config,
   3565 			       struct skl_ddb_allocation *ddb, /* out */
   3566 			       struct skl_pipe_wm *pipe_wm /* out */)
   3567 {
   3568 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3569 
   3570 	skl_compute_wm_pipe_parameters(crtc, params);
   3571 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
   3572 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
   3573 
   3574 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
   3575 		return false;
   3576 
   3577 	intel_crtc->wm.skl_active = *pipe_wm;
   3578 
   3579 	return true;
   3580 }
   3581 
   3582 static void skl_update_other_pipe_wm(struct drm_device *dev,
   3583 				     struct drm_crtc *crtc,
   3584 				     struct intel_wm_config *config,
   3585 				     struct skl_wm_values *r)
   3586 {
   3587 	struct intel_crtc *intel_crtc;
   3588 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
   3589 
   3590 	/*
   3591 	 * If the WM update hasn't changed the allocation for this_crtc (the
   3592 	 * crtc we are currently computing the new WM values for), other
   3593 	 * enabled crtcs will keep the same allocation and we don't need to
   3594 	 * recompute anything for them.
   3595 	 */
   3596 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
   3597 		return;
   3598 
   3599 	/*
   3600 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
   3601 	 * other active pipes need new DDB allocation and WM values.
   3602 	 */
   3603 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
   3604 				base.head) {
   3605 		struct skl_pipe_wm_parameters params = {};
   3606 		struct skl_pipe_wm pipe_wm = {};
   3607 		bool wm_changed;
   3608 
   3609 		if (this_crtc->pipe == intel_crtc->pipe)
   3610 			continue;
   3611 
   3612 		if (!intel_crtc->active)
   3613 			continue;
   3614 
   3615 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
   3616 						&params, config,
   3617 						&r->ddb, &pipe_wm);
   3618 
   3619 		/*
   3620 		 * If we end up re-computing the other pipe WM values, it's
   3621 		 * because it was really needed, so we expect the WM values to
   3622 		 * be different.
   3623 		 */
   3624 		WARN_ON(!wm_changed);
   3625 
   3626 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
   3627 		r->dirty[intel_crtc->pipe] = true;
   3628 	}
   3629 }
   3630 
   3631 static void skl_clear_wm(struct skl_wm_values *watermarks, enum i915_pipe pipe)
   3632 {
   3633 	watermarks->wm_linetime[pipe] = 0;
   3634 	memset(watermarks->plane[pipe], 0,
   3635 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
   3636 	memset(watermarks->plane_trans[pipe],
   3637 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
   3638 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
   3639 
   3640 	/* Clear ddb entries for pipe */
   3641 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
   3642 	memset(&watermarks->ddb.plane[pipe], 0,
   3643 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
   3644 	memset(&watermarks->ddb.y_plane[pipe], 0,
   3645 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
   3646 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
   3647 	       sizeof(struct skl_ddb_entry));
   3648 
   3649 }
   3650 
   3651 static void skl_update_wm(struct drm_crtc *crtc)
   3652 {
   3653 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3654 	struct drm_device *dev = crtc->dev;
   3655 	struct drm_i915_private *dev_priv = dev->dev_private;
   3656 	struct skl_pipe_wm_parameters params = {};
   3657 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
   3658 	struct skl_pipe_wm pipe_wm = {};
   3659 	struct intel_wm_config config = {};
   3660 
   3661 
   3662 	/* Clear all dirty flags */
   3663 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
   3664 
   3665 	skl_clear_wm(results, intel_crtc->pipe);
   3666 
   3667 	skl_compute_wm_global_parameters(dev, &config);
   3668 
   3669 	if (!skl_update_pipe_wm(crtc, &params, &config,
   3670 				&results->ddb, &pipe_wm))
   3671 		return;
   3672 
   3673 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
   3674 	results->dirty[intel_crtc->pipe] = true;
   3675 
   3676 	skl_update_other_pipe_wm(dev, crtc, &config, results);
   3677 	skl_write_wm_values(dev_priv, results);
   3678 	skl_flush_wm_values(dev_priv, results);
   3679 
   3680 	/* store the new configuration */
   3681 	dev_priv->wm.skl_hw = *results;
   3682 }
   3683 
   3684 static void
   3685 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
   3686 		     uint32_t sprite_width, uint32_t sprite_height,
   3687 		     int pixel_size, bool enabled, bool scaled)
   3688 {
   3689 	struct intel_plane *intel_plane = to_intel_plane(plane);
   3690 	struct drm_framebuffer *fb = plane->state->fb;
   3691 
   3692 	intel_plane->wm.enabled = enabled;
   3693 	intel_plane->wm.scaled = scaled;
   3694 	intel_plane->wm.horiz_pixels = sprite_width;
   3695 	intel_plane->wm.vert_pixels = sprite_height;
   3696 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
   3697 
   3698 	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
   3699 	intel_plane->wm.bytes_per_pixel =
   3700 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
   3701 		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
   3702 	intel_plane->wm.y_bytes_per_pixel =
   3703 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
   3704 		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
   3705 
   3706 	/*
   3707 	 * Framebuffer can be NULL on plane disable, but it does not
   3708 	 * matter for watermarks if we assume no tiling in that case.
   3709 	 */
   3710 	if (fb)
   3711 		intel_plane->wm.tiling = fb->modifier[0];
   3712 	intel_plane->wm.rotation = plane->state->rotation;
   3713 
   3714 	skl_update_wm(crtc);
   3715 }
   3716 
   3717 static void ilk_update_wm(struct drm_crtc *crtc)
   3718 {
   3719 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3720 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
   3721 	struct drm_device *dev = crtc->dev;
   3722 	struct drm_i915_private *dev_priv = dev->dev_private;
   3723 	struct ilk_wm_maximums max;
   3724 	static const struct ilk_wm_values zero_values;
   3725 	struct ilk_wm_values results = zero_values;
   3726 	enum intel_ddb_partitioning partitioning;
   3727 	static const struct intel_pipe_wm zero_wm;
   3728 	struct intel_pipe_wm pipe_wm = zero_wm;
   3729 	struct intel_pipe_wm lp_wm_1_2 = zero_wm, lp_wm_5_6 = zero_wm,
   3730 	    *best_lp_wm;
   3731 	static const struct intel_wm_config zero_config;
   3732 	struct intel_wm_config config = zero_config;
   3733 
   3734 	WARN_ON(cstate->base.active != intel_crtc->active);
   3735 
   3736 	intel_compute_pipe_wm(cstate, &pipe_wm);
   3737 
   3738 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
   3739 		return;
   3740 
   3741 	intel_crtc->wm.active = pipe_wm;
   3742 
   3743 	ilk_compute_wm_config(dev, &config);
   3744 
   3745 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
   3746 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
   3747 
   3748 	/* 5/6 split only in single pipe config on IVB+ */
   3749 	if (INTEL_INFO(dev)->gen >= 7 &&
   3750 	    config.num_pipes_active == 1 && config.sprites_enabled) {
   3751 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
   3752 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
   3753 
   3754 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
   3755 	} else {
   3756 		best_lp_wm = &lp_wm_1_2;
   3757 	}
   3758 
   3759 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
   3760 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
   3761 
   3762 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
   3763 
   3764 	ilk_write_wm_values(dev_priv, &results);
   3765 }
   3766 
   3767 static void
   3768 ilk_update_sprite_wm(struct drm_plane *plane,
   3769 		     struct drm_crtc *crtc,
   3770 		     uint32_t sprite_width, uint32_t sprite_height,
   3771 		     int pixel_size, bool enabled, bool scaled)
   3772 {
   3773 	struct drm_device *dev = plane->dev;
   3774 	struct intel_plane *intel_plane = to_intel_plane(plane);
   3775 
   3776 	/*
   3777 	 * IVB workaround: must disable low power watermarks for at least
   3778 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
   3779 	 * when scaling is disabled.
   3780 	 *
   3781 	 * WaCxSRDisabledForSpriteScaling:ivb
   3782 	 */
   3783 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
   3784 		intel_wait_for_vblank(dev, intel_plane->pipe);
   3785 
   3786 	ilk_update_wm(crtc);
   3787 }
   3788 
   3789 static void skl_pipe_wm_active_state(uint32_t val,
   3790 				     struct skl_pipe_wm *active,
   3791 				     bool is_transwm,
   3792 				     bool is_cursor,
   3793 				     int i,
   3794 				     int level)
   3795 {
   3796 	bool is_enabled = (val & PLANE_WM_EN) != 0;
   3797 
   3798 	if (!is_transwm) {
   3799 		if (!is_cursor) {
   3800 			active->wm[level].plane_en[i] = is_enabled;
   3801 			active->wm[level].plane_res_b[i] =
   3802 					val & PLANE_WM_BLOCKS_MASK;
   3803 			active->wm[level].plane_res_l[i] =
   3804 					(val >> PLANE_WM_LINES_SHIFT) &
   3805 						PLANE_WM_LINES_MASK;
   3806 		} else {
   3807 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
   3808 			active->wm[level].plane_res_b[PLANE_CURSOR] =
   3809 					val & PLANE_WM_BLOCKS_MASK;
   3810 			active->wm[level].plane_res_l[PLANE_CURSOR] =
   3811 					(val >> PLANE_WM_LINES_SHIFT) &
   3812 						PLANE_WM_LINES_MASK;
   3813 		}
   3814 	} else {
   3815 		if (!is_cursor) {
   3816 			active->trans_wm.plane_en[i] = is_enabled;
   3817 			active->trans_wm.plane_res_b[i] =
   3818 					val & PLANE_WM_BLOCKS_MASK;
   3819 			active->trans_wm.plane_res_l[i] =
   3820 					(val >> PLANE_WM_LINES_SHIFT) &
   3821 						PLANE_WM_LINES_MASK;
   3822 		} else {
   3823 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
   3824 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
   3825 					val & PLANE_WM_BLOCKS_MASK;
   3826 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
   3827 					(val >> PLANE_WM_LINES_SHIFT) &
   3828 						PLANE_WM_LINES_MASK;
   3829 		}
   3830 	}
   3831 }
   3832 
   3833 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   3834 {
   3835 	struct drm_device *dev = crtc->dev;
   3836 	struct drm_i915_private *dev_priv = dev->dev_private;
   3837 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
   3838 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3839 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
   3840 	enum i915_pipe pipe = intel_crtc->pipe;
   3841 	int level, i, max_level;
   3842 	uint32_t temp;
   3843 
   3844 	max_level = ilk_wm_max_level(dev);
   3845 
   3846 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   3847 
   3848 	for (level = 0; level <= max_level; level++) {
   3849 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3850 			hw->plane[pipe][i][level] =
   3851 					I915_READ(PLANE_WM(pipe, i, level));
   3852 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
   3853 	}
   3854 
   3855 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3856 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
   3857 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
   3858 
   3859 	if (!intel_crtc->active)
   3860 		return;
   3861 
   3862 	hw->dirty[pipe] = true;
   3863 
   3864 	active->linetime = hw->wm_linetime[pipe];
   3865 
   3866 	for (level = 0; level <= max_level; level++) {
   3867 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3868 			temp = hw->plane[pipe][i][level];
   3869 			skl_pipe_wm_active_state(temp, active, false,
   3870 						false, i, level);
   3871 		}
   3872 		temp = hw->plane[pipe][PLANE_CURSOR][level];
   3873 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
   3874 	}
   3875 
   3876 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3877 		temp = hw->plane_trans[pipe][i];
   3878 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
   3879 	}
   3880 
   3881 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
   3882 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
   3883 }
   3884 
   3885 void skl_wm_get_hw_state(struct drm_device *dev)
   3886 {
   3887 	struct drm_i915_private *dev_priv = dev->dev_private;
   3888 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
   3889 	struct drm_crtc *crtc;
   3890 
   3891 	skl_ddb_get_hw_state(dev_priv, ddb);
   3892 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   3893 		skl_pipe_wm_get_hw_state(crtc);
   3894 }
   3895 
   3896 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   3897 {
   3898 	struct drm_device *dev = crtc->dev;
   3899 	struct drm_i915_private *dev_priv = dev->dev_private;
   3900 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   3901 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3902 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
   3903 	enum i915_pipe pipe = intel_crtc->pipe;
   3904 	static const unsigned int wm0_pipe_reg[] = {
   3905 		[PIPE_A] = WM0_PIPEA_ILK,
   3906 		[PIPE_B] = WM0_PIPEB_ILK,
   3907 		[PIPE_C] = WM0_PIPEC_IVB,
   3908 	};
   3909 
   3910 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
   3911 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   3912 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   3913 
   3914 	memset(active, 0, sizeof(*active));
   3915 
   3916 	active->pipe_enabled = intel_crtc->active;
   3917 
   3918 	if (active->pipe_enabled) {
   3919 		u32 tmp = hw->wm_pipe[pipe];
   3920 
   3921 		/*
   3922 		 * For active pipes LP0 watermark is marked as
   3923 		 * enabled, and LP1+ watermaks as disabled since
   3924 		 * we can't really reverse compute them in case
   3925 		 * multiple pipes are active.
   3926 		 */
   3927 		active->wm[0].enable = true;
   3928 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
   3929 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
   3930 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
   3931 		active->linetime = hw->wm_linetime[pipe];
   3932 	} else {
   3933 		int level, max_level = ilk_wm_max_level(dev);
   3934 
   3935 		/*
   3936 		 * For inactive pipes, all watermark levels
   3937 		 * should be marked as enabled but zeroed,
   3938 		 * which is what we'd compute them to.
   3939 		 */
   3940 		for (level = 0; level <= max_level; level++)
   3941 			active->wm[level].enable = true;
   3942 	}
   3943 }
   3944 
   3945 #define _FW_WM(value, plane) \
   3946 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
   3947 #define _FW_WM_VLV(value, plane) \
   3948 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
   3949 
   3950 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
   3951 			       struct vlv_wm_values *wm)
   3952 {
   3953 	enum i915_pipe pipe;
   3954 	uint32_t tmp;
   3955 
   3956 	for_each_pipe(dev_priv, pipe) {
   3957 		tmp = I915_READ(VLV_DDL(pipe));
   3958 
   3959 		wm->ddl[pipe].primary =
   3960 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3961 		wm->ddl[pipe].cursor =
   3962 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3963 		wm->ddl[pipe].sprite[0] =
   3964 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3965 		wm->ddl[pipe].sprite[1] =
   3966 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3967 	}
   3968 
   3969 	tmp = I915_READ(DSPFW1);
   3970 	wm->sr.plane = _FW_WM(tmp, SR);
   3971 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
   3972 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
   3973 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
   3974 
   3975 	tmp = I915_READ(DSPFW2);
   3976 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
   3977 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
   3978 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
   3979 
   3980 	tmp = I915_READ(DSPFW3);
   3981 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
   3982 
   3983 	if (IS_CHERRYVIEW(dev_priv)) {
   3984 		tmp = I915_READ(DSPFW7_CHV);
   3985 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
   3986 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
   3987 
   3988 		tmp = I915_READ(DSPFW8_CHV);
   3989 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
   3990 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
   3991 
   3992 		tmp = I915_READ(DSPFW9_CHV);
   3993 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
   3994 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
   3995 
   3996 		tmp = I915_READ(DSPHOWM);
   3997 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   3998 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
   3999 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
   4000 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
   4001 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   4002 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   4003 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
   4004 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   4005 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   4006 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
   4007 	} else {
   4008 		tmp = I915_READ(DSPFW7);
   4009 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
   4010 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
   4011 
   4012 		tmp = I915_READ(DSPHOWM);
   4013 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   4014 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   4015 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   4016 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
   4017 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   4018 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   4019 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
   4020 	}
   4021 }
   4022 
   4023 #undef _FW_WM
   4024 #undef _FW_WM_VLV
   4025 
   4026 void vlv_wm_get_hw_state(struct drm_device *dev)
   4027 {
   4028 	struct drm_i915_private *dev_priv = to_i915(dev);
   4029 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
   4030 	struct intel_plane *plane;
   4031 	enum i915_pipe pipe;
   4032 	u32 val;
   4033 
   4034 	vlv_read_wm_values(dev_priv, wm);
   4035 
   4036 	for_each_intel_plane(dev, plane) {
   4037 		switch (plane->base.type) {
   4038 			int sprite;
   4039 		case DRM_PLANE_TYPE_CURSOR:
   4040 			plane->wm.fifo_size = 63;
   4041 			break;
   4042 		case DRM_PLANE_TYPE_PRIMARY:
   4043 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
   4044 			break;
   4045 		case DRM_PLANE_TYPE_OVERLAY:
   4046 			sprite = plane->plane;
   4047 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
   4048 			break;
   4049 		}
   4050 	}
   4051 
   4052 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
   4053 	wm->level = VLV_WM_LEVEL_PM2;
   4054 
   4055 	if (IS_CHERRYVIEW(dev_priv)) {
   4056 		mutex_lock(&dev_priv->rps.hw_lock);
   4057 
   4058 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
   4059 		if (val & DSP_MAXFIFO_PM5_ENABLE)
   4060 			wm->level = VLV_WM_LEVEL_PM5;
   4061 
   4062 		/*
   4063 		 * If DDR DVFS is disabled in the BIOS, Punit
   4064 		 * will never ack the request. So if that happens
   4065 		 * assume we don't have to enable/disable DDR DVFS
   4066 		 * dynamically. To test that just set the REQ_ACK
   4067 		 * bit to poke the Punit, but don't change the
   4068 		 * HIGH/LOW bits so that we don't actually change
   4069 		 * the current state.
