Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.22
      1 /*	$NetBSD: intel_pm.c,v 1.22 2020/02/14 04:36:12 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2012 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: intel_pm.c,v 1.22 2020/02/14 04:36:12 riastradh Exp $");
     32 
     33 #include <linux/bitops.h>
     34 #include <linux/cpufreq.h>
     35 #include <linux/export.h>
     36 #include "i915_drv.h"
     37 #include "i915_trace.h"
     38 #include "intel_drv.h"
     39 #ifndef __NetBSD__
     40 #include "../../../platform/x86/intel_ips.h"
     41 #endif
     42 #include <linux/module.h>
     43 #include <linux/log2.h>
     44 #include <linux/math64.h>
     45 #include <linux/time.h>
     46 
     47 #include <linux/nbsd-namespace.h>
     48 
     49 /**
     50  * RC6 is a special power stage which allows the GPU to enter an very
     51  * low-voltage mode when idle, using down to 0V while at this stage.  This
     52  * stage is entered automatically when the GPU is idle when RC6 support is
     53  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
     54  *
     55  * There are different RC6 modes available in Intel GPU, which differentiate
     56  * among each other with the latency required to enter and leave RC6 and
     57  * voltage consumed by the GPU in different states.
     58  *
     59  * The combination of the following flags define which states GPU is allowed
     60  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
     61  * RC6pp is deepest RC6. Their support by hardware varies according to the
     62  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
     63  * which brings the most power savings; deeper states save more power, but
     64  * require higher latency to switch to and wake up.
     65  */
     66 #define INTEL_RC6_ENABLE			(1<<0)
     67 #define INTEL_RC6p_ENABLE			(1<<1)
     68 #define INTEL_RC6pp_ENABLE			(1<<2)
     69 
     70 static void bxt_init_clock_gating(struct drm_device *dev)
     71 {
     72 	struct drm_i915_private *dev_priv = dev->dev_private;
     73 
     74 	/* WaDisableSDEUnitClockGating:bxt */
     75 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
     76 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
     77 
     78 	/*
     79 	 * FIXME:
     80 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
     81 	 */
     82 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
     83 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
     84 
     85 	/*
     86 	 * Lower the display internal timeout.
     87 	 * This is needed to avoid any hard hangs when DSI port PLL
     88 	 * is off and a MMIO access is attempted by any privilege
     89 	 * application, using batch buffers or any other means.
     90 	 */
     91 	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
     92 }
     93 
     94 static void i915_pineview_get_mem_freq(struct drm_device *dev)
     95 {
     96 	struct drm_i915_private *dev_priv = dev->dev_private;
     97 	u32 tmp;
     98 
     99 	tmp = I915_READ(CLKCFG);
    100 
    101 	switch (tmp & CLKCFG_FSB_MASK) {
    102 	case CLKCFG_FSB_533:
    103 		dev_priv->fsb_freq = 533; /* 133*4 */
    104 		break;
    105 	case CLKCFG_FSB_800:
    106 		dev_priv->fsb_freq = 800; /* 200*4 */
    107 		break;
    108 	case CLKCFG_FSB_667:
    109 		dev_priv->fsb_freq =  667; /* 167*4 */
    110 		break;
    111 	case CLKCFG_FSB_400:
    112 		dev_priv->fsb_freq = 400; /* 100*4 */
    113 		break;
    114 	}
    115 
    116 	switch (tmp & CLKCFG_MEM_MASK) {
    117 	case CLKCFG_MEM_533:
    118 		dev_priv->mem_freq = 533;
    119 		break;
    120 	case CLKCFG_MEM_667:
    121 		dev_priv->mem_freq = 667;
    122 		break;
    123 	case CLKCFG_MEM_800:
    124 		dev_priv->mem_freq = 800;
    125 		break;
    126 	}
    127 
    128 	/* detect pineview DDR3 setting */
    129 	tmp = I915_READ(CSHRDDR3CTL);
    130 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    131 }
    132 
    133 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    134 {
    135 	struct drm_i915_private *dev_priv = dev->dev_private;
    136 	u16 ddrpll, csipll;
    137 
    138 	ddrpll = I915_READ16(DDRMPLL1);
    139 	csipll = I915_READ16(CSIPLL0);
    140 
    141 	switch (ddrpll & 0xff) {
    142 	case 0xc:
    143 		dev_priv->mem_freq = 800;
    144 		break;
    145 	case 0x10:
    146 		dev_priv->mem_freq = 1066;
    147 		break;
    148 	case 0x14:
    149 		dev_priv->mem_freq = 1333;
    150 		break;
    151 	case 0x18:
    152 		dev_priv->mem_freq = 1600;
    153 		break;
    154 	default:
    155 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    156 				 ddrpll & 0xff);
    157 		dev_priv->mem_freq = 0;
    158 		break;
    159 	}
    160 
    161 	dev_priv->ips.r_t = dev_priv->mem_freq;
    162 
    163 	switch (csipll & 0x3ff) {
    164 	case 0x00c:
    165 		dev_priv->fsb_freq = 3200;
    166 		break;
    167 	case 0x00e:
    168 		dev_priv->fsb_freq = 3733;
    169 		break;
    170 	case 0x010:
    171 		dev_priv->fsb_freq = 4266;
    172 		break;
    173 	case 0x012:
    174 		dev_priv->fsb_freq = 4800;
    175 		break;
    176 	case 0x014:
    177 		dev_priv->fsb_freq = 5333;
    178 		break;
    179 	case 0x016:
    180 		dev_priv->fsb_freq = 5866;
    181 		break;
    182 	case 0x018:
    183 		dev_priv->fsb_freq = 6400;
    184 		break;
    185 	default:
    186 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    187 				 csipll & 0x3ff);
    188 		dev_priv->fsb_freq = 0;
    189 		break;
    190 	}
    191 
    192 	if (dev_priv->fsb_freq == 3200) {
    193 		dev_priv->ips.c_m = 0;
    194 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    195 		dev_priv->ips.c_m = 1;
    196 	} else {
    197 		dev_priv->ips.c_m = 2;
    198 	}
    199 }
    200 
    201 static const struct cxsr_latency cxsr_latency_table[] = {
    202 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    203 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    204 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    205 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    206 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    207 
    208 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    209 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    210 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    211 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    212 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    213 
    214 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    215 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    216 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    217 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    218 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    219 
    220 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    221 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    222 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    223 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    224 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    225 
    226 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    227 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    228 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    229 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    230 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    231 
    232 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    233 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    234 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    235 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    236 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    237 };
    238 
    239 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    240 							 int is_ddr3,
    241 							 int fsb,
    242 							 int mem)
    243 {
    244 	const struct cxsr_latency *latency;
    245 	int i;
    246 
    247 	if (fsb == 0 || mem == 0)
    248 		return NULL;
    249 
    250 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    251 		latency = &cxsr_latency_table[i];
    252 		if (is_desktop == latency->is_desktop &&
    253 		    is_ddr3 == latency->is_ddr3 &&
    254 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    255 			return latency;
    256 	}
    257 
    258 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    259 
    260 	return NULL;
    261 }
    262 
    263 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
    264 {
    265 	u32 val;
    266 
    267 	mutex_lock(&dev_priv->rps.hw_lock);
    268 
    269 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
    270 	if (enable)
    271 		val &= ~FORCE_DDR_HIGH_FREQ;
    272 	else
    273 		val |= FORCE_DDR_HIGH_FREQ;
    274 	val &= ~FORCE_DDR_LOW_FREQ;
    275 	val |= FORCE_DDR_FREQ_REQ_ACK;
    276 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
    277 
    278 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
    279 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
    280 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
    281 
    282 	mutex_unlock(&dev_priv->rps.hw_lock);
    283 }
    284 
    285 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
    286 {
    287 	u32 val;
    288 
    289 	mutex_lock(&dev_priv->rps.hw_lock);
    290 
    291 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
    292 	if (enable)
    293 		val |= DSP_MAXFIFO_PM5_ENABLE;
    294 	else
    295 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
    296 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
    297 
    298 	mutex_unlock(&dev_priv->rps.hw_lock);
    299 }
    300 
    301 #define FW_WM(value, plane) \
    302 	(((u32)(value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
    303 
    304 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
    305 {
    306 	struct drm_device *dev = dev_priv->dev;
    307 	u32 val;
    308 
    309 	if (IS_VALLEYVIEW(dev)) {
    310 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
    311 		POSTING_READ(FW_BLC_SELF_VLV);
    312 		dev_priv->wm.vlv.cxsr = enable;
    313 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
    314 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
    315 		POSTING_READ(FW_BLC_SELF);
    316 	} else if (IS_PINEVIEW(dev)) {
    317 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
    318 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
    319 		I915_WRITE(DSPFW3, val);
    320 		POSTING_READ(DSPFW3);
    321 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
    322 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
    323 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
    324 		I915_WRITE(FW_BLC_SELF, val);
    325 		POSTING_READ(FW_BLC_SELF);
    326 	} else if (IS_I915GM(dev)) {
    327 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
    328 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
    329 		I915_WRITE(INSTPM, val);
    330 		POSTING_READ(INSTPM);
    331 	} else {
    332 		return;
    333 	}
    334 
    335 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
    336 		      enable ? "enabled" : "disabled");
    337 }
    338 
    339 
    340 /*
    341  * Latency for FIFO fetches is dependent on several factors:
    342  *   - memory configuration (speed, channels)
    343  *   - chipset
    344  *   - current MCH state
    345  * It can be fairly high in some situations, so here we assume a fairly
    346  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    347  * set this value too high, the FIFO will fetch frequently to stay full)
    348  * and power consumption (set it too low to save power and we might see
    349  * FIFO underruns and display "flicker").
    350  *
    351  * A value of 5us seems to be a good balance; safe for very low end
    352  * platforms but not overly aggressive on lower latency configs.
    353  */
    354 static const int pessimal_latency_ns = 5000;
    355 
    356 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
    357 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
    358 
    359 static int vlv_get_fifo_size(struct drm_device *dev,
    360 			      enum pipe pipe, int plane)
    361 {
    362 	struct drm_i915_private *dev_priv = dev->dev_private;
    363 	int sprite0_start, sprite1_start, size;
    364 
    365 	switch (pipe) {
    366 		uint32_t dsparb, dsparb2, dsparb3;
    367 	case PIPE_A:
    368 		dsparb = I915_READ(DSPARB);
    369 		dsparb2 = I915_READ(DSPARB2);
    370 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
    371 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
    372 		break;
    373 	case PIPE_B:
    374 		dsparb = I915_READ(DSPARB);
    375 		dsparb2 = I915_READ(DSPARB2);
    376 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
    377 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
    378 		break;
    379 	case PIPE_C:
    380 		dsparb2 = I915_READ(DSPARB2);
    381 		dsparb3 = I915_READ(DSPARB3);
    382 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
    383 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
    384 		break;
    385 	default:
    386 		return 0;
    387 	}
    388 
    389 	switch (plane) {
    390 	case 0:
    391 		size = sprite0_start;
    392 		break;
    393 	case 1:
    394 		size = sprite1_start - sprite0_start;
    395 		break;
    396 	case 2:
    397 		size = 512 - 1 - sprite1_start;
    398 		break;
    399 	default:
    400 		return 0;
    401 	}
    402 
    403 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
    404 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
    405 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
    406 		      size);
    407 
    408 	return size;
    409 }
    410 
    411 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    412 {
    413 	struct drm_i915_private *dev_priv = dev->dev_private;
    414 	uint32_t dsparb = I915_READ(DSPARB);
    415 	int size;
    416 
    417 	size = dsparb & 0x7f;
    418 	if (plane)
    419 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    420 
    421 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    422 		      plane ? "B" : "A", size);
    423 
    424 	return size;
    425 }
    426 
    427 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    428 {
    429 	struct drm_i915_private *dev_priv = dev->dev_private;
    430 	uint32_t dsparb = I915_READ(DSPARB);
    431 	int size;
    432 
    433 	size = dsparb & 0x1ff;
    434 	if (plane)
    435 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    436 	size >>= 1; /* Convert to cachelines */
    437 
    438 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    439 		      plane ? "B" : "A", size);
    440 
    441 	return size;
    442 }
    443 
    444 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    445 {
    446 	struct drm_i915_private *dev_priv = dev->dev_private;
    447 	uint32_t dsparb = I915_READ(DSPARB);
    448 	int size;
    449 
    450 	size = dsparb & 0x7f;
    451 	size >>= 2; /* Convert to cachelines */
    452 
    453 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    454 		      plane ? "B" : "A",
    455 		      size);
    456 
    457 	return size;
    458 }
    459 
    460 /* Pineview has different values for various configs */
    461 static const struct intel_watermark_params pineview_display_wm = {
    462 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    463 	.max_wm = PINEVIEW_MAX_WM,
    464 	.default_wm = PINEVIEW_DFT_WM,
    465 	.guard_size = PINEVIEW_GUARD_WM,
    466 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    467 };
    468 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    469 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    470 	.max_wm = PINEVIEW_MAX_WM,
    471 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
    472 	.guard_size = PINEVIEW_GUARD_WM,
    473 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    474 };
    475 static const struct intel_watermark_params pineview_cursor_wm = {
    476 	.fifo_size = PINEVIEW_CURSOR_FIFO,
    477 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    478 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    479 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    480 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    481 };
    482 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    483 	.fifo_size = PINEVIEW_CURSOR_FIFO,
    484 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    485 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    486 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    487 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    488 };
    489 static const struct intel_watermark_params g4x_wm_info = {
    490 	.fifo_size = G4X_FIFO_SIZE,
    491 	.max_wm = G4X_MAX_WM,
    492 	.default_wm = G4X_MAX_WM,
    493 	.guard_size = 2,
    494 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    495 };
    496 static const struct intel_watermark_params g4x_cursor_wm_info = {
    497 	.fifo_size = I965_CURSOR_FIFO,
    498 	.max_wm = I965_CURSOR_MAX_WM,
    499 	.default_wm = I965_CURSOR_DFT_WM,
    500 	.guard_size = 2,
    501 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    502 };
    503 static const struct intel_watermark_params valleyview_wm_info __unused = {
    504 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
    505 	.max_wm = VALLEYVIEW_MAX_WM,
    506 	.default_wm = VALLEYVIEW_MAX_WM,
    507 	.guard_size = 2,
    508 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    509 };
    510 static const struct intel_watermark_params valleyview_cursor_wm_info __unused = {
    511 	.fifo_size = I965_CURSOR_FIFO,
    512 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
    513 	.default_wm = I965_CURSOR_DFT_WM,
    514 	.guard_size = 2,
    515 	.cacheline_size = G4X_FIFO_LINE_SIZE,
    516 };
    517 static const struct intel_watermark_params i965_cursor_wm_info = {
    518 	.fifo_size = I965_CURSOR_FIFO,
    519 	.max_wm = I965_CURSOR_MAX_WM,
    520 	.default_wm = I965_CURSOR_DFT_WM,
    521 	.guard_size = 2,
    522 	.cacheline_size = I915_FIFO_LINE_SIZE,
    523 };
    524 static const struct intel_watermark_params i945_wm_info = {
    525 	.fifo_size = I945_FIFO_SIZE,
    526 	.max_wm = I915_MAX_WM,
    527 	.default_wm = 1,
    528 	.guard_size = 2,
    529 	.cacheline_size = I915_FIFO_LINE_SIZE,
    530 };
    531 static const struct intel_watermark_params i915_wm_info = {
    532 	.fifo_size = I915_FIFO_SIZE,
    533 	.max_wm = I915_MAX_WM,
    534 	.default_wm = 1,
    535 	.guard_size = 2,
    536 	.cacheline_size = I915_FIFO_LINE_SIZE,
    537 };
    538 static const struct intel_watermark_params i830_a_wm_info = {
    539 	.fifo_size = I855GM_FIFO_SIZE,
    540 	.max_wm = I915_MAX_WM,
    541 	.default_wm = 1,
    542 	.guard_size = 2,
    543 	.cacheline_size = I830_FIFO_LINE_SIZE,
    544 };
    545 static const struct intel_watermark_params i830_bc_wm_info = {
    546 	.fifo_size = I855GM_FIFO_SIZE,
    547 	.max_wm = I915_MAX_WM/2,
    548 	.default_wm = 1,
    549 	.guard_size = 2,
    550 	.cacheline_size = I830_FIFO_LINE_SIZE,
    551 };
    552 static const struct intel_watermark_params i845_wm_info = {
    553 	.fifo_size = I830_FIFO_SIZE,
    554 	.max_wm = I915_MAX_WM,
    555 	.default_wm = 1,
    556 	.guard_size = 2,
    557 	.cacheline_size = I830_FIFO_LINE_SIZE,
    558 };
    559 
    560 /**
    561  * intel_calculate_wm - calculate watermark level
    562  * @clock_in_khz: pixel clock
    563  * @wm: chip FIFO params
    564  * @pixel_size: display pixel size
    565  * @latency_ns: memory latency for the platform
    566  *
    567  * Calculate the watermark level (the level at which the display plane will
    568  * start fetching from memory again).  Each chip has a different display
    569  * FIFO size and allocation, so the caller needs to figure that out and pass
    570  * in the correct intel_watermark_params structure.
