Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.20.2.1
      1 /*	$NetBSD: intel_pm.c,v 1.20.2.1 2020/02/29 20:20:14 ad Exp $	*/
      2 
      3 /*
      4  * Copyright  2012 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: intel_pm.c,v 1.20.2.1 2020/02/29 20:20:14 ad Exp $");
     32 
     33 #include <linux/cpufreq.h>
     34 #include "i915_drv.h"
     35 #include "i915_trace.h"
     36 #include "intel_drv.h"
     37 #ifndef __NetBSD__
     38 #include "../../../platform/x86/intel_ips.h"
     39 #endif
     40 #include <linux/module.h>
     41 
     42 #include <linux/nbsd-namespace.h>
     43 
     44 /**
     45  * RC6 is a special power stage which allows the GPU to enter an very
     46  * low-voltage mode when idle, using down to 0V while at this stage.  This
     47  * stage is entered automatically when the GPU is idle when RC6 support is
     48  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
     49  *
     50  * There are different RC6 modes available in Intel GPU, which differentiate
     51  * among each other with the latency required to enter and leave RC6 and
     52  * voltage consumed by the GPU in different states.
     53  *
     54  * The combination of the following flags define which states GPU is allowed
     55  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
     56  * RC6pp is deepest RC6. Their support by hardware varies according to the
     57  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
     58  * which brings the most power savings; deeper states save more power, but
     59  * require higher latency to switch to and wake up.
     60  */
     61 #define INTEL_RC6_ENABLE			(1<<0)
     62 #define INTEL_RC6p_ENABLE			(1<<1)
     63 #define INTEL_RC6pp_ENABLE			(1<<2)
     64 
     65 static void bxt_init_clock_gating(struct drm_device *dev)
     66 {
     67 	struct drm_i915_private *dev_priv = dev->dev_private;
     68 
     69 	/* WaDisableSDEUnitClockGating:bxt */
     70 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
     71 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
     72 
     73 	/*
     74 	 * FIXME:
     75 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
     76 	 */
     77 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
     78 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
     79 
     80 	/*
     81 	 * Lower the display internal timeout.
     82 	 * This is needed to avoid any hard hangs when DSI port PLL
     83 	 * is off and a MMIO access is attempted by any privilege
     84 	 * application, using batch buffers or any other means.
     85 	 */
     86 	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
     87 }
     88 
     89 static void i915_pineview_get_mem_freq(struct drm_device *dev)
     90 {
     91 	struct drm_i915_private *dev_priv = dev->dev_private;
     92 	u32 tmp;
     93 
     94 	tmp = I915_READ(CLKCFG);
     95 
     96 	switch (tmp & CLKCFG_FSB_MASK) {
     97 	case CLKCFG_FSB_533:
     98 		dev_priv->fsb_freq = 533; /* 133*4 */
     99 		break;
    100 	case CLKCFG_FSB_800:
    101 		dev_priv->fsb_freq = 800; /* 200*4 */
    102 		break;
    103 	case CLKCFG_FSB_667:
    104 		dev_priv->fsb_freq =  667; /* 167*4 */
    105 		break;
    106 	case CLKCFG_FSB_400:
    107 		dev_priv->fsb_freq = 400; /* 100*4 */
    108 		break;
    109 	}
    110 
    111 	switch (tmp & CLKCFG_MEM_MASK) {
    112 	case CLKCFG_MEM_533:
    113 		dev_priv->mem_freq = 533;
    114 		break;
    115 	case CLKCFG_MEM_667:
    116 		dev_priv->mem_freq = 667;
    117 		break;
    118 	case CLKCFG_MEM_800:
    119 		dev_priv->mem_freq = 800;
    120 		break;
    121 	}
    122 
    123 	/* detect pineview DDR3 setting */
    124 	tmp = I915_READ(CSHRDDR3CTL);
    125 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    126 }
    127 
    128 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    129 {
    130 	struct drm_i915_private *dev_priv = dev->dev_private;
    131 	u16 ddrpll, csipll;
    132 
    133 	ddrpll = I915_READ16(DDRMPLL1);
    134 	csipll = I915_READ16(CSIPLL0);
    135 
    136 	switch (ddrpll & 0xff) {
    137 	case 0xc:
    138 		dev_priv->mem_freq = 800;
    139 		break;
    140 	case 0x10:
    141 		dev_priv->mem_freq = 1066;
    142 		break;
    143 	case 0x14:
    144 		dev_priv->mem_freq = 1333;
    145 		break;
    146 	case 0x18:
    147 		dev_priv->mem_freq = 1600;
    148 		break;
    149 	default:
    150 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    151 				 ddrpll & 0xff);
    152 		dev_priv->mem_freq = 0;
    153 		break;
    154 	}
    155 
    156 	dev_priv->ips.r_t = dev_priv->mem_freq;
    157 
    158 	switch (csipll & 0x3ff) {
    159 	case 0x00c:
    160 		dev_priv->fsb_freq = 3200;
    161 		break;
    162 	case 0x00e:
    163 		dev_priv->fsb_freq = 3733;
    164 		break;
    165 	case 0x010:
    166 		dev_priv->fsb_freq = 4266;
    167 		break;
    168 	case 0x012:
    169 		dev_priv->fsb_freq = 4800;
    170 		break;
    171 	case 0x014:
    172 		dev_priv->fsb_freq = 5333;
    173 		break;
    174 	case 0x016:
    175 		dev_priv->fsb_freq = 5866;
    176 		break;
    177 	case 0x018:
    178 		dev_priv->fsb_freq = 6400;
    179 		break;
    180 	default:
    181 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    182 				 csipll & 0x3ff);
    183 		dev_priv->fsb_freq = 0;
    184 		break;
    185 	}
    186 
    187 	if (dev_priv->fsb_freq == 3200) {
    188 		dev_priv->ips.c_m = 0;
    189 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    190 		dev_priv->ips.c_m = 1;
    191 	} else {
    192 		dev_priv->ips.c_m = 2;
    193 	}
    194 }
    195 
    196 static const struct cxsr_latency cxsr_latency_table[] = {
    197 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    198 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    199 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    200 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    201 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    202 
    203 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    204 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    205 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    206 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    207 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    208 
    209 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    210 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    211 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    212 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    213 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    214 
    215 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    216 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    217 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    218 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    219 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    220 
    221 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    222 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    223 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    224 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    225 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    226 
    227 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    228 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    229 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    230 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    231 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    232 };
    233 
    234 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    235 							 int is_ddr3,
    236 							 int fsb,
    237 							 int mem)
    238 {
    239 	const struct cxsr_latency *latency;
    240 	int i;
    241 
    242 	if (fsb == 0 || mem == 0)
    243 		return NULL;
    244 
    245 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    246 		latency = &cxsr_latency_table[i];
    247 		if (is_desktop == latency->is_desktop &&
    248 		    is_ddr3 == latency->is_ddr3 &&
    249 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    250 			return latency;
    251 	}
    252 
    253 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    254 
    255 	return NULL;
    256 }
    257 
    258 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
    259 {
    260 	u32 val;
    261 
    262 	mutex_lock(&dev_priv->rps.hw_lock);
    263 
    264 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
    265 	if (enable)
    266 		val &= ~FORCE_DDR_HIGH_FREQ;
    267 	else
    268 		val |= FORCE_DDR_HIGH_FREQ;
    269 	val &= ~FORCE_DDR_LOW_FREQ;
    270 	val |= FORCE_DDR_FREQ_REQ_ACK;
    271 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
    272 
    273 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
    274 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
    275 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
    276 
    277 	mutex_unlock(&dev_priv->rps.hw_lock);
    278 }
    279 
    280 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
    281 {
    282 	u32 val;
    283 
    284 	mutex_lock(&dev_priv->rps.hw_lock);
    285 
    286 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
    287 	if (enable)
    288 		val |= DSP_MAXFIFO_PM5_ENABLE;
    289 	else
    290 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
    291 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
    292 
    293 	mutex_unlock(&dev_priv->rps.hw_lock);
    294 }
    295 
    296 #define FW_WM(value, plane) \
    297 	(((u32)(value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
    298 
    299 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
    300 {
    301 	struct drm_device *dev = dev_priv->dev;
    302 	u32 val;
    303 
    304 	if (IS_VALLEYVIEW(dev)) {
    305 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
    306 		POSTING_READ(FW_BLC_SELF_VLV);
    307 		dev_priv->wm.vlv.cxsr = enable;
    308 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
    309 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
    310 		POSTING_READ(FW_BLC_SELF);
    311 	} else if (IS_PINEVIEW(dev)) {
    312 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
    313 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
    314 		I915_WRITE(DSPFW3, val);
    315 		POSTING_READ(DSPFW3);
    316 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
    317 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
    318 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
    319 		I915_WRITE(FW_BLC_SELF, val);
    320 		POSTING_READ(FW_BLC_SELF);
    321 	} else if (IS_I915GM(dev)) {
    322 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
    323 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
    324 		I915_WRITE(INSTPM, val);
    325 		POSTING_READ(INSTPM);
    326 	} else {
    327 		return;
    328 	}
    329 
    330 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
    331 		      enable ? "enabled" : "disabled");
    332 }
    333 
    334 
    335 /*
    336  * Latency for FIFO fetches is dependent on several factors:
    337  *   - memory configuration (speed, channels)
    338  *   - chipset
    339  *   - current MCH state
    340  * It can be fairly high in some situations, so here we assume a fairly
    341  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    342  * set this value too high, the FIFO will fetch frequently to stay full)
    343  * and power consumption (set it too low to save power and we might see
    344  * FIFO underruns and display "flicker").
    345  *
    346  * A value of 5us seems to be a good balance; safe for very low end
    347  * platforms but not overly aggressive on lower latency configs.
    348  */
    349 static const int pessimal_latency_ns = 5000;
    350 
    351 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
    352 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
    353 
    354 static int vlv_get_fifo_size(struct drm_device *dev,
    355 			      enum pipe pipe, int plane)
    356 {
    357 	struct drm_i915_private *dev_priv = dev->dev_private;
    358 	int sprite0_start, sprite1_start, size;
    359 
    360 	switch (pipe) {
    361 		uint32_t dsparb, dsparb2, dsparb3;
    362 	case PIPE_A:
    363 		dsparb = I915_READ(DSPARB);
    364 		dsparb2 = I915_READ(DSPARB2);
    365 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
    366 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
    367 		break;
    368 	case PIPE_B:
    369 		dsparb = I915_READ(DSPARB);
    370 		dsparb2 = I915_READ(DSPARB2);
    371 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
    372 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
    373 		break;
    374 	case PIPE_C:
    375 		dsparb2 = I915_READ(DSPARB2);
    376 		dsparb3 = I915_READ(DSPARB3);
    377 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
    378 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
    379 		break;
    380 	default:
    381 		return 0;
    382 	}
    383 
    384 	switch (plane) {
    385 	case 0:
    386 		size = sprite0_start;
    387 		break;
    388 	case 1:
    389 		size = sprite1_start - sprite0_start;
    390 		break;
    391 	case 2:
    392 		size = 512 - 1 - sprite1_start;
    393 		break;
    394 	default:
    395 		return 0;
    396 	}
    397 
    398 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
    399 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
    400 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
    401 		      size);
    402 
    403 	return size;
    404 }
    405 
    406 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    407 {
    408 	struct drm_i915_private *dev_priv = dev->dev_private;
    409 	uint32_t dsparb = I915_READ(DSPARB);
    410 	int size;
    411 
    412 	size = dsparb & 0x7f;
    413 	if (plane)
    414 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    415 
    416 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    417 		      plane ? "B" : "A", size);
    418 
    419 	return size;
    420 }
    421 
    422 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    423 {
    424 	struct drm_i915_private *dev_priv = dev->dev_private;
    425 	uint32_t dsparb = I915_READ(DSPARB);
    426 	int size;
    427 
    428 	size = dsparb & 0x1ff;
    429 	if (plane)
    430 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    431 	size >>= 1; /* Convert to cachelines */
    432 
    433 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    434 		      plane ? "B" : "A", size);
    435 
    436 	return size;
    437 }
    438 
    439 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    440 {
    441 	struct drm_i915_private *dev_priv = dev->dev_private;
    442 	uint32_t dsparb = I915_READ(DSPARB);
    443 	int size;
    444 
    445 	size = dsparb & 0x7f;
    446 	size >>= 2; /* Convert to cachelines */
    447 
    448 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    449 		      plane ? "B" : "A",
    450 		      size);
    451 
    452 	return size;
    453 }
    454 
    455 /* Pineview has different values for various configs */
    456 static const struct intel_watermark_params pineview_display_wm = {
    457 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    458 	.max_wm = PINEVIEW_MAX_WM,
    459 	.default_wm = PINEVIEW_DFT_WM,
    460 	.guard_size = PINEVIEW_GUARD_WM,
    461 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    462 };
    463 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    464 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    465 	.max_wm = PINEVIEW_MAX_WM,
    466 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
    467 	.guard_size = PINEVIEW_GUARD_WM,
    468 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    469 };
    470 static const struct intel_watermark_params pineview_cursor_wm = {
    471 	.fifo_size = PINEVIEW_CURSOR_FIFO,
    472 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    473 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    474 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    475 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    476 };
    477 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    478 	.fifo_size = PINEVIEW_CURSOR_FIFO,
    479 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    480 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    481 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    482 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    483 };
    484 static const struct intel_watermark_params g4x_wm_info = {
    485 	.fifo_size = G4X_FIFO_SIZE,
    486 	.max_wm = G4X_MAX_WM,
    487 	.default_wm = G4X_MAX_WM,
    488 	.guard_size = 2,
    489 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    490 };
    491 static const struct intel_watermark_params g4x_cursor_wm_info = {
    492 	.fifo_size = I965_CURSOR_FIFO,
    493 	.max_wm = I965_CURSOR_MAX_WM,
    494 	.default_wm = I965_CURSOR_DFT_WM,
    495 	.guard_size = 2,
    496 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    497 };
    498 static const struct intel_watermark_params valleyview_wm_info __unused = {
    499 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
    500 	.max_wm = VALLEYVIEW_MAX_WM,
    501 	.default_wm = VALLEYVIEW_MAX_WM,
    502 	.guard_size = 2,
    503 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    504 };
    505 static const struct intel_watermark_params valleyview_cursor_wm_info __unused = {
    506 	.fifo_size = I965_CURSOR_FIFO,
    507 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
    508 	.default_wm = I965_CURSOR_DFT_WM,
    509 	.guard_size = 2,
    510 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    511 };
    512 static const struct intel_watermark_params i965_cursor_wm_info = {
    513 	.fifo_size = I965_CURSOR_FIFO,
    514 	.max_wm = I965_CURSOR_MAX_WM,
    515 	.default_wm = I965_CURSOR_DFT_WM,
    516 	.guard_size = 2,
    517 	.cacheline_size = I915_FIFO_LINE_SIZE,
    518 };
    519 static const struct intel_watermark_params i945_wm_info = {
    520 	.fifo_size = I945_FIFO_SIZE,
    521 	.max_wm = I915_MAX_WM,
    522 	.default_wm = 1,
    523 	.guard_size = 2,
    524 	.cacheline_size = I915_FIFO_LINE_SIZE,
    525 };
    526 static const struct intel_watermark_params i915_wm_info = {
    527 	.fifo_size = I915_FIFO_SIZE,
    528 	.max_wm = I915_MAX_WM,
    529 	.default_wm = 1,
    530 	.guard_size = 2,
    531 	.cacheline_size = I915_FIFO_LINE_SIZE,
    532 };
    533 static const struct intel_watermark_params i830_a_wm_info = {
    534 	.fifo_size = I855GM_FIFO_SIZE,
    535 	.max_wm = I915_MAX_WM,
    536 	.default_wm = 1,
    537 	.guard_size = 2,
    538 	.cacheline_size = I830_FIFO_LINE_SIZE,
    539 };
    540 static const struct intel_watermark_params i830_bc_wm_info = {
    541 	.fifo_size = I855GM_FIFO_SIZE,
    542 	.max_wm = I915_MAX_WM/2,
    543 	.default_wm = 1,
    544 	.guard_size = 2,
    545 	.cacheline_size = I830_FIFO_LINE_SIZE,
    546 };
    547 static const struct intel_watermark_params i845_wm_info = {
    548 	.fifo_size = I830_FIFO_SIZE,
    549 	.max_wm = I915_MAX_WM,
    550 	.default_wm = 1,
    551 	.guard_size = 2,
    552 	.cacheline_size = I830_FIFO_LINE_SIZE,
    553 };
    554 
    555 /**
    556  * intel_calculate_wm - calculate watermark level
    557  * @clock_in_khz: pixel clock
    558  * @wm: chip FIFO params
    559  * @pixel_size: display pixel size
    560  * @latency_ns: memory latency for the platform
    561  *
    562  * Calculate the watermark level (the level at which the display plane will
    563  * start fetching from memory again).  Each chip has a different display
    564  * FIFO size and allocation, so the caller needs to figure that out and pass
    565  * in the correct intel_watermark_params structure.
    566  *
    567  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    568  * on the pixel size.  When it reaches the watermark level, it'll start
    569  * fetching FIFO line sized based chunks from memory until the FIFO fills
    570  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    571  * will occur, and a display engine hang could result.
    572  */
    573 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    574 					const struct intel_watermark_params *wm,
    575 					int fifo_size,
    576 					int pixel_size,
    577 					unsigned long latency_ns)
    578 {
    579 	long entries_required, wm_size;
    580 
    581 	/*
    582 	 * Note: we need to make sure we don't overflow for various clock &
    583 	 * latency values.
    584 	 * clocks go from a few thousand to several hundred thousand.
    585 	 * latency is usually a few thousand
    586 	 */
    587 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
    588 		1000;
    589 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
    590 
    591 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
    592 
    593 	wm_size = fifo_size - (entries_required + wm->guard_size);
    594 
    595 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
    596 
    597 	/* Don't promote wm_size to unsigned... */
    598 	if (wm_size > (long)wm->max_wm)
    599 		wm_size = wm->max_wm;
    600 	if (wm_size <= 0)
    601 		wm_size = wm->default_wm;
    602 
    603 	/*
    604 	 * Bspec seems to indicate that the value shouldn't be lower than
    605 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
    606 	 * Lets go for 8 which is the burst size since certain platforms
    607 	 * already use a hardcoded 8 (which is what the spec says should be
    608 	 * done).
    609 	 */
    610 	if (wm_size <= 8)
    611 		wm_size = 8;
    612 
    613 	return wm_size;
    614 }
    615 
    616 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
    617 {
    618 	struct drm_crtc *crtc, *enabled = NULL;
    619 
    620 	for_each_crtc(dev, crtc) {
    621 		if (intel_crtc_active(crtc)) {
    622 			if (enabled)
    623 				return NULL;
    624 			enabled = crtc;
    625 		}
    626 	}
    627 
    628 	return enabled;
    629 }
    630 
    631 static void pineview_update_wm(struct drm_crtc *unused_crtc)
    632 {
    633 	struct drm_device *dev = unused_crtc->dev;
    634 	struct drm_i915_private *dev_priv = dev->dev_private;
    635 	struct drm_crtc *crtc;
    636 	const struct cxsr_latency *latency;
    637 	u32 reg;
    638 	unsigned long wm;
    639 
    640 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
    641 					 dev_priv->fsb_freq, dev_priv->mem_freq);
    642 	if (!latency) {
    643 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    644 		intel_set_memory_cxsr(dev_priv, false);
    645 		return;
    646 	}
    647 
    648 	crtc = single_enabled_crtc(dev);
    649 	if (crtc) {
    650 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    651 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    652 		int clock = adjusted_mode->crtc_clock;
    653 
    654 		/* Display SR */
    655 		wm = intel_calculate_wm(clock, &pineview_display_wm,
    656 					pineview_display_wm.fifo_size,
    657 					pixel_size, latency->display_sr);
    658 		reg = I915_READ(DSPFW1);
    659 		reg &= ~DSPFW_SR_MASK;
    660 		reg |= FW_WM(wm, SR);
    661 		I915_WRITE(DSPFW1, reg);
    662 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
    663 
    664 		/* cursor SR */
    665 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
    666 					pineview_display_wm.fifo_size,
    667 					pixel_size, latency->cursor_sr);
    668 		reg = I915_READ(DSPFW3);
    669 		reg &= ~DSPFW_CURSOR_SR_MASK;
    670 		reg |= FW_WM(wm, CURSOR_SR);
    671 		I915_WRITE(DSPFW3, reg);
    672 
    673 		/* Display HPLL off SR */
    674 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
    675 					pineview_display_hplloff_wm.fifo_size,
    676 					pixel_size, latency->display_hpll_disable);
    677 		reg = I915_READ(DSPFW3);
    678 		reg &= ~DSPFW_HPLL_SR_MASK;
    679 		reg |= FW_WM(wm, HPLL_SR);
    680 		I915_WRITE(DSPFW3, reg);
    681 
    682 		/* cursor HPLL off SR */
    683 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
    684 					pineview_display_hplloff_wm.fifo_size,
    685 					pixel_size, latency->cursor_hpll_disable);
    686 		reg = I915_READ(DSPFW3);
    687 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
    688 		reg |= FW_WM(wm, HPLL_CURSOR);
    689 		I915_WRITE(DSPFW3, reg);
    690 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
    691 
    692 		intel_set_memory_cxsr(dev_priv, true);
    693 	} else {
    694 		intel_set_memory_cxsr(dev_priv, false);
    695 	}
    696 }
    697 
    698 static bool g4x_compute_wm0(struct drm_device *dev,
    699 			    int plane,
    700 			    const struct intel_watermark_params *display,
    701 			    int display_latency_ns,
    702 			    const struct intel_watermark_params *cursor,
    703 			    int cursor_latency_ns,
    704 			    int *plane_wm,
    705 			    int *cursor_wm)
    706 {
    707 	struct drm_crtc *crtc;
    708 	const struct drm_display_mode *adjusted_mode;
    709 	int htotal, hdisplay, clock, pixel_size;
    710 	int line_time_us, line_count;
    711 	int entries, tlb_miss;
    712 
    713 	crtc = intel_get_crtc_for_plane(dev, plane);
    714 	if (!intel_crtc_active(crtc)) {
    715 		*cursor_wm = cursor->guard_size;
    716 		*plane_wm = display->guard_size;
    717 		return false;
    718 	}
    719 
    720 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    721 	clock = adjusted_mode->crtc_clock;
    722 	htotal = adjusted_mode->crtc_htotal;
    723 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
    724 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    725 
    726 	/* Use the small buffer method to calculate plane watermark */
    727 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
    728 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
    729 	if (tlb_miss > 0)
    730 		entries += tlb_miss;
    731 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
    732 	*plane_wm = entries + display->guard_size;
    733 	if (*plane_wm > (int)display->max_wm)
    734 		*plane_wm = display->max_wm;
    735 
    736 	/* Use the large buffer method to calculate cursor watermark */
    737 	line_time_us = max(htotal * 1000 / clock, 1);
    738 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
    739 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
    740 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
    741 	if (tlb_miss > 0)
    742 		entries += tlb_miss;
    743 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
    744 	*cursor_wm = entries + cursor->guard_size;
    745 	if (*cursor_wm > (int)cursor->max_wm)
    746 		*cursor_wm = (int)cursor->max_wm;
    747 
    748 	return true;
    749 }
    750 
    751 /*
    752  * Check the wm result.
    753  *
    754  * If any calculated watermark values is larger than the maximum value that
    755  * can be programmed into the associated watermark register, that watermark
    756  * must be disabled.
    757  */
    758 static bool g4x_check_srwm(struct drm_device *dev,
    759 			   int display_wm, int cursor_wm,
    760 			   const struct intel_watermark_params *display,
    761 			   const struct intel_watermark_params *cursor)
    762 {
    763 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
    764 		      display_wm, cursor_wm);
    765 
    766 	if (display_wm > display->max_wm) {
    767 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
    768 			      display_wm, display->max_wm);
    769 		return false;
    770 	}
    771 
    772 	if (cursor_wm > cursor->max_wm) {
    773 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
    774 			      cursor_wm, cursor->max_wm);
    775 		return false;
    776 	}
    777 
    778 	if (!(display_wm || cursor_wm)) {
    779 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
    780 		return false;
    781 	}
    782 
    783 	return true;
    784 }
    785 
    786 static bool g4x_compute_srwm(struct drm_device *dev,
    787 			     int plane,
    788 			     int latency_ns,
    789 			     const struct intel_watermark_params *display,
    790 			     const struct intel_watermark_params *cursor,
    791 			     int *display_wm, int *cursor_wm)
    792 {
    793 	struct drm_crtc *crtc;
    794 	const struct drm_display_mode *adjusted_mode;
    795 	int hdisplay, htotal, pixel_size, clock;
    796 	unsigned long line_time_us;
    797 	int line_count, line_size;
    798 	int small, large;
    799 	int entries;
    800 
    801 	if (!latency_ns) {
    802 		*display_wm = *cursor_wm = 0;
    803 		return false;
    804 	}
    805 
    806 	crtc = intel_get_crtc_for_plane(dev, plane);
    807 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    808 	clock = adjusted_mode->crtc_clock;
    809 	htotal = adjusted_mode->crtc_htotal;
    810 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
    811 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    812 
    813 	line_time_us = max(htotal * 1000 / clock, 1);
    814 	line_count = (latency_ns / line_time_us + 1000) / 1000;
    815 	line_size = hdisplay * pixel_size;
    816 
    817 	/* Use the minimum of the small and large buffer method for primary */
    818 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
    819 	large = line_count * line_size;
    820 
    821 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
    822 	*display_wm = entries + display->guard_size;
    823 
    824 	/* calculate the self-refresh watermark for display cursor */
    825 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
    826 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
    827 	*cursor_wm = entries + cursor->guard_size;
    828 
    829 	return g4x_check_srwm(dev,
    830 			      *display_wm, *cursor_wm,
    831 			      display, cursor);
    832 }
    833 
    834 #define FW_WM_VLV(value, plane) \
    835 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
    836 
    837 static void vlv_write_wm_values(struct intel_crtc *crtc,
    838 				const struct vlv_wm_values *wm)
    839 {
    840 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
    841 	enum pipe pipe = crtc->pipe;
    842 
    843 	I915_WRITE(VLV_DDL(pipe),
    844 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
    845 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
    846 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
    847 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
    848 
    849 	I915_WRITE(DSPFW1,
    850 		   FW_WM(wm->sr.plane, SR) |
    851 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
    852 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
    853 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
    854 	I915_WRITE(DSPFW2,
    855 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
    856 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
    857 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
    858 	I915_WRITE(DSPFW3,
    859 		   FW_WM(wm->sr.cursor, CURSOR_SR));
    860 
    861 	if (IS_CHERRYVIEW(dev_priv)) {
    862 		I915_WRITE(DSPFW7_CHV,
    863 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
    864 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
    865 		I915_WRITE(DSPFW8_CHV,
    866 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
    867 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
    868 		I915_WRITE(DSPFW9_CHV,
    869 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
    870 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
    871 		I915_WRITE(DSPHOWM,
    872 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
    873 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
    874 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
    875 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
    876 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
    877 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
    878 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
    879 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
    880 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
    881 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
    882 	} else {
    883 		I915_WRITE(DSPFW7,
    884 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
    885 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
    886 		I915_WRITE(DSPHOWM,
    887 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
    888 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
    889 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
    890 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
    891 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
    892 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
    893 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
    894 	}
    895 
    896 	/* zero (unused) WM1 watermarks */
    897 	I915_WRITE(DSPFW4, 0);
    898 	I915_WRITE(DSPFW5, 0);
    899 	I915_WRITE(DSPFW6, 0);
    900 	I915_WRITE(DSPHOWM1, 0);
    901 
    902 	POSTING_READ(DSPFW1);
    903 }
    904 
    905 #undef FW_WM_VLV
    906 
    907 enum vlv_wm_level {
    908 	VLV_WM_LEVEL_PM2,
    909 	VLV_WM_LEVEL_PM5,
    910 	VLV_WM_LEVEL_DDR_DVFS,
    911 };
    912 
    913 /* latency must be in 0.1us units. */
    914 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
    915 				   unsigned int pipe_htotal,
    916 				   unsigned int horiz_pixels,
    917 				   unsigned int bytes_per_pixel,
    918 				   unsigned int latency)
    919 {
    920 	unsigned int ret;
    921 
    922 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
    923 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
    924 	ret = DIV_ROUND_UP(ret, 64);
    925 
    926 	return ret;
    927 }
    928 
    929 static void vlv_setup_wm_latency(struct drm_device *dev)
    930 {
    931 	struct drm_i915_private *dev_priv = dev->dev_private;
    932 
    933 	/* all latencies in usec */
    934 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
    935 
    936 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
    937 
    938 	if (IS_CHERRYVIEW(dev_priv)) {
    939 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
    940 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
    941 
    942 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
    943 	}
    944 }
    945 
    946 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
    947 				     struct intel_crtc *crtc,
    948 				     const struct intel_plane_state *state,
    949 				     int level)
    950 {
    951 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
    952 	int clock, htotal, pixel_size, width, wm;
    953 
    954 	if (dev_priv->wm.pri_latency[level] == 0)
    955 		return USHRT_MAX;
    956 
    957 	if (!state->visible)
    958 		return 0;
    959 
    960 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
    961 	clock = crtc->config->base.adjusted_mode.crtc_clock;
    962 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
    963 	width = crtc->config->pipe_src_w;
    964 	if (WARN_ON(htotal == 0))
    965 		htotal = 1;
    966 
    967 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
    968 		/*
    969 		 * FIXME the formula gives values that are
    970 		 * too big for the cursor FIFO, and hence we
    971 		 * would never be able to use cursors. For
    972 		 * now just hardcode the watermark.
