intel_pm.c revision 1.20.2.1 1 /* $NetBSD: intel_pm.c,v 1.20.2.1 2020/02/29 20:20:14 ad Exp $ */
2
3 /*
4 * Copyright 2012 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eugeni Dodonov <eugeni.dodonov (at) intel.com>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: intel_pm.c,v 1.20.2.1 2020/02/29 20:20:14 ad Exp $");
32
33 #include <linux/cpufreq.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37 #ifndef __NetBSD__
38 #include "../../../platform/x86/intel_ips.h"
39 #endif
40 #include <linux/module.h>
41
42 #include <linux/nbsd-namespace.h>
43
44 /**
45 * RC6 is a special power stage which allows the GPU to enter an very
46 * low-voltage mode when idle, using down to 0V while at this stage. This
47 * stage is entered automatically when the GPU is idle when RC6 support is
48 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
49 *
50 * There are different RC6 modes available in Intel GPU, which differentiate
51 * among each other with the latency required to enter and leave RC6 and
52 * voltage consumed by the GPU in different states.
53 *
54 * The combination of the following flags define which states GPU is allowed
55 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
56 * RC6pp is deepest RC6. Their support by hardware varies according to the
57 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
58 * which brings the most power savings; deeper states save more power, but
59 * require higher latency to switch to and wake up.
60 */
61 #define INTEL_RC6_ENABLE (1<<0)
62 #define INTEL_RC6p_ENABLE (1<<1)
63 #define INTEL_RC6pp_ENABLE (1<<2)
64
65 static void bxt_init_clock_gating(struct drm_device *dev)
66 {
67 struct drm_i915_private *dev_priv = dev->dev_private;
68
69 /* WaDisableSDEUnitClockGating:bxt */
70 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
71 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
72
73 /*
74 * FIXME:
75 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
76 */
77 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
78 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
79
80 /*
81 * Lower the display internal timeout.
82 * This is needed to avoid any hard hangs when DSI port PLL
83 * is off and a MMIO access is attempted by any privilege
84 * application, using batch buffers or any other means.
85 */
86 I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
87 }
88
89 static void i915_pineview_get_mem_freq(struct drm_device *dev)
90 {
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 u32 tmp;
93
94 tmp = I915_READ(CLKCFG);
95
96 switch (tmp & CLKCFG_FSB_MASK) {
97 case CLKCFG_FSB_533:
98 dev_priv->fsb_freq = 533; /* 133*4 */
99 break;
100 case CLKCFG_FSB_800:
101 dev_priv->fsb_freq = 800; /* 200*4 */
102 break;
103 case CLKCFG_FSB_667:
104 dev_priv->fsb_freq = 667; /* 167*4 */
105 break;
106 case CLKCFG_FSB_400:
107 dev_priv->fsb_freq = 400; /* 100*4 */
108 break;
109 }
110
111 switch (tmp & CLKCFG_MEM_MASK) {
112 case CLKCFG_MEM_533:
113 dev_priv->mem_freq = 533;
114 break;
115 case CLKCFG_MEM_667:
116 dev_priv->mem_freq = 667;
117 break;
118 case CLKCFG_MEM_800:
119 dev_priv->mem_freq = 800;
120 break;
121 }
122
123 /* detect pineview DDR3 setting */
124 tmp = I915_READ(CSHRDDR3CTL);
125 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
126 }
127
128 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
129 {
130 struct drm_i915_private *dev_priv = dev->dev_private;
131 u16 ddrpll, csipll;
132
133 ddrpll = I915_READ16(DDRMPLL1);
134 csipll = I915_READ16(CSIPLL0);
135
136 switch (ddrpll & 0xff) {
137 case 0xc:
138 dev_priv->mem_freq = 800;
139 break;
140 case 0x10:
141 dev_priv->mem_freq = 1066;
142 break;
143 case 0x14:
144 dev_priv->mem_freq = 1333;
145 break;
146 case 0x18:
147 dev_priv->mem_freq = 1600;
148 break;
149 default:
150 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
151 ddrpll & 0xff);
152 dev_priv->mem_freq = 0;
153 break;
154 }
155
156 dev_priv->ips.r_t = dev_priv->mem_freq;
157
158 switch (csipll & 0x3ff) {
159 case 0x00c:
160 dev_priv->fsb_freq = 3200;
161 break;
162 case 0x00e:
163 dev_priv->fsb_freq = 3733;
164 break;
165 case 0x010:
166 dev_priv->fsb_freq = 4266;
167 break;
168 case 0x012:
169 dev_priv->fsb_freq = 4800;
170 break;
171 case 0x014:
172 dev_priv->fsb_freq = 5333;
173 break;
174 case 0x016:
175 dev_priv->fsb_freq = 5866;
176 break;
177 case 0x018:
178 dev_priv->fsb_freq = 6400;
179 break;
180 default:
181 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
182 csipll & 0x3ff);
183 dev_priv->fsb_freq = 0;
184 break;
185 }
186
187 if (dev_priv->fsb_freq == 3200) {
188 dev_priv->ips.c_m = 0;
189 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
190 dev_priv->ips.c_m = 1;
191 } else {
192 dev_priv->ips.c_m = 2;
193 }
194 }
195
196 static const struct cxsr_latency cxsr_latency_table[] = {
197 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
198 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
199 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
200 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
201 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
202
203 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
204 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
205 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
206 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
207 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
208
209 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
210 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
211 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
212 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
213 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
214
215 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
216 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
217 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
218 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
219 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
220
221 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
222 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
223 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
224 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
225 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
226
227 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
228 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
229 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
230 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
231 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
232 };
233
234 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
235 int is_ddr3,
236 int fsb,
237 int mem)
238 {
239 const struct cxsr_latency *latency;
240 int i;
241
242 if (fsb == 0 || mem == 0)
243 return NULL;
244
245 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
246 latency = &cxsr_latency_table[i];
247 if (is_desktop == latency->is_desktop &&
248 is_ddr3 == latency->is_ddr3 &&
249 fsb == latency->fsb_freq && mem == latency->mem_freq)
250 return latency;
251 }
252
253 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
254
255 return NULL;
256 }
257
258 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
259 {
260 u32 val;
261
262 mutex_lock(&dev_priv->rps.hw_lock);
263
264 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
265 if (enable)
266 val &= ~FORCE_DDR_HIGH_FREQ;
267 else
268 val |= FORCE_DDR_HIGH_FREQ;
269 val &= ~FORCE_DDR_LOW_FREQ;
270 val |= FORCE_DDR_FREQ_REQ_ACK;
271 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
272
273 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
274 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
275 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
276
277 mutex_unlock(&dev_priv->rps.hw_lock);
278 }
279
280 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
281 {
282 u32 val;
283
284 mutex_lock(&dev_priv->rps.hw_lock);
285
286 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
287 if (enable)
288 val |= DSP_MAXFIFO_PM5_ENABLE;
289 else
290 val &= ~DSP_MAXFIFO_PM5_ENABLE;
291 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
292
293 mutex_unlock(&dev_priv->rps.hw_lock);
294 }
295
296 #define FW_WM(value, plane) \
297 (((u32)(value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
298
299 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
300 {
301 struct drm_device *dev = dev_priv->dev;
302 u32 val;
303
304 if (IS_VALLEYVIEW(dev)) {
305 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
306 POSTING_READ(FW_BLC_SELF_VLV);
307 dev_priv->wm.vlv.cxsr = enable;
308 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
309 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
310 POSTING_READ(FW_BLC_SELF);
311 } else if (IS_PINEVIEW(dev)) {
312 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
313 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
314 I915_WRITE(DSPFW3, val);
315 POSTING_READ(DSPFW3);
316 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
317 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
318 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
319 I915_WRITE(FW_BLC_SELF, val);
320 POSTING_READ(FW_BLC_SELF);
321 } else if (IS_I915GM(dev)) {
322 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
323 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
324 I915_WRITE(INSTPM, val);
325 POSTING_READ(INSTPM);
326 } else {
327 return;
328 }
329
330 DRM_DEBUG_KMS("memory self-refresh is %s\n",
331 enable ? "enabled" : "disabled");
332 }
333
334
335 /*
336 * Latency for FIFO fetches is dependent on several factors:
337 * - memory configuration (speed, channels)
338 * - chipset
339 * - current MCH state
340 * It can be fairly high in some situations, so here we assume a fairly
341 * pessimal value. It's a tradeoff between extra memory fetches (if we
342 * set this value too high, the FIFO will fetch frequently to stay full)
343 * and power consumption (set it too low to save power and we might see
344 * FIFO underruns and display "flicker").
345 *
346 * A value of 5us seems to be a good balance; safe for very low end
347 * platforms but not overly aggressive on lower latency configs.
348 */
349 static const int pessimal_latency_ns = 5000;
350
351 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
352 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
353
354 static int vlv_get_fifo_size(struct drm_device *dev,
355 enum pipe pipe, int plane)
356 {
357 struct drm_i915_private *dev_priv = dev->dev_private;
358 int sprite0_start, sprite1_start, size;
359
360 switch (pipe) {
361 uint32_t dsparb, dsparb2, dsparb3;
362 case PIPE_A:
363 dsparb = I915_READ(DSPARB);
364 dsparb2 = I915_READ(DSPARB2);
365 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
366 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
367 break;
368 case PIPE_B:
369 dsparb = I915_READ(DSPARB);
370 dsparb2 = I915_READ(DSPARB2);
371 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
372 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
373 break;
374 case PIPE_C:
375 dsparb2 = I915_READ(DSPARB2);
376 dsparb3 = I915_READ(DSPARB3);
377 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
378 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
379 break;
380 default:
381 return 0;
382 }
383
384 switch (plane) {
385 case 0:
386 size = sprite0_start;
387 break;
388 case 1:
389 size = sprite1_start - sprite0_start;
390 break;
391 case 2:
392 size = 512 - 1 - sprite1_start;
393 break;
394 default:
395 return 0;
396 }
397
398 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
399 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
400 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
401 size);
402
403 return size;
404 }
405
406 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 uint32_t dsparb = I915_READ(DSPARB);
410 int size;
411
412 size = dsparb & 0x7f;
413 if (plane)
414 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
415
416 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
417 plane ? "B" : "A", size);
418
419 return size;
420 }
421
422 static int i830_get_fifo_size(struct drm_device *dev, int plane)
423 {
424 struct drm_i915_private *dev_priv = dev->dev_private;
425 uint32_t dsparb = I915_READ(DSPARB);
426 int size;
427
428 size = dsparb & 0x1ff;
429 if (plane)
430 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
431 size >>= 1; /* Convert to cachelines */
432
433 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
434 plane ? "B" : "A", size);
435
436 return size;
437 }
438
439 static int i845_get_fifo_size(struct drm_device *dev, int plane)
440 {
441 struct drm_i915_private *dev_priv = dev->dev_private;
442 uint32_t dsparb = I915_READ(DSPARB);
443 int size;
444
445 size = dsparb & 0x7f;
446 size >>= 2; /* Convert to cachelines */
447
448 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
449 plane ? "B" : "A",
450 size);
451
452 return size;
453 }
454
455 /* Pineview has different values for various configs */
456 static const struct intel_watermark_params pineview_display_wm = {
457 .fifo_size = PINEVIEW_DISPLAY_FIFO,
458 .max_wm = PINEVIEW_MAX_WM,
459 .default_wm = PINEVIEW_DFT_WM,
460 .guard_size = PINEVIEW_GUARD_WM,
461 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
462 };
463 static const struct intel_watermark_params pineview_display_hplloff_wm = {
464 .fifo_size = PINEVIEW_DISPLAY_FIFO,
465 .max_wm = PINEVIEW_MAX_WM,
466 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
467 .guard_size = PINEVIEW_GUARD_WM,
468 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
469 };
470 static const struct intel_watermark_params pineview_cursor_wm = {
471 .fifo_size = PINEVIEW_CURSOR_FIFO,
472 .max_wm = PINEVIEW_CURSOR_MAX_WM,
473 .default_wm = PINEVIEW_CURSOR_DFT_WM,
474 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
475 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
476 };
477 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
478 .fifo_size = PINEVIEW_CURSOR_FIFO,
479 .max_wm = PINEVIEW_CURSOR_MAX_WM,
480 .default_wm = PINEVIEW_CURSOR_DFT_WM,
481 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
482 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 };
484 static const struct intel_watermark_params g4x_wm_info = {
485 .fifo_size = G4X_FIFO_SIZE,
486 .max_wm = G4X_MAX_WM,
487 .default_wm = G4X_MAX_WM,
488 .guard_size = 2,
489 .cacheline_size = G4X_FIFO_LINE_SIZE,
490 };
491 static const struct intel_watermark_params g4x_cursor_wm_info = {
492 .fifo_size = I965_CURSOR_FIFO,
493 .max_wm = I965_CURSOR_MAX_WM,
494 .default_wm = I965_CURSOR_DFT_WM,
495 .guard_size = 2,
496 .cacheline_size = G4X_FIFO_LINE_SIZE,
497 };
498 static const struct intel_watermark_params valleyview_wm_info __unused = {
499 .fifo_size = VALLEYVIEW_FIFO_SIZE,
500 .max_wm = VALLEYVIEW_MAX_WM,
501 .default_wm = VALLEYVIEW_MAX_WM,
502 .guard_size = 2,
503 .cacheline_size = G4X_FIFO_LINE_SIZE,
504 };
505 static const struct intel_watermark_params valleyview_cursor_wm_info __unused = {
506 .fifo_size = I965_CURSOR_FIFO,
507 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
508 .default_wm = I965_CURSOR_DFT_WM,
509 .guard_size = 2,
510 .cacheline_size = G4X_FIFO_LINE_SIZE,
511 };
512 static const struct intel_watermark_params i965_cursor_wm_info = {
513 .fifo_size = I965_CURSOR_FIFO,
514 .max_wm = I965_CURSOR_MAX_WM,
515 .default_wm = I965_CURSOR_DFT_WM,
516 .guard_size = 2,
517 .cacheline_size = I915_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params i945_wm_info = {
520 .fifo_size = I945_FIFO_SIZE,
521 .max_wm = I915_MAX_WM,
522 .default_wm = 1,
523 .guard_size = 2,
524 .cacheline_size = I915_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params i915_wm_info = {
527 .fifo_size = I915_FIFO_SIZE,
528 .max_wm = I915_MAX_WM,
529 .default_wm = 1,
530 .guard_size = 2,
531 .cacheline_size = I915_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params i830_a_wm_info = {
534 .fifo_size = I855GM_FIFO_SIZE,
535 .max_wm = I915_MAX_WM,
536 .default_wm = 1,
537 .guard_size = 2,
538 .cacheline_size = I830_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params i830_bc_wm_info = {
541 .fifo_size = I855GM_FIFO_SIZE,
542 .max_wm = I915_MAX_WM/2,
543 .default_wm = 1,
544 .guard_size = 2,
545 .cacheline_size = I830_FIFO_LINE_SIZE,
546 };
547 static const struct intel_watermark_params i845_wm_info = {
548 .fifo_size = I830_FIFO_SIZE,
549 .max_wm = I915_MAX_WM,
550 .default_wm = 1,
551 .guard_size = 2,
552 .cacheline_size = I830_FIFO_LINE_SIZE,
553 };
554
555 /**
556 * intel_calculate_wm - calculate watermark level
557 * @clock_in_khz: pixel clock
558 * @wm: chip FIFO params
559 * @pixel_size: display pixel size
560 * @latency_ns: memory latency for the platform
561 *
562 * Calculate the watermark level (the level at which the display plane will
563 * start fetching from memory again). Each chip has a different display
564 * FIFO size and allocation, so the caller needs to figure that out and pass
565 * in the correct intel_watermark_params structure.
566 *
567 * As the pixel clock runs, the FIFO will be drained at a rate that depends
568 * on the pixel size. When it reaches the watermark level, it'll start
569 * fetching FIFO line sized based chunks from memory until the FIFO fills
570 * past the watermark point. If the FIFO drains completely, a FIFO underrun
571 * will occur, and a display engine hang could result.
572 */
573 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
574 const struct intel_watermark_params *wm,
575 int fifo_size,
576 int pixel_size,
577 unsigned long latency_ns)
578 {
579 long entries_required, wm_size;
580
581 /*
582 * Note: we need to make sure we don't overflow for various clock &
583 * latency values.
584 * clocks go from a few thousand to several hundred thousand.
585 * latency is usually a few thousand
586 */
587 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
588 1000;
589 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
590
591 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
592
593 wm_size = fifo_size - (entries_required + wm->guard_size);
594
595 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
596
597 /* Don't promote wm_size to unsigned... */
598 if (wm_size > (long)wm->max_wm)
599 wm_size = wm->max_wm;
600 if (wm_size <= 0)
601 wm_size = wm->default_wm;
602
603 /*
604 * Bspec seems to indicate that the value shouldn't be lower than
605 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
606 * Lets go for 8 which is the burst size since certain platforms
607 * already use a hardcoded 8 (which is what the spec says should be
608 * done).
609 */
610 if (wm_size <= 8)
611 wm_size = 8;
612
613 return wm_size;
614 }
615
616 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
617 {
618 struct drm_crtc *crtc, *enabled = NULL;
619
620 for_each_crtc(dev, crtc) {
621 if (intel_crtc_active(crtc)) {
622 if (enabled)
623 return NULL;
624 enabled = crtc;
625 }
626 }
627
628 return enabled;
629 }
630
631 static void pineview_update_wm(struct drm_crtc *unused_crtc)
632 {
633 struct drm_device *dev = unused_crtc->dev;
634 struct drm_i915_private *dev_priv = dev->dev_private;
635 struct drm_crtc *crtc;
636 const struct cxsr_latency *latency;
637 u32 reg;
638 unsigned long wm;
639
640 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
641 dev_priv->fsb_freq, dev_priv->mem_freq);
642 if (!latency) {
643 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
644 intel_set_memory_cxsr(dev_priv, false);
645 return;
646 }
647
648 crtc = single_enabled_crtc(dev);
649 if (crtc) {
650 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
651 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
652 int clock = adjusted_mode->crtc_clock;
653
654 /* Display SR */
655 wm = intel_calculate_wm(clock, &pineview_display_wm,
656 pineview_display_wm.fifo_size,
657 pixel_size, latency->display_sr);
658 reg = I915_READ(DSPFW1);
659 reg &= ~DSPFW_SR_MASK;
660 reg |= FW_WM(wm, SR);
661 I915_WRITE(DSPFW1, reg);
662 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
663
664 /* cursor SR */
665 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
666 pineview_display_wm.fifo_size,
667 pixel_size, latency->cursor_sr);
668 reg = I915_READ(DSPFW3);
669 reg &= ~DSPFW_CURSOR_SR_MASK;
670 reg |= FW_WM(wm, CURSOR_SR);
671 I915_WRITE(DSPFW3, reg);
672
673 /* Display HPLL off SR */
674 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
675 pineview_display_hplloff_wm.fifo_size,
676 pixel_size, latency->display_hpll_disable);
677 reg = I915_READ(DSPFW3);
678 reg &= ~DSPFW_HPLL_SR_MASK;
679 reg |= FW_WM(wm, HPLL_SR);
680 I915_WRITE(DSPFW3, reg);
681
682 /* cursor HPLL off SR */
683 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
684 pineview_display_hplloff_wm.fifo_size,
685 pixel_size, latency->cursor_hpll_disable);
686 reg = I915_READ(DSPFW3);
687 reg &= ~DSPFW_HPLL_CURSOR_MASK;
688 reg |= FW_WM(wm, HPLL_CURSOR);
689 I915_WRITE(DSPFW3, reg);
690 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
691
692 intel_set_memory_cxsr(dev_priv, true);
693 } else {
694 intel_set_memory_cxsr(dev_priv, false);
695 }
696 }
697
698 static bool g4x_compute_wm0(struct drm_device *dev,
699 int plane,
700 const struct intel_watermark_params *display,
701 int display_latency_ns,
702 const struct intel_watermark_params *cursor,
703 int cursor_latency_ns,
704 int *plane_wm,
705 int *cursor_wm)
706 {
707 struct drm_crtc *crtc;
708 const struct drm_display_mode *adjusted_mode;
709 int htotal, hdisplay, clock, pixel_size;
710 int line_time_us, line_count;
711 int entries, tlb_miss;
712
713 crtc = intel_get_crtc_for_plane(dev, plane);
714 if (!intel_crtc_active(crtc)) {
715 *cursor_wm = cursor->guard_size;
716 *plane_wm = display->guard_size;
717 return false;
718 }
719
720 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
721 clock = adjusted_mode->crtc_clock;
722 htotal = adjusted_mode->crtc_htotal;
723 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
724 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
725
726 /* Use the small buffer method to calculate plane watermark */
727 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
728 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
729 if (tlb_miss > 0)
730 entries += tlb_miss;
731 entries = DIV_ROUND_UP(entries, display->cacheline_size);
732 *plane_wm = entries + display->guard_size;
733 if (*plane_wm > (int)display->max_wm)
734 *plane_wm = display->max_wm;
735
736 /* Use the large buffer method to calculate cursor watermark */
737 line_time_us = max(htotal * 1000 / clock, 1);
738 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
739 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
740 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
741 if (tlb_miss > 0)
742 entries += tlb_miss;
743 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
744 *cursor_wm = entries + cursor->guard_size;
745 if (*cursor_wm > (int)cursor->max_wm)
746 *cursor_wm = (int)cursor->max_wm;
747
748 return true;
749 }
750
751 /*
752 * Check the wm result.
753 *
754 * If any calculated watermark values is larger than the maximum value that
755 * can be programmed into the associated watermark register, that watermark
756 * must be disabled.
757 */
758 static bool g4x_check_srwm(struct drm_device *dev,
759 int display_wm, int cursor_wm,
760 const struct intel_watermark_params *display,
761 const struct intel_watermark_params *cursor)
762 {
763 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
764 display_wm, cursor_wm);
765
766 if (display_wm > display->max_wm) {
767 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
768 display_wm, display->max_wm);
769 return false;
770 }
771
772 if (cursor_wm > cursor->max_wm) {
773 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
774 cursor_wm, cursor->max_wm);
775 return false;
776 }
777
778 if (!(display_wm || cursor_wm)) {
779 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
780 return false;
781 }
782
783 return true;
784 }
785
786 static bool g4x_compute_srwm(struct drm_device *dev,
787 int plane,
788 int latency_ns,
789 const struct intel_watermark_params *display,
790 const struct intel_watermark_params *cursor,
791 int *display_wm, int *cursor_wm)
792 {
793 struct drm_crtc *crtc;
794 const struct drm_display_mode *adjusted_mode;
795 int hdisplay, htotal, pixel_size, clock;
796 unsigned long line_time_us;
797 int line_count, line_size;
798 int small, large;
799 int entries;
800
801 if (!latency_ns) {
802 *display_wm = *cursor_wm = 0;
803 return false;
804 }
805
806 crtc = intel_get_crtc_for_plane(dev, plane);
807 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
808 clock = adjusted_mode->crtc_clock;
809 htotal = adjusted_mode->crtc_htotal;
810 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
811 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
812
813 line_time_us = max(htotal * 1000 / clock, 1);
814 line_count = (latency_ns / line_time_us + 1000) / 1000;
815 line_size = hdisplay * pixel_size;
816
817 /* Use the minimum of the small and large buffer method for primary */
818 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
819 large = line_count * line_size;
820
821 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
822 *display_wm = entries + display->guard_size;
823
824 /* calculate the self-refresh watermark for display cursor */
825 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
826 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
827 *cursor_wm = entries + cursor->guard_size;
828
829 return g4x_check_srwm(dev,
830 *display_wm, *cursor_wm,
831 display, cursor);
832 }
833
834 #define FW_WM_VLV(value, plane) \
835 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
836
837 static void vlv_write_wm_values(struct intel_crtc *crtc,
838 const struct vlv_wm_values *wm)
839 {
840 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
841 enum pipe pipe = crtc->pipe;
842
843 I915_WRITE(VLV_DDL(pipe),
844 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
845 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
846 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
847 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
848
849 I915_WRITE(DSPFW1,
850 FW_WM(wm->sr.plane, SR) |
851 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
852 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
853 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
854 I915_WRITE(DSPFW2,
855 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
856 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
857 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
858 I915_WRITE(DSPFW3,
859 FW_WM(wm->sr.cursor, CURSOR_SR));
860
861 if (IS_CHERRYVIEW(dev_priv)) {
862 I915_WRITE(DSPFW7_CHV,
863 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
864 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
865 I915_WRITE(DSPFW8_CHV,
866 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
867 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
868 I915_WRITE(DSPFW9_CHV,
869 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
870 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
871 I915_WRITE(DSPHOWM,
872 FW_WM(wm->sr.plane >> 9, SR_HI) |
873 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
874 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
875 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
876 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
877 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
878 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
879 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
880 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
881 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
882 } else {
883 I915_WRITE(DSPFW7,
884 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
885 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
886 I915_WRITE(DSPHOWM,
887 FW_WM(wm->sr.plane >> 9, SR_HI) |
888 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
889 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
890 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
891 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
892 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
893 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
894 }
895
896 /* zero (unused) WM1 watermarks */
897 I915_WRITE(DSPFW4, 0);
898 I915_WRITE(DSPFW5, 0);
899 I915_WRITE(DSPFW6, 0);
900 I915_WRITE(DSPHOWM1, 0);
901
902 POSTING_READ(DSPFW1);
903 }
904
905 #undef FW_WM_VLV
906
907 enum vlv_wm_level {
908 VLV_WM_LEVEL_PM2,
909 VLV_WM_LEVEL_PM5,
910 VLV_WM_LEVEL_DDR_DVFS,
911 };
912
913 /* latency must be in 0.1us units. */
914 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
915 unsigned int pipe_htotal,
916 unsigned int horiz_pixels,
917 unsigned int bytes_per_pixel,
918 unsigned int latency)
919 {
920 unsigned int ret;
921
922 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
923 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
924 ret = DIV_ROUND_UP(ret, 64);
925
926 return ret;
927 }
928
929 static void vlv_setup_wm_latency(struct drm_device *dev)
930 {
931 struct drm_i915_private *dev_priv = dev->dev_private;
932
933 /* all latencies in usec */
934 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
935
936 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
937
938 if (IS_CHERRYVIEW(dev_priv)) {
939 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
940 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
941
942 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
943 }
944 }
945
946 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
947 struct intel_crtc *crtc,
948 const struct intel_plane_state *state,
949 int level)
950 {
951 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
952 int clock, htotal, pixel_size, width, wm;
953
954 if (dev_priv->wm.pri_latency[level] == 0)
955 return USHRT_MAX;
956
957 if (!state->visible)
958 return 0;
959
960 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
961 clock = crtc->config->base.adjusted_mode.crtc_clock;
962 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
963 width = crtc->config->pipe_src_w;
964 if (WARN_ON(htotal == 0))
965 htotal = 1;
966
967 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
968 /*
969 * FIXME the formula gives values that are
970 * too big for the cursor FIFO, and hence we
971 * would never be able to use cursors. For
972 * now just hardcode the watermark.