    571  *
    572  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    573  * on the pixel size.  When it reaches the watermark level, it'll start
    574  * fetching FIFO line sized based chunks from memory until the FIFO fills
    575  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    576  * will occur, and a display engine hang could result.
    577  */
    578 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    579 					const struct intel_watermark_params *wm,
    580 					int fifo_size,
    581 					int pixel_size,
    582 					unsigned long latency_ns)
    583 {
    584 	long entries_required, wm_size;
    585 
    586 	/*
    587 	 * Note: we need to make sure we don't overflow for various clock &
    588 	 * latency values.
    589 	 * clocks go from a few thousand to several hundred thousand.
    590 	 * latency is usually a few thousand
    591 	 */
    592 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
    593 		1000;
    594 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
    595 
    596 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
    597 
    598 	wm_size = fifo_size - (entries_required + wm->guard_size);
    599 
    600 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
    601 
    602 	/* Don't promote wm_size to unsigned... */
    603 	if (wm_size > (long)wm->max_wm)
    604 		wm_size = wm->max_wm;
    605 	if (wm_size <= 0)
    606 		wm_size = wm->default_wm;
    607 
    608 	/*
    609 	 * Bspec seems to indicate that the value shouldn't be lower than
    610 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
    611 	 * Lets go for 8 which is the burst size since certain platforms
    612 	 * already use a hardcoded 8 (which is what the spec says should be
    613 	 * done).
    614 	 */
    615 	if (wm_size <= 8)
    616 		wm_size = 8;
    617 
    618 	return wm_size;
    619 }
    620 
    621 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
    622 {
    623 	struct drm_crtc *crtc, *enabled = NULL;
    624 
    625 	for_each_crtc(dev, crtc) {
    626 		if (intel_crtc_active(crtc)) {
    627 			if (enabled)
    628 				return NULL;
    629 			enabled = crtc;
    630 		}
    631 	}
    632 
    633 	return enabled;
    634 }
    635 
    636 static void pineview_update_wm(struct drm_crtc *unused_crtc)
    637 {
    638 	struct drm_device *dev = unused_crtc->dev;
    639 	struct drm_i915_private *dev_priv = dev->dev_private;
    640 	struct drm_crtc *crtc;
    641 	const struct cxsr_latency *latency;
    642 	u32 reg;
    643 	unsigned long wm;
    644 
    645 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
    646 					 dev_priv->fsb_freq, dev_priv->mem_freq);
    647 	if (!latency) {
    648 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    649 		intel_set_memory_cxsr(dev_priv, false);
    650 		return;
    651 	}
    652 
    653 	crtc = single_enabled_crtc(dev);
    654 	if (crtc) {
    655 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    656 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    657 		int clock = adjusted_mode->crtc_clock;
    658 
    659 		/* Display SR */
    660 		wm = intel_calculate_wm(clock, &pineview_display_wm,
    661 					pineview_display_wm.fifo_size,
    662 					pixel_size, latency->display_sr);
    663 		reg = I915_READ(DSPFW1);
    664 		reg &= ~DSPFW_SR_MASK;
    665 		reg |= FW_WM(wm, SR);
    666 		I915_WRITE(DSPFW1, reg);
    667 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
    668 
    669 		/* cursor SR */
    670 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
    671 					pineview_display_wm.fifo_size,
    672 					pixel_size, latency->cursor_sr);
    673 		reg = I915_READ(DSPFW3);
    674 		reg &= ~DSPFW_CURSOR_SR_MASK;
    675 		reg |= FW_WM(wm, CURSOR_SR);
    676 		I915_WRITE(DSPFW3, reg);
    677 
    678 		/* Display HPLL off SR */
    679 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
    680 					pineview_display_hplloff_wm.fifo_size,
    681 					pixel_size, latency->display_hpll_disable);
    682 		reg = I915_READ(DSPFW3);
    683 		reg &= ~DSPFW_HPLL_SR_MASK;
    684 		reg |= FW_WM(wm, HPLL_SR);
    685 		I915_WRITE(DSPFW3, reg);
    686 
    687 		/* cursor HPLL off SR */
    688 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
    689 					pineview_display_hplloff_wm.fifo_size,
    690 					pixel_size, latency->cursor_hpll_disable);
    691 		reg = I915_READ(DSPFW3);
    692 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
    693 		reg |= FW_WM(wm, HPLL_CURSOR);
    694 		I915_WRITE(DSPFW3, reg);
    695 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
    696 
    697 		intel_set_memory_cxsr(dev_priv, true);
    698 	} else {
    699 		intel_set_memory_cxsr(dev_priv, false);
    700 	}
    701 }
    702 
    703 static bool g4x_compute_wm0(struct drm_device *dev,
    704 			    int plane,
    705 			    const struct intel_watermark_params *display,
    706 			    int display_latency_ns,
    707 			    const struct intel_watermark_params *cursor,
    708 			    int cursor_latency_ns,
    709 			    int *plane_wm,
    710 			    int *cursor_wm)
    711 {
    712 	struct drm_crtc *crtc;
    713 	const struct drm_display_mode *adjusted_mode;
    714 	int htotal, hdisplay, clock, pixel_size;
    715 	int line_time_us, line_count;
    716 	int entries, tlb_miss;
    717 
    718 	crtc = intel_get_crtc_for_plane(dev, plane);
    719 	if (!intel_crtc_active(crtc)) {
    720 		*cursor_wm = cursor->guard_size;
    721 		*plane_wm = display->guard_size;
    722 		return false;
    723 	}
    724 
    725 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    726 	clock = adjusted_mode->crtc_clock;
    727 	htotal = adjusted_mode->crtc_htotal;
    728 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
    729 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    730 
    731 	/* Use the small buffer method to calculate plane watermark */
    732 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
    733 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
    734 	if (tlb_miss > 0)
    735 		entries += tlb_miss;
    736 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
    737 	*plane_wm = entries + display->guard_size;
    738 	if (*plane_wm > (int)display->max_wm)
    739 		*plane_wm = display->max_wm;
    740 
    741 	/* Use the large buffer method to calculate cursor watermark */
    742 	line_time_us = max(htotal * 1000 / clock, 1);
    743 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
    744 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
    745 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
    746 	if (tlb_miss > 0)
    747 		entries += tlb_miss;
    748 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
    749 	*cursor_wm = entries + cursor->guard_size;
    750 	if (*cursor_wm > (int)cursor->max_wm)
    751 		*cursor_wm = (int)cursor->max_wm;
    752 
    753 	return true;
    754 }
    755 
    756 /*
    757  * Check the wm result.
    758  *
    759  * If any calculated watermark values is larger than the maximum value that
    760  * can be programmed into the associated watermark register, that watermark
    761  * must be disabled.
    762  */
    763 static bool g4x_check_srwm(struct drm_device *dev,
    764 			   int display_wm, int cursor_wm,
    765 			   const struct intel_watermark_params *display,
    766 			   const struct intel_watermark_params *cursor)
    767 {
    768 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
    769 		      display_wm, cursor_wm);
    770 
    771 	if (display_wm > display->max_wm) {
    772 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
    773 			      display_wm, display->max_wm);
    774 		return false;
    775 	}
    776 
    777 	if (cursor_wm > cursor->max_wm) {
    778 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
    779 			      cursor_wm, cursor->max_wm);
    780 		return false;
    781 	}
    782 
    783 	if (!(display_wm || cursor_wm)) {
    784 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
    785 		return false;
    786 	}
    787 
    788 	return true;
    789 }
    790 
    791 static bool g4x_compute_srwm(struct drm_device *dev,
    792 			     int plane,
    793 			     int latency_ns,
    794 			     const struct intel_watermark_params *display,
    795 			     const struct intel_watermark_params *cursor,
    796 			     int *display_wm, int *cursor_wm)
    797 {
    798 	struct drm_crtc *crtc;
    799 	const struct drm_display_mode *adjusted_mode;
    800 	int hdisplay, htotal, pixel_size, clock;
    801 	unsigned long line_time_us;
    802 	int line_count, line_size;
    803 	int small, large;
    804 	int entries;
    805 
    806 	if (!latency_ns) {
    807 		*display_wm = *cursor_wm = 0;
    808 		return false;
    809 	}
    810 
    811 	crtc = intel_get_crtc_for_plane(dev, plane);
    812 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
    813 	clock = adjusted_mode->crtc_clock;
    814 	htotal = adjusted_mode->crtc_htotal;
    815 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
    816 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
    817 
    818 	line_time_us = max(htotal * 1000 / clock, 1);
    819 	line_count = (latency_ns / line_time_us + 1000) / 1000;
    820 	line_size = hdisplay * pixel_size;
    821 
    822 	/* Use the minimum of the small and large buffer method for primary */
    823 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
    824 	large = line_count * line_size;
    825 
    826 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
    827 	*display_wm = entries + display->guard_size;
    828 
    829 	/* calculate the self-refresh watermark for display cursor */
    830 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
    831 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
    832 	*cursor_wm = entries + cursor->guard_size;
    833 
    834 	return g4x_check_srwm(dev,
    835 			      *display_wm, *cursor_wm,
    836 			      display, cursor);
    837 }
    838 
    839 #define FW_WM_VLV(value, plane) \
    840 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
    841 
    842 static void vlv_write_wm_values(struct intel_crtc *crtc,
    843 				const struct vlv_wm_values *wm)
    844 {
    845 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
    846 	enum pipe pipe = crtc->pipe;
    847 
    848 	I915_WRITE(VLV_DDL(pipe),
    849 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
    850 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
    851 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
    852 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
    853 
    854 	I915_WRITE(DSPFW1,
    855 		   FW_WM(wm->sr.plane, SR) |
    856 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
    857 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
    858 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
    859 	I915_WRITE(DSPFW2,
    860 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
    861 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
    862 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
    863 	I915_WRITE(DSPFW3,
    864 		   FW_WM(wm->sr.cursor, CURSOR_SR));
    865 
    866 	if (IS_CHERRYVIEW(dev_priv)) {
    867 		I915_WRITE(DSPFW7_CHV,
    868 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
    869 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
    870 		I915_WRITE(DSPFW8_CHV,
    871 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
    872 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
    873 		I915_WRITE(DSPFW9_CHV,
    874 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
    875 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
    876 		I915_WRITE(DSPHOWM,
    877 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
    878 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
    879 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
    880 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
    881 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
    882 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
    883 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
    884 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
    885 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
    886 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
    887 	} else {
    888 		I915_WRITE(DSPFW7,
    889 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
    890 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
    891 		I915_WRITE(DSPHOWM,
    892 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
    893 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
    894 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
    895 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
    896 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
    897 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
    898 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
    899 	}
    900 
    901 	/* zero (unused) WM1 watermarks */
    902 	I915_WRITE(DSPFW4, 0);
    903 	I915_WRITE(DSPFW5, 0);
    904 	I915_WRITE(DSPFW6, 0);
    905 	I915_WRITE(DSPHOWM1, 0);
    906 
    907 	POSTING_READ(DSPFW1);
    908 }
    909 
    910 #undef FW_WM_VLV
    911 
    912 enum vlv_wm_level {
    913 	VLV_WM_LEVEL_PM2,
    914 	VLV_WM_LEVEL_PM5,
    915 	VLV_WM_LEVEL_DDR_DVFS,
    916 };
    917 
    918 /* latency must be in 0.1us units. */
    919 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
    920 				   unsigned int pipe_htotal,
    921 				   unsigned int horiz_pixels,
    922 				   unsigned int bytes_per_pixel,
    923 				   unsigned int latency)
    924 {
    925 	unsigned int ret;
    926 
    927 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
    928 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
    929 	ret = DIV_ROUND_UP(ret, 64);
    930 
    931 	return ret;
    932 }
    933 
    934 static void vlv_setup_wm_latency(struct drm_device *dev)
    935 {
    936 	struct drm_i915_private *dev_priv = dev->dev_private;
    937 
    938 	/* all latencies in usec */
    939 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
    940 
    941 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
    942 
    943 	if (IS_CHERRYVIEW(dev_priv)) {
    944 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
    945 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
    946 
    947 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
    948 	}
    949 }
    950 
    951 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
    952 				     struct intel_crtc *crtc,
    953 				     const struct intel_plane_state *state,
    954 				     int level)
    955 {
    956 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
    957 	int clock, htotal, pixel_size, width, wm;
    958 
    959 	if (dev_priv->wm.pri_latency[level] == 0)
    960 		return USHRT_MAX;
    961 
    962 	if (!state->visible)
    963 		return 0;
    964 
    965 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
    966 	clock = crtc->config->base.adjusted_mode.crtc_clock;
    967 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
    968 	width = crtc->config->pipe_src_w;
    969 	if (WARN_ON(htotal == 0))
    970 		htotal = 1;
    971 
    972 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
    973 		/*
    974 		 * FIXME the formula gives values that are
    975 		 * too big for the cursor FIFO, and hence we
    976 		 * would never be able to use cursors. For
    977 		 * now just hardcode the watermark.