    973 		 */
    974 		wm = 63;
    975 	} else {
    976 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
    977 				    dev_priv->wm.pri_latency[level] * 10);
    978 	}
    979 
    980 	return min_t(int, wm, USHRT_MAX);
    981 }
    982 
    983 static void vlv_compute_fifo(struct intel_crtc *crtc)
    984 {
    985 	struct drm_device *dev = crtc->base.dev;
    986 	struct vlv_wm_state *wm_state = &crtc->wm_state;
    987 	struct intel_plane *plane;
    988 	unsigned int total_rate = 0;
    989 	const int fifo_size = 512 - 1;
    990 	int fifo_extra, fifo_left = fifo_size;
    991 
    992 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
    993 		struct intel_plane_state *state =
    994 			to_intel_plane_state(plane->base.state);
    995 
    996 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
    997 			continue;
    998 
    999 		if (state->visible) {
   1000 			wm_state->num_active_planes++;
   1001 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
   1002 		}
   1003 	}
   1004 
   1005 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1006 		struct intel_plane_state *state =
   1007 			to_intel_plane_state(plane->base.state);
   1008 		unsigned int rate;
   1009 
   1010 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
   1011 			plane->wm.fifo_size = 63;
   1012 			continue;
   1013 		}
   1014 
   1015 		if (!state->visible) {
   1016 			plane->wm.fifo_size = 0;
   1017 			continue;
   1018 		}
   1019 
   1020 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
   1021 		plane->wm.fifo_size = fifo_size * rate / total_rate;
   1022 		fifo_left -= plane->wm.fifo_size;
   1023 	}
   1024 
   1025 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
   1026 
   1027 	/* spread the remainder evenly */
   1028 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1029 		int plane_extra;
   1030 
   1031 		if (fifo_left == 0)
   1032 			break;
   1033 
   1034 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
   1035 			continue;
   1036 
   1037 		/* give it all to the first plane if none are active */
   1038 		if (plane->wm.fifo_size == 0 &&
   1039 		    wm_state->num_active_planes)
   1040 			continue;
   1041 
   1042 		plane_extra = min(fifo_extra, fifo_left);
   1043 		plane->wm.fifo_size += plane_extra;
   1044 		fifo_left -= plane_extra;
   1045 	}
   1046 
   1047 	WARN_ON(fifo_left != 0);
   1048 }
   1049 
   1050 static void vlv_invert_wms(struct intel_crtc *crtc)
   1051 {
   1052 	struct vlv_wm_state *wm_state = &crtc->wm_state;
   1053 	int level;
   1054 
   1055 	for (level = 0; level < wm_state->num_levels; level++) {
   1056 		struct drm_device *dev = crtc->base.dev;
   1057 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
   1058 		struct intel_plane *plane;
   1059 
   1060 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
   1061 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
   1062 
   1063 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1064 			switch (plane->base.type) {
   1065 				int sprite;
   1066 			case DRM_PLANE_TYPE_CURSOR:
   1067 				wm_state->wm[level].cursor = plane->wm.fifo_size -
   1068 					wm_state->wm[level].cursor;
   1069 				break;
   1070 			case DRM_PLANE_TYPE_PRIMARY:
   1071 				wm_state->wm[level].primary = plane->wm.fifo_size -
   1072 					wm_state->wm[level].primary;
   1073 				break;
   1074 			case DRM_PLANE_TYPE_OVERLAY:
   1075 				sprite = plane->plane;
   1076 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
   1077 					wm_state->wm[level].sprite[sprite];
   1078 				break;
   1079 			}
   1080 		}
   1081 	}
   1082 }
   1083 
   1084 static void vlv_compute_wm(struct intel_crtc *crtc)
   1085 {
   1086 	struct drm_device *dev = crtc->base.dev;
   1087 	struct vlv_wm_state *wm_state = &crtc->wm_state;
   1088 	struct intel_plane *plane;
   1089 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
   1090 	int level;
   1091 
   1092 	memset(wm_state, 0, sizeof(*wm_state));
   1093 
   1094 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
   1095 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
   1096 
   1097 	wm_state->num_active_planes = 0;
   1098 
   1099 	vlv_compute_fifo(crtc);
   1100 
   1101 	if (wm_state->num_active_planes != 1)
   1102 		wm_state->cxsr = false;
   1103 
   1104 	if (wm_state->cxsr) {
   1105 		for (level = 0; level < wm_state->num_levels; level++) {
   1106 			wm_state->sr[level].plane = sr_fifo_size;
   1107 			wm_state->sr[level].cursor = 63;
   1108 		}
   1109 	}
   1110 
   1111 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1112 		struct intel_plane_state *state =
   1113 			to_intel_plane_state(plane->base.state);
   1114 
   1115 		if (!state->visible)
   1116 			continue;
   1117 
   1118 		/* normal watermarks */
   1119 		for (level = 0; level < wm_state->num_levels; level++) {
   1120 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
   1121 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
   1122 
   1123 			/* hack */
   1124 			if (WARN_ON(level == 0 && wm > max_wm))
   1125 				wm = max_wm;
   1126 
   1127 			if (wm > plane->wm.fifo_size)
   1128 				break;
   1129 
   1130 			switch (plane->base.type) {
   1131 				int sprite;
   1132 			case DRM_PLANE_TYPE_CURSOR:
   1133 				wm_state->wm[level].cursor = wm;
   1134 				break;
   1135 			case DRM_PLANE_TYPE_PRIMARY:
   1136 				wm_state->wm[level].primary = wm;
   1137 				break;
   1138 			case DRM_PLANE_TYPE_OVERLAY:
   1139 				sprite = plane->plane;
   1140 				wm_state->wm[level].sprite[sprite] = wm;
   1141 				break;
   1142 			}
   1143 		}
   1144 
   1145 		wm_state->num_levels = level;
   1146 
   1147 		if (!wm_state->cxsr)
   1148 			continue;
   1149 
   1150 		/* maxfifo watermarks */
   1151 		switch (plane->base.type) {
   1152 			int sprite, level;
   1153 		case DRM_PLANE_TYPE_CURSOR:
   1154 			for (level = 0; level < wm_state->num_levels; level++)
   1155 				wm_state->sr[level].cursor =
   1156 					wm_state->wm[level].cursor;
   1157 			break;
   1158 		case DRM_PLANE_TYPE_PRIMARY:
   1159 			for (level = 0; level < wm_state->num_levels; level++)
   1160 				wm_state->sr[level].plane =
   1161 					min(wm_state->sr[level].plane,
   1162 					    wm_state->wm[level].primary);
   1163 			break;
   1164 		case DRM_PLANE_TYPE_OVERLAY:
   1165 			sprite = plane->plane;
   1166 			for (level = 0; level < wm_state->num_levels; level++)
   1167 				wm_state->sr[level].plane =
   1168 					min(wm_state->sr[level].plane,
   1169 					    wm_state->wm[level].sprite[sprite]);
   1170 			break;
   1171 		}
   1172 	}
   1173 
   1174 	/* clear any (partially) filled invalid levels */
   1175 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
   1176 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
   1177 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
   1178 	}
   1179 
   1180 	vlv_invert_wms(crtc);
   1181 }
   1182 
   1183 #define VLV_FIFO(plane, value) \
   1184 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
   1185 
   1186 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
   1187 {
   1188 	struct drm_device *dev = crtc->base.dev;
   1189 	struct drm_i915_private *dev_priv = to_i915(dev);
   1190 	struct intel_plane *plane;
   1191 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
   1192 
   1193 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1194 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
   1195 			WARN_ON(plane->wm.fifo_size != 63);
   1196 			continue;
   1197 		}
   1198 
   1199 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
   1200 			sprite0_start = plane->wm.fifo_size;
   1201 		else if (plane->plane == 0)
   1202 			sprite1_start = sprite0_start + plane->wm.fifo_size;
   1203 		else
   1204 			fifo_size = sprite1_start + plane->wm.fifo_size;
   1205 	}
   1206 
   1207 	WARN_ON(fifo_size != 512 - 1);
   1208 
   1209 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
   1210 		      pipe_name(crtc->pipe), sprite0_start,
   1211 		      sprite1_start, fifo_size);
   1212 
   1213 	switch (crtc->pipe) {
   1214 		uint32_t dsparb, dsparb2, dsparb3;
   1215 	case PIPE_A:
   1216 		dsparb = I915_READ(DSPARB);
   1217 		dsparb2 = I915_READ(DSPARB2);
   1218 
   1219 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
   1220 			    VLV_FIFO(SPRITEB, 0xff));
   1221 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
   1222 			   VLV_FIFO(SPRITEB, sprite1_start));
   1223 
   1224 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
   1225 			     VLV_FIFO(SPRITEB_HI, 0x1));
   1226 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
   1227 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
   1228 
   1229 		I915_WRITE(DSPARB, dsparb);
   1230 		I915_WRITE(DSPARB2, dsparb2);
   1231 		break;
   1232 	case PIPE_B:
   1233 		dsparb = I915_READ(DSPARB);
   1234 		dsparb2 = I915_READ(DSPARB2);
   1235 
   1236 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
   1237 			    VLV_FIFO(SPRITED, 0xff));
   1238 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
   1239 			   VLV_FIFO(SPRITED, sprite1_start));
   1240 
   1241 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
   1242 			     VLV_FIFO(SPRITED_HI, 0xff));
   1243 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
   1244 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
   1245 
   1246 		I915_WRITE(DSPARB, dsparb);
   1247 		I915_WRITE(DSPARB2, dsparb2);
   1248 		break;
   1249 	case PIPE_C:
   1250 		dsparb3 = I915_READ(DSPARB3);
   1251 		dsparb2 = I915_READ(DSPARB2);
   1252 
   1253 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
   1254 			     VLV_FIFO(SPRITEF, 0xff));
   1255 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
   1256 			    VLV_FIFO(SPRITEF, sprite1_start));
   1257 
   1258 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
   1259 			     VLV_FIFO(SPRITEF_HI, 0xff));
   1260 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
   1261 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
   1262 
   1263 		I915_WRITE(DSPARB3, dsparb3);
   1264 		I915_WRITE(DSPARB2, dsparb2);
   1265 		break;
   1266 	default:
   1267 		break;
   1268 	}
   1269 }
   1270 
   1271 #undef VLV_FIFO
   1272 
   1273 static void vlv_merge_wm(struct drm_device *dev,
   1274 			 struct vlv_wm_values *wm)
   1275 {
   1276 	struct intel_crtc *crtc;
   1277 	int num_active_crtcs = 0;
   1278 
   1279 	wm->level = to_i915(dev)->wm.max_level;
   1280 	wm->cxsr = true;
   1281 
   1282 	for_each_intel_crtc(dev, crtc) {
   1283 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
   1284 
   1285 		if (!crtc->active)
   1286 			continue;
   1287 
   1288 		if (!wm_state->cxsr)
   1289 			wm->cxsr = false;
   1290 
   1291 		num_active_crtcs++;
   1292 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
   1293 	}
   1294 
   1295 	if (num_active_crtcs != 1)
   1296 		wm->cxsr = false;
   1297 
   1298 	if (num_active_crtcs > 1)
   1299 		wm->level = VLV_WM_LEVEL_PM2;
   1300 
   1301 	for_each_intel_crtc(dev, crtc) {
   1302 		struct vlv_wm_state *wm_state = &crtc->wm_state;
   1303 		enum pipe pipe = crtc->pipe;
   1304 
   1305 		if (!crtc->active)
   1306 			continue;
   1307 
   1308 		wm->pipe[pipe] = wm_state->wm[wm->level];
   1309 		if (wm->cxsr)
   1310 			wm->sr = wm_state->sr[wm->level];
   1311 
   1312 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
   1313 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
   1314 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
   1315 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
   1316 	}
   1317 }
   1318 
   1319 static void vlv_update_wm(struct drm_crtc *crtc)
   1320 {
   1321 	struct drm_device *dev = crtc->dev;
   1322 	struct drm_i915_private *dev_priv = dev->dev_private;
   1323 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   1324 	enum pipe pipe = intel_crtc->pipe;
   1325 	struct vlv_wm_values wm = {};
   1326 
   1327 	vlv_compute_wm(intel_crtc);
   1328 	vlv_merge_wm(dev, &wm);
   1329 
   1330 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
   1331 		/* FIXME should be part of crtc atomic commit */
   1332 		vlv_pipe_set_fifo_size(intel_crtc);
   1333 		return;
   1334 	}
   1335 
   1336 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
   1337 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
   1338 		chv_set_memory_dvfs(dev_priv, false);
   1339 
   1340 	if (wm.level < VLV_WM_LEVEL_PM5 &&
   1341 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
   1342 		chv_set_memory_pm5(dev_priv, false);
   1343 
   1344 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
   1345 		intel_set_memory_cxsr(dev_priv, false);
   1346 
   1347 	/* FIXME should be part of crtc atomic commit */
   1348 	vlv_pipe_set_fifo_size(intel_crtc);
   1349 
   1350 	vlv_write_wm_values(intel_crtc, &wm);
   1351 
   1352 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
   1353 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
   1354 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
   1355 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
   1356 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
   1357 
   1358 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
   1359 		intel_set_memory_cxsr(dev_priv, true);
   1360 
   1361 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
   1362 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
   1363 		chv_set_memory_pm5(dev_priv, true);
   1364 
   1365 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
   1366 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
   1367 		chv_set_memory_dvfs(dev_priv, true);
   1368 
   1369 	dev_priv->wm.vlv = wm;
   1370 }
   1371 
   1372 #define single_plane_enabled(mask) is_power_of_2(mask)
   1373 
   1374 static void g4x_update_wm(struct drm_crtc *crtc)
   1375 {
   1376 	struct drm_device *dev = crtc->dev;
   1377 	static const int sr_latency_ns = 12000;
   1378 	struct drm_i915_private *dev_priv = dev->dev_private;
   1379 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1380 	int plane_sr, cursor_sr;
   1381 	unsigned int enabled = 0;
   1382 	bool cxsr_enabled;
   1383 
   1384 	if (g4x_compute_wm0(dev, PIPE_A,
   1385 			    &g4x_wm_info, pessimal_latency_ns,
   1386 			    &g4x_cursor_wm_info, pessimal_latency_ns,
   1387 			    &planea_wm, &cursora_wm))
   1388 		enabled |= 1 << PIPE_A;
   1389 
   1390 	if (g4x_compute_wm0(dev, PIPE_B,
   1391 			    &g4x_wm_info, pessimal_latency_ns,
   1392 			    &g4x_cursor_wm_info, pessimal_latency_ns,
   1393 			    &planeb_wm, &cursorb_wm))
   1394 		enabled |= 1 << PIPE_B;
   1395 
   1396 	if (single_plane_enabled(enabled) &&
   1397 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1398 			     sr_latency_ns,
   1399 			     &g4x_wm_info,
   1400 			     &g4x_cursor_wm_info,
   1401 			     &plane_sr, &cursor_sr)) {
   1402 		cxsr_enabled = true;
   1403 	} else {
   1404 		cxsr_enabled = false;
   1405 		intel_set_memory_cxsr(dev_priv, false);
   1406 		plane_sr = cursor_sr = 0;
   1407 	}
   1408 
   1409 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
   1410 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1411 		      planea_wm, cursora_wm,
   1412 		      planeb_wm, cursorb_wm,
   1413 		      plane_sr, cursor_sr);
   1414 
   1415 	I915_WRITE(DSPFW1,
   1416 		   FW_WM(plane_sr, SR) |
   1417 		   FW_WM(cursorb_wm, CURSORB) |
   1418 		   FW_WM(planeb_wm, PLANEB) |
   1419 		   FW_WM(planea_wm, PLANEA));
   1420 	I915_WRITE(DSPFW2,
   1421 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1422 		   FW_WM(cursora_wm, CURSORA));
   1423 	/* HPLL off in SR has some issues on G4x... disable it */
   1424 	I915_WRITE(DSPFW3,
   1425 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1426 		   FW_WM(cursor_sr, CURSOR_SR));
   1427 
   1428 	if (cxsr_enabled)
   1429 		intel_set_memory_cxsr(dev_priv, true);
   1430 }
   1431 
   1432 static void i965_update_wm(struct drm_crtc *unused_crtc)
   1433 {
   1434 	struct drm_device *dev = unused_crtc->dev;
   1435 	struct drm_i915_private *dev_priv = dev->dev_private;
   1436 	struct drm_crtc *crtc;
   1437 	int srwm = 1;
   1438 	int cursor_sr = 16;
   1439 	bool cxsr_enabled;
   1440 
   1441 	/* Calc sr entries for one plane configs */
   1442 	crtc = single_enabled_crtc(dev);
   1443 	if (crtc) {
   1444 		/* self-refresh has much higher latency */
   1445 		static const int sr_latency_ns = 12000;
   1446 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1447 		int clock = adjusted_mode->crtc_clock;
   1448 		int htotal = adjusted_mode->crtc_htotal;
   1449 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
   1450 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
   1451 		unsigned long line_time_us;
   1452 		int entries;
   1453 
   1454 		line_time_us = max(htotal * 1000 / clock, 1);
   1455 
   1456 		/* Use ns/us then divide to preserve precision */
   1457 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1458 			pixel_size * hdisplay;
   1459 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1460 		srwm = I965_FIFO_SIZE - entries;
   1461 		if (srwm < 0)
   1462 			srwm = 1;
   1463 		srwm &= 0x1ff;
   1464 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1465 			      entries, srwm);
   1466 
   1467 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1468 			pixel_size * crtc->cursor->state->crtc_w;
   1469 		entries = DIV_ROUND_UP(entries,
   1470 					  i965_cursor_wm_info.cacheline_size);
   1471 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1472 			(entries + i965_cursor_wm_info.guard_size);
   1473 
   1474 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1475 			cursor_sr = i965_cursor_wm_info.max_wm;
   1476 
   1477 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1478 			      "cursor %d\n", srwm, cursor_sr);
   1479 
   1480 		cxsr_enabled = true;
   1481 	} else {
   1482 		cxsr_enabled = false;
   1483 		/* Turn off self refresh if both pipes are enabled */
   1484 		intel_set_memory_cxsr(dev_priv, false);
   1485 	}
   1486 
   1487 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1488 		      srwm);
   1489 
   1490 	/* 965 has limitations... */
   1491 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
   1492 		   FW_WM(8, CURSORB) |
   1493 		   FW_WM(8, PLANEB) |
   1494 		   FW_WM(8, PLANEA));
   1495 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
   1496 		   FW_WM(8, PLANEC_OLD));
   1497 	/* update cursor SR watermark */
   1498 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
   1499 
   1500 	if (cxsr_enabled)
   1501 		intel_set_memory_cxsr(dev_priv, true);
   1502 }
   1503 
   1504 #undef FW_WM
   1505 
   1506 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
   1507 {
   1508 	struct drm_device *dev = unused_crtc->dev;
   1509 	struct drm_i915_private *dev_priv = dev->dev_private;
   1510 	const struct intel_watermark_params *wm_info;
   1511 	uint32_t fwater_lo;
   1512 	uint32_t fwater_hi;
   1513 	int cwm, srwm = 1;
   1514 	int fifo_size;
   1515 	int planea_wm, planeb_wm;
   1516 	struct drm_crtc *crtc, *enabled = NULL;
   1517 
   1518 	if (IS_I945GM(dev))
   1519 		wm_info = &i945_wm_info;
   1520 	else if (!IS_GEN2(dev))
   1521 		wm_info = &i915_wm_info;
   1522 	else
   1523 		wm_info = &i830_a_wm_info;
   1524 
   1525 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1526 	crtc = intel_get_crtc_for_plane(dev, 0);
   1527 	if (intel_crtc_active(crtc)) {
   1528 		const struct drm_display_mode *adjusted_mode;
   1529 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
   1530 		if (IS_GEN2(dev))
   1531 			cpp = 4;
   1532 
   1533 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1534 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1535 					       wm_info, fifo_size, cpp,
   1536 					       pessimal_latency_ns);
   1537 		enabled = crtc;
   1538 	} else {
   1539 		planea_wm = fifo_size - wm_info->guard_size;
   1540 		if (planea_wm > (long)wm_info->max_wm)
   1541 			planea_wm = wm_info->max_wm;
   1542 	}
   1543 
   1544 	if (IS_GEN2(dev))
   1545 		wm_info = &i830_bc_wm_info;
   1546 
   1547 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1548 	crtc = intel_get_crtc_for_plane(dev, 1);
   1549 	if (intel_crtc_active(crtc)) {
   1550 		const struct drm_display_mode *adjusted_mode;
   1551 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
   1552 		if (IS_GEN2(dev))
   1553 			cpp = 4;
   1554 
   1555 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1556 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1557 					       wm_info, fifo_size, cpp,
   1558 					       pessimal_latency_ns);
   1559 		if (enabled == NULL)
   1560 			enabled = crtc;
   1561 		else
   1562 			enabled = NULL;
   1563 	} else {
   1564 		planeb_wm = fifo_size - wm_info->guard_size;
   1565 		if (planeb_wm > (long)wm_info->max_wm)
   1566 			planeb_wm = wm_info->max_wm;
   1567 	}
   1568 
   1569 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1570 
   1571 	if (IS_I915GM(dev) && enabled) {
   1572 		struct drm_i915_gem_object *obj;
   1573 
   1574 		obj = intel_fb_obj(enabled->primary->state->fb);
   1575 
   1576 		/* self-refresh seems busted with untiled */
   1577 		if (obj->tiling_mode == I915_TILING_NONE)
   1578 			enabled = NULL;
   1579 	}
   1580 
   1581 	/*
   1582 	 * Overlay gets an aggressive default since video jitter is bad.
   1583 	 */
   1584 	cwm = 2;
   1585 
   1586 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1587 	intel_set_memory_cxsr(dev_priv, false);
   1588 
   1589 	/* Calc sr entries for one plane configs */
   1590 	if (HAS_FW_BLC(dev) && enabled) {
   1591 		/* self-refresh has much higher latency */
   1592 		static const int sr_latency_ns = 6000;
   1593 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
   1594 		int clock = adjusted_mode->crtc_clock;
   1595 		int htotal = adjusted_mode->crtc_htotal;
   1596 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
   1597 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
   1598 		unsigned long line_time_us;
   1599 		int entries;
   1600 
   1601 		line_time_us = max(htotal * 1000 / clock, 1);
   1602 
   1603 		/* Use ns/us then divide to preserve precision */
   1604 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1605 			pixel_size * hdisplay;
   1606 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1607 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1608 		srwm = wm_info->fifo_size - entries;
   1609 		if (srwm < 0)
   1610 			srwm = 1;
   1611 
   1612 		if (IS_I945G(dev) || IS_I945GM(dev))
   1613 			I915_WRITE(FW_BLC_SELF,
   1614 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1615 		else if (IS_I915GM(dev))
   1616 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1617 	}
   1618 
   1619 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1620 		      planea_wm, planeb_wm, cwm, srwm);
   1621 
   1622 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1623 	fwater_hi = (cwm & 0x1f);
   1624 
   1625 	/* Set request length to 8 cachelines per fetch */
   1626 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1627 	fwater_hi = fwater_hi | (1 << 8);
   1628 
   1629 	I915_WRITE(FW_BLC, fwater_lo);
   1630 	I915_WRITE(FW_BLC2, fwater_hi);
   1631 
   1632 	if (enabled)
   1633 		intel_set_memory_cxsr(dev_priv, true);
   1634 }
   1635 
   1636 static void i845_update_wm(struct drm_crtc *unused_crtc)
   1637 {
   1638 	struct drm_device *dev = unused_crtc->dev;
   1639 	struct drm_i915_private *dev_priv = dev->dev_private;
   1640 	struct drm_crtc *crtc;
   1641 	const struct drm_display_mode *adjusted_mode;
   1642 	uint32_t fwater_lo;
   1643 	int planea_wm;
   1644 
   1645 	crtc = single_enabled_crtc(dev);
   1646 	if (crtc == NULL)
   1647 		return;
   1648 
   1649 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1650 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1651 				       &i845_wm_info,
   1652 				       dev_priv->display.get_fifo_size(dev, 0),
   1653 				       4, pessimal_latency_ns);
   1654 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1655 	fwater_lo |= (3<<8) | planea_wm;
   1656 
   1657 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1658 
   1659 	I915_WRITE(FW_BLC, fwater_lo);
   1660 }
   1661 
   1662 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
   1663 {
   1664 	uint32_t pixel_rate;
   1665 
   1666 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
   1667 
   1668 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
   1669 	 * adjust the pixel_rate here. */
   1670 
   1671 	if (pipe_config->pch_pfit.enabled) {
   1672 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
   1673 		uint32_t pfit_size = pipe_config->pch_pfit.size;
   1674 
   1675 		pipe_w = pipe_config->pipe_src_w;
   1676 		pipe_h = pipe_config->pipe_src_h;
   1677 
   1678 		pfit_w = (pfit_size >> 16) & 0xFFFF;
   1679 		pfit_h = pfit_size & 0xFFFF;
   1680 		if (pipe_w < pfit_w)
   1681 			pipe_w = pfit_w;
   1682 		if (pipe_h < pfit_h)
   1683 			pipe_h = pfit_h;
   1684 
   1685 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
   1686 				     pfit_w * pfit_h);
   1687 	}
   1688 
   1689 	return pixel_rate;
   1690 }
   1691 
   1692 /* latency must be in 0.1us units. */
   1693 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   1694 			       uint32_t latency)
   1695 {
   1696 	uint64_t ret;
   1697 
   1698 	if (WARN(latency == 0, "Latency value missing\n"))
   1699 		return UINT_MAX;
   1700 
   1701 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
   1702 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
   1703 
   1704 	return ret;
   1705 }
   1706 
   1707 /* latency must be in 0.1us units. */
   1708 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   1709 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   1710 			       uint32_t latency)
   1711 {
   1712 	uint32_t ret;
   1713 
   1714 	if (WARN(latency == 0, "Latency value missing\n"))
   1715 		return UINT_MAX;
   1716 
   1717 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
   1718 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
   1719 	ret = DIV_ROUND_UP(ret, 64) + 2;
   1720 	return ret;
   1721 }
   1722 
   1723 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
   1724 			   uint8_t bytes_per_pixel)
   1725 {
   1726 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
   1727 }
   1728 
   1729 struct skl_pipe_wm_parameters {
   1730 	bool active;
   1731 	uint32_t pipe_htotal;
   1732 	uint32_t pixel_rate; /* in KHz */
   1733 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
   1734 };
   1735 
   1736 struct ilk_wm_maximums {
   1737 	uint16_t pri;
   1738 	uint16_t spr;
   1739 	uint16_t cur;
   1740 	uint16_t fbc;
   1741 };
   1742 
   1743 /* used in computing the new watermarks state */
   1744 struct intel_wm_config {
   1745 	unsigned int num_pipes_active;
   1746 	bool sprites_enabled;
   1747 	bool sprites_scaled;
   1748 };
   1749 
   1750 /*
   1751  * For both WM_PIPE and WM_LP.
   1752  * mem_value must be in 0.1us units.
   1753  */
   1754 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
   1755 				   const struct intel_plane_state *pstate,
   1756 				   uint32_t mem_value,
   1757 				   bool is_lp)
   1758 {
   1759 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1760 	uint32_t method1, method2;
   1761 
   1762 	if (!cstate->base.active || !pstate->visible)
   1763 		return 0;
   1764 
   1765 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
   1766 
   1767 	if (!is_lp)
   1768 		return method1;
   1769 
   1770 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1771 				 cstate->base.adjusted_mode.crtc_htotal,
   1772 				 drm_rect_width(&pstate->dst),
   1773 				 bpp,
   1774 				 mem_value);
   1775 
   1776 	return min(method1, method2);
   1777 }
   1778 
   1779 /*
   1780  * For both WM_PIPE and WM_LP.
   1781  * mem_value must be in 0.1us units.
   1782  */
   1783 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
   1784 				   const struct intel_plane_state *pstate,
   1785 				   uint32_t mem_value)
   1786 {
   1787 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1788 	uint32_t method1, method2;
   1789 
   1790 	if (!cstate->base.active || !pstate->visible)
   1791 		return 0;
   1792 
   1793 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
   1794 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1795 				 cstate->base.adjusted_mode.crtc_htotal,
   1796 				 drm_rect_width(&pstate->dst),
   1797 				 bpp,
   1798 				 mem_value);
   1799 	return min(method1, method2);
   1800 }
   1801 
   1802 /*
   1803  * For both WM_PIPE and WM_LP.
   1804  * mem_value must be in 0.1us units.
   1805  */
   1806 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
   1807 				   const struct intel_plane_state *pstate,
   1808 				   uint32_t mem_value)
   1809 {
   1810 	/*
   1811 	 * We treat the cursor plane as always-on for the purposes of watermark
   1812 	 * calculation.  Until we have two-stage watermark programming merged,
   1813 	 * this is necessary to avoid flickering.
   1814 	 */
   1815 	int cpp = 4;
   1816 	int width = pstate->visible ? pstate->base.crtc_w : 64;
   1817 
   1818 	if (!cstate->base.active)
   1819 		return 0;
   1820 
   1821 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1822 			      cstate->base.adjusted_mode.crtc_htotal,
   1823 			      width, cpp, mem_value);
   1824 }
   1825 
   1826 /* Only for WM_LP. */
   1827 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
   1828 				   const struct intel_plane_state *pstate,
   1829 				   uint32_t pri_val)
   1830 {
   1831 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1832 
   1833 	if (!cstate->base.active || !pstate->visible)
   1834 		return 0;
   1835 
   1836 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
   1837 }
   1838 
   1839 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
   1840 {
   1841 	if (INTEL_INFO(dev)->gen >= 8)
   1842 		return 3072;
   1843 	else if (INTEL_INFO(dev)->gen >= 7)
   1844 		return 768;
   1845 	else
   1846 		return 512;
   1847 }
   1848 
   1849 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
   1850 					 int level, bool is_sprite)
   1851 {
   1852 	if (INTEL_INFO(dev)->gen >= 8)
   1853 		/* BDW primary/sprite plane watermarks */
   1854 		return level == 0 ? 255 : 2047;
   1855 	else if (INTEL_INFO(dev)->gen >= 7)
   1856 		/* IVB/HSW primary/sprite plane watermarks */
   1857 		return level == 0 ? 127 : 1023;
   1858 	else if (!is_sprite)
   1859 		/* ILK/SNB primary plane watermarks */
   1860 		return level == 0 ? 127 : 511;
   1861 	else
   1862 		/* ILK/SNB sprite plane watermarks */
   1863 		return level == 0 ? 63 : 255;
   1864 }
   1865 
   1866 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
   1867 					  int level)
   1868 {
   1869 	if (INTEL_INFO(dev)->gen >= 7)
   1870 		return level == 0 ? 63 : 255;
   1871 	else
   1872 		return level == 0 ? 31 : 63;
   1873 }
   1874 
   1875 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
   1876 {
   1877 	if (INTEL_INFO(dev)->gen >= 8)
   1878 		return 31;
   1879 	else
   1880 		return 15;
   1881 }
   1882 
   1883 /* Calculate the maximum primary/sprite plane watermark */
   1884 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
   1885 				     int level,
   1886 				     const struct intel_wm_config *config,
   1887 				     enum intel_ddb_partitioning ddb_partitioning,
   1888 				     bool is_sprite)
   1889 {
   1890 	unsigned int fifo_size = ilk_display_fifo_size(dev);
   1891 
   1892 	/* if sprites aren't enabled, sprites get nothing */
   1893 	if (is_sprite && !config->sprites_enabled)
   1894 		return 0;
   1895 
   1896 	/* HSW allows LP1+ watermarks even with multiple pipes */
   1897 	if (level == 0 || config->num_pipes_active > 1) {
   1898 		fifo_size /= INTEL_INFO(dev)->num_pipes;
   1899 
   1900 		/*
   1901 		 * For some reason the non self refresh
   1902 		 * FIFO size is only half of the self
   1903 		 * refresh FIFO size on ILK/SNB.