973 */
974 wm = 63;
975 } else {
976 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
977 dev_priv->wm.pri_latency[level] * 10);
978 }
979
980 return min_t(int, wm, USHRT_MAX);
981 }
982
983 static void vlv_compute_fifo(struct intel_crtc *crtc)
984 {
985 struct drm_device *dev = crtc->base.dev;
986 struct vlv_wm_state *wm_state = &crtc->wm_state;
987 struct intel_plane *plane;
988 unsigned int total_rate = 0;
989 const int fifo_size = 512 - 1;
990 int fifo_extra, fifo_left = fifo_size;
991
992 for_each_intel_plane_on_crtc(dev, crtc, plane) {
993 struct intel_plane_state *state =
994 to_intel_plane_state(plane->base.state);
995
996 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
997 continue;
998
999 if (state->visible) {
1000 wm_state->num_active_planes++;
1001 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1002 }
1003 }
1004
1005 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1006 struct intel_plane_state *state =
1007 to_intel_plane_state(plane->base.state);
1008 unsigned int rate;
1009
1010 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1011 plane->wm.fifo_size = 63;
1012 continue;
1013 }
1014
1015 if (!state->visible) {
1016 plane->wm.fifo_size = 0;
1017 continue;
1018 }
1019
1020 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1021 plane->wm.fifo_size = fifo_size * rate / total_rate;
1022 fifo_left -= plane->wm.fifo_size;
1023 }
1024
1025 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1026
1027 /* spread the remainder evenly */
1028 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1029 int plane_extra;
1030
1031 if (fifo_left == 0)
1032 break;
1033
1034 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1035 continue;
1036
1037 /* give it all to the first plane if none are active */
1038 if (plane->wm.fifo_size == 0 &&
1039 wm_state->num_active_planes)
1040 continue;
1041
1042 plane_extra = min(fifo_extra, fifo_left);
1043 plane->wm.fifo_size += plane_extra;
1044 fifo_left -= plane_extra;
1045 }
1046
1047 WARN_ON(fifo_left != 0);
1048 }
1049
1050 static void vlv_invert_wms(struct intel_crtc *crtc)
1051 {
1052 struct vlv_wm_state *wm_state = &crtc->wm_state;
1053 int level;
1054
1055 for (level = 0; level < wm_state->num_levels; level++) {
1056 struct drm_device *dev = crtc->base.dev;
1057 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1058 struct intel_plane *plane;
1059
1060 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1061 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1062
1063 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1064 switch (plane->base.type) {
1065 int sprite;
1066 case DRM_PLANE_TYPE_CURSOR:
1067 wm_state->wm[level].cursor = plane->wm.fifo_size -
1068 wm_state->wm[level].cursor;
1069 break;
1070 case DRM_PLANE_TYPE_PRIMARY:
1071 wm_state->wm[level].primary = plane->wm.fifo_size -
1072 wm_state->wm[level].primary;
1073 break;
1074 case DRM_PLANE_TYPE_OVERLAY:
1075 sprite = plane->plane;
1076 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1077 wm_state->wm[level].sprite[sprite];
1078 break;
1079 }
1080 }
1081 }
1082 }
1083
1084 static void vlv_compute_wm(struct intel_crtc *crtc)
1085 {
1086 struct drm_device *dev = crtc->base.dev;
1087 struct vlv_wm_state *wm_state = &crtc->wm_state;
1088 struct intel_plane *plane;
1089 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1090 int level;
1091
1092 memset(wm_state, 0, sizeof(*wm_state));
1093
1094 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1095 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1096
1097 wm_state->num_active_planes = 0;
1098
1099 vlv_compute_fifo(crtc);
1100
1101 if (wm_state->num_active_planes != 1)
1102 wm_state->cxsr = false;
1103
1104 if (wm_state->cxsr) {
1105 for (level = 0; level < wm_state->num_levels; level++) {
1106 wm_state->sr[level].plane = sr_fifo_size;
1107 wm_state->sr[level].cursor = 63;
1108 }
1109 }
1110
1111 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1112 struct intel_plane_state *state =
1113 to_intel_plane_state(plane->base.state);
1114
1115 if (!state->visible)
1116 continue;
1117
1118 /* normal watermarks */
1119 for (level = 0; level < wm_state->num_levels; level++) {
1120 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1121 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1122
1123 /* hack */
1124 if (WARN_ON(level == 0 && wm > max_wm))
1125 wm = max_wm;
1126
1127 if (wm > plane->wm.fifo_size)
1128 break;
1129
1130 switch (plane->base.type) {
1131 int sprite;
1132 case DRM_PLANE_TYPE_CURSOR:
1133 wm_state->wm[level].cursor = wm;
1134 break;
1135 case DRM_PLANE_TYPE_PRIMARY:
1136 wm_state->wm[level].primary = wm;
1137 break;
1138 case DRM_PLANE_TYPE_OVERLAY:
1139 sprite = plane->plane;
1140 wm_state->wm[level].sprite[sprite] = wm;
1141 break;
1142 }
1143 }
1144
1145 wm_state->num_levels = level;
1146
1147 if (!wm_state->cxsr)
1148 continue;
1149
1150 /* maxfifo watermarks */
1151 switch (plane->base.type) {
1152 int sprite, level;
1153 case DRM_PLANE_TYPE_CURSOR:
1154 for (level = 0; level < wm_state->num_levels; level++)
1155 wm_state->sr[level].cursor =
1156 wm_state->wm[level].cursor;
1157 break;
1158 case DRM_PLANE_TYPE_PRIMARY:
1159 for (level = 0; level < wm_state->num_levels; level++)
1160 wm_state->sr[level].plane =
1161 min(wm_state->sr[level].plane,
1162 wm_state->wm[level].primary);
1163 break;
1164 case DRM_PLANE_TYPE_OVERLAY:
1165 sprite = plane->plane;
1166 for (level = 0; level < wm_state->num_levels; level++)
1167 wm_state->sr[level].plane =
1168 min(wm_state->sr[level].plane,
1169 wm_state->wm[level].sprite[sprite]);
1170 break;
1171 }
1172 }
1173
1174 /* clear any (partially) filled invalid levels */
1175 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1176 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1177 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1178 }
1179
1180 vlv_invert_wms(crtc);
1181 }
1182
1183 #define VLV_FIFO(plane, value) \
1184 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1185
1186 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1187 {
1188 struct drm_device *dev = crtc->base.dev;
1189 struct drm_i915_private *dev_priv = to_i915(dev);
1190 struct intel_plane *plane;
1191 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1192
1193 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1194 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1195 WARN_ON(plane->wm.fifo_size != 63);
1196 continue;
1197 }
1198
1199 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1200 sprite0_start = plane->wm.fifo_size;
1201 else if (plane->plane == 0)
1202 sprite1_start = sprite0_start + plane->wm.fifo_size;
1203 else
1204 fifo_size = sprite1_start + plane->wm.fifo_size;
1205 }
1206
1207 WARN_ON(fifo_size != 512 - 1);
1208
1209 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1210 pipe_name(crtc->pipe), sprite0_start,
1211 sprite1_start, fifo_size);
1212
1213 switch (crtc->pipe) {
1214 uint32_t dsparb, dsparb2, dsparb3;
1215 case PIPE_A:
1216 dsparb = I915_READ(DSPARB);
1217 dsparb2 = I915_READ(DSPARB2);
1218
1219 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1220 VLV_FIFO(SPRITEB, 0xff));
1221 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1222 VLV_FIFO(SPRITEB, sprite1_start));
1223
1224 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1225 VLV_FIFO(SPRITEB_HI, 0x1));
1226 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1227 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1228
1229 I915_WRITE(DSPARB, dsparb);
1230 I915_WRITE(DSPARB2, dsparb2);
1231 break;
1232 case PIPE_B:
1233 dsparb = I915_READ(DSPARB);
1234 dsparb2 = I915_READ(DSPARB2);
1235
1236 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1237 VLV_FIFO(SPRITED, 0xff));
1238 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1239 VLV_FIFO(SPRITED, sprite1_start));
1240
1241 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1242 VLV_FIFO(SPRITED_HI, 0xff));
1243 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1244 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1245
1246 I915_WRITE(DSPARB, dsparb);
1247 I915_WRITE(DSPARB2, dsparb2);
1248 break;
1249 case PIPE_C:
1250 dsparb3 = I915_READ(DSPARB3);
1251 dsparb2 = I915_READ(DSPARB2);
1252
1253 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1254 VLV_FIFO(SPRITEF, 0xff));
1255 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1256 VLV_FIFO(SPRITEF, sprite1_start));
1257
1258 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1259 VLV_FIFO(SPRITEF_HI, 0xff));
1260 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1261 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1262
1263 I915_WRITE(DSPARB3, dsparb3);
1264 I915_WRITE(DSPARB2, dsparb2);
1265 break;
1266 default:
1267 break;
1268 }
1269 }
1270
1271 #undef VLV_FIFO
1272
1273 static void vlv_merge_wm(struct drm_device *dev,
1274 struct vlv_wm_values *wm)
1275 {
1276 struct intel_crtc *crtc;
1277 int num_active_crtcs = 0;
1278
1279 wm->level = to_i915(dev)->wm.max_level;
1280 wm->cxsr = true;
1281
1282 for_each_intel_crtc(dev, crtc) {
1283 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1284
1285 if (!crtc->active)
1286 continue;
1287
1288 if (!wm_state->cxsr)
1289 wm->cxsr = false;
1290
1291 num_active_crtcs++;
1292 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1293 }
1294
1295 if (num_active_crtcs != 1)
1296 wm->cxsr = false;
1297
1298 if (num_active_crtcs > 1)
1299 wm->level = VLV_WM_LEVEL_PM2;
1300
1301 for_each_intel_crtc(dev, crtc) {
1302 struct vlv_wm_state *wm_state = &crtc->wm_state;
1303 enum pipe pipe = crtc->pipe;
1304
1305 if (!crtc->active)
1306 continue;
1307
1308 wm->pipe[pipe] = wm_state->wm[wm->level];
1309 if (wm->cxsr)
1310 wm->sr = wm_state->sr[wm->level];
1311
1312 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1313 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1314 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1315 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1316 }
1317 }
1318
1319 static void vlv_update_wm(struct drm_crtc *crtc)
1320 {
1321 struct drm_device *dev = crtc->dev;
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1324 enum pipe pipe = intel_crtc->pipe;
1325 struct vlv_wm_values wm = {};
1326
1327 vlv_compute_wm(intel_crtc);
1328 vlv_merge_wm(dev, &wm);
1329
1330 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1331 /* FIXME should be part of crtc atomic commit */
1332 vlv_pipe_set_fifo_size(intel_crtc);
1333 return;
1334 }
1335
1336 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1337 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1338 chv_set_memory_dvfs(dev_priv, false);
1339
1340 if (wm.level < VLV_WM_LEVEL_PM5 &&
1341 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1342 chv_set_memory_pm5(dev_priv, false);
1343
1344 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1345 intel_set_memory_cxsr(dev_priv, false);
1346
1347 /* FIXME should be part of crtc atomic commit */
1348 vlv_pipe_set_fifo_size(intel_crtc);
1349
1350 vlv_write_wm_values(intel_crtc, &wm);
1351
1352 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1353 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1354 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1355 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1356 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1357
1358 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1359 intel_set_memory_cxsr(dev_priv, true);
1360
1361 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1362 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1363 chv_set_memory_pm5(dev_priv, true);
1364
1365 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1366 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1367 chv_set_memory_dvfs(dev_priv, true);
1368
1369 dev_priv->wm.vlv = wm;
1370 }
1371
1372 #define single_plane_enabled(mask) is_power_of_2(mask)
1373
1374 static void g4x_update_wm(struct drm_crtc *crtc)
1375 {
1376 struct drm_device *dev = crtc->dev;
1377 static const int sr_latency_ns = 12000;
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1380 int plane_sr, cursor_sr;
1381 unsigned int enabled = 0;
1382 bool cxsr_enabled;
1383
1384 if (g4x_compute_wm0(dev, PIPE_A,
1385 &g4x_wm_info, pessimal_latency_ns,
1386 &g4x_cursor_wm_info, pessimal_latency_ns,
1387 &planea_wm, &cursora_wm))
1388 enabled |= 1 << PIPE_A;
1389
1390 if (g4x_compute_wm0(dev, PIPE_B,
1391 &g4x_wm_info, pessimal_latency_ns,
1392 &g4x_cursor_wm_info, pessimal_latency_ns,
1393 &planeb_wm, &cursorb_wm))
1394 enabled |= 1 << PIPE_B;
1395
1396 if (single_plane_enabled(enabled) &&
1397 g4x_compute_srwm(dev, ffs(enabled) - 1,
1398 sr_latency_ns,
1399 &g4x_wm_info,
1400 &g4x_cursor_wm_info,
1401 &plane_sr, &cursor_sr)) {
1402 cxsr_enabled = true;
1403 } else {
1404 cxsr_enabled = false;
1405 intel_set_memory_cxsr(dev_priv, false);
1406 plane_sr = cursor_sr = 0;
1407 }
1408
1409 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1410 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1411 planea_wm, cursora_wm,
1412 planeb_wm, cursorb_wm,
1413 plane_sr, cursor_sr);
1414
1415 I915_WRITE(DSPFW1,
1416 FW_WM(plane_sr, SR) |
1417 FW_WM(cursorb_wm, CURSORB) |
1418 FW_WM(planeb_wm, PLANEB) |
1419 FW_WM(planea_wm, PLANEA));
1420 I915_WRITE(DSPFW2,
1421 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1422 FW_WM(cursora_wm, CURSORA));
1423 /* HPLL off in SR has some issues on G4x... disable it */
1424 I915_WRITE(DSPFW3,
1425 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1426 FW_WM(cursor_sr, CURSOR_SR));
1427
1428 if (cxsr_enabled)
1429 intel_set_memory_cxsr(dev_priv, true);
1430 }
1431
1432 static void i965_update_wm(struct drm_crtc *unused_crtc)
1433 {
1434 struct drm_device *dev = unused_crtc->dev;
1435 struct drm_i915_private *dev_priv = dev->dev_private;
1436 struct drm_crtc *crtc;
1437 int srwm = 1;
1438 int cursor_sr = 16;
1439 bool cxsr_enabled;
1440
1441 /* Calc sr entries for one plane configs */
1442 crtc = single_enabled_crtc(dev);
1443 if (crtc) {
1444 /* self-refresh has much higher latency */
1445 static const int sr_latency_ns = 12000;
1446 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1447 int clock = adjusted_mode->crtc_clock;
1448 int htotal = adjusted_mode->crtc_htotal;
1449 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1450 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1451 unsigned long line_time_us;
1452 int entries;
1453
1454 line_time_us = max(htotal * 1000 / clock, 1);
1455
1456 /* Use ns/us then divide to preserve precision */
1457 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458 pixel_size * hdisplay;
1459 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1460 srwm = I965_FIFO_SIZE - entries;
1461 if (srwm < 0)
1462 srwm = 1;
1463 srwm &= 0x1ff;
1464 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1465 entries, srwm);
1466
1467 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1468 pixel_size * crtc->cursor->state->crtc_w;
1469 entries = DIV_ROUND_UP(entries,
1470 i965_cursor_wm_info.cacheline_size);
1471 cursor_sr = i965_cursor_wm_info.fifo_size -
1472 (entries + i965_cursor_wm_info.guard_size);
1473
1474 if (cursor_sr > i965_cursor_wm_info.max_wm)
1475 cursor_sr = i965_cursor_wm_info.max_wm;
1476
1477 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1478 "cursor %d\n", srwm, cursor_sr);
1479
1480 cxsr_enabled = true;
1481 } else {
1482 cxsr_enabled = false;
1483 /* Turn off self refresh if both pipes are enabled */
1484 intel_set_memory_cxsr(dev_priv, false);
1485 }
1486
1487 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1488 srwm);
1489
1490 /* 965 has limitations... */
1491 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1492 FW_WM(8, CURSORB) |
1493 FW_WM(8, PLANEB) |
1494 FW_WM(8, PLANEA));
1495 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1496 FW_WM(8, PLANEC_OLD));
1497 /* update cursor SR watermark */
1498 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1499
1500 if (cxsr_enabled)
1501 intel_set_memory_cxsr(dev_priv, true);
1502 }
1503
1504 #undef FW_WM
1505
1506 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1507 {
1508 struct drm_device *dev = unused_crtc->dev;
1509 struct drm_i915_private *dev_priv = dev->dev_private;
1510 const struct intel_watermark_params *wm_info;
1511 uint32_t fwater_lo;
1512 uint32_t fwater_hi;
1513 int cwm, srwm = 1;
1514 int fifo_size;
1515 int planea_wm, planeb_wm;
1516 struct drm_crtc *crtc, *enabled = NULL;
1517
1518 if (IS_I945GM(dev))
1519 wm_info = &i945_wm_info;
1520 else if (!IS_GEN2(dev))
1521 wm_info = &i915_wm_info;
1522 else
1523 wm_info = &i830_a_wm_info;
1524
1525 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1526 crtc = intel_get_crtc_for_plane(dev, 0);
1527 if (intel_crtc_active(crtc)) {
1528 const struct drm_display_mode *adjusted_mode;
1529 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1530 if (IS_GEN2(dev))
1531 cpp = 4;
1532
1533 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1534 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1535 wm_info, fifo_size, cpp,
1536 pessimal_latency_ns);
1537 enabled = crtc;
1538 } else {
1539 planea_wm = fifo_size - wm_info->guard_size;
1540 if (planea_wm > (long)wm_info->max_wm)
1541 planea_wm = wm_info->max_wm;
1542 }
1543
1544 if (IS_GEN2(dev))
1545 wm_info = &i830_bc_wm_info;
1546
1547 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1548 crtc = intel_get_crtc_for_plane(dev, 1);
1549 if (intel_crtc_active(crtc)) {
1550 const struct drm_display_mode *adjusted_mode;
1551 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1552 if (IS_GEN2(dev))
1553 cpp = 4;
1554
1555 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1556 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1557 wm_info, fifo_size, cpp,
1558 pessimal_latency_ns);
1559 if (enabled == NULL)
1560 enabled = crtc;
1561 else
1562 enabled = NULL;
1563 } else {
1564 planeb_wm = fifo_size - wm_info->guard_size;
1565 if (planeb_wm > (long)wm_info->max_wm)
1566 planeb_wm = wm_info->max_wm;
1567 }
1568
1569 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1570
1571 if (IS_I915GM(dev) && enabled) {
1572 struct drm_i915_gem_object *obj;
1573
1574 obj = intel_fb_obj(enabled->primary->state->fb);
1575
1576 /* self-refresh seems busted with untiled */
1577 if (obj->tiling_mode == I915_TILING_NONE)
1578 enabled = NULL;
1579 }
1580
1581 /*
1582 * Overlay gets an aggressive default since video jitter is bad.
1583 */
1584 cwm = 2;
1585
1586 /* Play safe and disable self-refresh before adjusting watermarks. */
1587 intel_set_memory_cxsr(dev_priv, false);
1588
1589 /* Calc sr entries for one plane configs */
1590 if (HAS_FW_BLC(dev) && enabled) {
1591 /* self-refresh has much higher latency */
1592 static const int sr_latency_ns = 6000;
1593 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1594 int clock = adjusted_mode->crtc_clock;
1595 int htotal = adjusted_mode->crtc_htotal;
1596 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1597 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1598 unsigned long line_time_us;
1599 int entries;
1600
1601 line_time_us = max(htotal * 1000 / clock, 1);
1602
1603 /* Use ns/us then divide to preserve precision */
1604 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1605 pixel_size * hdisplay;
1606 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1607 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1608 srwm = wm_info->fifo_size - entries;
1609 if (srwm < 0)
1610 srwm = 1;
1611
1612 if (IS_I945G(dev) || IS_I945GM(dev))
1613 I915_WRITE(FW_BLC_SELF,
1614 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1615 else if (IS_I915GM(dev))
1616 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1617 }
1618
1619 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1620 planea_wm, planeb_wm, cwm, srwm);
1621
1622 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1623 fwater_hi = (cwm & 0x1f);
1624
1625 /* Set request length to 8 cachelines per fetch */
1626 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1627 fwater_hi = fwater_hi | (1 << 8);
1628
1629 I915_WRITE(FW_BLC, fwater_lo);
1630 I915_WRITE(FW_BLC2, fwater_hi);
1631
1632 if (enabled)
1633 intel_set_memory_cxsr(dev_priv, true);
1634 }
1635
1636 static void i845_update_wm(struct drm_crtc *unused_crtc)
1637 {
1638 struct drm_device *dev = unused_crtc->dev;
1639 struct drm_i915_private *dev_priv = dev->dev_private;
1640 struct drm_crtc *crtc;
1641 const struct drm_display_mode *adjusted_mode;
1642 uint32_t fwater_lo;
1643 int planea_wm;
1644
1645 crtc = single_enabled_crtc(dev);
1646 if (crtc == NULL)
1647 return;
1648
1649 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1650 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1651 &i845_wm_info,
1652 dev_priv->display.get_fifo_size(dev, 0),
1653 4, pessimal_latency_ns);
1654 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1655 fwater_lo |= (3<<8) | planea_wm;
1656
1657 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1658
1659 I915_WRITE(FW_BLC, fwater_lo);
1660 }
1661
1662 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1663 {
1664 uint32_t pixel_rate;
1665
1666 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1667
1668 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1669 * adjust the pixel_rate here. */
1670
1671 if (pipe_config->pch_pfit.enabled) {
1672 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1673 uint32_t pfit_size = pipe_config->pch_pfit.size;
1674
1675 pipe_w = pipe_config->pipe_src_w;
1676 pipe_h = pipe_config->pipe_src_h;
1677
1678 pfit_w = (pfit_size >> 16) & 0xFFFF;
1679 pfit_h = pfit_size & 0xFFFF;
1680 if (pipe_w < pfit_w)
1681 pipe_w = pfit_w;
1682 if (pipe_h < pfit_h)
1683 pipe_h = pfit_h;
1684
1685 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1686 pfit_w * pfit_h);
1687 }
1688
1689 return pixel_rate;
1690 }
1691
1692 /* latency must be in 0.1us units. */
1693 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1694 uint32_t latency)
1695 {
1696 uint64_t ret;
1697
1698 if (WARN(latency == 0, "Latency value missing\n"))
1699 return UINT_MAX;
1700
1701 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1702 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1703
1704 return ret;
1705 }
1706
1707 /* latency must be in 0.1us units. */
1708 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1709 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1710 uint32_t latency)
1711 {
1712 uint32_t ret;
1713
1714 if (WARN(latency == 0, "Latency value missing\n"))
1715 return UINT_MAX;
1716
1717 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1718 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1719 ret = DIV_ROUND_UP(ret, 64) + 2;
1720 return ret;
1721 }
1722
1723 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1724 uint8_t bytes_per_pixel)
1725 {
1726 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1727 }
1728
1729 struct skl_pipe_wm_parameters {
1730 bool active;
1731 uint32_t pipe_htotal;
1732 uint32_t pixel_rate; /* in KHz */
1733 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1734 };
1735
1736 struct ilk_wm_maximums {
1737 uint16_t pri;
1738 uint16_t spr;
1739 uint16_t cur;
1740 uint16_t fbc;
1741 };
1742
1743 /* used in computing the new watermarks state */
1744 struct intel_wm_config {
1745 unsigned int num_pipes_active;
1746 bool sprites_enabled;
1747 bool sprites_scaled;
1748 };
1749
1750 /*
1751 * For both WM_PIPE and WM_LP.
1752 * mem_value must be in 0.1us units.
1753 */
1754 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1755 const struct intel_plane_state *pstate,
1756 uint32_t mem_value,
1757 bool is_lp)
1758 {
1759 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1760 uint32_t method1, method2;
1761
1762 if (!cstate->base.active || !pstate->visible)
1763 return 0;
1764
1765 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1766
1767 if (!is_lp)
1768 return method1;
1769
1770 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1771 cstate->base.adjusted_mode.crtc_htotal,
1772 drm_rect_width(&pstate->dst),
1773 bpp,
1774 mem_value);
1775
1776 return min(method1, method2);
1777 }
1778
1779 /*
1780 * For both WM_PIPE and WM_LP.
1781 * mem_value must be in 0.1us units.
1782 */
1783 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1784 const struct intel_plane_state *pstate,
1785 uint32_t mem_value)
1786 {
1787 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1788 uint32_t method1, method2;
1789
1790 if (!cstate->base.active || !pstate->visible)
1791 return 0;
1792
1793 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1794 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1795 cstate->base.adjusted_mode.crtc_htotal,
1796 drm_rect_width(&pstate->dst),
1797 bpp,
1798 mem_value);
1799 return min(method1, method2);
1800 }
1801
1802 /*
1803 * For both WM_PIPE and WM_LP.
1804 * mem_value must be in 0.1us units.
1805 */
1806 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1807 const struct intel_plane_state *pstate,
1808 uint32_t mem_value)
1809 {
1810 /*
1811 * We treat the cursor plane as always-on for the purposes of watermark
1812 * calculation. Until we have two-stage watermark programming merged,
1813 * this is necessary to avoid flickering.
1814 */
1815 int cpp = 4;
1816 int width = pstate->visible ? pstate->base.crtc_w : 64;
1817
1818 if (!cstate->base.active)
1819 return 0;
1820
1821 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1822 cstate->base.adjusted_mode.crtc_htotal,
1823 width, cpp, mem_value);
1824 }
1825
1826 /* Only for WM_LP. */
1827 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1828 const struct intel_plane_state *pstate,
1829 uint32_t pri_val)
1830 {
1831 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1832
1833 if (!cstate->base.active || !pstate->visible)
1834 return 0;
1835
1836 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1837 }
1838
1839 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1840 {
1841 if (INTEL_INFO(dev)->gen >= 8)
1842 return 3072;
1843 else if (INTEL_INFO(dev)->gen >= 7)
1844 return 768;
1845 else
1846 return 512;
1847 }
1848
1849 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1850 int level, bool is_sprite)
1851 {
1852 if (INTEL_INFO(dev)->gen >= 8)
1853 /* BDW primary/sprite plane watermarks */
1854 return level == 0 ? 255 : 2047;
1855 else if (INTEL_INFO(dev)->gen >= 7)
1856 /* IVB/HSW primary/sprite plane watermarks */
1857 return level == 0 ? 127 : 1023;
1858 else if (!is_sprite)
1859 /* ILK/SNB primary plane watermarks */
1860 return level == 0 ? 127 : 511;
1861 else
1862 /* ILK/SNB sprite plane watermarks */
1863 return level == 0 ? 63 : 255;
1864 }
1865
1866 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1867 int level)
1868 {
1869 if (INTEL_INFO(dev)->gen >= 7)
1870 return level == 0 ? 63 : 255;
1871 else
1872 return level == 0 ? 31 : 63;
1873 }
1874
1875 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1876 {
1877 if (INTEL_INFO(dev)->gen >= 8)
1878 return 31;
1879 else
1880 return 15;
1881 }
1882
1883 /* Calculate the maximum primary/sprite plane watermark */
1884 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1885 int level,
1886 const struct intel_wm_config *config,
1887 enum intel_ddb_partitioning ddb_partitioning,
1888 bool is_sprite)
1889 {
1890 unsigned int fifo_size = ilk_display_fifo_size(dev);
1891
1892 /* if sprites aren't enabled, sprites get nothing */
1893 if (is_sprite && !config->sprites_enabled)
1894 return 0;
1895
1896 /* HSW allows LP1+ watermarks even with multiple pipes */
1897 if (level == 0 || config->num_pipes_active > 1) {
1898 fifo_size /= INTEL_INFO(dev)->num_pipes;
1899
1900 /*
1901 * For some reason the non self refresh
1902 * FIFO size is only half of the self
1903 * refresh FIFO size on ILK/SNB.