   4070 		 */
   4071 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   4072 		val |= FORCE_DDR_FREQ_REQ_ACK;
   4073 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
   4074 
   4075 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
   4076 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
   4077 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
   4078 				      "assuming DDR DVFS is disabled\n");
   4079 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
   4080 		} else {
   4081 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   4082 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
   4083 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
   4084 		}
   4085 
   4086 		mutex_unlock(&dev_priv->rps.hw_lock);
   4087 	}
   4088 
   4089 	for_each_pipe(dev_priv, pipe)
   4090 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
   4091 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
   4092 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
   4093 
   4094 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
   4095 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
   4096 }
   4097 
   4098 void ilk_wm_get_hw_state(struct drm_device *dev)
   4099 {
   4100 	struct drm_i915_private *dev_priv = dev->dev_private;
   4101 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   4102 	struct drm_crtc *crtc;
   4103 
   4104 	for_each_crtc(dev, crtc)
   4105 		ilk_pipe_wm_get_hw_state(crtc);
   4106 
   4107 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
   4108 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
   4109 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
   4110 
   4111 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
   4112 	if (INTEL_INFO(dev)->gen >= 7) {
   4113 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
   4114 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
   4115 	}
   4116 
   4117 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4118 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
   4119 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   4120 	else if (IS_IVYBRIDGE(dev))
   4121 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
   4122 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   4123 
   4124 	hw->enable_fbc_wm =
   4125 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
   4126 }
   4127 
   4128 /**
   4129  * intel_update_watermarks - update FIFO watermark values based on current modes
   4130  *
   4131  * Calculate watermark values for the various WM regs based on current mode
   4132  * and plane configuration.
   4133  *
   4134  * There are several cases to deal with here:
   4135  *   - normal (i.e. non-self-refresh)
   4136  *   - self-refresh (SR) mode
   4137  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   4138  *   - lines are small relative to FIFO size (buffer can hold more than 2
   4139  *     lines), so need to account for TLB latency
   4140  *
   4141  *   The normal calculation is:
   4142  *     watermark = dotclock * bytes per pixel * latency
   4143  *   where latency is platform & configuration dependent (we assume pessimal
   4144  *   values here).
   4145  *
   4146  *   The SR calculation is:
   4147  *     watermark = (trunc(latency/line time)+1) * surface width *
   4148  *       bytes per pixel
   4149  *   where
   4150  *     line time = htotal / dotclock
   4151  *     surface width = hdisplay for normal plane and 64 for cursor
   4152  *   and latency is assumed to be high, as above.
   4153  *
   4154  * The final value programmed to the register should always be rounded up,
   4155  * and include an extra 2 entries to account for clock crossings.
   4156  *
   4157  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   4158  * to set the non-SR watermarks to 8.
   4159  */
   4160 void intel_update_watermarks(struct drm_crtc *crtc)
   4161 {
   4162 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
   4163 
   4164 	if (dev_priv->display.update_wm)
   4165 		dev_priv->display.update_wm(crtc);
   4166 }
   4167 
   4168 void intel_update_sprite_watermarks(struct drm_plane *plane,
   4169 				    struct drm_crtc *crtc,
   4170 				    uint32_t sprite_width,
   4171 				    uint32_t sprite_height,
   4172 				    int pixel_size,
   4173 				    bool enabled, bool scaled)
   4174 {
   4175 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
   4176 
   4177 	if (dev_priv->display.update_sprite_wm)
   4178 		dev_priv->display.update_sprite_wm(plane, crtc,
   4179 						   sprite_width, sprite_height,
   4180 						   pixel_size, enabled, scaled);
   4181 }
   4182 
   4183 /**
   4184  * Lock protecting IPS related data structures
   4185  */
   4186 #ifdef __NetBSD__
   4187 spinlock_t mchdev_lock;
   4188 #else
   4189 DEFINE_SPINLOCK(mchdev_lock);
   4190 #endif
   4191 
   4192 /* Global for IPS driver to get at the current i915 device. Protected by
   4193  * mchdev_lock. */
   4194 static struct drm_i915_private *i915_mch_dev;
   4195 
   4196 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   4197 {
   4198 	struct drm_i915_private *dev_priv = dev->dev_private;
   4199 	u16 rgvswctl;
   4200 
   4201 	assert_spin_locked(&mchdev_lock);
   4202 
   4203 	rgvswctl = I915_READ16(MEMSWCTL);
   4204 	if (rgvswctl & MEMCTL_CMD_STS) {
   4205 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   4206 		return false; /* still busy with another command */
   4207 	}
   4208 
   4209 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   4210 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   4211 	I915_WRITE16(MEMSWCTL, rgvswctl);
   4212 	POSTING_READ16(MEMSWCTL);
   4213 
   4214 	rgvswctl |= MEMCTL_CMD_STS;
   4215 	I915_WRITE16(MEMSWCTL, rgvswctl);
   4216 
   4217 	return true;
   4218 }
   4219 
   4220 static void ironlake_enable_drps(struct drm_device *dev)
   4221 {
   4222 	struct drm_i915_private *dev_priv = dev->dev_private;
   4223 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   4224 	u8 fmax, fmin, fstart, vstart;
   4225 
   4226 	spin_lock_irq(&mchdev_lock);
   4227 
   4228 	/* Enable temp reporting */
   4229 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   4230 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   4231 
   4232 	/* 100ms RC evaluation intervals */
   4233 	I915_WRITE(RCUPEI, 100000);
   4234 	I915_WRITE(RCDNEI, 100000);
   4235 
   4236 	/* Set max/min thresholds to 90ms and 80ms respectively */
   4237 	I915_WRITE(RCBMAXAVG, 90000);
   4238 	I915_WRITE(RCBMINAVG, 80000);
   4239 
   4240 	I915_WRITE(MEMIHYST, 1);
   4241 
   4242 	/* Set up min, max, and cur for interrupt handling */
   4243 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   4244 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   4245 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   4246 		MEMMODE_FSTART_SHIFT;
   4247 
   4248 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
   4249 		PXVFREQ_PX_SHIFT;
   4250 
   4251 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   4252 	dev_priv->ips.fstart = fstart;
   4253 
   4254 	dev_priv->ips.max_delay = fstart;
   4255 	dev_priv->ips.min_delay = fmin;
   4256 	dev_priv->ips.cur_delay = fstart;
   4257 
   4258 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   4259 			 fmax, fmin, fstart);
   4260 
   4261 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   4262 
   4263 	/*
   4264 	 * Interrupts will be enabled in ironlake_irq_postinstall
   4265 	 */
   4266 
   4267 	I915_WRITE(VIDSTART, vstart);
   4268 	POSTING_READ(VIDSTART);
   4269 
   4270 	rgvmodectl |= MEMMODE_SWMODE_EN;
   4271 	I915_WRITE(MEMMODECTL, rgvmodectl);
   4272 
   4273 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   4274 		DRM_ERROR("stuck trying to change perf mode\n");
   4275 	mdelay(1);
   4276 
   4277 	ironlake_set_drps(dev, fstart);
   4278 
   4279 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
   4280 		I915_READ(DDREC) + I915_READ(CSIEC);
   4281 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   4282 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
   4283 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
   4284 
   4285 	spin_unlock_irq(&mchdev_lock);
   4286 }
   4287 
   4288 static void ironlake_disable_drps(struct drm_device *dev)
   4289 {
   4290 	struct drm_i915_private *dev_priv = dev->dev_private;
   4291 	u16 rgvswctl;
   4292 
   4293 	spin_lock_irq(&mchdev_lock);
   4294 
   4295 	rgvswctl = I915_READ16(MEMSWCTL);
   4296 
   4297 	/* Ack interrupts, disable EFC interrupt */
   4298 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   4299 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   4300 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   4301 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   4302 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   4303 
   4304 	/* Go back to the starting frequency */
   4305 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   4306 	mdelay(1);
   4307 	rgvswctl |= MEMCTL_CMD_STS;
   4308 	I915_WRITE(MEMSWCTL, rgvswctl);
   4309 	mdelay(1);
   4310 
   4311 	spin_unlock_irq(&mchdev_lock);
   4312 }
   4313 
   4314 /* There's a funny hw issue where the hw returns all 0 when reading from
   4315  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   4316  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   4317  * all limits and the gpu stuck at whatever frequency it is at atm).
   4318  */
   4319 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
   4320 {
   4321 	u32 limits;
   4322 
   4323 	/* Only set the down limit when we've reached the lowest level to avoid
   4324 	 * getting more interrupts, otherwise leave this clear. This prevents a
   4325 	 * race in the hw when coming out of rc6: There's a tiny window where
   4326 	 * the hw runs at the minimal clock before selecting the desired
   4327 	 * frequency, if the down threshold expires in that window we will not
   4328 	 * receive a down interrupt. */
   4329 	if (IS_GEN9(dev_priv->dev)) {
   4330 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
   4331 		if (val <= dev_priv->rps.min_freq_softlimit)
   4332 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
   4333 	} else {
   4334 		limits = dev_priv->rps.max_freq_softlimit << 24;
   4335 		if (val <= dev_priv->rps.min_freq_softlimit)
   4336 			limits |= dev_priv->rps.min_freq_softlimit << 16;
   4337 	}
   4338 
   4339 	return limits;
   4340 }
   4341 
   4342 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
   4343 {
   4344 	int new_power;
   4345 	u32 threshold_up = 0, threshold_down = 0; /* in % */
   4346 	u32 ei_up = 0, ei_down = 0;
   4347 
   4348 	new_power = dev_priv->rps.power;
   4349 	switch (dev_priv->rps.power) {
   4350 	case LOW_POWER:
   4351 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
   4352 			new_power = BETWEEN;
   4353 		break;
   4354 
   4355 	case BETWEEN:
   4356 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
   4357 			new_power = LOW_POWER;
   4358 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
   4359 			new_power = HIGH_POWER;
   4360 		break;
   4361 
   4362 	case HIGH_POWER:
   4363 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
   4364 			new_power = BETWEEN;
   4365 		break;
   4366 	}
   4367 	/* Max/min bins are special */
   4368 	if (val <= dev_priv->rps.min_freq_softlimit)
   4369 		new_power = LOW_POWER;
   4370 	if (val >= dev_priv->rps.max_freq_softlimit)
   4371 		new_power = HIGH_POWER;
   4372 	if (new_power == dev_priv->rps.power)
   4373 		return;
   4374 
   4375 	/* Note the units here are not exactly 1us, but 1280ns. */
   4376 	switch (new_power) {
   4377 	case LOW_POWER:
   4378 		/* Upclock if more than 95% busy over 16ms */
   4379 		ei_up = 16000;
   4380 		threshold_up = 95;
   4381 
   4382 		/* Downclock if less than 85% busy over 32ms */
   4383 		ei_down = 32000;
   4384 		threshold_down = 85;
   4385 		break;
   4386 
   4387 	case BETWEEN:
   4388 		/* Upclock if more than 90% busy over 13ms */
   4389 		ei_up = 13000;
   4390 		threshold_up = 90;
   4391 
   4392 		/* Downclock if less than 75% busy over 32ms */
   4393 		ei_down = 32000;
   4394 		threshold_down = 75;
   4395 		break;
   4396 
   4397 	case HIGH_POWER:
   4398 		/* Upclock if more than 85% busy over 10ms */
   4399 		ei_up = 10000;
   4400 		threshold_up = 85;
   4401 
   4402 		/* Downclock if less than 60% busy over 32ms */
   4403 		ei_down = 32000;
   4404 		threshold_down = 60;
   4405 		break;
   4406 	}
   4407 
   4408 	/* When byt can survive without system hang with dynamic
   4409 	 * sw freq adjustments, this restriction can be lifted.
   4410 	 */
   4411 	if (IS_VALLEYVIEW(dev_priv))
   4412 		goto skip_hw_write;
   4413 
   4414 	I915_WRITE(GEN6_RP_UP_EI,
   4415 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
   4416 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
   4417 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
   4418 
   4419 	I915_WRITE(GEN6_RP_DOWN_EI,
   4420 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
   4421 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
   4422 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
   4423 
   4424 	 I915_WRITE(GEN6_RP_CONTROL,
   4425 		    GEN6_RP_MEDIA_TURBO |
   4426 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
   4427 		    GEN6_RP_MEDIA_IS_GFX |
   4428 		    GEN6_RP_ENABLE |
   4429 		    GEN6_RP_UP_BUSY_AVG |
   4430 		    GEN6_RP_DOWN_IDLE_AVG);
   4431 
   4432 skip_hw_write:
   4433 	dev_priv->rps.power = new_power;
   4434 	dev_priv->rps.up_threshold = threshold_up;
   4435 	dev_priv->rps.down_threshold = threshold_down;
   4436 	dev_priv->rps.last_adj = 0;
   4437 }
   4438 
   4439 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
   4440 {
   4441 	u32 mask = 0;
   4442 
   4443 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
   4444 	if (val > dev_priv->rps.min_freq_softlimit)
   4445 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
   4446 	if (val < dev_priv->rps.max_freq_softlimit)
   4447 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
   4448 
   4449 	mask &= dev_priv->pm_rps_events;
   4450 
   4451 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
   4452 }
   4453 
   4454 /* gen6_set_rps is called to update the frequency request, but should also be
   4455  * called when the range (min_delay and max_delay) is modified so that we can
   4456  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
   4457 static void gen6_set_rps(struct drm_device *dev, u8 val)
   4458 {
   4459 	struct drm_i915_private *dev_priv = dev->dev_private;
   4460 
   4461 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
   4462 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
   4463 		return;
   4464 
   4465 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4466 	WARN_ON(val > dev_priv->rps.max_freq);
   4467 	WARN_ON(val < dev_priv->rps.min_freq);
   4468 
   4469 	/* min/max delay may still have been modified so be sure to
   4470 	 * write the limits value.
   4471 	 */
   4472 	if (val != dev_priv->rps.cur_freq) {
   4473 		gen6_set_rps_thresholds(dev_priv, val);
   4474 
   4475 		if (IS_GEN9(dev))
   4476 			I915_WRITE(GEN6_RPNSWREQ,
   4477 				   GEN9_FREQUENCY(val));
   4478 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4479 			I915_WRITE(GEN6_RPNSWREQ,
   4480 				   HSW_FREQUENCY(val));
   4481 		else
   4482 			I915_WRITE(GEN6_RPNSWREQ,
   4483 				   GEN6_FREQUENCY(val) |
   4484 				   GEN6_OFFSET(0) |
   4485 				   GEN6_AGGRESSIVE_TURBO);
   4486 	}
   4487 
   4488 	/* Make sure we continue to get interrupts
   4489 	 * until we hit the minimum or maximum frequencies.
   4490 	 */
   4491 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
   4492 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   4493 
   4494 	POSTING_READ(GEN6_RPNSWREQ);
   4495 
   4496 	dev_priv->rps.cur_freq = val;
   4497 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
   4498 }
   4499 
   4500 static void valleyview_set_rps(struct drm_device *dev, u8 val)
   4501 {
   4502 	struct drm_i915_private *dev_priv = dev->dev_private;
   4503 
   4504 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4505 	WARN_ON(val > dev_priv->rps.max_freq);
   4506 	WARN_ON(val < dev_priv->rps.min_freq);
   4507 
   4508 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
   4509 		      "Odd GPU freq value\n"))
   4510 		val &= ~1;
   4511 
   4512 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   4513 
   4514 	if (val != dev_priv->rps.cur_freq) {
   4515 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
   4516 		if (!IS_CHERRYVIEW(dev_priv))
   4517 			gen6_set_rps_thresholds(dev_priv, val);
   4518 	}
   4519 
   4520 	dev_priv->rps.cur_freq = val;
   4521 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
   4522 }
   4523 
   4524 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
   4525  *
   4526  * * If Gfx is Idle, then
   4527  * 1. Forcewake Media well.