   1904 		 */
   1905 		if (INTEL_INFO(dev)->gen <= 6)
   1906 			fifo_size /= 2;
   1907 	}
   1908 
   1909 	if (config->sprites_enabled) {
   1910 		/* level 0 is always calculated with 1:1 split */
   1911 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
   1912 			if (is_sprite)
   1913 				fifo_size *= 5;
   1914 			fifo_size /= 6;
   1915 		} else {
   1916 			fifo_size /= 2;
   1917 		}
   1918 	}
   1919 
   1920 	/* clamp to max that the registers can hold */
   1921 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
   1922 }
   1923 
   1924 /* Calculate the maximum cursor plane watermark */
   1925 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
   1926 				      int level,
   1927 				      const struct intel_wm_config *config)
   1928 {
   1929 	/* HSW LP1+ watermarks w/ multiple pipes */
   1930 	if (level > 0 && config->num_pipes_active > 1)
   1931 		return 64;
   1932 
   1933 	/* otherwise just report max that registers can hold */
   1934 	return ilk_cursor_wm_reg_max(dev, level);
   1935 }
   1936 
   1937 static void ilk_compute_wm_maximums(const struct drm_device *dev,
   1938 				    int level,
   1939 				    const struct intel_wm_config *config,
   1940 				    enum intel_ddb_partitioning ddb_partitioning,
   1941 				    struct ilk_wm_maximums *max)
   1942 {
   1943 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
   1944 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
   1945 	max->cur = ilk_cursor_wm_max(dev, level, config);
   1946 	max->fbc = ilk_fbc_wm_reg_max(dev);
   1947 }
   1948 
   1949 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
   1950 					int level,
   1951 					struct ilk_wm_maximums *max)
   1952 {
   1953 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
   1954 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
   1955 	max->cur = ilk_cursor_wm_reg_max(dev, level);
   1956 	max->fbc = ilk_fbc_wm_reg_max(dev);
   1957 }
   1958 
   1959 static bool ilk_validate_wm_level(int level,
   1960 				  const struct ilk_wm_maximums *max,
   1961 				  struct intel_wm_level *result)
   1962 {
   1963 	bool ret;
   1964 
   1965 	/* already determined to be invalid? */
   1966 	if (!result->enable)
   1967 		return false;
   1968 
   1969 	result->enable = result->pri_val <= max->pri &&
   1970 			 result->spr_val <= max->spr &&
   1971 			 result->cur_val <= max->cur;
   1972 
   1973 	ret = result->enable;
   1974 
   1975 	/*
   1976 	 * HACK until we can pre-compute everything,
   1977 	 * and thus fail gracefully if LP0 watermarks
   1978 	 * are exceeded...
   1979 	 */
   1980 	if (level == 0 && !result->enable) {
   1981 		if (result->pri_val > max->pri)
   1982 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
   1983 				      level, result->pri_val, max->pri);
   1984 		if (result->spr_val > max->spr)
   1985 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
   1986 				      level, result->spr_val, max->spr);
   1987 		if (result->cur_val > max->cur)
   1988 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
   1989 				      level, result->cur_val, max->cur);
   1990 
   1991 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
   1992 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
   1993 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
   1994 		result->enable = true;
   1995 	}
   1996 
   1997 	return ret;
   1998 }
   1999 
   2000 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
   2001 				 const struct intel_crtc *intel_crtc,
   2002 				 int level,
   2003 				 struct intel_crtc_state *cstate,
   2004 				 struct intel_wm_level *result)
   2005 {
   2006 	struct intel_plane *intel_plane;
   2007 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
   2008 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
   2009 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
   2010 
   2011 	/* WM1+ latency values stored in 0.5us units */
   2012 	if (level > 0) {
   2013 		pri_latency *= 5;
   2014 		spr_latency *= 5;
   2015 		cur_latency *= 5;
   2016 	}
   2017 
   2018 	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
   2019 		struct intel_plane_state *pstate =
   2020 			to_intel_plane_state(intel_plane->base.state);
   2021 
   2022 		switch (intel_plane->base.type) {
   2023 		case DRM_PLANE_TYPE_PRIMARY:
   2024 			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
   2025 							     pri_latency,
   2026 							     level);
   2027 			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
   2028 							     result->pri_val);
   2029 			break;
   2030 		case DRM_PLANE_TYPE_OVERLAY:
   2031 			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
   2032 							     spr_latency);
   2033 			break;
   2034 		case DRM_PLANE_TYPE_CURSOR:
   2035 			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
   2036 							     cur_latency);
   2037 			break;
   2038 		}
   2039 	}
   2040 
   2041 	result->enable = true;
   2042 }
   2043 
   2044 static uint32_t
   2045 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
   2046 {
   2047 	struct drm_i915_private *dev_priv = dev->dev_private;
   2048 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2049 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
   2050 	u32 linetime, ips_linetime;
   2051 
   2052 	if (!intel_crtc->active)
   2053 		return 0;
   2054 
   2055 	/* The WM are computed with base on how long it takes to fill a single
   2056 	 * row at the given clock rate, multiplied by 8.
   2057 	 * */
   2058 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
   2059 				     adjusted_mode->crtc_clock);
   2060 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
   2061 					 dev_priv->cdclk_freq);
   2062 
   2063 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
   2064 	       PIPE_WM_LINETIME_TIME(linetime);
   2065 }
   2066 
   2067 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
   2068 {
   2069 	struct drm_i915_private *dev_priv = dev->dev_private;
   2070 
   2071 	if (IS_GEN9(dev)) {
   2072 		uint32_t val;
   2073 		int ret, i;
   2074 		int level, max_level = ilk_wm_max_level(dev);
   2075 
   2076 		/* read the first set of memory latencies[0:3] */
   2077 		val = 0; /* data0 to be programmed to 0 for first set */
   2078 		mutex_lock(&dev_priv->rps.hw_lock);
   2079 		ret = sandybridge_pcode_read(dev_priv,
   2080 					     GEN9_PCODE_READ_MEM_LATENCY,
   2081 					     &val);
   2082 		mutex_unlock(&dev_priv->rps.hw_lock);
   2083 
   2084 		if (ret) {
   2085 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
   2086 			return;
   2087 		}
   2088 
   2089 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
   2090 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2091 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2092 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2093 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2094 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2095 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2096 
   2097 		/* read the second set of memory latencies[4:7] */
   2098 		val = 1; /* data0 to be programmed to 1 for second set */
   2099 		mutex_lock(&dev_priv->rps.hw_lock);
   2100 		ret = sandybridge_pcode_read(dev_priv,
   2101 					     GEN9_PCODE_READ_MEM_LATENCY,
   2102 					     &val);
   2103 		mutex_unlock(&dev_priv->rps.hw_lock);
   2104 		if (ret) {
   2105 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
   2106 			return;
   2107 		}
   2108 
   2109 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
   2110 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2111 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2112 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2113 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2114 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2115 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2116 
   2117 		/*
   2118 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
   2119 		 * need to be disabled. We make sure to sanitize the values out
   2120 		 * of the punit to satisfy this requirement.
   2121 		 */
   2122 		for (level = 1; level <= max_level; level++) {
   2123 			if (wm[level] == 0) {
   2124 				for (i = level + 1; i <= max_level; i++)
   2125 					wm[i] = 0;
   2126 				break;
   2127 			}
   2128 		}
   2129 
   2130 		/*
   2131 		 * WaWmMemoryReadLatency:skl
   2132 		 *
   2133 		 * punit doesn't take into account the read latency so we need
   2134 		 * to add 2us to the various latency levels we retrieve from the
   2135 		 * punit when level 0 response data us 0us.
   2136 		 */
   2137 		if (wm[0] == 0) {
   2138 			wm[0] += 2;
   2139 			for (level = 1; level <= max_level; level++) {
   2140 				if (wm[level] == 0)
   2141 					break;
   2142 				wm[level] += 2;
   2143 			}
   2144 		}
   2145 
   2146 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2147 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
   2148 
   2149 		wm[0] = (sskpd >> 56) & 0xFF;
   2150 		if (wm[0] == 0)
   2151 			wm[0] = sskpd & 0xF;
   2152 		wm[1] = (sskpd >> 4) & 0xFF;
   2153 		wm[2] = (sskpd >> 12) & 0xFF;
   2154 		wm[3] = (sskpd >> 20) & 0x1FF;
   2155 		wm[4] = (sskpd >> 32) & 0x1FF;
   2156 	} else if (INTEL_INFO(dev)->gen >= 6) {
   2157 		uint32_t sskpd = I915_READ(MCH_SSKPD);
   2158 
   2159 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
   2160 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
   2161 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
   2162 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
   2163 	} else if (INTEL_INFO(dev)->gen >= 5) {
   2164 		uint32_t mltr = I915_READ(MLTR_ILK);
   2165 
   2166 		/* ILK primary LP0 latency is 700 ns */
   2167 		wm[0] = 7;
   2168 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
   2169 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
   2170 	}
   2171 }
   2172 
   2173 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2174 {
   2175 	/* ILK sprite LP0 latency is 1300 ns */
   2176 	if (INTEL_INFO(dev)->gen == 5)
   2177 		wm[0] = 13;
   2178 }
   2179 
   2180 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2181 {
   2182 	/* ILK cursor LP0 latency is 1300 ns */
   2183 	if (INTEL_INFO(dev)->gen == 5)
   2184 		wm[0] = 13;
   2185 
   2186 	/* WaDoubleCursorLP3Latency:ivb */
   2187 	if (IS_IVYBRIDGE(dev))
   2188 		wm[3] *= 2;
   2189 }
   2190 
   2191 int ilk_wm_max_level(const struct drm_device *dev)
   2192 {
   2193 	/* how many WM levels are we expecting */
   2194 	if (INTEL_INFO(dev)->gen >= 9)
   2195 		return 7;
   2196 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2197 		return 4;
   2198 	else if (INTEL_INFO(dev)->gen >= 6)
   2199 		return 3;
   2200 	else
   2201 		return 2;
   2202 }
   2203 
   2204 static void intel_print_wm_latency(struct drm_device *dev,
   2205 				   const char *name,
   2206 				   const uint16_t wm[8])
   2207 {
   2208 	int level, max_level = ilk_wm_max_level(dev);
   2209 
   2210 	for (level = 0; level <= max_level; level++) {
   2211 		unsigned int latency = wm[level];
   2212 
   2213 		if (latency == 0) {
   2214 			DRM_ERROR("%s WM%d latency not provided\n",
   2215 				  name, level);
   2216 			continue;
   2217 		}
   2218 
   2219 		/*
   2220 		 * - latencies are in us on gen9.
   2221 		 * - before then, WM1+ latency values are in 0.5us units
   2222 		 */
   2223 		if (IS_GEN9(dev))
   2224 			latency *= 10;
   2225 		else if (level > 0)
   2226 			latency *= 5;
   2227 
   2228 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
   2229 			      name, level, wm[level],
   2230 			      latency / 10, latency % 10);
   2231 	}
   2232 }
   2233 
   2234 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
   2235 				    uint16_t wm[5], uint16_t min)
   2236 {
   2237 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
   2238 
   2239 	if (wm[0] >= min)
   2240 		return false;
   2241 
   2242 	wm[0] = max(wm[0], min);
   2243 	for (level = 1; level <= max_level; level++)
   2244 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
   2245 
   2246 	return true;
   2247 }
   2248 
   2249 static void snb_wm_latency_quirk(struct drm_device *dev)
   2250 {
   2251 	struct drm_i915_private *dev_priv = dev->dev_private;
   2252 	bool changed;
   2253 
   2254 	/*
   2255 	 * The BIOS provided WM memory latency values are often
   2256 	 * inadequate for high resolution displays. Adjust them.
   2257 	 */
   2258 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
   2259 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
   2260 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
   2261 
   2262 	if (!changed)
   2263 		return;
   2264 
   2265 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
   2266 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2267 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2268 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2269 }
   2270 
   2271 static void ilk_setup_wm_latency(struct drm_device *dev)
   2272 {
   2273 	struct drm_i915_private *dev_priv = dev->dev_private;
   2274 
   2275 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
   2276 
   2277 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
   2278 	       sizeof(dev_priv->wm.pri_latency));
   2279 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
   2280 	       sizeof(dev_priv->wm.pri_latency));
   2281 
   2282 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
   2283 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
   2284 
   2285 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2286 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2287 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2288 
   2289 	if (IS_GEN6(dev))
   2290 		snb_wm_latency_quirk(dev);
   2291 }
   2292 
   2293 static void skl_setup_wm_latency(struct drm_device *dev)
   2294 {
   2295 	struct drm_i915_private *dev_priv = dev->dev_private;
   2296 
   2297 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
   2298 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
   2299 }
   2300 
   2301 static void ilk_compute_wm_config(struct drm_device *dev,
   2302 				  struct intel_wm_config *config)
   2303 {
   2304 	struct intel_crtc *intel_crtc;
   2305 
   2306 	/* Compute the currently _active_ config */
   2307 	for_each_intel_crtc(dev, intel_crtc) {
   2308 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
   2309 
   2310 		if (!wm->pipe_enabled)
   2311 			continue;
   2312 
   2313 		config->sprites_enabled |= wm->sprites_enabled;
   2314 		config->sprites_scaled |= wm->sprites_scaled;
   2315 		config->num_pipes_active++;
   2316 	}
   2317 }
   2318 
   2319 /* Compute new watermarks for the pipe */
   2320 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
   2321 				  struct intel_pipe_wm *pipe_wm)
   2322 {
   2323 	struct drm_crtc *crtc = cstate->base.crtc;
   2324 	struct drm_device *dev = crtc->dev;
   2325 	const struct drm_i915_private *dev_priv = dev->dev_private;
   2326 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2327 	struct intel_plane *intel_plane;
   2328 	struct intel_plane_state *sprstate = NULL;
   2329 	int level, max_level = ilk_wm_max_level(dev);
   2330 	/* LP0 watermark maximums depend on this pipe alone */
   2331 	struct intel_wm_config config = {
   2332 		.num_pipes_active = 1,
   2333 	};
   2334 	struct ilk_wm_maximums max;
   2335 
   2336 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
   2337 		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
   2338 			sprstate = to_intel_plane_state(intel_plane->base.state);
   2339 			break;
   2340 		}
   2341 	}
   2342 
   2343 	config.sprites_enabled = sprstate->visible;
   2344 	config.sprites_scaled = sprstate->visible &&
   2345 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
   2346 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
   2347 
   2348 	pipe_wm->pipe_enabled = cstate->base.active;
   2349 	pipe_wm->sprites_enabled = sprstate->visible;
   2350 	pipe_wm->sprites_scaled = config.sprites_scaled;
   2351 
   2352 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
   2353 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
   2354 		max_level = 1;
   2355 
   2356 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
   2357 	if (config.sprites_scaled)
   2358 		max_level = 0;
   2359 
   2360 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
   2361 
   2362 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2363 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
   2364 
   2365 	/* LP0 watermarks always use 1/2 DDB partitioning */
   2366 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
   2367 
   2368 	/* At least LP0 must be valid */
   2369 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
   2370 		return false;
   2371 
   2372 	ilk_compute_wm_reg_maximums(dev, 1, &max);
   2373 
   2374 	for (level = 1; level <= max_level; level++) {
   2375 		struct intel_wm_level wm = {};
   2376 
   2377 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
   2378 
   2379 		/*
   2380 		 * Disable any watermark level that exceeds the
   2381 		 * register maximums since such watermarks are
   2382 		 * always invalid.
   2383 		 */
   2384 		if (!ilk_validate_wm_level(level, &max, &wm))
   2385 			break;
   2386 
   2387 		pipe_wm->wm[level] = wm;
   2388 	}
   2389 
   2390 	return true;
   2391 }
   2392 
   2393 /*
   2394  * Merge the watermarks from all active pipes for a specific level.
   2395  */
   2396 static void ilk_merge_wm_level(struct drm_device *dev,
   2397 			       int level,
   2398 			       struct intel_wm_level *ret_wm)
   2399 {
   2400 	const struct intel_crtc *intel_crtc;
   2401 
   2402 	ret_wm->enable = true;
   2403 
   2404 	for_each_intel_crtc(dev, intel_crtc) {
   2405 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
   2406 		const struct intel_wm_level *wm = &active->wm[level];
   2407 
   2408 		if (!active->pipe_enabled)
   2409 			continue;
   2410 
   2411 		/*
   2412 		 * The watermark values may have been used in the past,
   2413 		 * so we must maintain them in the registers for some
   2414 		 * time even if the level is now disabled.
   2415 		 */
   2416 		if (!wm->enable)
   2417 			ret_wm->enable = false;
   2418 
   2419 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
   2420 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
   2421 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
   2422 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
   2423 	}
   2424 }
   2425 
   2426 /*
   2427  * Merge all low power watermarks for all active pipes.
   2428  */
   2429 static void ilk_wm_merge(struct drm_device *dev,
   2430 			 const struct intel_wm_config *config,
   2431 			 const struct ilk_wm_maximums *max,
   2432 			 struct intel_pipe_wm *merged)
   2433 {
   2434 	struct drm_i915_private *dev_priv = dev->dev_private;
   2435 	int level, max_level = ilk_wm_max_level(dev);
   2436 	int last_enabled_level = max_level;
   2437 
   2438 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
   2439 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
   2440 	    config->num_pipes_active > 1)
   2441 		return;
   2442 
   2443 	/* ILK: FBC WM must be disabled always */
   2444 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
   2445 
   2446 	/* merge each WM1+ level */
   2447 	for (level = 1; level <= max_level; level++) {
   2448 		struct intel_wm_level *wm = &merged->wm[level];
   2449 
   2450 		ilk_merge_wm_level(dev, level, wm);
   2451 
   2452 		if (level > last_enabled_level)
   2453 			wm->enable = false;
   2454 		else if (!ilk_validate_wm_level(level, max, wm))
   2455 			/* make sure all following levels get disabled */
   2456 			last_enabled_level = level - 1;
   2457 
   2458 		/*
   2459 		 * The spec says it is preferred to disable
   2460 		 * FBC WMs instead of disabling a WM level.
   2461 		 */
   2462 		if (wm->fbc_val > max->fbc) {
   2463 			if (wm->enable)
   2464 				merged->fbc_wm_enabled = false;
   2465 			wm->fbc_val = 0;
   2466 		}
   2467 	}
   2468 
   2469 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
   2470 	/*
   2471 	 * FIXME this is racy. FBC might get enabled later.
   2472 	 * What we should check here is whether FBC can be
   2473 	 * enabled sometime later.
   2474 	 */
   2475 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
   2476 	    intel_fbc_enabled(dev_priv)) {
   2477 		for (level = 2; level <= max_level; level++) {
   2478 			struct intel_wm_level *wm = &merged->wm[level];
   2479 
   2480 			wm->enable = false;
   2481 		}
   2482 	}
   2483 }
   2484 
   2485 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
   2486 {
   2487 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
   2488 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
   2489 }
   2490 
   2491 /* The value we need to program into the WM_LPx latency field */
   2492 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
   2493 {
   2494 	struct drm_i915_private *dev_priv = dev->dev_private;
   2495 
   2496 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2497 		return 2 * level;
   2498 	else
   2499 		return dev_priv->wm.pri_latency[level];
   2500 }
   2501 
   2502 static void ilk_compute_wm_results(struct drm_device *dev,
   2503 				   const struct intel_pipe_wm *merged,
   2504 				   enum intel_ddb_partitioning partitioning,
   2505 				   struct ilk_wm_values *results)
   2506 {
   2507 	struct intel_crtc *intel_crtc;
   2508 	int level, wm_lp;
   2509 
   2510 	results->enable_fbc_wm = merged->fbc_wm_enabled;
   2511 	results->partitioning = partitioning;
   2512 
   2513 	/* LP1+ register values */
   2514 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2515 		const struct intel_wm_level *r;
   2516 
   2517 		level = ilk_wm_lp_to_level(wm_lp, merged);
   2518 
   2519 		r = &merged->wm[level];
   2520 
   2521 		/*
   2522 		 * Maintain the watermark values even if the level is
   2523 		 * disabled. Doing otherwise could cause underruns.
   2524 		 */
   2525 		results->wm_lp[wm_lp - 1] =
   2526 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
   2527 			(r->pri_val << WM1_LP_SR_SHIFT) |
   2528 			r->cur_val;
   2529 
   2530 		if (r->enable)
   2531 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
   2532 
   2533 		if (INTEL_INFO(dev)->gen >= 8)
   2534 			results->wm_lp[wm_lp - 1] |=
   2535 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
   2536 		else
   2537 			results->wm_lp[wm_lp - 1] |=
   2538 				r->fbc_val << WM1_LP_FBC_SHIFT;
   2539 
   2540 		/*
   2541 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
   2542 		 * level is disabled. Doing otherwise could cause underruns.
   2543 		 */
   2544 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
   2545 			WARN_ON(wm_lp != 1);
   2546 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
   2547 		} else
   2548 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
   2549 	}
   2550 
   2551 	/* LP0 register values */
   2552 	for_each_intel_crtc(dev, intel_crtc) {
   2553 		enum pipe pipe = intel_crtc->pipe;
   2554 		const struct intel_wm_level *r =
   2555 			&intel_crtc->wm.active.wm[0];
   2556 
   2557 		if (WARN_ON(!r->enable))
   2558 			continue;
   2559 
   2560 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
   2561 
   2562 		results->wm_pipe[pipe] =
   2563 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
   2564 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
   2565 			r->cur_val;
   2566 	}
   2567 }
   2568 
   2569 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
   2570  * case both are at the same level. Prefer r1 in case they're the same. */
   2571 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
   2572 						  struct intel_pipe_wm *r1,
   2573 						  struct intel_pipe_wm *r2)
   2574 {
   2575 	int level, max_level = ilk_wm_max_level(dev);
   2576 	int level1 = 0, level2 = 0;
   2577 
   2578 	for (level = 1; level <= max_level; level++) {
   2579 		if (r1->wm[level].enable)
   2580 			level1 = level;
   2581 		if (r2->wm[level].enable)
   2582 			level2 = level;
   2583 	}
   2584 
   2585 	if (level1 == level2) {
   2586 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
   2587 			return r2;
   2588 		else
   2589 			return r1;
   2590 	} else if (level1 > level2) {
   2591 		return r1;
   2592 	} else {
   2593 		return r2;
   2594 	}
   2595 }
   2596 
   2597 /* dirty bits used to track which watermarks need changes */
   2598 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
   2599 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
   2600 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
   2601 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
   2602 #define WM_DIRTY_FBC (1 << 24)
   2603 #define WM_DIRTY_DDB (1 << 25)
   2604 
   2605 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
   2606 					 const struct ilk_wm_values *old,
   2607 					 const struct ilk_wm_values *new)
   2608 {
   2609 	unsigned int dirty = 0;
   2610 	enum pipe pipe;
   2611 	int wm_lp;
   2612 
   2613 	for_each_pipe(dev_priv, pipe) {
   2614 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
   2615 			dirty |= WM_DIRTY_LINETIME(pipe);
   2616 			/* Must disable LP1+ watermarks too */
   2617 			dirty |= WM_DIRTY_LP_ALL;
   2618 		}
   2619 
   2620 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
   2621 			dirty |= WM_DIRTY_PIPE(pipe);
   2622 			/* Must disable LP1+ watermarks too */
   2623 			dirty |= WM_DIRTY_LP_ALL;
   2624 		}
   2625 	}
   2626 
   2627 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
   2628 		dirty |= WM_DIRTY_FBC;
   2629 		/* Must disable LP1+ watermarks too */
   2630 		dirty |= WM_DIRTY_LP_ALL;
   2631 	}
   2632 
   2633 	if (old->partitioning != new->partitioning) {
   2634 		dirty |= WM_DIRTY_DDB;
   2635 		/* Must disable LP1+ watermarks too */
   2636 		dirty |= WM_DIRTY_LP_ALL;
   2637 	}
   2638 
   2639 	/* LP1+ watermarks already deemed dirty, no need to continue */
   2640 	if (dirty & WM_DIRTY_LP_ALL)
   2641 		return dirty;
   2642 
   2643 	/* Find the lowest numbered LP1+ watermark in need of an update... */
   2644 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2645 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
   2646 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
   2647 			break;
   2648 	}
   2649 
   2650 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
   2651 	for (; wm_lp <= 3; wm_lp++)
   2652 		dirty |= WM_DIRTY_LP(wm_lp);
   2653 
   2654 	return dirty;
   2655 }
   2656 
   2657 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
   2658 			       unsigned int dirty)
   2659 {
   2660 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2661 	bool changed = false;
   2662 
   2663 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
   2664 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
   2665 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
   2666 		changed = true;
   2667 	}
   2668 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
   2669 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
   2670 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
   2671 		changed = true;
   2672 	}
   2673 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
   2674 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
   2675 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
   2676 		changed = true;
   2677 	}
   2678 
   2679 	/*
   2680 	 * Don't touch WM1S_LP_EN here.
   2681 	 * Doing so could cause underruns.
   2682 	 */
   2683 
   2684 	return changed;
   2685 }
   2686 
   2687 /*
   2688  * The spec says we shouldn't write when we don't need, because every write
   2689  * causes WMs to be re-evaluated, expending some power.
   2690  */
   2691 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
   2692 				struct ilk_wm_values *results)
   2693 {
   2694 	struct drm_device *dev = dev_priv->dev;
   2695 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2696 	unsigned int dirty;
   2697 	uint32_t val;
   2698 
   2699 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
   2700 	if (!dirty)
   2701 		return;
   2702 
   2703 	_ilk_disable_lp_wm(dev_priv, dirty);
   2704 
   2705 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
   2706 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
   2707 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
   2708 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
   2709 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
   2710 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
   2711 
   2712 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
   2713 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
   2714 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
   2715 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
   2716 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
   2717 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
   2718 
   2719 	if (dirty & WM_DIRTY_DDB) {
   2720 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2721 			val = I915_READ(WM_MISC);
   2722 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2723 				val &= ~WM_MISC_DATA_PARTITION_5_6;
   2724 			else
   2725 				val |= WM_MISC_DATA_PARTITION_5_6;
   2726 			I915_WRITE(WM_MISC, val);
   2727 		} else {
   2728 			val = I915_READ(DISP_ARB_CTL2);
   2729 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2730 				val &= ~DISP_DATA_PARTITION_5_6;
   2731 			else
   2732 				val |= DISP_DATA_PARTITION_5_6;
   2733 			I915_WRITE(DISP_ARB_CTL2, val);
   2734 		}
   2735 	}
   2736 
   2737 	if (dirty & WM_DIRTY_FBC) {
   2738 		val = I915_READ(DISP_ARB_CTL);
   2739 		if (results->enable_fbc_wm)
   2740 			val &= ~DISP_FBC_WM_DIS;
   2741 		else
   2742 			val |= DISP_FBC_WM_DIS;
   2743 		I915_WRITE(DISP_ARB_CTL, val);
   2744 	}
   2745 
   2746 	if (dirty & WM_DIRTY_LP(1) &&
   2747 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
   2748 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
   2749 
   2750 	if (INTEL_INFO(dev)->gen >= 7) {
   2751 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
   2752 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
   2753 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
   2754 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
   2755 	}
   2756 
   2757 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
   2758 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
   2759 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
   2760 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
   2761 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
   2762 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
   2763 
   2764 	dev_priv->wm.hw = *results;
   2765 }
   2766 
   2767 static bool ilk_disable_lp_wm(struct drm_device *dev)
   2768 {
   2769 	struct drm_i915_private *dev_priv = dev->dev_private;
   2770 
   2771 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
   2772 }
   2773 
   2774 /*
   2775  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
   2776  * different active planes.