    978 		 */
    979 		wm = 63;
    980 	} else {
    981 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
    982 				    dev_priv->wm.pri_latency[level] * 10);
    983 	}
    984 
    985 	return min_t(int, wm, USHRT_MAX);
    986 }
    987 
    988 static void vlv_compute_fifo(struct intel_crtc *crtc)
    989 {
    990 	struct drm_device *dev = crtc->base.dev;
    991 	struct vlv_wm_state *wm_state = &crtc->wm_state;
    992 	struct intel_plane *plane;
    993 	unsigned int total_rate = 0;
    994 	const int fifo_size = 512 - 1;
    995 	int fifo_extra, fifo_left = fifo_size;
    996 
    997 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
    998 		struct intel_plane_state *state =
    999 			to_intel_plane_state(plane->base.state);
   1000 
   1001 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
   1002 			continue;
   1003 
   1004 		if (state->visible) {
   1005 			wm_state->num_active_planes++;
   1006 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
   1007 		}
   1008 	}
   1009 
   1010 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1011 		struct intel_plane_state *state =
   1012 			to_intel_plane_state(plane->base.state);
   1013 		unsigned int rate;
   1014 
   1015 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
   1016 			plane->wm.fifo_size = 63;
   1017 			continue;
   1018 		}
   1019 
   1020 		if (!state->visible) {
   1021 			plane->wm.fifo_size = 0;
   1022 			continue;
   1023 		}
   1024 
   1025 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
   1026 		plane->wm.fifo_size = fifo_size * rate / total_rate;
   1027 		fifo_left -= plane->wm.fifo_size;
   1028 	}
   1029 
   1030 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
   1031 
   1032 	/* spread the remainder evenly */
   1033 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1034 		int plane_extra;
   1035 
   1036 		if (fifo_left == 0)
   1037 			break;
   1038 
   1039 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
   1040 			continue;
   1041 
   1042 		/* give it all to the first plane if none are active */
   1043 		if (plane->wm.fifo_size == 0 &&
   1044 		    wm_state->num_active_planes)
   1045 			continue;
   1046 
   1047 		plane_extra = min(fifo_extra, fifo_left);
   1048 		plane->wm.fifo_size += plane_extra;
   1049 		fifo_left -= plane_extra;
   1050 	}
   1051 
   1052 	WARN_ON(fifo_left != 0);
   1053 }
   1054 
   1055 static void vlv_invert_wms(struct intel_crtc *crtc)
   1056 {
   1057 	struct vlv_wm_state *wm_state = &crtc->wm_state;
   1058 	int level;
   1059 
   1060 	for (level = 0; level < wm_state->num_levels; level++) {
   1061 		struct drm_device *dev = crtc->base.dev;
   1062 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
   1063 		struct intel_plane *plane;
   1064 
   1065 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
   1066 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
   1067 
   1068 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1069 			switch (plane->base.type) {
   1070 				int sprite;
   1071 			case DRM_PLANE_TYPE_CURSOR:
   1072 				wm_state->wm[level].cursor = plane->wm.fifo_size -
   1073 					wm_state->wm[level].cursor;
   1074 				break;
   1075 			case DRM_PLANE_TYPE_PRIMARY:
   1076 				wm_state->wm[level].primary = plane->wm.fifo_size -
   1077 					wm_state->wm[level].primary;
   1078 				break;
   1079 			case DRM_PLANE_TYPE_OVERLAY:
   1080 				sprite = plane->plane;
   1081 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
   1082 					wm_state->wm[level].sprite[sprite];
   1083 				break;
   1084 			}
   1085 		}
   1086 	}
   1087 }
   1088 
   1089 static void vlv_compute_wm(struct intel_crtc *crtc)
   1090 {
   1091 	struct drm_device *dev = crtc->base.dev;
   1092 	struct vlv_wm_state *wm_state = &crtc->wm_state;
   1093 	struct intel_plane *plane;
   1094 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
   1095 	int level;
   1096 
   1097 	memset(wm_state, 0, sizeof(*wm_state));
   1098 
   1099 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
   1100 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
   1101 
   1102 	wm_state->num_active_planes = 0;
   1103 
   1104 	vlv_compute_fifo(crtc);
   1105 
   1106 	if (wm_state->num_active_planes != 1)
   1107 		wm_state->cxsr = false;
   1108 
   1109 	if (wm_state->cxsr) {
   1110 		for (level = 0; level < wm_state->num_levels; level++) {
   1111 			wm_state->sr[level].plane = sr_fifo_size;
   1112 			wm_state->sr[level].cursor = 63;
   1113 		}
   1114 	}
   1115 
   1116 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1117 		struct intel_plane_state *state =
   1118 			to_intel_plane_state(plane->base.state);
   1119 
   1120 		if (!state->visible)
   1121 			continue;
   1122 
   1123 		/* normal watermarks */
   1124 		for (level = 0; level < wm_state->num_levels; level++) {
   1125 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
   1126 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
   1127 
   1128 			/* hack */
   1129 			if (WARN_ON(level == 0 && wm > max_wm))
   1130 				wm = max_wm;
   1131 
   1132 			if (wm > plane->wm.fifo_size)
   1133 				break;
   1134 
   1135 			switch (plane->base.type) {
   1136 				int sprite;
   1137 			case DRM_PLANE_TYPE_CURSOR:
   1138 				wm_state->wm[level].cursor = wm;
   1139 				break;
   1140 			case DRM_PLANE_TYPE_PRIMARY:
   1141 				wm_state->wm[level].primary = wm;
   1142 				break;
   1143 			case DRM_PLANE_TYPE_OVERLAY:
   1144 				sprite = plane->plane;
   1145 				wm_state->wm[level].sprite[sprite] = wm;
   1146 				break;
   1147 			}
   1148 		}
   1149 
   1150 		wm_state->num_levels = level;
   1151 
   1152 		if (!wm_state->cxsr)
   1153 			continue;
   1154 
   1155 		/* maxfifo watermarks */
   1156 		switch (plane->base.type) {
   1157 			int sprite, level;
   1158 		case DRM_PLANE_TYPE_CURSOR:
   1159 			for (level = 0; level < wm_state->num_levels; level++)
   1160 				wm_state->sr[level].cursor =
   1161 					wm_state->wm[level].cursor;
   1162 			break;
   1163 		case DRM_PLANE_TYPE_PRIMARY:
   1164 			for (level = 0; level < wm_state->num_levels; level++)
   1165 				wm_state->sr[level].plane =
   1166 					min(wm_state->sr[level].plane,
   1167 					    wm_state->wm[level].primary);
   1168 			break;
   1169 		case DRM_PLANE_TYPE_OVERLAY:
   1170 			sprite = plane->plane;
   1171 			for (level = 0; level < wm_state->num_levels; level++)
   1172 				wm_state->sr[level].plane =
   1173 					min(wm_state->sr[level].plane,
   1174 					    wm_state->wm[level].sprite[sprite]);
   1175 			break;
   1176 		}
   1177 	}
   1178 
   1179 	/* clear any (partially) filled invalid levels */
   1180 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
   1181 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
   1182 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
   1183 	}
   1184 
   1185 	vlv_invert_wms(crtc);
   1186 }
   1187 
   1188 #define VLV_FIFO(plane, value) \
   1189 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
   1190 
   1191 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
   1192 {
   1193 	struct drm_device *dev = crtc->base.dev;
   1194 	struct drm_i915_private *dev_priv = to_i915(dev);
   1195 	struct intel_plane *plane;
   1196 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
   1197 
   1198 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
   1199 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
   1200 			WARN_ON(plane->wm.fifo_size != 63);
   1201 			continue;
   1202 		}
   1203 
   1204 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
   1205 			sprite0_start = plane->wm.fifo_size;
   1206 		else if (plane->plane == 0)
   1207 			sprite1_start = sprite0_start + plane->wm.fifo_size;
   1208 		else
   1209 			fifo_size = sprite1_start + plane->wm.fifo_size;
   1210 	}
   1211 
   1212 	WARN_ON(fifo_size != 512 - 1);
   1213 
   1214 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
   1215 		      pipe_name(crtc->pipe), sprite0_start,
   1216 		      sprite1_start, fifo_size);
   1217 
   1218 	switch (crtc->pipe) {
   1219 		uint32_t dsparb, dsparb2, dsparb3;
   1220 	case PIPE_A:
   1221 		dsparb = I915_READ(DSPARB);
   1222 		dsparb2 = I915_READ(DSPARB2);
   1223 
   1224 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
   1225 			    VLV_FIFO(SPRITEB, 0xff));
   1226 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
   1227 			   VLV_FIFO(SPRITEB, sprite1_start));
   1228 
   1229 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
   1230 			     VLV_FIFO(SPRITEB_HI, 0x1));
   1231 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
   1232 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
   1233 
   1234 		I915_WRITE(DSPARB, dsparb);
   1235 		I915_WRITE(DSPARB2, dsparb2);
   1236 		break;
   1237 	case PIPE_B:
   1238 		dsparb = I915_READ(DSPARB);
   1239 		dsparb2 = I915_READ(DSPARB2);
   1240 
   1241 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
   1242 			    VLV_FIFO(SPRITED, 0xff));
   1243 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
   1244 			   VLV_FIFO(SPRITED, sprite1_start));
   1245 
   1246 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
   1247 			     VLV_FIFO(SPRITED_HI, 0xff));
   1248 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
   1249 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
   1250 
   1251 		I915_WRITE(DSPARB, dsparb);
   1252 		I915_WRITE(DSPARB2, dsparb2);
   1253 		break;
   1254 	case PIPE_C:
   1255 		dsparb3 = I915_READ(DSPARB3);
   1256 		dsparb2 = I915_READ(DSPARB2);
   1257 
   1258 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
   1259 			     VLV_FIFO(SPRITEF, 0xff));
   1260 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
   1261 			    VLV_FIFO(SPRITEF, sprite1_start));
   1262 
   1263 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
   1264 			     VLV_FIFO(SPRITEF_HI, 0xff));
   1265 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
   1266 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
   1267 
   1268 		I915_WRITE(DSPARB3, dsparb3);
   1269 		I915_WRITE(DSPARB2, dsparb2);
   1270 		break;
   1271 	default:
   1272 		break;
   1273 	}
   1274 }
   1275 
   1276 #undef VLV_FIFO
   1277 
   1278 static void vlv_merge_wm(struct drm_device *dev,
   1279 			 struct vlv_wm_values *wm)
   1280 {
   1281 	struct intel_crtc *crtc;
   1282 	int num_active_crtcs = 0;
   1283 
   1284 	wm->level = to_i915(dev)->wm.max_level;
   1285 	wm->cxsr = true;
   1286 
   1287 	for_each_intel_crtc(dev, crtc) {
   1288 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
   1289 
   1290 		if (!crtc->active)
   1291 			continue;
   1292 
   1293 		if (!wm_state->cxsr)
   1294 			wm->cxsr = false;
   1295 
   1296 		num_active_crtcs++;
   1297 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
   1298 	}
   1299 
   1300 	if (num_active_crtcs != 1)
   1301 		wm->cxsr = false;
   1302 
   1303 	if (num_active_crtcs > 1)
   1304 		wm->level = VLV_WM_LEVEL_PM2;
   1305 
   1306 	for_each_intel_crtc(dev, crtc) {
   1307 		struct vlv_wm_state *wm_state = &crtc->wm_state;
   1308 		enum pipe pipe = crtc->pipe;
   1309 
   1310 		if (!crtc->active)
   1311 			continue;
   1312 
   1313 		wm->pipe[pipe] = wm_state->wm[wm->level];
   1314 		if (wm->cxsr)
   1315 			wm->sr = wm_state->sr[wm->level];
   1316 
   1317 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
   1318 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
   1319 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
   1320 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
   1321 	}
   1322 }
   1323 
   1324 static void vlv_update_wm(struct drm_crtc *crtc)
   1325 {
   1326 	struct drm_device *dev = crtc->dev;
   1327 	struct drm_i915_private *dev_priv = dev->dev_private;
   1328 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   1329 	enum pipe pipe = intel_crtc->pipe;
   1330 	struct vlv_wm_values wm = {};
   1331 
   1332 	vlv_compute_wm(intel_crtc);
   1333 	vlv_merge_wm(dev, &wm);
   1334 
   1335 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
   1336 		/* FIXME should be part of crtc atomic commit */
   1337 		vlv_pipe_set_fifo_size(intel_crtc);
   1338 		return;
   1339 	}
   1340 
   1341 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
   1342 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
   1343 		chv_set_memory_dvfs(dev_priv, false);
   1344 
   1345 	if (wm.level < VLV_WM_LEVEL_PM5 &&
   1346 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
   1347 		chv_set_memory_pm5(dev_priv, false);
   1348 
   1349 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
   1350 		intel_set_memory_cxsr(dev_priv, false);
   1351 
   1352 	/* FIXME should be part of crtc atomic commit */
   1353 	vlv_pipe_set_fifo_size(intel_crtc);
   1354 
   1355 	vlv_write_wm_values(intel_crtc, &wm);
   1356 
   1357 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
   1358 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
   1359 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
   1360 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
   1361 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
   1362 
   1363 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
   1364 		intel_set_memory_cxsr(dev_priv, true);
   1365 
   1366 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
   1367 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
   1368 		chv_set_memory_pm5(dev_priv, true);
   1369 
   1370 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