   4528  * 2. Request idle freq.
   4529  * 3. Release Forcewake of Media well.
   4530 */
   4531 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
   4532 {
   4533 	u32 val = dev_priv->rps.idle_freq;
   4534 
   4535 	if (dev_priv->rps.cur_freq <= val)
   4536 		return;
   4537 
   4538 	/* Wake up the media well, as that takes a lot less
   4539 	 * power than the Render well. */
   4540 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
   4541 	valleyview_set_rps(dev_priv->dev, val);
   4542 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
   4543 }
   4544 
   4545 void gen6_rps_busy(struct drm_i915_private *dev_priv)
   4546 {
   4547 	mutex_lock(&dev_priv->rps.hw_lock);
   4548 	if (dev_priv->rps.enabled) {
   4549 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
   4550 			gen6_rps_reset_ei(dev_priv);
   4551 		I915_WRITE(GEN6_PMINTRMSK,
   4552 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
   4553 	}
   4554 	mutex_unlock(&dev_priv->rps.hw_lock);
   4555 }
   4556 
   4557 void gen6_rps_idle(struct drm_i915_private *dev_priv)
   4558 {
   4559 	struct drm_device *dev = dev_priv->dev;
   4560 
   4561 	mutex_lock(&dev_priv->rps.hw_lock);
   4562 	if (dev_priv->rps.enabled) {
   4563 		if (IS_VALLEYVIEW(dev))
   4564 			vlv_set_rps_idle(dev_priv);
   4565 		else
   4566 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   4567 		dev_priv->rps.last_adj = 0;
   4568 		I915_WRITE(GEN6_PMINTRMSK,
   4569 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
   4570 	}
   4571 	mutex_unlock(&dev_priv->rps.hw_lock);
   4572 
   4573 	spin_lock(&dev_priv->rps.client_lock);
   4574 	while (!list_empty(&dev_priv->rps.clients))
   4575 		list_del_init(dev_priv->rps.clients.next);
   4576 	spin_unlock(&dev_priv->rps.client_lock);
   4577 }
   4578 
   4579 void gen6_rps_boost(struct drm_i915_private *dev_priv,
   4580 		    struct intel_rps_client *rps,
   4581 		    unsigned long submitted)
   4582 {
   4583 	/* This is intentionally racy! We peek at the state here, then
   4584 	 * validate inside the RPS worker.
   4585 	 */
   4586 	if (!(dev_priv->mm.busy &&
   4587 	      dev_priv->rps.enabled &&
   4588 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
   4589 		return;
   4590 
   4591 	/* Force a RPS boost (and don't count it against the client) if
   4592 	 * the GPU is severely congested.
   4593 	 */
   4594 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
   4595 		rps = NULL;
   4596 
   4597 	spin_lock(&dev_priv->rps.client_lock);
   4598 	if (rps == NULL || list_empty(&rps->link)) {
   4599 		spin_lock_irq(&dev_priv->irq_lock);
   4600 		if (dev_priv->rps.interrupts_enabled) {
   4601 			dev_priv->rps.client_boost = true;
   4602 			queue_work(dev_priv->wq, &dev_priv->rps.work);
   4603 		}
   4604 		spin_unlock_irq(&dev_priv->irq_lock);
   4605 
   4606 		if (rps != NULL) {
   4607 			list_add(&rps->link, &dev_priv->rps.clients);
   4608 			rps->boosts++;
   4609 		} else
   4610 			dev_priv->rps.boosts++;
   4611 	}
   4612 	spin_unlock(&dev_priv->rps.client_lock);
   4613 }
   4614 
   4615 void intel_set_rps(struct drm_device *dev, u8 val)
   4616 {
   4617 	if (IS_VALLEYVIEW(dev))
   4618 		valleyview_set_rps(dev, val);
   4619 	else
   4620 		gen6_set_rps(dev, val);
   4621 }
   4622 
   4623 static void gen9_disable_rc6(struct drm_device *dev)
   4624 {
   4625 	struct drm_i915_private *dev_priv = dev->dev_private;
   4626 
   4627 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4628 }
   4629 
   4630 static void gen9_disable_rps(struct drm_device *dev)
   4631 {
   4632 	struct drm_i915_private *dev_priv = dev->dev_private;
   4633 
   4634  	I915_WRITE(GEN9_PG_ENABLE, 0);
   4635  }
   4636 
   4637 static void gen6_disable_rc6(struct drm_device *dev)
   4638 {
   4639 	struct drm_i915_private *dev_priv = dev->dev_private;
   4640 
   4641 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4642 }
   4643 
   4644 static void gen6_disable_rps(struct drm_device *dev)
   4645 {
   4646 	struct drm_i915_private *dev_priv = dev->dev_private;
   4647 
   4648 	I915_WRITE(GEN6_RPNSWREQ, 1UL << 31);
   4649 }
   4650 
   4651 static void cherryview_disable_rc6(struct drm_device *dev)
   4652 {
   4653 	struct drm_i915_private *dev_priv = dev->dev_private;
   4654 
   4655 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4656 }
   4657 
   4658 static void valleyview_disable_rc6(struct drm_device *dev)
   4659 {
   4660 	struct drm_i915_private *dev_priv = dev->dev_private;
   4661 
   4662 	/* we're doing forcewake before Disabling RC6,
   4663 	 * This what the BIOS expects when going into suspend */
   4664 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4665 
   4666 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4667 
   4668 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4669 }
   4670 
   4671 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
   4672 {
   4673 	if (IS_VALLEYVIEW(dev)) {
   4674 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
   4675 			mode = GEN6_RC_CTL_RC6_ENABLE;
   4676 		else
   4677 			mode = 0;
   4678 	}
   4679 	if (HAS_RC6p(dev))
   4680 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
   4681 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   4682 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   4683 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   4684 
   4685 	else
   4686 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
   4687 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
   4688 }
   4689 
   4690 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
   4691 {
   4692 	/* No RC6 before Ironlake and code is gone for ilk. */
   4693 	if (INTEL_INFO(dev)->gen < 6)
   4694 		return 0;
   4695 
   4696 	/* Respect the kernel parameter if it is set */
   4697 	if (enable_rc6 >= 0) {
   4698 		int mask;
   4699 
   4700 		if (HAS_RC6p(dev))
   4701 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
   4702 			       INTEL_RC6pp_ENABLE;
   4703 		else
   4704 			mask = INTEL_RC6_ENABLE;
   4705 
   4706 		if ((enable_rc6 & mask) != enable_rc6)
   4707 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
   4708 				      enable_rc6 & mask, enable_rc6, mask);
   4709 
   4710 		return enable_rc6 & mask;
   4711 	}
   4712 
   4713 	if (IS_IVYBRIDGE(dev))
   4714 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   4715 
   4716 	return INTEL_RC6_ENABLE;
   4717 }
   4718 
   4719 int intel_enable_rc6(const struct drm_device *dev)
   4720 {
   4721 	return i915.enable_rc6;
   4722 }
   4723 
   4724 static void gen6_init_rps_frequencies(struct drm_device *dev)
   4725 {
   4726 	struct drm_i915_private *dev_priv = dev->dev_private;
   4727 	uint32_t rp_state_cap;
   4728 	u32 ddcc_status = 0;
   4729 	int ret;
   4730 
   4731 	/* All of these values are in units of 50MHz */
   4732 	dev_priv->rps.cur_freq		= 0;
   4733 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
   4734 	if (IS_BROXTON(dev)) {
   4735 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
   4736 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
   4737 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
   4738 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
   4739 	} else {
   4740 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   4741 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
   4742 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
   4743 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
   4744 	}
   4745 
   4746 	/* hw_max = RP0 until we check for overclocking */
   4747 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
   4748 
   4749 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
   4750 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
   4751 	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   4752 		ret = sandybridge_pcode_read(dev_priv,
   4753 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
   4754 					&ddcc_status);
   4755 		if (0 == ret)
   4756 			dev_priv->rps.efficient_freq =
   4757 				clamp_t(u8,
   4758 					((ddcc_status >> 8) & 0xff),
   4759 					dev_priv->rps.min_freq,
   4760 					dev_priv->rps.max_freq);
   4761 	}
   4762 
   4763 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   4764 		/* Store the frequency values in 16.66 MHZ units, which is
   4765 		   the natural hardware unit for SKL */
   4766 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
   4767 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
   4768 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
   4769 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
   4770 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
   4771 	}
   4772 
   4773 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   4774 
   4775 	/* Preserve min/max settings in case of re-init */
   4776 	if (dev_priv->rps.max_freq_softlimit == 0)
   4777 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   4778 
   4779 	if (dev_priv->rps.min_freq_softlimit == 0) {
   4780 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4781 			dev_priv->rps.min_freq_softlimit =
   4782 				max_t(int, dev_priv->rps.efficient_freq,
   4783 				      intel_freq_opcode(dev_priv, 450));
   4784 		else
   4785 			dev_priv->rps.min_freq_softlimit =
   4786 				dev_priv->rps.min_freq;
   4787 	}
   4788 }
   4789 
   4790 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
   4791 static void gen9_enable_rps(struct drm_device *dev)
   4792 {
   4793 	struct drm_i915_private *dev_priv = dev->dev_private;
   4794 
   4795 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4796 
   4797 	gen6_init_rps_frequencies(dev);
   4798 
   4799 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
   4800 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
   4801 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4802 		return;
   4803 	}
   4804 
   4805 	/* Program defaults and thresholds for RPS*/
   4806 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   4807 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
   4808 
   4809 	/* 1 second timeout*/
   4810 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
   4811 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
   4812 
   4813 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
   4814 
   4815 	/* Leaning on the below call to gen6_set_rps to program/setup the
   4816 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
   4817 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
   4818 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   4819 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   4820 
   4821 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4822 }
   4823 
   4824 static void gen9_enable_rc6(struct drm_device *dev)
   4825 {
   4826 	struct drm_i915_private *dev_priv = dev->dev_private;
   4827 	struct intel_engine_cs *ring;
   4828 	uint32_t rc6_mask = 0;
   4829 	int unused;
   4830 
   4831 	/* 1a: Software RC state - RC0 */
   4832 	I915_WRITE(GEN6_RC_STATE, 0);
   4833 
   4834 	/* 1b: Get forcewake during program sequence. Although the driver
   4835 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   4836 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4837 
   4838 	/* 2a: Disable RC states. */
   4839 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4840 
   4841 	/* 2b: Program RC6 thresholds.*/
   4842 
   4843 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
   4844 	if (IS_SKYLAKE(dev))
   4845 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
   4846 	else
   4847 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
   4848 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   4849 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   4850 	for_each_ring(ring, dev_priv, unused)
   4851 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4852 
   4853 	if (HAS_GUC_UCODE(dev))
   4854 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
   4855 
   4856 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4857 
   4858 	/* 2c: Program Coarse Power Gating Policies. */
   4859 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
   4860 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
   4861 
   4862 	/* 3a: Enable RC6 */
   4863 	if (!dev_priv->rps.ctx_corrupted &&
   4864 	    intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   4865 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   4866 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
   4867 			"on" : "off");
   4868 	/* WaRsUseTimeoutMode */
   4869 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
   4870 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
   4871 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
   4872 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4873 			   GEN7_RC_CTL_TO_MODE |
   4874 			   rc6_mask);
   4875 	} else {
   4876 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
   4877 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4878 			   GEN6_RC_CTL_EI_MODE(1) |
   4879 			   rc6_mask);
   4880 	}
   4881 
   4882 	/*
   4883 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
   4884 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
   4885 	 */
   4886 	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
   4887 	    INTEL_INFO(dev)->gen == 9)
   4888 		I915_WRITE(GEN9_PG_ENABLE, 0);
   4889 	else
   4890 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
   4891 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
   4892 
   4893 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4894 
   4895 }
   4896 
   4897 static void gen8_enable_rps(struct drm_device *dev)
   4898 {
   4899 	struct drm_i915_private *dev_priv = dev->dev_private;
   4900 	struct intel_engine_cs *ring;
   4901 	uint32_t rc6_mask = 0;
   4902 	int unused;
   4903 
   4904 	/* 1a: Software RC state - RC0 */
   4905 	I915_WRITE(GEN6_RC_STATE, 0);
   4906 
   4907 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
   4908 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   4909 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4910 
   4911 	/* 2a: Disable RC states. */
   4912 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4913 
   4914 	/* Initialize rps frequencies */
   4915 	gen6_init_rps_frequencies(dev);
   4916 
   4917 	/* 2b: Program RC6 thresholds.*/
   4918 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   4919 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   4920 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   4921 	for_each_ring(ring, dev_priv, unused)
   4922 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4923 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4924 	if (IS_BROADWELL(dev))
   4925 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
   4926 	else
   4927 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
   4928 
   4929 	/* 3: Enable RC6 */
   4930 	if (!dev_priv->rps.ctx_corrupted &&
   4931 	    intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   4932 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   4933 	intel_print_rc6_info(dev, rc6_mask);
   4934 	if (IS_BROADWELL(dev))
   4935 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4936 				GEN7_RC_CTL_TO_MODE |
   4937 				rc6_mask);
   4938 	else
   4939 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4940 				GEN6_RC_CTL_EI_MODE(1) |
   4941 				rc6_mask);
   4942 
   4943 	/* 4 Program defaults and thresholds for RPS*/
   4944 	I915_WRITE(GEN6_RPNSWREQ,
   4945 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
   4946 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   4947 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
   4948 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
   4949 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
   4950 
   4951 	/* Docs recommend 900MHz, and 300 MHz respectively */
   4952 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   4953 		   dev_priv->rps.max_freq_softlimit << 24 |
   4954 		   dev_priv->rps.min_freq_softlimit << 16);
   4955 
   4956 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
   4957 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
   4958 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
   4959 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
   4960 
   4961 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   4962 
   4963 	/* 5: Enable RPS */
   4964 	I915_WRITE(GEN6_RP_CONTROL,
   4965 		   GEN6_RP_MEDIA_TURBO |
   4966 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   4967 		   GEN6_RP_MEDIA_IS_GFX |
   4968 		   GEN6_RP_ENABLE |
   4969 		   GEN6_RP_UP_BUSY_AVG |
   4970 		   GEN6_RP_DOWN_IDLE_AVG);
   4971 
   4972 	/* 6: Ring frequency + overclocking (our driver does this later */
   4973 
   4974 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   4975 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   4976 
   4977 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4978 }
   4979 
   4980 static void gen6_enable_rps(struct drm_device *dev)
   4981 {
   4982 	struct drm_i915_private *dev_priv = dev->dev_private;
   4983 	struct intel_engine_cs *ring;
   4984 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
   4985 	u32 gtfifodbg;
   4986 	int rc6_mode;
   4987 	int i, ret;
   4988 
   4989 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4990 
   4991 	/* Here begins a magic sequence of register writes to enable
   4992 	 * auto-downclocking.
   4993 	 *
   4994 	 * Perhaps there might be some value in exposing these to
   4995 	 * userspace...