   2777  */
   2778 
   2779 #define SKL_DDB_SIZE		896	/* in blocks */
   2780 #define BXT_DDB_SIZE		512
   2781 
   2782 static void
   2783 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
   2784 				   struct drm_crtc *for_crtc,
   2785 				   const struct intel_wm_config *config,
   2786 				   const struct skl_pipe_wm_parameters *params,
   2787 				   struct skl_ddb_entry *alloc /* out */)
   2788 {
   2789 	struct drm_crtc *crtc;
   2790 	unsigned int pipe_size, ddb_size;
   2791 	int nth_active_pipe;
   2792 
   2793 	if (!params->active) {
   2794 		alloc->start = 0;
   2795 		alloc->end = 0;
   2796 		return;
   2797 	}
   2798 
   2799 	if (IS_BROXTON(dev))
   2800 		ddb_size = BXT_DDB_SIZE;
   2801 	else
   2802 		ddb_size = SKL_DDB_SIZE;
   2803 
   2804 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
   2805 
   2806 	nth_active_pipe = 0;
   2807 	for_each_crtc(dev, crtc) {
   2808 		if (!to_intel_crtc(crtc)->active)
   2809 			continue;
   2810 
   2811 		if (crtc == for_crtc)
   2812 			break;
   2813 
   2814 		nth_active_pipe++;
   2815 	}
   2816 
   2817 	pipe_size = ddb_size / config->num_pipes_active;
   2818 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
   2819 	alloc->end = alloc->start + pipe_size;
   2820 }
   2821 
   2822 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
   2823 {
   2824 	if (config->num_pipes_active == 1)
   2825 		return 32;
   2826 
   2827 	return 8;
   2828 }
   2829 
   2830 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
   2831 {
   2832 	entry->start = reg & 0x3ff;
   2833 	entry->end = (reg >> 16) & 0x3ff;
   2834 	if (entry->end)
   2835 		entry->end += 1;
   2836 }
   2837 
   2838 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
   2839 			  struct skl_ddb_allocation *ddb /* out */)
   2840 {
   2841 	enum pipe pipe;
   2842 	int plane;
   2843 	u32 val;
   2844 
   2845 	memset(ddb, 0, sizeof(*ddb));
   2846 
   2847 	for_each_pipe(dev_priv, pipe) {
   2848 		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
   2849 			continue;
   2850 
   2851 		for_each_plane(dev_priv, pipe, plane) {
   2852 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
   2853 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
   2854 						   val);
   2855 		}
   2856 
   2857 		val = I915_READ(CUR_BUF_CFG(pipe));
   2858 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
   2859 					   val);
   2860 	}
   2861 }
   2862 
   2863 static unsigned int
   2864 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
   2865 {
   2866 
   2867 	/* for planar format */
   2868 	if (p->y_bytes_per_pixel) {
   2869 		if (y)  /* y-plane data rate */
   2870 			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
   2871 		else    /* uv-plane data rate */
   2872 			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
   2873 	}
   2874 
   2875 	/* for packed formats */
   2876 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
   2877 }
   2878 
   2879 /*
   2880  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
   2881  * a 8192x4096@32bpp framebuffer:
   2882  *   3 * 4096 * 8192  * 4 < 2^32
   2883  */
   2884 static unsigned int
   2885 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
   2886 				 const struct skl_pipe_wm_parameters *params)
   2887 {
   2888 	unsigned int total_data_rate = 0;
   2889 	int plane;
   2890 
   2891 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
   2892 		const struct intel_plane_wm_parameters *p;
   2893 
   2894 		p = &params->plane[plane];
   2895 		if (!p->enabled)
   2896 			continue;
   2897 
   2898 		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
   2899 		if (p->y_bytes_per_pixel) {
   2900 			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
   2901 		}
   2902 	}
   2903 
   2904 	return total_data_rate;
   2905 }
   2906 
   2907 static void
   2908 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
   2909 		      const struct intel_wm_config *config,
   2910 		      const struct skl_pipe_wm_parameters *params,
   2911 		      struct skl_ddb_allocation *ddb /* out */)
   2912 {
   2913 	struct drm_device *dev = crtc->dev;
   2914 	struct drm_i915_private *dev_priv = dev->dev_private;
   2915 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2916 	enum pipe pipe = intel_crtc->pipe;
   2917 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
   2918 	uint16_t alloc_size, start, cursor_blocks;
   2919 	uint16_t minimum[I915_MAX_PLANES];
   2920 	uint16_t y_minimum[I915_MAX_PLANES];
   2921 	unsigned int total_data_rate;
   2922 	int plane;
   2923 
   2924 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
   2925 	alloc_size = skl_ddb_entry_size(alloc);
   2926 	if (alloc_size == 0) {
   2927 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
   2928 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
   2929 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
   2930 		return;
   2931 	}
   2932 
   2933 	cursor_blocks = skl_cursor_allocation(config);
   2934 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
   2935 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
   2936 
   2937 	alloc_size -= cursor_blocks;
   2938 	alloc->end -= cursor_blocks;
   2939 
   2940 	/* 1. Allocate the mininum required blocks for each active plane */
   2941 	for_each_plane(dev_priv, pipe, plane) {
   2942 		const struct intel_plane_wm_parameters *p;
   2943 
   2944 		p = &params->plane[plane];
   2945 		if (!p->enabled)
   2946 			continue;
   2947 
   2948 		minimum[plane] = 8;
   2949 		alloc_size -= minimum[plane];
   2950 		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
   2951 		alloc_size -= y_minimum[plane];
   2952 	}
   2953 
   2954 	/*
   2955 	 * 2. Distribute the remaining space in proportion to the amount of
   2956 	 * data each plane needs to fetch from memory.
   2957 	 *
   2958 	 * FIXME: we may not allocate every single block here.
   2959 	 */
   2960 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
   2961 
   2962 	start = alloc->start;
   2963 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
   2964 		const struct intel_plane_wm_parameters *p;
   2965 		unsigned int data_rate, y_data_rate;
   2966 		uint16_t plane_blocks, y_plane_blocks = 0;
   2967 
   2968 		p = &params->plane[plane];
   2969 		if (!p->enabled)
   2970 			continue;
   2971 
   2972 		data_rate = skl_plane_relative_data_rate(p, 0);
   2973 
   2974 		/*
   2975 		 * allocation for (packed formats) or (uv-plane part of planar format):
   2976 		 * promote the expression to 64 bits to avoid overflowing, the
   2977 		 * result is < available as data_rate / total_data_rate < 1
   2978 		 */
   2979 		plane_blocks = minimum[plane];
   2980 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
   2981 					total_data_rate);
   2982 
   2983 		ddb->plane[pipe][plane].start = start;
   2984 		ddb->plane[pipe][plane].end = start + plane_blocks;
   2985 
   2986 		start += plane_blocks;
   2987 
   2988 		/*
   2989 		 * allocation for y_plane part of planar format:
   2990 		 */
   2991 		if (p->y_bytes_per_pixel) {
   2992 			y_data_rate = skl_plane_relative_data_rate(p, 1);
   2993 			y_plane_blocks = y_minimum[plane];
   2994 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
   2995 						total_data_rate);
   2996 
   2997 			ddb->y_plane[pipe][plane].start = start;
   2998 			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
   2999 
   3000 			start += y_plane_blocks;
   3001 		}
   3002 
   3003 	}
   3004 
   3005 }
   3006 
   3007 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
   3008 {
   3009 	/* TODO: Take into account the scalers once we support them */
   3010 	return config->base.adjusted_mode.crtc_clock;
   3011 }
   3012 
   3013 /*
   3014  * The max latency should be 257 (max the punit can code is 255 and we add 2us
   3015  * for the read latency) and bytes_per_pixel should always be <= 8, so that
   3016  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
   3017  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
   3018 */
   3019 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   3020 			       uint32_t latency)
   3021 {
   3022 	uint32_t wm_intermediate_val, ret;
   3023 
   3024 	if (latency == 0)
   3025 		return UINT_MAX;
   3026 
   3027 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
   3028 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
   3029 
   3030 	return ret;
   3031 }
   3032 
   3033 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   3034 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   3035 			       uint64_t tiling, uint32_t latency)
   3036 {
   3037 	uint32_t ret;
   3038 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
   3039 	uint32_t wm_intermediate_val;
   3040 
   3041 	if (latency == 0)
   3042 		return UINT_MAX;
   3043 
   3044 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
   3045 
   3046 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
   3047 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
   3048 		plane_bytes_per_line *= 4;
   3049 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3050 		plane_blocks_per_line /= 4;
   3051 	} else {
   3052 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3053 	}
   3054 
   3055 	wm_intermediate_val = latency * pixel_rate;
   3056 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
   3057 				plane_blocks_per_line;
   3058 
   3059 	return ret;
   3060 }
   3061 
   3062 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
   3063 				       const struct intel_crtc *intel_crtc)
   3064 {
   3065 	struct drm_device *dev = intel_crtc->base.dev;
   3066 	struct drm_i915_private *dev_priv = dev->dev_private;
   3067 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
   3068 	enum pipe pipe = intel_crtc->pipe;
   3069 
   3070 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
   3071 		   sizeof(new_ddb->plane[pipe])))
   3072 		return true;
   3073 
   3074 	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
   3075 		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
   3076 		return true;
   3077 
   3078 	return false;
   3079 }
   3080 
   3081 static void skl_compute_wm_global_parameters(struct drm_device *dev,
   3082 					     struct intel_wm_config *config)
   3083 {
   3084 	struct drm_crtc *crtc;
   3085 	struct drm_plane *plane;
   3086 
   3087 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   3088 		config->num_pipes_active += to_intel_crtc(crtc)->active;
   3089 
   3090 	/* FIXME: I don't think we need those two global parameters on SKL */
   3091 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
   3092 		struct intel_plane *intel_plane = to_intel_plane(plane);
   3093 
   3094 		config->sprites_enabled |= intel_plane->wm.enabled;
   3095 		config->sprites_scaled |= intel_plane->wm.scaled;
   3096 	}
   3097 }
   3098 
   3099 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
   3100 					   struct skl_pipe_wm_parameters *p)
   3101 {
   3102 	struct drm_device *dev = crtc->dev;
   3103 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3104 	enum pipe pipe = intel_crtc->pipe;
   3105 	struct drm_plane *plane;
   3106 	struct drm_framebuffer *fb;
   3107 	int i = 1; /* Index for sprite planes start */
   3108 
   3109 	p->active = intel_crtc->active;
   3110 	if (p->active) {
   3111 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
   3112 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
   3113 
   3114 		fb = crtc->primary->state->fb;
   3115 		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
   3116 		if (fb) {
   3117 			p->plane[0].enabled = true;
   3118 			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
   3119 				drm_format_plane_cpp(fb->pixel_format, 1) :
   3120 				drm_format_plane_cpp(fb->pixel_format, 0);
   3121 			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
   3122 				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
   3123 			p->plane[0].tiling = fb->modifier[0];
   3124 		} else {
   3125 			p->plane[0].enabled = false;
   3126 			p->plane[0].bytes_per_pixel = 0;
   3127 			p->plane[0].y_bytes_per_pixel = 0;
   3128 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
   3129 		}
   3130 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
   3131 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
   3132 		p->plane[0].rotation = crtc->primary->state->rotation;
   3133 
   3134 		fb = crtc->cursor->state->fb;
   3135 		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
   3136 		if (fb) {
   3137 			p->plane[PLANE_CURSOR].enabled = true;
   3138 			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
   3139 			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
   3140 			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
   3141 		} else {
   3142 			p->plane[PLANE_CURSOR].enabled = false;
   3143 			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
   3144 			p->plane[PLANE_CURSOR].horiz_pixels = 64;
   3145 			p->plane[PLANE_CURSOR].vert_pixels = 64;
   3146 		}
   3147 	}
   3148 
   3149 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
   3150 		struct intel_plane *intel_plane = to_intel_plane(plane);
   3151 
   3152 		if (intel_plane->pipe == pipe &&
   3153 			plane->type == DRM_PLANE_TYPE_OVERLAY)
   3154 			p->plane[i++] = intel_plane->wm;
   3155 	}
   3156 }
   3157 
   3158 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
   3159 				 struct skl_pipe_wm_parameters *p,
   3160 				 struct intel_plane_wm_parameters *p_params,
   3161 				 uint16_t ddb_allocation,
   3162 				 int level,
   3163 				 uint16_t *out_blocks, /* out */
   3164 				 uint8_t *out_lines /* out */)
   3165 {
   3166 	uint32_t latency = dev_priv->wm.skl_latency[level];
   3167 	uint32_t method1, method2;
   3168 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
   3169 	uint32_t res_blocks, res_lines;
   3170 	uint32_t selected_result;
   3171 	uint8_t bytes_per_pixel;
   3172 
   3173 	if (latency == 0 || !p->active || !p_params->enabled)
   3174 		return false;
   3175 
   3176 	bytes_per_pixel = p_params->y_bytes_per_pixel ?
   3177 		p_params->y_bytes_per_pixel :
   3178 		p_params->bytes_per_pixel;
   3179 	method1 = skl_wm_method1(p->pixel_rate,
   3180 				 bytes_per_pixel,
   3181 				 latency);
   3182 	method2 = skl_wm_method2(p->pixel_rate,
   3183 				 p->pipe_htotal,
   3184 				 p_params->horiz_pixels,
   3185 				 bytes_per_pixel,
   3186 				 p_params->tiling,
   3187 				 latency);
   3188 
   3189 	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
   3190 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3191 
   3192 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
   3193 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
   3194 		uint32_t min_scanlines = 4;
   3195 		uint32_t y_tile_minimum;
   3196 		if (intel_rotation_90_or_270(p_params->rotation)) {
   3197 			switch (p_params->bytes_per_pixel) {
   3198 			case 1:
   3199 				min_scanlines = 16;
   3200 				break;
   3201 			case 2:
   3202 				min_scanlines = 8;
   3203 				break;
   3204 			case 8:
   3205 				WARN(1, "Unsupported pixel depth for rotation");
   3206 			}
   3207 		}
   3208 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
   3209 		selected_result = max(method2, y_tile_minimum);
   3210 	} else {
   3211 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
   3212 			selected_result = min(method1, method2);
   3213 		else
   3214 			selected_result = method1;
   3215 	}
   3216 
   3217 	res_blocks = selected_result + 1;
   3218 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
   3219 
   3220 	if (level >= 1 && level <= 7) {
   3221 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
   3222 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
   3223 			res_lines += 4;
   3224 		else
   3225 			res_blocks++;
   3226 	}
   3227 
   3228 	if (res_blocks >= ddb_allocation || res_lines > 31)
   3229 		return false;
   3230 
   3231 	*out_blocks = res_blocks;
   3232 	*out_lines = res_lines;
   3233 
   3234 	return true;
   3235 }
   3236 
   3237 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
   3238 				 struct skl_ddb_allocation *ddb,
   3239 				 struct skl_pipe_wm_parameters *p,
   3240 				 enum pipe pipe,
   3241 				 int level,
   3242 				 int num_planes,
   3243 				 struct skl_wm_level *result)
   3244 {
   3245 	uint16_t ddb_blocks;
   3246 	int i;
   3247 
   3248 	for (i = 0; i < num_planes; i++) {
   3249 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
   3250 
   3251 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
   3252 						p, &p->plane[i],
   3253 						ddb_blocks,
   3254 						level,
   3255 						&result->plane_res_b[i],
   3256 						&result->plane_res_l[i]);
   3257 	}
   3258 
   3259 	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
   3260 	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
   3261 						 &p->plane[PLANE_CURSOR],
   3262 						 ddb_blocks, level,
   3263 						 &result->plane_res_b[PLANE_CURSOR],
   3264 						 &result->plane_res_l[PLANE_CURSOR]);
   3265 }
   3266 
   3267 static uint32_t
   3268 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
   3269 {
   3270 	if (!to_intel_crtc(crtc)->active)
   3271 		return 0;
   3272 
   3273 	if (WARN_ON(p->pixel_rate == 0))
   3274 		return 0;
   3275 
   3276 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
   3277 }
   3278 
   3279 static void skl_compute_transition_wm(struct drm_crtc *crtc,
   3280 				      struct skl_pipe_wm_parameters *params,
   3281 				      struct skl_wm_level *trans_wm /* out */)
   3282 {
   3283 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3284 	int i;
   3285 
   3286 	if (!params->active)
   3287 		return;
   3288 
   3289 	/* Until we know more, just disable transition WMs */
   3290 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3291 		trans_wm->plane_en[i] = false;
   3292 	trans_wm->plane_en[PLANE_CURSOR] = false;
   3293 }
   3294 
   3295 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
   3296 				struct skl_ddb_allocation *ddb,
   3297 				struct skl_pipe_wm_parameters *params,
   3298 				struct skl_pipe_wm *pipe_wm)
   3299 {
   3300 	struct drm_device *dev = crtc->dev;
   3301 	const struct drm_i915_private *dev_priv = dev->dev_private;
   3302 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3303 	int level, max_level = ilk_wm_max_level(dev);
   3304 
   3305 	for (level = 0; level <= max_level; level++) {
   3306 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
   3307 				     level, intel_num_planes(intel_crtc),
   3308 				     &pipe_wm->wm[level]);
   3309 	}
   3310 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
   3311 
   3312 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
   3313 }
   3314 
   3315 static void skl_compute_wm_results(struct drm_device *dev,
   3316 				   struct skl_pipe_wm_parameters *p,
   3317 				   struct skl_pipe_wm *p_wm,
   3318 				   struct skl_wm_values *r,
   3319 				   struct intel_crtc *intel_crtc)
   3320 {
   3321 	int level, max_level = ilk_wm_max_level(dev);
   3322 	enum pipe pipe = intel_crtc->pipe;
   3323 	uint32_t temp;
   3324 	int i;
   3325 
   3326 	for (level = 0; level <= max_level; level++) {
   3327 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3328 			temp = 0;
   3329 
   3330 			temp |= p_wm->wm[level].plane_res_l[i] <<
   3331 					PLANE_WM_LINES_SHIFT;
   3332 			temp |= p_wm->wm[level].plane_res_b[i];
   3333 			if (p_wm->wm[level].plane_en[i])
   3334 				temp |= PLANE_WM_EN;
   3335 
   3336 			r->plane[pipe][i][level] = temp;
   3337 		}
   3338 
   3339 		temp = 0;
   3340 
   3341 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
   3342 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
   3343 
   3344 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
   3345 			temp |= PLANE_WM_EN;
   3346 
   3347 		r->plane[pipe][PLANE_CURSOR][level] = temp;
   3348 
   3349 	}
   3350 
   3351 	/* transition WMs */
   3352 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3353 		temp = 0;
   3354 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
   3355 		temp |= p_wm->trans_wm.plane_res_b[i];
   3356 		if (p_wm->trans_wm.plane_en[i])
   3357 			temp |= PLANE_WM_EN;
   3358 
   3359 		r->plane_trans[pipe][i] = temp;
   3360 	}
   3361 
   3362 	temp = 0;
   3363 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
   3364 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
   3365 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
   3366 		temp |= PLANE_WM_EN;
   3367 
   3368 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
   3369 
   3370 	r->wm_linetime[pipe] = p_wm->linetime;
   3371 }
   3372 
   3373 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
   3374 				const struct skl_ddb_entry *entry)
   3375 {
   3376 	if (entry->end)
   3377 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
   3378 	else
   3379 		I915_WRITE(reg, 0);
   3380 }
   3381 
   3382 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
   3383 				const struct skl_wm_values *new)
   3384 {
   3385 	struct drm_device *dev = dev_priv->dev;
   3386 	struct intel_crtc *crtc;
   3387 
   3388 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
   3389 		int i, level, max_level = ilk_wm_max_level(dev);
   3390 		enum pipe pipe = crtc->pipe;
   3391 
   3392 		if (!new->dirty[pipe])
   3393 			continue;
   3394 
   3395 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
   3396 
   3397 		for (level = 0; level <= max_level; level++) {
   3398 			for (i = 0; i < intel_num_planes(crtc); i++)
   3399 				I915_WRITE(PLANE_WM(pipe, i, level),
   3400 					   new->plane[pipe][i][level]);
   3401 			I915_WRITE(CUR_WM(pipe, level),
   3402 				   new->plane[pipe][PLANE_CURSOR][level]);
   3403 		}
   3404 		for (i = 0; i < intel_num_planes(crtc); i++)
   3405 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
   3406 				   new->plane_trans[pipe][i]);
   3407 		I915_WRITE(CUR_WM_TRANS(pipe),
   3408 			   new->plane_trans[pipe][PLANE_CURSOR]);
   3409 
   3410 		for (i = 0; i < intel_num_planes(crtc); i++) {
   3411 			skl_ddb_entry_write(dev_priv,
   3412 					    PLANE_BUF_CFG(pipe, i),
   3413 					    &new->ddb.plane[pipe][i]);
   3414 			skl_ddb_entry_write(dev_priv,
   3415 					    PLANE_NV12_BUF_CFG(pipe, i),
   3416 					    &new->ddb.y_plane[pipe][i]);
   3417 		}
   3418 
   3419 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
   3420 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
   3421 	}
   3422 }
   3423 
   3424 /*
   3425  * When setting up a new DDB allocation arrangement, we need to correctly
   3426  * sequence the times at which the new allocations for the pipes are taken into
   3427  * account or we'll have pipes fetching from space previously allocated to
   3428  * another pipe.
   3429  *
   3430  * Roughly the sequence looks like:
   3431  *  1. re-allocate the pipe(s) with the allocation being reduced and not
   3432  *     overlapping with a previous light-up pipe (another way to put it is:
   3433  *     pipes with their new allocation strickly included into their old ones).
   3434  *  2. re-allocate the other pipes that get their allocation reduced
   3435  *  3. allocate the pipes having their allocation increased
   3436  *
   3437  * Steps 1. and 2. are here to take care of the following case:
   3438  * - Initially DDB looks like this:
   3439  *     |   B    |   C    |
   3440  * - enable pipe A.
   3441  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
   3442  *   allocation
   3443  *     |  A  |  B  |  C  |
   3444  *
   3445  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
   3446  */
   3447 
   3448 static void
   3449 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
   3450 {
   3451 	int plane;
   3452 
   3453 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
   3454 
   3455 	for_each_plane(dev_priv, pipe, plane) {
   3456 		I915_WRITE(PLANE_SURF(pipe, plane),
   3457 			   I915_READ(PLANE_SURF(pipe, plane)));
   3458 	}
   3459 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
   3460 }
   3461 
   3462 static bool
   3463 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
   3464 			    const struct skl_ddb_allocation *new,
   3465 			    enum pipe pipe)
   3466 {
   3467 	uint16_t old_size, new_size;
   3468 
   3469 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
   3470 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
   3471 
   3472 	return old_size != new_size &&
   3473 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
   3474 	       new->pipe[pipe].end <= old->pipe[pipe].end;
   3475 }
   3476 
   3477 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
   3478 				struct skl_wm_values *new_values)
   3479 {
   3480 	struct drm_device *dev = dev_priv->dev;
   3481 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
   3482 	bool reallocated[I915_MAX_PIPES] = {};
   3483 	struct intel_crtc *crtc;
   3484 	enum pipe pipe;
   3485 
   3486 	new_ddb = &new_values->ddb;
   3487 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
   3488 
   3489 	/*
   3490 	 * First pass: flush the pipes with the new allocation contained into
   3491 	 * the old space.
   3492 	 *
   3493 	 * We'll wait for the vblank on those pipes to ensure we can safely
   3494 	 * re-allocate the freed space without this pipe fetching from it.
   3495 	 */
   3496 	for_each_intel_crtc(dev, crtc) {
   3497 		if (!crtc->active)
   3498 			continue;
   3499 
   3500 		pipe = crtc->pipe;
   3501 
   3502 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
   3503 			continue;
   3504 
   3505 		skl_wm_flush_pipe(dev_priv, pipe, 1);
   3506 		intel_wait_for_vblank(dev, pipe);
   3507 
   3508 		reallocated[pipe] = true;
   3509 	}
   3510 
   3511 
   3512 	/*
   3513 	 * Second pass: flush the pipes that are having their allocation
   3514 	 * reduced, but overlapping with a previous allocation.
   3515 	 *
   3516 	 * Here as well we need to wait for the vblank to make sure the freed
   3517 	 * space is not used anymore.
   3518 	 */
   3519 	for_each_intel_crtc(dev, crtc) {
   3520 		if (!crtc->active)
   3521 			continue;
   3522 
   3523 		pipe = crtc->pipe;
   3524 
   3525 		if (reallocated[pipe])
   3526 			continue;
   3527 
   3528 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
   3529 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
   3530 			skl_wm_flush_pipe(dev_priv, pipe, 2);
   3531 			intel_wait_for_vblank(dev, pipe);
   3532 			reallocated[pipe] = true;
   3533 		}
   3534 	}
   3535 
   3536 	/*
   3537 	 * Third pass: flush the pipes that got more space allocated.
   3538 	 *
   3539 	 * We don't need to actively wait for the update here, next vblank
   3540 	 * will just get more DDB space with the correct WM values.
   3541 	 */
   3542 	for_each_intel_crtc(dev, crtc) {
   3543 		if (!crtc->active)
   3544 			continue;
   3545 
   3546 		pipe = crtc->pipe;
   3547 
   3548 		/*
   3549 		 * At this point, only the pipes more space than before are
   3550 		 * left to re-allocate.
   3551 		 */
   3552 		if (reallocated[pipe])
   3553 			continue;
   3554 
   3555 		skl_wm_flush_pipe(dev_priv, pipe, 3);
   3556 	}
   3557 }
   3558 
   3559 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
   3560 			       struct skl_pipe_wm_parameters *params,
   3561 			       struct intel_wm_config *config,
   3562 			       struct skl_ddb_allocation *ddb, /* out */
   3563 			       struct skl_pipe_wm *pipe_wm /* out */)
   3564 {
   3565 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3566 
   3567 	skl_compute_wm_pipe_parameters(crtc, params);
   3568 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
   3569 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
   3570 
   3571 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
   3572 		return false;
   3573 
   3574 	intel_crtc->wm.skl_active = *pipe_wm;
   3575 
   3576 	return true;
   3577 }
   3578 
   3579 static void skl_update_other_pipe_wm(struct drm_device *dev,
   3580 				     struct drm_crtc *crtc,
   3581 				     struct intel_wm_config *config,
   3582 				     struct skl_wm_values *r)
   3583 {
   3584 	struct intel_crtc *intel_crtc;
   3585 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
   3586 
   3587 	/*
   3588 	 * If the WM update hasn't changed the allocation for this_crtc (the
   3589 	 * crtc we are currently computing the new WM values for), other
   3590 	 * enabled crtcs will keep the same allocation and we don't need to
   3591 	 * recompute anything for them.
   3592 	 */
   3593 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
   3594 		return;
   3595 
   3596 	/*
   3597 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
   3598 	 * other active pipes need new DDB allocation and WM values.
   3599 	 */
   3600 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
   3601 				base.head) {
   3602 		struct skl_pipe_wm_parameters params = {};
   3603 		struct skl_pipe_wm pipe_wm = {};
   3604 		bool wm_changed;
   3605 
   3606 		if (this_crtc->pipe == intel_crtc->pipe)
   3607 			continue;
   3608 
   3609 		if (!intel_crtc->active)
   3610 			continue;
   3611 
   3612 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
   3613 						&params, config,
   3614 						&r->ddb, &pipe_wm);
   3615 
   3616 		/*
   3617 		 * If we end up re-computing the other pipe WM values, it's
   3618 		 * because it was really needed, so we expect the WM values to
   3619 		 * be different.
   3620 		 */
   3621 		WARN_ON(!wm_changed);
   3622 
   3623 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
   3624 		r->dirty[intel_crtc->pipe] = true;
   3625 	}
   3626 }
   3627 
   3628 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
   3629 {
   3630 	watermarks->wm_linetime[pipe] = 0;
   3631 	memset(watermarks->plane[pipe], 0,
   3632 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
   3633 	memset(watermarks->plane_trans[pipe],
   3634 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
   3635 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
   3636 
   3637 	/* Clear ddb entries for pipe */
   3638 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
   3639 	memset(&watermarks->ddb.plane[pipe], 0,
   3640 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
   3641 	memset(&watermarks->ddb.y_plane[pipe], 0,
   3642 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
   3643 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
   3644 	       sizeof(struct skl_ddb_entry));
   3645 
   3646 }
   3647 
   3648 static void skl_update_wm(struct drm_crtc *crtc)
   3649 {
   3650 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3651 	struct drm_device *dev = crtc->dev;
   3652 	struct drm_i915_private *dev_priv = dev->dev_private;
   3653 	struct skl_pipe_wm_parameters params = {};
   3654 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
   3655 	struct skl_pipe_wm pipe_wm = {};
   3656 	struct intel_wm_config config = {};
   3657 
   3658 
   3659 	/* Clear all dirty flags */
   3660 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
   3661 
   3662 	skl_clear_wm(results, intel_crtc->pipe);
   3663 
   3664 	skl_compute_wm_global_parameters(dev, &config);
   3665 
   3666 	if (!skl_update_pipe_wm(crtc, &params, &config,
   3667 				&results->ddb, &pipe_wm))
   3668 		return;
   3669 
   3670 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
   3671 	results->dirty[intel_crtc->pipe] = true;
   3672 
   3673 	skl_update_other_pipe_wm(dev, crtc, &config, results);
   3674 	skl_write_wm_values(dev_priv, results);
   3675 	skl_flush_wm_values(dev_priv, results);
   3676 
   3677 	/* store the new configuration */
   3678 	dev_priv->wm.skl_hw = *results;
   3679 }
   3680 
   3681 static void
   3682 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
   3683 		     uint32_t sprite_width, uint32_t sprite_height,
   3684 		     int pixel_size, bool enabled, bool scaled)
   3685 {
   3686 	struct intel_plane *intel_plane = to_intel_plane(plane);
   3687 	struct drm_framebuffer *fb = plane->state->fb;
   3688 
   3689 	intel_plane->wm.enabled = enabled;
   3690 	intel_plane->wm.scaled = scaled;
   3691 	intel_plane->wm.horiz_pixels = sprite_width;
   3692 	intel_plane->wm.vert_pixels = sprite_height;
   3693 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
   3694 
   3695 	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
   3696 	intel_plane->wm.bytes_per_pixel =
   3697 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
   3698 		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
   3699 	intel_plane->wm.y_bytes_per_pixel =
   3700 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
   3701 		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
   3702 
   3703 	/*
   3704 	 * Framebuffer can be NULL on plane disable, but it does not
   3705 	 * matter for watermarks if we assume no tiling in that case.
   3706 	 */
   3707 	if (fb)
   3708 		intel_plane->wm.tiling = fb->modifier[0];
   3709 	intel_plane->wm.rotation = plane->state->rotation;
   3710 
   3711 	skl_update_wm(crtc);
   3712 }
   3713 
   3714 static void ilk_update_wm(struct drm_crtc *crtc)
   3715 {
   3716 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3717 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
   3718 	struct drm_device *dev = crtc->dev;
   3719 	struct drm_i915_private *dev_priv = dev->dev_private;
   3720 	struct ilk_wm_maximums max;
   3721 	struct ilk_wm_values results = {};
   3722 	enum intel_ddb_partitioning partitioning;
   3723 	struct intel_pipe_wm pipe_wm = {};
   3724 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
   3725 	struct intel_wm_config config = {};
   3726 
   3727 	WARN_ON(cstate->base.active != intel_crtc->active);
   3728 
   3729 	intel_compute_pipe_wm(cstate, &pipe_wm);
   3730 
   3731 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
   3732 		return;
   3733 
   3734 	intel_crtc->wm.active = pipe_wm;
   3735 
   3736 	ilk_compute_wm_config(dev, &config);
   3737 
   3738 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
   3739 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
   3740 
   3741 	/* 5/6 split only in single pipe config on IVB+ */
   3742 	if (INTEL_INFO(dev)->gen >= 7 &&
   3743 	    config.num_pipes_active == 1 && config.sprites_enabled) {
   3744 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
   3745 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
   3746 
   3747 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
   3748 	} else {
   3749 		best_lp_wm = &lp_wm_1_2;
   3750 	}
   3751 
   3752 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
   3753 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
   3754 
   3755 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
   3756 
   3757 	ilk_write_wm_values(dev_priv, &results);
   3758 }
   3759 
   3760 static void
   3761 ilk_update_sprite_wm(struct drm_plane *plane,
   3762 		     struct drm_crtc *crtc,
   3763 		     uint32_t sprite_width, uint32_t sprite_height,
   3764 		     int pixel_size, bool enabled, bool scaled)
   3765 {
   3766 	struct drm_device *dev = plane->dev;
   3767 	struct intel_plane *intel_plane = to_intel_plane(plane);
   3768 
   3769 	/*
   3770 	 * IVB workaround: must disable low power watermarks for at least
   3771 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
   3772 	 * when scaling is disabled.