   1371 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
   1372 		chv_set_memory_dvfs(dev_priv, true);
   1373 
   1374 	dev_priv->wm.vlv = wm;
   1375 }
   1376 
   1377 #define single_plane_enabled(mask) is_power_of_2(mask)
   1378 
   1379 static void g4x_update_wm(struct drm_crtc *crtc)
   1380 {
   1381 	struct drm_device *dev = crtc->dev;
   1382 	static const int sr_latency_ns = 12000;
   1383 	struct drm_i915_private *dev_priv = dev->dev_private;
   1384 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1385 	int plane_sr, cursor_sr;
   1386 	unsigned int enabled = 0;
   1387 	bool cxsr_enabled;
   1388 
   1389 	if (g4x_compute_wm0(dev, PIPE_A,
   1390 			    &g4x_wm_info, pessimal_latency_ns,
   1391 			    &g4x_cursor_wm_info, pessimal_latency_ns,
   1392 			    &planea_wm, &cursora_wm))
   1393 		enabled |= 1 << PIPE_A;
   1394 
   1395 	if (g4x_compute_wm0(dev, PIPE_B,
   1396 			    &g4x_wm_info, pessimal_latency_ns,
   1397 			    &g4x_cursor_wm_info, pessimal_latency_ns,
   1398 			    &planeb_wm, &cursorb_wm))
   1399 		enabled |= 1 << PIPE_B;
   1400 
   1401 	if (single_plane_enabled(enabled) &&
   1402 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1403 			     sr_latency_ns,
   1404 			     &g4x_wm_info,
   1405 			     &g4x_cursor_wm_info,
   1406 			     &plane_sr, &cursor_sr)) {
   1407 		cxsr_enabled = true;
   1408 	} else {
   1409 		cxsr_enabled = false;
   1410 		intel_set_memory_cxsr(dev_priv, false);
   1411 		plane_sr = cursor_sr = 0;
   1412 	}
   1413 
   1414 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
   1415 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1416 		      planea_wm, cursora_wm,
   1417 		      planeb_wm, cursorb_wm,
   1418 		      plane_sr, cursor_sr);
   1419 
   1420 	I915_WRITE(DSPFW1,
   1421 		   FW_WM(plane_sr, SR) |
   1422 		   FW_WM(cursorb_wm, CURSORB) |
   1423 		   FW_WM(planeb_wm, PLANEB) |
   1424 		   FW_WM(planea_wm, PLANEA));
   1425 	I915_WRITE(DSPFW2,
   1426 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1427 		   FW_WM(cursora_wm, CURSORA));
   1428 	/* HPLL off in SR has some issues on G4x... disable it */
   1429 	I915_WRITE(DSPFW3,
   1430 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1431 		   FW_WM(cursor_sr, CURSOR_SR));
   1432 
   1433 	if (cxsr_enabled)
   1434 		intel_set_memory_cxsr(dev_priv, true);
   1435 }
   1436 
   1437 static void i965_update_wm(struct drm_crtc *unused_crtc)
   1438 {
   1439 	struct drm_device *dev = unused_crtc->dev;
   1440 	struct drm_i915_private *dev_priv = dev->dev_private;
   1441 	struct drm_crtc *crtc;
   1442 	int srwm = 1;
   1443 	int cursor_sr = 16;
   1444 	bool cxsr_enabled;
   1445 
   1446 	/* Calc sr entries for one plane configs */
   1447 	crtc = single_enabled_crtc(dev);
   1448 	if (crtc) {
   1449 		/* self-refresh has much higher latency */
   1450 		static const int sr_latency_ns = 12000;
   1451 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1452 		int clock = adjusted_mode->crtc_clock;
   1453 		int htotal = adjusted_mode->crtc_htotal;
   1454 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
   1455 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
   1456 		unsigned long line_time_us;
   1457 		int entries;
   1458 
   1459 		line_time_us = max(htotal * 1000 / clock, 1);
   1460 
   1461 		/* Use ns/us then divide to preserve precision */
   1462 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1463 			pixel_size * hdisplay;
   1464 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1465 		srwm = I965_FIFO_SIZE - entries;
   1466 		if (srwm < 0)
   1467 			srwm = 1;
   1468 		srwm &= 0x1ff;
   1469 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1470 			      entries, srwm);
   1471 
   1472 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1473 			pixel_size * crtc->cursor->state->crtc_w;
   1474 		entries = DIV_ROUND_UP(entries,
   1475 					  i965_cursor_wm_info.cacheline_size);
   1476 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1477 			(entries + i965_cursor_wm_info.guard_size);
   1478 
   1479 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1480 			cursor_sr = i965_cursor_wm_info.max_wm;
   1481 
   1482 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1483 			      "cursor %d\n", srwm, cursor_sr);
   1484 
   1485 		cxsr_enabled = true;
   1486 	} else {
   1487 		cxsr_enabled = false;
   1488 		/* Turn off self refresh if both pipes are enabled */
   1489 		intel_set_memory_cxsr(dev_priv, false);
   1490 	}
   1491 
   1492 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1493 		      srwm);
   1494 
   1495 	/* 965 has limitations... */
   1496 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
   1497 		   FW_WM(8, CURSORB) |
   1498 		   FW_WM(8, PLANEB) |
   1499 		   FW_WM(8, PLANEA));
   1500 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
   1501 		   FW_WM(8, PLANEC_OLD));
   1502 	/* update cursor SR watermark */
   1503 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
   1504 
   1505 	if (cxsr_enabled)
   1506 		intel_set_memory_cxsr(dev_priv, true);
   1507 }
   1508 
   1509 #undef FW_WM
   1510 
   1511 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
   1512 {
   1513 	struct drm_device *dev = unused_crtc->dev;
   1514 	struct drm_i915_private *dev_priv = dev->dev_private;
   1515 	const struct intel_watermark_params *wm_info;
   1516 	uint32_t fwater_lo;
   1517 	uint32_t fwater_hi;
   1518 	int cwm, srwm = 1;
   1519 	int fifo_size;
   1520 	int planea_wm, planeb_wm;
   1521 	struct drm_crtc *crtc, *enabled = NULL;
   1522 
   1523 	if (IS_I945GM(dev))
   1524 		wm_info = &i945_wm_info;
   1525 	else if (!IS_GEN2(dev))
   1526 		wm_info = &i915_wm_info;
   1527 	else
   1528 		wm_info = &i830_a_wm_info;
   1529 
   1530 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1531 	crtc = intel_get_crtc_for_plane(dev, 0);
   1532 	if (intel_crtc_active(crtc)) {
   1533 		const struct drm_display_mode *adjusted_mode;
   1534 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
   1535 		if (IS_GEN2(dev))
   1536 			cpp = 4;
   1537 
   1538 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1539 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1540 					       wm_info, fifo_size, cpp,
   1541 					       pessimal_latency_ns);
   1542 		enabled = crtc;
   1543 	} else {
   1544 		planea_wm = fifo_size - wm_info->guard_size;
   1545 		if (planea_wm > (long)wm_info->max_wm)
   1546 			planea_wm = wm_info->max_wm;
   1547 	}
   1548 
   1549 	if (IS_GEN2(dev))
   1550 		wm_info = &i830_bc_wm_info;
   1551 
   1552 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1553 	crtc = intel_get_crtc_for_plane(dev, 1);
   1554 	if (intel_crtc_active(crtc)) {
   1555 		const struct drm_display_mode *adjusted_mode;
   1556 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
   1557 		if (IS_GEN2(dev))
   1558 			cpp = 4;
   1559 
   1560 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1561 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1562 					       wm_info, fifo_size, cpp,
   1563 					       pessimal_latency_ns);
   1564 		if (enabled == NULL)
   1565 			enabled = crtc;
   1566 		else
   1567 			enabled = NULL;
   1568 	} else {
   1569 		planeb_wm = fifo_size - wm_info->guard_size;
   1570 		if (planeb_wm > (long)wm_info->max_wm)
   1571 			planeb_wm = wm_info->max_wm;
   1572 	}
   1573 
   1574 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1575 
   1576 	if (IS_I915GM(dev) && enabled) {
   1577 		struct drm_i915_gem_object *obj;
   1578 
   1579 		obj = intel_fb_obj(enabled->primary->state->fb);
   1580 
   1581 		/* self-refresh seems busted with untiled */
   1582 		if (obj->tiling_mode == I915_TILING_NONE)
   1583 			enabled = NULL;
   1584 	}
   1585 
   1586 	/*
   1587 	 * Overlay gets an aggressive default since video jitter is bad.
   1588 	 */
   1589 	cwm = 2;
   1590 
   1591 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1592 	intel_set_memory_cxsr(dev_priv, false);
   1593 
   1594 	/* Calc sr entries for one plane configs */
   1595 	if (HAS_FW_BLC(dev) && enabled) {
   1596 		/* self-refresh has much higher latency */
   1597 		static const int sr_latency_ns = 6000;
   1598 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
   1599 		int clock = adjusted_mode->crtc_clock;
   1600 		int htotal = adjusted_mode->crtc_htotal;
   1601 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
   1602 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
   1603 		unsigned long line_time_us;
   1604 		int entries;
   1605 
   1606 		line_time_us = max(htotal * 1000 / clock, 1);
   1607 
   1608 		/* Use ns/us then divide to preserve precision */
   1609 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1610 			pixel_size * hdisplay;
   1611 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1612 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1613 		srwm = wm_info->fifo_size - entries;
   1614 		if (srwm < 0)
   1615 			srwm = 1;
   1616 
   1617 		if (IS_I945G(dev) || IS_I945GM(dev))
   1618 			I915_WRITE(FW_BLC_SELF,
   1619 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1620 		else if (IS_I915GM(dev))
   1621 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1622 	}
   1623 
   1624 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1625 		      planea_wm, planeb_wm, cwm, srwm);
   1626 
   1627 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1628 	fwater_hi = (cwm & 0x1f);
   1629 
   1630 	/* Set request length to 8 cachelines per fetch */
   1631 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1632 	fwater_hi = fwater_hi | (1 << 8);
   1633 
   1634 	I915_WRITE(FW_BLC, fwater_lo);
   1635 	I915_WRITE(FW_BLC2, fwater_hi);
   1636 
   1637 	if (enabled)
   1638 		intel_set_memory_cxsr(dev_priv, true);
   1639 }
   1640 
   1641 static void i845_update_wm(struct drm_crtc *unused_crtc)
   1642 {
   1643 	struct drm_device *dev = unused_crtc->dev;
   1644 	struct drm_i915_private *dev_priv = dev->dev_private;
   1645 	struct drm_crtc *crtc;
   1646 	const struct drm_display_mode *adjusted_mode;
   1647 	uint32_t fwater_lo;
   1648 	int planea_wm;
   1649 
   1650 	crtc = single_enabled_crtc(dev);
   1651 	if (crtc == NULL)
   1652 		return;
   1653 
   1654 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
   1655 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1656 				       &i845_wm_info,
   1657 				       dev_priv->display.get_fifo_size(dev, 0),
   1658 				       4, pessimal_latency_ns);
   1659 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1660 	fwater_lo |= (3<<8) | planea_wm;
   1661 
   1662 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1663 
   1664 	I915_WRITE(FW_BLC, fwater_lo);
   1665 }
   1666 
   1667 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
   1668 {
   1669 	uint32_t pixel_rate;
   1670 
   1671 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
   1672 
   1673 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
   1674 	 * adjust the pixel_rate here. */
   1675 
   1676 	if (pipe_config->pch_pfit.enabled) {
   1677 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
   1678 		uint32_t pfit_size = pipe_config->pch_pfit.size;
   1679 
   1680 		pipe_w = pipe_config->pipe_src_w;
   1681 		pipe_h = pipe_config->pipe_src_h;
   1682 
   1683 		pfit_w = (pfit_size >> 16) & 0xFFFF;
   1684 		pfit_h = pfit_size & 0xFFFF;
   1685 		if (pipe_w < pfit_w)
   1686 			pipe_w = pfit_w;
   1687 		if (pipe_h < pfit_h)
   1688 			pipe_h = pfit_h;
   1689 
   1690 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
   1691 				     pfit_w * pfit_h);
   1692 	}
   1693 
   1694 	return pixel_rate;
   1695 }
   1696 
   1697 /* latency must be in 0.1us units. */
   1698 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   1699 			       uint32_t latency)
   1700 {
   1701 	uint64_t ret;
   1702 
   1703 	if (WARN(latency == 0, "Latency value missing\n"))
   1704 		return UINT_MAX;
   1705 
   1706 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
   1707 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
   1708 
   1709 	return ret;
   1710 }
   1711 
   1712 /* latency must be in 0.1us units. */
   1713 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   1714 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   1715 			       uint32_t latency)
   1716 {
   1717 	uint32_t ret;
   1718 
   1719 	if (WARN(latency == 0, "Latency value missing\n"))
   1720 		return UINT_MAX;
   1721 
   1722 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
   1723 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
   1724 	ret = DIV_ROUND_UP(ret, 64) + 2;
   1725 	return ret;
   1726 }
   1727 
   1728 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
   1729 			   uint8_t bytes_per_pixel)
   1730 {
   1731 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
   1732 }
   1733 
   1734 struct skl_pipe_wm_parameters {
   1735 	bool active;
   1736 	uint32_t pipe_htotal;
   1737 	uint32_t pixel_rate; /* in KHz */
   1738 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
   1739 };
   1740 
   1741 struct ilk_wm_maximums {
   1742 	uint16_t pri;
   1743 	uint16_t spr;
   1744 	uint16_t cur;
   1745 	uint16_t fbc;
   1746 };
   1747 
   1748 /* used in computing the new watermarks state */
   1749 struct intel_wm_config {
   1750 	unsigned int num_pipes_active;
   1751 	bool sprites_enabled;
   1752 	bool sprites_scaled;
   1753 };
   1754 
   1755 /*
   1756  * For both WM_PIPE and WM_LP.