   4996 	 */
   4997 	I915_WRITE(GEN6_RC_STATE, 0);
   4998 
   4999 	/* Clear the DBG now so we don't confuse earlier errors */
   5000 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   5001 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   5002 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5003 	}
   5004 
   5005 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5006 
   5007 	/* Initialize rps frequencies */
   5008 	gen6_init_rps_frequencies(dev);
   5009 
   5010 	/* disable the counters and set deterministic thresholds */
   5011 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5012 
   5013 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   5014 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   5015 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   5016 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   5017 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   5018 
   5019 	for_each_ring(ring, dev_priv, i)
   5020 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5021 
   5022 	I915_WRITE(GEN6_RC_SLEEP, 0);
   5023 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   5024 	if (IS_IVYBRIDGE(dev))
   5025 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
   5026 	else
   5027 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   5028 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
   5029 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   5030 
   5031 	/* Check if we are enabling RC6 */
   5032 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   5033 	if (rc6_mode & INTEL_RC6_ENABLE)
   5034 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   5035 
   5036 	/* We don't use those on Haswell */
   5037 	if (!IS_HASWELL(dev)) {
   5038 		if (rc6_mode & INTEL_RC6p_ENABLE)
   5039 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   5040 
   5041 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   5042 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   5043 	}
   5044 
   5045 	intel_print_rc6_info(dev, rc6_mask);
   5046 
   5047 	I915_WRITE(GEN6_RC_CONTROL,
   5048 		   rc6_mask |
   5049 		   GEN6_RC_CTL_EI_MODE(1) |
   5050 		   GEN6_RC_CTL_HW_ENABLE);
   5051 
   5052 	/* Power down if completely idle for over 50ms */
   5053 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
   5054 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5055 
   5056 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   5057 	if (ret)
   5058 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   5059 
   5060 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   5061 	if (!ret && (pcu_mbox & __BIT(31))) { /* OC supported */
   5062 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
   5063 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
   5064 				 (pcu_mbox & 0xff) * 50);
   5065 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
   5066 	}
   5067 
   5068 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   5069 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   5070 
   5071 	rc6vids = 0;
   5072 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   5073 	if (IS_GEN6(dev) && ret) {
   5074 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   5075 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   5076 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   5077 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   5078 		rc6vids &= 0xffff00;
   5079 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   5080 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   5081 		if (ret)
   5082 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   5083 	}
   5084 
   5085 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5086 }
   5087 
   5088 static void __gen6_update_ring_freq(struct drm_device *dev)
   5089 {
   5090 	struct drm_i915_private *dev_priv = dev->dev_private;
   5091 	int min_freq = 15;
   5092 	unsigned int gpu_freq;
   5093 	unsigned int max_ia_freq, min_ring_freq;
   5094 	unsigned int max_gpu_freq, min_gpu_freq;
   5095 	int scaling_factor = 180;
   5096 #ifndef __NetBSD__
   5097 	struct cpufreq_policy *policy;
   5098 #endif
   5099 
   5100 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5101 
   5102 #ifdef __NetBSD__
   5103 	{
   5104 		extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
   5105 		max_ia_freq = (tsc_freq / 1000);
   5106 	}
   5107 #else
   5108 	policy = cpufreq_cpu_get(0);
   5109 	if (policy) {
   5110 		max_ia_freq = policy->cpuinfo.max_freq;
   5111 		cpufreq_cpu_put(policy);
   5112 	} else {
   5113 		/*
   5114 		 * Default to measured freq if none found, PCU will ensure we
   5115 		 * don't go over
   5116 		 */
   5117 		max_ia_freq = tsc_khz;
   5118 	}
   5119 #endif
   5120 
   5121 	/* Convert from kHz to MHz */
   5122 	max_ia_freq /= 1000;
   5123 
   5124 	min_ring_freq = I915_READ(DCLK) & 0xf;
   5125 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
   5126 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
   5127 
   5128 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   5129 		/* Convert GT frequency to 50 HZ units */
   5130 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
   5131 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
   5132 	} else {
   5133 		min_gpu_freq = dev_priv->rps.min_freq;
   5134 		max_gpu_freq = dev_priv->rps.max_freq;
   5135 	}
   5136 
   5137 	/*
   5138 	 * For each potential GPU frequency, load a ring frequency we'd like
   5139 	 * to use for memory access.  We do this by specifying the IA frequency
   5140 	 * the PCU should use as a reference to determine the ring frequency.
   5141 	 */
   5142 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
   5143 		int diff = max_gpu_freq - gpu_freq;
   5144 		unsigned int ia_freq = 0, ring_freq = 0;
   5145 
   5146 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   5147 			/*
   5148 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
   5149 			 * No floor required for ring frequency on SKL.
   5150 			 */
   5151 			ring_freq = gpu_freq;
   5152 		} else if (INTEL_INFO(dev)->gen >= 8) {
   5153 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
   5154 			ring_freq = max(min_ring_freq, gpu_freq);
   5155 		} else if (IS_HASWELL(dev)) {
   5156 			ring_freq = mult_frac(gpu_freq, 5, 4);
   5157 			ring_freq = max(min_ring_freq, ring_freq);
   5158 			/* leave ia_freq as the default, chosen by cpufreq */
   5159 		} else {
   5160 			/* On older processors, there is no separate ring
   5161 			 * clock domain, so in order to boost the bandwidth
   5162 			 * of the ring, we need to upclock the CPU (ia_freq).
   5163 			 *
   5164 			 * For GPU frequencies less than 750MHz,
   5165 			 * just use the lowest ring freq.
   5166 			 */
   5167 			if (gpu_freq < min_freq)
   5168 				ia_freq = 800;
   5169 			else
   5170 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   5171 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   5172 		}
   5173 
   5174 		sandybridge_pcode_write(dev_priv,
   5175 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   5176 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
   5177 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
   5178 					gpu_freq);
   5179 	}
   5180 }
   5181 
   5182 void gen6_update_ring_freq(struct drm_device *dev)
   5183 {
   5184 	struct drm_i915_private *dev_priv = dev->dev_private;
   5185 
   5186 	if (!HAS_CORE_RING_FREQ(dev))
   5187 		return;
   5188 
   5189 	mutex_lock(&dev_priv->rps.hw_lock);
   5190 	__gen6_update_ring_freq(dev);
   5191 	mutex_unlock(&dev_priv->rps.hw_lock);
   5192 }
   5193 
   5194 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
   5195 {
   5196 	struct drm_device *dev = dev_priv->dev;
   5197 	u32 val, rp0;
   5198 
   5199 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
   5200 
   5201 	switch (INTEL_INFO(dev)->eu_total) {
   5202 	case 8:
   5203 		/* (2 * 4) config */
   5204 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
   5205 		break;
   5206 	case 12:
   5207 		/* (2 * 6) config */
   5208 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
   5209 		break;
   5210 	case 16:
   5211 		/* (2 * 8) config */
   5212 	default:
   5213 		/* Setting (2 * 8) Min RP0 for any other combination */
   5214 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
   5215 		break;
   5216 	}
   5217 
   5218 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
   5219 
   5220 	return rp0;
   5221 }
   5222 
   5223 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   5224 {
   5225 	u32 val, rpe;
   5226 
   5227 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
   5228 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
   5229 
   5230 	return rpe;
   5231 }
   5232 
   5233 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
   5234 {
   5235 	u32 val, rp1;
   5236 
   5237 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
   5238 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
   5239 
   5240 	return rp1;
   5241 }
   5242 
   5243 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
   5244 {
   5245 	u32 val, rp1;
   5246 
   5247 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   5248 
   5249 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
   5250 
   5251 	return rp1;
   5252 }
   5253 
   5254 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
   5255 {
   5256 	u32 val, rp0;
   5257 
   5258 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   5259 
   5260 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
   5261 	/* Clamp to max */
   5262 	rp0 = min_t(u32, rp0, 0xea);
   5263 
   5264 	return rp0;
   5265 }
   5266 
   5267 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   5268 {
   5269 	u32 val, rpe;
   5270 
   5271 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
   5272 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
   5273 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
   5274 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
   5275 
   5276 	return rpe;
   5277 }
   5278 
   5279 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
   5280 {
   5281 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
   5282 }
   5283 
   5284 /* Check that the pctx buffer wasn't move under us. */
   5285 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
   5286 {
   5287 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   5288 
   5289 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
   5290 			     dev_priv->vlv_pctx->stolen->start);
   5291 }
   5292 
   5293 
   5294 /* Check that the pcbr address is not empty. */
   5295 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
   5296 {
   5297 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   5298 
   5299 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
   5300 }
   5301 
   5302 static void cherryview_setup_pctx(struct drm_device *dev)
   5303 {
   5304 	struct drm_i915_private *dev_priv = dev->dev_private;
   5305 	unsigned long pctx_paddr, paddr;
   5306 	struct i915_gtt *gtt = &dev_priv->gtt;
   5307 	u32 pcbr;
   5308 	int pctx_size = 32*1024;
   5309 
   5310 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   5311 
   5312 	pcbr = I915_READ(VLV_PCBR);
   5313 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
   5314 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
   5315 		paddr = (dev_priv->mm.stolen_base +
   5316 			 (gtt->stolen_size - pctx_size));
   5317 
   5318 		pctx_paddr = (paddr & (~4095));
   5319 		I915_WRITE(VLV_PCBR, pctx_paddr);
   5320 	}
   5321 
   5322 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
   5323 }
   5324 
   5325 static void valleyview_setup_pctx(struct drm_device *dev)
   5326 {
   5327 	struct drm_i915_private *dev_priv = dev->dev_private;
   5328 	struct drm_i915_gem_object *pctx;
   5329 	unsigned long pctx_paddr;
   5330 	u32 pcbr;
   5331 	int pctx_size = 24*1024;
   5332 
   5333 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   5334 
   5335 	pcbr = I915_READ(VLV_PCBR);
   5336 	if (pcbr) {
   5337 		/* BIOS set it up already, grab the pre-alloc'd space */
   5338 		int pcbr_offset;
   5339 
   5340 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
   5341 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
   5342 								      pcbr_offset,
   5343 								      I915_GTT_OFFSET_NONE,
   5344 								      pctx_size);
   5345 		goto out;
   5346 	}
   5347 
   5348 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
   5349 
   5350 	/*
   5351 	 * From the Gunit register HAS:
   5352 	 * The Gfx driver is expected to program this register and ensure
   5353 	 * proper allocation within Gfx stolen memory.  For example, this
   5354 	 * register should be programmed such than the PCBR range does not
   5355 	 * overlap with other ranges, such as the frame buffer, protected
   5356 	 * memory, or any other relevant ranges.
   5357 	 */
   5358 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
   5359 	if (!pctx) {
   5360 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
   5361 		return;
   5362 	}
   5363 
   5364 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
   5365 	I915_WRITE(VLV_PCBR, pctx_paddr);
   5366 
   5367 out:
   5368 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
   5369 	dev_priv->vlv_pctx = pctx;
   5370 }
   5371 
   5372 static void valleyview_cleanup_pctx(struct drm_device *dev)
   5373 {
   5374 	struct drm_i915_private *dev_priv = dev->dev_private;
   5375 
   5376 	if (WARN_ON(!dev_priv->vlv_pctx))
   5377 		return;
   5378 
   5379 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
   5380 	dev_priv->vlv_pctx = NULL;
   5381 }
   5382 
   5383 static void valleyview_init_gt_powersave(struct drm_device *dev)
   5384 {
   5385 	struct drm_i915_private *dev_priv = dev->dev_private;
   5386 	u32 val;
   5387 
   5388 	valleyview_setup_pctx(dev);
   5389 
   5390 	mutex_lock(&dev_priv->rps.hw_lock);
   5391 
   5392 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5393 	switch ((val >> 6) & 3) {
   5394 	case 0:
   5395 	case 1:
   5396 		dev_priv->mem_freq = 800;
   5397 		break;
   5398 	case 2:
   5399 		dev_priv->mem_freq = 1066;
   5400 		break;
   5401 	case 3:
   5402 		dev_priv->mem_freq = 1333;
   5403 		break;
   5404 	}
   5405 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
   5406 
   5407 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
   5408 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
   5409 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   5410 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   5411 			 dev_priv->rps.max_freq);
   5412 
   5413 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
   5414 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   5415 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5416 			 dev_priv->rps.efficient_freq);
   5417 
   5418 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
   5419 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
   5420 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
   5421 			 dev_priv->rps.rp1_freq);
   5422 
   5423 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
   5424 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   5425 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   5426 			 dev_priv->rps.min_freq);
   5427 
   5428 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   5429 
   5430 	/* Preserve min/max settings in case of re-init */
   5431 	if (dev_priv->rps.max_freq_softlimit == 0)
   5432 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   5433 
   5434 	if (dev_priv->rps.min_freq_softlimit == 0)
   5435 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   5436 
   5437 	mutex_unlock(&dev_priv->rps.hw_lock);
   5438 }
   5439 
   5440 static void cherryview_init_gt_powersave(struct drm_device *dev)
   5441 {
   5442 	struct drm_i915_private *dev_priv = dev->dev_private;
   5443 	u32 val;
   5444 
   5445 	cherryview_setup_pctx(dev);
   5446 
   5447 	mutex_lock(&dev_priv->rps.hw_lock);
   5448 
   5449 	mutex_lock(&dev_priv->sb_lock);
   5450 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
   5451 	mutex_unlock(&dev_priv->sb_lock);
   5452 
   5453 	switch ((val >> 2) & 0x7) {
   5454 	case 3:
   5455 		dev_priv->mem_freq = 2000;
   5456 		break;
   5457 	default:
   5458 		dev_priv->mem_freq = 1600;
   5459 		break;
   5460 	}
   5461 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
   5462 
   5463 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
   5464 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
   5465 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   5466 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   5467 			 dev_priv->rps.max_freq);
   5468 
   5469 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
   5470 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   5471 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5472 			 dev_priv->rps.efficient_freq);
   5473 
   5474 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
   5475 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
   5476 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
   5477 			 dev_priv->rps.rp1_freq);
   5478 
   5479 	/* PUnit validated range is only [RPe, RP0] */
   5480 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
   5481 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   5482 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   5483 			 dev_priv->rps.min_freq);
   5484 
   5485 	WARN_ONCE((dev_priv->rps.max_freq |
   5486 		   dev_priv->rps.efficient_freq |
   5487 		   dev_priv->rps.rp1_freq |
   5488 		   dev_priv->rps.min_freq) & 1,
   5489 		  "Odd GPU freq values\n");
   5490 
   5491 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   5492 
   5493 	/* Preserve min/max settings in case of re-init */
   5494 	if (dev_priv->rps.max_freq_softlimit == 0)
   5495 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   5496 
   5497 	if (dev_priv->rps.min_freq_softlimit == 0)
   5498 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   5499 
   5500 	mutex_unlock(&dev_priv->rps.hw_lock);
   5501 }
   5502 
   5503 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
   5504 {
   5505 	valleyview_cleanup_pctx(dev);
   5506 }
   5507 
   5508 static void cherryview_enable_rps(struct drm_device *dev)
   5509 {
   5510 	struct drm_i915_private *dev_priv = dev->dev_private;
   5511 	struct intel_engine_cs *ring;
   5512 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
   5513 	int i;
   5514 
   5515 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5516 
   5517 	gtfifodbg = I915_READ(GTFIFODBG);
   5518 	if (gtfifodbg) {
   5519 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   5520 				 gtfifodbg);
   5521 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5522 	}
   5523 
   5524 	cherryview_check_pctx(dev_priv);
   5525 
   5526 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
   5527 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   5528 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5529 
   5530 	/*  Disable RC states. */
   5531 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5532 
   5533 	/* 2a: Program RC6 thresholds.*/
   5534 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   5535 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   5536 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   5537 
   5538 	for_each_ring(ring, dev_priv, i)
   5539 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5540 	I915_WRITE(GEN6_RC_SLEEP, 0);
   5541 
   5542 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
   5543 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
   5544 
   5545 	/* allows RC6 residency counter to work */
   5546 	I915_WRITE(VLV_COUNTER_CONTROL,
   5547 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
   5548 				      VLV_MEDIA_RC6_COUNT_EN |
   5549 				      VLV_RENDER_RC6_COUNT_EN));
   5550 
   5551 	/* For now we assume BIOS is allocating and populating the PCBR  */
   5552 	pcbr = I915_READ(VLV_PCBR);
   5553 
   5554 	/* 3: Enable RC6 */
   5555 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
   5556 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
   5557 		rc6_mode = GEN7_RC_CTL_TO_MODE;
   5558 
   5559 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   5560 
   5561 	/* 4 Program defaults and thresholds for RPS*/
   5562 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   5563 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   5564 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   5565 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   5566 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   5567 
   5568 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5569 
   5570 	/* 5: Enable RPS */
   5571 	I915_WRITE(GEN6_RP_CONTROL,
   5572 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   5573 		   GEN6_RP_MEDIA_IS_GFX |
   5574 		   GEN6_RP_ENABLE |
   5575 		   GEN6_RP_UP_BUSY_AVG |
   5576 		   GEN6_RP_DOWN_IDLE_AVG);
   5577 
   5578 	/* Setting Fixed Bias */
   5579 	val = VLV_OVERRIDE_EN |
   5580 		  VLV_SOC_TDP_EN |
   5581 		  CHV_BIAS_CPU_50_SOC_50;
   5582 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
   5583 
   5584 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5585 
   5586 	/* RPS code assumes GPLL is used */
   5587 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
   5588 
   5589 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
   5590 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   5591 
   5592 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   5593 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   5594 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   5595 			 dev_priv->rps.cur_freq);
   5596 
   5597 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   5598 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5599 			 dev_priv->rps.efficient_freq);
   5600 
   5601 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   5602 
   5603 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5604 }
   5605 
   5606 static void valleyview_enable_rps(struct drm_device *dev)
   5607 {
   5608 	struct drm_i915_private *dev_priv = dev->dev_private;
   5609 	struct intel_engine_cs *ring;
   5610 	u32 gtfifodbg, val, rc6_mode = 0;
   5611 	int i;
   5612 
   5613 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5614 
   5615 	valleyview_check_pctx(dev_priv);
   5616 
   5617 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   5618 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   5619 				 gtfifodbg);
   5620 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5621 	}
   5622 
   5623 	/* If VLV, Forcewake all wells, else re-direct to regular path */
   5624 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5625 
   5626 	/*  Disable RC states. */
   5627 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5628 
   5629 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   5630 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   5631 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   5632 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   5633 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   5634 
   5635 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5636 
   5637 	I915_WRITE(GEN6_RP_CONTROL,
   5638 		   GEN6_RP_MEDIA_TURBO |
   5639 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   5640 		   GEN6_RP_MEDIA_IS_GFX |
   5641 		   GEN6_RP_ENABLE |
   5642 		   GEN6_RP_UP_BUSY_AVG |
   5643 		   GEN6_RP_DOWN_IDLE_CONT);
   5644 
   5645 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
   5646 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   5647 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   5648 
   5649 	for_each_ring(ring, dev_priv, i)
   5650 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5651 
   5652 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
   5653 
   5654 	/* allows RC6 residency counter to work */
   5655 	I915_WRITE(VLV_COUNTER_CONTROL,
   5656 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
   5657 				      VLV_RENDER_RC0_COUNT_EN |
   5658 				      VLV_MEDIA_RC6_COUNT_EN |
   5659 				      VLV_RENDER_RC6_COUNT_EN));
   5660 
   5661 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   5662 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
   5663 
   5664 	intel_print_rc6_info(dev, rc6_mode);
   5665 
   5666 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   5667 
   5668 	/* Setting Fixed Bias */
   5669 	val = VLV_OVERRIDE_EN |
   5670 		  VLV_SOC_TDP_EN |
   5671 		  VLV_BIAS_CPU_125_SOC_875;
   5672 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
   5673 
   5674 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5675 
   5676 	/* RPS code assumes GPLL is used */
   5677 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
   5678 
   5679 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
   5680 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   5681 
   5682 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   5683 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   5684 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   5685 			 dev_priv->rps.cur_freq);
   5686 
   5687 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   5688 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5689 			 dev_priv->rps.efficient_freq);
   5690 
   5691 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   5692 
   5693 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5694 }
   5695 
   5696 static unsigned long intel_pxfreq(u32 vidfreq)
   5697 {
   5698 	unsigned long freq;
   5699 	int div = (vidfreq & 0x3f0000) >> 16;
   5700 	int post = (vidfreq & 0x3000) >> 12;
   5701 	int pre = (vidfreq & 0x7);
   5702 
   5703 	if (!pre)
   5704 		return 0;
   5705 
   5706 	freq = ((div * 133333) / ((1<<post) * pre));
   5707 
   5708 	return freq;
   5709 }
   5710 
   5711 static const struct cparams {
   5712 	u16 i;
   5713 	u16 t;
   5714 	u16 m;
   5715 	u16 c;
   5716 } cparams[] = {
   5717 	{ 1, 1333, 301, 28664 },
   5718 	{ 1, 1066, 294, 24460 },
   5719 	{ 1, 800, 294, 25192 },
   5720 	{ 0, 1333, 276, 27605 },
   5721 	{ 0, 1066, 276, 27605 },
   5722 	{ 0, 800, 231, 23784 },
   5723 };
   5724 
   5725 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   5726 {
   5727 	u64 total_count, diff, ret;
   5728 	u32 count1, count2, count3, m = 0, c = 0;
   5729 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   5730 	int i;
   5731 
   5732 	assert_spin_locked(&mchdev_lock);
   5733 
   5734 	diff1 = now - dev_priv->ips.last_time1;
   5735 
   5736 	/* Prevent division-by-zero if we are asking too fast.