   3773 	 *
   3774 	 * WaCxSRDisabledForSpriteScaling:ivb
   3775 	 */
   3776 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
   3777 		intel_wait_for_vblank(dev, intel_plane->pipe);
   3778 
   3779 	ilk_update_wm(crtc);
   3780 }
   3781 
   3782 static void skl_pipe_wm_active_state(uint32_t val,
   3783 				     struct skl_pipe_wm *active,
   3784 				     bool is_transwm,
   3785 				     bool is_cursor,
   3786 				     int i,
   3787 				     int level)
   3788 {
   3789 	bool is_enabled = (val & PLANE_WM_EN) != 0;
   3790 
   3791 	if (!is_transwm) {
   3792 		if (!is_cursor) {
   3793 			active->wm[level].plane_en[i] = is_enabled;
   3794 			active->wm[level].plane_res_b[i] =
   3795 					val & PLANE_WM_BLOCKS_MASK;
   3796 			active->wm[level].plane_res_l[i] =
   3797 					(val >> PLANE_WM_LINES_SHIFT) &
   3798 						PLANE_WM_LINES_MASK;
   3799 		} else {
   3800 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
   3801 			active->wm[level].plane_res_b[PLANE_CURSOR] =
   3802 					val & PLANE_WM_BLOCKS_MASK;
   3803 			active->wm[level].plane_res_l[PLANE_CURSOR] =
   3804 					(val >> PLANE_WM_LINES_SHIFT) &
   3805 						PLANE_WM_LINES_MASK;
   3806 		}
   3807 	} else {
   3808 		if (!is_cursor) {
   3809 			active->trans_wm.plane_en[i] = is_enabled;
   3810 			active->trans_wm.plane_res_b[i] =
   3811 					val & PLANE_WM_BLOCKS_MASK;
   3812 			active->trans_wm.plane_res_l[i] =
   3813 					(val >> PLANE_WM_LINES_SHIFT) &
   3814 						PLANE_WM_LINES_MASK;
   3815 		} else {
   3816 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
   3817 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
   3818 					val & PLANE_WM_BLOCKS_MASK;
   3819 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
   3820 					(val >> PLANE_WM_LINES_SHIFT) &
   3821 						PLANE_WM_LINES_MASK;
   3822 		}
   3823 	}
   3824 }
   3825 
   3826 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   3827 {
   3828 	struct drm_device *dev = crtc->dev;
   3829 	struct drm_i915_private *dev_priv = dev->dev_private;
   3830 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
   3831 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3832 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
   3833 	enum pipe pipe = intel_crtc->pipe;
   3834 	int level, i, max_level;
   3835 	uint32_t temp;
   3836 
   3837 	max_level = ilk_wm_max_level(dev);
   3838 
   3839 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   3840 
   3841 	for (level = 0; level <= max_level; level++) {
   3842 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3843 			hw->plane[pipe][i][level] =
   3844 					I915_READ(PLANE_WM(pipe, i, level));
   3845 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
   3846 	}
   3847 
   3848 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3849 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
   3850 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
   3851 
   3852 	if (!intel_crtc->active)
   3853 		return;
   3854 
   3855 	hw->dirty[pipe] = true;
   3856 
   3857 	active->linetime = hw->wm_linetime[pipe];
   3858 
   3859 	for (level = 0; level <= max_level; level++) {
   3860 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3861 			temp = hw->plane[pipe][i][level];
   3862 			skl_pipe_wm_active_state(temp, active, false,
   3863 						false, i, level);
   3864 		}
   3865 		temp = hw->plane[pipe][PLANE_CURSOR][level];
   3866 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
   3867 	}
   3868 
   3869 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3870 		temp = hw->plane_trans[pipe][i];
   3871 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
   3872 	}
   3873 
   3874 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
   3875 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
   3876 }
   3877 
   3878 void skl_wm_get_hw_state(struct drm_device *dev)
   3879 {
   3880 	struct drm_i915_private *dev_priv = dev->dev_private;
   3881 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
   3882 	struct drm_crtc *crtc;
   3883 
   3884 	skl_ddb_get_hw_state(dev_priv, ddb);
   3885 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   3886 		skl_pipe_wm_get_hw_state(crtc);
   3887 }
   3888 
   3889 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   3890 {
   3891 	struct drm_device *dev = crtc->dev;
   3892 	struct drm_i915_private *dev_priv = dev->dev_private;
   3893 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   3894 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3895 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
   3896 	enum pipe pipe = intel_crtc->pipe;
   3897 	static const unsigned int wm0_pipe_reg[] = {
   3898 		[PIPE_A] = WM0_PIPEA_ILK,
   3899 		[PIPE_B] = WM0_PIPEB_ILK,
   3900 		[PIPE_C] = WM0_PIPEC_IVB,
   3901 	};
   3902 
   3903 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
   3904 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   3905 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   3906 
   3907 	memset(active, 0, sizeof(*active));
   3908 
   3909 	active->pipe_enabled = intel_crtc->active;
   3910 
   3911 	if (active->pipe_enabled) {
   3912 		u32 tmp = hw->wm_pipe[pipe];
   3913 
   3914 		/*
   3915 		 * For active pipes LP0 watermark is marked as
   3916 		 * enabled, and LP1+ watermaks as disabled since
   3917 		 * we can't really reverse compute them in case
   3918 		 * multiple pipes are active.
   3919 		 */
   3920 		active->wm[0].enable = true;
   3921 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
   3922 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
   3923 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
   3924 		active->linetime = hw->wm_linetime[pipe];
   3925 	} else {
   3926 		int level, max_level = ilk_wm_max_level(dev);
   3927 
   3928 		/*
   3929 		 * For inactive pipes, all watermark levels
   3930 		 * should be marked as enabled but zeroed,
   3931 		 * which is what we'd compute them to.
   3932 		 */
   3933 		for (level = 0; level <= max_level; level++)
   3934 			active->wm[level].enable = true;
   3935 	}
   3936 }
   3937 
   3938 #define _FW_WM(value, plane) \
   3939 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
   3940 #define _FW_WM_VLV(value, plane) \
   3941 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
   3942 
   3943 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
   3944 			       struct vlv_wm_values *wm)
   3945 {
   3946 	enum pipe pipe;
   3947 	uint32_t tmp;
   3948 
   3949 	for_each_pipe(dev_priv, pipe) {
   3950 		tmp = I915_READ(VLV_DDL(pipe));
   3951 
   3952 		wm->ddl[pipe].primary =
   3953 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3954 		wm->ddl[pipe].cursor =
   3955 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3956 		wm->ddl[pipe].sprite[0] =
   3957 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3958 		wm->ddl[pipe].sprite[1] =
   3959 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3960 	}
   3961 
   3962 	tmp = I915_READ(DSPFW1);
   3963 	wm->sr.plane = _FW_WM(tmp, SR);
   3964 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
   3965 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
   3966 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
   3967 
   3968 	tmp = I915_READ(DSPFW2);
   3969 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
   3970 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
   3971 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
   3972 
   3973 	tmp = I915_READ(DSPFW3);
   3974 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
   3975 
   3976 	if (IS_CHERRYVIEW(dev_priv)) {
   3977 		tmp = I915_READ(DSPFW7_CHV);
   3978 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
   3979 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
   3980 
   3981 		tmp = I915_READ(DSPFW8_CHV);
   3982 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
   3983 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
   3984 
   3985 		tmp = I915_READ(DSPFW9_CHV);
   3986 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
   3987 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
   3988 
   3989 		tmp = I915_READ(DSPHOWM);
   3990 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   3991 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
   3992 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
   3993 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
   3994 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   3995 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   3996 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
   3997 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   3998 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   3999 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
   4000 	} else {
   4001 		tmp = I915_READ(DSPFW7);
   4002 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
   4003 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
   4004 
   4005 		tmp = I915_READ(DSPHOWM);
   4006 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   4007 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   4008 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   4009 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
   4010 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   4011 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   4012 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
   4013 	}
   4014 }
   4015 
   4016 #undef _FW_WM
   4017 #undef _FW_WM_VLV
   4018 
   4019 void vlv_wm_get_hw_state(struct drm_device *dev)
   4020 {
   4021 	struct drm_i915_private *dev_priv = to_i915(dev);
   4022 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
   4023 	struct intel_plane *plane;
   4024 	enum pipe pipe;
   4025 	u32 val;
   4026 
   4027 	vlv_read_wm_values(dev_priv, wm);
   4028 
   4029 	for_each_intel_plane(dev, plane) {
   4030 		switch (plane->base.type) {
   4031 			int sprite;
   4032 		case DRM_PLANE_TYPE_CURSOR:
   4033 			plane->wm.fifo_size = 63;
   4034 			break;
   4035 		case DRM_PLANE_TYPE_PRIMARY:
   4036 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
   4037 			break;
   4038 		case DRM_PLANE_TYPE_OVERLAY:
   4039 			sprite = plane->plane;
   4040 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
   4041 			break;
   4042 		}
   4043 	}
   4044 
   4045 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
   4046 	wm->level = VLV_WM_LEVEL_PM2;
   4047 
   4048 	if (IS_CHERRYVIEW(dev_priv)) {
   4049 		mutex_lock(&dev_priv->rps.hw_lock);
   4050 
   4051 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
   4052 		if (val & DSP_MAXFIFO_PM5_ENABLE)
   4053 			wm->level = VLV_WM_LEVEL_PM5;
   4054 
   4055 		/*
   4056 		 * If DDR DVFS is disabled in the BIOS, Punit
   4057 		 * will never ack the request. So if that happens
   4058 		 * assume we don't have to enable/disable DDR DVFS
   4059 		 * dynamically. To test that just set the REQ_ACK
   4060 		 * bit to poke the Punit, but don't change the
   4061 		 * HIGH/LOW bits so that we don't actually change
   4062 		 * the current state.
   4063 		 */
   4064 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   4065 		val |= FORCE_DDR_FREQ_REQ_ACK;
   4066 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
   4067 
   4068 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
   4069 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
   4070 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
   4071 				      "assuming DDR DVFS is disabled\n");
   4072 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
   4073 		} else {
   4074 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   4075 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
   4076 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
   4077 		}
   4078 
   4079 		mutex_unlock(&dev_priv->rps.hw_lock);
   4080 	}
   4081 
   4082 	for_each_pipe(dev_priv, pipe)
   4083 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
   4084 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
   4085 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
   4086 
   4087 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
   4088 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
   4089 }
   4090 
   4091 void ilk_wm_get_hw_state(struct drm_device *dev)
   4092 {
   4093 	struct drm_i915_private *dev_priv = dev->dev_private;
   4094 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   4095 	struct drm_crtc *crtc;
   4096 
   4097 	for_each_crtc(dev, crtc)
   4098 		ilk_pipe_wm_get_hw_state(crtc);
   4099 
   4100 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
   4101 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
   4102 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
   4103 
   4104 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
   4105 	if (INTEL_INFO(dev)->gen >= 7) {
   4106 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
   4107 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
   4108 	}
   4109 
   4110 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4111 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
   4112 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   4113 	else if (IS_IVYBRIDGE(dev))
   4114 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
   4115 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   4116 
   4117 	hw->enable_fbc_wm =
   4118 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
   4119 }
   4120 
   4121 /**
   4122  * intel_update_watermarks - update FIFO watermark values based on current modes
   4123  *
   4124  * Calculate watermark values for the various WM regs based on current mode
   4125  * and plane configuration.
   4126  *
   4127  * There are several cases to deal with here:
   4128  *   - normal (i.e. non-self-refresh)
   4129  *   - self-refresh (SR) mode
   4130  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   4131  *   - lines are small relative to FIFO size (buffer can hold more than 2
   4132  *     lines), so need to account for TLB latency
   4133  *
   4134  *   The normal calculation is:
   4135  *     watermark = dotclock * bytes per pixel * latency
   4136  *   where latency is platform & configuration dependent (we assume pessimal
   4137  *   values here).
   4138  *
   4139  *   The SR calculation is:
   4140  *     watermark = (trunc(latency/line time)+1) * surface width *
   4141  *       bytes per pixel
   4142  *   where
   4143  *     line time = htotal / dotclock
   4144  *     surface width = hdisplay for normal plane and 64 for cursor
   4145  *   and latency is assumed to be high, as above.
   4146  *
   4147  * The final value programmed to the register should always be rounded up,
   4148  * and include an extra 2 entries to account for clock crossings.
   4149  *
   4150  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   4151  * to set the non-SR watermarks to 8.
   4152  */
   4153 void intel_update_watermarks(struct drm_crtc *crtc)
   4154 {
   4155 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
   4156 
   4157 	if (dev_priv->display.update_wm)
   4158 		dev_priv->display.update_wm(crtc);
   4159 }
   4160 
   4161 void intel_update_sprite_watermarks(struct drm_plane *plane,
   4162 				    struct drm_crtc *crtc,
   4163 				    uint32_t sprite_width,
   4164 				    uint32_t sprite_height,
   4165 				    int pixel_size,
   4166 				    bool enabled, bool scaled)
   4167 {
   4168 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
   4169 
   4170 	if (dev_priv->display.update_sprite_wm)
   4171 		dev_priv->display.update_sprite_wm(plane, crtc,
   4172 						   sprite_width, sprite_height,
   4173 						   pixel_size, enabled, scaled);
   4174 }
   4175 
   4176 /**
   4177  * Lock protecting IPS related data structures
   4178  */
   4179 #ifdef __NetBSD__
   4180 spinlock_t mchdev_lock;
   4181 #else
   4182 DEFINE_SPINLOCK(mchdev_lock);
   4183 #endif
   4184 
   4185 /* Global for IPS driver to get at the current i915 device. Protected by
   4186  * mchdev_lock. */
   4187 static struct drm_i915_private *i915_mch_dev;
   4188 
   4189 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   4190 {
   4191 	struct drm_i915_private *dev_priv = dev->dev_private;
   4192 	u16 rgvswctl;
   4193 
   4194 	assert_spin_locked(&mchdev_lock);
   4195 
   4196 	rgvswctl = I915_READ16(MEMSWCTL);
   4197 	if (rgvswctl & MEMCTL_CMD_STS) {
   4198 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   4199 		return false; /* still busy with another command */
   4200 	}
   4201 
   4202 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   4203 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   4204 	I915_WRITE16(MEMSWCTL, rgvswctl);
   4205 	POSTING_READ16(MEMSWCTL);
   4206 
   4207 	rgvswctl |= MEMCTL_CMD_STS;
   4208 	I915_WRITE16(MEMSWCTL, rgvswctl);
   4209 
   4210 	return true;
   4211 }
   4212 
   4213 static void ironlake_enable_drps(struct drm_device *dev)
   4214 {
   4215 	struct drm_i915_private *dev_priv = dev->dev_private;
   4216 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   4217 	u8 fmax, fmin, fstart, vstart;
   4218 
   4219 	spin_lock_irq(&mchdev_lock);
   4220 
   4221 	/* Enable temp reporting */
   4222 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   4223 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   4224 
   4225 	/* 100ms RC evaluation intervals */
   4226 	I915_WRITE(RCUPEI, 100000);
   4227 	I915_WRITE(RCDNEI, 100000);
   4228 
   4229 	/* Set max/min thresholds to 90ms and 80ms respectively */
   4230 	I915_WRITE(RCBMAXAVG, 90000);
   4231 	I915_WRITE(RCBMINAVG, 80000);
   4232 
   4233 	I915_WRITE(MEMIHYST, 1);
   4234 
   4235 	/* Set up min, max, and cur for interrupt handling */
   4236 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   4237 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   4238 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   4239 		MEMMODE_FSTART_SHIFT;
   4240 
   4241 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
   4242 		PXVFREQ_PX_SHIFT;
   4243 
   4244 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   4245 	dev_priv->ips.fstart = fstart;
   4246 
   4247 	dev_priv->ips.max_delay = fstart;
   4248 	dev_priv->ips.min_delay = fmin;
   4249 	dev_priv->ips.cur_delay = fstart;
   4250 
   4251 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   4252 			 fmax, fmin, fstart);
   4253 
   4254 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   4255 
   4256 	/*
   4257 	 * Interrupts will be enabled in ironlake_irq_postinstall
   4258 	 */
   4259 
   4260 	I915_WRITE(VIDSTART, vstart);
   4261 	POSTING_READ(VIDSTART);
   4262 
   4263 	rgvmodectl |= MEMMODE_SWMODE_EN;
   4264 	I915_WRITE(MEMMODECTL, rgvmodectl);
   4265 
   4266 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   4267 		DRM_ERROR("stuck trying to change perf mode\n");
   4268 	mdelay(1);
   4269 
   4270 	ironlake_set_drps(dev, fstart);
   4271 
   4272 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
   4273 		I915_READ(DDREC) + I915_READ(CSIEC);
   4274 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   4275 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
   4276 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
   4277 
   4278 	spin_unlock_irq(&mchdev_lock);
   4279 }
   4280 
   4281 static void ironlake_disable_drps(struct drm_device *dev)
   4282 {
   4283 	struct drm_i915_private *dev_priv = dev->dev_private;
   4284 	u16 rgvswctl;
   4285 
   4286 	spin_lock_irq(&mchdev_lock);
   4287 
   4288 	rgvswctl = I915_READ16(MEMSWCTL);
   4289 
   4290 	/* Ack interrupts, disable EFC interrupt */
   4291 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   4292 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   4293 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   4294 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   4295 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   4296 
   4297 	/* Go back to the starting frequency */
   4298 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   4299 	mdelay(1);
   4300 	rgvswctl |= MEMCTL_CMD_STS;
   4301 	I915_WRITE(MEMSWCTL, rgvswctl);
   4302 	mdelay(1);
   4303 
   4304 	spin_unlock_irq(&mchdev_lock);
   4305 }
   4306 
   4307 /* There's a funny hw issue where the hw returns all 0 when reading from
   4308  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   4309  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   4310  * all limits and the gpu stuck at whatever frequency it is at atm).
   4311  */
   4312 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
   4313 {
   4314 	u32 limits;
   4315 
   4316 	/* Only set the down limit when we've reached the lowest level to avoid
   4317 	 * getting more interrupts, otherwise leave this clear. This prevents a
   4318 	 * race in the hw when coming out of rc6: There's a tiny window where
   4319 	 * the hw runs at the minimal clock before selecting the desired
   4320 	 * frequency, if the down threshold expires in that window we will not
   4321 	 * receive a down interrupt. */
   4322 	if (IS_GEN9(dev_priv->dev)) {
   4323 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
   4324 		if (val <= dev_priv->rps.min_freq_softlimit)
   4325 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
   4326 	} else {
   4327 		limits = dev_priv->rps.max_freq_softlimit << 24;
   4328 		if (val <= dev_priv->rps.min_freq_softlimit)
   4329 			limits |= dev_priv->rps.min_freq_softlimit << 16;
   4330 	}
   4331 
   4332 	return limits;
   4333 }
   4334 
   4335 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
   4336 {
   4337 	int new_power;
   4338 	u32 threshold_up = 0, threshold_down = 0; /* in % */
   4339 	u32 ei_up = 0, ei_down = 0;
   4340 
   4341 	new_power = dev_priv->rps.power;
   4342 	switch (dev_priv->rps.power) {
   4343 	case LOW_POWER:
   4344 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
   4345 			new_power = BETWEEN;
   4346 		break;
   4347 
   4348 	case BETWEEN:
   4349 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
   4350 			new_power = LOW_POWER;
   4351 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
   4352 			new_power = HIGH_POWER;
   4353 		break;
   4354 
   4355 	case HIGH_POWER:
   4356 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
   4357 			new_power = BETWEEN;
   4358 		break;
   4359 	}
   4360 	/* Max/min bins are special */
   4361 	if (val <= dev_priv->rps.min_freq_softlimit)
   4362 		new_power = LOW_POWER;
   4363 	if (val >= dev_priv->rps.max_freq_softlimit)
   4364 		new_power = HIGH_POWER;
   4365 	if (new_power == dev_priv->rps.power)
   4366 		return;
   4367 
   4368 	/* Note the units here are not exactly 1us, but 1280ns. */
   4369 	switch (new_power) {
   4370 	case LOW_POWER:
   4371 		/* Upclock if more than 95% busy over 16ms */
   4372 		ei_up = 16000;
   4373 		threshold_up = 95;
   4374 
   4375 		/* Downclock if less than 85% busy over 32ms */
   4376 		ei_down = 32000;
   4377 		threshold_down = 85;
   4378 		break;
   4379 
   4380 	case BETWEEN:
   4381 		/* Upclock if more than 90% busy over 13ms */
   4382 		ei_up = 13000;
   4383 		threshold_up = 90;
   4384 
   4385 		/* Downclock if less than 75% busy over 32ms */
   4386 		ei_down = 32000;
   4387 		threshold_down = 75;
   4388 		break;
   4389 
   4390 	case HIGH_POWER:
   4391 		/* Upclock if more than 85% busy over 10ms */
   4392 		ei_up = 10000;
   4393 		threshold_up = 85;
   4394 
   4395 		/* Downclock if less than 60% busy over 32ms */
   4396 		ei_down = 32000;
   4397 		threshold_down = 60;
   4398 		break;
   4399 	}
   4400 
   4401 	/* When byt can survive without system hang with dynamic
   4402 	 * sw freq adjustments, this restriction can be lifted.
   4403 	 */
   4404 	if (IS_VALLEYVIEW(dev_priv))
   4405 		goto skip_hw_write;
   4406 
   4407 	I915_WRITE(GEN6_RP_UP_EI,
   4408 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
   4409 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
   4410 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
   4411 
   4412 	I915_WRITE(GEN6_RP_DOWN_EI,
   4413 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
   4414 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
   4415 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
   4416 
   4417 	 I915_WRITE(GEN6_RP_CONTROL,
   4418 		    GEN6_RP_MEDIA_TURBO |
   4419 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
   4420 		    GEN6_RP_MEDIA_IS_GFX |
   4421 		    GEN6_RP_ENABLE |
   4422 		    GEN6_RP_UP_BUSY_AVG |
   4423 		    GEN6_RP_DOWN_IDLE_AVG);
   4424 
   4425 skip_hw_write:
   4426 	dev_priv->rps.power = new_power;
   4427 	dev_priv->rps.up_threshold = threshold_up;
   4428 	dev_priv->rps.down_threshold = threshold_down;
   4429 	dev_priv->rps.last_adj = 0;
   4430 }
   4431 
   4432 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
   4433 {
   4434 	u32 mask = 0;
   4435 
   4436 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
   4437 	if (val > dev_priv->rps.min_freq_softlimit)
   4438 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
   4439 	if (val < dev_priv->rps.max_freq_softlimit)
   4440 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
   4441 
   4442 	mask &= dev_priv->pm_rps_events;
   4443 
   4444 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
   4445 }
   4446 
   4447 /* gen6_set_rps is called to update the frequency request, but should also be
   4448  * called when the range (min_delay and max_delay) is modified so that we can
   4449  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
   4450 static void gen6_set_rps(struct drm_device *dev, u8 val)
   4451 {
   4452 	struct drm_i915_private *dev_priv = dev->dev_private;
   4453 
   4454 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
   4455 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
   4456 		return;
   4457 
   4458 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4459 	WARN_ON(val > dev_priv->rps.max_freq);
   4460 	WARN_ON(val < dev_priv->rps.min_freq);
   4461 
   4462 	/* min/max delay may still have been modified so be sure to
   4463 	 * write the limits value.
   4464 	 */
   4465 	if (val != dev_priv->rps.cur_freq) {
   4466 		gen6_set_rps_thresholds(dev_priv, val);
   4467 
   4468 		if (IS_GEN9(dev))
   4469 			I915_WRITE(GEN6_RPNSWREQ,
   4470 				   GEN9_FREQUENCY(val));
   4471 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4472 			I915_WRITE(GEN6_RPNSWREQ,
   4473 				   HSW_FREQUENCY(val));
   4474 		else
   4475 			I915_WRITE(GEN6_RPNSWREQ,
   4476 				   GEN6_FREQUENCY(val) |
   4477 				   GEN6_OFFSET(0) |
   4478 				   GEN6_AGGRESSIVE_TURBO);
   4479 	}
   4480 
   4481 	/* Make sure we continue to get interrupts
   4482 	 * until we hit the minimum or maximum frequencies.
   4483 	 */
   4484 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
   4485 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   4486 
   4487 	POSTING_READ(GEN6_RPNSWREQ);
   4488 
   4489 	dev_priv->rps.cur_freq = val;
   4490 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
   4491 }
   4492 
   4493 static void valleyview_set_rps(struct drm_device *dev, u8 val)
   4494 {
   4495 	struct drm_i915_private *dev_priv = dev->dev_private;
   4496 
   4497 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4498 	WARN_ON(val > dev_priv->rps.max_freq);
   4499 	WARN_ON(val < dev_priv->rps.min_freq);
   4500 
   4501 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
   4502 		      "Odd GPU freq value\n"))
   4503 		val &= ~1;
   4504 
   4505 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   4506 
   4507 	if (val != dev_priv->rps.cur_freq) {
   4508 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
   4509 		if (!IS_CHERRYVIEW(dev_priv))
   4510 			gen6_set_rps_thresholds(dev_priv, val);
   4511 	}
   4512 
   4513 	dev_priv->rps.cur_freq = val;
   4514 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
   4515 }
   4516 
   4517 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
   4518  *
   4519  * * If Gfx is Idle, then
   4520  * 1. Forcewake Media well.
   4521  * 2. Request idle freq.
   4522  * 3. Release Forcewake of Media well.
   4523 */
   4524 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
   4525 {
   4526 	u32 val = dev_priv->rps.idle_freq;
   4527 
   4528 	if (dev_priv->rps.cur_freq <= val)
   4529 		return;
   4530 
   4531 	/* Wake up the media well, as that takes a lot less
   4532 	 * power than the Render well. */
   4533 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
   4534 	valleyview_set_rps(dev_priv->dev, val);
   4535 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
   4536 }
   4537 
   4538 void gen6_rps_busy(struct drm_i915_private *dev_priv)
   4539 {
   4540 	mutex_lock(&dev_priv->rps.hw_lock);
   4541 	if (dev_priv->rps.enabled) {
   4542 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
   4543 			gen6_rps_reset_ei(dev_priv);
   4544 		I915_WRITE(GEN6_PMINTRMSK,
   4545 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
   4546 	}
   4547 	mutex_unlock(&dev_priv->rps.hw_lock);
   4548 }
   4549 
   4550 void gen6_rps_idle(struct drm_i915_private *dev_priv)
   4551 {
   4552 	struct drm_device *dev = dev_priv->dev;
   4553 
   4554 	mutex_lock(&dev_priv->rps.hw_lock);
   4555 	if (dev_priv->rps.enabled) {
   4556 		if (IS_VALLEYVIEW(dev))
   4557 			vlv_set_rps_idle(dev_priv);
   4558 		else
   4559 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   4560 		dev_priv->rps.last_adj = 0;
   4561 		I915_WRITE(GEN6_PMINTRMSK,
   4562 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
   4563 	}
   4564 	mutex_unlock(&dev_priv->rps.hw_lock);
   4565 
   4566 	spin_lock(&dev_priv->rps.client_lock);
   4567 	while (!list_empty(&dev_priv->rps.clients))
   4568 		list_del_init(dev_priv->rps.clients.next);
   4569 	spin_unlock(&dev_priv->rps.client_lock);
   4570 }
   4571 
   4572 void gen6_rps_boost(struct drm_i915_private *dev_priv,
   4573 		    struct intel_rps_client *rps,
   4574 		    unsigned long submitted)
   4575 {
   4576 	/* This is intentionally racy! We peek at the state here, then
   4577 	 * validate inside the RPS worker.
   4578 	 */
   4579 	if (!(dev_priv->mm.busy &&
   4580 	      dev_priv->rps.enabled &&
   4581 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
   4582 		return;
   4583 
   4584 	/* Force a RPS boost (and don't count it against the client) if
   4585 	 * the GPU is severely congested.