1904 */
1905 if (INTEL_INFO(dev)->gen <= 6)
1906 fifo_size /= 2;
1907 }
1908
1909 if (config->sprites_enabled) {
1910 /* level 0 is always calculated with 1:1 split */
1911 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1912 if (is_sprite)
1913 fifo_size *= 5;
1914 fifo_size /= 6;
1915 } else {
1916 fifo_size /= 2;
1917 }
1918 }
1919
1920 /* clamp to max that the registers can hold */
1921 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1922 }
1923
1924 /* Calculate the maximum cursor plane watermark */
1925 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1926 int level,
1927 const struct intel_wm_config *config)
1928 {
1929 /* HSW LP1+ watermarks w/ multiple pipes */
1930 if (level > 0 && config->num_pipes_active > 1)
1931 return 64;
1932
1933 /* otherwise just report max that registers can hold */
1934 return ilk_cursor_wm_reg_max(dev, level);
1935 }
1936
1937 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1938 int level,
1939 const struct intel_wm_config *config,
1940 enum intel_ddb_partitioning ddb_partitioning,
1941 struct ilk_wm_maximums *max)
1942 {
1943 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1944 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1945 max->cur = ilk_cursor_wm_max(dev, level, config);
1946 max->fbc = ilk_fbc_wm_reg_max(dev);
1947 }
1948
1949 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1950 int level,
1951 struct ilk_wm_maximums *max)
1952 {
1953 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1954 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1955 max->cur = ilk_cursor_wm_reg_max(dev, level);
1956 max->fbc = ilk_fbc_wm_reg_max(dev);
1957 }
1958
1959 static bool ilk_validate_wm_level(int level,
1960 const struct ilk_wm_maximums *max,
1961 struct intel_wm_level *result)
1962 {
1963 bool ret;
1964
1965 /* already determined to be invalid? */
1966 if (!result->enable)
1967 return false;
1968
1969 result->enable = result->pri_val <= max->pri &&
1970 result->spr_val <= max->spr &&
1971 result->cur_val <= max->cur;
1972
1973 ret = result->enable;
1974
1975 /*
1976 * HACK until we can pre-compute everything,
1977 * and thus fail gracefully if LP0 watermarks
1978 * are exceeded...
1979 */
1980 if (level == 0 && !result->enable) {
1981 if (result->pri_val > max->pri)
1982 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1983 level, result->pri_val, max->pri);
1984 if (result->spr_val > max->spr)
1985 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1986 level, result->spr_val, max->spr);
1987 if (result->cur_val > max->cur)
1988 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1989 level, result->cur_val, max->cur);
1990
1991 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1992 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1993 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1994 result->enable = true;
1995 }
1996
1997 return ret;
1998 }
1999
2000 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2001 const struct intel_crtc *intel_crtc,
2002 int level,
2003 struct intel_crtc_state *cstate,
2004 struct intel_wm_level *result)
2005 {
2006 struct intel_plane *intel_plane;
2007 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2008 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2009 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2010
2011 /* WM1+ latency values stored in 0.5us units */
2012 if (level > 0) {
2013 pri_latency *= 5;
2014 spr_latency *= 5;
2015 cur_latency *= 5;
2016 }
2017
2018 for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2019 struct intel_plane_state *pstate =
2020 to_intel_plane_state(intel_plane->base.state);
2021
2022 switch (intel_plane->base.type) {
2023 case DRM_PLANE_TYPE_PRIMARY:
2024 result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2025 pri_latency,
2026 level);
2027 result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2028 result->pri_val);
2029 break;
2030 case DRM_PLANE_TYPE_OVERLAY:
2031 result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2032 spr_latency);
2033 break;
2034 case DRM_PLANE_TYPE_CURSOR:
2035 result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2036 cur_latency);
2037 break;
2038 }
2039 }
2040
2041 result->enable = true;
2042 }
2043
2044 static uint32_t
2045 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2046 {
2047 struct drm_i915_private *dev_priv = dev->dev_private;
2048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2049 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2050 u32 linetime, ips_linetime;
2051
2052 if (!intel_crtc->active)
2053 return 0;
2054
2055 /* The WM are computed with base on how long it takes to fill a single
2056 * row at the given clock rate, multiplied by 8.
2057 * */
2058 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2059 adjusted_mode->crtc_clock);
2060 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2061 dev_priv->cdclk_freq);
2062
2063 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2064 PIPE_WM_LINETIME_TIME(linetime);
2065 }
2066
2067 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2068 {
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070
2071 if (IS_GEN9(dev)) {
2072 uint32_t val;
2073 int ret, i;
2074 int level, max_level = ilk_wm_max_level(dev);
2075
2076 /* read the first set of memory latencies[0:3] */
2077 val = 0; /* data0 to be programmed to 0 for first set */
2078 mutex_lock(&dev_priv->rps.hw_lock);
2079 ret = sandybridge_pcode_read(dev_priv,
2080 GEN9_PCODE_READ_MEM_LATENCY,
2081 &val);
2082 mutex_unlock(&dev_priv->rps.hw_lock);
2083
2084 if (ret) {
2085 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2086 return;
2087 }
2088
2089 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2090 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2091 GEN9_MEM_LATENCY_LEVEL_MASK;
2092 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2093 GEN9_MEM_LATENCY_LEVEL_MASK;
2094 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2095 GEN9_MEM_LATENCY_LEVEL_MASK;
2096
2097 /* read the second set of memory latencies[4:7] */
2098 val = 1; /* data0 to be programmed to 1 for second set */
2099 mutex_lock(&dev_priv->rps.hw_lock);
2100 ret = sandybridge_pcode_read(dev_priv,
2101 GEN9_PCODE_READ_MEM_LATENCY,
2102 &val);
2103 mutex_unlock(&dev_priv->rps.hw_lock);
2104 if (ret) {
2105 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2106 return;
2107 }
2108
2109 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2110 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2111 GEN9_MEM_LATENCY_LEVEL_MASK;
2112 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2113 GEN9_MEM_LATENCY_LEVEL_MASK;
2114 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2115 GEN9_MEM_LATENCY_LEVEL_MASK;
2116
2117 /*
2118 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2119 * need to be disabled. We make sure to sanitize the values out
2120 * of the punit to satisfy this requirement.
2121 */
2122 for (level = 1; level <= max_level; level++) {
2123 if (wm[level] == 0) {
2124 for (i = level + 1; i <= max_level; i++)
2125 wm[i] = 0;
2126 break;
2127 }
2128 }
2129
2130 /*
2131 * WaWmMemoryReadLatency:skl
2132 *
2133 * punit doesn't take into account the read latency so we need
2134 * to add 2us to the various latency levels we retrieve from the
2135 * punit when level 0 response data us 0us.
2136 */
2137 if (wm[0] == 0) {
2138 wm[0] += 2;
2139 for (level = 1; level <= max_level; level++) {
2140 if (wm[level] == 0)
2141 break;
2142 wm[level] += 2;
2143 }
2144 }
2145
2146 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2147 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2148
2149 wm[0] = (sskpd >> 56) & 0xFF;
2150 if (wm[0] == 0)
2151 wm[0] = sskpd & 0xF;
2152 wm[1] = (sskpd >> 4) & 0xFF;
2153 wm[2] = (sskpd >> 12) & 0xFF;
2154 wm[3] = (sskpd >> 20) & 0x1FF;
2155 wm[4] = (sskpd >> 32) & 0x1FF;
2156 } else if (INTEL_INFO(dev)->gen >= 6) {
2157 uint32_t sskpd = I915_READ(MCH_SSKPD);
2158
2159 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2160 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2161 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2162 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2163 } else if (INTEL_INFO(dev)->gen >= 5) {
2164 uint32_t mltr = I915_READ(MLTR_ILK);
2165
2166 /* ILK primary LP0 latency is 700 ns */
2167 wm[0] = 7;
2168 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2169 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2170 }
2171 }
2172
2173 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2174 {
2175 /* ILK sprite LP0 latency is 1300 ns */
2176 if (INTEL_INFO(dev)->gen == 5)
2177 wm[0] = 13;
2178 }
2179
2180 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2181 {
2182 /* ILK cursor LP0 latency is 1300 ns */
2183 if (INTEL_INFO(dev)->gen == 5)
2184 wm[0] = 13;
2185
2186 /* WaDoubleCursorLP3Latency:ivb */
2187 if (IS_IVYBRIDGE(dev))
2188 wm[3] *= 2;
2189 }
2190
2191 int ilk_wm_max_level(const struct drm_device *dev)
2192 {
2193 /* how many WM levels are we expecting */
2194 if (INTEL_INFO(dev)->gen >= 9)
2195 return 7;
2196 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2197 return 4;
2198 else if (INTEL_INFO(dev)->gen >= 6)
2199 return 3;
2200 else
2201 return 2;
2202 }
2203
2204 static void intel_print_wm_latency(struct drm_device *dev,
2205 const char *name,
2206 const uint16_t wm[8])
2207 {
2208 int level, max_level = ilk_wm_max_level(dev);
2209
2210 for (level = 0; level <= max_level; level++) {
2211 unsigned int latency = wm[level];
2212
2213 if (latency == 0) {
2214 DRM_ERROR("%s WM%d latency not provided\n",
2215 name, level);
2216 continue;
2217 }
2218
2219 /*
2220 * - latencies are in us on gen9.
2221 * - before then, WM1+ latency values are in 0.5us units
2222 */
2223 if (IS_GEN9(dev))
2224 latency *= 10;
2225 else if (level > 0)
2226 latency *= 5;
2227
2228 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2229 name, level, wm[level],
2230 latency / 10, latency % 10);
2231 }
2232 }
2233
2234 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2235 uint16_t wm[5], uint16_t min)
2236 {
2237 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2238
2239 if (wm[0] >= min)
2240 return false;
2241
2242 wm[0] = max(wm[0], min);
2243 for (level = 1; level <= max_level; level++)
2244 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2245
2246 return true;
2247 }
2248
2249 static void snb_wm_latency_quirk(struct drm_device *dev)
2250 {
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 bool changed;
2253
2254 /*
2255 * The BIOS provided WM memory latency values are often
2256 * inadequate for high resolution displays. Adjust them.
2257 */
2258 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2259 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2260 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2261
2262 if (!changed)
2263 return;
2264
2265 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2266 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2267 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2268 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2269 }
2270
2271 static void ilk_setup_wm_latency(struct drm_device *dev)
2272 {
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2274
2275 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2276
2277 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2278 sizeof(dev_priv->wm.pri_latency));
2279 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2280 sizeof(dev_priv->wm.pri_latency));
2281
2282 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2283 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2284
2285 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2286 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2287 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2288
2289 if (IS_GEN6(dev))
2290 snb_wm_latency_quirk(dev);
2291 }
2292
2293 static void skl_setup_wm_latency(struct drm_device *dev)
2294 {
2295 struct drm_i915_private *dev_priv = dev->dev_private;
2296
2297 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2298 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2299 }
2300
2301 static void ilk_compute_wm_config(struct drm_device *dev,
2302 struct intel_wm_config *config)
2303 {
2304 struct intel_crtc *intel_crtc;
2305
2306 /* Compute the currently _active_ config */
2307 for_each_intel_crtc(dev, intel_crtc) {
2308 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2309
2310 if (!wm->pipe_enabled)
2311 continue;
2312
2313 config->sprites_enabled |= wm->sprites_enabled;
2314 config->sprites_scaled |= wm->sprites_scaled;
2315 config->num_pipes_active++;
2316 }
2317 }
2318
2319 /* Compute new watermarks for the pipe */
2320 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
2321 struct intel_pipe_wm *pipe_wm)
2322 {
2323 struct drm_crtc *crtc = cstate->base.crtc;
2324 struct drm_device *dev = crtc->dev;
2325 const struct drm_i915_private *dev_priv = dev->dev_private;
2326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 struct intel_plane *intel_plane;
2328 struct intel_plane_state *sprstate = NULL;
2329 int level, max_level = ilk_wm_max_level(dev);
2330 /* LP0 watermark maximums depend on this pipe alone */
2331 struct intel_wm_config config = {
2332 .num_pipes_active = 1,
2333 };
2334 struct ilk_wm_maximums max;
2335
2336 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2337 if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2338 sprstate = to_intel_plane_state(intel_plane->base.state);
2339 break;
2340 }
2341 }
2342
2343 config.sprites_enabled = sprstate->visible;
2344 config.sprites_scaled = sprstate->visible &&
2345 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2346 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2347
2348 pipe_wm->pipe_enabled = cstate->base.active;
2349 pipe_wm->sprites_enabled = sprstate->visible;
2350 pipe_wm->sprites_scaled = config.sprites_scaled;
2351
2352 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2353 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2354 max_level = 1;
2355
2356 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2357 if (config.sprites_scaled)
2358 max_level = 0;
2359
2360 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2361
2362 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2363 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2364
2365 /* LP0 watermarks always use 1/2 DDB partitioning */
2366 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2367
2368 /* At least LP0 must be valid */
2369 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2370 return false;
2371
2372 ilk_compute_wm_reg_maximums(dev, 1, &max);
2373
2374 for (level = 1; level <= max_level; level++) {
2375 struct intel_wm_level wm = {};
2376
2377 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2378
2379 /*
2380 * Disable any watermark level that exceeds the
2381 * register maximums since such watermarks are
2382 * always invalid.
2383 */
2384 if (!ilk_validate_wm_level(level, &max, &wm))
2385 break;
2386
2387 pipe_wm->wm[level] = wm;
2388 }
2389
2390 return true;
2391 }
2392
2393 /*
2394 * Merge the watermarks from all active pipes for a specific level.
2395 */
2396 static void ilk_merge_wm_level(struct drm_device *dev,
2397 int level,
2398 struct intel_wm_level *ret_wm)
2399 {
2400 const struct intel_crtc *intel_crtc;
2401
2402 ret_wm->enable = true;
2403
2404 for_each_intel_crtc(dev, intel_crtc) {
2405 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2406 const struct intel_wm_level *wm = &active->wm[level];
2407
2408 if (!active->pipe_enabled)
2409 continue;
2410
2411 /*
2412 * The watermark values may have been used in the past,
2413 * so we must maintain them in the registers for some
2414 * time even if the level is now disabled.
2415 */
2416 if (!wm->enable)
2417 ret_wm->enable = false;
2418
2419 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2420 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2421 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2422 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2423 }
2424 }
2425
2426 /*
2427 * Merge all low power watermarks for all active pipes.
2428 */
2429 static void ilk_wm_merge(struct drm_device *dev,
2430 const struct intel_wm_config *config,
2431 const struct ilk_wm_maximums *max,
2432 struct intel_pipe_wm *merged)
2433 {
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 int level, max_level = ilk_wm_max_level(dev);
2436 int last_enabled_level = max_level;
2437
2438 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2439 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2440 config->num_pipes_active > 1)
2441 return;
2442
2443 /* ILK: FBC WM must be disabled always */
2444 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2445
2446 /* merge each WM1+ level */
2447 for (level = 1; level <= max_level; level++) {
2448 struct intel_wm_level *wm = &merged->wm[level];
2449
2450 ilk_merge_wm_level(dev, level, wm);
2451
2452 if (level > last_enabled_level)
2453 wm->enable = false;
2454 else if (!ilk_validate_wm_level(level, max, wm))
2455 /* make sure all following levels get disabled */
2456 last_enabled_level = level - 1;
2457
2458 /*
2459 * The spec says it is preferred to disable
2460 * FBC WMs instead of disabling a WM level.
2461 */
2462 if (wm->fbc_val > max->fbc) {
2463 if (wm->enable)
2464 merged->fbc_wm_enabled = false;
2465 wm->fbc_val = 0;
2466 }
2467 }
2468
2469 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2470 /*
2471 * FIXME this is racy. FBC might get enabled later.
2472 * What we should check here is whether FBC can be
2473 * enabled sometime later.
2474 */
2475 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2476 intel_fbc_enabled(dev_priv)) {
2477 for (level = 2; level <= max_level; level++) {
2478 struct intel_wm_level *wm = &merged->wm[level];
2479
2480 wm->enable = false;
2481 }
2482 }
2483 }
2484
2485 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2486 {
2487 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2488 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2489 }
2490
2491 /* The value we need to program into the WM_LPx latency field */
2492 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2493 {
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495
2496 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2497 return 2 * level;
2498 else
2499 return dev_priv->wm.pri_latency[level];
2500 }
2501
2502 static void ilk_compute_wm_results(struct drm_device *dev,
2503 const struct intel_pipe_wm *merged,
2504 enum intel_ddb_partitioning partitioning,
2505 struct ilk_wm_values *results)
2506 {
2507 struct intel_crtc *intel_crtc;
2508 int level, wm_lp;
2509
2510 results->enable_fbc_wm = merged->fbc_wm_enabled;
2511 results->partitioning = partitioning;
2512
2513 /* LP1+ register values */
2514 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2515 const struct intel_wm_level *r;
2516
2517 level = ilk_wm_lp_to_level(wm_lp, merged);
2518
2519 r = &merged->wm[level];
2520
2521 /*
2522 * Maintain the watermark values even if the level is
2523 * disabled. Doing otherwise could cause underruns.
2524 */
2525 results->wm_lp[wm_lp - 1] =
2526 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2527 (r->pri_val << WM1_LP_SR_SHIFT) |
2528 r->cur_val;
2529
2530 if (r->enable)
2531 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2532
2533 if (INTEL_INFO(dev)->gen >= 8)
2534 results->wm_lp[wm_lp - 1] |=
2535 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2536 else
2537 results->wm_lp[wm_lp - 1] |=
2538 r->fbc_val << WM1_LP_FBC_SHIFT;
2539
2540 /*
2541 * Always set WM1S_LP_EN when spr_val != 0, even if the
2542 * level is disabled. Doing otherwise could cause underruns.
2543 */
2544 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2545 WARN_ON(wm_lp != 1);
2546 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2547 } else
2548 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2549 }
2550
2551 /* LP0 register values */
2552 for_each_intel_crtc(dev, intel_crtc) {
2553 enum pipe pipe = intel_crtc->pipe;
2554 const struct intel_wm_level *r =
2555 &intel_crtc->wm.active.wm[0];
2556
2557 if (WARN_ON(!r->enable))
2558 continue;
2559
2560 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2561
2562 results->wm_pipe[pipe] =
2563 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2564 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2565 r->cur_val;
2566 }
2567 }
2568
2569 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2570 * case both are at the same level. Prefer r1 in case they're the same. */
2571 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2572 struct intel_pipe_wm *r1,
2573 struct intel_pipe_wm *r2)
2574 {
2575 int level, max_level = ilk_wm_max_level(dev);
2576 int level1 = 0, level2 = 0;
2577
2578 for (level = 1; level <= max_level; level++) {
2579 if (r1->wm[level].enable)
2580 level1 = level;
2581 if (r2->wm[level].enable)
2582 level2 = level;
2583 }
2584
2585 if (level1 == level2) {
2586 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2587 return r2;
2588 else
2589 return r1;
2590 } else if (level1 > level2) {
2591 return r1;
2592 } else {
2593 return r2;
2594 }
2595 }
2596
2597 /* dirty bits used to track which watermarks need changes */
2598 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2599 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2600 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2601 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2602 #define WM_DIRTY_FBC (1 << 24)
2603 #define WM_DIRTY_DDB (1 << 25)
2604
2605 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2606 const struct ilk_wm_values *old,
2607 const struct ilk_wm_values *new)
2608 {
2609 unsigned int dirty = 0;
2610 enum pipe pipe;
2611 int wm_lp;
2612
2613 for_each_pipe(dev_priv, pipe) {
2614 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2615 dirty |= WM_DIRTY_LINETIME(pipe);
2616 /* Must disable LP1+ watermarks too */
2617 dirty |= WM_DIRTY_LP_ALL;
2618 }
2619
2620 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2621 dirty |= WM_DIRTY_PIPE(pipe);
2622 /* Must disable LP1+ watermarks too */
2623 dirty |= WM_DIRTY_LP_ALL;
2624 }
2625 }
2626
2627 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2628 dirty |= WM_DIRTY_FBC;
2629 /* Must disable LP1+ watermarks too */
2630 dirty |= WM_DIRTY_LP_ALL;
2631 }
2632
2633 if (old->partitioning != new->partitioning) {
2634 dirty |= WM_DIRTY_DDB;
2635 /* Must disable LP1+ watermarks too */
2636 dirty |= WM_DIRTY_LP_ALL;
2637 }
2638
2639 /* LP1+ watermarks already deemed dirty, no need to continue */
2640 if (dirty & WM_DIRTY_LP_ALL)
2641 return dirty;
2642
2643 /* Find the lowest numbered LP1+ watermark in need of an update... */
2644 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2645 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2646 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2647 break;
2648 }
2649
2650 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2651 for (; wm_lp <= 3; wm_lp++)
2652 dirty |= WM_DIRTY_LP(wm_lp);
2653
2654 return dirty;
2655 }
2656
2657 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2658 unsigned int dirty)
2659 {
2660 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2661 bool changed = false;
2662
2663 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2664 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2665 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2666 changed = true;
2667 }
2668 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2669 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2670 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2671 changed = true;
2672 }
2673 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2674 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2675 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2676 changed = true;
2677 }
2678
2679 /*
2680 * Don't touch WM1S_LP_EN here.
2681 * Doing so could cause underruns.
2682 */
2683
2684 return changed;
2685 }
2686
2687 /*
2688 * The spec says we shouldn't write when we don't need, because every write
2689 * causes WMs to be re-evaluated, expending some power.
2690 */
2691 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2692 struct ilk_wm_values *results)
2693 {
2694 struct drm_device *dev = dev_priv->dev;
2695 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2696 unsigned int dirty;
2697 uint32_t val;
2698
2699 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2700 if (!dirty)
2701 return;
2702
2703 _ilk_disable_lp_wm(dev_priv, dirty);
2704
2705 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2706 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2707 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2708 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2709 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2710 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2711
2712 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2713 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2714 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2715 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2716 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2717 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2718
2719 if (dirty & WM_DIRTY_DDB) {
2720 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2721 val = I915_READ(WM_MISC);
2722 if (results->partitioning == INTEL_DDB_PART_1_2)
2723 val &= ~WM_MISC_DATA_PARTITION_5_6;
2724 else
2725 val |= WM_MISC_DATA_PARTITION_5_6;
2726 I915_WRITE(WM_MISC, val);
2727 } else {
2728 val = I915_READ(DISP_ARB_CTL2);
2729 if (results->partitioning == INTEL_DDB_PART_1_2)
2730 val &= ~DISP_DATA_PARTITION_5_6;
2731 else
2732 val |= DISP_DATA_PARTITION_5_6;
2733 I915_WRITE(DISP_ARB_CTL2, val);
2734 }
2735 }
2736
2737 if (dirty & WM_DIRTY_FBC) {
2738 val = I915_READ(DISP_ARB_CTL);
2739 if (results->enable_fbc_wm)
2740 val &= ~DISP_FBC_WM_DIS;
2741 else
2742 val |= DISP_FBC_WM_DIS;
2743 I915_WRITE(DISP_ARB_CTL, val);
2744 }
2745
2746 if (dirty & WM_DIRTY_LP(1) &&
2747 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2748 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2749
2750 if (INTEL_INFO(dev)->gen >= 7) {
2751 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2752 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2753 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2754 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2755 }
2756
2757 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2758 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2759 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2760 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2761 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2762 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2763
2764 dev_priv->wm.hw = *results;
2765 }
2766
2767 static bool ilk_disable_lp_wm(struct drm_device *dev)
2768 {
2769 struct drm_i915_private *dev_priv = dev->dev_private;
2770
2771 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2772 }
2773
2774 /*
2775 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2776 * different active planes.