   1757  * mem_value must be in 0.1us units.
   1758  */
   1759 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
   1760 				   const struct intel_plane_state *pstate,
   1761 				   uint32_t mem_value,
   1762 				   bool is_lp)
   1763 {
   1764 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1765 	uint32_t method1, method2;
   1766 
   1767 	if (!cstate->base.active || !pstate->visible)
   1768 		return 0;
   1769 
   1770 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
   1771 
   1772 	if (!is_lp)
   1773 		return method1;
   1774 
   1775 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1776 				 cstate->base.adjusted_mode.crtc_htotal,
   1777 				 drm_rect_width(&pstate->dst),
   1778 				 bpp,
   1779 				 mem_value);
   1780 
   1781 	return min(method1, method2);
   1782 }
   1783 
   1784 /*
   1785  * For both WM_PIPE and WM_LP.
   1786  * mem_value must be in 0.1us units.
   1787  */
   1788 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
   1789 				   const struct intel_plane_state *pstate,
   1790 				   uint32_t mem_value)
   1791 {
   1792 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1793 	uint32_t method1, method2;
   1794 
   1795 	if (!cstate->base.active || !pstate->visible)
   1796 		return 0;
   1797 
   1798 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
   1799 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1800 				 cstate->base.adjusted_mode.crtc_htotal,
   1801 				 drm_rect_width(&pstate->dst),
   1802 				 bpp,
   1803 				 mem_value);
   1804 	return min(method1, method2);
   1805 }
   1806 
   1807 /*
   1808  * For both WM_PIPE and WM_LP.
   1809  * mem_value must be in 0.1us units.
   1810  */
   1811 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
   1812 				   const struct intel_plane_state *pstate,
   1813 				   uint32_t mem_value)
   1814 {
   1815 	/*
   1816 	 * We treat the cursor plane as always-on for the purposes of watermark
   1817 	 * calculation.  Until we have two-stage watermark programming merged,
   1818 	 * this is necessary to avoid flickering.
   1819 	 */
   1820 	int cpp = 4;
   1821 	int width = pstate->visible ? pstate->base.crtc_w : 64;
   1822 
   1823 	if (!cstate->base.active)
   1824 		return 0;
   1825 
   1826 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
   1827 			      cstate->base.adjusted_mode.crtc_htotal,
   1828 			      width, cpp, mem_value);
   1829 }
   1830 
   1831 /* Only for WM_LP. */
   1832 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
   1833 				   const struct intel_plane_state *pstate,
   1834 				   uint32_t pri_val)
   1835 {
   1836 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
   1837 
   1838 	if (!cstate->base.active || !pstate->visible)
   1839 		return 0;
   1840 
   1841 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
   1842 }
   1843 
   1844 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
   1845 {
   1846 	if (INTEL_INFO(dev)->gen >= 8)
   1847 		return 3072;
   1848 	else if (INTEL_INFO(dev)->gen >= 7)
   1849 		return 768;
   1850 	else
   1851 		return 512;
   1852 }
   1853 
   1854 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
   1855 					 int level, bool is_sprite)
   1856 {
   1857 	if (INTEL_INFO(dev)->gen >= 8)
   1858 		/* BDW primary/sprite plane watermarks */
   1859 		return level == 0 ? 255 : 2047;
   1860 	else if (INTEL_INFO(dev)->gen >= 7)
   1861 		/* IVB/HSW primary/sprite plane watermarks */
   1862 		return level == 0 ? 127 : 1023;
   1863 	else if (!is_sprite)
   1864 		/* ILK/SNB primary plane watermarks */
   1865 		return level == 0 ? 127 : 511;
   1866 	else
   1867 		/* ILK/SNB sprite plane watermarks */
   1868 		return level == 0 ? 63 : 255;
   1869 }
   1870 
   1871 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
   1872 					  int level)
   1873 {
   1874 	if (INTEL_INFO(dev)->gen >= 7)
   1875 		return level == 0 ? 63 : 255;
   1876 	else
   1877 		return level == 0 ? 31 : 63;
   1878 }
   1879 
   1880 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
   1881 {
   1882 	if (INTEL_INFO(dev)->gen >= 8)
   1883 		return 31;
   1884 	else
   1885 		return 15;
   1886 }
   1887 
   1888 /* Calculate the maximum primary/sprite plane watermark */
   1889 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
   1890 				     int level,
   1891 				     const struct intel_wm_config *config,
   1892 				     enum intel_ddb_partitioning ddb_partitioning,
   1893 				     bool is_sprite)
   1894 {
   1895 	unsigned int fifo_size = ilk_display_fifo_size(dev);
   1896 
   1897 	/* if sprites aren't enabled, sprites get nothing */
   1898 	if (is_sprite && !config->sprites_enabled)
   1899 		return 0;
   1900 
   1901 	/* HSW allows LP1+ watermarks even with multiple pipes */
   1902 	if (level == 0 || config->num_pipes_active > 1) {
   1903 		fifo_size /= INTEL_INFO(dev)->num_pipes;
   1904 
   1905 		/*
   1906 		 * For some reason the non self refresh
   1907 		 * FIFO size is only half of the self
   1908 		 * refresh FIFO size on ILK/SNB.
   1909 		 */
   1910 		if (INTEL_INFO(dev)->gen <= 6)
   1911 			fifo_size /= 2;
   1912 	}
   1913 
   1914 	if (config->sprites_enabled) {
   1915 		/* level 0 is always calculated with 1:1 split */
   1916 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
   1917 			if (is_sprite)
   1918 				fifo_size *= 5;
   1919 			fifo_size /= 6;
   1920 		} else {
   1921 			fifo_size /= 2;
   1922 		}
   1923 	}
   1924 
   1925 	/* clamp to max that the registers can hold */
   1926 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
   1927 }
   1928 
   1929 /* Calculate the maximum cursor plane watermark */
   1930 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
   1931 				      int level,
   1932 				      const struct intel_wm_config *config)
   1933 {
   1934 	/* HSW LP1+ watermarks w/ multiple pipes */
   1935 	if (level > 0 && config->num_pipes_active > 1)
   1936 		return 64;
   1937 
   1938 	/* otherwise just report max that registers can hold */
   1939 	return ilk_cursor_wm_reg_max(dev, level);
   1940 }
   1941 
   1942 static void ilk_compute_wm_maximums(const struct drm_device *dev,
   1943 				    int level,
   1944 				    const struct intel_wm_config *config,
   1945 				    enum intel_ddb_partitioning ddb_partitioning,
   1946 				    struct ilk_wm_maximums *max)
   1947 {
   1948 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
   1949 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
   1950 	max->cur = ilk_cursor_wm_max(dev, level, config);
   1951 	max->fbc = ilk_fbc_wm_reg_max(dev);
   1952 }
   1953 
   1954 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
   1955 					int level,
   1956 					struct ilk_wm_maximums *max)
   1957 {
   1958 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
   1959 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
   1960 	max->cur = ilk_cursor_wm_reg_max(dev, level);
   1961 	max->fbc = ilk_fbc_wm_reg_max(dev);
   1962 }
   1963 
   1964 static bool ilk_validate_wm_level(int level,
   1965 				  const struct ilk_wm_maximums *max,
   1966 				  struct intel_wm_level *result)
   1967 {
   1968 	bool ret;
   1969 
   1970 	/* already determined to be invalid? */
   1971 	if (!result->enable)
   1972 		return false;
   1973 
   1974 	result->enable = result->pri_val <= max->pri &&
   1975 			 result->spr_val <= max->spr &&
   1976 			 result->cur_val <= max->cur;
   1977 
   1978 	ret = result->enable;
   1979 
   1980 	/*
   1981 	 * HACK until we can pre-compute everything,
   1982 	 * and thus fail gracefully if LP0 watermarks
   1983 	 * are exceeded...
   1984 	 */
   1985 	if (level == 0 && !result->enable) {
   1986 		if (result->pri_val > max->pri)
   1987 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
   1988 				      level, result->pri_val, max->pri);
   1989 		if (result->spr_val > max->spr)
   1990 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
   1991 				      level, result->spr_val, max->spr);
   1992 		if (result->cur_val > max->cur)
   1993 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
   1994 				      level, result->cur_val, max->cur);
   1995 
   1996 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
   1997 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
   1998 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
   1999 		result->enable = true;
   2000 	}
   2001 
   2002 	return ret;
   2003 }
   2004 
   2005 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
   2006 				 const struct intel_crtc *intel_crtc,
   2007 				 int level,
   2008 				 struct intel_crtc_state *cstate,
   2009 				 struct intel_wm_level *result)
   2010 {
   2011 	struct intel_plane *intel_plane;
   2012 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
   2013 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
   2014 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
   2015 
   2016 	/* WM1+ latency values stored in 0.5us units */
   2017 	if (level > 0) {
   2018 		pri_latency *= 5;
   2019 		spr_latency *= 5;
   2020 		cur_latency *= 5;
   2021 	}
   2022 
   2023 	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
   2024 		struct intel_plane_state *pstate =
   2025 			to_intel_plane_state(intel_plane->base.state);
   2026 
   2027 		switch (intel_plane->base.type) {
   2028 		case DRM_PLANE_TYPE_PRIMARY:
   2029 			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
   2030 							     pri_latency,
   2031 							     level);
   2032 			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
   2033 							     result->pri_val);
   2034 			break;
   2035 		case DRM_PLANE_TYPE_OVERLAY:
   2036 			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
   2037 							     spr_latency);
   2038 			break;
   2039 		case DRM_PLANE_TYPE_CURSOR:
   2040 			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
   2041 							     cur_latency);
   2042 			break;
   2043 		}
   2044 	}
   2045 
   2046 	result->enable = true;
   2047 }
   2048 
   2049 static uint32_t
   2050 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
   2051 {
   2052 	struct drm_i915_private *dev_priv = dev->dev_private;
   2053 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2054 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
   2055 	u32 linetime, ips_linetime;
   2056 
   2057 	if (!intel_crtc->active)
   2058 		return 0;
   2059 
   2060 	/* The WM are computed with base on how long it takes to fill a single
   2061 	 * row at the given clock rate, multiplied by 8.
   2062 	 * */
   2063 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
   2064 				     adjusted_mode->crtc_clock);
   2065 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
   2066 					 dev_priv->cdclk_freq);
   2067 
   2068 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
   2069 	       PIPE_WM_LINETIME_TIME(linetime);
   2070 }
   2071 
   2072 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
   2073 {
   2074 	struct drm_i915_private *dev_priv = dev->dev_private;
   2075 
   2076 	if (IS_GEN9(dev)) {
   2077 		uint32_t val;
   2078 		int ret, i;
   2079 		int level, max_level = ilk_wm_max_level(dev);
   2080 
   2081 		/* read the first set of memory latencies[0:3] */
   2082 		val = 0; /* data0 to be programmed to 0 for first set */
   2083 		mutex_lock(&dev_priv->rps.hw_lock);
   2084 		ret = sandybridge_pcode_read(dev_priv,
   2085 					     GEN9_PCODE_READ_MEM_LATENCY,
   2086 					     &val);
   2087 		mutex_unlock(&dev_priv->rps.hw_lock);
   2088 
   2089 		if (ret) {
   2090 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
   2091 			return;
   2092 		}
   2093 
   2094 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
   2095 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2096 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2097 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2098 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2099 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2100 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2101 
   2102 		/* read the second set of memory latencies[4:7] */
   2103 		val = 1; /* data0 to be programmed to 1 for second set */
   2104 		mutex_lock(&dev_priv->rps.hw_lock);
   2105 		ret = sandybridge_pcode_read(dev_priv,
   2106 					     GEN9_PCODE_READ_MEM_LATENCY,
   2107 					     &val);
   2108 		mutex_unlock(&dev_priv->rps.hw_lock);
   2109 		if (ret) {
   2110 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
   2111 			return;
   2112 		}
   2113 
   2114 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
   2115 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2116 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2117 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2118 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2119 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2120 				GEN9_MEM_LATENCY_LEVEL_MASK;
   2121 
   2122 		/*
   2123 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
   2124 		 * need to be disabled. We make sure to sanitize the values out
   2125 		 * of the punit to satisfy this requirement.