   4586 	 */
   4587 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
   4588 		rps = NULL;
   4589 
   4590 	spin_lock(&dev_priv->rps.client_lock);
   4591 	if (rps == NULL || list_empty(&rps->link)) {
   4592 		spin_lock_irq(&dev_priv->irq_lock);
   4593 		if (dev_priv->rps.interrupts_enabled) {
   4594 			dev_priv->rps.client_boost = true;
   4595 			queue_work(dev_priv->wq, &dev_priv->rps.work);
   4596 		}
   4597 		spin_unlock_irq(&dev_priv->irq_lock);
   4598 
   4599 		if (rps != NULL) {
   4600 			list_add(&rps->link, &dev_priv->rps.clients);
   4601 			rps->boosts++;
   4602 		} else
   4603 			dev_priv->rps.boosts++;
   4604 	}
   4605 	spin_unlock(&dev_priv->rps.client_lock);
   4606 }
   4607 
   4608 void intel_set_rps(struct drm_device *dev, u8 val)
   4609 {
   4610 	if (IS_VALLEYVIEW(dev))
   4611 		valleyview_set_rps(dev, val);
   4612 	else
   4613 		gen6_set_rps(dev, val);
   4614 }
   4615 
   4616 static void gen9_disable_rc6(struct drm_device *dev)
   4617 {
   4618 	struct drm_i915_private *dev_priv = dev->dev_private;
   4619 
   4620 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4621 }
   4622 
   4623 static void gen9_disable_rps(struct drm_device *dev)
   4624 {
   4625 	struct drm_i915_private *dev_priv = dev->dev_private;
   4626 
   4627  	I915_WRITE(GEN9_PG_ENABLE, 0);
   4628  }
   4629 
   4630 static void gen6_disable_rc6(struct drm_device *dev)
   4631 {
   4632 	struct drm_i915_private *dev_priv = dev->dev_private;
   4633 
   4634 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4635 }
   4636 
   4637 static void gen6_disable_rps(struct drm_device *dev)
   4638 {
   4639 	struct drm_i915_private *dev_priv = dev->dev_private;
   4640 
   4641 	I915_WRITE(GEN6_RPNSWREQ, 1UL << 31);
   4642 }
   4643 
   4644 static void cherryview_disable_rc6(struct drm_device *dev)
   4645 {
   4646 	struct drm_i915_private *dev_priv = dev->dev_private;
   4647 
   4648 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4649 }
   4650 
   4651 static void valleyview_disable_rc6(struct drm_device *dev)
   4652 {
   4653 	struct drm_i915_private *dev_priv = dev->dev_private;
   4654 
   4655 	/* we're doing forcewake before Disabling RC6,
   4656 	 * This what the BIOS expects when going into suspend */
   4657 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4658 
   4659 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4660 
   4661 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4662 }
   4663 
   4664 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
   4665 {
   4666 	if (IS_VALLEYVIEW(dev)) {
   4667 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
   4668 			mode = GEN6_RC_CTL_RC6_ENABLE;
   4669 		else
   4670 			mode = 0;
   4671 	}
   4672 	if (HAS_RC6p(dev))
   4673 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
   4674 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   4675 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   4676 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   4677 
   4678 	else
   4679 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
   4680 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
   4681 }
   4682 
   4683 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
   4684 {
   4685 	/* No RC6 before Ironlake and code is gone for ilk. */
   4686 	if (INTEL_INFO(dev)->gen < 6)
   4687 		return 0;
   4688 
   4689 	/* Respect the kernel parameter if it is set */
   4690 	if (enable_rc6 >= 0) {
   4691 		int mask;
   4692 
   4693 		if (HAS_RC6p(dev))
   4694 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
   4695 			       INTEL_RC6pp_ENABLE;
   4696 		else
   4697 			mask = INTEL_RC6_ENABLE;
   4698 
   4699 		if ((enable_rc6 & mask) != enable_rc6)
   4700 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
   4701 				      enable_rc6 & mask, enable_rc6, mask);
   4702 
   4703 		return enable_rc6 & mask;
   4704 	}
   4705 
   4706 	if (IS_IVYBRIDGE(dev))
   4707 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   4708 
   4709 	return INTEL_RC6_ENABLE;
   4710 }
   4711 
   4712 int intel_enable_rc6(const struct drm_device *dev)
   4713 {
   4714 	return i915.enable_rc6;
   4715 }
   4716 
   4717 static void gen6_init_rps_frequencies(struct drm_device *dev)
   4718 {
   4719 	struct drm_i915_private *dev_priv = dev->dev_private;
   4720 	uint32_t rp_state_cap;
   4721 	u32 ddcc_status = 0;
   4722 	int ret;
   4723 
   4724 	/* All of these values are in units of 50MHz */
   4725 	dev_priv->rps.cur_freq		= 0;
   4726 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
   4727 	if (IS_BROXTON(dev)) {
   4728 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
   4729 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
   4730 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
   4731 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
   4732 	} else {
   4733 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   4734 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
   4735 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
   4736 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
   4737 	}
   4738 
   4739 	/* hw_max = RP0 until we check for overclocking */
   4740 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
   4741 
   4742 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
   4743 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
   4744 	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   4745 		ret = sandybridge_pcode_read(dev_priv,
   4746 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
   4747 					&ddcc_status);
   4748 		if (0 == ret)
   4749 			dev_priv->rps.efficient_freq =
   4750 				clamp_t(u8,
   4751 					((ddcc_status >> 8) & 0xff),
   4752 					dev_priv->rps.min_freq,
   4753 					dev_priv->rps.max_freq);
   4754 	}
   4755 
   4756 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   4757 		/* Store the frequency values in 16.66 MHZ units, which is
   4758 		   the natural hardware unit for SKL */
   4759 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
   4760 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
   4761 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
   4762 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
   4763 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
   4764 	}
   4765 
   4766 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   4767 
   4768 	/* Preserve min/max settings in case of re-init */
   4769 	if (dev_priv->rps.max_freq_softlimit == 0)
   4770 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   4771 
   4772 	if (dev_priv->rps.min_freq_softlimit == 0) {
   4773 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4774 			dev_priv->rps.min_freq_softlimit =
   4775 				max_t(int, dev_priv->rps.efficient_freq,
   4776 				      intel_freq_opcode(dev_priv, 450));
   4777 		else
   4778 			dev_priv->rps.min_freq_softlimit =
   4779 				dev_priv->rps.min_freq;
   4780 	}
   4781 }
   4782 
   4783 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
   4784 static void gen9_enable_rps(struct drm_device *dev)
   4785 {
   4786 	struct drm_i915_private *dev_priv = dev->dev_private;
   4787 
   4788 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4789 
   4790 	gen6_init_rps_frequencies(dev);
   4791 
   4792 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
   4793 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
   4794 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4795 		return;
   4796 	}
   4797 
   4798 	/* Program defaults and thresholds for RPS*/
   4799 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   4800 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
   4801 
   4802 	/* 1 second timeout*/
   4803 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
   4804 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
   4805 
   4806 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
   4807 
   4808 	/* Leaning on the below call to gen6_set_rps to program/setup the
   4809 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
   4810 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
   4811 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   4812 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   4813 
   4814 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4815 }
   4816 
   4817 static void gen9_enable_rc6(struct drm_device *dev)
   4818 {
   4819 	struct drm_i915_private *dev_priv = dev->dev_private;
   4820 	struct intel_engine_cs *ring;
   4821 	uint32_t rc6_mask = 0;
   4822 	int unused;
   4823 
   4824 	/* 1a: Software RC state - RC0 */
   4825 	I915_WRITE(GEN6_RC_STATE, 0);
   4826 
   4827 	/* 1b: Get forcewake during program sequence. Although the driver
   4828 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   4829 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4830 
   4831 	/* 2a: Disable RC states. */
   4832 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4833 
   4834 	/* 2b: Program RC6 thresholds.*/
   4835 
   4836 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
   4837 	if (IS_SKYLAKE(dev))
   4838 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
   4839 	else
   4840 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
   4841 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   4842 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   4843 	for_each_ring(ring, dev_priv, unused)
   4844 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4845 
   4846 	if (HAS_GUC_UCODE(dev))
   4847 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
   4848 
   4849 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4850 
   4851 	/* 2c: Program Coarse Power Gating Policies. */
   4852 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
   4853 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
   4854 
   4855 	/* 3a: Enable RC6 */
   4856 	if (!dev_priv->rps.ctx_corrupted &&
   4857 	    intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   4858 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   4859 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
   4860 			"on" : "off");
   4861 	/* WaRsUseTimeoutMode */
   4862 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
   4863 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
   4864 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
   4865 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4866 			   GEN7_RC_CTL_TO_MODE |
   4867 			   rc6_mask);
   4868 	} else {
   4869 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
   4870 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4871 			   GEN6_RC_CTL_EI_MODE(1) |
   4872 			   rc6_mask);
   4873 	}
   4874 
   4875 	/*
   4876 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
   4877 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
   4878 	 */
   4879 	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
   4880 	    INTEL_INFO(dev)->gen == 9)
   4881 		I915_WRITE(GEN9_PG_ENABLE, 0);
   4882 	else
   4883 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
   4884 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
   4885 
   4886 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4887 
   4888 }
   4889 
   4890 static void gen8_enable_rps(struct drm_device *dev)
   4891 {
   4892 	struct drm_i915_private *dev_priv = dev->dev_private;
   4893 	struct intel_engine_cs *ring;
   4894 	uint32_t rc6_mask = 0;
   4895 	int unused;
   4896 
   4897 	/* 1a: Software RC state - RC0 */
   4898 	I915_WRITE(GEN6_RC_STATE, 0);
   4899 
   4900 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
   4901 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   4902 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4903 
   4904 	/* 2a: Disable RC states. */
   4905 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4906 
   4907 	/* Initialize rps frequencies */
   4908 	gen6_init_rps_frequencies(dev);
   4909 
   4910 	/* 2b: Program RC6 thresholds.*/
   4911 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   4912 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   4913 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   4914 	for_each_ring(ring, dev_priv, unused)
   4915 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4916 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4917 	if (IS_BROADWELL(dev))
   4918 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
   4919 	else
   4920 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
   4921 
   4922 	/* 3: Enable RC6 */
   4923 	if (!dev_priv->rps.ctx_corrupted &&
   4924 	    intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   4925 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   4926 	intel_print_rc6_info(dev, rc6_mask);
   4927 	if (IS_BROADWELL(dev))
   4928 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4929 				GEN7_RC_CTL_TO_MODE |
   4930 				rc6_mask);
   4931 	else
   4932 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4933 				GEN6_RC_CTL_EI_MODE(1) |
   4934 				rc6_mask);
   4935 
   4936 	/* 4 Program defaults and thresholds for RPS*/
   4937 	I915_WRITE(GEN6_RPNSWREQ,
   4938 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
   4939 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   4940 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
   4941 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
   4942 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
   4943 
   4944 	/* Docs recommend 900MHz, and 300 MHz respectively */
   4945 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   4946 		   dev_priv->rps.max_freq_softlimit << 24 |
   4947 		   dev_priv->rps.min_freq_softlimit << 16);
   4948 
   4949 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
   4950 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
   4951 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
   4952 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
   4953 
   4954 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   4955 
   4956 	/* 5: Enable RPS */
   4957 	I915_WRITE(GEN6_RP_CONTROL,
   4958 		   GEN6_RP_MEDIA_TURBO |
   4959 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   4960 		   GEN6_RP_MEDIA_IS_GFX |
   4961 		   GEN6_RP_ENABLE |
   4962 		   GEN6_RP_UP_BUSY_AVG |
   4963 		   GEN6_RP_DOWN_IDLE_AVG);
   4964 
   4965 	/* 6: Ring frequency + overclocking (our driver does this later */
   4966 
   4967 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   4968 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   4969 
   4970 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4971 }
   4972 
   4973 static void gen6_enable_rps(struct drm_device *dev)
   4974 {
   4975 	struct drm_i915_private *dev_priv = dev->dev_private;
   4976 	struct intel_engine_cs *ring;
   4977 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
   4978 	u32 gtfifodbg;
   4979 	int rc6_mode;
   4980 	int i, ret;
   4981 
   4982 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4983 
   4984 	/* Here begins a magic sequence of register writes to enable
   4985 	 * auto-downclocking.
   4986 	 *
   4987 	 * Perhaps there might be some value in exposing these to
   4988 	 * userspace...
   4989 	 */
   4990 	I915_WRITE(GEN6_RC_STATE, 0);
   4991 
   4992 	/* Clear the DBG now so we don't confuse earlier errors */
   4993 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   4994 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   4995 		I915_WRITE(GTFIFODBG, gtfifodbg);
   4996 	}
   4997 
   4998 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4999 
   5000 	/* Initialize rps frequencies */
   5001 	gen6_init_rps_frequencies(dev);
   5002 
   5003 	/* disable the counters and set deterministic thresholds */
   5004 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5005 
   5006 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   5007 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   5008 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   5009 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   5010 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   5011 
   5012 	for_each_ring(ring, dev_priv, i)
   5013 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5014 
   5015 	I915_WRITE(GEN6_RC_SLEEP, 0);
   5016 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   5017 	if (IS_IVYBRIDGE(dev))
   5018 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
   5019 	else
   5020 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   5021 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
   5022 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   5023 
   5024 	/* Check if we are enabling RC6 */
   5025 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   5026 	if (rc6_mode & INTEL_RC6_ENABLE)
   5027 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   5028 
   5029 	/* We don't use those on Haswell */
   5030 	if (!IS_HASWELL(dev)) {
   5031 		if (rc6_mode & INTEL_RC6p_ENABLE)
   5032 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   5033 
   5034 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   5035 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   5036 	}
   5037 
   5038 	intel_print_rc6_info(dev, rc6_mask);
   5039 
   5040 	I915_WRITE(GEN6_RC_CONTROL,
   5041 		   rc6_mask |
   5042 		   GEN6_RC_CTL_EI_MODE(1) |
   5043 		   GEN6_RC_CTL_HW_ENABLE);
   5044 
   5045 	/* Power down if completely idle for over 50ms */
   5046 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
   5047 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5048 
   5049 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   5050 	if (ret)
   5051 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   5052 
   5053 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   5054 	if (!ret && (pcu_mbox & __BIT(31))) { /* OC supported */
   5055 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
   5056 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
   5057 				 (pcu_mbox & 0xff) * 50);
   5058 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
   5059 	}
   5060 
   5061 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   5062 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   5063 
   5064 	rc6vids = 0;
   5065 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   5066 	if (IS_GEN6(dev) && ret) {
   5067 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   5068 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   5069 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   5070 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   5071 		rc6vids &= 0xffff00;
   5072 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   5073 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   5074 		if (ret)
   5075 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   5076 	}
   5077 
   5078 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5079 }
   5080 
   5081 static void __gen6_update_ring_freq(struct drm_device *dev)
   5082 {
   5083 	struct drm_i915_private *dev_priv = dev->dev_private;
   5084 	int min_freq = 15;
   5085 	unsigned int gpu_freq;
   5086 	unsigned int max_ia_freq, min_ring_freq;
   5087 	unsigned int max_gpu_freq, min_gpu_freq;
   5088 	int scaling_factor = 180;
   5089 #ifndef __NetBSD__
   5090 	struct cpufreq_policy *policy;
   5091 #endif
   5092 
   5093 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5094 
   5095 #ifdef __NetBSD__
   5096 	{
   5097 		extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
   5098 		max_ia_freq = (tsc_freq / 1000);
   5099 	}
   5100 #else
   5101 	policy = cpufreq_cpu_get(0);
   5102 	if (policy) {
   5103 		max_ia_freq = policy->cpuinfo.max_freq;
   5104 		cpufreq_cpu_put(policy);
   5105 	} else {
   5106 		/*
   5107 		 * Default to measured freq if none found, PCU will ensure we
   5108 		 * don't go over
   5109 		 */
   5110 		max_ia_freq = tsc_khz;
   5111 	}
   5112 #endif
   5113 
   5114 	/* Convert from kHz to MHz */
   5115 	max_ia_freq /= 1000;
   5116 
   5117 	min_ring_freq = I915_READ(DCLK) & 0xf;
   5118 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
   5119 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
   5120 
   5121 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   5122 		/* Convert GT frequency to 50 HZ units */
   5123 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
   5124 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
   5125 	} else {
   5126 		min_gpu_freq = dev_priv->rps.min_freq;
   5127 		max_gpu_freq = dev_priv->rps.max_freq;
   5128 	}
   5129 
   5130 	/*
   5131 	 * For each potential GPU frequency, load a ring frequency we'd like
   5132 	 * to use for memory access.  We do this by specifying the IA frequency
   5133 	 * the PCU should use as a reference to determine the ring frequency.
   5134 	 */
   5135 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
   5136 		int diff = max_gpu_freq - gpu_freq;
   5137 		unsigned int ia_freq = 0, ring_freq = 0;
   5138 
   5139 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   5140 			/*
   5141 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
   5142 			 * No floor required for ring frequency on SKL.
   5143 			 */
   5144 			ring_freq = gpu_freq;
   5145 		} else if (INTEL_INFO(dev)->gen >= 8) {
   5146 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
   5147 			ring_freq = max(min_ring_freq, gpu_freq);
   5148 		} else if (IS_HASWELL(dev)) {
   5149 			ring_freq = mult_frac(gpu_freq, 5, 4);
   5150 			ring_freq = max(min_ring_freq, ring_freq);
   5151 			/* leave ia_freq as the default, chosen by cpufreq */
   5152 		} else {
   5153 			/* On older processors, there is no separate ring
   5154 			 * clock domain, so in order to boost the bandwidth
   5155 			 * of the ring, we need to upclock the CPU (ia_freq).
   5156 			 *
   5157 			 * For GPU frequencies less than 750MHz,
   5158 			 * just use the lowest ring freq.
   5159 			 */
   5160 			if (gpu_freq < min_freq)
   5161 				ia_freq = 800;
   5162 			else
   5163 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   5164 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   5165 		}
   5166 
   5167 		sandybridge_pcode_write(dev_priv,
   5168 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   5169 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
   5170 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
   5171 					gpu_freq);
   5172 	}
   5173 }
   5174 
   5175 void gen6_update_ring_freq(struct drm_device *dev)
   5176 {
   5177 	struct drm_i915_private *dev_priv = dev->dev_private;
   5178 
   5179 	if (!HAS_CORE_RING_FREQ(dev))
   5180 		return;
   5181 
   5182 	mutex_lock(&dev_priv->rps.hw_lock);
   5183 	__gen6_update_ring_freq(dev);
   5184 	mutex_unlock(&dev_priv->rps.hw_lock);
   5185 }
   5186 
   5187 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
   5188 {
   5189 	struct drm_device *dev = dev_priv->dev;
   5190 	u32 val, rp0;
   5191 
   5192 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
   5193 
   5194 	switch (INTEL_INFO(dev)->eu_total) {
   5195 	case 8:
   5196 		/* (2 * 4) config */
   5197 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
   5198 		break;
   5199 	case 12:
   5200 		/* (2 * 6) config */
   5201 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
   5202 		break;
   5203 	case 16:
   5204 		/* (2 * 8) config */
   5205 	default:
   5206 		/* Setting (2 * 8) Min RP0 for any other combination */
   5207 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
   5208 		break;
   5209 	}
   5210 
   5211 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
   5212 
   5213 	return rp0;
   5214 }
   5215 
   5216 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   5217 {
   5218 	u32 val, rpe;
   5219 
   5220 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
   5221 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
   5222 
   5223 	return rpe;
   5224 }
   5225 
   5226 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
   5227 {
   5228 	u32 val, rp1;
   5229 
   5230 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
   5231 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
   5232 
   5233 	return rp1;
   5234 }
   5235 
   5236 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
   5237 {
   5238 	u32 val, rp1;
   5239 
   5240 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   5241 
   5242 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
   5243 
   5244 	return rp1;
   5245 }
   5246 
   5247 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
   5248 {
   5249 	u32 val, rp0;
   5250 
   5251 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   5252 
   5253 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
   5254 	/* Clamp to max */
   5255 	rp0 = min_t(u32, rp0, 0xea);
   5256 
   5257 	return rp0;
   5258 }
   5259 
   5260 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   5261 {
   5262 	u32 val, rpe;
   5263 
   5264 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
   5265 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
   5266 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
   5267 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
   5268 
   5269 	return rpe;
   5270 }
   5271 
   5272 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
   5273 {
   5274 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
   5275 }
   5276 
   5277 /* Check that the pctx buffer wasn't move under us. */
   5278 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
   5279 {
   5280 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   5281 
   5282 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
   5283 			     dev_priv->vlv_pctx->stolen->start);
   5284 }
   5285 
   5286 
   5287 /* Check that the pcbr address is not empty. */
   5288 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
   5289 {
   5290 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   5291 
   5292 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
   5293 }
   5294 
   5295 static void cherryview_setup_pctx(struct drm_device *dev)
   5296 {
   5297 	struct drm_i915_private *dev_priv = dev->dev_private;
   5298 	unsigned long pctx_paddr, paddr;
   5299 	struct i915_gtt *gtt = &dev_priv->gtt;
   5300 	u32 pcbr;
   5301 	int pctx_size = 32*1024;
   5302 
   5303 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   5304 
   5305 	pcbr = I915_READ(VLV_PCBR);
   5306 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
   5307 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
   5308 		paddr = (dev_priv->mm.stolen_base +
   5309 			 (gtt->stolen_size - pctx_size));
   5310 
   5311 		pctx_paddr = (paddr & (~4095));
   5312 		I915_WRITE(VLV_PCBR, pctx_paddr);
   5313 	}
   5314 
   5315 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
   5316 }
   5317 
   5318 static void valleyview_setup_pctx(struct drm_device *dev)
   5319 {
   5320 	struct drm_i915_private *dev_priv = dev->dev_private;
   5321 	struct drm_i915_gem_object *pctx;
   5322 	unsigned long pctx_paddr;
   5323 	u32 pcbr;
   5324 	int pctx_size = 24*1024;
   5325 
   5326 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   5327 
   5328 	pcbr = I915_READ(VLV_PCBR);
   5329 	if (pcbr) {
   5330 		/* BIOS set it up already, grab the pre-alloc'd space */
   5331 		int pcbr_offset;
   5332 
   5333 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
   5334 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
   5335 								      pcbr_offset,
   5336 								      I915_GTT_OFFSET_NONE,
   5337 								      pctx_size);
   5338 		goto out;
   5339 	}
   5340 
   5341 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
   5342 
   5343 	/*
   5344 	 * From the Gunit register HAS:
   5345 	 * The Gfx driver is expected to program this register and ensure
   5346 	 * proper allocation within Gfx stolen memory.  For example, this
   5347 	 * register should be programmed such than the PCBR range does not
   5348 	 * overlap with other ranges, such as the frame buffer, protected
   5349 	 * memory, or any other relevant ranges.
   5350 	 */
   5351 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
   5352 	if (!pctx) {
   5353 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
   5354 		return;
   5355 	}
   5356 
   5357 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
   5358 	I915_WRITE(VLV_PCBR, pctx_paddr);
   5359 
   5360 out:
   5361 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
   5362 	dev_priv->vlv_pctx = pctx;
   5363 }
   5364 
   5365 static void valleyview_cleanup_pctx(struct drm_device *dev)
   5366 {
   5367 	struct drm_i915_private *dev_priv = dev->dev_private;
   5368 
   5369 	if (WARN_ON(!dev_priv->vlv_pctx))
   5370 		return;
   5371 
   5372 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
   5373 	dev_priv->vlv_pctx = NULL;
   5374 }
   5375 
   5376 static void valleyview_init_gt_powersave(struct drm_device *dev)
   5377 {
   5378 	struct drm_i915_private *dev_priv = dev->dev_private;
   5379 	u32 val;
   5380 
   5381 	valleyview_setup_pctx(dev);
   5382 
   5383 	mutex_lock(&dev_priv->rps.hw_lock);
   5384 
   5385 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5386 	switch ((val >> 6) & 3) {
   5387 	case 0:
   5388 	case 1:
   5389 		dev_priv->mem_freq = 800;
   5390 		break;
   5391 	case 2:
   5392 		dev_priv->mem_freq = 1066;
   5393 		break;
   5394 	case 3:
   5395 		dev_priv->mem_freq = 1333;
   5396 		break;
   5397 	}
   5398 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
   5399 
   5400 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
   5401 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
   5402 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   5403 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   5404 			 dev_priv->rps.max_freq);
   5405 
   5406 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
   5407 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   5408 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5409 			 dev_priv->rps.efficient_freq);
   5410 
   5411 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
   5412 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
   5413 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
   5414 			 dev_priv->rps.rp1_freq);
   5415 
   5416 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
   5417 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   5418 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   5419 			 dev_priv->rps.min_freq);
   5420 
   5421 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   5422 
   5423 	/* Preserve min/max settings in case of re-init */
   5424 	if (dev_priv->rps.max_freq_softlimit == 0)
   5425 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   5426 
   5427 	if (dev_priv->rps.min_freq_softlimit == 0)
   5428 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   5429 
   5430 	mutex_unlock(&dev_priv->rps.hw_lock);
   5431 }
   5432 
   5433 static void cherryview_init_gt_powersave(struct drm_device *dev)
   5434 {
   5435 	struct drm_i915_private *dev_priv = dev->dev_private;
   5436 	u32 val;
   5437 
   5438 	cherryview_setup_pctx(dev);
   5439 
   5440 	mutex_lock(&dev_priv->rps.hw_lock);
   5441 
   5442 	mutex_lock(&dev_priv->sb_lock);
   5443 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
   5444 	mutex_unlock(&dev_priv->sb_lock);
   5445 
   5446 	switch ((val >> 2) & 0x7) {
   5447 	case 3:
   5448 		dev_priv->mem_freq = 2000;
   5449 		break;
   5450 	default:
   5451 		dev_priv->mem_freq = 1600;
   5452 		break;
   5453 	}
   5454 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
   5455 
   5456 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
   5457 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
   5458 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   5459 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   5460 			 dev_priv->rps.max_freq);
   5461 
   5462 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
   5463 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   5464 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5465 			 dev_priv->rps.efficient_freq);
   5466 
   5467 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
   5468 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
   5469 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
   5470 			 dev_priv->rps.rp1_freq);
   5471 
   5472 	/* PUnit validated range is only [RPe, RP0] */
   5473 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
   5474 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   5475 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   5476 			 dev_priv->rps.min_freq);
   5477 
   5478 	WARN_ONCE((dev_priv->rps.max_freq |
   5479 		   dev_priv->rps.efficient_freq |
   5480 		   dev_priv->rps.rp1_freq |
   5481 		   dev_priv->rps.min_freq) & 1,
   5482 		  "Odd GPU freq values\n");
   5483 
   5484 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   5485 
   5486 	/* Preserve min/max settings in case of re-init */
   5487 	if (dev_priv->rps.max_freq_softlimit == 0)
   5488 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   5489 
   5490 	if (dev_priv->rps.min_freq_softlimit == 0)
   5491 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   5492 
   5493 	mutex_unlock(&dev_priv->rps.hw_lock);
   5494 }
   5495 
   5496 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
   5497 {
   5498 	valleyview_cleanup_pctx(dev);
   5499 }
   5500 
   5501 static void cherryview_enable_rps(struct drm_device *dev)
   5502 {
   5503 	struct drm_i915_private *dev_priv = dev->dev_private;
   5504 	struct intel_engine_cs *ring;
   5505 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
   5506 	int i;
   5507 
   5508 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5509 
   5510 	gtfifodbg = I915_READ(GTFIFODBG);
   5511 	if (gtfifodbg) {
   5512 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   5513 				 gtfifodbg);
   5514 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5515 	}
   5516 
   5517 	cherryview_check_pctx(dev_priv);
   5518 
   5519 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
   5520 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   5521 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5522 
   5523 	/*  Disable RC states. */
   5524 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5525 
   5526 	/* 2a: Program RC6 thresholds.*/
   5527 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   5528 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   5529 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   5530 
   5531 	for_each_ring(ring, dev_priv, i)
   5532 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5533 	I915_WRITE(GEN6_RC_SLEEP, 0);
   5534 
   5535 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
   5536 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
   5537 
   5538 	/* allows RC6 residency counter to work */
   5539 	I915_WRITE(VLV_COUNTER_CONTROL,
   5540 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
   5541 				      VLV_MEDIA_RC6_COUNT_EN |
   5542 				      VLV_RENDER_RC6_COUNT_EN));
   5543 
   5544 	/* For now we assume BIOS is allocating and populating the PCBR  */
   5545 	pcbr = I915_READ(VLV_PCBR);
   5546 
   5547 	/* 3: Enable RC6 */
   5548 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
   5549 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
   5550 		rc6_mode = GEN7_RC_CTL_TO_MODE;
   5551 
   5552 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   5553 
   5554 	/* 4 Program defaults and thresholds for RPS*/
   5555 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   5556 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   5557 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   5558 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   5559 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   5560 
   5561 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5562 
   5563 	/* 5: Enable RPS */
   5564 	I915_WRITE(GEN6_RP_CONTROL,
   5565 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   5566 		   GEN6_RP_MEDIA_IS_GFX |
   5567 		   GEN6_RP_ENABLE |
   5568 		   GEN6_RP_UP_BUSY_AVG |
   5569 		   GEN6_RP_DOWN_IDLE_AVG);
   5570 
   5571 	/* Setting Fixed Bias */
   5572 	val = VLV_OVERRIDE_EN |
   5573 		  VLV_SOC_TDP_EN |
   5574 		  CHV_BIAS_CPU_50_SOC_50;
   5575 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
   5576 
   5577 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5578 
   5579 	/* RPS code assumes GPLL is used */
   5580 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
   5581 
   5582 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
   5583 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   5584 
   5585 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   5586 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   5587 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   5588 			 dev_priv->rps.cur_freq);
   5589 
   5590 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   5591 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5592 			 dev_priv->rps.efficient_freq);
   5593 
   5594 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   5595 
   5596 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5597 }
   5598 
   5599 static void valleyview_enable_rps(struct drm_device *dev)
   5600 {
   5601 	struct drm_i915_private *dev_priv = dev->dev_private;
   5602 	struct intel_engine_cs *ring;
   5603 	u32 gtfifodbg, val, rc6_mode = 0;
   5604 	int i;
   5605 
   5606 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5607 
   5608 	valleyview_check_pctx(dev_priv);
   5609 
   5610 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   5611 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   5612 				 gtfifodbg);
   5613 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5614 	}
   5615 
   5616 	/* If VLV, Forcewake all wells, else re-direct to regular path */
   5617 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5618 
   5619 	/*  Disable RC states. */
   5620 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5621 
   5622 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   5623 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   5624 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   5625 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   5626 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   5627 
   5628 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5629 
   5630 	I915_WRITE(GEN6_RP_CONTROL,
   5631 		   GEN6_RP_MEDIA_TURBO |
   5632 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   5633 		   GEN6_RP_MEDIA_IS_GFX |
   5634 		   GEN6_RP_ENABLE |
   5635 		   GEN6_RP_UP_BUSY_AVG |
   5636 		   GEN6_RP_DOWN_IDLE_CONT);
   5637 
   5638 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
   5639 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   5640 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   5641 
   5642 	for_each_ring(ring, dev_priv, i)
   5643 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5644 
   5645 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
   5646 
   5647 	/* allows RC6 residency counter to work */
   5648 	I915_WRITE(VLV_COUNTER_CONTROL,
   5649 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
   5650 				      VLV_RENDER_RC0_COUNT_EN |
   5651 				      VLV_MEDIA_RC6_COUNT_EN |
   5652 				      VLV_RENDER_RC6_COUNT_EN));
   5653 
   5654 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   5655 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
   5656 
   5657 	intel_print_rc6_info(dev, rc6_mode);
   5658 
   5659 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   5660 
   5661 	/* Setting Fixed Bias */
   5662 	val = VLV_OVERRIDE_EN |
   5663 		  VLV_SOC_TDP_EN |
   5664 		  VLV_BIAS_CPU_125_SOC_875;
   5665 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
   5666 
   5667 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5668 
   5669 	/* RPS code assumes GPLL is used */
   5670 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
   5671 
   5672 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
   5673 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   5674 
   5675 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   5676 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   5677 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   5678 			 dev_priv->rps.cur_freq);
   5679 
   5680 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   5681 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5682 			 dev_priv->rps.efficient_freq);
   5683 
   5684 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   5685 
   5686 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5687 }
   5688 
   5689 static unsigned long intel_pxfreq(u32 vidfreq)
   5690 {
   5691 	unsigned long freq;
   5692 	int div = (vidfreq & 0x3f0000) >> 16;
   5693 	int post = (vidfreq & 0x3000) >> 12;
   5694 	int pre = (vidfreq & 0x7);
   5695 
   5696 	if (!pre)
   5697 		return 0;
   5698 
   5699 	freq = ((div * 133333) / ((1<<post) * pre));
   5700 
   5701 	return freq;
   5702 }
   5703 
   5704 static const struct cparams {
   5705 	u16 i;
   5706 	u16 t;
   5707 	u16 m;
   5708 	u16 c;
   5709 } cparams[] = {
   5710 	{ 1, 1333, 301, 28664 },
   5711 	{ 1, 1066, 294, 24460 },
   5712 	{ 1, 800, 294, 25192 },
   5713 	{ 0, 1333, 276, 27605 },
   5714 	{ 0, 1066, 276, 27605 },
   5715 	{ 0, 800, 231, 23784 },
   5716 };
   5717 
   5718 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   5719 {
   5720 	u64 total_count, diff, ret;
   5721 	u32 count1, count2, count3, m = 0, c = 0;
   5722 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   5723 	int i;
   5724 
   5725 	assert_spin_locked(&mchdev_lock);
   5726 
   5727 	diff1 = now - dev_priv->ips.last_time1;
   5728 
   5729 	/* Prevent division-by-zero if we are asking too fast.