2777 */
2778
2779 #define SKL_DDB_SIZE 896 /* in blocks */
2780 #define BXT_DDB_SIZE 512
2781
2782 static void
2783 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2784 struct drm_crtc *for_crtc,
2785 const struct intel_wm_config *config,
2786 const struct skl_pipe_wm_parameters *params,
2787 struct skl_ddb_entry *alloc /* out */)
2788 {
2789 struct drm_crtc *crtc;
2790 unsigned int pipe_size, ddb_size;
2791 int nth_active_pipe;
2792
2793 if (!params->active) {
2794 alloc->start = 0;
2795 alloc->end = 0;
2796 return;
2797 }
2798
2799 if (IS_BROXTON(dev))
2800 ddb_size = BXT_DDB_SIZE;
2801 else
2802 ddb_size = SKL_DDB_SIZE;
2803
2804 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2805
2806 nth_active_pipe = 0;
2807 for_each_crtc(dev, crtc) {
2808 if (!to_intel_crtc(crtc)->active)
2809 continue;
2810
2811 if (crtc == for_crtc)
2812 break;
2813
2814 nth_active_pipe++;
2815 }
2816
2817 pipe_size = ddb_size / config->num_pipes_active;
2818 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2819 alloc->end = alloc->start + pipe_size;
2820 }
2821
2822 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2823 {
2824 if (config->num_pipes_active == 1)
2825 return 32;
2826
2827 return 8;
2828 }
2829
2830 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2831 {
2832 entry->start = reg & 0x3ff;
2833 entry->end = (reg >> 16) & 0x3ff;
2834 if (entry->end)
2835 entry->end += 1;
2836 }
2837
2838 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2839 struct skl_ddb_allocation *ddb /* out */)
2840 {
2841 enum pipe pipe;
2842 int plane;
2843 u32 val;
2844
2845 memset(ddb, 0, sizeof(*ddb));
2846
2847 for_each_pipe(dev_priv, pipe) {
2848 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2849 continue;
2850
2851 for_each_plane(dev_priv, pipe, plane) {
2852 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2853 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2854 val);
2855 }
2856
2857 val = I915_READ(CUR_BUF_CFG(pipe));
2858 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2859 val);
2860 }
2861 }
2862
2863 static unsigned int
2864 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2865 {
2866
2867 /* for planar format */
2868 if (p->y_bytes_per_pixel) {
2869 if (y) /* y-plane data rate */
2870 return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2871 else /* uv-plane data rate */
2872 return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2873 }
2874
2875 /* for packed formats */
2876 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2877 }
2878
2879 /*
2880 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2881 * a 8192x4096@32bpp framebuffer:
2882 * 3 * 4096 * 8192 * 4 < 2^32
2883 */
2884 static unsigned int
2885 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2886 const struct skl_pipe_wm_parameters *params)
2887 {
2888 unsigned int total_data_rate = 0;
2889 int plane;
2890
2891 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2892 const struct intel_plane_wm_parameters *p;
2893
2894 p = ¶ms->plane[plane];
2895 if (!p->enabled)
2896 continue;
2897
2898 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2899 if (p->y_bytes_per_pixel) {
2900 total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2901 }
2902 }
2903
2904 return total_data_rate;
2905 }
2906
2907 static void
2908 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2909 const struct intel_wm_config *config,
2910 const struct skl_pipe_wm_parameters *params,
2911 struct skl_ddb_allocation *ddb /* out */)
2912 {
2913 struct drm_device *dev = crtc->dev;
2914 struct drm_i915_private *dev_priv = dev->dev_private;
2915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2916 enum pipe pipe = intel_crtc->pipe;
2917 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2918 uint16_t alloc_size, start, cursor_blocks;
2919 uint16_t minimum[I915_MAX_PLANES];
2920 uint16_t y_minimum[I915_MAX_PLANES];
2921 unsigned int total_data_rate;
2922 int plane;
2923
2924 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2925 alloc_size = skl_ddb_entry_size(alloc);
2926 if (alloc_size == 0) {
2927 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2928 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2929 sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2930 return;
2931 }
2932
2933 cursor_blocks = skl_cursor_allocation(config);
2934 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2935 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2936
2937 alloc_size -= cursor_blocks;
2938 alloc->end -= cursor_blocks;
2939
2940 /* 1. Allocate the mininum required blocks for each active plane */
2941 for_each_plane(dev_priv, pipe, plane) {
2942 const struct intel_plane_wm_parameters *p;
2943
2944 p = ¶ms->plane[plane];
2945 if (!p->enabled)
2946 continue;
2947
2948 minimum[plane] = 8;
2949 alloc_size -= minimum[plane];
2950 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2951 alloc_size -= y_minimum[plane];
2952 }
2953
2954 /*
2955 * 2. Distribute the remaining space in proportion to the amount of
2956 * data each plane needs to fetch from memory.
2957 *
2958 * FIXME: we may not allocate every single block here.
2959 */
2960 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2961
2962 start = alloc->start;
2963 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2964 const struct intel_plane_wm_parameters *p;
2965 unsigned int data_rate, y_data_rate;
2966 uint16_t plane_blocks, y_plane_blocks = 0;
2967
2968 p = ¶ms->plane[plane];
2969 if (!p->enabled)
2970 continue;
2971
2972 data_rate = skl_plane_relative_data_rate(p, 0);
2973
2974 /*
2975 * allocation for (packed formats) or (uv-plane part of planar format):
2976 * promote the expression to 64 bits to avoid overflowing, the
2977 * result is < available as data_rate / total_data_rate < 1
2978 */
2979 plane_blocks = minimum[plane];
2980 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2981 total_data_rate);
2982
2983 ddb->plane[pipe][plane].start = start;
2984 ddb->plane[pipe][plane].end = start + plane_blocks;
2985
2986 start += plane_blocks;
2987
2988 /*
2989 * allocation for y_plane part of planar format:
2990 */
2991 if (p->y_bytes_per_pixel) {
2992 y_data_rate = skl_plane_relative_data_rate(p, 1);
2993 y_plane_blocks = y_minimum[plane];
2994 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2995 total_data_rate);
2996
2997 ddb->y_plane[pipe][plane].start = start;
2998 ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2999
3000 start += y_plane_blocks;
3001 }
3002
3003 }
3004
3005 }
3006
3007 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3008 {
3009 /* TODO: Take into account the scalers once we support them */
3010 return config->base.adjusted_mode.crtc_clock;
3011 }
3012
3013 /*
3014 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3015 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3016 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3017 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3018 */
3019 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3020 uint32_t latency)
3021 {
3022 uint32_t wm_intermediate_val, ret;
3023
3024 if (latency == 0)
3025 return UINT_MAX;
3026
3027 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3028 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3029
3030 return ret;
3031 }
3032
3033 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3034 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3035 uint64_t tiling, uint32_t latency)
3036 {
3037 uint32_t ret;
3038 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3039 uint32_t wm_intermediate_val;
3040
3041 if (latency == 0)
3042 return UINT_MAX;
3043
3044 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3045
3046 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3047 tiling == I915_FORMAT_MOD_Yf_TILED) {
3048 plane_bytes_per_line *= 4;
3049 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3050 plane_blocks_per_line /= 4;
3051 } else {
3052 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3053 }
3054
3055 wm_intermediate_val = latency * pixel_rate;
3056 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3057 plane_blocks_per_line;
3058
3059 return ret;
3060 }
3061
3062 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3063 const struct intel_crtc *intel_crtc)
3064 {
3065 struct drm_device *dev = intel_crtc->base.dev;
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3068 enum pipe pipe = intel_crtc->pipe;
3069
3070 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3071 sizeof(new_ddb->plane[pipe])))
3072 return true;
3073
3074 if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3075 sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3076 return true;
3077
3078 return false;
3079 }
3080
3081 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3082 struct intel_wm_config *config)
3083 {
3084 struct drm_crtc *crtc;
3085 struct drm_plane *plane;
3086
3087 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3088 config->num_pipes_active += to_intel_crtc(crtc)->active;
3089
3090 /* FIXME: I don't think we need those two global parameters on SKL */
3091 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3092 struct intel_plane *intel_plane = to_intel_plane(plane);
3093
3094 config->sprites_enabled |= intel_plane->wm.enabled;
3095 config->sprites_scaled |= intel_plane->wm.scaled;
3096 }
3097 }
3098
3099 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3100 struct skl_pipe_wm_parameters *p)
3101 {
3102 struct drm_device *dev = crtc->dev;
3103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3104 enum pipe pipe = intel_crtc->pipe;
3105 struct drm_plane *plane;
3106 struct drm_framebuffer *fb;
3107 int i = 1; /* Index for sprite planes start */
3108
3109 p->active = intel_crtc->active;
3110 if (p->active) {
3111 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3112 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3113
3114 fb = crtc->primary->state->fb;
3115 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3116 if (fb) {
3117 p->plane[0].enabled = true;
3118 p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3119 drm_format_plane_cpp(fb->pixel_format, 1) :
3120 drm_format_plane_cpp(fb->pixel_format, 0);
3121 p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3122 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3123 p->plane[0].tiling = fb->modifier[0];
3124 } else {
3125 p->plane[0].enabled = false;
3126 p->plane[0].bytes_per_pixel = 0;
3127 p->plane[0].y_bytes_per_pixel = 0;
3128 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3129 }
3130 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3131 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3132 p->plane[0].rotation = crtc->primary->state->rotation;
3133
3134 fb = crtc->cursor->state->fb;
3135 p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3136 if (fb) {
3137 p->plane[PLANE_CURSOR].enabled = true;
3138 p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3139 p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3140 p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3141 } else {
3142 p->plane[PLANE_CURSOR].enabled = false;
3143 p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3144 p->plane[PLANE_CURSOR].horiz_pixels = 64;
3145 p->plane[PLANE_CURSOR].vert_pixels = 64;
3146 }
3147 }
3148
3149 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3150 struct intel_plane *intel_plane = to_intel_plane(plane);
3151
3152 if (intel_plane->pipe == pipe &&
3153 plane->type == DRM_PLANE_TYPE_OVERLAY)
3154 p->plane[i++] = intel_plane->wm;
3155 }
3156 }
3157
3158 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3159 struct skl_pipe_wm_parameters *p,
3160 struct intel_plane_wm_parameters *p_params,
3161 uint16_t ddb_allocation,
3162 int level,
3163 uint16_t *out_blocks, /* out */
3164 uint8_t *out_lines /* out */)
3165 {
3166 uint32_t latency = dev_priv->wm.skl_latency[level];
3167 uint32_t method1, method2;
3168 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3169 uint32_t res_blocks, res_lines;
3170 uint32_t selected_result;
3171 uint8_t bytes_per_pixel;
3172
3173 if (latency == 0 || !p->active || !p_params->enabled)
3174 return false;
3175
3176 bytes_per_pixel = p_params->y_bytes_per_pixel ?
3177 p_params->y_bytes_per_pixel :
3178 p_params->bytes_per_pixel;
3179 method1 = skl_wm_method1(p->pixel_rate,
3180 bytes_per_pixel,
3181 latency);
3182 method2 = skl_wm_method2(p->pixel_rate,
3183 p->pipe_htotal,
3184 p_params->horiz_pixels,
3185 bytes_per_pixel,
3186 p_params->tiling,
3187 latency);
3188
3189 plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3190 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3191
3192 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3193 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3194 uint32_t min_scanlines = 4;
3195 uint32_t y_tile_minimum;
3196 if (intel_rotation_90_or_270(p_params->rotation)) {
3197 switch (p_params->bytes_per_pixel) {
3198 case 1:
3199 min_scanlines = 16;
3200 break;
3201 case 2:
3202 min_scanlines = 8;
3203 break;
3204 case 8:
3205 WARN(1, "Unsupported pixel depth for rotation");
3206 }
3207 }
3208 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3209 selected_result = max(method2, y_tile_minimum);
3210 } else {
3211 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3212 selected_result = min(method1, method2);
3213 else
3214 selected_result = method1;
3215 }
3216
3217 res_blocks = selected_result + 1;
3218 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3219
3220 if (level >= 1 && level <= 7) {
3221 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3222 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3223 res_lines += 4;
3224 else
3225 res_blocks++;
3226 }
3227
3228 if (res_blocks >= ddb_allocation || res_lines > 31)
3229 return false;
3230
3231 *out_blocks = res_blocks;
3232 *out_lines = res_lines;
3233
3234 return true;
3235 }
3236
3237 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3238 struct skl_ddb_allocation *ddb,
3239 struct skl_pipe_wm_parameters *p,
3240 enum pipe pipe,
3241 int level,
3242 int num_planes,
3243 struct skl_wm_level *result)
3244 {
3245 uint16_t ddb_blocks;
3246 int i;
3247
3248 for (i = 0; i < num_planes; i++) {
3249 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3250
3251 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3252 p, &p->plane[i],
3253 ddb_blocks,
3254 level,
3255 &result->plane_res_b[i],
3256 &result->plane_res_l[i]);
3257 }
3258
3259 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3260 result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3261 &p->plane[PLANE_CURSOR],
3262 ddb_blocks, level,
3263 &result->plane_res_b[PLANE_CURSOR],
3264 &result->plane_res_l[PLANE_CURSOR]);
3265 }
3266
3267 static uint32_t
3268 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3269 {
3270 if (!to_intel_crtc(crtc)->active)
3271 return 0;
3272
3273 if (WARN_ON(p->pixel_rate == 0))
3274 return 0;
3275
3276 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3277 }
3278
3279 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3280 struct skl_pipe_wm_parameters *params,
3281 struct skl_wm_level *trans_wm /* out */)
3282 {
3283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 int i;
3285
3286 if (!params->active)
3287 return;
3288
3289 /* Until we know more, just disable transition WMs */
3290 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3291 trans_wm->plane_en[i] = false;
3292 trans_wm->plane_en[PLANE_CURSOR] = false;
3293 }
3294
3295 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3296 struct skl_ddb_allocation *ddb,
3297 struct skl_pipe_wm_parameters *params,
3298 struct skl_pipe_wm *pipe_wm)
3299 {
3300 struct drm_device *dev = crtc->dev;
3301 const struct drm_i915_private *dev_priv = dev->dev_private;
3302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3303 int level, max_level = ilk_wm_max_level(dev);
3304
3305 for (level = 0; level <= max_level; level++) {
3306 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3307 level, intel_num_planes(intel_crtc),
3308 &pipe_wm->wm[level]);
3309 }
3310 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3311
3312 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3313 }
3314
3315 static void skl_compute_wm_results(struct drm_device *dev,
3316 struct skl_pipe_wm_parameters *p,
3317 struct skl_pipe_wm *p_wm,
3318 struct skl_wm_values *r,
3319 struct intel_crtc *intel_crtc)
3320 {
3321 int level, max_level = ilk_wm_max_level(dev);
3322 enum pipe pipe = intel_crtc->pipe;
3323 uint32_t temp;
3324 int i;
3325
3326 for (level = 0; level <= max_level; level++) {
3327 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3328 temp = 0;
3329
3330 temp |= p_wm->wm[level].plane_res_l[i] <<
3331 PLANE_WM_LINES_SHIFT;
3332 temp |= p_wm->wm[level].plane_res_b[i];
3333 if (p_wm->wm[level].plane_en[i])
3334 temp |= PLANE_WM_EN;
3335
3336 r->plane[pipe][i][level] = temp;
3337 }
3338
3339 temp = 0;
3340
3341 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3342 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3343
3344 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3345 temp |= PLANE_WM_EN;
3346
3347 r->plane[pipe][PLANE_CURSOR][level] = temp;
3348
3349 }
3350
3351 /* transition WMs */
3352 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3353 temp = 0;
3354 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3355 temp |= p_wm->trans_wm.plane_res_b[i];
3356 if (p_wm->trans_wm.plane_en[i])
3357 temp |= PLANE_WM_EN;
3358
3359 r->plane_trans[pipe][i] = temp;
3360 }
3361
3362 temp = 0;
3363 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3364 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3365 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3366 temp |= PLANE_WM_EN;
3367
3368 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3369
3370 r->wm_linetime[pipe] = p_wm->linetime;
3371 }
3372
3373 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3374 const struct skl_ddb_entry *entry)
3375 {
3376 if (entry->end)
3377 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3378 else
3379 I915_WRITE(reg, 0);
3380 }
3381
3382 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3383 const struct skl_wm_values *new)
3384 {
3385 struct drm_device *dev = dev_priv->dev;
3386 struct intel_crtc *crtc;
3387
3388 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3389 int i, level, max_level = ilk_wm_max_level(dev);
3390 enum pipe pipe = crtc->pipe;
3391
3392 if (!new->dirty[pipe])
3393 continue;
3394
3395 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3396
3397 for (level = 0; level <= max_level; level++) {
3398 for (i = 0; i < intel_num_planes(crtc); i++)
3399 I915_WRITE(PLANE_WM(pipe, i, level),
3400 new->plane[pipe][i][level]);
3401 I915_WRITE(CUR_WM(pipe, level),
3402 new->plane[pipe][PLANE_CURSOR][level]);
3403 }
3404 for (i = 0; i < intel_num_planes(crtc); i++)
3405 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3406 new->plane_trans[pipe][i]);
3407 I915_WRITE(CUR_WM_TRANS(pipe),
3408 new->plane_trans[pipe][PLANE_CURSOR]);
3409
3410 for (i = 0; i < intel_num_planes(crtc); i++) {
3411 skl_ddb_entry_write(dev_priv,
3412 PLANE_BUF_CFG(pipe, i),
3413 &new->ddb.plane[pipe][i]);
3414 skl_ddb_entry_write(dev_priv,
3415 PLANE_NV12_BUF_CFG(pipe, i),
3416 &new->ddb.y_plane[pipe][i]);
3417 }
3418
3419 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3420 &new->ddb.plane[pipe][PLANE_CURSOR]);
3421 }
3422 }
3423
3424 /*
3425 * When setting up a new DDB allocation arrangement, we need to correctly
3426 * sequence the times at which the new allocations for the pipes are taken into
3427 * account or we'll have pipes fetching from space previously allocated to
3428 * another pipe.
3429 *
3430 * Roughly the sequence looks like:
3431 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3432 * overlapping with a previous light-up pipe (another way to put it is:
3433 * pipes with their new allocation strickly included into their old ones).
3434 * 2. re-allocate the other pipes that get their allocation reduced
3435 * 3. allocate the pipes having their allocation increased
3436 *
3437 * Steps 1. and 2. are here to take care of the following case:
3438 * - Initially DDB looks like this:
3439 * | B | C |
3440 * - enable pipe A.
3441 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3442 * allocation
3443 * | A | B | C |
3444 *
3445 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3446 */
3447
3448 static void
3449 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3450 {
3451 int plane;
3452
3453 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3454
3455 for_each_plane(dev_priv, pipe, plane) {
3456 I915_WRITE(PLANE_SURF(pipe, plane),
3457 I915_READ(PLANE_SURF(pipe, plane)));
3458 }
3459 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3460 }
3461
3462 static bool
3463 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3464 const struct skl_ddb_allocation *new,
3465 enum pipe pipe)
3466 {
3467 uint16_t old_size, new_size;
3468
3469 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3470 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3471
3472 return old_size != new_size &&
3473 new->pipe[pipe].start >= old->pipe[pipe].start &&
3474 new->pipe[pipe].end <= old->pipe[pipe].end;
3475 }
3476
3477 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3478 struct skl_wm_values *new_values)
3479 {
3480 struct drm_device *dev = dev_priv->dev;
3481 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3482 bool reallocated[I915_MAX_PIPES] = {};
3483 struct intel_crtc *crtc;
3484 enum pipe pipe;
3485
3486 new_ddb = &new_values->ddb;
3487 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3488
3489 /*
3490 * First pass: flush the pipes with the new allocation contained into
3491 * the old space.
3492 *
3493 * We'll wait for the vblank on those pipes to ensure we can safely
3494 * re-allocate the freed space without this pipe fetching from it.
3495 */
3496 for_each_intel_crtc(dev, crtc) {
3497 if (!crtc->active)
3498 continue;
3499
3500 pipe = crtc->pipe;
3501
3502 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3503 continue;
3504
3505 skl_wm_flush_pipe(dev_priv, pipe, 1);
3506 intel_wait_for_vblank(dev, pipe);
3507
3508 reallocated[pipe] = true;
3509 }
3510
3511
3512 /*
3513 * Second pass: flush the pipes that are having their allocation
3514 * reduced, but overlapping with a previous allocation.
3515 *
3516 * Here as well we need to wait for the vblank to make sure the freed
3517 * space is not used anymore.
3518 */
3519 for_each_intel_crtc(dev, crtc) {
3520 if (!crtc->active)
3521 continue;
3522
3523 pipe = crtc->pipe;
3524
3525 if (reallocated[pipe])
3526 continue;
3527
3528 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3529 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3530 skl_wm_flush_pipe(dev_priv, pipe, 2);
3531 intel_wait_for_vblank(dev, pipe);
3532 reallocated[pipe] = true;
3533 }
3534 }
3535
3536 /*
3537 * Third pass: flush the pipes that got more space allocated.
3538 *
3539 * We don't need to actively wait for the update here, next vblank
3540 * will just get more DDB space with the correct WM values.
3541 */
3542 for_each_intel_crtc(dev, crtc) {
3543 if (!crtc->active)
3544 continue;
3545
3546 pipe = crtc->pipe;
3547
3548 /*
3549 * At this point, only the pipes more space than before are
3550 * left to re-allocate.
3551 */
3552 if (reallocated[pipe])
3553 continue;
3554
3555 skl_wm_flush_pipe(dev_priv, pipe, 3);
3556 }
3557 }
3558
3559 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3560 struct skl_pipe_wm_parameters *params,
3561 struct intel_wm_config *config,
3562 struct skl_ddb_allocation *ddb, /* out */
3563 struct skl_pipe_wm *pipe_wm /* out */)
3564 {
3565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3566
3567 skl_compute_wm_pipe_parameters(crtc, params);
3568 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3569 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3570
3571 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3572 return false;
3573
3574 intel_crtc->wm.skl_active = *pipe_wm;
3575
3576 return true;
3577 }
3578
3579 static void skl_update_other_pipe_wm(struct drm_device *dev,
3580 struct drm_crtc *crtc,
3581 struct intel_wm_config *config,
3582 struct skl_wm_values *r)
3583 {
3584 struct intel_crtc *intel_crtc;
3585 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3586
3587 /*
3588 * If the WM update hasn't changed the allocation for this_crtc (the
3589 * crtc we are currently computing the new WM values for), other
3590 * enabled crtcs will keep the same allocation and we don't need to
3591 * recompute anything for them.
3592 */
3593 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3594 return;
3595
3596 /*
3597 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3598 * other active pipes need new DDB allocation and WM values.
3599 */
3600 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3601 base.head) {
3602 struct skl_pipe_wm_parameters params = {};
3603 struct skl_pipe_wm pipe_wm = {};
3604 bool wm_changed;
3605
3606 if (this_crtc->pipe == intel_crtc->pipe)
3607 continue;
3608
3609 if (!intel_crtc->active)
3610 continue;
3611
3612 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3613 ¶ms, config,
3614 &r->ddb, &pipe_wm);
3615
3616 /*
3617 * If we end up re-computing the other pipe WM values, it's
3618 * because it was really needed, so we expect the WM values to
3619 * be different.
3620 */
3621 WARN_ON(!wm_changed);
3622
3623 skl_compute_wm_results(dev, ¶ms, &pipe_wm, r, intel_crtc);
3624 r->dirty[intel_crtc->pipe] = true;
3625 }
3626 }
3627
3628 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3629 {
3630 watermarks->wm_linetime[pipe] = 0;
3631 memset(watermarks->plane[pipe], 0,
3632 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3633 memset(watermarks->plane_trans[pipe],
3634 0, sizeof(uint32_t) * I915_MAX_PLANES);
3635 watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3636
3637 /* Clear ddb entries for pipe */
3638 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3639 memset(&watermarks->ddb.plane[pipe], 0,
3640 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3641 memset(&watermarks->ddb.y_plane[pipe], 0,
3642 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3643 memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3644 sizeof(struct skl_ddb_entry));
3645
3646 }
3647
3648 static void skl_update_wm(struct drm_crtc *crtc)
3649 {
3650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3651 struct drm_device *dev = crtc->dev;
3652 struct drm_i915_private *dev_priv = dev->dev_private;
3653 struct skl_pipe_wm_parameters params = {};
3654 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3655 struct skl_pipe_wm pipe_wm = {};
3656 struct intel_wm_config config = {};
3657
3658
3659 /* Clear all dirty flags */
3660 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3661
3662 skl_clear_wm(results, intel_crtc->pipe);
3663
3664 skl_compute_wm_global_parameters(dev, &config);
3665
3666 if (!skl_update_pipe_wm(crtc, ¶ms, &config,
3667 &results->ddb, &pipe_wm))
3668 return;
3669
3670 skl_compute_wm_results(dev, ¶ms, &pipe_wm, results, intel_crtc);
3671 results->dirty[intel_crtc->pipe] = true;
3672
3673 skl_update_other_pipe_wm(dev, crtc, &config, results);
3674 skl_write_wm_values(dev_priv, results);
3675 skl_flush_wm_values(dev_priv, results);
3676
3677 /* store the new configuration */
3678 dev_priv->wm.skl_hw = *results;
3679 }
3680
3681 static void
3682 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3683 uint32_t sprite_width, uint32_t sprite_height,
3684 int pixel_size, bool enabled, bool scaled)
3685 {
3686 struct intel_plane *intel_plane = to_intel_plane(plane);
3687 struct drm_framebuffer *fb = plane->state->fb;
3688
3689 intel_plane->wm.enabled = enabled;
3690 intel_plane->wm.scaled = scaled;
3691 intel_plane->wm.horiz_pixels = sprite_width;
3692 intel_plane->wm.vert_pixels = sprite_height;
3693 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3694
3695 /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3696 intel_plane->wm.bytes_per_pixel =
3697 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3698 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3699 intel_plane->wm.y_bytes_per_pixel =
3700 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3701 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3702
3703 /*
3704 * Framebuffer can be NULL on plane disable, but it does not
3705 * matter for watermarks if we assume no tiling in that case.
3706 */
3707 if (fb)
3708 intel_plane->wm.tiling = fb->modifier[0];
3709 intel_plane->wm.rotation = plane->state->rotation;
3710
3711 skl_update_wm(crtc);
3712 }
3713
3714 static void ilk_update_wm(struct drm_crtc *crtc)
3715 {
3716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3717 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3718 struct drm_device *dev = crtc->dev;
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720 struct ilk_wm_maximums max;
3721 struct ilk_wm_values results = {};
3722 enum intel_ddb_partitioning partitioning;
3723 struct intel_pipe_wm pipe_wm = {};
3724 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3725 struct intel_wm_config config = {};
3726
3727 WARN_ON(cstate->base.active != intel_crtc->active);
3728
3729 intel_compute_pipe_wm(cstate, &pipe_wm);
3730
3731 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3732 return;
3733
3734 intel_crtc->wm.active = pipe_wm;
3735
3736 ilk_compute_wm_config(dev, &config);
3737
3738 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3739 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3740
3741 /* 5/6 split only in single pipe config on IVB+ */
3742 if (INTEL_INFO(dev)->gen >= 7 &&
3743 config.num_pipes_active == 1 && config.sprites_enabled) {
3744 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3745 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3746
3747 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3748 } else {
3749 best_lp_wm = &lp_wm_1_2;
3750 }
3751
3752 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3753 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3754
3755 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3756
3757 ilk_write_wm_values(dev_priv, &results);
3758 }
3759
3760 static void
3761 ilk_update_sprite_wm(struct drm_plane *plane,
3762 struct drm_crtc *crtc,
3763 uint32_t sprite_width, uint32_t sprite_height,
3764 int pixel_size, bool enabled, bool scaled)
3765 {
3766 struct drm_device *dev = plane->dev;
3767 struct intel_plane *intel_plane = to_intel_plane(plane);
3768
3769 /*
3770 * IVB workaround: must disable low power watermarks for at least
3771 * one frame before enabling scaling. LP watermarks can be re-enabled
3772 * when scaling is disabled.