   5737 	 * Also, we don't get interesting results if we are polling
   5738 	 * faster than once in 10ms, so just return the saved value
   5739 	 * in such cases.
   5740 	 */
   5741 	if (diff1 <= 10)
   5742 		return dev_priv->ips.chipset_power;
   5743 
   5744 	count1 = I915_READ(DMIEC);
   5745 	count2 = I915_READ(DDREC);
   5746 	count3 = I915_READ(CSIEC);
   5747 
   5748 	total_count = count1 + count2 + count3;
   5749 
   5750 	/* FIXME: handle per-counter overflow */
   5751 	if (total_count < dev_priv->ips.last_count1) {
   5752 		diff = ~0UL - dev_priv->ips.last_count1;
   5753 		diff += total_count;
   5754 	} else {
   5755 		diff = total_count - dev_priv->ips.last_count1;
   5756 	}
   5757 
   5758 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   5759 		if (cparams[i].i == dev_priv->ips.c_m &&
   5760 		    cparams[i].t == dev_priv->ips.r_t) {
   5761 			m = cparams[i].m;
   5762 			c = cparams[i].c;
   5763 			break;
   5764 		}
   5765 	}
   5766 
   5767 	diff = div_u64(diff, diff1);
   5768 	ret = ((m * diff) + c);
   5769 	ret = div_u64(ret, 10);
   5770 
   5771 	dev_priv->ips.last_count1 = total_count;
   5772 	dev_priv->ips.last_time1 = now;
   5773 
   5774 	dev_priv->ips.chipset_power = ret;
   5775 
   5776 	return ret;
   5777 }
   5778 
   5779 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   5780 {
   5781 	struct drm_device *dev = dev_priv->dev;
   5782 	unsigned long val;
   5783 
   5784 	if (INTEL_INFO(dev)->gen != 5)
   5785 		return 0;
   5786 
   5787 	spin_lock_irq(&mchdev_lock);
   5788 
   5789 	val = __i915_chipset_val(dev_priv);
   5790 
   5791 	spin_unlock_irq(&mchdev_lock);
   5792 
   5793 	return val;
   5794 }
   5795 
   5796 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   5797 {
   5798 	unsigned long m, x, b;
   5799 	u32 tsfs;
   5800 
   5801 	tsfs = I915_READ(TSFS);
   5802 
   5803 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   5804 	x = I915_READ8(TR1);
   5805 
   5806 	b = tsfs & TSFS_INTR_MASK;
   5807 
   5808 	return ((m * x) / 127) - b;
   5809 }
   5810 
   5811 static int _pxvid_to_vd(u8 pxvid)
   5812 {
   5813 	if (pxvid == 0)
   5814 		return 0;
   5815 
   5816 	if (pxvid >= 8 && pxvid < 31)
   5817 		pxvid = 31;
   5818 
   5819 	return (pxvid + 2) * 125;
   5820 }
   5821 
   5822 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   5823 {
   5824 	struct drm_device *dev = dev_priv->dev;
   5825 	const int vd = _pxvid_to_vd(pxvid);
   5826 	const int vm = vd - 1125;
   5827 
   5828 	if (INTEL_INFO(dev)->is_mobile)
   5829 		return vm > 0 ? vm : 0;
   5830 
   5831 	return vd;
   5832 }
   5833 
   5834 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   5835 {
   5836 	u64 now, diff, diffms;
   5837 	u32 count;
   5838 
   5839 	assert_spin_locked(&mchdev_lock);
   5840 
   5841 	now = ktime_get_raw_ns();
   5842 	diffms = now - dev_priv->ips.last_time2;
   5843 	do_div(diffms, NSEC_PER_MSEC);
   5844 
   5845 	/* Don't divide by 0 */
   5846 	if (!diffms)
   5847 		return;
   5848 
   5849 	count = I915_READ(GFXEC);
   5850 
   5851 	if (count < dev_priv->ips.last_count2) {
   5852 		diff = ~0UL - dev_priv->ips.last_count2;
   5853 		diff += count;
   5854 	} else {
   5855 		diff = count - dev_priv->ips.last_count2;
   5856 	}
   5857 
   5858 	dev_priv->ips.last_count2 = count;
   5859 	dev_priv->ips.last_time2 = now;
   5860 
   5861 	/* More magic constants... */
   5862 	diff = diff * 1181;
   5863 	diff = div_u64(diff, diffms * 10);
   5864 	dev_priv->ips.gfx_power = diff;
   5865 }
   5866 
   5867 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   5868 {
   5869 	struct drm_device *dev = dev_priv->dev;
   5870 
   5871 	if (INTEL_INFO(dev)->gen != 5)
   5872 		return;
   5873 
   5874 	spin_lock_irq(&mchdev_lock);
   5875 
   5876 	__i915_update_gfx_val(dev_priv);
   5877 
   5878 	spin_unlock_irq(&mchdev_lock);
   5879 }
   5880 
   5881 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   5882 {
   5883 	unsigned long t, corr, state1, corr2, state2;
   5884 	u32 pxvid, ext_v;
   5885 
   5886 	assert_spin_locked(&mchdev_lock);
   5887 
   5888 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
   5889 	pxvid = (pxvid >> 24) & 0x7f;
   5890 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   5891 
   5892 	state1 = ext_v;
   5893 
   5894 	t = i915_mch_val(dev_priv);
   5895 
   5896 	/* Revel in the empirically derived constants */
   5897 
   5898 	/* Correction factor in 1/100000 units */
   5899 	if (t > 80)
   5900 		corr = ((t * 2349) + 135940);
   5901 	else if (t >= 50)
   5902 		corr = ((t * 964) + 29317);
   5903 	else /* < 50 */
   5904 		corr = ((t * 301) + 1004);
   5905 
   5906 	corr = corr * ((150142 * state1) / 10000 - 78642);
   5907 	corr /= 100000;
   5908 	corr2 = (corr * dev_priv->ips.corr);
   5909 
   5910 	state2 = (corr2 * state1) / 10000;
   5911 	state2 /= 100; /* convert to mW */
   5912 
   5913 	__i915_update_gfx_val(dev_priv);
   5914 
   5915 	return dev_priv->ips.gfx_power + state2;
   5916 }
   5917 
   5918 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   5919 {
   5920 	struct drm_device *dev = dev_priv->dev;
   5921 	unsigned long val;
   5922 
   5923 	if (INTEL_INFO(dev)->gen != 5)
   5924 		return 0;
   5925 
   5926 	spin_lock_irq(&mchdev_lock);
   5927 
   5928 	val = __i915_gfx_val(dev_priv);
   5929 
   5930 	spin_unlock_irq(&mchdev_lock);
   5931 
   5932 	return val;
   5933 }
   5934 
   5935 /**
   5936  * i915_read_mch_val - return value for IPS use
   5937  *
   5938  * Calculate and return a value for the IPS driver to use when deciding whether
   5939  * we have thermal and power headroom to increase CPU or GPU power budget.
   5940  */
   5941 unsigned long i915_read_mch_val(void)
   5942 {
   5943 	struct drm_i915_private *dev_priv;
   5944 	unsigned long chipset_val, graphics_val, ret = 0;
   5945 
   5946 	spin_lock_irq(&mchdev_lock);
   5947 	if (!i915_mch_dev)
   5948 		goto out_unlock;
   5949 	dev_priv = i915_mch_dev;
   5950 
   5951 	chipset_val = __i915_chipset_val(dev_priv);
   5952 	graphics_val = __i915_gfx_val(dev_priv);
   5953 
   5954 	ret = chipset_val + graphics_val;
   5955 
   5956 out_unlock:
   5957 	spin_unlock_irq(&mchdev_lock);
   5958 
   5959 	return ret;
   5960 }
   5961 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   5962 
   5963 /**
   5964  * i915_gpu_raise - raise GPU frequency limit
   5965  *
   5966  * Raise the limit; IPS indicates we have thermal headroom.
   5967  */
   5968 bool i915_gpu_raise(void)
   5969 {
   5970 	struct drm_i915_private *dev_priv;
   5971 	bool ret = true;
   5972 
   5973 	spin_lock_irq(&mchdev_lock);
   5974 	if (!i915_mch_dev) {
   5975 		ret = false;
   5976 		goto out_unlock;
   5977 	}
   5978 	dev_priv = i915_mch_dev;
   5979 
   5980 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   5981 		dev_priv->ips.max_delay--;
   5982 
   5983 out_unlock:
   5984 	spin_unlock_irq(&mchdev_lock);
   5985 
   5986 	return ret;
   5987 }
   5988 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   5989 
   5990 /**
   5991  * i915_gpu_lower - lower GPU frequency limit
   5992  *
   5993  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   5994  * frequency maximum.
   5995  */
   5996 bool i915_gpu_lower(void)
   5997 {
   5998 	struct drm_i915_private *dev_priv;
   5999 	bool ret = true;
   6000 
   6001 	spin_lock_irq(&mchdev_lock);
   6002 	if (!i915_mch_dev) {
   6003 		ret = false;
   6004 		goto out_unlock;
   6005 	}
   6006 	dev_priv = i915_mch_dev;
   6007 
   6008 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   6009 		dev_priv->ips.max_delay++;
   6010 
   6011 out_unlock:
   6012 	spin_unlock_irq(&mchdev_lock);
   6013 
   6014 	return ret;
   6015 }
   6016 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   6017 
   6018 /**
   6019  * i915_gpu_busy - indicate GPU business to IPS
   6020  *
   6021  * Tell the IPS driver whether or not the GPU is busy.
   6022  */
   6023 bool i915_gpu_busy(void)
   6024 {
   6025 	struct drm_i915_private *dev_priv;
   6026 	struct intel_engine_cs *ring;
   6027 	bool ret = false;
   6028 	int i;
   6029 
   6030 	spin_lock_irq(&mchdev_lock);
   6031 	if (!i915_mch_dev)
   6032 		goto out_unlock;
   6033 	dev_priv = i915_mch_dev;
   6034 
   6035 	for_each_ring(ring, dev_priv, i)
   6036 		ret |= !list_empty(&ring->request_list);
   6037 
   6038 out_unlock:
   6039 	spin_unlock_irq(&mchdev_lock);
   6040 
   6041 	return ret;
   6042 }
   6043 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   6044 
   6045 /**
   6046  * i915_gpu_turbo_disable - disable graphics turbo
   6047  *
   6048  * Disable graphics turbo by resetting the max frequency and setting the
   6049  * current frequency to the default.
   6050  */
   6051 bool i915_gpu_turbo_disable(void)
   6052 {
   6053 	struct drm_i915_private *dev_priv;
   6054 	bool ret = true;
   6055 
   6056 	spin_lock_irq(&mchdev_lock);
   6057 	if (!i915_mch_dev) {
   6058 		ret = false;
   6059 		goto out_unlock;
   6060 	}
   6061 	dev_priv = i915_mch_dev;
   6062 
   6063 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   6064 
   6065 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   6066 		ret = false;
   6067 
   6068 out_unlock:
   6069 	spin_unlock_irq(&mchdev_lock);
   6070 
   6071 	return ret;
   6072 }
   6073 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   6074 
   6075 /**
   6076  * Tells the intel_ips driver that the i915 driver is now loaded, if
   6077  * IPS got loaded first.
   6078  *
   6079  * This awkward dance is so that neither module has to depend on the
   6080  * other in order for IPS to do the appropriate communication of
   6081  * GPU turbo limits to i915.