   5730 	 * Also, we don't get interesting results if we are polling
   5731 	 * faster than once in 10ms, so just return the saved value
   5732 	 * in such cases.
   5733 	 */
   5734 	if (diff1 <= 10)
   5735 		return dev_priv->ips.chipset_power;
   5736 
   5737 	count1 = I915_READ(DMIEC);
   5738 	count2 = I915_READ(DDREC);
   5739 	count3 = I915_READ(CSIEC);
   5740 
   5741 	total_count = count1 + count2 + count3;
   5742 
   5743 	/* FIXME: handle per-counter overflow */
   5744 	if (total_count < dev_priv->ips.last_count1) {
   5745 		diff = ~0UL - dev_priv->ips.last_count1;
   5746 		diff += total_count;
   5747 	} else {
   5748 		diff = total_count - dev_priv->ips.last_count1;
   5749 	}
   5750 
   5751 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   5752 		if (cparams[i].i == dev_priv->ips.c_m &&
   5753 		    cparams[i].t == dev_priv->ips.r_t) {
   5754 			m = cparams[i].m;
   5755 			c = cparams[i].c;
   5756 			break;
   5757 		}
   5758 	}
   5759 
   5760 	diff = div_u64(diff, diff1);
   5761 	ret = ((m * diff) + c);
   5762 	ret = div_u64(ret, 10);
   5763 
   5764 	dev_priv->ips.last_count1 = total_count;
   5765 	dev_priv->ips.last_time1 = now;
   5766 
   5767 	dev_priv->ips.chipset_power = ret;
   5768 
   5769 	return ret;
   5770 }
   5771 
   5772 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   5773 {
   5774 	struct drm_device *dev = dev_priv->dev;
   5775 	unsigned long val;
   5776 
   5777 	if (INTEL_INFO(dev)->gen != 5)
   5778 		return 0;
   5779 
   5780 	spin_lock_irq(&mchdev_lock);
   5781 
   5782 	val = __i915_chipset_val(dev_priv);
   5783 
   5784 	spin_unlock_irq(&mchdev_lock);
   5785 
   5786 	return val;
   5787 }
   5788 
   5789 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   5790 {
   5791 	unsigned long m, x, b;
   5792 	u32 tsfs;
   5793 
   5794 	tsfs = I915_READ(TSFS);
   5795 
   5796 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   5797 	x = I915_READ8(TR1);
   5798 
   5799 	b = tsfs & TSFS_INTR_MASK;
   5800 
   5801 	return ((m * x) / 127) - b;
   5802 }
   5803 
   5804 static int _pxvid_to_vd(u8 pxvid)
   5805 {
   5806 	if (pxvid == 0)
   5807 		return 0;
   5808 
   5809 	if (pxvid >= 8 && pxvid < 31)
   5810 		pxvid = 31;
   5811 
   5812 	return (pxvid + 2) * 125;
   5813 }
   5814 
   5815 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   5816 {
   5817 	struct drm_device *dev = dev_priv->dev;
   5818 	const int vd = _pxvid_to_vd(pxvid);
   5819 	const int vm = vd - 1125;
   5820 
   5821 	if (INTEL_INFO(dev)->is_mobile)
   5822 		return vm > 0 ? vm : 0;
   5823 
   5824 	return vd;
   5825 }
   5826 
   5827 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   5828 {
   5829 	u64 now, diff, diffms;
   5830 	u32 count;
   5831 
   5832 	assert_spin_locked(&mchdev_lock);
   5833 
   5834 	now = ktime_get_raw_ns();
   5835 	diffms = now - dev_priv->ips.last_time2;
   5836 	do_div(diffms, NSEC_PER_MSEC);
   5837 
   5838 	/* Don't divide by 0 */
   5839 	if (!diffms)
   5840 		return;
   5841 
   5842 	count = I915_READ(GFXEC);
   5843 
   5844 	if (count < dev_priv->ips.last_count2) {
   5845 		diff = ~0UL - dev_priv->ips.last_count2;
   5846 		diff += count;
   5847 	} else {
   5848 		diff = count - dev_priv->ips.last_count2;
   5849 	}
   5850 
   5851 	dev_priv->ips.last_count2 = count;
   5852 	dev_priv->ips.last_time2 = now;
   5853 
   5854 	/* More magic constants... */
   5855 	diff = diff * 1181;
   5856 	diff = div_u64(diff, diffms * 10);
   5857 	dev_priv->ips.gfx_power = diff;
   5858 }
   5859 
   5860 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   5861 {
   5862 	struct drm_device *dev = dev_priv->dev;
   5863 
   5864 	if (INTEL_INFO(dev)->gen != 5)
   5865 		return;
   5866 
   5867 	spin_lock_irq(&mchdev_lock);
   5868 
   5869 	__i915_update_gfx_val(dev_priv);
   5870 
   5871 	spin_unlock_irq(&mchdev_lock);
   5872 }
   5873 
   5874 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   5875 {
   5876 	unsigned long t, corr, state1, corr2, state2;
   5877 	u32 pxvid, ext_v;
   5878 
   5879 	assert_spin_locked(&mchdev_lock);
   5880 
   5881 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
   5882 	pxvid = (pxvid >> 24) & 0x7f;
   5883 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   5884 
   5885 	state1 = ext_v;
   5886 
   5887 	t = i915_mch_val(dev_priv);
   5888 
   5889 	/* Revel in the empirically derived constants */
   5890 
   5891 	/* Correction factor in 1/100000 units */
   5892 	if (t > 80)
   5893 		corr = ((t * 2349) + 135940);
   5894 	else if (t >= 50)
   5895 		corr = ((t * 964) + 29317);
   5896 	else /* < 50 */
   5897 		corr = ((t * 301) + 1004);
   5898 
   5899 	corr = corr * ((150142 * state1) / 10000 - 78642);
   5900 	corr /= 100000;
   5901 	corr2 = (corr * dev_priv->ips.corr);
   5902 
   5903 	state2 = (corr2 * state1) / 10000;
   5904 	state2 /= 100; /* convert to mW */
   5905 
   5906 	__i915_update_gfx_val(dev_priv);
   5907 
   5908 	return dev_priv->ips.gfx_power + state2;
   5909 }
   5910 
   5911 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   5912 {
   5913 	struct drm_device *dev = dev_priv->dev;
   5914 	unsigned long val;
   5915 
   5916 	if (INTEL_INFO(dev)->gen != 5)
   5917 		return 0;
   5918 
   5919 	spin_lock_irq(&mchdev_lock);
   5920 
   5921 	val = __i915_gfx_val(dev_priv);
   5922 
   5923 	spin_unlock_irq(&mchdev_lock);
   5924 
   5925 	return val;
   5926 }
   5927 
   5928 /**
   5929  * i915_read_mch_val - return value for IPS use
   5930  *
   5931  * Calculate and return a value for the IPS driver to use when deciding whether
   5932  * we have thermal and power headroom to increase CPU or GPU power budget.
   5933  */
   5934 unsigned long i915_read_mch_val(void)
   5935 {
   5936 	struct drm_i915_private *dev_priv;
   5937 	unsigned long chipset_val, graphics_val, ret = 0;
   5938 
   5939 	spin_lock_irq(&mchdev_lock);
   5940 	if (!i915_mch_dev)
   5941 		goto out_unlock;
   5942 	dev_priv = i915_mch_dev;
   5943 
   5944 	chipset_val = __i915_chipset_val(dev_priv);
   5945 	graphics_val = __i915_gfx_val(dev_priv);
   5946 
   5947 	ret = chipset_val + graphics_val;
   5948 
   5949 out_unlock:
   5950 	spin_unlock_irq(&mchdev_lock);
   5951 
   5952 	return ret;
   5953 }
   5954 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   5955 
   5956 /**
   5957  * i915_gpu_raise - raise GPU frequency limit
   5958  *
   5959  * Raise the limit; IPS indicates we have thermal headroom.
   5960  */
   5961 bool i915_gpu_raise(void)
   5962 {
   5963 	struct drm_i915_private *dev_priv;
   5964 	bool ret = true;
   5965 
   5966 	spin_lock_irq(&mchdev_lock);
   5967 	if (!i915_mch_dev) {
   5968 		ret = false;
   5969 		goto out_unlock;
   5970 	}
   5971 	dev_priv = i915_mch_dev;
   5972 
   5973 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   5974 		dev_priv->ips.max_delay--;
   5975 
   5976 out_unlock:
   5977 	spin_unlock_irq(&mchdev_lock);
   5978 
   5979 	return ret;
   5980 }
   5981 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   5982 
   5983 /**
   5984  * i915_gpu_lower - lower GPU frequency limit
   5985  *
   5986  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   5987  * frequency maximum.
   5988  */
   5989 bool i915_gpu_lower(void)
   5990 {
   5991 	struct drm_i915_private *dev_priv;
   5992 	bool ret = true;
   5993 
   5994 	spin_lock_irq(&mchdev_lock);
   5995 	if (!i915_mch_dev) {
   5996 		ret = false;
   5997 		goto out_unlock;
   5998 	}
   5999 	dev_priv = i915_mch_dev;
   6000 
   6001 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   6002 		dev_priv->ips.max_delay++;
   6003 
   6004 out_unlock:
   6005 	spin_unlock_irq(&mchdev_lock);
   6006 
   6007 	return ret;
   6008 }
   6009 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   6010 
   6011 /**
   6012  * i915_gpu_busy - indicate GPU business to IPS
   6013  *
   6014  * Tell the IPS driver whether or not the GPU is busy.
   6015  */
   6016 bool i915_gpu_busy(void)
   6017 {
   6018 	struct drm_i915_private *dev_priv;
   6019 	struct intel_engine_cs *ring;
   6020 	bool ret = false;
   6021 	int i;
   6022 
   6023 	spin_lock_irq(&mchdev_lock);
   6024 	if (!i915_mch_dev)
   6025 		goto out_unlock;
   6026 	dev_priv = i915_mch_dev;
   6027 
   6028 	for_each_ring(ring, dev_priv, i)
   6029 		ret |= !list_empty(&ring->request_list);
   6030 
   6031 out_unlock:
   6032 	spin_unlock_irq(&mchdev_lock);
   6033 
   6034 	return ret;
   6035 }
   6036 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   6037 
   6038 /**
   6039  * i915_gpu_turbo_disable - disable graphics turbo
   6040  *
   6041  * Disable graphics turbo by resetting the max frequency and setting the
   6042  * current frequency to the default.
   6043  */
   6044 bool i915_gpu_turbo_disable(void)
   6045 {
   6046 	struct drm_i915_private *dev_priv;
   6047 	bool ret = true;
   6048 
   6049 	spin_lock_irq(&mchdev_lock);
   6050 	if (!i915_mch_dev) {
   6051 		ret = false;
   6052 		goto out_unlock;
   6053 	}
   6054 	dev_priv = i915_mch_dev;
   6055 
   6056 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   6057 
   6058 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   6059 		ret = false;
   6060 
   6061 out_unlock:
   6062 	spin_unlock_irq(&mchdev_lock);
   6063 
   6064 	return ret;
   6065 }
   6066 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   6067 
   6068 /**
   6069  * Tells the intel_ips driver that the i915 driver is now loaded, if
   6070  * IPS got loaded first.
   6071  *
   6072  * This awkward dance is so that neither module has to depend on the
   6073  * other in order for IPS to do the appropriate communication of
   6074  * GPU turbo limits to i915.
   6075  */
   6076 static void
   6077 ips_ping_for_i915_load(void)
   6078 {
   6079 #ifndef __NetBSD__		/* XXX IPS GPU turbo limits what?  */
   6080 	void (*link)(void);
   6081 
   6082 	link = symbol_get(ips_link_to_i915_driver);
   6083 	if (link) {
   6084 		link();
   6085 		symbol_put(ips_link_to_i915_driver);
   6086 	}
   6087 #endif
   6088 }
   6089 
   6090 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   6091 {
   6092 	/* We only register the i915 ips part with intel-ips once everything is
   6093 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   6094 	spin_lock_irq(&mchdev_lock);
   6095 	i915_mch_dev = dev_priv;
   6096 	spin_unlock_irq(&mchdev_lock);
   6097 
   6098 	ips_ping_for_i915_load();
   6099 }
   6100 
   6101 void intel_gpu_ips_teardown(void)
   6102 {
   6103 	spin_lock_irq(&mchdev_lock);
   6104 	i915_mch_dev = NULL;
   6105 	spin_unlock_irq(&mchdev_lock);
   6106 }
   6107 
   6108 static void intel_init_emon(struct drm_device *dev)
   6109 {
   6110 	struct drm_i915_private *dev_priv = dev->dev_private;
   6111 	u32 lcfuse;
   6112 	u8 pxw[16];
   6113 	int i;
   6114 
   6115 	/* Disable to program */
   6116 	I915_WRITE(ECR, 0);
   6117 	POSTING_READ(ECR);
   6118 
   6119 	/* Program energy weights for various events */
   6120 	I915_WRITE(SDEW, 0x15040d00);
   6121 	I915_WRITE(CSIEW0, 0x007f0000);
   6122 	I915_WRITE(CSIEW1, 0x1e220004);
   6123 	I915_WRITE(CSIEW2, 0x04000004);
   6124 
   6125 	for (i = 0; i < 5; i++)
   6126 		I915_WRITE(PEW(i), 0);
   6127 	for (i = 0; i < 3; i++)
   6128 		I915_WRITE(DEW(i), 0);
   6129 
   6130 	/* Program P-state weights to account for frequency power adjustment */
   6131 	for (i = 0; i < 16; i++) {
   6132 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
   6133 		unsigned long freq = intel_pxfreq(pxvidfreq);
   6134 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   6135 			PXVFREQ_PX_SHIFT;
   6136 		unsigned long val;
   6137 
   6138 		val = vid * vid;
   6139 		val *= (freq / 1000);
   6140 		val *= 255;
   6141 		val /= (127*127*900);
   6142 		if (val > 0xff)
   6143 			DRM_ERROR("bad pxval: %ld\n", val);
   6144 		pxw[i] = val;
   6145 	}
   6146 	/* Render standby states get 0 weight */
   6147 	pxw[14] = 0;
   6148 	pxw[15] = 0;
   6149 
   6150 	for (i = 0; i < 4; i++) {
   6151 		u32 val = ((u32)pxw[i*4] << 24) | ((u32)pxw[(i*4)+1] << 16) |
   6152 			((u32)pxw[(i*4)+2] << 8) | ((u32)pxw[(i*4)+3]);
   6153 		I915_WRITE(PXW(i), val);
   6154 	}
   6155 
   6156 	/* Adjust magic regs to magic values (more experimental results) */
   6157 	I915_WRITE(OGW0, 0);
   6158 	I915_WRITE(OGW1, 0);
   6159 	I915_WRITE(EG0, 0x00007f00);
   6160 	I915_WRITE(EG1, 0x0000000e);
   6161 	I915_WRITE(EG2, 0x000e0000);
   6162 	I915_WRITE(EG3, 0x68000300);
   6163 	I915_WRITE(EG4, 0x42000000);
   6164 	I915_WRITE(EG5, 0x00140031);
   6165 	I915_WRITE(EG6, 0);
   6166 	I915_WRITE(EG7, 0);
   6167 
   6168 	for (i = 0; i < 8; i++)
   6169 		I915_WRITE(PXWL(i), 0);
   6170 
   6171 	/* Enable PMON + select events */
   6172 	I915_WRITE(ECR, 0x80000019);
   6173 
   6174 	lcfuse = I915_READ(LCFUSE02);
   6175 
   6176 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   6177 }
   6178 
   6179 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
   6180 {
   6181 	return !I915_READ(GEN8_RC6_CTX_INFO);
   6182 }
   6183 
   6184 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
   6185 {
   6186 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
   6187 		return;
   6188 
   6189 	if (i915_rc6_ctx_corrupted(i915)) {
   6190 		DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
   6191 		i915->rps.ctx_corrupted = true;
   6192 		intel_runtime_pm_get(i915);
   6193 	}
   6194 }
   6195 
   6196 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
   6197 {
   6198 	if (i915->rps.ctx_corrupted) {
   6199 		intel_runtime_pm_put(i915);
   6200 		i915->rps.ctx_corrupted = false;
   6201 	}
   6202 }
   6203 
   6204 /**
   6205  * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
   6206  * @i915: i915 device
   6207  *
   6208  * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
   6209  */
   6210 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
   6211 {
   6212 	if (i915->rps.ctx_corrupted)
   6213 		intel_runtime_pm_put(i915);
   6214 }
   6215 
   6216 /**
   6217  * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
   6218  * @i915: i915 device
   6219  *
   6220  * Perform any steps needed to re-init the RC6 CTX WA after system resume.
   6221  */
   6222 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
   6223 {
   6224 	if (!i915->rps.ctx_corrupted)
   6225 		return;
   6226 
   6227 	if (i915_rc6_ctx_corrupted(i915)) {
   6228 		intel_runtime_pm_get(i915);
   6229 		return;
   6230 	}
   6231 
   6232 	DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
   6233 	i915->rps.ctx_corrupted = false;
   6234 }
   6235 
   6236 static void intel_disable_rc6(struct drm_device *dev);
   6237 
   6238 /**
   6239  * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
   6240  * @i915: i915 device
   6241  *
   6242  * Check if an RC6 CTX corruption has happened since the last check and if so
   6243  * disable RC6 and runtime power management.
   6244  *
   6245  * Return false if no context corruption has happened since the last call of
   6246  * this function, true otherwise.
   6247 */
   6248 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
   6249 {
   6250 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
   6251 		return false;
   6252 
   6253 	if (i915->rps.ctx_corrupted)
   6254 		return false;
   6255 
   6256 	if (!i915_rc6_ctx_corrupted(i915))
   6257 		return false;
   6258 
   6259 	DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
   6260 
   6261 	intel_disable_rc6(i915->dev);
   6262 	i915->rps.ctx_corrupted = true;
   6263 	intel_runtime_pm_get_noresume(i915);
   6264 
   6265 	return true;
   6266 }
   6267 
   6268 void intel_init_gt_powersave(struct drm_device *dev)
   6269 {
   6270 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
   6271 
   6272 	i915_rc6_ctx_wa_init(to_i915(dev));
   6273 
   6274 	if (IS_CHERRYVIEW(dev))
   6275 		cherryview_init_gt_powersave(dev);
   6276 	else if (IS_VALLEYVIEW(dev))
   6277 		valleyview_init_gt_powersave(dev);
   6278 }
   6279 
   6280 void intel_cleanup_gt_powersave(struct drm_device *dev)
   6281 {
   6282 	if (IS_CHERRYVIEW(dev))
   6283 		return;
   6284 	else if (IS_VALLEYVIEW(dev))
   6285 		valleyview_cleanup_gt_powersave(dev);
   6286 
   6287 	i915_rc6_ctx_wa_cleanup(to_i915(dev));
   6288 }
   6289 
   6290 static void gen6_suspend_rps(struct drm_device *dev)
   6291 {
   6292 	struct drm_i915_private *dev_priv = dev->dev_private;
   6293 
   6294 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
   6295 
   6296 	gen6_disable_rps_interrupts(dev);
   6297 }
   6298 
   6299 /**
   6300  * intel_suspend_gt_powersave - suspend PM work and helper threads
   6301  * @dev: drm device
   6302  *
   6303  * We don't want to disable RC6 or other features here, we just want
   6304  * to make sure any work we've queued has finished and won't bother
   6305  * us while we're suspended.
   6306  */
   6307 void intel_suspend_gt_powersave(struct drm_device *dev)
   6308 {
   6309 	struct drm_i915_private *dev_priv = dev->dev_private;
   6310 
   6311 	if (INTEL_INFO(dev)->gen < 6)
   6312 		return;
   6313 
   6314 	gen6_suspend_rps(dev);
   6315 
   6316 	/* Force GPU to min freq during suspend */
   6317 	gen6_rps_idle(dev_priv);
   6318 }
   6319 
   6320 static void __intel_disable_rc6(struct drm_device *dev)
   6321 {
   6322 	if (INTEL_INFO(dev)->gen >= 9)
   6323 		gen9_disable_rc6(dev);
   6324 	else if (IS_CHERRYVIEW(dev))
   6325 		cherryview_disable_rc6(dev);
   6326 	else if (IS_VALLEYVIEW(dev))
   6327 		valleyview_disable_rc6(dev);
   6328 	else
   6329 		gen6_disable_rc6(dev);
   6330 }
   6331 
   6332 static void intel_disable_rc6(struct drm_device *dev)
   6333 {
   6334 	struct drm_i915_private *dev_priv = to_i915(dev);
   6335 
   6336 	mutex_lock(&dev_priv->rps.hw_lock);
   6337 	__intel_disable_rc6(dev);
   6338 	mutex_unlock(&dev_priv->rps.hw_lock);
   6339 }
   6340 
   6341 static void intel_disable_rps(struct drm_device *dev)
   6342 {
   6343 	if (IS_CHERRYVIEW(dev) || IS_VALLEYVIEW(dev))
   6344 		return;
   6345 
   6346 	if (INTEL_INFO(dev)->gen >= 9)
   6347 		gen9_disable_rps(dev);
   6348 	else
   6349 		gen6_disable_rps(dev);
   6350 }
   6351 
   6352 void intel_disable_gt_powersave(struct drm_device *dev)
   6353 {
   6354 	struct drm_i915_private *dev_priv = dev->dev_private;
   6355 
   6356 	if (IS_IRONLAKE_M(dev)) {
   6357 		ironlake_disable_drps(dev);
   6358 	} else if (INTEL_INFO(dev)->gen >= 6) {
   6359 		intel_suspend_gt_powersave(dev);
   6360 
   6361 		mutex_lock(&dev_priv->rps.hw_lock);
   6362 
   6363 		__intel_disable_rc6(dev);
   6364 		intel_disable_rps(dev);
   6365 
   6366 		dev_priv->rps.enabled = false;
   6367 
   6368 		mutex_unlock(&dev_priv->rps.hw_lock);
   6369 	}
   6370 }
   6371 
   6372 static void intel_gen6_powersave_work(struct work_struct *work)
   6373 {
   6374 	struct drm_i915_private *dev_priv =
   6375 		container_of(work, struct drm_i915_private,
   6376 			     rps.delayed_resume_work.work);
   6377 	struct drm_device *dev = dev_priv->dev;
   6378 
   6379 	mutex_lock(&dev_priv->rps.hw_lock);
   6380 
   6381 	gen6_reset_rps_interrupts(dev);
   6382 
   6383 	if (IS_CHERRYVIEW(dev)) {
   6384 		cherryview_enable_rps(dev);
   6385 	} else if (IS_VALLEYVIEW(dev)) {
   6386 		valleyview_enable_rps(dev);
   6387 	} else if (INTEL_INFO(dev)->gen >= 9) {
   6388 		gen9_enable_rc6(dev);
   6389 		gen9_enable_rps(dev);
   6390 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
   6391 			__gen6_update_ring_freq(dev);
   6392 	} else if (IS_BROADWELL(dev)) {
   6393 		gen8_enable_rps(dev);
   6394 		__gen6_update_ring_freq(dev);
   6395 	} else {
   6396 		gen6_enable_rps(dev);
   6397 		__gen6_update_ring_freq(dev);
   6398 	}
   6399 
   6400 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
   6401 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
   6402 
   6403 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
   6404 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
   6405 
   6406 	dev_priv->rps.enabled = true;
   6407 
   6408 	gen6_enable_rps_interrupts(dev);
   6409 
   6410 	mutex_unlock(&dev_priv->rps.hw_lock);
   6411 
   6412 	intel_runtime_pm_put(dev_priv);
   6413 }
   6414 
   6415 void intel_enable_gt_powersave(struct drm_device *dev)
   6416 {
   6417 	struct drm_i915_private *dev_priv = dev->dev_private;
   6418 
   6419 	/* Powersaving is controlled by the host when inside a VM */
   6420 	if (intel_vgpu_active(dev))
   6421 		return;
   6422 
   6423 	if (IS_IRONLAKE_M(dev)) {
   6424 		mutex_lock(&dev->struct_mutex);
   6425 		ironlake_enable_drps(dev);
   6426 		intel_init_emon(dev);
   6427 		mutex_unlock(&dev->struct_mutex);
   6428 	} else if (INTEL_INFO(dev)->gen >= 6) {
   6429 		/*
   6430 		 * PCU communication is slow and this doesn't need to be
   6431 		 * done at any specific time, so do this out of our fast path
   6432 		 * to make resume and init faster.
   6433 		 *
   6434 		 * We depend on the HW RC6 power context save/restore
   6435 		 * mechanism when entering D3 through runtime PM suspend. So
   6436 		 * disable RPM until RPS/RC6 is properly setup. We can only
   6437 		 * get here via the driver load/system resume/runtime resume
   6438 		 * paths, so the _noresume version is enough (and in case of
   6439 		 * runtime resume it's necessary).
   6440 		 */
   6441 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   6442 					   round_jiffies_up_relative(HZ)))
   6443 			intel_runtime_pm_get_noresume(dev_priv);
   6444 	}
   6445 }
   6446 
   6447 void intel_reset_gt_powersave(struct drm_device *dev)
   6448 {
   6449 	struct drm_i915_private *dev_priv = dev->dev_private;
   6450 
   6451 	if (INTEL_INFO(dev)->gen < 6)
   6452 		return;
   6453 
   6454 	gen6_suspend_rps(dev);
   6455 	dev_priv->rps.enabled = false;
   6456 }
   6457 
   6458 static void ibx_init_clock_gating(struct drm_device *dev)
   6459 {
   6460 	struct drm_i915_private *dev_priv = dev->dev_private;
   6461 
   6462 	/*
   6463 	 * On Ibex Peak and Cougar Point, we need to disable clock
   6464 	 * gating for the panel power sequencer or it will fail to
   6465 	 * start up when no ports are active.
   6466 	 */
   6467 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   6468 }
   6469 
   6470 static void g4x_disable_trickle_feed(struct drm_device *dev)
   6471 {
   6472 	struct drm_i915_private *dev_priv = dev->dev_private;
   6473 	enum pipe pipe;
   6474 
   6475 	for_each_pipe(dev_priv, pipe) {
   6476 		I915_WRITE(DSPCNTR(pipe),
   6477 			   I915_READ(DSPCNTR(pipe)) |
   6478 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   6479 
   6480 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
   6481 		POSTING_READ(DSPSURF(pipe));
   6482 	}
   6483 }
   6484 
   6485 static void ilk_init_lp_watermarks(struct drm_device *dev)
   6486 {
   6487 	struct drm_i915_private *dev_priv = dev->dev_private;
   6488 
   6489 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
   6490 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
   6491 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
   6492 
   6493 	/*
   6494 	 * Don't touch WM1S_LP_EN here.
   6495 	 * Doing so could cause underruns.
   6496 	 */
   6497 }
   6498 
   6499 static void ironlake_init_clock_gating(struct drm_device *dev)
   6500 {
   6501 	struct drm_i915_private *dev_priv = dev->dev_private;
   6502 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   6503 
   6504 	/*
   6505 	 * Required for FBC
   6506 	 * WaFbcDisableDpfcClockGating:ilk
   6507 	 */
   6508 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   6509 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   6510 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   6511 
   6512 	I915_WRITE(PCH_3DCGDIS0,
   6513 		   MARIUNIT_CLOCK_GATE_DISABLE |
   6514 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   6515 	I915_WRITE(PCH_3DCGDIS1,
   6516 		   VFMUNIT_CLOCK_GATE_DISABLE);
   6517 
   6518 	/*
   6519 	 * According to the spec the following bits should be set in
   6520 	 * order to enable memory self-refresh
   6521 	 * The bit 22/21 of 0x42004
   6522 	 * The bit 5 of 0x42020
   6523 	 * The bit 15 of 0x45000
   6524 	 */
   6525 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6526 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   6527 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   6528 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   6529 	I915_WRITE(DISP_ARB_CTL,
   6530 		   (I915_READ(DISP_ARB_CTL) |
   6531 		    DISP_FBC_WM_DIS));
   6532 
   6533 	ilk_init_lp_watermarks(dev);
   6534 
   6535 	/*
   6536 	 * Based on the document from hardware guys the following bits
   6537 	 * should be set unconditionally in order to enable FBC.
   6538 	 * The bit 22 of 0x42000
   6539 	 * The bit 22 of 0x42004
   6540 	 * The bit 7,8,9 of 0x42020.
   6541 	 */
   6542 	if (IS_IRONLAKE_M(dev)) {
   6543 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
   6544 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   6545 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   6546 			   ILK_FBCQ_DIS);
   6547 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6548 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6549 			   ILK_DPARB_GATE);
   6550 	}
   6551 
   6552 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   6553 
   6554 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6555 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6556 		   ILK_ELPIN_409_SELECT);
   6557 	I915_WRITE(_3D_CHICKEN2,
   6558 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   6559 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   6560 
   6561 	/* WaDisableRenderCachePipelinedFlush:ilk */
   6562 	I915_WRITE(CACHE_MODE_0,
   6563 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   6564 
   6565 	/* WaDisable_RenderCache_OperationalFlush:ilk */
   6566 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6567 
   6568 	g4x_disable_trickle_feed(dev);
   6569 
   6570 	ibx_init_clock_gating(dev);
   6571 }
   6572 
   6573 static void cpt_init_clock_gating(struct drm_device *dev)
   6574 {
   6575 	struct drm_i915_private *dev_priv = dev->dev_private;
   6576 	int pipe;
   6577 	uint32_t val;
   6578 
   6579 	/*
   6580 	 * On Ibex Peak and Cougar Point, we need to disable clock
   6581 	 * gating for the panel power sequencer or it will fail to
   6582 	 * start up when no ports are active.
   6583 	 */
   6584 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
   6585 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
   6586 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
   6587 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   6588 		   DPLS_EDP_PPS_FIX_DIS);
   6589 	/* The below fixes the weird display corruption, a few pixels shifted
   6590 	 * downward, on (only) LVDS of some HP laptops with IVY.