3773 *
3774 * WaCxSRDisabledForSpriteScaling:ivb
3775 */
3776 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3777 intel_wait_for_vblank(dev, intel_plane->pipe);
3778
3779 ilk_update_wm(crtc);
3780 }
3781
3782 static void skl_pipe_wm_active_state(uint32_t val,
3783 struct skl_pipe_wm *active,
3784 bool is_transwm,
3785 bool is_cursor,
3786 int i,
3787 int level)
3788 {
3789 bool is_enabled = (val & PLANE_WM_EN) != 0;
3790
3791 if (!is_transwm) {
3792 if (!is_cursor) {
3793 active->wm[level].plane_en[i] = is_enabled;
3794 active->wm[level].plane_res_b[i] =
3795 val & PLANE_WM_BLOCKS_MASK;
3796 active->wm[level].plane_res_l[i] =
3797 (val >> PLANE_WM_LINES_SHIFT) &
3798 PLANE_WM_LINES_MASK;
3799 } else {
3800 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3801 active->wm[level].plane_res_b[PLANE_CURSOR] =
3802 val & PLANE_WM_BLOCKS_MASK;
3803 active->wm[level].plane_res_l[PLANE_CURSOR] =
3804 (val >> PLANE_WM_LINES_SHIFT) &
3805 PLANE_WM_LINES_MASK;
3806 }
3807 } else {
3808 if (!is_cursor) {
3809 active->trans_wm.plane_en[i] = is_enabled;
3810 active->trans_wm.plane_res_b[i] =
3811 val & PLANE_WM_BLOCKS_MASK;
3812 active->trans_wm.plane_res_l[i] =
3813 (val >> PLANE_WM_LINES_SHIFT) &
3814 PLANE_WM_LINES_MASK;
3815 } else {
3816 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3817 active->trans_wm.plane_res_b[PLANE_CURSOR] =
3818 val & PLANE_WM_BLOCKS_MASK;
3819 active->trans_wm.plane_res_l[PLANE_CURSOR] =
3820 (val >> PLANE_WM_LINES_SHIFT) &
3821 PLANE_WM_LINES_MASK;
3822 }
3823 }
3824 }
3825
3826 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3827 {
3828 struct drm_device *dev = crtc->dev;
3829 struct drm_i915_private *dev_priv = dev->dev_private;
3830 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3832 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3833 enum pipe pipe = intel_crtc->pipe;
3834 int level, i, max_level;
3835 uint32_t temp;
3836
3837 max_level = ilk_wm_max_level(dev);
3838
3839 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3840
3841 for (level = 0; level <= max_level; level++) {
3842 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3843 hw->plane[pipe][i][level] =
3844 I915_READ(PLANE_WM(pipe, i, level));
3845 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3846 }
3847
3848 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3849 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3850 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3851
3852 if (!intel_crtc->active)
3853 return;
3854
3855 hw->dirty[pipe] = true;
3856
3857 active->linetime = hw->wm_linetime[pipe];
3858
3859 for (level = 0; level <= max_level; level++) {
3860 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3861 temp = hw->plane[pipe][i][level];
3862 skl_pipe_wm_active_state(temp, active, false,
3863 false, i, level);
3864 }
3865 temp = hw->plane[pipe][PLANE_CURSOR][level];
3866 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3867 }
3868
3869 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3870 temp = hw->plane_trans[pipe][i];
3871 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3872 }
3873
3874 temp = hw->plane_trans[pipe][PLANE_CURSOR];
3875 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3876 }
3877
3878 void skl_wm_get_hw_state(struct drm_device *dev)
3879 {
3880 struct drm_i915_private *dev_priv = dev->dev_private;
3881 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3882 struct drm_crtc *crtc;
3883
3884 skl_ddb_get_hw_state(dev_priv, ddb);
3885 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3886 skl_pipe_wm_get_hw_state(crtc);
3887 }
3888
3889 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3890 {
3891 struct drm_device *dev = crtc->dev;
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3895 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3896 enum pipe pipe = intel_crtc->pipe;
3897 static const unsigned int wm0_pipe_reg[] = {
3898 [PIPE_A] = WM0_PIPEA_ILK,
3899 [PIPE_B] = WM0_PIPEB_ILK,
3900 [PIPE_C] = WM0_PIPEC_IVB,
3901 };
3902
3903 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3904 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3905 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3906
3907 memset(active, 0, sizeof(*active));
3908
3909 active->pipe_enabled = intel_crtc->active;
3910
3911 if (active->pipe_enabled) {
3912 u32 tmp = hw->wm_pipe[pipe];
3913
3914 /*
3915 * For active pipes LP0 watermark is marked as
3916 * enabled, and LP1+ watermaks as disabled since
3917 * we can't really reverse compute them in case
3918 * multiple pipes are active.
3919 */
3920 active->wm[0].enable = true;
3921 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3922 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3923 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3924 active->linetime = hw->wm_linetime[pipe];
3925 } else {
3926 int level, max_level = ilk_wm_max_level(dev);
3927
3928 /*
3929 * For inactive pipes, all watermark levels
3930 * should be marked as enabled but zeroed,
3931 * which is what we'd compute them to.
3932 */
3933 for (level = 0; level <= max_level; level++)
3934 active->wm[level].enable = true;
3935 }
3936 }
3937
3938 #define _FW_WM(value, plane) \
3939 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3940 #define _FW_WM_VLV(value, plane) \
3941 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3942
3943 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3944 struct vlv_wm_values *wm)
3945 {
3946 enum pipe pipe;
3947 uint32_t tmp;
3948
3949 for_each_pipe(dev_priv, pipe) {
3950 tmp = I915_READ(VLV_DDL(pipe));
3951
3952 wm->ddl[pipe].primary =
3953 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3954 wm->ddl[pipe].cursor =
3955 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3956 wm->ddl[pipe].sprite[0] =
3957 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3958 wm->ddl[pipe].sprite[1] =
3959 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3960 }
3961
3962 tmp = I915_READ(DSPFW1);
3963 wm->sr.plane = _FW_WM(tmp, SR);
3964 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3965 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3966 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3967
3968 tmp = I915_READ(DSPFW2);
3969 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3970 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3971 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3972
3973 tmp = I915_READ(DSPFW3);
3974 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3975
3976 if (IS_CHERRYVIEW(dev_priv)) {
3977 tmp = I915_READ(DSPFW7_CHV);
3978 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3979 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3980
3981 tmp = I915_READ(DSPFW8_CHV);
3982 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3983 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3984
3985 tmp = I915_READ(DSPFW9_CHV);
3986 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3987 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3988
3989 tmp = I915_READ(DSPHOWM);
3990 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3991 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3992 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3993 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3994 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3995 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3996 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3997 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3998 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3999 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4000 } else {
4001 tmp = I915_READ(DSPFW7);
4002 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4003 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4004
4005 tmp = I915_READ(DSPHOWM);
4006 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4007 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4008 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4009 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4010 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4011 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4012 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4013 }
4014 }
4015
4016 #undef _FW_WM
4017 #undef _FW_WM_VLV
4018
4019 void vlv_wm_get_hw_state(struct drm_device *dev)
4020 {
4021 struct drm_i915_private *dev_priv = to_i915(dev);
4022 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4023 struct intel_plane *plane;
4024 enum pipe pipe;
4025 u32 val;
4026
4027 vlv_read_wm_values(dev_priv, wm);
4028
4029 for_each_intel_plane(dev, plane) {
4030 switch (plane->base.type) {
4031 int sprite;
4032 case DRM_PLANE_TYPE_CURSOR:
4033 plane->wm.fifo_size = 63;
4034 break;
4035 case DRM_PLANE_TYPE_PRIMARY:
4036 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4037 break;
4038 case DRM_PLANE_TYPE_OVERLAY:
4039 sprite = plane->plane;
4040 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4041 break;
4042 }
4043 }
4044
4045 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4046 wm->level = VLV_WM_LEVEL_PM2;
4047
4048 if (IS_CHERRYVIEW(dev_priv)) {
4049 mutex_lock(&dev_priv->rps.hw_lock);
4050
4051 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4052 if (val & DSP_MAXFIFO_PM5_ENABLE)
4053 wm->level = VLV_WM_LEVEL_PM5;
4054
4055 /*
4056 * If DDR DVFS is disabled in the BIOS, Punit
4057 * will never ack the request. So if that happens
4058 * assume we don't have to enable/disable DDR DVFS
4059 * dynamically. To test that just set the REQ_ACK
4060 * bit to poke the Punit, but don't change the
4061 * HIGH/LOW bits so that we don't actually change
4062 * the current state.
4063 */
4064 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4065 val |= FORCE_DDR_FREQ_REQ_ACK;
4066 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4067
4068 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4069 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4070 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4071 "assuming DDR DVFS is disabled\n");
4072 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4073 } else {
4074 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4075 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4076 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4077 }
4078
4079 mutex_unlock(&dev_priv->rps.hw_lock);
4080 }
4081
4082 for_each_pipe(dev_priv, pipe)
4083 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4084 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4085 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4086
4087 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4088 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4089 }
4090
4091 void ilk_wm_get_hw_state(struct drm_device *dev)
4092 {
4093 struct drm_i915_private *dev_priv = dev->dev_private;
4094 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4095 struct drm_crtc *crtc;
4096
4097 for_each_crtc(dev, crtc)
4098 ilk_pipe_wm_get_hw_state(crtc);
4099
4100 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4101 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4102 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4103
4104 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4105 if (INTEL_INFO(dev)->gen >= 7) {
4106 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4107 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4108 }
4109
4110 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4111 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4112 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4113 else if (IS_IVYBRIDGE(dev))
4114 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4115 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4116
4117 hw->enable_fbc_wm =
4118 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4119 }
4120
4121 /**
4122 * intel_update_watermarks - update FIFO watermark values based on current modes
4123 *
4124 * Calculate watermark values for the various WM regs based on current mode
4125 * and plane configuration.
4126 *
4127 * There are several cases to deal with here:
4128 * - normal (i.e. non-self-refresh)
4129 * - self-refresh (SR) mode
4130 * - lines are large relative to FIFO size (buffer can hold up to 2)
4131 * - lines are small relative to FIFO size (buffer can hold more than 2
4132 * lines), so need to account for TLB latency
4133 *
4134 * The normal calculation is:
4135 * watermark = dotclock * bytes per pixel * latency
4136 * where latency is platform & configuration dependent (we assume pessimal
4137 * values here).
4138 *
4139 * The SR calculation is:
4140 * watermark = (trunc(latency/line time)+1) * surface width *
4141 * bytes per pixel
4142 * where
4143 * line time = htotal / dotclock
4144 * surface width = hdisplay for normal plane and 64 for cursor
4145 * and latency is assumed to be high, as above.
4146 *
4147 * The final value programmed to the register should always be rounded up,
4148 * and include an extra 2 entries to account for clock crossings.
4149 *
4150 * We don't use the sprite, so we can ignore that. And on Crestline we have
4151 * to set the non-SR watermarks to 8.
4152 */
4153 void intel_update_watermarks(struct drm_crtc *crtc)
4154 {
4155 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4156
4157 if (dev_priv->display.update_wm)
4158 dev_priv->display.update_wm(crtc);
4159 }
4160
4161 void intel_update_sprite_watermarks(struct drm_plane *plane,
4162 struct drm_crtc *crtc,
4163 uint32_t sprite_width,
4164 uint32_t sprite_height,
4165 int pixel_size,
4166 bool enabled, bool scaled)
4167 {
4168 struct drm_i915_private *dev_priv = plane->dev->dev_private;
4169
4170 if (dev_priv->display.update_sprite_wm)
4171 dev_priv->display.update_sprite_wm(plane, crtc,
4172 sprite_width, sprite_height,
4173 pixel_size, enabled, scaled);
4174 }
4175
4176 /**
4177 * Lock protecting IPS related data structures
4178 */
4179 #ifdef __NetBSD__
4180 spinlock_t mchdev_lock;
4181 #else
4182 DEFINE_SPINLOCK(mchdev_lock);
4183 #endif
4184
4185 /* Global for IPS driver to get at the current i915 device. Protected by
4186 * mchdev_lock. */
4187 static struct drm_i915_private *i915_mch_dev;
4188
4189 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4190 {
4191 struct drm_i915_private *dev_priv = dev->dev_private;
4192 u16 rgvswctl;
4193
4194 assert_spin_locked(&mchdev_lock);
4195
4196 rgvswctl = I915_READ16(MEMSWCTL);
4197 if (rgvswctl & MEMCTL_CMD_STS) {
4198 DRM_DEBUG("gpu busy, RCS change rejected\n");
4199 return false; /* still busy with another command */
4200 }
4201
4202 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4203 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4204 I915_WRITE16(MEMSWCTL, rgvswctl);
4205 POSTING_READ16(MEMSWCTL);
4206
4207 rgvswctl |= MEMCTL_CMD_STS;
4208 I915_WRITE16(MEMSWCTL, rgvswctl);
4209
4210 return true;
4211 }
4212
4213 static void ironlake_enable_drps(struct drm_device *dev)
4214 {
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 u32 rgvmodectl = I915_READ(MEMMODECTL);
4217 u8 fmax, fmin, fstart, vstart;
4218
4219 spin_lock_irq(&mchdev_lock);
4220
4221 /* Enable temp reporting */
4222 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4223 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4224
4225 /* 100ms RC evaluation intervals */
4226 I915_WRITE(RCUPEI, 100000);
4227 I915_WRITE(RCDNEI, 100000);
4228
4229 /* Set max/min thresholds to 90ms and 80ms respectively */
4230 I915_WRITE(RCBMAXAVG, 90000);
4231 I915_WRITE(RCBMINAVG, 80000);
4232
4233 I915_WRITE(MEMIHYST, 1);
4234
4235 /* Set up min, max, and cur for interrupt handling */
4236 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4237 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4238 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4239 MEMMODE_FSTART_SHIFT;
4240
4241 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4242 PXVFREQ_PX_SHIFT;
4243
4244 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4245 dev_priv->ips.fstart = fstart;
4246
4247 dev_priv->ips.max_delay = fstart;
4248 dev_priv->ips.min_delay = fmin;
4249 dev_priv->ips.cur_delay = fstart;
4250
4251 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4252 fmax, fmin, fstart);
4253
4254 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4255
4256 /*
4257 * Interrupts will be enabled in ironlake_irq_postinstall
4258 */
4259
4260 I915_WRITE(VIDSTART, vstart);
4261 POSTING_READ(VIDSTART);
4262
4263 rgvmodectl |= MEMMODE_SWMODE_EN;
4264 I915_WRITE(MEMMODECTL, rgvmodectl);
4265
4266 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4267 DRM_ERROR("stuck trying to change perf mode\n");
4268 mdelay(1);
4269
4270 ironlake_set_drps(dev, fstart);
4271
4272 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4273 I915_READ(DDREC) + I915_READ(CSIEC);
4274 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4275 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4276 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4277
4278 spin_unlock_irq(&mchdev_lock);
4279 }
4280
4281 static void ironlake_disable_drps(struct drm_device *dev)
4282 {
4283 struct drm_i915_private *dev_priv = dev->dev_private;
4284 u16 rgvswctl;
4285
4286 spin_lock_irq(&mchdev_lock);
4287
4288 rgvswctl = I915_READ16(MEMSWCTL);
4289
4290 /* Ack interrupts, disable EFC interrupt */
4291 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4292 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4293 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4294 I915_WRITE(DEIIR, DE_PCU_EVENT);
4295 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4296
4297 /* Go back to the starting frequency */
4298 ironlake_set_drps(dev, dev_priv->ips.fstart);
4299 mdelay(1);
4300 rgvswctl |= MEMCTL_CMD_STS;
4301 I915_WRITE(MEMSWCTL, rgvswctl);
4302 mdelay(1);
4303
4304 spin_unlock_irq(&mchdev_lock);
4305 }
4306
4307 /* There's a funny hw issue where the hw returns all 0 when reading from
4308 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4309 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4310 * all limits and the gpu stuck at whatever frequency it is at atm).
4311 */
4312 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4313 {
4314 u32 limits;
4315
4316 /* Only set the down limit when we've reached the lowest level to avoid
4317 * getting more interrupts, otherwise leave this clear. This prevents a
4318 * race in the hw when coming out of rc6: There's a tiny window where
4319 * the hw runs at the minimal clock before selecting the desired
4320 * frequency, if the down threshold expires in that window we will not
4321 * receive a down interrupt. */
4322 if (IS_GEN9(dev_priv->dev)) {
4323 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4324 if (val <= dev_priv->rps.min_freq_softlimit)
4325 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4326 } else {
4327 limits = dev_priv->rps.max_freq_softlimit << 24;
4328 if (val <= dev_priv->rps.min_freq_softlimit)
4329 limits |= dev_priv->rps.min_freq_softlimit << 16;
4330 }
4331
4332 return limits;
4333 }
4334
4335 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4336 {
4337 int new_power;
4338 u32 threshold_up = 0, threshold_down = 0; /* in % */
4339 u32 ei_up = 0, ei_down = 0;
4340
4341 new_power = dev_priv->rps.power;
4342 switch (dev_priv->rps.power) {
4343 case LOW_POWER:
4344 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4345 new_power = BETWEEN;
4346 break;
4347
4348 case BETWEEN:
4349 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4350 new_power = LOW_POWER;
4351 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4352 new_power = HIGH_POWER;
4353 break;
4354
4355 case HIGH_POWER:
4356 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4357 new_power = BETWEEN;
4358 break;
4359 }
4360 /* Max/min bins are special */
4361 if (val <= dev_priv->rps.min_freq_softlimit)
4362 new_power = LOW_POWER;
4363 if (val >= dev_priv->rps.max_freq_softlimit)
4364 new_power = HIGH_POWER;
4365 if (new_power == dev_priv->rps.power)
4366 return;
4367
4368 /* Note the units here are not exactly 1us, but 1280ns. */
4369 switch (new_power) {
4370 case LOW_POWER:
4371 /* Upclock if more than 95% busy over 16ms */
4372 ei_up = 16000;
4373 threshold_up = 95;
4374
4375 /* Downclock if less than 85% busy over 32ms */
4376 ei_down = 32000;
4377 threshold_down = 85;
4378 break;
4379
4380 case BETWEEN:
4381 /* Upclock if more than 90% busy over 13ms */
4382 ei_up = 13000;
4383 threshold_up = 90;
4384
4385 /* Downclock if less than 75% busy over 32ms */
4386 ei_down = 32000;
4387 threshold_down = 75;
4388 break;
4389
4390 case HIGH_POWER:
4391 /* Upclock if more than 85% busy over 10ms */
4392 ei_up = 10000;
4393 threshold_up = 85;
4394
4395 /* Downclock if less than 60% busy over 32ms */
4396 ei_down = 32000;
4397 threshold_down = 60;
4398 break;
4399 }
4400
4401 /* When byt can survive without system hang with dynamic
4402 * sw freq adjustments, this restriction can be lifted.
4403 */
4404 if (IS_VALLEYVIEW(dev_priv))
4405 goto skip_hw_write;
4406
4407 I915_WRITE(GEN6_RP_UP_EI,
4408 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4409 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4410 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4411
4412 I915_WRITE(GEN6_RP_DOWN_EI,
4413 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4414 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4415 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4416
4417 I915_WRITE(GEN6_RP_CONTROL,
4418 GEN6_RP_MEDIA_TURBO |
4419 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4420 GEN6_RP_MEDIA_IS_GFX |
4421 GEN6_RP_ENABLE |
4422 GEN6_RP_UP_BUSY_AVG |
4423 GEN6_RP_DOWN_IDLE_AVG);
4424
4425 skip_hw_write:
4426 dev_priv->rps.power = new_power;
4427 dev_priv->rps.up_threshold = threshold_up;
4428 dev_priv->rps.down_threshold = threshold_down;
4429 dev_priv->rps.last_adj = 0;
4430 }
4431
4432 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4433 {
4434 u32 mask = 0;
4435
4436 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4437 if (val > dev_priv->rps.min_freq_softlimit)
4438 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4439 if (val < dev_priv->rps.max_freq_softlimit)
4440 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4441
4442 mask &= dev_priv->pm_rps_events;
4443
4444 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4445 }
4446
4447 /* gen6_set_rps is called to update the frequency request, but should also be
4448 * called when the range (min_delay and max_delay) is modified so that we can
4449 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4450 static void gen6_set_rps(struct drm_device *dev, u8 val)
4451 {
4452 struct drm_i915_private *dev_priv = dev->dev_private;
4453
4454 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4455 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4456 return;
4457
4458 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4459 WARN_ON(val > dev_priv->rps.max_freq);
4460 WARN_ON(val < dev_priv->rps.min_freq);
4461
4462 /* min/max delay may still have been modified so be sure to
4463 * write the limits value.
4464 */
4465 if (val != dev_priv->rps.cur_freq) {
4466 gen6_set_rps_thresholds(dev_priv, val);
4467
4468 if (IS_GEN9(dev))
4469 I915_WRITE(GEN6_RPNSWREQ,
4470 GEN9_FREQUENCY(val));
4471 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4472 I915_WRITE(GEN6_RPNSWREQ,
4473 HSW_FREQUENCY(val));
4474 else
4475 I915_WRITE(GEN6_RPNSWREQ,
4476 GEN6_FREQUENCY(val) |
4477 GEN6_OFFSET(0) |
4478 GEN6_AGGRESSIVE_TURBO);
4479 }
4480
4481 /* Make sure we continue to get interrupts
4482 * until we hit the minimum or maximum frequencies.
4483 */
4484 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4485 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4486
4487 POSTING_READ(GEN6_RPNSWREQ);
4488
4489 dev_priv->rps.cur_freq = val;
4490 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4491 }
4492
4493 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4494 {
4495 struct drm_i915_private *dev_priv = dev->dev_private;
4496
4497 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4498 WARN_ON(val > dev_priv->rps.max_freq);
4499 WARN_ON(val < dev_priv->rps.min_freq);
4500
4501 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4502 "Odd GPU freq value\n"))
4503 val &= ~1;
4504
4505 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4506
4507 if (val != dev_priv->rps.cur_freq) {
4508 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4509 if (!IS_CHERRYVIEW(dev_priv))
4510 gen6_set_rps_thresholds(dev_priv, val);
4511 }
4512
4513 dev_priv->rps.cur_freq = val;
4514 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4515 }
4516
4517 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4518 *
4519 * * If Gfx is Idle, then
4520 * 1. Forcewake Media well.
4521 * 2. Request idle freq.
4522 * 3. Release Forcewake of Media well.
4523 */
4524 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4525 {
4526 u32 val = dev_priv->rps.idle_freq;
4527
4528 if (dev_priv->rps.cur_freq <= val)
4529 return;
4530
4531 /* Wake up the media well, as that takes a lot less
4532 * power than the Render well. */
4533 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4534 valleyview_set_rps(dev_priv->dev, val);
4535 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4536 }
4537
4538 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4539 {
4540 mutex_lock(&dev_priv->rps.hw_lock);
4541 if (dev_priv->rps.enabled) {
4542 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
4543 gen6_rps_reset_ei(dev_priv);
4544 I915_WRITE(GEN6_PMINTRMSK,
4545 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4546 }
4547 mutex_unlock(&dev_priv->rps.hw_lock);
4548 }
4549
4550 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4551 {
4552 struct drm_device *dev = dev_priv->dev;
4553
4554 mutex_lock(&dev_priv->rps.hw_lock);
4555 if (dev_priv->rps.enabled) {
4556 if (IS_VALLEYVIEW(dev))
4557 vlv_set_rps_idle(dev_priv);
4558 else
4559 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 dev_priv->rps.last_adj = 0;
4561 I915_WRITE(GEN6_PMINTRMSK,
4562 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4563 }
4564 mutex_unlock(&dev_priv->rps.hw_lock);
4565
4566 spin_lock(&dev_priv->rps.client_lock);
4567 while (!list_empty(&dev_priv->rps.clients))
4568 list_del_init(dev_priv->rps.clients.next);
4569 spin_unlock(&dev_priv->rps.client_lock);
4570 }
4571
4572 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4573 struct intel_rps_client *rps,
4574 unsigned long submitted)
4575 {
4576 /* This is intentionally racy! We peek at the state here, then
4577 * validate inside the RPS worker.
4578 */
4579 if (!(dev_priv->mm.busy &&
4580 dev_priv->rps.enabled &&
4581 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4582 return;
4583
4584 /* Force a RPS boost (and don't count it against the client) if
4585 * the GPU is severely congested.