   2126 		 */
   2127 		for (level = 1; level <= max_level; level++) {
   2128 			if (wm[level] == 0) {
   2129 				for (i = level + 1; i <= max_level; i++)
   2130 					wm[i] = 0;
   2131 				break;
   2132 			}
   2133 		}
   2134 
   2135 		/*
   2136 		 * WaWmMemoryReadLatency:skl
   2137 		 *
   2138 		 * punit doesn't take into account the read latency so we need
   2139 		 * to add 2us to the various latency levels we retrieve from the
   2140 		 * punit when level 0 response data us 0us.
   2141 		 */
   2142 		if (wm[0] == 0) {
   2143 			wm[0] += 2;
   2144 			for (level = 1; level <= max_level; level++) {
   2145 				if (wm[level] == 0)
   2146 					break;
   2147 				wm[level] += 2;
   2148 			}
   2149 		}
   2150 
   2151 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2152 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
   2153 
   2154 		wm[0] = (sskpd >> 56) & 0xFF;
   2155 		if (wm[0] == 0)
   2156 			wm[0] = sskpd & 0xF;
   2157 		wm[1] = (sskpd >> 4) & 0xFF;
   2158 		wm[2] = (sskpd >> 12) & 0xFF;
   2159 		wm[3] = (sskpd >> 20) & 0x1FF;
   2160 		wm[4] = (sskpd >> 32) & 0x1FF;
   2161 	} else if (INTEL_INFO(dev)->gen >= 6) {
   2162 		uint32_t sskpd = I915_READ(MCH_SSKPD);
   2163 
   2164 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
   2165 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
   2166 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
   2167 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
   2168 	} else if (INTEL_INFO(dev)->gen >= 5) {
   2169 		uint32_t mltr = I915_READ(MLTR_ILK);
   2170 
   2171 		/* ILK primary LP0 latency is 700 ns */
   2172 		wm[0] = 7;
   2173 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
   2174 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
   2175 	}
   2176 }
   2177 
   2178 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2179 {
   2180 	/* ILK sprite LP0 latency is 1300 ns */
   2181 	if (INTEL_INFO(dev)->gen == 5)
   2182 		wm[0] = 13;
   2183 }
   2184 
   2185 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2186 {
   2187 	/* ILK cursor LP0 latency is 1300 ns */
   2188 	if (INTEL_INFO(dev)->gen == 5)
   2189 		wm[0] = 13;
   2190 
   2191 	/* WaDoubleCursorLP3Latency:ivb */
   2192 	if (IS_IVYBRIDGE(dev))
   2193 		wm[3] *= 2;
   2194 }
   2195 
   2196 int ilk_wm_max_level(const struct drm_device *dev)
   2197 {
   2198 	/* how many WM levels are we expecting */
   2199 	if (INTEL_INFO(dev)->gen >= 9)
   2200 		return 7;
   2201 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2202 		return 4;
   2203 	else if (INTEL_INFO(dev)->gen >= 6)
   2204 		return 3;
   2205 	else
   2206 		return 2;
   2207 }
   2208 
   2209 static void intel_print_wm_latency(struct drm_device *dev,
   2210 				   const char *name,
   2211 				   const uint16_t wm[8])
   2212 {
   2213 	int level, max_level = ilk_wm_max_level(dev);
   2214 
   2215 	for (level = 0; level <= max_level; level++) {
   2216 		unsigned int latency = wm[level];
   2217 
   2218 		if (latency == 0) {
   2219 			DRM_ERROR("%s WM%d latency not provided\n",
   2220 				  name, level);
   2221 			continue;
   2222 		}
   2223 
   2224 		/*
   2225 		 * - latencies are in us on gen9.
   2226 		 * - before then, WM1+ latency values are in 0.5us units
   2227 		 */
   2228 		if (IS_GEN9(dev))
   2229 			latency *= 10;
   2230 		else if (level > 0)
   2231 			latency *= 5;
   2232 
   2233 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
   2234 			      name, level, wm[level],
   2235 			      latency / 10, latency % 10);
   2236 	}
   2237 }
   2238 
   2239 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
   2240 				    uint16_t wm[5], uint16_t min)
   2241 {
   2242 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
   2243 
   2244 	if (wm[0] >= min)
   2245 		return false;
   2246 
   2247 	wm[0] = max(wm[0], min);
   2248 	for (level = 1; level <= max_level; level++)
   2249 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
   2250 
   2251 	return true;
   2252 }
   2253 
   2254 static void snb_wm_latency_quirk(struct drm_device *dev)
   2255 {
   2256 	struct drm_i915_private *dev_priv = dev->dev_private;
   2257 	bool changed;
   2258 
   2259 	/*
   2260 	 * The BIOS provided WM memory latency values are often
   2261 	 * inadequate for high resolution displays. Adjust them.
   2262 	 */
   2263 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
   2264 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
   2265 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
   2266 
   2267 	if (!changed)
   2268 		return;
   2269 
   2270 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
   2271 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2272 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2273 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2274 }
   2275 
   2276 static void ilk_setup_wm_latency(struct drm_device *dev)
   2277 {
   2278 	struct drm_i915_private *dev_priv = dev->dev_private;
   2279 
   2280 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
   2281 
   2282 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
   2283 	       sizeof(dev_priv->wm.pri_latency));
   2284 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
   2285 	       sizeof(dev_priv->wm.pri_latency));
   2286 
   2287 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
   2288 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
   2289 
   2290 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2291 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2292 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2293 
   2294 	if (IS_GEN6(dev))
   2295 		snb_wm_latency_quirk(dev);
   2296 }
   2297 
   2298 static void skl_setup_wm_latency(struct drm_device *dev)
   2299 {
   2300 	struct drm_i915_private *dev_priv = dev->dev_private;
   2301 
   2302 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
   2303 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
   2304 }
   2305 
   2306 static void ilk_compute_wm_config(struct drm_device *dev,
   2307 				  struct intel_wm_config *config)
   2308 {
   2309 	struct intel_crtc *intel_crtc;
   2310 
   2311 	/* Compute the currently _active_ config */
   2312 	for_each_intel_crtc(dev, intel_crtc) {
   2313 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
   2314 
   2315 		if (!wm->pipe_enabled)
   2316 			continue;
   2317 
   2318 		config->sprites_enabled |= wm->sprites_enabled;
   2319 		config->sprites_scaled |= wm->sprites_scaled;
   2320 		config->num_pipes_active++;
   2321 	}
   2322 }
   2323 
   2324 /* Compute new watermarks for the pipe */
   2325 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
   2326 				  struct intel_pipe_wm *pipe_wm)
   2327 {
   2328 	struct drm_crtc *crtc = cstate->base.crtc;
   2329 	struct drm_device *dev = crtc->dev;
   2330 	const struct drm_i915_private *dev_priv = dev->dev_private;
   2331 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2332 	struct intel_plane *intel_plane;
   2333 	struct intel_plane_state *sprstate = NULL;
   2334 	int level, max_level = ilk_wm_max_level(dev);
   2335 	/* LP0 watermark maximums depend on this pipe alone */
   2336 	struct intel_wm_config config = {
   2337 		.num_pipes_active = 1,
   2338 	};
   2339 	struct ilk_wm_maximums max;
   2340 
   2341 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
   2342 		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
   2343 			sprstate = to_intel_plane_state(intel_plane->base.state);
   2344 			break;
   2345 		}
   2346 	}
   2347 
   2348 	config.sprites_enabled = sprstate->visible;
   2349 	config.sprites_scaled = sprstate->visible &&
   2350 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
   2351 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
   2352 
   2353 	pipe_wm->pipe_enabled = cstate->base.active;
   2354 	pipe_wm->sprites_enabled = sprstate->visible;
   2355 	pipe_wm->sprites_scaled = config.sprites_scaled;
   2356 
   2357 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
   2358 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
   2359 		max_level = 1;
   2360 
   2361 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
   2362 	if (config.sprites_scaled)
   2363 		max_level = 0;
   2364 
   2365 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
   2366 
   2367 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2368 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
   2369 
   2370 	/* LP0 watermarks always use 1/2 DDB partitioning */
   2371 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
   2372 
   2373 	/* At least LP0 must be valid */
   2374 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
   2375 		return false;
   2376 
   2377 	ilk_compute_wm_reg_maximums(dev, 1, &max);
   2378 
   2379 	for (level = 1; level <= max_level; level++) {
   2380 		struct intel_wm_level wm = {};
   2381 
   2382 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
   2383 
   2384 		/*
   2385 		 * Disable any watermark level that exceeds the
   2386 		 * register maximums since such watermarks are
   2387 		 * always invalid.
   2388 		 */
   2389 		if (!ilk_validate_wm_level(level, &max, &wm))
   2390 			break;
   2391 
   2392 		pipe_wm->wm[level] = wm;
   2393 	}
   2394 
   2395 	return true;
   2396 }
   2397 
   2398 /*
   2399  * Merge the watermarks from all active pipes for a specific level.
   2400  */
   2401 static void ilk_merge_wm_level(struct drm_device *dev,
   2402 			       int level,
   2403 			       struct intel_wm_level *ret_wm)
   2404 {
   2405 	const struct intel_crtc *intel_crtc;
   2406 
   2407 	ret_wm->enable = true;
   2408 
   2409 	for_each_intel_crtc(dev, intel_crtc) {
   2410 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
   2411 		const struct intel_wm_level *wm = &active->wm[level];
   2412 
   2413 		if (!active->pipe_enabled)
   2414 			continue;
   2415 
   2416 		/*
   2417 		 * The watermark values may have been used in the past,
   2418 		 * so we must maintain them in the registers for some
   2419 		 * time even if the level is now disabled.
   2420 		 */
   2421 		if (!wm->enable)
   2422 			ret_wm->enable = false;
   2423 
   2424 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
   2425 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
   2426 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
   2427 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
   2428 	}
   2429 }
   2430 
   2431 /*
   2432  * Merge all low power watermarks for all active pipes.
   2433  */
   2434 static void ilk_wm_merge(struct drm_device *dev,
   2435 			 const struct intel_wm_config *config,
   2436 			 const struct ilk_wm_maximums *max,
   2437 			 struct intel_pipe_wm *merged)
   2438 {
   2439 	struct drm_i915_private *dev_priv = dev->dev_private;
   2440 	int level, max_level = ilk_wm_max_level(dev);
   2441 	int last_enabled_level = max_level;
   2442 
   2443 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
   2444 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
   2445 	    config->num_pipes_active > 1)
   2446 		return;
   2447 
   2448 	/* ILK: FBC WM must be disabled always */
   2449 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
   2450 
   2451 	/* merge each WM1+ level */
   2452 	for (level = 1; level <= max_level; level++) {
   2453 		struct intel_wm_level *wm = &merged->wm[level];
   2454 
   2455 		ilk_merge_wm_level(dev, level, wm);
   2456 
   2457 		if (level > last_enabled_level)
   2458 			wm->enable = false;
   2459 		else if (!ilk_validate_wm_level(level, max, wm))
   2460 			/* make sure all following levels get disabled */
   2461 			last_enabled_level = level - 1;
   2462 
   2463 		/*
   2464 		 * The spec says it is preferred to disable
   2465 		 * FBC WMs instead of disabling a WM level.
   2466 		 */
   2467 		if (wm->fbc_val > max->fbc) {
   2468 			if (wm->enable)
   2469 				merged->fbc_wm_enabled = false;
   2470 			wm->fbc_val = 0;
   2471 		}
   2472 	}
   2473 
   2474 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
   2475 	/*
   2476 	 * FIXME this is racy. FBC might get enabled later.
   2477 	 * What we should check here is whether FBC can be
   2478 	 * enabled sometime later.
   2479 	 */
   2480 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
   2481 	    intel_fbc_enabled(dev_priv)) {
   2482 		for (level = 2; level <= max_level; level++) {
   2483 			struct intel_wm_level *wm = &merged->wm[level];
   2484 
   2485 			wm->enable = false;
   2486 		}
   2487 	}
   2488 }
   2489 
   2490 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
   2491 {
   2492 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
   2493 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
   2494 }
   2495 
   2496 /* The value we need to program into the WM_LPx latency field */
   2497 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
   2498 {
   2499 	struct drm_i915_private *dev_priv = dev->dev_private;
   2500 
   2501 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2502 		return 2 * level;
   2503 	else
   2504 		return dev_priv->wm.pri_latency[level];
   2505 }
   2506 
   2507 static void ilk_compute_wm_results(struct drm_device *dev,
   2508 				   const struct intel_pipe_wm *merged,
   2509 				   enum intel_ddb_partitioning partitioning,
   2510 				   struct ilk_wm_values *results)
   2511 {
   2512 	struct intel_crtc *intel_crtc;
   2513 	int level, wm_lp;
   2514 
   2515 	results->enable_fbc_wm = merged->fbc_wm_enabled;
   2516 	results->partitioning = partitioning;
   2517 
   2518 	/* LP1+ register values */
   2519 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2520 		const struct intel_wm_level *r;
   2521 
   2522 		level = ilk_wm_lp_to_level(wm_lp, merged);
   2523 
   2524 		r = &merged->wm[level];
   2525 
   2526 		/*
   2527 		 * Maintain the watermark values even if the level is
   2528 		 * disabled. Doing otherwise could cause underruns.
   2529 		 */
   2530 		results->wm_lp[wm_lp - 1] =
   2531 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
   2532 			(r->pri_val << WM1_LP_SR_SHIFT) |
   2533 			r->cur_val;
   2534 
   2535 		if (r->enable)
   2536 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
   2537 
   2538 		if (INTEL_INFO(dev)->gen >= 8)
   2539 			results->wm_lp[wm_lp - 1] |=
   2540 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
   2541 		else
   2542 			results->wm_lp[wm_lp - 1] |=
   2543 				r->fbc_val << WM1_LP_FBC_SHIFT;
   2544 
   2545 		/*
   2546 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
   2547 		 * level is disabled. Doing otherwise could cause underruns.