   6591 	 */
   6592 	for_each_pipe(dev_priv, pipe) {
   6593 		val = I915_READ(TRANS_CHICKEN2(pipe));
   6594 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
   6595 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   6596 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
   6597 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   6598 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
   6599 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
   6600 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
   6601 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
   6602 	}
   6603 	/* WADP0ClockGatingDisable */
   6604 	for_each_pipe(dev_priv, pipe) {
   6605 		I915_WRITE(TRANS_CHICKEN1(pipe),
   6606 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   6607 	}
   6608 }
   6609 
   6610 static void gen6_check_mch_setup(struct drm_device *dev)
   6611 {
   6612 	struct drm_i915_private *dev_priv = dev->dev_private;
   6613 	uint32_t tmp;
   6614 
   6615 	tmp = I915_READ(MCH_SSKPD);
   6616 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
   6617 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
   6618 			      tmp);
   6619 }
   6620 
   6621 static void gen6_init_clock_gating(struct drm_device *dev)
   6622 {
   6623 	struct drm_i915_private *dev_priv = dev->dev_private;
   6624 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   6625 
   6626 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   6627 
   6628 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6629 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6630 		   ILK_ELPIN_409_SELECT);
   6631 
   6632 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
   6633 	I915_WRITE(_3D_CHICKEN,
   6634 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   6635 
   6636 	/* WaDisable_RenderCache_OperationalFlush:snb */
   6637 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6638 
   6639 	/*
   6640 	 * BSpec recoomends 8x4 when MSAA is used,
   6641 	 * however in practice 16x4 seems fastest.
   6642 	 *
   6643 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6644 	 * disable bit, which we don't touch here, but it's good
   6645 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6646 	 */
   6647 	I915_WRITE(GEN6_GT_MODE,
   6648 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6649 
   6650 	ilk_init_lp_watermarks(dev);
   6651 
   6652 	I915_WRITE(CACHE_MODE_0,
   6653 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   6654 
   6655 	I915_WRITE(GEN6_UCGCTL1,
   6656 		   I915_READ(GEN6_UCGCTL1) |
   6657 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   6658 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   6659 
   6660 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   6661 	 * gating disable must be set.  Failure to set it results in
   6662 	 * flickering pixels due to Z write ordering failures after
   6663 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   6664 	 * Sanctuary and Tropics, and apparently anything else with
   6665 	 * alpha test or pixel discard.
   6666 	 *
   6667 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   6668 	 * but we didn't debug actual testcases to find it out.
   6669 	 *
   6670 	 * WaDisableRCCUnitClockGating:snb
   6671 	 * WaDisableRCPBUnitClockGating:snb
   6672 	 */
   6673 	I915_WRITE(GEN6_UCGCTL2,
   6674 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   6675 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   6676 
   6677 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
   6678 	I915_WRITE(_3D_CHICKEN3,
   6679 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
   6680 
   6681 	/*
   6682 	 * Bspec says:
   6683 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
   6684 	 * 3DSTATE_SF number of SF output attributes is more than 16."
   6685 	 */
   6686 	I915_WRITE(_3D_CHICKEN3,
   6687 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
   6688 
   6689 	/*
   6690 	 * According to the spec the following bits should be
   6691 	 * set in order to enable memory self-refresh and fbc:
   6692 	 * The bit21 and bit22 of 0x42000
   6693 	 * The bit21 and bit22 of 0x42004
   6694 	 * The bit5 and bit7 of 0x42020
   6695 	 * The bit14 of 0x70180
   6696 	 * The bit14 of 0x71180
   6697 	 *
   6698 	 * WaFbcAsynchFlipDisableFbcQueue:snb
   6699 	 */
   6700 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   6701 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   6702 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   6703 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6704 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6705 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   6706 	I915_WRITE(ILK_DSPCLK_GATE_D,
   6707 		   I915_READ(ILK_DSPCLK_GATE_D) |
   6708 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   6709 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   6710 
   6711 	g4x_disable_trickle_feed(dev);
   6712 
   6713 	cpt_init_clock_gating(dev);
   6714 
   6715 	gen6_check_mch_setup(dev);
   6716 }
   6717 
   6718 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   6719 {
   6720 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   6721 
   6722 	/*
   6723 	 * WaVSThreadDispatchOverride:ivb,vlv
   6724 	 *
   6725 	 * This actually overrides the dispatch
   6726 	 * mode for all thread types.
   6727 	 */
   6728 	reg &= ~GEN7_FF_SCHED_MASK;
   6729 	reg |= GEN7_FF_TS_SCHED_HW;
   6730 	reg |= GEN7_FF_VS_SCHED_HW;
   6731 	reg |= GEN7_FF_DS_SCHED_HW;
   6732 
   6733 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   6734 }
   6735 
   6736 static void lpt_init_clock_gating(struct drm_device *dev)
   6737 {
   6738 	struct drm_i915_private *dev_priv = dev->dev_private;
   6739 
   6740 	/*
   6741 	 * TODO: this bit should only be enabled when really needed, then
   6742 	 * disabled when not needed anymore in order to save power.
   6743 	 */
   6744 	if (HAS_PCH_LPT_LP(dev))
   6745 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   6746 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   6747 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   6748 
   6749 	/* WADPOClockGatingDisable:hsw */
   6750 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
   6751 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
   6752 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   6753 }
   6754 
   6755 static void lpt_suspend_hw(struct drm_device *dev)
   6756 {
   6757 	struct drm_i915_private *dev_priv = dev->dev_private;
   6758 
   6759 	if (HAS_PCH_LPT_LP(dev)) {
   6760 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
   6761 
   6762 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
   6763 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
   6764 	}
   6765 }
   6766 
   6767 static void broadwell_init_clock_gating(struct drm_device *dev)
   6768 {
   6769 	struct drm_i915_private *dev_priv = dev->dev_private;
   6770 	enum pipe pipe;
   6771 	uint32_t misccpctl;
   6772 
   6773 	ilk_init_lp_watermarks(dev);
   6774 
   6775 	/* WaSwitchSolVfFArbitrationPriority:bdw */
   6776 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   6777 
   6778 	/* WaPsrDPAMaskVBlankInSRD:bdw */
   6779 	I915_WRITE(CHICKEN_PAR1_1,
   6780 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
   6781 
   6782 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
   6783 	for_each_pipe(dev_priv, pipe) {
   6784 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
   6785 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
   6786 			   BDW_DPRS_MASK_VBLANK_SRD);
   6787 	}
   6788 
   6789 	/* WaVSRefCountFullforceMissDisable:bdw */
   6790 	/* WaDSRefCountFullforceMissDisable:bdw */
   6791 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6792 		   I915_READ(GEN7_FF_THREAD_MODE) &
   6793 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   6794 
   6795 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   6796 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   6797 
   6798 	/* WaDisableSDEUnitClockGating:bdw */
   6799 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   6800 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   6801 
   6802 	/*
   6803 	 * WaProgramL3SqcReg1Default:bdw
   6804 	 * WaTempDisableDOPClkGating:bdw
   6805 	 */
   6806 	misccpctl = I915_READ(GEN7_MISCCPCTL);
   6807 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
   6808 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
   6809 	/*
   6810 	 * Wait at least 100 clocks before re-enabling clock gating. See
   6811 	 * the definition of L3SQCREG1 in BSpec.
   6812 	 */
   6813 	POSTING_READ(GEN8_L3SQCREG1);
   6814 	udelay(1);
   6815 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
   6816 
   6817 	/*
   6818 	 * WaGttCachingOffByDefault:bdw
   6819 	 * GTT cache may not work with big pages, so if those
   6820 	 * are ever enabled GTT cache may need to be disabled.
   6821 	 */
   6822 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
   6823 
   6824 	lpt_init_clock_gating(dev);
   6825 }
   6826 
   6827 static void haswell_init_clock_gating(struct drm_device *dev)
   6828 {
   6829 	struct drm_i915_private *dev_priv = dev->dev_private;
   6830 
   6831 	ilk_init_lp_watermarks(dev);
   6832 
   6833 	/* L3 caching of data atomics doesn't work -- disable it. */
   6834 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
   6835 	I915_WRITE(HSW_ROW_CHICKEN3,
   6836 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
   6837 
   6838 	/* This is required by WaCatErrorRejectionIssue:hsw */
   6839 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6840 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6841 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6842 
   6843 	/* WaVSRefCountFullforceMissDisable:hsw */
   6844 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6845 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
   6846 
   6847 	/* WaDisable_RenderCache_OperationalFlush:hsw */
   6848 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6849 
   6850 	/* enable HiZ Raw Stall Optimization */
   6851 	I915_WRITE(CACHE_MODE_0_GEN7,
   6852 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   6853 
   6854 	/* WaDisable4x2SubspanOptimization:hsw */
   6855 	I915_WRITE(CACHE_MODE_1,
   6856 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6857 
   6858 	/*
   6859 	 * BSpec recommends 8x4 when MSAA is used,
   6860 	 * however in practice 16x4 seems fastest.
   6861 	 *
   6862 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6863 	 * disable bit, which we don't touch here, but it's good
   6864 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6865 	 */
   6866 	I915_WRITE(GEN7_GT_MODE,
   6867 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6868 
   6869 	/* WaSampleCChickenBitEnable:hsw */
   6870 	I915_WRITE(HALF_SLICE_CHICKEN3,
   6871 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
   6872 
   6873 	/* WaSwitchSolVfFArbitrationPriority:hsw */
   6874 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   6875 
   6876 	/* WaRsPkgCStateDisplayPMReq:hsw */
   6877 	I915_WRITE(CHICKEN_PAR1_1,
   6878 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
   6879 
   6880 	lpt_init_clock_gating(dev);
   6881 }
   6882 
   6883 static void ivybridge_init_clock_gating(struct drm_device *dev)
   6884 {
   6885 	struct drm_i915_private *dev_priv = dev->dev_private;
   6886 	uint32_t snpcr;
   6887 
   6888 	ilk_init_lp_watermarks(dev);
   6889 
   6890 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   6891 
   6892 	/* WaDisableEarlyCull:ivb */
   6893 	I915_WRITE(_3D_CHICKEN3,
   6894 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   6895 
   6896 	/* WaDisableBackToBackFlipFix:ivb */
   6897 	I915_WRITE(IVB_CHICKEN3,
   6898 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   6899 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   6900 
   6901 	/* WaDisablePSDDualDispatchEnable:ivb */
   6902 	if (IS_IVB_GT1(dev))
   6903 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   6904 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   6905 
   6906 	/* WaDisable_RenderCache_OperationalFlush:ivb */
   6907 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6908 
   6909 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
   6910 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   6911 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   6912 
   6913 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
   6914 	I915_WRITE(GEN7_L3CNTLREG1,
   6915 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   6916 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   6917 		   GEN7_WA_L3_CHICKEN_MODE);
   6918 	if (IS_IVB_GT1(dev))
   6919 		I915_WRITE(GEN7_ROW_CHICKEN2,
   6920 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6921 	else {
   6922 		/* must write both registers */
   6923 		I915_WRITE(GEN7_ROW_CHICKEN2,
   6924 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6925 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   6926 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6927 	}
   6928 
   6929 	/* WaForceL3Serialization:ivb */
   6930 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   6931 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   6932 
   6933 	/*
   6934 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   6935 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
   6936 	 */
   6937 	I915_WRITE(GEN6_UCGCTL2,
   6938 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   6939 
   6940 	/* This is required by WaCatErrorRejectionIssue:ivb */
   6941 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6942 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6943 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6944 
   6945 	g4x_disable_trickle_feed(dev);
   6946 
   6947 	gen7_setup_fixed_func_scheduler(dev_priv);
   6948 
   6949 	if (0) { /* causes HiZ corruption on ivb:gt1 */
   6950 		/* enable HiZ Raw Stall Optimization */
   6951 		I915_WRITE(CACHE_MODE_0_GEN7,
   6952 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   6953 	}
   6954 
   6955 	/* WaDisable4x2SubspanOptimization:ivb */
   6956 	I915_WRITE(CACHE_MODE_1,
   6957 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6958 
   6959 	/*
   6960 	 * BSpec recommends 8x4 when MSAA is used,
   6961 	 * however in practice 16x4 seems fastest.
   6962 	 *
   6963 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6964 	 * disable bit, which we don't touch here, but it's good
   6965 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6966 	 */
   6967 	I915_WRITE(GEN7_GT_MODE,
   6968 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6969 
   6970 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   6971 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   6972 	snpcr |= GEN6_MBC_SNPCR_MED;
   6973 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   6974 
   6975 	if (!HAS_PCH_NOP(dev))
   6976 		cpt_init_clock_gating(dev);
   6977 
   6978 	gen6_check_mch_setup(dev);
   6979 }
   6980 
   6981 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
   6982 {
   6983         u32 val;
   6984 
   6985         /*
   6986         * On driver load, a pipe may be active and driving a DSI display.
   6987         * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
   6988         * (and never recovering) in this case. intel_dsi_post_disable() will
   6989         * clear it when we turn off the display.
   6990         */
   6991         val = I915_READ(DSPCLK_GATE_D);
   6992         val &= DPOUNIT_CLOCK_GATE_DISABLE;
   6993         val |= VRHUNIT_CLOCK_GATE_DISABLE;
   6994         I915_WRITE(DSPCLK_GATE_D, val);
   6995 
   6996 	/*
   6997 	 * Disable trickle feed and enable pnd deadline calculation
   6998 	 */
   6999 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
   7000 	I915_WRITE(CBR1_VLV, 0);
   7001 }
   7002 
   7003 static void valleyview_init_clock_gating(struct drm_device *dev)
   7004 {
   7005 	struct drm_i915_private *dev_priv = dev->dev_private;
   7006 
   7007 	vlv_init_display_clock_gating(dev_priv);
   7008 
   7009 	/* WaDisableEarlyCull:vlv */
   7010 	I915_WRITE(_3D_CHICKEN3,
   7011 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   7012 
   7013 	/* WaDisableBackToBackFlipFix:vlv */
   7014 	I915_WRITE(IVB_CHICKEN3,
   7015 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   7016 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   7017 
   7018 	/* WaPsdDispatchEnable:vlv */
   7019 	/* WaDisablePSDDualDispatchEnable:vlv */
   7020 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   7021 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
   7022 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   7023 
   7024 	/* WaDisable_RenderCache_OperationalFlush:vlv */
   7025 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7026 
   7027 	/* WaForceL3Serialization:vlv */
   7028 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   7029 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   7030 
   7031 	/* WaDisableDopClockGating:vlv */
   7032 	I915_WRITE(GEN7_ROW_CHICKEN2,
   7033 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   7034 
   7035 	/* This is required by WaCatErrorRejectionIssue:vlv */
   7036 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   7037 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   7038 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   7039 
   7040 	gen7_setup_fixed_func_scheduler(dev_priv);
   7041 
   7042 	/*
   7043 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   7044 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
   7045 	 */
   7046 	I915_WRITE(GEN6_UCGCTL2,
   7047 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   7048 
   7049 	/* WaDisableL3Bank2xClockGate:vlv
   7050 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
   7051 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
   7052 	I915_WRITE(GEN7_UCGCTL4,
   7053 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   7054 
   7055 	/*
   7056 	 * BSpec says this must be set, even though
   7057 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
   7058 	 */
   7059 	I915_WRITE(CACHE_MODE_1,
   7060 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   7061 
   7062 	/*
   7063 	 * BSpec recommends 8x4 when MSAA is used,
   7064 	 * however in practice 16x4 seems fastest.
   7065 	 *
   7066 	 * Note that PS/WM thread counts depend on the WIZ hashing
   7067 	 * disable bit, which we don't touch here, but it's good
   7068 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   7069 	 */
   7070 	I915_WRITE(GEN7_GT_MODE,
   7071 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   7072 
   7073 	/*
   7074 	 * WaIncreaseL3CreditsForVLVB0:vlv
   7075 	 * This is the hardware default actually.
   7076 	 */
   7077 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
   7078 
   7079 	/*
   7080 	 * WaDisableVLVClockGating_VBIIssue:vlv
   7081 	 * Disable clock gating on th GCFG unit to prevent a delay
   7082 	 * in the reporting of vblank events.
   7083 	 */
   7084 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   7085 }
   7086 
   7087 static void cherryview_init_clock_gating(struct drm_device *dev)
   7088 {
   7089 	struct drm_i915_private *dev_priv = dev->dev_private;
   7090 
   7091 	vlv_init_display_clock_gating(dev_priv);
   7092 
   7093 	/* WaVSRefCountFullforceMissDisable:chv */
   7094 	/* WaDSRefCountFullforceMissDisable:chv */
   7095 	I915_WRITE(GEN7_FF_THREAD_MODE,
   7096 		   I915_READ(GEN7_FF_THREAD_MODE) &
   7097 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   7098 
   7099 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
   7100 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   7101 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   7102 
   7103 	/* WaDisableCSUnitClockGating:chv */
   7104 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
   7105 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   7106 
   7107 	/* WaDisableSDEUnitClockGating:chv */
   7108 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   7109 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   7110 
   7111 	/*
   7112 	 * GTT cache may not work with big pages, so if those
   7113 	 * are ever enabled GTT cache may need to be disabled.
   7114 	 */
   7115 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
   7116 }
   7117 
   7118 static void g4x_init_clock_gating(struct drm_device *dev)
   7119 {
   7120 	struct drm_i915_private *dev_priv = dev->dev_private;
   7121 	uint32_t dspclk_gate;
   7122 
   7123 	I915_WRITE(RENCLK_GATE_D1, 0);
   7124 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   7125 		   GS_UNIT_CLOCK_GATE_DISABLE |
   7126 		   CL_UNIT_CLOCK_GATE_DISABLE);
   7127 	I915_WRITE(RAMCLK_GATE_D, 0);
   7128 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   7129 		OVRUNIT_CLOCK_GATE_DISABLE |
   7130 		OVCUNIT_CLOCK_GATE_DISABLE;
   7131 	if (IS_GM45(dev))
   7132 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   7133 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   7134 
   7135 	/* WaDisableRenderCachePipelinedFlush */
   7136 	I915_WRITE(CACHE_MODE_0,
   7137 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   7138 
   7139 	/* WaDisable_RenderCache_OperationalFlush:g4x */
   7140 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7141 
   7142 	g4x_disable_trickle_feed(dev);
   7143 }
   7144 
   7145 static void crestline_init_clock_gating(struct drm_device *dev)
   7146 {
   7147 	struct drm_i915_private *dev_priv = dev->dev_private;
   7148 
   7149 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   7150 	I915_WRITE(RENCLK_GATE_D2, 0);
   7151 	I915_WRITE(DSPCLK_GATE_D, 0);
   7152 	I915_WRITE(RAMCLK_GATE_D, 0);
   7153 	I915_WRITE16(DEUC, 0);
   7154 	I915_WRITE(MI_ARB_STATE,
   7155 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7156 
   7157 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
   7158 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7159 }
   7160 
   7161 static void broadwater_init_clock_gating(struct drm_device *dev)
   7162 {
   7163 	struct drm_i915_private *dev_priv = dev->dev_private;
   7164 
   7165 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   7166 		   I965_RCC_CLOCK_GATE_DISABLE |
   7167 		   I965_RCPB_CLOCK_GATE_DISABLE |
   7168 		   I965_ISC_CLOCK_GATE_DISABLE |
   7169 		   I965_FBC_CLOCK_GATE_DISABLE);
   7170 	I915_WRITE(RENCLK_GATE_D2, 0);
   7171 	I915_WRITE(MI_ARB_STATE,
   7172 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7173 
   7174 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
   7175 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7176 }
   7177 
   7178 static void gen3_init_clock_gating(struct drm_device *dev)
   7179 {
   7180 	struct drm_i915_private *dev_priv = dev->dev_private;
   7181 	u32 dstate = I915_READ(D_STATE);
   7182 
   7183 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   7184 		DSTATE_DOT_CLOCK_GATING;
   7185 	I915_WRITE(D_STATE, dstate);
   7186 
   7187 	if (IS_PINEVIEW(dev))
   7188 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   7189 
   7190 	/* IIR "flip pending" means done if this bit is set */
   7191 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   7192 
   7193 	/* interrupts should cause a wake up from C3 */
   7194 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
   7195 
   7196 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   7197 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   7198 
   7199 	I915_WRITE(MI_ARB_STATE,
   7200 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7201 }
   7202 
   7203 static void i85x_init_clock_gating(struct drm_device *dev)
   7204 {
   7205 	struct drm_i915_private *dev_priv = dev->dev_private;
   7206 
   7207 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   7208 
   7209 	/* interrupts should cause a wake up from C3 */
   7210 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
   7211 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
   7212 
   7213 	I915_WRITE(MEM_MODE,
   7214 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
   7215 }
   7216 
   7217 static void i830_init_clock_gating(struct drm_device *dev)
   7218 {
   7219 	struct drm_i915_private *dev_priv = dev->dev_private;
   7220 
   7221 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   7222 
   7223 	I915_WRITE(MEM_MODE,
   7224 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
   7225 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
   7226 }
   7227 
   7228 void intel_init_clock_gating(struct drm_device *dev)
   7229 {
   7230 	struct drm_i915_private *dev_priv = dev->dev_private;
   7231 
   7232 	if (dev_priv->display.init_clock_gating)
   7233 		dev_priv->display.init_clock_gating(dev);
   7234 }
   7235 
   7236 void intel_suspend_hw(struct drm_device *dev)
   7237 {
   7238 	if (HAS_PCH_LPT(dev))
   7239 		lpt_suspend_hw(dev);
   7240 }
   7241 
   7242 /* Set up chip specific power management-related functions */
   7243 void intel_init_pm(struct drm_device *dev)
   7244 {
   7245 	struct drm_i915_private *dev_priv = dev->dev_private;
   7246 
   7247 	intel_fbc_init(dev_priv);
   7248 
   7249 	/* For cxsr */
   7250 	if (IS_PINEVIEW(dev))
   7251 		i915_pineview_get_mem_freq(dev);
   7252 	else if (IS_GEN5(dev))
   7253 		i915_ironlake_get_mem_freq(dev);
   7254 
   7255 	/* For FIFO watermark updates */
   7256 	if (INTEL_INFO(dev)->gen >= 9) {
   7257 		skl_setup_wm_latency(dev);
   7258 
   7259 		if (IS_BROXTON(dev))
   7260 			dev_priv->display.init_clock_gating =
   7261 				bxt_init_clock_gating;
   7262 		dev_priv->display.update_wm = skl_update_wm;
   7263 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
   7264 	} else if (HAS_PCH_SPLIT(dev)) {
   7265 		ilk_setup_wm_latency(dev);
   7266 
   7267 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
   7268 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
   7269 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
   7270 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
   7271 			dev_priv->display.update_wm = ilk_update_wm;
   7272 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
   7273 		} else {
   7274 			DRM_DEBUG_KMS("Failed to read display plane latency. "
   7275 				      "Disable CxSR\n");
   7276 		}
   7277 
   7278 		if (IS_GEN5(dev))
   7279 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   7280 		else if (IS_GEN6(dev))
   7281 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   7282 		else if (IS_IVYBRIDGE(dev))
   7283 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   7284 		else if (IS_HASWELL(dev))
   7285 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   7286 		else if (INTEL_INFO(dev)->gen == 8)
   7287 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
   7288 	} else if (IS_CHERRYVIEW(dev)) {
   7289 		vlv_setup_wm_latency(dev);
   7290 
   7291 		dev_priv->display.update_wm = vlv_update_wm;
   7292 		dev_priv->display.init_clock_gating =
   7293 			cherryview_init_clock_gating;
   7294 	} else if (IS_VALLEYVIEW(dev)) {
   7295 		vlv_setup_wm_latency(dev);
   7296 
   7297 		dev_priv->display.update_wm = vlv_update_wm;
   7298 		dev_priv->display.init_clock_gating =
   7299 			valleyview_init_clock_gating;
   7300 	} else if (IS_PINEVIEW(dev)) {
   7301 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   7302 					    dev_priv->is_ddr3,
   7303 					    dev_priv->fsb_freq,
   7304 					    dev_priv->mem_freq)) {
   7305 			DRM_INFO("failed to find known CxSR latency "
   7306 				 "(found ddr%s fsb freq %d, mem freq %d), "
   7307 				 "disabling CxSR\n",
   7308 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   7309 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   7310 			/* Disable CxSR and never update its watermark again */
   7311 			intel_set_memory_cxsr(dev_priv, false);
   7312 			dev_priv->display.update_wm = NULL;
   7313 		} else
   7314 			dev_priv->display.update_wm = pineview_update_wm;
   7315 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   7316 	} else if (IS_G4X(dev)) {
   7317 		dev_priv->display.update_wm = g4x_update_wm;
   7318 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   7319 	} else if (IS_GEN4(dev)) {
   7320 		dev_priv->display.update_wm = i965_update_wm;
   7321 		if (IS_CRESTLINE(dev))
   7322 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   7323 		else if (IS_BROADWATER(dev))
   7324 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   7325 	} else if (IS_GEN3(dev)) {
   7326 		dev_priv->display.update_wm = i9xx_update_wm;
   7327 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   7328 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   7329 	} else if (IS_GEN2(dev)) {
   7330 		if (INTEL_INFO(dev)->num_pipes == 1) {
   7331 			dev_priv->display.update_wm = i845_update_wm;
   7332 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   7333 		} else {
   7334 			dev_priv->display.update_wm = i9xx_update_wm;
   7335 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   7336 		}
   7337 
   7338 		if (IS_I85X(dev) || IS_I865G(dev))
   7339 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   7340 		else
   7341 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
   7342 	} else {
   7343 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
   7344 	}
   7345 }
   7346 
   7347 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
   7348 {
   7349 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   7350 
   7351 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   7352 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   7353 		return -EAGAIN;
   7354 	}
   7355 
   7356 	I915_WRITE(GEN6_PCODE_DATA, *val);
   7357 	I915_WRITE(GEN6_PCODE_DATA1, 0);
   7358 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   7359 
   7360 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   7361 		     500)) {
   7362 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   7363 		return -ETIMEDOUT;
   7364 	}
   7365 
   7366 	*val = I915_READ(GEN6_PCODE_DATA);
   7367 	I915_WRITE(GEN6_PCODE_DATA, 0);
   7368 
   7369 	return 0;
   7370 }
   7371 
   7372 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
   7373 {
   7374 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   7375 
   7376 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   7377 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   7378 		return -EAGAIN;
   7379 	}
   7380 
   7381 	I915_WRITE(GEN6_PCODE_DATA, val);
   7382 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   7383 
   7384 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   7385 		     500)) {
   7386 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   7387 		return -ETIMEDOUT;
   7388 	}
   7389 
   7390 	I915_WRITE(GEN6_PCODE_DATA, 0);
   7391 
   7392 	return 0;
   7393 }
   7394 
   7395 static int vlv_gpu_freq_div(unsigned int czclk_freq)
   7396 {
   7397 	switch (czclk_freq) {
   7398 	case 200:
   7399 		return 10;
   7400 	case 267:
   7401 		return 12;
   7402 	case 320:
   7403 	case 333:
   7404 		return 16;
   7405 	case 400:
   7406 		return 20;
   7407 	default:
   7408 		return -1;
   7409 	}
   7410 }
   7411 
   7412 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7413 {
   7414 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7415 
   7416 	div = vlv_gpu_freq_div(czclk_freq);
   7417 	if (div < 0)
   7418 		return div;
   7419 
   7420 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
   7421 }
   7422 
   7423 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7424 {
   7425 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7426 
   7427 	mul = vlv_gpu_freq_div(czclk_freq);
   7428 	if (mul < 0)
   7429 		return mul;
   7430 
   7431 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
   7432 }
   7433 
   7434 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7435 {
   7436 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7437 
   7438 	div = vlv_gpu_freq_div(czclk_freq) / 2;
   7439 	if (div < 0)
   7440 		return div;
   7441 
   7442 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
   7443 }
   7444 
   7445 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7446 {
   7447 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7448 
   7449 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
   7450 	if (mul < 0)
   7451 		return mul;
   7452 
   7453 	/* CHV needs even values */
   7454 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
   7455 }
   7456 
   7457 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7458 {
   7459 	if (IS_GEN9(dev_priv->dev))
   7460 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
   7461 					 GEN9_FREQ_SCALER);
   7462 	else if (IS_CHERRYVIEW(dev_priv->dev))
   7463 		return chv_gpu_freq(dev_priv, val);
   7464 	else if (IS_VALLEYVIEW(dev_priv->dev))
   7465 		return byt_gpu_freq(dev_priv, val);
   7466 	else
   7467 		return val * GT_FREQUENCY_MULTIPLIER;
   7468 }
   7469 
   7470 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7471 {
   7472 	if (IS_GEN9(dev_priv->dev))
   7473 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
   7474 					 GT_FREQUENCY_MULTIPLIER);
   7475 	else if (IS_CHERRYVIEW(dev_priv->dev))
   7476 		return chv_freq_opcode(dev_priv, val);
   7477 	else if (IS_VALLEYVIEW(dev_priv->dev))
   7478 		return byt_freq_opcode(dev_priv, val);
   7479 	else
   7480 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
   7481 }
   7482 
   7483 struct request_boost {
   7484 	struct work_struct work;
   7485 	struct drm_i915_gem_request *req;
   7486 };
   7487 
   7488 static void __intel_rps_boost_work(struct work_struct *work)
   7489 {
   7490 	struct request_boost *boost = container_of(work, struct request_boost, work);
   7491 	struct drm_i915_gem_request *req = boost->req;
   7492 
   7493 	if (!i915_gem_request_completed(req, true))
   7494 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
   7495 			       req->emitted_jiffies);
   7496 
   7497 	i915_gem_request_unreference__unlocked(req);
   7498 	kfree(boost);
   7499 }
   7500 
   7501 void intel_queue_rps_boost_for_request(struct drm_device *dev,
   7502 				       struct drm_i915_gem_request *req)
   7503 {
   7504 	struct request_boost *boost;
   7505 
   7506 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
   7507 		return;
   7508 
   7509 	if (i915_gem_request_completed(req, true))
   7510 		return;
   7511 
   7512 	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
   7513 	if (boost == NULL)
   7514 		return;
   7515 
   7516 	i915_gem_request_reference(req);
   7517 	boost->req = req;
   7518 
   7519 	INIT_WORK(&boost->work, __intel_rps_boost_work);
   7520 	queue_work(to_i915(dev)->wq, &boost->work);
   7521 }
   7522 
   7523 void intel_pm_setup(struct drm_device *dev)
   7524 {
   7525 	struct drm_i915_private *dev_priv = dev->dev_private;
   7526 
   7527 	mutex_init(&dev_priv->rps.hw_lock);
   7528 	spin_lock_init(&dev_priv->rps.client_lock);
   7529 
   7530 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   7531 			  intel_gen6_powersave_work);
   7532 	INIT_LIST_HEAD(&dev_priv->rps.clients);
   7533 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
   7534 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
   7535 
   7536 	dev_priv->pm.suspended = false;
   7537 }
   7538