4586 */
4587 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4588 rps = NULL;
4589
4590 spin_lock(&dev_priv->rps.client_lock);
4591 if (rps == NULL || list_empty(&rps->link)) {
4592 spin_lock_irq(&dev_priv->irq_lock);
4593 if (dev_priv->rps.interrupts_enabled) {
4594 dev_priv->rps.client_boost = true;
4595 queue_work(dev_priv->wq, &dev_priv->rps.work);
4596 }
4597 spin_unlock_irq(&dev_priv->irq_lock);
4598
4599 if (rps != NULL) {
4600 list_add(&rps->link, &dev_priv->rps.clients);
4601 rps->boosts++;
4602 } else
4603 dev_priv->rps.boosts++;
4604 }
4605 spin_unlock(&dev_priv->rps.client_lock);
4606 }
4607
4608 void intel_set_rps(struct drm_device *dev, u8 val)
4609 {
4610 if (IS_VALLEYVIEW(dev))
4611 valleyview_set_rps(dev, val);
4612 else
4613 gen6_set_rps(dev, val);
4614 }
4615
4616 static void gen9_disable_rc6(struct drm_device *dev)
4617 {
4618 struct drm_i915_private *dev_priv = dev->dev_private;
4619
4620 I915_WRITE(GEN6_RC_CONTROL, 0);
4621 }
4622
4623 static void gen9_disable_rps(struct drm_device *dev)
4624 {
4625 struct drm_i915_private *dev_priv = dev->dev_private;
4626
4627 I915_WRITE(GEN9_PG_ENABLE, 0);
4628 }
4629
4630 static void gen6_disable_rc6(struct drm_device *dev)
4631 {
4632 struct drm_i915_private *dev_priv = dev->dev_private;
4633
4634 I915_WRITE(GEN6_RC_CONTROL, 0);
4635 }
4636
4637 static void gen6_disable_rps(struct drm_device *dev)
4638 {
4639 struct drm_i915_private *dev_priv = dev->dev_private;
4640
4641 I915_WRITE(GEN6_RPNSWREQ, 1UL << 31);
4642 }
4643
4644 static void cherryview_disable_rc6(struct drm_device *dev)
4645 {
4646 struct drm_i915_private *dev_priv = dev->dev_private;
4647
4648 I915_WRITE(GEN6_RC_CONTROL, 0);
4649 }
4650
4651 static void valleyview_disable_rc6(struct drm_device *dev)
4652 {
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4654
4655 /* we're doing forcewake before Disabling RC6,
4656 * This what the BIOS expects when going into suspend */
4657 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4658
4659 I915_WRITE(GEN6_RC_CONTROL, 0);
4660
4661 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4662 }
4663
4664 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4665 {
4666 if (IS_VALLEYVIEW(dev)) {
4667 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4668 mode = GEN6_RC_CTL_RC6_ENABLE;
4669 else
4670 mode = 0;
4671 }
4672 if (HAS_RC6p(dev))
4673 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4674 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4675 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4676 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4677
4678 else
4679 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4680 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4681 }
4682
4683 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4684 {
4685 /* No RC6 before Ironlake and code is gone for ilk. */
4686 if (INTEL_INFO(dev)->gen < 6)
4687 return 0;
4688
4689 /* Respect the kernel parameter if it is set */
4690 if (enable_rc6 >= 0) {
4691 int mask;
4692
4693 if (HAS_RC6p(dev))
4694 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4695 INTEL_RC6pp_ENABLE;
4696 else
4697 mask = INTEL_RC6_ENABLE;
4698
4699 if ((enable_rc6 & mask) != enable_rc6)
4700 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4701 enable_rc6 & mask, enable_rc6, mask);
4702
4703 return enable_rc6 & mask;
4704 }
4705
4706 if (IS_IVYBRIDGE(dev))
4707 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4708
4709 return INTEL_RC6_ENABLE;
4710 }
4711
4712 int intel_enable_rc6(const struct drm_device *dev)
4713 {
4714 return i915.enable_rc6;
4715 }
4716
4717 static void gen6_init_rps_frequencies(struct drm_device *dev)
4718 {
4719 struct drm_i915_private *dev_priv = dev->dev_private;
4720 uint32_t rp_state_cap;
4721 u32 ddcc_status = 0;
4722 int ret;
4723
4724 /* All of these values are in units of 50MHz */
4725 dev_priv->rps.cur_freq = 0;
4726 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4727 if (IS_BROXTON(dev)) {
4728 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4729 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4730 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4731 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4732 } else {
4733 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4734 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4735 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4736 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4737 }
4738
4739 /* hw_max = RP0 until we check for overclocking */
4740 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4741
4742 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4743 if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4744 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4745 ret = sandybridge_pcode_read(dev_priv,
4746 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4747 &ddcc_status);
4748 if (0 == ret)
4749 dev_priv->rps.efficient_freq =
4750 clamp_t(u8,
4751 ((ddcc_status >> 8) & 0xff),
4752 dev_priv->rps.min_freq,
4753 dev_priv->rps.max_freq);
4754 }
4755
4756 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4757 /* Store the frequency values in 16.66 MHZ units, which is
4758 the natural hardware unit for SKL */
4759 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4760 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4761 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4762 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4763 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4764 }
4765
4766 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4767
4768 /* Preserve min/max settings in case of re-init */
4769 if (dev_priv->rps.max_freq_softlimit == 0)
4770 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4771
4772 if (dev_priv->rps.min_freq_softlimit == 0) {
4773 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4774 dev_priv->rps.min_freq_softlimit =
4775 max_t(int, dev_priv->rps.efficient_freq,
4776 intel_freq_opcode(dev_priv, 450));
4777 else
4778 dev_priv->rps.min_freq_softlimit =
4779 dev_priv->rps.min_freq;
4780 }
4781 }
4782
4783 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4784 static void gen9_enable_rps(struct drm_device *dev)
4785 {
4786 struct drm_i915_private *dev_priv = dev->dev_private;
4787
4788 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4789
4790 gen6_init_rps_frequencies(dev);
4791
4792 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4793 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4794 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4795 return;
4796 }
4797
4798 /* Program defaults and thresholds for RPS*/
4799 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4800 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4801
4802 /* 1 second timeout*/
4803 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4804 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4805
4806 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4807
4808 /* Leaning on the below call to gen6_set_rps to program/setup the
4809 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4810 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4811 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4812 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4813
4814 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4815 }
4816
4817 static void gen9_enable_rc6(struct drm_device *dev)
4818 {
4819 struct drm_i915_private *dev_priv = dev->dev_private;
4820 struct intel_engine_cs *ring;
4821 uint32_t rc6_mask = 0;
4822 int unused;
4823
4824 /* 1a: Software RC state - RC0 */
4825 I915_WRITE(GEN6_RC_STATE, 0);
4826
4827 /* 1b: Get forcewake during program sequence. Although the driver
4828 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4829 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4830
4831 /* 2a: Disable RC states. */
4832 I915_WRITE(GEN6_RC_CONTROL, 0);
4833
4834 /* 2b: Program RC6 thresholds.*/
4835
4836 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4837 if (IS_SKYLAKE(dev))
4838 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4839 else
4840 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4841 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4842 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4843 for_each_ring(ring, dev_priv, unused)
4844 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4845
4846 if (HAS_GUC_UCODE(dev))
4847 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4848
4849 I915_WRITE(GEN6_RC_SLEEP, 0);
4850
4851 /* 2c: Program Coarse Power Gating Policies. */
4852 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4853 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4854
4855 /* 3a: Enable RC6 */
4856 if (!dev_priv->rps.ctx_corrupted &&
4857 intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4858 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4859 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4860 "on" : "off");
4861 /* WaRsUseTimeoutMode */
4862 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4863 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4864 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4865 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4866 GEN7_RC_CTL_TO_MODE |
4867 rc6_mask);
4868 } else {
4869 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4870 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4871 GEN6_RC_CTL_EI_MODE(1) |
4872 rc6_mask);
4873 }
4874
4875 /*
4876 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4877 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4878 */
4879 if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4880 INTEL_INFO(dev)->gen == 9)
4881 I915_WRITE(GEN9_PG_ENABLE, 0);
4882 else
4883 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4884 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4885
4886 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4887
4888 }
4889
4890 static void gen8_enable_rps(struct drm_device *dev)
4891 {
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893 struct intel_engine_cs *ring;
4894 uint32_t rc6_mask = 0;
4895 int unused;
4896
4897 /* 1a: Software RC state - RC0 */
4898 I915_WRITE(GEN6_RC_STATE, 0);
4899
4900 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4901 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4902 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4903
4904 /* 2a: Disable RC states. */
4905 I915_WRITE(GEN6_RC_CONTROL, 0);
4906
4907 /* Initialize rps frequencies */
4908 gen6_init_rps_frequencies(dev);
4909
4910 /* 2b: Program RC6 thresholds.*/
4911 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4912 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4913 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4914 for_each_ring(ring, dev_priv, unused)
4915 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4916 I915_WRITE(GEN6_RC_SLEEP, 0);
4917 if (IS_BROADWELL(dev))
4918 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4919 else
4920 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4921
4922 /* 3: Enable RC6 */
4923 if (!dev_priv->rps.ctx_corrupted &&
4924 intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4925 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4926 intel_print_rc6_info(dev, rc6_mask);
4927 if (IS_BROADWELL(dev))
4928 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4929 GEN7_RC_CTL_TO_MODE |
4930 rc6_mask);
4931 else
4932 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4933 GEN6_RC_CTL_EI_MODE(1) |
4934 rc6_mask);
4935
4936 /* 4 Program defaults and thresholds for RPS*/
4937 I915_WRITE(GEN6_RPNSWREQ,
4938 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4939 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4940 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4941 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4942 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4943
4944 /* Docs recommend 900MHz, and 300 MHz respectively */
4945 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4946 dev_priv->rps.max_freq_softlimit << 24 |
4947 dev_priv->rps.min_freq_softlimit << 16);
4948
4949 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4950 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4951 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4952 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4953
4954 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4955
4956 /* 5: Enable RPS */
4957 I915_WRITE(GEN6_RP_CONTROL,
4958 GEN6_RP_MEDIA_TURBO |
4959 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4960 GEN6_RP_MEDIA_IS_GFX |
4961 GEN6_RP_ENABLE |
4962 GEN6_RP_UP_BUSY_AVG |
4963 GEN6_RP_DOWN_IDLE_AVG);
4964
4965 /* 6: Ring frequency + overclocking (our driver does this later */
4966
4967 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4968 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4969
4970 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4971 }
4972
4973 static void gen6_enable_rps(struct drm_device *dev)
4974 {
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976 struct intel_engine_cs *ring;
4977 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4978 u32 gtfifodbg;
4979 int rc6_mode;
4980 int i, ret;
4981
4982 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4983
4984 /* Here begins a magic sequence of register writes to enable
4985 * auto-downclocking.
4986 *
4987 * Perhaps there might be some value in exposing these to
4988 * userspace...
4989 */
4990 I915_WRITE(GEN6_RC_STATE, 0);
4991
4992 /* Clear the DBG now so we don't confuse earlier errors */
4993 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4994 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4995 I915_WRITE(GTFIFODBG, gtfifodbg);
4996 }
4997
4998 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4999
5000 /* Initialize rps frequencies */
5001 gen6_init_rps_frequencies(dev);
5002
5003 /* disable the counters and set deterministic thresholds */
5004 I915_WRITE(GEN6_RC_CONTROL, 0);
5005
5006 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5007 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5008 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5009 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5010 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5011
5012 for_each_ring(ring, dev_priv, i)
5013 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5014
5015 I915_WRITE(GEN6_RC_SLEEP, 0);
5016 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5017 if (IS_IVYBRIDGE(dev))
5018 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5019 else
5020 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5021 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5022 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5023
5024 /* Check if we are enabling RC6 */
5025 rc6_mode = intel_enable_rc6(dev_priv->dev);
5026 if (rc6_mode & INTEL_RC6_ENABLE)
5027 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5028
5029 /* We don't use those on Haswell */
5030 if (!IS_HASWELL(dev)) {
5031 if (rc6_mode & INTEL_RC6p_ENABLE)
5032 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5033
5034 if (rc6_mode & INTEL_RC6pp_ENABLE)
5035 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5036 }
5037
5038 intel_print_rc6_info(dev, rc6_mask);
5039
5040 I915_WRITE(GEN6_RC_CONTROL,
5041 rc6_mask |
5042 GEN6_RC_CTL_EI_MODE(1) |
5043 GEN6_RC_CTL_HW_ENABLE);
5044
5045 /* Power down if completely idle for over 50ms */
5046 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5047 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5048
5049 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5050 if (ret)
5051 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5052
5053 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5054 if (!ret && (pcu_mbox & __BIT(31))) { /* OC supported */
5055 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5056 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5057 (pcu_mbox & 0xff) * 50);
5058 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5059 }
5060
5061 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5062 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5063
5064 rc6vids = 0;
5065 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5066 if (IS_GEN6(dev) && ret) {
5067 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5068 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5069 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5070 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5071 rc6vids &= 0xffff00;
5072 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5073 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5074 if (ret)
5075 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5076 }
5077
5078 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5079 }
5080
5081 static void __gen6_update_ring_freq(struct drm_device *dev)
5082 {
5083 struct drm_i915_private *dev_priv = dev->dev_private;
5084 int min_freq = 15;
5085 unsigned int gpu_freq;
5086 unsigned int max_ia_freq, min_ring_freq;
5087 unsigned int max_gpu_freq, min_gpu_freq;
5088 int scaling_factor = 180;
5089 #ifndef __NetBSD__
5090 struct cpufreq_policy *policy;
5091 #endif
5092
5093 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5094
5095 #ifdef __NetBSD__
5096 {
5097 extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
5098 max_ia_freq = (tsc_freq / 1000);
5099 }
5100 #else
5101 policy = cpufreq_cpu_get(0);
5102 if (policy) {
5103 max_ia_freq = policy->cpuinfo.max_freq;
5104 cpufreq_cpu_put(policy);
5105 } else {
5106 /*
5107 * Default to measured freq if none found, PCU will ensure we
5108 * don't go over
5109 */
5110 max_ia_freq = tsc_khz;
5111 }
5112 #endif
5113
5114 /* Convert from kHz to MHz */
5115 max_ia_freq /= 1000;
5116
5117 min_ring_freq = I915_READ(DCLK) & 0xf;
5118 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5119 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5120
5121 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5122 /* Convert GT frequency to 50 HZ units */
5123 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5124 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5125 } else {
5126 min_gpu_freq = dev_priv->rps.min_freq;
5127 max_gpu_freq = dev_priv->rps.max_freq;
5128 }
5129
5130 /*
5131 * For each potential GPU frequency, load a ring frequency we'd like
5132 * to use for memory access. We do this by specifying the IA frequency
5133 * the PCU should use as a reference to determine the ring frequency.
5134 */
5135 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5136 int diff = max_gpu_freq - gpu_freq;
5137 unsigned int ia_freq = 0, ring_freq = 0;
5138
5139 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5140 /*
5141 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5142 * No floor required for ring frequency on SKL.
5143 */
5144 ring_freq = gpu_freq;
5145 } else if (INTEL_INFO(dev)->gen >= 8) {
5146 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5147 ring_freq = max(min_ring_freq, gpu_freq);
5148 } else if (IS_HASWELL(dev)) {
5149 ring_freq = mult_frac(gpu_freq, 5, 4);
5150 ring_freq = max(min_ring_freq, ring_freq);
5151 /* leave ia_freq as the default, chosen by cpufreq */
5152 } else {
5153 /* On older processors, there is no separate ring
5154 * clock domain, so in order to boost the bandwidth
5155 * of the ring, we need to upclock the CPU (ia_freq).
5156 *
5157 * For GPU frequencies less than 750MHz,
5158 * just use the lowest ring freq.
5159 */
5160 if (gpu_freq < min_freq)
5161 ia_freq = 800;
5162 else
5163 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5164 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5165 }
5166
5167 sandybridge_pcode_write(dev_priv,
5168 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5169 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5170 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5171 gpu_freq);
5172 }
5173 }
5174
5175 void gen6_update_ring_freq(struct drm_device *dev)
5176 {
5177 struct drm_i915_private *dev_priv = dev->dev_private;
5178
5179 if (!HAS_CORE_RING_FREQ(dev))
5180 return;
5181
5182 mutex_lock(&dev_priv->rps.hw_lock);
5183 __gen6_update_ring_freq(dev);
5184 mutex_unlock(&dev_priv->rps.hw_lock);
5185 }
5186
5187 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5188 {
5189 struct drm_device *dev = dev_priv->dev;
5190 u32 val, rp0;
5191
5192 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5193
5194 switch (INTEL_INFO(dev)->eu_total) {
5195 case 8:
5196 /* (2 * 4) config */
5197 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5198 break;
5199 case 12:
5200 /* (2 * 6) config */
5201 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5202 break;
5203 case 16:
5204 /* (2 * 8) config */
5205 default:
5206 /* Setting (2 * 8) Min RP0 for any other combination */
5207 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5208 break;
5209 }
5210
5211 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5212
5213 return rp0;
5214 }
5215
5216 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5217 {
5218 u32 val, rpe;
5219
5220 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5221 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5222
5223 return rpe;
5224 }
5225
5226 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5227 {
5228 u32 val, rp1;
5229
5230 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5231 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5232
5233 return rp1;
5234 }
5235
5236 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5237 {
5238 u32 val, rp1;
5239
5240 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5241
5242 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5243
5244 return rp1;
5245 }
5246
5247 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5248 {
5249 u32 val, rp0;
5250
5251 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5252
5253 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5254 /* Clamp to max */
5255 rp0 = min_t(u32, rp0, 0xea);
5256
5257 return rp0;
5258 }
5259
5260 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5261 {
5262 u32 val, rpe;
5263
5264 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5265 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5266 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5267 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5268
5269 return rpe;
5270 }
5271
5272 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5273 {
5274 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5275 }
5276
5277 /* Check that the pctx buffer wasn't move under us. */
5278 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5279 {
5280 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5281
5282 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5283 dev_priv->vlv_pctx->stolen->start);
5284 }
5285
5286
5287 /* Check that the pcbr address is not empty. */
5288 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5289 {
5290 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5291
5292 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5293 }
5294
5295 static void cherryview_setup_pctx(struct drm_device *dev)
5296 {
5297 struct drm_i915_private *dev_priv = dev->dev_private;
5298 unsigned long pctx_paddr, paddr;
5299 struct i915_gtt *gtt = &dev_priv->gtt;
5300 u32 pcbr;
5301 int pctx_size = 32*1024;
5302
5303 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5304
5305 pcbr = I915_READ(VLV_PCBR);
5306 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5307 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5308 paddr = (dev_priv->mm.stolen_base +
5309 (gtt->stolen_size - pctx_size));
5310
5311 pctx_paddr = (paddr & (~4095));
5312 I915_WRITE(VLV_PCBR, pctx_paddr);
5313 }
5314
5315 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5316 }
5317
5318 static void valleyview_setup_pctx(struct drm_device *dev)
5319 {
5320 struct drm_i915_private *dev_priv = dev->dev_private;
5321 struct drm_i915_gem_object *pctx;
5322 unsigned long pctx_paddr;
5323 u32 pcbr;
5324 int pctx_size = 24*1024;
5325
5326 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5327
5328 pcbr = I915_READ(VLV_PCBR);
5329 if (pcbr) {
5330 /* BIOS set it up already, grab the pre-alloc'd space */
5331 int pcbr_offset;
5332
5333 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5334 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5335 pcbr_offset,
5336 I915_GTT_OFFSET_NONE,
5337 pctx_size);
5338 goto out;
5339 }
5340
5341 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5342
5343 /*
5344 * From the Gunit register HAS:
5345 * The Gfx driver is expected to program this register and ensure
5346 * proper allocation within Gfx stolen memory. For example, this
5347 * register should be programmed such than the PCBR range does not
5348 * overlap with other ranges, such as the frame buffer, protected
5349 * memory, or any other relevant ranges.
5350 */
5351 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5352 if (!pctx) {
5353 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5354 return;
5355 }
5356
5357 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5358 I915_WRITE(VLV_PCBR, pctx_paddr);
5359
5360 out:
5361 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5362 dev_priv->vlv_pctx = pctx;
5363 }
5364
5365 static void valleyview_cleanup_pctx(struct drm_device *dev)
5366 {
5367 struct drm_i915_private *dev_priv = dev->dev_private;
5368
5369 if (WARN_ON(!dev_priv->vlv_pctx))
5370 return;
5371
5372 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5373 dev_priv->vlv_pctx = NULL;
5374 }
5375
5376 static void valleyview_init_gt_powersave(struct drm_device *dev)
5377 {
5378 struct drm_i915_private *dev_priv = dev->dev_private;
5379 u32 val;
5380
5381 valleyview_setup_pctx(dev);
5382
5383 mutex_lock(&dev_priv->rps.hw_lock);
5384
5385 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5386 switch ((val >> 6) & 3) {
5387 case 0:
5388 case 1:
5389 dev_priv->mem_freq = 800;
5390 break;
5391 case 2:
5392 dev_priv->mem_freq = 1066;
5393 break;
5394 case 3:
5395 dev_priv->mem_freq = 1333;
5396 break;
5397 }
5398 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5399
5400 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5401 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5402 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5403 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5404 dev_priv->rps.max_freq);
5405
5406 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5407 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5408 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5409 dev_priv->rps.efficient_freq);
5410
5411 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5412 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5413 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5414 dev_priv->rps.rp1_freq);
5415
5416 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5417 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5418 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5419 dev_priv->rps.min_freq);
5420
5421 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5422
5423 /* Preserve min/max settings in case of re-init */
5424 if (dev_priv->rps.max_freq_softlimit == 0)
5425 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5426
5427 if (dev_priv->rps.min_freq_softlimit == 0)
5428 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5429
5430 mutex_unlock(&dev_priv->rps.hw_lock);
5431 }
5432
5433 static void cherryview_init_gt_powersave(struct drm_device *dev)
5434 {
5435 struct drm_i915_private *dev_priv = dev->dev_private;
5436 u32 val;
5437
5438 cherryview_setup_pctx(dev);
5439
5440 mutex_lock(&dev_priv->rps.hw_lock);
5441
5442 mutex_lock(&dev_priv->sb_lock);
5443 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5444 mutex_unlock(&dev_priv->sb_lock);
5445
5446 switch ((val >> 2) & 0x7) {
5447 case 3:
5448 dev_priv->mem_freq = 2000;
5449 break;
5450 default:
5451 dev_priv->mem_freq = 1600;
5452 break;
5453 }
5454 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5455
5456 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5457 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5458 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5459 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5460 dev_priv->rps.max_freq);
5461
5462 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5463 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5464 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5465 dev_priv->rps.efficient_freq);
5466
5467 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5468 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5469 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5470 dev_priv->rps.rp1_freq);
5471
5472 /* PUnit validated range is only [RPe, RP0] */
5473 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5474 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5475 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5476 dev_priv->rps.min_freq);
5477
5478 WARN_ONCE((dev_priv->rps.max_freq |
5479 dev_priv->rps.efficient_freq |
5480 dev_priv->rps.rp1_freq |
5481 dev_priv->rps.min_freq) & 1,
5482 "Odd GPU freq values\n");
5483
5484 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5485
5486 /* Preserve min/max settings in case of re-init */
5487 if (dev_priv->rps.max_freq_softlimit == 0)
5488 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5489
5490 if (dev_priv->rps.min_freq_softlimit == 0)
5491 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5492
5493 mutex_unlock(&dev_priv->rps.hw_lock);
5494 }
5495
5496 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5497 {
5498 valleyview_cleanup_pctx(dev);
5499 }
5500
5501 static void cherryview_enable_rps(struct drm_device *dev)
5502 {
5503 struct drm_i915_private *dev_priv = dev->dev_private;
5504 struct intel_engine_cs *ring;
5505 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5506 int i;
5507
5508 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5509
5510 gtfifodbg = I915_READ(GTFIFODBG);
5511 if (gtfifodbg) {
5512 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5513 gtfifodbg);
5514 I915_WRITE(GTFIFODBG, gtfifodbg);
5515 }
5516
5517 cherryview_check_pctx(dev_priv);
5518
5519 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5520 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5521 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5522
5523 /* Disable RC states. */
5524 I915_WRITE(GEN6_RC_CONTROL, 0);
5525
5526 /* 2a: Program RC6 thresholds.*/
5527 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5528 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5529 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5530
5531 for_each_ring(ring, dev_priv, i)
5532 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5533 I915_WRITE(GEN6_RC_SLEEP, 0);
5534
5535 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5536 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5537
5538 /* allows RC6 residency counter to work */
5539 I915_WRITE(VLV_COUNTER_CONTROL,
5540 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5541 VLV_MEDIA_RC6_COUNT_EN |
5542 VLV_RENDER_RC6_COUNT_EN));
5543
5544 /* For now we assume BIOS is allocating and populating the PCBR */
5545 pcbr = I915_READ(VLV_PCBR);
5546
5547 /* 3: Enable RC6 */
5548 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5549 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5550 rc6_mode = GEN7_RC_CTL_TO_MODE;
5551
5552 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5553
5554 /* 4 Program defaults and thresholds for RPS*/
5555 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5556 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5557 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5558 I915_WRITE(GEN6_RP_UP_EI, 66000);
5559 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5560
5561 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5562
5563 /* 5: Enable RPS */
5564 I915_WRITE(GEN6_RP_CONTROL,
5565 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5566 GEN6_RP_MEDIA_IS_GFX |
5567 GEN6_RP_ENABLE |
5568 GEN6_RP_UP_BUSY_AVG |
5569 GEN6_RP_DOWN_IDLE_AVG);
5570
5571 /* Setting Fixed Bias */
5572 val = VLV_OVERRIDE_EN |
5573 VLV_SOC_TDP_EN |
5574 CHV_BIAS_CPU_50_SOC_50;
5575 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5576
5577 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5578
5579 /* RPS code assumes GPLL is used */
5580 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5581
5582 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5583 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5584
5585 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5586 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5587 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5588 dev_priv->rps.cur_freq);
5589
5590 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5591 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5592 dev_priv->rps.efficient_freq);
5593
5594 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5595
5596 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5597 }
5598
5599 static void valleyview_enable_rps(struct drm_device *dev)
5600 {
5601 struct drm_i915_private *dev_priv = dev->dev_private;
5602 struct intel_engine_cs *ring;
5603 u32 gtfifodbg, val, rc6_mode = 0;
5604 int i;
5605
5606 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5607
5608 valleyview_check_pctx(dev_priv);
5609
5610 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5611 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5612 gtfifodbg);
5613 I915_WRITE(GTFIFODBG, gtfifodbg);
5614 }
5615
5616 /* If VLV, Forcewake all wells, else re-direct to regular path */
5617 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5618
5619 /* Disable RC states. */
5620 I915_WRITE(GEN6_RC_CONTROL, 0);
5621
5622 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5623 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5624 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5625 I915_WRITE(GEN6_RP_UP_EI, 66000);
5626 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5627
5628 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5629
5630 I915_WRITE(GEN6_RP_CONTROL,
5631 GEN6_RP_MEDIA_TURBO |
5632 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5633 GEN6_RP_MEDIA_IS_GFX |
5634 GEN6_RP_ENABLE |
5635 GEN6_RP_UP_BUSY_AVG |
5636 GEN6_RP_DOWN_IDLE_CONT);
5637
5638 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5639 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5640 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5641
5642 for_each_ring(ring, dev_priv, i)
5643 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5644
5645 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5646
5647 /* allows RC6 residency counter to work */
5648 I915_WRITE(VLV_COUNTER_CONTROL,
5649 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5650 VLV_RENDER_RC0_COUNT_EN |
5651 VLV_MEDIA_RC6_COUNT_EN |
5652 VLV_RENDER_RC6_COUNT_EN));
5653
5654 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5655 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5656
5657 intel_print_rc6_info(dev, rc6_mode);
5658
5659 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5660
5661 /* Setting Fixed Bias */
5662 val = VLV_OVERRIDE_EN |
5663 VLV_SOC_TDP_EN |
5664 VLV_BIAS_CPU_125_SOC_875;
5665 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5666
5667 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5668
5669 /* RPS code assumes GPLL is used */
5670 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5671
5672 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5673 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5674
5675 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5676 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5677 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5678 dev_priv->rps.cur_freq);
5679
5680 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5681 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5682 dev_priv->rps.efficient_freq);
5683
5684 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5685
5686 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5687 }
5688
5689 static unsigned long intel_pxfreq(u32 vidfreq)
5690 {
5691 unsigned long freq;
5692 int div = (vidfreq & 0x3f0000) >> 16;
5693 int post = (vidfreq & 0x3000) >> 12;
5694 int pre = (vidfreq & 0x7);
5695
5696 if (!pre)
5697 return 0;
5698
5699 freq = ((div * 133333) / ((1<<post) * pre));
5700
5701 return freq;
5702 }
5703
5704 static const struct cparams {
5705 u16 i;
5706 u16 t;
5707 u16 m;
5708 u16 c;
5709 } cparams[] = {
5710 { 1, 1333, 301, 28664 },
5711 { 1, 1066, 294, 24460 },
5712 { 1, 800, 294, 25192 },
5713 { 0, 1333, 276, 27605 },
5714 { 0, 1066, 276, 27605 },
5715 { 0, 800, 231, 23784 },
5716 };
5717
5718 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5719 {
5720 u64 total_count, diff, ret;
5721 u32 count1, count2, count3, m = 0, c = 0;
5722 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5723 int i;
5724
5725 assert_spin_locked(&mchdev_lock);
5726
5727 diff1 = now - dev_priv->ips.last_time1;
5728
5729 /* Prevent division-by-zero if we are asking too fast.
5730 * Also, we don't get interesting results if we are polling
5731 * faster than once in 10ms, so just return the saved value
5732 * in such cases.