   2548 		 */
   2549 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
   2550 			WARN_ON(wm_lp != 1);
   2551 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
   2552 		} else
   2553 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
   2554 	}
   2555 
   2556 	/* LP0 register values */
   2557 	for_each_intel_crtc(dev, intel_crtc) {
   2558 		enum pipe pipe = intel_crtc->pipe;
   2559 		const struct intel_wm_level *r =
   2560 			&intel_crtc->wm.active.wm[0];
   2561 
   2562 		if (WARN_ON(!r->enable))
   2563 			continue;
   2564 
   2565 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
   2566 
   2567 		results->wm_pipe[pipe] =
   2568 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
   2569 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
   2570 			r->cur_val;
   2571 	}
   2572 }
   2573 
   2574 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
   2575  * case both are at the same level. Prefer r1 in case they're the same. */
   2576 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
   2577 						  struct intel_pipe_wm *r1,
   2578 						  struct intel_pipe_wm *r2)
   2579 {
   2580 	int level, max_level = ilk_wm_max_level(dev);
   2581 	int level1 = 0, level2 = 0;
   2582 
   2583 	for (level = 1; level <= max_level; level++) {
   2584 		if (r1->wm[level].enable)
   2585 			level1 = level;
   2586 		if (r2->wm[level].enable)
   2587 			level2 = level;
   2588 	}
   2589 
   2590 	if (level1 == level2) {
   2591 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
   2592 			return r2;
   2593 		else
   2594 			return r1;
   2595 	} else if (level1 > level2) {
   2596 		return r1;
   2597 	} else {
   2598 		return r2;
   2599 	}
   2600 }
   2601 
   2602 /* dirty bits used to track which watermarks need changes */
   2603 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
   2604 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
   2605 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
   2606 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
   2607 #define WM_DIRTY_FBC (1 << 24)
   2608 #define WM_DIRTY_DDB (1 << 25)
   2609 
   2610 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
   2611 					 const struct ilk_wm_values *old,
   2612 					 const struct ilk_wm_values *new)
   2613 {
   2614 	unsigned int dirty = 0;
   2615 	enum pipe pipe;
   2616 	int wm_lp;
   2617 
   2618 	for_each_pipe(dev_priv, pipe) {
   2619 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
   2620 			dirty |= WM_DIRTY_LINETIME(pipe);
   2621 			/* Must disable LP1+ watermarks too */
   2622 			dirty |= WM_DIRTY_LP_ALL;
   2623 		}
   2624 
   2625 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
   2626 			dirty |= WM_DIRTY_PIPE(pipe);
   2627 			/* Must disable LP1+ watermarks too */
   2628 			dirty |= WM_DIRTY_LP_ALL;
   2629 		}
   2630 	}
   2631 
   2632 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
   2633 		dirty |= WM_DIRTY_FBC;
   2634 		/* Must disable LP1+ watermarks too */
   2635 		dirty |= WM_DIRTY_LP_ALL;
   2636 	}
   2637 
   2638 	if (old->partitioning != new->partitioning) {
   2639 		dirty |= WM_DIRTY_DDB;
   2640 		/* Must disable LP1+ watermarks too */
   2641 		dirty |= WM_DIRTY_LP_ALL;
   2642 	}
   2643 
   2644 	/* LP1+ watermarks already deemed dirty, no need to continue */
   2645 	if (dirty & WM_DIRTY_LP_ALL)
   2646 		return dirty;
   2647 
   2648 	/* Find the lowest numbered LP1+ watermark in need of an update... */
   2649 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2650 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
   2651 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
   2652 			break;
   2653 	}
   2654 
   2655 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
   2656 	for (; wm_lp <= 3; wm_lp++)
   2657 		dirty |= WM_DIRTY_LP(wm_lp);
   2658 
   2659 	return dirty;
   2660 }
   2661 
   2662 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
   2663 			       unsigned int dirty)
   2664 {
   2665 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2666 	bool changed = false;
   2667 
   2668 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
   2669 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
   2670 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
   2671 		changed = true;
   2672 	}
   2673 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
   2674 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
   2675 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
   2676 		changed = true;
   2677 	}
   2678 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
   2679 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
   2680 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
   2681 		changed = true;
   2682 	}
   2683 
   2684 	/*
   2685 	 * Don't touch WM1S_LP_EN here.
   2686 	 * Doing so could cause underruns.
   2687 	 */
   2688 
   2689 	return changed;
   2690 }
   2691 
   2692 /*
   2693  * The spec says we shouldn't write when we don't need, because every write
   2694  * causes WMs to be re-evaluated, expending some power.
   2695  */
   2696 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
   2697 				struct ilk_wm_values *results)
   2698 {
   2699 	struct drm_device *dev = dev_priv->dev;
   2700 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2701 	unsigned int dirty;
   2702 	uint32_t val;
   2703 
   2704 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
   2705 	if (!dirty)
   2706 		return;
   2707 
   2708 	_ilk_disable_lp_wm(dev_priv, dirty);
   2709 
   2710 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
   2711 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
   2712 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
   2713 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
   2714 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
   2715 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
   2716 
   2717 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
   2718 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
   2719 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
   2720 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
   2721 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
   2722 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
   2723 
   2724 	if (dirty & WM_DIRTY_DDB) {
   2725 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2726 			val = I915_READ(WM_MISC);
   2727 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2728 				val &= ~WM_MISC_DATA_PARTITION_5_6;
   2729 			else
   2730 				val |= WM_MISC_DATA_PARTITION_5_6;
   2731 			I915_WRITE(WM_MISC, val);
   2732 		} else {
   2733 			val = I915_READ(DISP_ARB_CTL2);
   2734 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2735 				val &= ~DISP_DATA_PARTITION_5_6;
   2736 			else
   2737 				val |= DISP_DATA_PARTITION_5_6;
   2738 			I915_WRITE(DISP_ARB_CTL2, val);
   2739 		}
   2740 	}
   2741 
   2742 	if (dirty & WM_DIRTY_FBC) {
   2743 		val = I915_READ(DISP_ARB_CTL);
   2744 		if (results->enable_fbc_wm)
   2745 			val &= ~DISP_FBC_WM_DIS;
   2746 		else
   2747 			val |= DISP_FBC_WM_DIS;
   2748 		I915_WRITE(DISP_ARB_CTL, val);
   2749 	}
   2750 
   2751 	if (dirty & WM_DIRTY_LP(1) &&
   2752 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
   2753 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
   2754 
   2755 	if (INTEL_INFO(dev)->gen >= 7) {
   2756 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
   2757 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
   2758 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
   2759 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
   2760 	}
   2761 
   2762 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
   2763 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
   2764 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
   2765 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
   2766 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
   2767 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
   2768 
   2769 	dev_priv->wm.hw = *results;
   2770 }
   2771 
   2772 static bool ilk_disable_lp_wm(struct drm_device *dev)
   2773 {
   2774 	struct drm_i915_private *dev_priv = dev->dev_private;
   2775 
   2776 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
   2777 }
   2778 
   2779 /*
   2780  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
   2781  * different active planes.
   2782  */
   2783 
   2784 #define SKL_DDB_SIZE		896	/* in blocks */
   2785 #define BXT_DDB_SIZE		512
   2786 
   2787 static void
   2788 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
   2789 				   struct drm_crtc *for_crtc,
   2790 				   const struct intel_wm_config *config,
   2791 				   const struct skl_pipe_wm_parameters *params,
   2792 				   struct skl_ddb_entry *alloc /* out */)
   2793 {
   2794 	struct drm_crtc *crtc;
   2795 	unsigned int pipe_size, ddb_size;
   2796 	int nth_active_pipe;
   2797 
   2798 	if (!params->active) {
   2799 		alloc->start = 0;
   2800 		alloc->end = 0;
   2801 		return;
   2802 	}
   2803 
   2804 	if (IS_BROXTON(dev))
   2805 		ddb_size = BXT_DDB_SIZE;
   2806 	else
   2807 		ddb_size = SKL_DDB_SIZE;
   2808 
   2809 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
   2810 
   2811 	nth_active_pipe = 0;
   2812 	for_each_crtc(dev, crtc) {
   2813 		if (!to_intel_crtc(crtc)->active)
   2814 			continue;
   2815 
   2816 		if (crtc == for_crtc)
   2817 			break;
   2818 
   2819 		nth_active_pipe++;
   2820 	}
   2821 
   2822 	pipe_size = ddb_size / config->num_pipes_active;
   2823 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
   2824 	alloc->end = alloc->start + pipe_size;
   2825 }
   2826 
   2827 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
   2828 {
   2829 	if (config->num_pipes_active == 1)
   2830 		return 32;
   2831 
   2832 	return 8;
   2833 }
   2834 
   2835 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
   2836 {
   2837 	entry->start = reg & 0x3ff;
   2838 	entry->end = (reg >> 16) & 0x3ff;
   2839 	if (entry->end)
   2840 		entry->end += 1;
   2841 }
   2842 
   2843 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
   2844 			  struct skl_ddb_allocation *ddb /* out */)
   2845 {
   2846 	enum pipe pipe;
   2847 	int plane;
   2848 	u32 val;
   2849 
   2850 	memset(ddb, 0, sizeof(*ddb));
   2851 
   2852 	for_each_pipe(dev_priv, pipe) {
   2853 		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
   2854 			continue;
   2855 
   2856 		for_each_plane(dev_priv, pipe, plane) {
   2857 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
   2858 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
   2859 						   val);
   2860 		}
   2861 
   2862 		val = I915_READ(CUR_BUF_CFG(pipe));
   2863 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
   2864 					   val);
   2865 	}
   2866 }
   2867 
   2868 static unsigned int
   2869 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
   2870 {
   2871 
   2872 	/* for planar format */
   2873 	if (p->y_bytes_per_pixel) {
   2874 		if (y)  /* y-plane data rate */
   2875 			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
   2876 		else    /* uv-plane data rate */
   2877 			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
   2878 	}
   2879 
   2880 	/* for packed formats */
   2881 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
   2882 }
   2883 
   2884 /*
   2885  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
   2886  * a 8192x4096@32bpp framebuffer:
   2887  *   3 * 4096 * 8192  * 4 < 2^32
   2888  */
   2889 static unsigned int
   2890 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
   2891 				 const struct skl_pipe_wm_parameters *params)
   2892 {
   2893 	unsigned int total_data_rate = 0;
   2894 	int plane;
   2895 
   2896 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
   2897 		const struct intel_plane_wm_parameters *p;
   2898 
   2899 		p = &params->plane[plane];
   2900 		if (!p->enabled)
   2901 			continue;
   2902 
   2903 		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
   2904 		if (p->y_bytes_per_pixel) {
   2905 			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
   2906 		}
   2907 	}
   2908 
   2909 	return total_data_rate;
   2910 }
   2911 
   2912 static void
   2913 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
   2914 		      const struct intel_wm_config *config,
   2915 		      const struct skl_pipe_wm_parameters *params,
   2916 		      struct skl_ddb_allocation *ddb /* out */)
   2917 {
   2918 	struct drm_device *dev = crtc->dev;
   2919 	struct drm_i915_private *dev_priv = dev->dev_private;
   2920 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2921 	enum pipe pipe = intel_crtc->pipe;
   2922 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
   2923 	uint16_t alloc_size, start, cursor_blocks;
   2924 	uint16_t minimum[I915_MAX_PLANES];
   2925 	uint16_t y_minimum[I915_MAX_PLANES];
   2926 	unsigned int total_data_rate;
   2927 	int plane;
   2928 
   2929 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
   2930 	alloc_size = skl_ddb_entry_size(alloc);
   2931 	if (alloc_size == 0) {
   2932 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
   2933 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
   2934 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
   2935 		return;
   2936 	}
   2937 
   2938 	cursor_blocks = skl_cursor_allocation(config);
   2939 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
   2940 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
   2941 
   2942 	alloc_size -= cursor_blocks;
   2943 	alloc->end -= cursor_blocks;
   2944 
   2945 	/* 1. Allocate the mininum required blocks for each active plane */
   2946 	for_each_plane(dev_priv, pipe, plane) {
   2947 		const struct intel_plane_wm_parameters *p;
   2948 
   2949 		p = &params->plane[plane];
   2950 		if (!p->enabled)
   2951 			continue;
   2952 
   2953 		minimum[plane] = 8;
   2954 		alloc_size -= minimum[plane];
   2955 		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
   2956 		alloc_size -= y_minimum[plane];
   2957 	}
   2958 
   2959 	/*
   2960 	 * 2. Distribute the remaining space in proportion to the amount of
   2961 	 * data each plane needs to fetch from memory.
   2962 	 *
   2963 	 * FIXME: we may not allocate every single block here.