   6082  */
   6083 static void
   6084 ips_ping_for_i915_load(void)
   6085 {
   6086 #ifndef __NetBSD__		/* XXX IPS GPU turbo limits what?  */
   6087 	void (*link)(void);
   6088 
   6089 	link = symbol_get(ips_link_to_i915_driver);
   6090 	if (link) {
   6091 		link();
   6092 		symbol_put(ips_link_to_i915_driver);
   6093 	}
   6094 #endif
   6095 }
   6096 
   6097 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   6098 {
   6099 	/* We only register the i915 ips part with intel-ips once everything is
   6100 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   6101 	spin_lock_irq(&mchdev_lock);
   6102 	i915_mch_dev = dev_priv;
   6103 	spin_unlock_irq(&mchdev_lock);
   6104 
   6105 	ips_ping_for_i915_load();
   6106 }
   6107 
   6108 void intel_gpu_ips_teardown(void)
   6109 {
   6110 	spin_lock_irq(&mchdev_lock);
   6111 	i915_mch_dev = NULL;
   6112 	spin_unlock_irq(&mchdev_lock);
   6113 }
   6114 
   6115 static void intel_init_emon(struct drm_device *dev)
   6116 {
   6117 	struct drm_i915_private *dev_priv = dev->dev_private;
   6118 	u32 lcfuse;
   6119 	u8 pxw[16];
   6120 	int i;
   6121 
   6122 	/* Disable to program */
   6123 	I915_WRITE(ECR, 0);
   6124 	POSTING_READ(ECR);
   6125 
   6126 	/* Program energy weights for various events */
   6127 	I915_WRITE(SDEW, 0x15040d00);
   6128 	I915_WRITE(CSIEW0, 0x007f0000);
   6129 	I915_WRITE(CSIEW1, 0x1e220004);
   6130 	I915_WRITE(CSIEW2, 0x04000004);
   6131 
   6132 	for (i = 0; i < 5; i++)
   6133 		I915_WRITE(PEW(i), 0);
   6134 	for (i = 0; i < 3; i++)
   6135 		I915_WRITE(DEW(i), 0);
   6136 
   6137 	/* Program P-state weights to account for frequency power adjustment */
   6138 	for (i = 0; i < 16; i++) {
   6139 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
   6140 		unsigned long freq = intel_pxfreq(pxvidfreq);
   6141 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   6142 			PXVFREQ_PX_SHIFT;
   6143 		unsigned long val;
   6144 
   6145 		val = vid * vid;
   6146 		val *= (freq / 1000);
   6147 		val *= 255;
   6148 		val /= (127*127*900);
   6149 		if (val > 0xff)
   6150 			DRM_ERROR("bad pxval: %ld\n", val);
   6151 		pxw[i] = val;
   6152 	}
   6153 	/* Render standby states get 0 weight */
   6154 	pxw[14] = 0;
   6155 	pxw[15] = 0;
   6156 
   6157 	for (i = 0; i < 4; i++) {
   6158 		u32 val = ((u32)pxw[i*4] << 24) | ((u32)pxw[(i*4)+1] << 16) |
   6159 			((u32)pxw[(i*4)+2] << 8) | ((u32)pxw[(i*4)+3]);
   6160 		I915_WRITE(PXW(i), val);
   6161 	}
   6162 
   6163 	/* Adjust magic regs to magic values (more experimental results) */
   6164 	I915_WRITE(OGW0, 0);
   6165 	I915_WRITE(OGW1, 0);
   6166 	I915_WRITE(EG0, 0x00007f00);
   6167 	I915_WRITE(EG1, 0x0000000e);
   6168 	I915_WRITE(EG2, 0x000e0000);
   6169 	I915_WRITE(EG3, 0x68000300);
   6170 	I915_WRITE(EG4, 0x42000000);
   6171 	I915_WRITE(EG5, 0x00140031);
   6172 	I915_WRITE(EG6, 0);
   6173 	I915_WRITE(EG7, 0);
   6174 
   6175 	for (i = 0; i < 8; i++)
   6176 		I915_WRITE(PXWL(i), 0);
   6177 
   6178 	/* Enable PMON + select events */
   6179 	I915_WRITE(ECR, 0x80000019);
   6180 
   6181 	lcfuse = I915_READ(LCFUSE02);
   6182 
   6183 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   6184 }
   6185 
   6186 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
   6187 {
   6188 	return !I915_READ(GEN8_RC6_CTX_INFO);
   6189 }
   6190 
   6191 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
   6192 {
   6193 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
   6194 		return;
   6195 
   6196 	if (i915_rc6_ctx_corrupted(i915)) {
   6197 		DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
   6198 		i915->rps.ctx_corrupted = true;
   6199 		intel_runtime_pm_get(i915);
   6200 	}
   6201 }
   6202 
   6203 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
   6204 {
   6205 	if (i915->rps.ctx_corrupted) {
   6206 		intel_runtime_pm_put(i915);
   6207 		i915->rps.ctx_corrupted = false;
   6208 	}
   6209 }
   6210 
   6211 /**
   6212  * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
   6213  * @i915: i915 device
   6214  *
   6215  * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
   6216  */
   6217 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
   6218 {
   6219 	if (i915->rps.ctx_corrupted)
   6220 		intel_runtime_pm_put(i915);
   6221 }
   6222 
   6223 /**
   6224  * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
   6225  * @i915: i915 device
   6226  *
   6227  * Perform any steps needed to re-init the RC6 CTX WA after system resume.
   6228  */
   6229 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
   6230 {
   6231 	if (!i915->rps.ctx_corrupted)
   6232 		return;
   6233 
   6234 	if (i915_rc6_ctx_corrupted(i915)) {
   6235 		intel_runtime_pm_get(i915);
   6236 		return;
   6237 	}
   6238 
   6239 	DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
   6240 	i915->rps.ctx_corrupted = false;
   6241 }
   6242 
   6243 static void intel_disable_rc6(struct drm_device *dev);
   6244 
   6245 /**
   6246  * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
   6247  * @i915: i915 device
   6248  *
   6249  * Check if an RC6 CTX corruption has happened since the last check and if so
   6250  * disable RC6 and runtime power management.
   6251  *
   6252  * Return false if no context corruption has happened since the last call of
   6253  * this function, true otherwise.
   6254 */
   6255 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
   6256 {
   6257 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
   6258 		return false;
   6259 
   6260 	if (i915->rps.ctx_corrupted)
   6261 		return false;
   6262 
   6263 	if (!i915_rc6_ctx_corrupted(i915))
   6264 		return false;
   6265 
   6266 	DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
   6267 
   6268 	intel_disable_rc6(i915->dev);
   6269 	i915->rps.ctx_corrupted = true;
   6270 	intel_runtime_pm_get_noresume(i915);
   6271 
   6272 	return true;
   6273 }
   6274 
   6275 void intel_init_gt_powersave(struct drm_device *dev)
   6276 {
   6277 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
   6278 
   6279 	i915_rc6_ctx_wa_init(to_i915(dev));
   6280 
   6281 	if (IS_CHERRYVIEW(dev))
   6282 		cherryview_init_gt_powersave(dev);
   6283 	else if (IS_VALLEYVIEW(dev))
   6284 		valleyview_init_gt_powersave(dev);
   6285 }
   6286 
   6287 void intel_cleanup_gt_powersave(struct drm_device *dev)
   6288 {
   6289 	if (IS_CHERRYVIEW(dev))
   6290 		return;
   6291 	else if (IS_VALLEYVIEW(dev))
   6292 		valleyview_cleanup_gt_powersave(dev);
   6293 
   6294 	i915_rc6_ctx_wa_cleanup(to_i915(dev));
   6295 }
   6296 
   6297 static void gen6_suspend_rps(struct drm_device *dev)
   6298 {
   6299 	struct drm_i915_private *dev_priv = dev->dev_private;
   6300 
   6301 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
   6302 
   6303 	gen6_disable_rps_interrupts(dev);
   6304 }
   6305 
   6306 /**
   6307  * intel_suspend_gt_powersave - suspend PM work and helper threads
   6308  * @dev: drm device
   6309  *
   6310  * We don't want to disable RC6 or other features here, we just want
   6311  * to make sure any work we've queued has finished and won't bother
   6312  * us while we're suspended.
   6313  */
   6314 void intel_suspend_gt_powersave(struct drm_device *dev)
   6315 {
   6316 	struct drm_i915_private *dev_priv = dev->dev_private;
   6317 
   6318 	if (INTEL_INFO(dev)->gen < 6)
   6319 		return;
   6320 
   6321 	gen6_suspend_rps(dev);
   6322 
   6323 	/* Force GPU to min freq during suspend */
   6324 	gen6_rps_idle(dev_priv);
   6325 }
   6326 
   6327 static void __intel_disable_rc6(struct drm_device *dev)
   6328 {
   6329 	if (INTEL_INFO(dev)->gen >= 9)
   6330 		gen9_disable_rc6(dev);
   6331 	else if (IS_CHERRYVIEW(dev))
   6332 		cherryview_disable_rc6(dev);
   6333 	else if (IS_VALLEYVIEW(dev))
   6334 		valleyview_disable_rc6(dev);
   6335 	else
   6336 		gen6_disable_rc6(dev);
   6337 }
   6338 
   6339 static void intel_disable_rc6(struct drm_device *dev)
   6340 {
   6341 	struct drm_i915_private *dev_priv = to_i915(dev);
   6342 
   6343 	mutex_lock(&dev_priv->rps.hw_lock);
   6344 	__intel_disable_rc6(dev);
   6345 	mutex_unlock(&dev_priv->rps.hw_lock);
   6346 }
   6347 
   6348 static void intel_disable_rps(struct drm_device *dev)
   6349 {
   6350 	if (IS_CHERRYVIEW(dev) || IS_VALLEYVIEW(dev))
   6351 		return;
   6352 
   6353 	if (INTEL_INFO(dev)->gen >= 9)
   6354 		gen9_disable_rps(dev);
   6355 	else
   6356 		gen6_disable_rps(dev);
   6357 }
   6358 
   6359 void intel_disable_gt_powersave(struct drm_device *dev)
   6360 {
   6361 	struct drm_i915_private *dev_priv = dev->dev_private;
   6362 
   6363 	if (IS_IRONLAKE_M(dev)) {
   6364 		ironlake_disable_drps(dev);
   6365 	} else if (INTEL_INFO(dev)->gen >= 6) {
   6366 		intel_suspend_gt_powersave(dev);
   6367 
   6368 		mutex_lock(&dev_priv->rps.hw_lock);
   6369 
   6370 		__intel_disable_rc6(dev);
   6371 		intel_disable_rps(dev);
   6372 
   6373 		dev_priv->rps.enabled = false;
   6374 
   6375 		mutex_unlock(&dev_priv->rps.hw_lock);
   6376 	}
   6377 }
   6378 
   6379 static void intel_gen6_powersave_work(struct work_struct *work)
   6380 {
   6381 	struct drm_i915_private *dev_priv =
   6382 		container_of(work, struct drm_i915_private,
   6383 			     rps.delayed_resume_work.work);
   6384 	struct drm_device *dev = dev_priv->dev;
   6385 
   6386 	mutex_lock(&dev_priv->rps.hw_lock);
   6387 
   6388 	gen6_reset_rps_interrupts(dev);
   6389 
   6390 	if (IS_CHERRYVIEW(dev)) {
   6391 		cherryview_enable_rps(dev);
   6392 	} else if (IS_VALLEYVIEW(dev)) {
   6393 		valleyview_enable_rps(dev);
   6394 	} else if (INTEL_INFO(dev)->gen >= 9) {
   6395 		gen9_enable_rc6(dev);
   6396 		gen9_enable_rps(dev);
   6397 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
   6398 			__gen6_update_ring_freq(dev);
   6399 	} else if (IS_BROADWELL(dev)) {
   6400 		gen8_enable_rps(dev);
   6401 		__gen6_update_ring_freq(dev);
   6402 	} else {
   6403 		gen6_enable_rps(dev);
   6404 		__gen6_update_ring_freq(dev);
   6405 	}
   6406 
   6407 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
   6408 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
   6409 
   6410 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
   6411 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
   6412 
   6413 	dev_priv->rps.enabled = true;
   6414 
   6415 	gen6_enable_rps_interrupts(dev);
   6416 
   6417 	mutex_unlock(&dev_priv->rps.hw_lock);
   6418 
   6419 	intel_runtime_pm_put(dev_priv);
   6420 }
   6421 
   6422 void intel_enable_gt_powersave(struct drm_device *dev)
   6423 {
   6424 	struct drm_i915_private *dev_priv = dev->dev_private;
   6425 
   6426 	/* Powersaving is controlled by the host when inside a VM */
   6427 	if (intel_vgpu_active(dev))
   6428 		return;
   6429 
   6430 	if (IS_IRONLAKE_M(dev)) {
   6431 		mutex_lock(&dev->struct_mutex);
   6432 		ironlake_enable_drps(dev);
   6433 		intel_init_emon(dev);
   6434 		mutex_unlock(&dev->struct_mutex);
   6435 	} else if (INTEL_INFO(dev)->gen >= 6) {
   6436 		/*
   6437 		 * PCU communication is slow and this doesn't need to be
   6438 		 * done at any specific time, so do this out of our fast path
   6439 		 * to make resume and init faster.
   6440 		 *
   6441 		 * We depend on the HW RC6 power context save/restore
   6442 		 * mechanism when entering D3 through runtime PM suspend. So
   6443 		 * disable RPM until RPS/RC6 is properly setup. We can only
   6444 		 * get here via the driver load/system resume/runtime resume
   6445 		 * paths, so the _noresume version is enough (and in case of
   6446 		 * runtime resume it's necessary).
   6447 		 */
   6448 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   6449 					   round_jiffies_up_relative(HZ)))
   6450 			intel_runtime_pm_get_noresume(dev_priv);
   6451 	}
   6452 }
   6453 
   6454 void intel_reset_gt_powersave(struct drm_device *dev)
   6455 {
   6456 	struct drm_i915_private *dev_priv = dev->dev_private;
   6457 
   6458 	if (INTEL_INFO(dev)->gen < 6)
   6459 		return;
   6460 
   6461 	gen6_suspend_rps(dev);
   6462 	dev_priv->rps.enabled = false;
   6463 }
   6464 
   6465 static void ibx_init_clock_gating(struct drm_device *dev)
   6466 {
   6467 	struct drm_i915_private *dev_priv = dev->dev_private;
   6468 
   6469 	/*
   6470 	 * On Ibex Peak and Cougar Point, we need to disable clock
   6471 	 * gating for the panel power sequencer or it will fail to
   6472 	 * start up when no ports are active.
   6473 	 */
   6474 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   6475 }
   6476 
   6477 static void g4x_disable_trickle_feed(struct drm_device *dev)
   6478 {
   6479 	struct drm_i915_private *dev_priv = dev->dev_private;
   6480 	enum i915_pipe pipe;
   6481 
   6482 	for_each_pipe(dev_priv, pipe) {
   6483 		I915_WRITE(DSPCNTR(pipe),
   6484 			   I915_READ(DSPCNTR(pipe)) |
   6485 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   6486 
   6487 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
   6488 		POSTING_READ(DSPSURF(pipe));
   6489 	}
   6490 }
   6491 
   6492 static void ilk_init_lp_watermarks(struct drm_device *dev)
   6493 {
   6494 	struct drm_i915_private *dev_priv = dev->dev_private;
   6495 
   6496 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
   6497 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
   6498 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
   6499 
   6500 	/*
   6501 	 * Don't touch WM1S_LP_EN here.
   6502 	 * Doing so could cause underruns.
   6503 	 */
   6504 }
   6505 
   6506 static void ironlake_init_clock_gating(struct drm_device *dev)
   6507 {
   6508 	struct drm_i915_private *dev_priv = dev->dev_private;
   6509 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   6510 
   6511 	/*
   6512 	 * Required for FBC
   6513 	 * WaFbcDisableDpfcClockGating:ilk
   6514 	 */
   6515 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   6516 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   6517 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   6518 
   6519 	I915_WRITE(PCH_3DCGDIS0,
   6520 		   MARIUNIT_CLOCK_GATE_DISABLE |
   6521 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   6522 	I915_WRITE(PCH_3DCGDIS1,
   6523 		   VFMUNIT_CLOCK_GATE_DISABLE);
   6524 
   6525 	/*
   6526 	 * According to the spec the following bits should be set in
   6527 	 * order to enable memory self-refresh
   6528 	 * The bit 22/21 of 0x42004
   6529 	 * The bit 5 of 0x42020
   6530 	 * The bit 15 of 0x45000
   6531 	 */
   6532 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6533 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   6534 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   6535 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   6536 	I915_WRITE(DISP_ARB_CTL,
   6537 		   (I915_READ(DISP_ARB_CTL) |
   6538 		    DISP_FBC_WM_DIS));
   6539 
   6540 	ilk_init_lp_watermarks(dev);
   6541 
   6542 	/*
   6543 	 * Based on the document from hardware guys the following bits
   6544 	 * should be set unconditionally in order to enable FBC.
   6545 	 * The bit 22 of 0x42000
   6546 	 * The bit 22 of 0x42004
   6547 	 * The bit 7,8,9 of 0x42020.