5733 */
5734 if (diff1 <= 10)
5735 return dev_priv->ips.chipset_power;
5736
5737 count1 = I915_READ(DMIEC);
5738 count2 = I915_READ(DDREC);
5739 count3 = I915_READ(CSIEC);
5740
5741 total_count = count1 + count2 + count3;
5742
5743 /* FIXME: handle per-counter overflow */
5744 if (total_count < dev_priv->ips.last_count1) {
5745 diff = ~0UL - dev_priv->ips.last_count1;
5746 diff += total_count;
5747 } else {
5748 diff = total_count - dev_priv->ips.last_count1;
5749 }
5750
5751 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5752 if (cparams[i].i == dev_priv->ips.c_m &&
5753 cparams[i].t == dev_priv->ips.r_t) {
5754 m = cparams[i].m;
5755 c = cparams[i].c;
5756 break;
5757 }
5758 }
5759
5760 diff = div_u64(diff, diff1);
5761 ret = ((m * diff) + c);
5762 ret = div_u64(ret, 10);
5763
5764 dev_priv->ips.last_count1 = total_count;
5765 dev_priv->ips.last_time1 = now;
5766
5767 dev_priv->ips.chipset_power = ret;
5768
5769 return ret;
5770 }
5771
5772 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5773 {
5774 struct drm_device *dev = dev_priv->dev;
5775 unsigned long val;
5776
5777 if (INTEL_INFO(dev)->gen != 5)
5778 return 0;
5779
5780 spin_lock_irq(&mchdev_lock);
5781
5782 val = __i915_chipset_val(dev_priv);
5783
5784 spin_unlock_irq(&mchdev_lock);
5785
5786 return val;
5787 }
5788
5789 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5790 {
5791 unsigned long m, x, b;
5792 u32 tsfs;
5793
5794 tsfs = I915_READ(TSFS);
5795
5796 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5797 x = I915_READ8(TR1);
5798
5799 b = tsfs & TSFS_INTR_MASK;
5800
5801 return ((m * x) / 127) - b;
5802 }
5803
5804 static int _pxvid_to_vd(u8 pxvid)
5805 {
5806 if (pxvid == 0)
5807 return 0;
5808
5809 if (pxvid >= 8 && pxvid < 31)
5810 pxvid = 31;
5811
5812 return (pxvid + 2) * 125;
5813 }
5814
5815 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5816 {
5817 struct drm_device *dev = dev_priv->dev;
5818 const int vd = _pxvid_to_vd(pxvid);
5819 const int vm = vd - 1125;
5820
5821 if (INTEL_INFO(dev)->is_mobile)
5822 return vm > 0 ? vm : 0;
5823
5824 return vd;
5825 }
5826
5827 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5828 {
5829 u64 now, diff, diffms;
5830 u32 count;
5831
5832 assert_spin_locked(&mchdev_lock);
5833
5834 now = ktime_get_raw_ns();
5835 diffms = now - dev_priv->ips.last_time2;
5836 do_div(diffms, NSEC_PER_MSEC);
5837
5838 /* Don't divide by 0 */
5839 if (!diffms)
5840 return;
5841
5842 count = I915_READ(GFXEC);
5843
5844 if (count < dev_priv->ips.last_count2) {
5845 diff = ~0UL - dev_priv->ips.last_count2;
5846 diff += count;
5847 } else {
5848 diff = count - dev_priv->ips.last_count2;
5849 }
5850
5851 dev_priv->ips.last_count2 = count;
5852 dev_priv->ips.last_time2 = now;
5853
5854 /* More magic constants... */
5855 diff = diff * 1181;
5856 diff = div_u64(diff, diffms * 10);
5857 dev_priv->ips.gfx_power = diff;
5858 }
5859
5860 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5861 {
5862 struct drm_device *dev = dev_priv->dev;
5863
5864 if (INTEL_INFO(dev)->gen != 5)
5865 return;
5866
5867 spin_lock_irq(&mchdev_lock);
5868
5869 __i915_update_gfx_val(dev_priv);
5870
5871 spin_unlock_irq(&mchdev_lock);
5872 }
5873
5874 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5875 {
5876 unsigned long t, corr, state1, corr2, state2;
5877 u32 pxvid, ext_v;
5878
5879 assert_spin_locked(&mchdev_lock);
5880
5881 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5882 pxvid = (pxvid >> 24) & 0x7f;
5883 ext_v = pvid_to_extvid(dev_priv, pxvid);
5884
5885 state1 = ext_v;
5886
5887 t = i915_mch_val(dev_priv);
5888
5889 /* Revel in the empirically derived constants */
5890
5891 /* Correction factor in 1/100000 units */
5892 if (t > 80)
5893 corr = ((t * 2349) + 135940);
5894 else if (t >= 50)
5895 corr = ((t * 964) + 29317);
5896 else /* < 50 */
5897 corr = ((t * 301) + 1004);
5898
5899 corr = corr * ((150142 * state1) / 10000 - 78642);
5900 corr /= 100000;
5901 corr2 = (corr * dev_priv->ips.corr);
5902
5903 state2 = (corr2 * state1) / 10000;
5904 state2 /= 100; /* convert to mW */
5905
5906 __i915_update_gfx_val(dev_priv);
5907
5908 return dev_priv->ips.gfx_power + state2;
5909 }
5910
5911 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5912 {
5913 struct drm_device *dev = dev_priv->dev;
5914 unsigned long val;
5915
5916 if (INTEL_INFO(dev)->gen != 5)
5917 return 0;
5918
5919 spin_lock_irq(&mchdev_lock);
5920
5921 val = __i915_gfx_val(dev_priv);
5922
5923 spin_unlock_irq(&mchdev_lock);
5924
5925 return val;
5926 }
5927
5928 /**
5929 * i915_read_mch_val - return value for IPS use
5930 *
5931 * Calculate and return a value for the IPS driver to use when deciding whether
5932 * we have thermal and power headroom to increase CPU or GPU power budget.
5933 */
5934 unsigned long i915_read_mch_val(void)
5935 {
5936 struct drm_i915_private *dev_priv;
5937 unsigned long chipset_val, graphics_val, ret = 0;
5938
5939 spin_lock_irq(&mchdev_lock);
5940 if (!i915_mch_dev)
5941 goto out_unlock;
5942 dev_priv = i915_mch_dev;
5943
5944 chipset_val = __i915_chipset_val(dev_priv);
5945 graphics_val = __i915_gfx_val(dev_priv);
5946
5947 ret = chipset_val + graphics_val;
5948
5949 out_unlock:
5950 spin_unlock_irq(&mchdev_lock);
5951
5952 return ret;
5953 }
5954 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5955
5956 /**
5957 * i915_gpu_raise - raise GPU frequency limit
5958 *
5959 * Raise the limit; IPS indicates we have thermal headroom.
5960 */
5961 bool i915_gpu_raise(void)
5962 {
5963 struct drm_i915_private *dev_priv;
5964 bool ret = true;
5965
5966 spin_lock_irq(&mchdev_lock);
5967 if (!i915_mch_dev) {
5968 ret = false;
5969 goto out_unlock;
5970 }
5971 dev_priv = i915_mch_dev;
5972
5973 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5974 dev_priv->ips.max_delay--;
5975
5976 out_unlock:
5977 spin_unlock_irq(&mchdev_lock);
5978
5979 return ret;
5980 }
5981 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5982
5983 /**
5984 * i915_gpu_lower - lower GPU frequency limit
5985 *
5986 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5987 * frequency maximum.
5988 */
5989 bool i915_gpu_lower(void)
5990 {
5991 struct drm_i915_private *dev_priv;
5992 bool ret = true;
5993
5994 spin_lock_irq(&mchdev_lock);
5995 if (!i915_mch_dev) {
5996 ret = false;
5997 goto out_unlock;
5998 }
5999 dev_priv = i915_mch_dev;
6000
6001 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6002 dev_priv->ips.max_delay++;
6003
6004 out_unlock:
6005 spin_unlock_irq(&mchdev_lock);
6006
6007 return ret;
6008 }
6009 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6010
6011 /**
6012 * i915_gpu_busy - indicate GPU business to IPS
6013 *
6014 * Tell the IPS driver whether or not the GPU is busy.
6015 */
6016 bool i915_gpu_busy(void)
6017 {
6018 struct drm_i915_private *dev_priv;
6019 struct intel_engine_cs *ring;
6020 bool ret = false;
6021 int i;
6022
6023 spin_lock_irq(&mchdev_lock);
6024 if (!i915_mch_dev)
6025 goto out_unlock;
6026 dev_priv = i915_mch_dev;
6027
6028 for_each_ring(ring, dev_priv, i)
6029 ret |= !list_empty(&ring->request_list);
6030
6031 out_unlock:
6032 spin_unlock_irq(&mchdev_lock);
6033
6034 return ret;
6035 }
6036 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6037
6038 /**
6039 * i915_gpu_turbo_disable - disable graphics turbo
6040 *
6041 * Disable graphics turbo by resetting the max frequency and setting the
6042 * current frequency to the default.
6043 */
6044 bool i915_gpu_turbo_disable(void)
6045 {
6046 struct drm_i915_private *dev_priv;
6047 bool ret = true;
6048
6049 spin_lock_irq(&mchdev_lock);
6050 if (!i915_mch_dev) {
6051 ret = false;
6052 goto out_unlock;
6053 }
6054 dev_priv = i915_mch_dev;
6055
6056 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6057
6058 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6059 ret = false;
6060
6061 out_unlock:
6062 spin_unlock_irq(&mchdev_lock);
6063
6064 return ret;
6065 }
6066 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6067
6068 /**
6069 * Tells the intel_ips driver that the i915 driver is now loaded, if
6070 * IPS got loaded first.
6071 *
6072 * This awkward dance is so that neither module has to depend on the
6073 * other in order for IPS to do the appropriate communication of
6074 * GPU turbo limits to i915.
6075 */
6076 static void
6077 ips_ping_for_i915_load(void)
6078 {
6079 #ifndef __NetBSD__ /* XXX IPS GPU turbo limits what? */
6080 void (*link)(void);
6081
6082 link = symbol_get(ips_link_to_i915_driver);
6083 if (link) {
6084 link();
6085 symbol_put(ips_link_to_i915_driver);
6086 }
6087 #endif
6088 }
6089
6090 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6091 {
6092 /* We only register the i915 ips part with intel-ips once everything is
6093 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6094 spin_lock_irq(&mchdev_lock);
6095 i915_mch_dev = dev_priv;
6096 spin_unlock_irq(&mchdev_lock);
6097
6098 ips_ping_for_i915_load();
6099 }
6100
6101 void intel_gpu_ips_teardown(void)
6102 {
6103 spin_lock_irq(&mchdev_lock);
6104 i915_mch_dev = NULL;
6105 spin_unlock_irq(&mchdev_lock);
6106 }
6107
6108 static void intel_init_emon(struct drm_device *dev)
6109 {
6110 struct drm_i915_private *dev_priv = dev->dev_private;
6111 u32 lcfuse;
6112 u8 pxw[16];
6113 int i;
6114
6115 /* Disable to program */
6116 I915_WRITE(ECR, 0);
6117 POSTING_READ(ECR);
6118
6119 /* Program energy weights for various events */
6120 I915_WRITE(SDEW, 0x15040d00);
6121 I915_WRITE(CSIEW0, 0x007f0000);
6122 I915_WRITE(CSIEW1, 0x1e220004);
6123 I915_WRITE(CSIEW2, 0x04000004);
6124
6125 for (i = 0; i < 5; i++)
6126 I915_WRITE(PEW(i), 0);
6127 for (i = 0; i < 3; i++)
6128 I915_WRITE(DEW(i), 0);
6129
6130 /* Program P-state weights to account for frequency power adjustment */
6131 for (i = 0; i < 16; i++) {
6132 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6133 unsigned long freq = intel_pxfreq(pxvidfreq);
6134 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6135 PXVFREQ_PX_SHIFT;
6136 unsigned long val;
6137
6138 val = vid * vid;
6139 val *= (freq / 1000);
6140 val *= 255;
6141 val /= (127*127*900);
6142 if (val > 0xff)
6143 DRM_ERROR("bad pxval: %ld\n", val);
6144 pxw[i] = val;
6145 }
6146 /* Render standby states get 0 weight */
6147 pxw[14] = 0;
6148 pxw[15] = 0;
6149
6150 for (i = 0; i < 4; i++) {
6151 u32 val = ((u32)pxw[i*4] << 24) | ((u32)pxw[(i*4)+1] << 16) |
6152 ((u32)pxw[(i*4)+2] << 8) | ((u32)pxw[(i*4)+3]);
6153 I915_WRITE(PXW(i), val);
6154 }
6155
6156 /* Adjust magic regs to magic values (more experimental results) */
6157 I915_WRITE(OGW0, 0);
6158 I915_WRITE(OGW1, 0);
6159 I915_WRITE(EG0, 0x00007f00);
6160 I915_WRITE(EG1, 0x0000000e);
6161 I915_WRITE(EG2, 0x000e0000);
6162 I915_WRITE(EG3, 0x68000300);
6163 I915_WRITE(EG4, 0x42000000);
6164 I915_WRITE(EG5, 0x00140031);
6165 I915_WRITE(EG6, 0);
6166 I915_WRITE(EG7, 0);
6167
6168 for (i = 0; i < 8; i++)
6169 I915_WRITE(PXWL(i), 0);
6170
6171 /* Enable PMON + select events */
6172 I915_WRITE(ECR, 0x80000019);
6173
6174 lcfuse = I915_READ(LCFUSE02);
6175
6176 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6177 }
6178
6179 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
6180 {
6181 return !I915_READ(GEN8_RC6_CTX_INFO);
6182 }
6183
6184 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
6185 {
6186 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
6187 return;
6188
6189 if (i915_rc6_ctx_corrupted(i915)) {
6190 DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
6191 i915->rps.ctx_corrupted = true;
6192 intel_runtime_pm_get(i915);
6193 }
6194 }
6195
6196 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
6197 {
6198 if (i915->rps.ctx_corrupted) {
6199 intel_runtime_pm_put(i915);
6200 i915->rps.ctx_corrupted = false;
6201 }
6202 }
6203
6204 /**
6205 * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
6206 * @i915: i915 device
6207 *
6208 * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
6209 */
6210 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
6211 {
6212 if (i915->rps.ctx_corrupted)
6213 intel_runtime_pm_put(i915);
6214 }
6215
6216 /**
6217 * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
6218 * @i915: i915 device
6219 *
6220 * Perform any steps needed to re-init the RC6 CTX WA after system resume.
6221 */
6222 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
6223 {
6224 if (!i915->rps.ctx_corrupted)
6225 return;
6226
6227 if (i915_rc6_ctx_corrupted(i915)) {
6228 intel_runtime_pm_get(i915);
6229 return;
6230 }
6231
6232 DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
6233 i915->rps.ctx_corrupted = false;
6234 }
6235
6236 static void intel_disable_rc6(struct drm_device *dev);
6237
6238 /**
6239 * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
6240 * @i915: i915 device
6241 *
6242 * Check if an RC6 CTX corruption has happened since the last check and if so
6243 * disable RC6 and runtime power management.
6244 *
6245 * Return false if no context corruption has happened since the last call of
6246 * this function, true otherwise.
6247 */
6248 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
6249 {
6250 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
6251 return false;
6252
6253 if (i915->rps.ctx_corrupted)
6254 return false;
6255
6256 if (!i915_rc6_ctx_corrupted(i915))
6257 return false;
6258
6259 DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
6260
6261 intel_disable_rc6(i915->dev);
6262 i915->rps.ctx_corrupted = true;
6263 intel_runtime_pm_get_noresume(i915);
6264
6265 return true;
6266 }
6267
6268 void intel_init_gt_powersave(struct drm_device *dev)
6269 {
6270 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6271
6272 i915_rc6_ctx_wa_init(to_i915(dev));
6273
6274 if (IS_CHERRYVIEW(dev))
6275 cherryview_init_gt_powersave(dev);
6276 else if (IS_VALLEYVIEW(dev))
6277 valleyview_init_gt_powersave(dev);
6278 }
6279
6280 void intel_cleanup_gt_powersave(struct drm_device *dev)
6281 {
6282 if (IS_CHERRYVIEW(dev))
6283 return;
6284 else if (IS_VALLEYVIEW(dev))
6285 valleyview_cleanup_gt_powersave(dev);
6286
6287 i915_rc6_ctx_wa_cleanup(to_i915(dev));
6288 }
6289
6290 static void gen6_suspend_rps(struct drm_device *dev)
6291 {
6292 struct drm_i915_private *dev_priv = dev->dev_private;
6293
6294 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6295
6296 gen6_disable_rps_interrupts(dev);
6297 }
6298
6299 /**
6300 * intel_suspend_gt_powersave - suspend PM work and helper threads
6301 * @dev: drm device
6302 *
6303 * We don't want to disable RC6 or other features here, we just want
6304 * to make sure any work we've queued has finished and won't bother
6305 * us while we're suspended.
6306 */
6307 void intel_suspend_gt_powersave(struct drm_device *dev)
6308 {
6309 struct drm_i915_private *dev_priv = dev->dev_private;
6310
6311 if (INTEL_INFO(dev)->gen < 6)
6312 return;
6313
6314 gen6_suspend_rps(dev);
6315
6316 /* Force GPU to min freq during suspend */
6317 gen6_rps_idle(dev_priv);
6318 }
6319
6320 static void __intel_disable_rc6(struct drm_device *dev)
6321 {
6322 if (INTEL_INFO(dev)->gen >= 9)
6323 gen9_disable_rc6(dev);
6324 else if (IS_CHERRYVIEW(dev))
6325 cherryview_disable_rc6(dev);
6326 else if (IS_VALLEYVIEW(dev))
6327 valleyview_disable_rc6(dev);
6328 else
6329 gen6_disable_rc6(dev);
6330 }
6331
6332 static void intel_disable_rc6(struct drm_device *dev)
6333 {
6334 struct drm_i915_private *dev_priv = to_i915(dev);
6335
6336 mutex_lock(&dev_priv->rps.hw_lock);
6337 __intel_disable_rc6(dev);
6338 mutex_unlock(&dev_priv->rps.hw_lock);
6339 }
6340
6341 static void intel_disable_rps(struct drm_device *dev)
6342 {
6343 if (IS_CHERRYVIEW(dev) || IS_VALLEYVIEW(dev))
6344 return;
6345
6346 if (INTEL_INFO(dev)->gen >= 9)
6347 gen9_disable_rps(dev);
6348 else
6349 gen6_disable_rps(dev);
6350 }
6351
6352 void intel_disable_gt_powersave(struct drm_device *dev)
6353 {
6354 struct drm_i915_private *dev_priv = dev->dev_private;
6355
6356 if (IS_IRONLAKE_M(dev)) {
6357 ironlake_disable_drps(dev);
6358 } else if (INTEL_INFO(dev)->gen >= 6) {
6359 intel_suspend_gt_powersave(dev);
6360
6361 mutex_lock(&dev_priv->rps.hw_lock);
6362
6363 __intel_disable_rc6(dev);
6364 intel_disable_rps(dev);
6365
6366 dev_priv->rps.enabled = false;
6367
6368 mutex_unlock(&dev_priv->rps.hw_lock);
6369 }
6370 }
6371
6372 static void intel_gen6_powersave_work(struct work_struct *work)
6373 {
6374 struct drm_i915_private *dev_priv =
6375 container_of(work, struct drm_i915_private,
6376 rps.delayed_resume_work.work);
6377 struct drm_device *dev = dev_priv->dev;
6378
6379 mutex_lock(&dev_priv->rps.hw_lock);
6380
6381 gen6_reset_rps_interrupts(dev);
6382
6383 if (IS_CHERRYVIEW(dev)) {
6384 cherryview_enable_rps(dev);
6385 } else if (IS_VALLEYVIEW(dev)) {
6386 valleyview_enable_rps(dev);
6387 } else if (INTEL_INFO(dev)->gen >= 9) {
6388 gen9_enable_rc6(dev);
6389 gen9_enable_rps(dev);
6390 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6391 __gen6_update_ring_freq(dev);
6392 } else if (IS_BROADWELL(dev)) {
6393 gen8_enable_rps(dev);
6394 __gen6_update_ring_freq(dev);
6395 } else {
6396 gen6_enable_rps(dev);
6397 __gen6_update_ring_freq(dev);
6398 }
6399
6400 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6401 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6402
6403 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6404 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6405
6406 dev_priv->rps.enabled = true;
6407
6408 gen6_enable_rps_interrupts(dev);
6409
6410 mutex_unlock(&dev_priv->rps.hw_lock);
6411
6412 intel_runtime_pm_put(dev_priv);
6413 }
6414
6415 void intel_enable_gt_powersave(struct drm_device *dev)
6416 {
6417 struct drm_i915_private *dev_priv = dev->dev_private;
6418
6419 /* Powersaving is controlled by the host when inside a VM */
6420 if (intel_vgpu_active(dev))
6421 return;
6422
6423 if (IS_IRONLAKE_M(dev)) {
6424 mutex_lock(&dev->struct_mutex);
6425 ironlake_enable_drps(dev);
6426 intel_init_emon(dev);
6427 mutex_unlock(&dev->struct_mutex);
6428 } else if (INTEL_INFO(dev)->gen >= 6) {
6429 /*
6430 * PCU communication is slow and this doesn't need to be
6431 * done at any specific time, so do this out of our fast path
6432 * to make resume and init faster.
6433 *
6434 * We depend on the HW RC6 power context save/restore
6435 * mechanism when entering D3 through runtime PM suspend. So
6436 * disable RPM until RPS/RC6 is properly setup. We can only
6437 * get here via the driver load/system resume/runtime resume
6438 * paths, so the _noresume version is enough (and in case of
6439 * runtime resume it's necessary).
6440 */
6441 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6442 round_jiffies_up_relative(HZ)))
6443 intel_runtime_pm_get_noresume(dev_priv);
6444 }
6445 }
6446
6447 void intel_reset_gt_powersave(struct drm_device *dev)
6448 {
6449 struct drm_i915_private *dev_priv = dev->dev_private;
6450
6451 if (INTEL_INFO(dev)->gen < 6)
6452 return;
6453
6454 gen6_suspend_rps(dev);
6455 dev_priv->rps.enabled = false;
6456 }
6457
6458 static void ibx_init_clock_gating(struct drm_device *dev)
6459 {
6460 struct drm_i915_private *dev_priv = dev->dev_private;
6461
6462 /*
6463 * On Ibex Peak and Cougar Point, we need to disable clock
6464 * gating for the panel power sequencer or it will fail to
6465 * start up when no ports are active.
6466 */
6467 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6468 }
6469
6470 static void g4x_disable_trickle_feed(struct drm_device *dev)
6471 {
6472 struct drm_i915_private *dev_priv = dev->dev_private;
6473 enum pipe pipe;
6474
6475 for_each_pipe(dev_priv, pipe) {
6476 I915_WRITE(DSPCNTR(pipe),
6477 I915_READ(DSPCNTR(pipe)) |
6478 DISPPLANE_TRICKLE_FEED_DISABLE);
6479
6480 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6481 POSTING_READ(DSPSURF(pipe));
6482 }
6483 }
6484
6485 static void ilk_init_lp_watermarks(struct drm_device *dev)
6486 {
6487 struct drm_i915_private *dev_priv = dev->dev_private;
6488
6489 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6490 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6491 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6492
6493 /*
6494 * Don't touch WM1S_LP_EN here.
6495 * Doing so could cause underruns.
6496 */
6497 }
6498
6499 static void ironlake_init_clock_gating(struct drm_device *dev)
6500 {
6501 struct drm_i915_private *dev_priv = dev->dev_private;
6502 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6503
6504 /*
6505 * Required for FBC
6506 * WaFbcDisableDpfcClockGating:ilk
6507 */
6508 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6509 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6510 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6511
6512 I915_WRITE(PCH_3DCGDIS0,
6513 MARIUNIT_CLOCK_GATE_DISABLE |
6514 SVSMUNIT_CLOCK_GATE_DISABLE);
6515 I915_WRITE(PCH_3DCGDIS1,
6516 VFMUNIT_CLOCK_GATE_DISABLE);
6517
6518 /*
6519 * According to the spec the following bits should be set in
6520 * order to enable memory self-refresh
6521 * The bit 22/21 of 0x42004
6522 * The bit 5 of 0x42020
6523 * The bit 15 of 0x45000
6524 */
6525 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6526 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6527 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6528 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6529 I915_WRITE(DISP_ARB_CTL,
6530 (I915_READ(DISP_ARB_CTL) |
6531 DISP_FBC_WM_DIS));
6532
6533 ilk_init_lp_watermarks(dev);
6534
6535 /*
6536 * Based on the document from hardware guys the following bits
6537 * should be set unconditionally in order to enable FBC.
6538 * The bit 22 of 0x42000
6539 * The bit 22 of 0x42004
6540 * The bit 7,8,9 of 0x42020.
6541 */
6542 if (IS_IRONLAKE_M(dev)) {
6543 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6544 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6545 I915_READ(ILK_DISPLAY_CHICKEN1) |
6546 ILK_FBCQ_DIS);
6547 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6548 I915_READ(ILK_DISPLAY_CHICKEN2) |
6549 ILK_DPARB_GATE);
6550 }
6551
6552 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6553
6554 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6555 I915_READ(ILK_DISPLAY_CHICKEN2) |
6556 ILK_ELPIN_409_SELECT);
6557 I915_WRITE(_3D_CHICKEN2,
6558 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6559 _3D_CHICKEN2_WM_READ_PIPELINED);
6560
6561 /* WaDisableRenderCachePipelinedFlush:ilk */
6562 I915_WRITE(CACHE_MODE_0,
6563 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6564
6565 /* WaDisable_RenderCache_OperationalFlush:ilk */
6566 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6567
6568 g4x_disable_trickle_feed(dev);
6569
6570 ibx_init_clock_gating(dev);
6571 }
6572
6573 static void cpt_init_clock_gating(struct drm_device *dev)
6574 {
6575 struct drm_i915_private *dev_priv = dev->dev_private;
6576 int pipe;
6577 uint32_t val;
6578
6579 /*
6580 * On Ibex Peak and Cougar Point, we need to disable clock
6581 * gating for the panel power sequencer or it will fail to
6582 * start up when no ports are active.
6583 */
6584 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6585 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6586 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6587 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6588 DPLS_EDP_PPS_FIX_DIS);
6589 /* The below fixes the weird display corruption, a few pixels shifted
6590 * downward, on (only) LVDS of some HP laptops with IVY.
6591 */
6592 for_each_pipe(dev_priv, pipe) {
6593 val = I915_READ(TRANS_CHICKEN2(pipe));
6594 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6595 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6596 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6597 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6598 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6599 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6600 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6601 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6602 }
6603 /* WADP0ClockGatingDisable */
6604 for_each_pipe(dev_priv, pipe) {
6605 I915_WRITE(TRANS_CHICKEN1(pipe),
6606 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6607 }
6608 }
6609
6610 static void gen6_check_mch_setup(struct drm_device *dev)
6611 {
6612 struct drm_i915_private *dev_priv = dev->dev_private;
6613 uint32_t tmp;
6614
6615 tmp = I915_READ(MCH_SSKPD);
6616 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6617 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6618 tmp);
6619 }
6620
6621 static void gen6_init_clock_gating(struct drm_device *dev)
6622 {
6623 struct drm_i915_private *dev_priv = dev->dev_private;
6624 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6625
6626 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6627
6628 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6629 I915_READ(ILK_DISPLAY_CHICKEN2) |
6630 ILK_ELPIN_409_SELECT);
6631
6632 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6633 I915_WRITE(_3D_CHICKEN,
6634 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6635
6636 /* WaDisable_RenderCache_OperationalFlush:snb */
6637 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6638
6639 /*
6640 * BSpec recoomends 8x4 when MSAA is used,
6641 * however in practice 16x4 seems fastest.