   6548 	 */
   6549 	if (IS_IRONLAKE_M(dev)) {
   6550 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
   6551 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   6552 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   6553 			   ILK_FBCQ_DIS);
   6554 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6555 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6556 			   ILK_DPARB_GATE);
   6557 	}
   6558 
   6559 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   6560 
   6561 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6562 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6563 		   ILK_ELPIN_409_SELECT);
   6564 	I915_WRITE(_3D_CHICKEN2,
   6565 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   6566 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   6567 
   6568 	/* WaDisableRenderCachePipelinedFlush:ilk */
   6569 	I915_WRITE(CACHE_MODE_0,
   6570 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   6571 
   6572 	/* WaDisable_RenderCache_OperationalFlush:ilk */
   6573 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6574 
   6575 	g4x_disable_trickle_feed(dev);
   6576 
   6577 	ibx_init_clock_gating(dev);
   6578 }
   6579 
   6580 static void cpt_init_clock_gating(struct drm_device *dev)
   6581 {
   6582 	struct drm_i915_private *dev_priv = dev->dev_private;
   6583 	int pipe;
   6584 	uint32_t val;
   6585 
   6586 	/*
   6587 	 * On Ibex Peak and Cougar Point, we need to disable clock
   6588 	 * gating for the panel power sequencer or it will fail to
   6589 	 * start up when no ports are active.
   6590 	 */
   6591 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
   6592 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
   6593 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
   6594 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   6595 		   DPLS_EDP_PPS_FIX_DIS);
   6596 	/* The below fixes the weird display corruption, a few pixels shifted
   6597 	 * downward, on (only) LVDS of some HP laptops with IVY.
   6598 	 */
   6599 	for_each_pipe(dev_priv, pipe) {
   6600 		val = I915_READ(TRANS_CHICKEN2(pipe));
   6601 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
   6602 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   6603 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
   6604 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   6605 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
   6606 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
   6607 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
   6608 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
   6609 	}
   6610 	/* WADP0ClockGatingDisable */
   6611 	for_each_pipe(dev_priv, pipe) {
   6612 		I915_WRITE(TRANS_CHICKEN1(pipe),
   6613 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   6614 	}
   6615 }
   6616 
   6617 static void gen6_check_mch_setup(struct drm_device *dev)
   6618 {
   6619 	struct drm_i915_private *dev_priv = dev->dev_private;
   6620 	uint32_t tmp;
   6621 
   6622 	tmp = I915_READ(MCH_SSKPD);
   6623 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
   6624 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
   6625 			      tmp);
   6626 }
   6627 
   6628 static void gen6_init_clock_gating(struct drm_device *dev)
   6629 {
   6630 	struct drm_i915_private *dev_priv = dev->dev_private;
   6631 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   6632 
   6633 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   6634 
   6635 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6636 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6637 		   ILK_ELPIN_409_SELECT);
   6638 
   6639 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
   6640 	I915_WRITE(_3D_CHICKEN,
   6641 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   6642 
   6643 	/* WaDisable_RenderCache_OperationalFlush:snb */
   6644 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6645 
   6646 	/*
   6647 	 * BSpec recoomends 8x4 when MSAA is used,
   6648 	 * however in practice 16x4 seems fastest.
   6649 	 *
   6650 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6651 	 * disable bit, which we don't touch here, but it's good
   6652 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6653 	 */
   6654 	I915_WRITE(GEN6_GT_MODE,
   6655 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6656 
   6657 	ilk_init_lp_watermarks(dev);
   6658 
   6659 	I915_WRITE(CACHE_MODE_0,
   6660 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   6661 
   6662 	I915_WRITE(GEN6_UCGCTL1,
   6663 		   I915_READ(GEN6_UCGCTL1) |
   6664 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   6665 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   6666 
   6667 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   6668 	 * gating disable must be set.  Failure to set it results in
   6669 	 * flickering pixels due to Z write ordering failures after
   6670 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   6671 	 * Sanctuary and Tropics, and apparently anything else with
   6672 	 * alpha test or pixel discard.
   6673 	 *
   6674 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   6675 	 * but we didn't debug actual testcases to find it out.
   6676 	 *
   6677 	 * WaDisableRCCUnitClockGating:snb
   6678 	 * WaDisableRCPBUnitClockGating:snb
   6679 	 */
   6680 	I915_WRITE(GEN6_UCGCTL2,
   6681 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   6682 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   6683 
   6684 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
   6685 	I915_WRITE(_3D_CHICKEN3,
   6686 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
   6687 
   6688 	/*
   6689 	 * Bspec says:
   6690 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
   6691 	 * 3DSTATE_SF number of SF output attributes is more than 16."
   6692 	 */
   6693 	I915_WRITE(_3D_CHICKEN3,
   6694 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
   6695 
   6696 	/*
   6697 	 * According to the spec the following bits should be
   6698 	 * set in order to enable memory self-refresh and fbc:
   6699 	 * The bit21 and bit22 of 0x42000
   6700 	 * The bit21 and bit22 of 0x42004
   6701 	 * The bit5 and bit7 of 0x42020
   6702 	 * The bit14 of 0x70180
   6703 	 * The bit14 of 0x71180
   6704 	 *
   6705 	 * WaFbcAsynchFlipDisableFbcQueue:snb
   6706 	 */
   6707 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   6708 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   6709 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   6710 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6711 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6712 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   6713 	I915_WRITE(ILK_DSPCLK_GATE_D,
   6714 		   I915_READ(ILK_DSPCLK_GATE_D) |
   6715 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   6716 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   6717 
   6718 	g4x_disable_trickle_feed(dev);
   6719 
   6720 	cpt_init_clock_gating(dev);
   6721 
   6722 	gen6_check_mch_setup(dev);
   6723 }
   6724 
   6725 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   6726 {
   6727 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   6728 
   6729 	/*
   6730 	 * WaVSThreadDispatchOverride:ivb,vlv
   6731 	 *
   6732 	 * This actually overrides the dispatch
   6733 	 * mode for all thread types.
   6734 	 */
   6735 	reg &= ~GEN7_FF_SCHED_MASK;
   6736 	reg |= GEN7_FF_TS_SCHED_HW;
   6737 	reg |= GEN7_FF_VS_SCHED_HW;
   6738 	reg |= GEN7_FF_DS_SCHED_HW;
   6739 
   6740 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   6741 }
   6742 
   6743 static void lpt_init_clock_gating(struct drm_device *dev)
   6744 {
   6745 	struct drm_i915_private *dev_priv = dev->dev_private;
   6746 
   6747 	/*
   6748 	 * TODO: this bit should only be enabled when really needed, then
   6749 	 * disabled when not needed anymore in order to save power.
   6750 	 */
   6751 	if (HAS_PCH_LPT_LP(dev))
   6752 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   6753 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   6754 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   6755 
   6756 	/* WADPOClockGatingDisable:hsw */
   6757 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
   6758 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
   6759 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   6760 }
   6761 
   6762 static void lpt_suspend_hw(struct drm_device *dev)
   6763 {
   6764 	struct drm_i915_private *dev_priv = dev->dev_private;
   6765 
   6766 	if (HAS_PCH_LPT_LP(dev)) {
   6767 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
   6768 
   6769 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
   6770 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
   6771 	}
   6772 }
   6773 
   6774 static void broadwell_init_clock_gating(struct drm_device *dev)
   6775 {
   6776 	struct drm_i915_private *dev_priv = dev->dev_private;
   6777 	enum i915_pipe pipe;
   6778 	uint32_t misccpctl;
   6779 
   6780 	ilk_init_lp_watermarks(dev);
   6781 
   6782 	/* WaSwitchSolVfFArbitrationPriority:bdw */
   6783 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   6784 
   6785 	/* WaPsrDPAMaskVBlankInSRD:bdw */
   6786 	I915_WRITE(CHICKEN_PAR1_1,
   6787 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
   6788 
   6789 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
   6790 	for_each_pipe(dev_priv, pipe) {
   6791 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
   6792 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
   6793 			   BDW_DPRS_MASK_VBLANK_SRD);
   6794 	}
   6795 
   6796 	/* WaVSRefCountFullforceMissDisable:bdw */
   6797 	/* WaDSRefCountFullforceMissDisable:bdw */
   6798 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6799 		   I915_READ(GEN7_FF_THREAD_MODE) &
   6800 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   6801 
   6802 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   6803 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   6804 
   6805 	/* WaDisableSDEUnitClockGating:bdw */
   6806 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   6807 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   6808 
   6809 	/*
   6810 	 * WaProgramL3SqcReg1Default:bdw
   6811 	 * WaTempDisableDOPClkGating:bdw
   6812 	 */
   6813 	misccpctl = I915_READ(GEN7_MISCCPCTL);
   6814 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
   6815 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
   6816 	/*
   6817 	 * Wait at least 100 clocks before re-enabling clock gating. See
   6818 	 * the definition of L3SQCREG1 in BSpec.
   6819 	 */
   6820 	POSTING_READ(GEN8_L3SQCREG1);
   6821 	udelay(1);
   6822 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
   6823 
   6824 	/*
   6825 	 * WaGttCachingOffByDefault:bdw
   6826 	 * GTT cache may not work with big pages, so if those
   6827 	 * are ever enabled GTT cache may need to be disabled.
   6828 	 */
   6829 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
   6830 
   6831 	lpt_init_clock_gating(dev);
   6832 }
   6833 
   6834 static void haswell_init_clock_gating(struct drm_device *dev)
   6835 {
   6836 	struct drm_i915_private *dev_priv = dev->dev_private;
   6837 
   6838 	ilk_init_lp_watermarks(dev);
   6839 
   6840 	/* L3 caching of data atomics doesn't work -- disable it. */
   6841 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
   6842 	I915_WRITE(HSW_ROW_CHICKEN3,
   6843 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
   6844 
   6845 	/* This is required by WaCatErrorRejectionIssue:hsw */
   6846 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6847 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6848 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6849 
   6850 	/* WaVSRefCountFullforceMissDisable:hsw */
   6851 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6852 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
   6853 
   6854 	/* WaDisable_RenderCache_OperationalFlush:hsw */
   6855 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6856 
   6857 	/* enable HiZ Raw Stall Optimization */
   6858 	I915_WRITE(CACHE_MODE_0_GEN7,
   6859 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   6860 
   6861 	/* WaDisable4x2SubspanOptimization:hsw */
   6862 	I915_WRITE(CACHE_MODE_1,
   6863 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6864 
   6865 	/*
   6866 	 * BSpec recommends 8x4 when MSAA is used,
   6867 	 * however in practice 16x4 seems fastest.
   6868 	 *
   6869 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6870 	 * disable bit, which we don't touch here, but it's good
   6871 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6872 	 */
   6873 	I915_WRITE(GEN7_GT_MODE,
   6874 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6875 
   6876 	/* WaSampleCChickenBitEnable:hsw */
   6877 	I915_WRITE(HALF_SLICE_CHICKEN3,
   6878 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
   6879 
   6880 	/* WaSwitchSolVfFArbitrationPriority:hsw */
   6881 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   6882 
   6883 	/* WaRsPkgCStateDisplayPMReq:hsw */
   6884 	I915_WRITE(CHICKEN_PAR1_1,
   6885 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
   6886 
   6887 	lpt_init_clock_gating(dev);
   6888 }
   6889 
   6890 static void ivybridge_init_clock_gating(struct drm_device *dev)
   6891 {
   6892 	struct drm_i915_private *dev_priv = dev->dev_private;
   6893 	uint32_t snpcr;
   6894 
   6895 	ilk_init_lp_watermarks(dev);
   6896 
   6897 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   6898 
   6899 	/* WaDisableEarlyCull:ivb */
   6900 	I915_WRITE(_3D_CHICKEN3,
   6901 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   6902 
   6903 	/* WaDisableBackToBackFlipFix:ivb */
   6904 	I915_WRITE(IVB_CHICKEN3,
   6905 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   6906 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   6907 
   6908 	/* WaDisablePSDDualDispatchEnable:ivb */
   6909 	if (IS_IVB_GT1(dev))
   6910 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   6911 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   6912 
   6913 	/* WaDisable_RenderCache_OperationalFlush:ivb */
   6914 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6915 
   6916 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
   6917 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   6918 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   6919 
   6920 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
   6921 	I915_WRITE(GEN7_L3CNTLREG1,
   6922 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   6923 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   6924 		   GEN7_WA_L3_CHICKEN_MODE);
   6925 	if (IS_IVB_GT1(dev))
   6926 		I915_WRITE(GEN7_ROW_CHICKEN2,
   6927 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6928 	else {
   6929 		/* must write both registers */
   6930 		I915_WRITE(GEN7_ROW_CHICKEN2,
   6931 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6932 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   6933 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6934 	}
   6935 
   6936 	/* WaForceL3Serialization:ivb */
   6937 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   6938 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   6939 
   6940 	/*
   6941 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   6942 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
   6943 	 */
   6944 	I915_WRITE(GEN6_UCGCTL2,
   6945 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   6946 
   6947 	/* This is required by WaCatErrorRejectionIssue:ivb */
   6948 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6949 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6950 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6951 
   6952 	g4x_disable_trickle_feed(dev);
   6953 
   6954 	gen7_setup_fixed_func_scheduler(dev_priv);
   6955 
   6956 	if (0) { /* causes HiZ corruption on ivb:gt1 */
   6957 		/* enable HiZ Raw Stall Optimization */
   6958 		I915_WRITE(CACHE_MODE_0_GEN7,
   6959 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   6960 	}
   6961 
   6962 	/* WaDisable4x2SubspanOptimization:ivb */
   6963 	I915_WRITE(CACHE_MODE_1,
   6964 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6965 
   6966 	/*
   6967 	 * BSpec recommends 8x4 when MSAA is used,
   6968 	 * however in practice 16x4 seems fastest.
   6969 	 *
   6970 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6971 	 * disable bit, which we don't touch here, but it's good
   6972 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6973 	 */
   6974 	I915_WRITE(GEN7_GT_MODE,
   6975 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6976 
   6977 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   6978 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   6979 	snpcr |= GEN6_MBC_SNPCR_MED;
   6980 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   6981 
   6982 	if (!HAS_PCH_NOP(dev))
   6983 		cpt_init_clock_gating(dev);
   6984 
   6985 	gen6_check_mch_setup(dev);
   6986 }
   6987 
   6988 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
   6989 {
   6990         u32 val;
   6991 
   6992         /*
   6993         * On driver load, a pipe may be active and driving a DSI display.
   6994         * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
   6995         * (and never recovering) in this case. intel_dsi_post_disable() will
   6996         * clear it when we turn off the display.
   6997         */
   6998         val = I915_READ(DSPCLK_GATE_D);
   6999         val &= DPOUNIT_CLOCK_GATE_DISABLE;
   7000         val |= VRHUNIT_CLOCK_GATE_DISABLE;
   7001         I915_WRITE(DSPCLK_GATE_D, val);
   7002 
   7003 	/*
   7004 	 * Disable trickle feed and enable pnd deadline calculation
   7005 	 */
   7006 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
   7007 	I915_WRITE(CBR1_VLV, 0);
   7008 }
   7009 
   7010 static void valleyview_init_clock_gating(struct drm_device *dev)
   7011 {
   7012 	struct drm_i915_private *dev_priv = dev->dev_private;
   7013 
   7014 	vlv_init_display_clock_gating(dev_priv);
   7015 
   7016 	/* WaDisableEarlyCull:vlv */
   7017 	I915_WRITE(_3D_CHICKEN3,
   7018 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   7019 
   7020 	/* WaDisableBackToBackFlipFix:vlv */
   7021 	I915_WRITE(IVB_CHICKEN3,
   7022 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   7023 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   7024 
   7025 	/* WaPsdDispatchEnable:vlv */
   7026 	/* WaDisablePSDDualDispatchEnable:vlv */
   7027 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   7028 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
   7029 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   7030 
   7031 	/* WaDisable_RenderCache_OperationalFlush:vlv */
   7032 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7033 
   7034 	/* WaForceL3Serialization:vlv */
   7035 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   7036 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   7037 
   7038 	/* WaDisableDopClockGating:vlv */
   7039 	I915_WRITE(GEN7_ROW_CHICKEN2,
   7040 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   7041 
   7042 	/* This is required by WaCatErrorRejectionIssue:vlv */
   7043 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   7044 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   7045 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   7046 
   7047 	gen7_setup_fixed_func_scheduler(dev_priv);
   7048 
   7049 	/*
   7050 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   7051 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
   7052 	 */
   7053 	I915_WRITE(GEN6_UCGCTL2,
   7054 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   7055 
   7056 	/* WaDisableL3Bank2xClockGate:vlv
   7057 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
   7058 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
   7059 	I915_WRITE(GEN7_UCGCTL4,
   7060 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   7061 
   7062 	/*
   7063 	 * BSpec says this must be set, even though
   7064 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
   7065 	 */
   7066 	I915_WRITE(CACHE_MODE_1,
   7067 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   7068 
   7069 	/*
   7070 	 * BSpec recommends 8x4 when MSAA is used,
   7071 	 * however in practice 16x4 seems fastest.