6642 *
6643 * Note that PS/WM thread counts depend on the WIZ hashing
6644 * disable bit, which we don't touch here, but it's good
6645 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6646 */
6647 I915_WRITE(GEN6_GT_MODE,
6648 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6649
6650 ilk_init_lp_watermarks(dev);
6651
6652 I915_WRITE(CACHE_MODE_0,
6653 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6654
6655 I915_WRITE(GEN6_UCGCTL1,
6656 I915_READ(GEN6_UCGCTL1) |
6657 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6658 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6659
6660 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6661 * gating disable must be set. Failure to set it results in
6662 * flickering pixels due to Z write ordering failures after
6663 * some amount of runtime in the Mesa "fire" demo, and Unigine
6664 * Sanctuary and Tropics, and apparently anything else with
6665 * alpha test or pixel discard.
6666 *
6667 * According to the spec, bit 11 (RCCUNIT) must also be set,
6668 * but we didn't debug actual testcases to find it out.
6669 *
6670 * WaDisableRCCUnitClockGating:snb
6671 * WaDisableRCPBUnitClockGating:snb
6672 */
6673 I915_WRITE(GEN6_UCGCTL2,
6674 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6675 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6676
6677 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6678 I915_WRITE(_3D_CHICKEN3,
6679 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6680
6681 /*
6682 * Bspec says:
6683 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6684 * 3DSTATE_SF number of SF output attributes is more than 16."
6685 */
6686 I915_WRITE(_3D_CHICKEN3,
6687 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6688
6689 /*
6690 * According to the spec the following bits should be
6691 * set in order to enable memory self-refresh and fbc:
6692 * The bit21 and bit22 of 0x42000
6693 * The bit21 and bit22 of 0x42004
6694 * The bit5 and bit7 of 0x42020
6695 * The bit14 of 0x70180
6696 * The bit14 of 0x71180
6697 *
6698 * WaFbcAsynchFlipDisableFbcQueue:snb
6699 */
6700 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6701 I915_READ(ILK_DISPLAY_CHICKEN1) |
6702 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6703 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6704 I915_READ(ILK_DISPLAY_CHICKEN2) |
6705 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6706 I915_WRITE(ILK_DSPCLK_GATE_D,
6707 I915_READ(ILK_DSPCLK_GATE_D) |
6708 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6709 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6710
6711 g4x_disable_trickle_feed(dev);
6712
6713 cpt_init_clock_gating(dev);
6714
6715 gen6_check_mch_setup(dev);
6716 }
6717
6718 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6719 {
6720 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6721
6722 /*
6723 * WaVSThreadDispatchOverride:ivb,vlv
6724 *
6725 * This actually overrides the dispatch
6726 * mode for all thread types.
6727 */
6728 reg &= ~GEN7_FF_SCHED_MASK;
6729 reg |= GEN7_FF_TS_SCHED_HW;
6730 reg |= GEN7_FF_VS_SCHED_HW;
6731 reg |= GEN7_FF_DS_SCHED_HW;
6732
6733 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6734 }
6735
6736 static void lpt_init_clock_gating(struct drm_device *dev)
6737 {
6738 struct drm_i915_private *dev_priv = dev->dev_private;
6739
6740 /*
6741 * TODO: this bit should only be enabled when really needed, then
6742 * disabled when not needed anymore in order to save power.
6743 */
6744 if (HAS_PCH_LPT_LP(dev))
6745 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6746 I915_READ(SOUTH_DSPCLK_GATE_D) |
6747 PCH_LP_PARTITION_LEVEL_DISABLE);
6748
6749 /* WADPOClockGatingDisable:hsw */
6750 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6751 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6752 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6753 }
6754
6755 static void lpt_suspend_hw(struct drm_device *dev)
6756 {
6757 struct drm_i915_private *dev_priv = dev->dev_private;
6758
6759 if (HAS_PCH_LPT_LP(dev)) {
6760 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6761
6762 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6763 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6764 }
6765 }
6766
6767 static void broadwell_init_clock_gating(struct drm_device *dev)
6768 {
6769 struct drm_i915_private *dev_priv = dev->dev_private;
6770 enum pipe pipe;
6771 uint32_t misccpctl;
6772
6773 ilk_init_lp_watermarks(dev);
6774
6775 /* WaSwitchSolVfFArbitrationPriority:bdw */
6776 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6777
6778 /* WaPsrDPAMaskVBlankInSRD:bdw */
6779 I915_WRITE(CHICKEN_PAR1_1,
6780 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6781
6782 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6783 for_each_pipe(dev_priv, pipe) {
6784 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6785 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6786 BDW_DPRS_MASK_VBLANK_SRD);
6787 }
6788
6789 /* WaVSRefCountFullforceMissDisable:bdw */
6790 /* WaDSRefCountFullforceMissDisable:bdw */
6791 I915_WRITE(GEN7_FF_THREAD_MODE,
6792 I915_READ(GEN7_FF_THREAD_MODE) &
6793 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6794
6795 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6796 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6797
6798 /* WaDisableSDEUnitClockGating:bdw */
6799 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6800 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6801
6802 /*
6803 * WaProgramL3SqcReg1Default:bdw
6804 * WaTempDisableDOPClkGating:bdw
6805 */
6806 misccpctl = I915_READ(GEN7_MISCCPCTL);
6807 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6808 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6809 /*
6810 * Wait at least 100 clocks before re-enabling clock gating. See
6811 * the definition of L3SQCREG1 in BSpec.
6812 */
6813 POSTING_READ(GEN8_L3SQCREG1);
6814 udelay(1);
6815 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6816
6817 /*
6818 * WaGttCachingOffByDefault:bdw
6819 * GTT cache may not work with big pages, so if those
6820 * are ever enabled GTT cache may need to be disabled.
6821 */
6822 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6823
6824 lpt_init_clock_gating(dev);
6825 }
6826
6827 static void haswell_init_clock_gating(struct drm_device *dev)
6828 {
6829 struct drm_i915_private *dev_priv = dev->dev_private;
6830
6831 ilk_init_lp_watermarks(dev);
6832
6833 /* L3 caching of data atomics doesn't work -- disable it. */
6834 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6835 I915_WRITE(HSW_ROW_CHICKEN3,
6836 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6837
6838 /* This is required by WaCatErrorRejectionIssue:hsw */
6839 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6840 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6841 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6842
6843 /* WaVSRefCountFullforceMissDisable:hsw */
6844 I915_WRITE(GEN7_FF_THREAD_MODE,
6845 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6846
6847 /* WaDisable_RenderCache_OperationalFlush:hsw */
6848 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6849
6850 /* enable HiZ Raw Stall Optimization */
6851 I915_WRITE(CACHE_MODE_0_GEN7,
6852 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6853
6854 /* WaDisable4x2SubspanOptimization:hsw */
6855 I915_WRITE(CACHE_MODE_1,
6856 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6857
6858 /*
6859 * BSpec recommends 8x4 when MSAA is used,
6860 * however in practice 16x4 seems fastest.
6861 *
6862 * Note that PS/WM thread counts depend on the WIZ hashing
6863 * disable bit, which we don't touch here, but it's good
6864 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6865 */
6866 I915_WRITE(GEN7_GT_MODE,
6867 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6868
6869 /* WaSampleCChickenBitEnable:hsw */
6870 I915_WRITE(HALF_SLICE_CHICKEN3,
6871 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6872
6873 /* WaSwitchSolVfFArbitrationPriority:hsw */
6874 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6875
6876 /* WaRsPkgCStateDisplayPMReq:hsw */
6877 I915_WRITE(CHICKEN_PAR1_1,
6878 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6879
6880 lpt_init_clock_gating(dev);
6881 }
6882
6883 static void ivybridge_init_clock_gating(struct drm_device *dev)
6884 {
6885 struct drm_i915_private *dev_priv = dev->dev_private;
6886 uint32_t snpcr;
6887
6888 ilk_init_lp_watermarks(dev);
6889
6890 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6891
6892 /* WaDisableEarlyCull:ivb */
6893 I915_WRITE(_3D_CHICKEN3,
6894 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6895
6896 /* WaDisableBackToBackFlipFix:ivb */
6897 I915_WRITE(IVB_CHICKEN3,
6898 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6899 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6900
6901 /* WaDisablePSDDualDispatchEnable:ivb */
6902 if (IS_IVB_GT1(dev))
6903 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6904 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6905
6906 /* WaDisable_RenderCache_OperationalFlush:ivb */
6907 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6908
6909 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6910 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6911 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6912
6913 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6914 I915_WRITE(GEN7_L3CNTLREG1,
6915 GEN7_WA_FOR_GEN7_L3_CONTROL);
6916 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6917 GEN7_WA_L3_CHICKEN_MODE);
6918 if (IS_IVB_GT1(dev))
6919 I915_WRITE(GEN7_ROW_CHICKEN2,
6920 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6921 else {
6922 /* must write both registers */
6923 I915_WRITE(GEN7_ROW_CHICKEN2,
6924 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6925 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6926 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6927 }
6928
6929 /* WaForceL3Serialization:ivb */
6930 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6931 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6932
6933 /*
6934 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6935 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6936 */
6937 I915_WRITE(GEN6_UCGCTL2,
6938 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6939
6940 /* This is required by WaCatErrorRejectionIssue:ivb */
6941 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6942 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6943 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6944
6945 g4x_disable_trickle_feed(dev);
6946
6947 gen7_setup_fixed_func_scheduler(dev_priv);
6948
6949 if (0) { /* causes HiZ corruption on ivb:gt1 */
6950 /* enable HiZ Raw Stall Optimization */
6951 I915_WRITE(CACHE_MODE_0_GEN7,
6952 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6953 }
6954
6955 /* WaDisable4x2SubspanOptimization:ivb */
6956 I915_WRITE(CACHE_MODE_1,
6957 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6958
6959 /*
6960 * BSpec recommends 8x4 when MSAA is used,
6961 * however in practice 16x4 seems fastest.
6962 *
6963 * Note that PS/WM thread counts depend on the WIZ hashing
6964 * disable bit, which we don't touch here, but it's good
6965 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6966 */
6967 I915_WRITE(GEN7_GT_MODE,
6968 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6969
6970 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6971 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6972 snpcr |= GEN6_MBC_SNPCR_MED;
6973 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6974
6975 if (!HAS_PCH_NOP(dev))
6976 cpt_init_clock_gating(dev);
6977
6978 gen6_check_mch_setup(dev);
6979 }
6980
6981 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6982 {
6983 u32 val;
6984
6985 /*
6986 * On driver load, a pipe may be active and driving a DSI display.
6987 * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
6988 * (and never recovering) in this case. intel_dsi_post_disable() will
6989 * clear it when we turn off the display.
6990 */
6991 val = I915_READ(DSPCLK_GATE_D);
6992 val &= DPOUNIT_CLOCK_GATE_DISABLE;
6993 val |= VRHUNIT_CLOCK_GATE_DISABLE;
6994 I915_WRITE(DSPCLK_GATE_D, val);
6995
6996 /*
6997 * Disable trickle feed and enable pnd deadline calculation
6998 */
6999 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
7000 I915_WRITE(CBR1_VLV, 0);
7001 }
7002
7003 static void valleyview_init_clock_gating(struct drm_device *dev)
7004 {
7005 struct drm_i915_private *dev_priv = dev->dev_private;
7006
7007 vlv_init_display_clock_gating(dev_priv);
7008
7009 /* WaDisableEarlyCull:vlv */
7010 I915_WRITE(_3D_CHICKEN3,
7011 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7012
7013 /* WaDisableBackToBackFlipFix:vlv */
7014 I915_WRITE(IVB_CHICKEN3,
7015 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7016 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7017
7018 /* WaPsdDispatchEnable:vlv */
7019 /* WaDisablePSDDualDispatchEnable:vlv */
7020 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7021 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7022 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7023
7024 /* WaDisable_RenderCache_OperationalFlush:vlv */
7025 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7026
7027 /* WaForceL3Serialization:vlv */
7028 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7029 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7030
7031 /* WaDisableDopClockGating:vlv */
7032 I915_WRITE(GEN7_ROW_CHICKEN2,
7033 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7034
7035 /* This is required by WaCatErrorRejectionIssue:vlv */
7036 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7037 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7038 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7039
7040 gen7_setup_fixed_func_scheduler(dev_priv);
7041
7042 /*
7043 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7044 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7045 */
7046 I915_WRITE(GEN6_UCGCTL2,
7047 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7048
7049 /* WaDisableL3Bank2xClockGate:vlv
7050 * Disabling L3 clock gating- MMIO 940c[25] = 1
7051 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7052 I915_WRITE(GEN7_UCGCTL4,
7053 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7054
7055 /*
7056 * BSpec says this must be set, even though
7057 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7058 */
7059 I915_WRITE(CACHE_MODE_1,
7060 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7061
7062 /*
7063 * BSpec recommends 8x4 when MSAA is used,
7064 * however in practice 16x4 seems fastest.
7065 *
7066 * Note that PS/WM thread counts depend on the WIZ hashing
7067 * disable bit, which we don't touch here, but it's good
7068 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7069 */
7070 I915_WRITE(GEN7_GT_MODE,
7071 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7072
7073 /*
7074 * WaIncreaseL3CreditsForVLVB0:vlv
7075 * This is the hardware default actually.
7076 */
7077 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7078
7079 /*
7080 * WaDisableVLVClockGating_VBIIssue:vlv
7081 * Disable clock gating on th GCFG unit to prevent a delay
7082 * in the reporting of vblank events.
7083 */
7084 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7085 }
7086
7087 static void cherryview_init_clock_gating(struct drm_device *dev)
7088 {
7089 struct drm_i915_private *dev_priv = dev->dev_private;
7090
7091 vlv_init_display_clock_gating(dev_priv);
7092
7093 /* WaVSRefCountFullforceMissDisable:chv */
7094 /* WaDSRefCountFullforceMissDisable:chv */
7095 I915_WRITE(GEN7_FF_THREAD_MODE,
7096 I915_READ(GEN7_FF_THREAD_MODE) &
7097 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7098
7099 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7100 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7101 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7102
7103 /* WaDisableCSUnitClockGating:chv */
7104 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7105 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7106
7107 /* WaDisableSDEUnitClockGating:chv */
7108 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7109 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7110
7111 /*
7112 * GTT cache may not work with big pages, so if those
7113 * are ever enabled GTT cache may need to be disabled.
7114 */
7115 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7116 }
7117
7118 static void g4x_init_clock_gating(struct drm_device *dev)
7119 {
7120 struct drm_i915_private *dev_priv = dev->dev_private;
7121 uint32_t dspclk_gate;
7122
7123 I915_WRITE(RENCLK_GATE_D1, 0);
7124 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7125 GS_UNIT_CLOCK_GATE_DISABLE |
7126 CL_UNIT_CLOCK_GATE_DISABLE);
7127 I915_WRITE(RAMCLK_GATE_D, 0);
7128 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7129 OVRUNIT_CLOCK_GATE_DISABLE |
7130 OVCUNIT_CLOCK_GATE_DISABLE;
7131 if (IS_GM45(dev))
7132 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7133 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7134
7135 /* WaDisableRenderCachePipelinedFlush */
7136 I915_WRITE(CACHE_MODE_0,
7137 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7138
7139 /* WaDisable_RenderCache_OperationalFlush:g4x */
7140 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7141
7142 g4x_disable_trickle_feed(dev);
7143 }
7144
7145 static void crestline_init_clock_gating(struct drm_device *dev)
7146 {
7147 struct drm_i915_private *dev_priv = dev->dev_private;
7148
7149 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7150 I915_WRITE(RENCLK_GATE_D2, 0);
7151 I915_WRITE(DSPCLK_GATE_D, 0);
7152 I915_WRITE(RAMCLK_GATE_D, 0);
7153 I915_WRITE16(DEUC, 0);
7154 I915_WRITE(MI_ARB_STATE,
7155 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7156
7157 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7158 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7159 }
7160
7161 static void broadwater_init_clock_gating(struct drm_device *dev)
7162 {
7163 struct drm_i915_private *dev_priv = dev->dev_private;
7164
7165 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7166 I965_RCC_CLOCK_GATE_DISABLE |
7167 I965_RCPB_CLOCK_GATE_DISABLE |
7168 I965_ISC_CLOCK_GATE_DISABLE |
7169 I965_FBC_CLOCK_GATE_DISABLE);
7170 I915_WRITE(RENCLK_GATE_D2, 0);
7171 I915_WRITE(MI_ARB_STATE,
7172 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7173
7174 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7175 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7176 }
7177
7178 static void gen3_init_clock_gating(struct drm_device *dev)
7179 {
7180 struct drm_i915_private *dev_priv = dev->dev_private;
7181 u32 dstate = I915_READ(D_STATE);
7182
7183 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7184 DSTATE_DOT_CLOCK_GATING;
7185 I915_WRITE(D_STATE, dstate);
7186
7187 if (IS_PINEVIEW(dev))
7188 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7189
7190 /* IIR "flip pending" means done if this bit is set */
7191 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7192
7193 /* interrupts should cause a wake up from C3 */
7194 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7195
7196 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7197 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7198
7199 I915_WRITE(MI_ARB_STATE,
7200 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7201 }
7202
7203 static void i85x_init_clock_gating(struct drm_device *dev)
7204 {
7205 struct drm_i915_private *dev_priv = dev->dev_private;
7206
7207 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7208
7209 /* interrupts should cause a wake up from C3 */
7210 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7211 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7212
7213 I915_WRITE(MEM_MODE,
7214 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7215 }
7216
7217 static void i830_init_clock_gating(struct drm_device *dev)
7218 {
7219 struct drm_i915_private *dev_priv = dev->dev_private;
7220
7221 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7222
7223 I915_WRITE(MEM_MODE,
7224 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7225 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7226 }
7227
7228 void intel_init_clock_gating(struct drm_device *dev)
7229 {
7230 struct drm_i915_private *dev_priv = dev->dev_private;
7231
7232 if (dev_priv->display.init_clock_gating)
7233 dev_priv->display.init_clock_gating(dev);
7234 }
7235
7236 void intel_suspend_hw(struct drm_device *dev)
7237 {
7238 if (HAS_PCH_LPT(dev))
7239 lpt_suspend_hw(dev);
7240 }
7241
7242 /* Set up chip specific power management-related functions */
7243 void intel_init_pm(struct drm_device *dev)
7244 {
7245 struct drm_i915_private *dev_priv = dev->dev_private;
7246
7247 intel_fbc_init(dev_priv);
7248
7249 /* For cxsr */
7250 if (IS_PINEVIEW(dev))
7251 i915_pineview_get_mem_freq(dev);
7252 else if (IS_GEN5(dev))
7253 i915_ironlake_get_mem_freq(dev);
7254
7255 /* For FIFO watermark updates */
7256 if (INTEL_INFO(dev)->gen >= 9) {
7257 skl_setup_wm_latency(dev);
7258
7259 if (IS_BROXTON(dev))
7260 dev_priv->display.init_clock_gating =
7261 bxt_init_clock_gating;
7262 dev_priv->display.update_wm = skl_update_wm;
7263 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7264 } else if (HAS_PCH_SPLIT(dev)) {
7265 ilk_setup_wm_latency(dev);
7266
7267 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7268 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7269 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7270 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7271 dev_priv->display.update_wm = ilk_update_wm;
7272 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7273 } else {
7274 DRM_DEBUG_KMS("Failed to read display plane latency. "
7275 "Disable CxSR\n");
7276 }
7277
7278 if (IS_GEN5(dev))
7279 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7280 else if (IS_GEN6(dev))
7281 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7282 else if (IS_IVYBRIDGE(dev))
7283 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7284 else if (IS_HASWELL(dev))
7285 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7286 else if (INTEL_INFO(dev)->gen == 8)
7287 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7288 } else if (IS_CHERRYVIEW(dev)) {
7289 vlv_setup_wm_latency(dev);
7290
7291 dev_priv->display.update_wm = vlv_update_wm;
7292 dev_priv->display.init_clock_gating =
7293 cherryview_init_clock_gating;
7294 } else if (IS_VALLEYVIEW(dev)) {
7295 vlv_setup_wm_latency(dev);
7296
7297 dev_priv->display.update_wm = vlv_update_wm;
7298 dev_priv->display.init_clock_gating =
7299 valleyview_init_clock_gating;
7300 } else if (IS_PINEVIEW(dev)) {
7301 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7302 dev_priv->is_ddr3,
7303 dev_priv->fsb_freq,
7304 dev_priv->mem_freq)) {
7305 DRM_INFO("failed to find known CxSR latency "
7306 "(found ddr%s fsb freq %d, mem freq %d), "
7307 "disabling CxSR\n",
7308 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7309 dev_priv->fsb_freq, dev_priv->mem_freq);
7310 /* Disable CxSR and never update its watermark again */
7311 intel_set_memory_cxsr(dev_priv, false);
7312 dev_priv->display.update_wm = NULL;
7313 } else
7314 dev_priv->display.update_wm = pineview_update_wm;
7315 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7316 } else if (IS_G4X(dev)) {
7317 dev_priv->display.update_wm = g4x_update_wm;
7318 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7319 } else if (IS_GEN4(dev)) {
7320 dev_priv->display.update_wm = i965_update_wm;
7321 if (IS_CRESTLINE(dev))
7322 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7323 else if (IS_BROADWATER(dev))
7324 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7325 } else if (IS_GEN3(dev)) {
7326 dev_priv->display.update_wm = i9xx_update_wm;
7327 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7328 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7329 } else if (IS_GEN2(dev)) {
7330 if (INTEL_INFO(dev)->num_pipes == 1) {
7331 dev_priv->display.update_wm = i845_update_wm;
7332 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7333 } else {
7334 dev_priv->display.update_wm = i9xx_update_wm;
7335 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7336 }
7337
7338 if (IS_I85X(dev) || IS_I865G(dev))
7339 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7340 else
7341 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7342 } else {
7343 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7344 }
7345 }
7346
7347 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7348 {
7349 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7350
7351 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7352 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7353 return -EAGAIN;
7354 }
7355
7356 I915_WRITE(GEN6_PCODE_DATA, *val);
7357 I915_WRITE(GEN6_PCODE_DATA1, 0);
7358 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7359
7360 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7361 500)) {
7362 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7363 return -ETIMEDOUT;
7364 }
7365
7366 *val = I915_READ(GEN6_PCODE_DATA);
7367 I915_WRITE(GEN6_PCODE_DATA, 0);
7368
7369 return 0;
7370 }
7371
7372 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7373 {
7374 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7375
7376 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7377 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7378 return -EAGAIN;
7379 }
7380
7381 I915_WRITE(GEN6_PCODE_DATA, val);
7382 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7383
7384 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7385 500)) {
7386 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7387 return -ETIMEDOUT;
7388 }
7389
7390 I915_WRITE(GEN6_PCODE_DATA, 0);
7391
7392 return 0;
7393 }
7394
7395 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7396 {
7397 switch (czclk_freq) {
7398 case 200:
7399 return 10;
7400 case 267:
7401 return 12;
7402 case 320:
7403 case 333:
7404 return 16;
7405 case 400:
7406 return 20;
7407 default:
7408 return -1;
7409 }
7410 }
7411
7412 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7413 {
7414 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7415
7416 div = vlv_gpu_freq_div(czclk_freq);
7417 if (div < 0)
7418 return div;
7419
7420 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7421 }
7422
7423 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7424 {
7425 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7426
7427 mul = vlv_gpu_freq_div(czclk_freq);
7428 if (mul < 0)
7429 return mul;
7430
7431 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7432 }
7433
7434 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7435 {
7436 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7437
7438 div = vlv_gpu_freq_div(czclk_freq) / 2;
7439 if (div < 0)
7440 return div;
7441
7442 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7443 }
7444
7445 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7446 {
7447 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7448
7449 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7450 if (mul < 0)
7451 return mul;
7452
7453 /* CHV needs even values */
7454 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7455 }
7456
7457 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7458 {
7459 if (IS_GEN9(dev_priv->dev))
7460 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7461 GEN9_FREQ_SCALER);
7462 else if (IS_CHERRYVIEW(dev_priv->dev))
7463 return chv_gpu_freq(dev_priv, val);
7464 else if (IS_VALLEYVIEW(dev_priv->dev))
7465 return byt_gpu_freq(dev_priv, val);
7466 else
7467 return val * GT_FREQUENCY_MULTIPLIER;
7468 }
7469
7470 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7471 {
7472 if (IS_GEN9(dev_priv->dev))
7473 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7474 GT_FREQUENCY_MULTIPLIER);
7475 else if (IS_CHERRYVIEW(dev_priv->dev))
7476 return chv_freq_opcode(dev_priv, val);
7477 else if (IS_VALLEYVIEW(dev_priv->dev))
7478 return byt_freq_opcode(dev_priv, val);
7479 else
7480 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7481 }
7482
7483 struct request_boost {
7484 struct work_struct work;
7485 struct drm_i915_gem_request *req;
7486 };
7487
7488 static void __intel_rps_boost_work(struct work_struct *work)
7489 {
7490 struct request_boost *boost = container_of(work, struct request_boost, work);
7491 struct drm_i915_gem_request *req = boost->req;
7492
7493 if (!i915_gem_request_completed(req, true))
7494 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7495 req->emitted_jiffies);
7496
7497 i915_gem_request_unreference__unlocked(req);
7498 kfree(boost);
7499 }
7500
7501 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7502 struct drm_i915_gem_request *req)
7503 {
7504 struct request_boost *boost;
7505
7506 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7507 return;
7508
7509 if (i915_gem_request_completed(req, true))
7510 return;
7511
7512 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7513 if (boost == NULL)
7514 return;
7515
7516 i915_gem_request_reference(req);
7517 boost->req = req;
7518
7519 INIT_WORK(&boost->work, __intel_rps_boost_work);
7520 queue_work(to_i915(dev)->wq, &boost->work);
7521 }
7522
7523 void intel_pm_setup(struct drm_device *dev)
7524 {
7525 struct drm_i915_private *dev_priv = dev->dev_private;
7526
7527 mutex_init(&dev_priv->rps.hw_lock);
7528 spin_lock_init(&dev_priv->rps.client_lock);
7529
7530 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7531 intel_gen6_powersave_work);
7532 INIT_LIST_HEAD(&dev_priv->rps.clients);
7533 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7534 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7535
7536 dev_priv->pm.suspended = false;
7537 }
7538