   7072 	 *
   7073 	 * Note that PS/WM thread counts depend on the WIZ hashing
   7074 	 * disable bit, which we don't touch here, but it's good
   7075 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   7076 	 */
   7077 	I915_WRITE(GEN7_GT_MODE,
   7078 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   7079 
   7080 	/*
   7081 	 * WaIncreaseL3CreditsForVLVB0:vlv
   7082 	 * This is the hardware default actually.
   7083 	 */
   7084 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
   7085 
   7086 	/*
   7087 	 * WaDisableVLVClockGating_VBIIssue:vlv
   7088 	 * Disable clock gating on th GCFG unit to prevent a delay
   7089 	 * in the reporting of vblank events.
   7090 	 */
   7091 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   7092 }
   7093 
   7094 static void cherryview_init_clock_gating(struct drm_device *dev)
   7095 {
   7096 	struct drm_i915_private *dev_priv = dev->dev_private;
   7097 
   7098 	vlv_init_display_clock_gating(dev_priv);
   7099 
   7100 	/* WaVSRefCountFullforceMissDisable:chv */
   7101 	/* WaDSRefCountFullforceMissDisable:chv */
   7102 	I915_WRITE(GEN7_FF_THREAD_MODE,
   7103 		   I915_READ(GEN7_FF_THREAD_MODE) &
   7104 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   7105 
   7106 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
   7107 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   7108 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   7109 
   7110 	/* WaDisableCSUnitClockGating:chv */
   7111 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
   7112 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   7113 
   7114 	/* WaDisableSDEUnitClockGating:chv */
   7115 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   7116 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   7117 
   7118 	/*
   7119 	 * GTT cache may not work with big pages, so if those
   7120 	 * are ever enabled GTT cache may need to be disabled.
   7121 	 */
   7122 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
   7123 }
   7124 
   7125 static void g4x_init_clock_gating(struct drm_device *dev)
   7126 {
   7127 	struct drm_i915_private *dev_priv = dev->dev_private;
   7128 	uint32_t dspclk_gate;
   7129 
   7130 	I915_WRITE(RENCLK_GATE_D1, 0);
   7131 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   7132 		   GS_UNIT_CLOCK_GATE_DISABLE |
   7133 		   CL_UNIT_CLOCK_GATE_DISABLE);
   7134 	I915_WRITE(RAMCLK_GATE_D, 0);
   7135 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   7136 		OVRUNIT_CLOCK_GATE_DISABLE |
   7137 		OVCUNIT_CLOCK_GATE_DISABLE;
   7138 	if (IS_GM45(dev))
   7139 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   7140 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   7141 
   7142 	/* WaDisableRenderCachePipelinedFlush */
   7143 	I915_WRITE(CACHE_MODE_0,
   7144 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   7145 
   7146 	/* WaDisable_RenderCache_OperationalFlush:g4x */
   7147 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7148 
   7149 	g4x_disable_trickle_feed(dev);
   7150 }
   7151 
   7152 static void crestline_init_clock_gating(struct drm_device *dev)
   7153 {
   7154 	struct drm_i915_private *dev_priv = dev->dev_private;
   7155 
   7156 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   7157 	I915_WRITE(RENCLK_GATE_D2, 0);
   7158 	I915_WRITE(DSPCLK_GATE_D, 0);
   7159 	I915_WRITE(RAMCLK_GATE_D, 0);
   7160 	I915_WRITE16(DEUC, 0);
   7161 	I915_WRITE(MI_ARB_STATE,
   7162 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7163 
   7164 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
   7165 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7166 }
   7167 
   7168 static void broadwater_init_clock_gating(struct drm_device *dev)
   7169 {
   7170 	struct drm_i915_private *dev_priv = dev->dev_private;
   7171 
   7172 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   7173 		   I965_RCC_CLOCK_GATE_DISABLE |
   7174 		   I965_RCPB_CLOCK_GATE_DISABLE |
   7175 		   I965_ISC_CLOCK_GATE_DISABLE |
   7176 		   I965_FBC_CLOCK_GATE_DISABLE);
   7177 	I915_WRITE(RENCLK_GATE_D2, 0);
   7178 	I915_WRITE(MI_ARB_STATE,
   7179 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7180 
   7181 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
   7182 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7183 }
   7184 
   7185 static void gen3_init_clock_gating(struct drm_device *dev)
   7186 {
   7187 	struct drm_i915_private *dev_priv = dev->dev_private;
   7188 	u32 dstate = I915_READ(D_STATE);
   7189 
   7190 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   7191 		DSTATE_DOT_CLOCK_GATING;
   7192 	I915_WRITE(D_STATE, dstate);
   7193 
   7194 	if (IS_PINEVIEW(dev))
   7195 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   7196 
   7197 	/* IIR "flip pending" means done if this bit is set */
   7198 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   7199 
   7200 	/* interrupts should cause a wake up from C3 */
   7201 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
   7202 
   7203 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   7204 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   7205 
   7206 	I915_WRITE(MI_ARB_STATE,
   7207 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7208 }
   7209 
   7210 static void i85x_init_clock_gating(struct drm_device *dev)
   7211 {
   7212 	struct drm_i915_private *dev_priv = dev->dev_private;
   7213 
   7214 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   7215 
   7216 	/* interrupts should cause a wake up from C3 */
   7217 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
   7218 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
   7219 
   7220 	I915_WRITE(MEM_MODE,
   7221 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
   7222 }
   7223 
   7224 static void i830_init_clock_gating(struct drm_device *dev)
   7225 {
   7226 	struct drm_i915_private *dev_priv = dev->dev_private;
   7227 
   7228 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   7229 
   7230 	I915_WRITE(MEM_MODE,
   7231 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
   7232 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
   7233 }
   7234 
   7235 void intel_init_clock_gating(struct drm_device *dev)
   7236 {
   7237 	struct drm_i915_private *dev_priv = dev->dev_private;
   7238 
   7239 	if (dev_priv->display.init_clock_gating)
   7240 		dev_priv->display.init_clock_gating(dev);
   7241 }
   7242 
   7243 void intel_suspend_hw(struct drm_device *dev)
   7244 {
   7245 	if (HAS_PCH_LPT(dev))
   7246 		lpt_suspend_hw(dev);
   7247 }
   7248 
   7249 /* Set up chip specific power management-related functions */
   7250 void intel_init_pm(struct drm_device *dev)
   7251 {
   7252 	struct drm_i915_private *dev_priv = dev->dev_private;
   7253 
   7254 	intel_fbc_init(dev_priv);
   7255 
   7256 	/* For cxsr */
   7257 	if (IS_PINEVIEW(dev))
   7258 		i915_pineview_get_mem_freq(dev);
   7259 	else if (IS_GEN5(dev))
   7260 		i915_ironlake_get_mem_freq(dev);
   7261 
   7262 	/* For FIFO watermark updates */
   7263 	if (INTEL_INFO(dev)->gen >= 9) {
   7264 		skl_setup_wm_latency(dev);
   7265 
   7266 		if (IS_BROXTON(dev))
   7267 			dev_priv->display.init_clock_gating =
   7268 				bxt_init_clock_gating;
   7269 		dev_priv->display.update_wm = skl_update_wm;
   7270 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
   7271 	} else if (HAS_PCH_SPLIT(dev)) {
   7272 		ilk_setup_wm_latency(dev);
   7273 
   7274 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
   7275 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
   7276 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
   7277 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
   7278 			dev_priv->display.update_wm = ilk_update_wm;
   7279 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
   7280 		} else {
   7281 			DRM_DEBUG_KMS("Failed to read display plane latency. "
   7282 				      "Disable CxSR\n");
   7283 		}
   7284 
   7285 		if (IS_GEN5(dev))
   7286 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   7287 		else if (IS_GEN6(dev))
   7288 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   7289 		else if (IS_IVYBRIDGE(dev))
   7290 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   7291 		else if (IS_HASWELL(dev))
   7292 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   7293 		else if (INTEL_INFO(dev)->gen == 8)
   7294 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
   7295 	} else if (IS_CHERRYVIEW(dev)) {
   7296 		vlv_setup_wm_latency(dev);
   7297 
   7298 		dev_priv->display.update_wm = vlv_update_wm;
   7299 		dev_priv->display.init_clock_gating =
   7300 			cherryview_init_clock_gating;
   7301 	} else if (IS_VALLEYVIEW(dev)) {
   7302 		vlv_setup_wm_latency(dev);
   7303 
   7304 		dev_priv->display.update_wm = vlv_update_wm;
   7305 		dev_priv->display.init_clock_gating =
   7306 			valleyview_init_clock_gating;
   7307 	} else if (IS_PINEVIEW(dev)) {
   7308 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   7309 					    dev_priv->is_ddr3,
   7310 					    dev_priv->fsb_freq,
   7311 					    dev_priv->mem_freq)) {
   7312 			DRM_INFO("failed to find known CxSR latency "
   7313 				 "(found ddr%s fsb freq %d, mem freq %d), "
   7314 				 "disabling CxSR\n",
   7315 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   7316 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   7317 			/* Disable CxSR and never update its watermark again */
   7318 			intel_set_memory_cxsr(dev_priv, false);
   7319 			dev_priv->display.update_wm = NULL;
   7320 		} else
   7321 			dev_priv->display.update_wm = pineview_update_wm;
   7322 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   7323 	} else if (IS_G4X(dev)) {
   7324 		dev_priv->display.update_wm = g4x_update_wm;
   7325 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   7326 	} else if (IS_GEN4(dev)) {
   7327 		dev_priv->display.update_wm = i965_update_wm;
   7328 		if (IS_CRESTLINE(dev))
   7329 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   7330 		else if (IS_BROADWATER(dev))
   7331 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   7332 	} else if (IS_GEN3(dev)) {
   7333 		dev_priv->display.update_wm = i9xx_update_wm;
   7334 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   7335 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   7336 	} else if (IS_GEN2(dev)) {
   7337 		if (INTEL_INFO(dev)->num_pipes == 1) {
   7338 			dev_priv->display.update_wm = i845_update_wm;
   7339 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   7340 		} else {
   7341 			dev_priv->display.update_wm = i9xx_update_wm;
   7342 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   7343 		}
   7344 
   7345 		if (IS_I85X(dev) || IS_I865G(dev))
   7346 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   7347 		else
   7348 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
   7349 	} else {
   7350 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
   7351 	}
   7352 }
   7353 
   7354 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
   7355 {
   7356 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   7357 
   7358 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   7359 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   7360 		return -EAGAIN;
   7361 	}
   7362 
   7363 	I915_WRITE(GEN6_PCODE_DATA, *val);
   7364 	I915_WRITE(GEN6_PCODE_DATA1, 0);
   7365 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   7366 
   7367 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   7368 		     500)) {
   7369 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   7370 		return -ETIMEDOUT;
   7371 	}
   7372 
   7373 	*val = I915_READ(GEN6_PCODE_DATA);
   7374 	I915_WRITE(GEN6_PCODE_DATA, 0);
   7375 
   7376 	return 0;
   7377 }
   7378 
   7379 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
   7380 {
   7381 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   7382 
   7383 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   7384 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   7385 		return -EAGAIN;
   7386 	}
   7387 
   7388 	I915_WRITE(GEN6_PCODE_DATA, val);
   7389 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   7390 
   7391 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   7392 		     500)) {
   7393 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   7394 		return -ETIMEDOUT;
   7395 	}
   7396 
   7397 	I915_WRITE(GEN6_PCODE_DATA, 0);
   7398 
   7399 	return 0;
   7400 }
   7401 
   7402 static int vlv_gpu_freq_div(unsigned int czclk_freq)
   7403 {
   7404 	switch (czclk_freq) {
   7405 	case 200:
   7406 		return 10;
   7407 	case 267:
   7408 		return 12;
   7409 	case 320:
   7410 	case 333:
   7411 		return 16;
   7412 	case 400:
   7413 		return 20;
   7414 	default:
   7415 		return -1;
   7416 	}
   7417 }
   7418 
   7419 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7420 {
   7421 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7422 
   7423 	div = vlv_gpu_freq_div(czclk_freq);
   7424 	if (div < 0)
   7425 		return div;
   7426 
   7427 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
   7428 }
   7429 
   7430 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7431 {
   7432 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7433 
   7434 	mul = vlv_gpu_freq_div(czclk_freq);
   7435 	if (mul < 0)
   7436 		return mul;
   7437 
   7438 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
   7439 }
   7440 
   7441 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7442 {
   7443 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7444 
   7445 	div = vlv_gpu_freq_div(czclk_freq) / 2;
   7446 	if (div < 0)
   7447 		return div;
   7448 
   7449 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
   7450 }
   7451 
   7452 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7453 {
   7454 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7455 
   7456 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
   7457 	if (mul < 0)
   7458 		return mul;
   7459 
   7460 	/* CHV needs even values */
   7461 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
   7462 }
   7463 
   7464 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7465 {
   7466 	if (IS_GEN9(dev_priv->dev))
   7467 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
   7468 					 GEN9_FREQ_SCALER);
   7469 	else if (IS_CHERRYVIEW(dev_priv->dev))
   7470 		return chv_gpu_freq(dev_priv, val);
   7471 	else if (IS_VALLEYVIEW(dev_priv->dev))
   7472 		return byt_gpu_freq(dev_priv, val);
   7473 	else
   7474 		return val * GT_FREQUENCY_MULTIPLIER;
   7475 }
   7476 
   7477 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7478 {
   7479 	if (IS_GEN9(dev_priv->dev))
   7480 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
   7481 					 GT_FREQUENCY_MULTIPLIER);
   7482 	else if (IS_CHERRYVIEW(dev_priv->dev))
   7483 		return chv_freq_opcode(dev_priv, val);
   7484 	else if (IS_VALLEYVIEW(dev_priv->dev))
   7485 		return byt_freq_opcode(dev_priv, val);
   7486 	else
   7487 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
   7488 }
   7489 
   7490 struct request_boost {
   7491 	struct work_struct work;
   7492 	struct drm_i915_gem_request *req;
   7493 };
   7494 
   7495 static void __intel_rps_boost_work(struct work_struct *work)
   7496 {
   7497 	struct request_boost *boost = container_of(work, struct request_boost, work);
   7498 	struct drm_i915_gem_request *req = boost->req;
   7499 
   7500 	if (!i915_gem_request_completed(req, true))
   7501 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
   7502 			       req->emitted_jiffies);
   7503 
   7504 	i915_gem_request_unreference__unlocked(req);
   7505 	kfree(boost);
   7506 }
   7507 
   7508 void intel_queue_rps_boost_for_request(struct drm_device *dev,
   7509 				       struct drm_i915_gem_request *req)
   7510 {
   7511 	struct request_boost *boost;
   7512 
   7513 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
   7514 		return;
   7515 
   7516 	if (i915_gem_request_completed(req, true))
   7517 		return;
   7518 
   7519 	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
   7520 	if (boost == NULL)
   7521 		return;
   7522 
   7523 	i915_gem_request_reference(req);
   7524 	boost->req = req;
   7525 
   7526 	INIT_WORK(&boost->work, __intel_rps_boost_work);
   7527 	queue_work(to_i915(dev)->wq, &boost->work);
   7528 }
   7529 
   7530 void intel_pm_setup(struct drm_device *dev)
   7531 {
   7532 	struct drm_i915_private *dev_priv = dev->dev_private;
   7533 
   7534 #ifdef __NetBSD__
   7535 	linux_mutex_init(&dev_priv->rps.hw_lock);
   7536 #else
   7537 	mutex_init(&dev_priv->rps.hw_lock);
   7538 #endif
   7539 	spin_lock_init(&dev_priv->rps.client_lock);
   7540 
   7541 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   7542 			  intel_gen6_powersave_work);
   7543 	INIT_LIST_HEAD(&dev_priv->rps.clients);
   7544 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
   7545 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
   7546 
   7547 	dev_priv->pm.suspended = false;
   7548 }
   7549