   2964 	 */
   2965 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
   2966 
   2967 	start = alloc->start;
   2968 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
   2969 		const struct intel_plane_wm_parameters *p;
   2970 		unsigned int data_rate, y_data_rate;
   2971 		uint16_t plane_blocks, y_plane_blocks = 0;
   2972 
   2973 		p = &params->plane[plane];
   2974 		if (!p->enabled)
   2975 			continue;
   2976 
   2977 		data_rate = skl_plane_relative_data_rate(p, 0);
   2978 
   2979 		/*
   2980 		 * allocation for (packed formats) or (uv-plane part of planar format):
   2981 		 * promote the expression to 64 bits to avoid overflowing, the
   2982 		 * result is < available as data_rate / total_data_rate < 1
   2983 		 */
   2984 		plane_blocks = minimum[plane];
   2985 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
   2986 					total_data_rate);
   2987 
   2988 		ddb->plane[pipe][plane].start = start;
   2989 		ddb->plane[pipe][plane].end = start + plane_blocks;
   2990 
   2991 		start += plane_blocks;
   2992 
   2993 		/*
   2994 		 * allocation for y_plane part of planar format:
   2995 		 */
   2996 		if (p->y_bytes_per_pixel) {
   2997 			y_data_rate = skl_plane_relative_data_rate(p, 1);
   2998 			y_plane_blocks = y_minimum[plane];
   2999 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
   3000 						total_data_rate);
   3001 
   3002 			ddb->y_plane[pipe][plane].start = start;
   3003 			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
   3004 
   3005 			start += y_plane_blocks;
   3006 		}
   3007 
   3008 	}
   3009 
   3010 }
   3011 
   3012 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
   3013 {
   3014 	/* TODO: Take into account the scalers once we support them */
   3015 	return config->base.adjusted_mode.crtc_clock;
   3016 }
   3017 
   3018 /*
   3019  * The max latency should be 257 (max the punit can code is 255 and we add 2us
   3020  * for the read latency) and bytes_per_pixel should always be <= 8, so that
   3021  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
   3022  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
   3023 */
   3024 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   3025 			       uint32_t latency)
   3026 {
   3027 	uint32_t wm_intermediate_val, ret;
   3028 
   3029 	if (latency == 0)
   3030 		return UINT_MAX;
   3031 
   3032 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
   3033 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
   3034 
   3035 	return ret;
   3036 }
   3037 
   3038 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   3039 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   3040 			       uint64_t tiling, uint32_t latency)
   3041 {
   3042 	uint32_t ret;
   3043 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
   3044 	uint32_t wm_intermediate_val;
   3045 
   3046 	if (latency == 0)
   3047 		return UINT_MAX;
   3048 
   3049 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
   3050 
   3051 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
   3052 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
   3053 		plane_bytes_per_line *= 4;
   3054 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3055 		plane_blocks_per_line /= 4;
   3056 	} else {
   3057 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3058 	}
   3059 
   3060 	wm_intermediate_val = latency * pixel_rate;
   3061 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
   3062 				plane_blocks_per_line;
   3063 
   3064 	return ret;
   3065 }
   3066 
   3067 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
   3068 				       const struct intel_crtc *intel_crtc)
   3069 {
   3070 	struct drm_device *dev = intel_crtc->base.dev;
   3071 	struct drm_i915_private *dev_priv = dev->dev_private;
   3072 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
   3073 	enum pipe pipe = intel_crtc->pipe;
   3074 
   3075 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
   3076 		   sizeof(new_ddb->plane[pipe])))
   3077 		return true;
   3078 
   3079 	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
   3080 		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
   3081 		return true;
   3082 
   3083 	return false;
   3084 }
   3085 
   3086 static void skl_compute_wm_global_parameters(struct drm_device *dev,
   3087 					     struct intel_wm_config *config)
   3088 {
   3089 	struct drm_crtc *crtc;
   3090 	struct drm_plane *plane;
   3091 
   3092 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   3093 		config->num_pipes_active += to_intel_crtc(crtc)->active;
   3094 
   3095 	/* FIXME: I don't think we need those two global parameters on SKL */
   3096 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
   3097 		struct intel_plane *intel_plane = to_intel_plane(plane);
   3098 
   3099 		config->sprites_enabled |= intel_plane->wm.enabled;
   3100 		config->sprites_scaled |= intel_plane->wm.scaled;
   3101 	}
   3102 }
   3103 
   3104 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
   3105 					   struct skl_pipe_wm_parameters *p)
   3106 {
   3107 	struct drm_device *dev = crtc->dev;
   3108 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3109 	enum pipe pipe = intel_crtc->pipe;
   3110 	struct drm_plane *plane;
   3111 	struct drm_framebuffer *fb;
   3112 	int i = 1; /* Index for sprite planes start */
   3113 
   3114 	p->active = intel_crtc->active;
   3115 	if (p->active) {
   3116 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
   3117 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
   3118 
   3119 		fb = crtc->primary->state->fb;
   3120 		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
   3121 		if (fb) {
   3122 			p->plane[0].enabled = true;
   3123 			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
   3124 				drm_format_plane_cpp(fb->pixel_format, 1) :
   3125 				drm_format_plane_cpp(fb->pixel_format, 0);
   3126 			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
   3127 				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
   3128 			p->plane[0].tiling = fb->modifier[0];
   3129 		} else {
   3130 			p->plane[0].enabled = false;
   3131 			p->plane[0].bytes_per_pixel = 0;
   3132 			p->plane[0].y_bytes_per_pixel = 0;
   3133 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
   3134 		}
   3135 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
   3136 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
   3137 		p->plane[0].rotation = crtc->primary->state->rotation;
   3138 
   3139 		fb = crtc->cursor->state->fb;
   3140 		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
   3141 		if (fb) {
   3142 			p->plane[PLANE_CURSOR].enabled = true;
   3143 			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
   3144 			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
   3145 			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
   3146 		} else {
   3147 			p->plane[PLANE_CURSOR].enabled = false;
   3148 			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
   3149 			p->plane[PLANE_CURSOR].horiz_pixels = 64;
   3150 			p->plane[PLANE_CURSOR].vert_pixels = 64;
   3151 		}
   3152 	}
   3153 
   3154 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
   3155 		struct intel_plane *intel_plane = to_intel_plane(plane);
   3156 
   3157 		if (intel_plane->pipe == pipe &&
   3158 			plane->type == DRM_PLANE_TYPE_OVERLAY)
   3159 			p->plane[i++] = intel_plane->wm;
   3160 	}
   3161 }
   3162 
   3163 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
   3164 				 struct skl_pipe_wm_parameters *p,
   3165 				 struct intel_plane_wm_parameters *p_params,
   3166 				 uint16_t ddb_allocation,
   3167 				 int level,
   3168 				 uint16_t *out_blocks, /* out */
   3169 				 uint8_t *out_lines /* out */)
   3170 {
   3171 	uint32_t latency = dev_priv->wm.skl_latency[level];
   3172 	uint32_t method1, method2;
   3173 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
   3174 	uint32_t res_blocks, res_lines;
   3175 	uint32_t selected_result;
   3176 	uint8_t bytes_per_pixel;
   3177 
   3178 	if (latency == 0 || !p->active || !p_params->enabled)
   3179 		return false;
   3180 
   3181 	bytes_per_pixel = p_params->y_bytes_per_pixel ?
   3182 		p_params->y_bytes_per_pixel :
   3183 		p_params->bytes_per_pixel;
   3184 	method1 = skl_wm_method1(p->pixel_rate,
   3185 				 bytes_per_pixel,
   3186 				 latency);
   3187 	method2 = skl_wm_method2(p->pixel_rate,
   3188 				 p->pipe_htotal,
   3189 				 p_params->horiz_pixels,
   3190 				 bytes_per_pixel,
   3191 				 p_params->tiling,
   3192 				 latency);
   3193 
   3194 	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
   3195 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
   3196 
   3197 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
   3198 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
   3199 		uint32_t min_scanlines = 4;
   3200 		uint32_t y_tile_minimum;
   3201 		if (intel_rotation_90_or_270(p_params->rotation)) {
   3202 			switch (p_params->bytes_per_pixel) {
   3203 			case 1:
   3204 				min_scanlines = 16;
   3205 				break;
   3206 			case 2:
   3207 				min_scanlines = 8;
   3208 				break;
   3209 			case 8:
   3210 				WARN(1, "Unsupported pixel depth for rotation");
   3211 			}
   3212 		}
   3213 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
   3214 		selected_result = max(method2, y_tile_minimum);
   3215 	} else {
   3216 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
   3217 			selected_result = min(method1, method2);
   3218 		else
   3219 			selected_result = method1;
   3220 	}
   3221 
   3222 	res_blocks = selected_result + 1;
   3223 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
   3224 
   3225 	if (level >= 1 && level <= 7) {
   3226 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
   3227 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
   3228 			res_lines += 4;
   3229 		else
   3230 			res_blocks++;
   3231 	}
   3232 
   3233 	if (res_blocks >= ddb_allocation || res_lines > 31)
   3234 		return false;
   3235 
   3236 	*out_blocks = res_blocks;
   3237 	*out_lines = res_lines;
   3238 
   3239 	return true;
   3240 }
   3241 
   3242 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
   3243 				 struct skl_ddb_allocation *ddb,
   3244 				 struct skl_pipe_wm_parameters *p,
   3245 				 enum pipe pipe,
   3246 				 int level,
   3247 				 int num_planes,
   3248 				 struct skl_wm_level *result)
   3249 {
   3250 	uint16_t ddb_blocks;
   3251 	int i;
   3252 
   3253 	for (i = 0; i < num_planes; i++) {
   3254 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
   3255 
   3256 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
   3257 						p, &p->plane[i],
   3258 						ddb_blocks,
   3259 						level,
   3260 						&result->plane_res_b[i],
   3261 						&result->plane_res_l[i]);
   3262 	}
   3263 
   3264 	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
   3265 	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
   3266 						 &p->plane[PLANE_CURSOR],
   3267 						 ddb_blocks, level,
   3268 						 &result->plane_res_b[PLANE_CURSOR],
   3269 						 &result->plane_res_l[PLANE_CURSOR]);
   3270 }
   3271 
   3272 static uint32_t
   3273 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
   3274 {
   3275 	if (!to_intel_crtc(crtc)->active)
   3276 		return 0;
   3277 
   3278 	if (WARN_ON(p->pixel_rate == 0))
   3279 		return 0;
   3280 
   3281 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
   3282 }
   3283 
   3284 static void skl_compute_transition_wm(struct drm_crtc *crtc,
   3285 				      struct skl_pipe_wm_parameters *params,
   3286 				      struct skl_wm_level *trans_wm /* out */)
   3287 {
   3288 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3289 	int i;
   3290 
   3291 	if (!params->active)
   3292 		return;
   3293 
   3294 	/* Until we know more, just disable transition WMs */
   3295 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3296 		trans_wm->plane_en[i] = false;
   3297 	trans_wm->plane_en[PLANE_CURSOR] = false;
   3298 }
   3299 
   3300 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
   3301 				struct skl_ddb_allocation *ddb,
   3302 				struct skl_pipe_wm_parameters *params,
   3303 				struct skl_pipe_wm *pipe_wm)
   3304 {
   3305 	struct drm_device *dev = crtc->dev;
   3306 	const struct drm_i915_private *dev_priv = dev->dev_private;
   3307 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3308 	int level, max_level = ilk_wm_max_level(dev);
   3309 
   3310 	for (level = 0; level <= max_level; level++) {
   3311 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
   3312 				     level, intel_num_planes(intel_crtc),
   3313 				     &pipe_wm->wm[level]);
   3314 	}
   3315 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
   3316 
   3317 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
   3318 }
   3319 
   3320 static void skl_compute_wm_results(struct drm_device *dev,
   3321 				   struct skl_pipe_wm_parameters *p,
   3322 				   struct skl_pipe_wm *p_wm,
   3323 				   struct skl_wm_values *r,
   3324 				   struct intel_crtc *intel_crtc)
   3325 {
   3326 	int level, max_level = ilk_wm_max_level(dev);
   3327 	enum pipe pipe = intel_crtc->pipe;
   3328 	uint32_t temp;
   3329 	int i;
   3330 
   3331 	for (level = 0; level <= max_level; level++) {
   3332 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3333 			temp = 0;
   3334 
   3335 			temp |= p_wm->wm[level].plane_res_l[i] <<
   3336 					PLANE_WM_LINES_SHIFT;
   3337 			temp |= p_wm->wm[level].plane_res_b[i];
   3338 			if (p_wm->wm[level].plane_en[i])
   3339 				temp |= PLANE_WM_EN;
   3340 
   3341 			r->plane[pipe][i][level] = temp;
   3342 		}
   3343 
   3344 		temp = 0;
   3345 
   3346 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
   3347 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
   3348 
   3349 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
   3350 			temp |= PLANE_WM_EN;
   3351 
   3352 		r->plane[pipe][PLANE_CURSOR][level] = temp;
   3353 
   3354 	}
   3355 
   3356 	/* transition WMs */
   3357 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3358 		temp = 0;
   3359 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
   3360 		temp |= p_wm->trans_wm.plane_res_b[i];
   3361 		if (p_wm->trans_wm.plane_en[i])
   3362 			temp |= PLANE_WM_EN;
   3363 
   3364 		r->plane_trans[pipe][i] = temp;
   3365 	}
   3366 
   3367 	temp = 0;
   3368 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
   3369 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
   3370 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
   3371 		temp |= PLANE_WM_EN;
   3372 
   3373 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
   3374 
   3375 	r->wm_linetime[pipe] = p_wm->linetime;
   3376 }
   3377 
   3378 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
   3379 				const struct skl_ddb_entry *entry)
   3380 {
   3381 	if (entry->end)
   3382 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
   3383 	else
   3384 		I915_WRITE(reg, 0);
   3385 }
   3386 
   3387 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
   3388 				const struct skl_wm_values *new)
   3389 {
   3390 	struct drm_device *dev = dev_priv->dev;
   3391 	struct intel_crtc *crtc;
   3392 
   3393 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
   3394 		int i, level, max_level = ilk_wm_max_level(dev);
   3395 		enum pipe pipe = crtc->pipe;
   3396 
   3397 		if (!new->dirty[pipe])
   3398 			continue;
   3399 
   3400 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
   3401 
   3402 		for (level = 0; level <= max_level; level++) {
   3403 			for (i = 0; i < intel_num_planes(crtc); i++)
   3404 				I915_WRITE(PLANE_WM(pipe, i, level),
   3405 					   new->plane[pipe][i][level]);
   3406 			I915_WRITE(CUR_WM(pipe, level),
   3407 				   new->plane[pipe][PLANE_CURSOR][level]);
   3408 		}
   3409 		for (i = 0; i < intel_num_planes(crtc); i++)
   3410 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
   3411 				   new->plane_trans[pipe][i]);
   3412 		I915_WRITE(CUR_WM_TRANS(pipe),
   3413 			   new->plane_trans[pipe][PLANE_CURSOR]);
   3414 
   3415 		for (i = 0; i < intel_num_planes(crtc); i++) {
   3416 			skl_ddb_entry_write(dev_priv,
   3417 					    PLANE_BUF_CFG(pipe, i),
   3418 					    &new->ddb.plane[pipe][i]);
   3419 			skl_ddb_entry_write(dev_priv,
   3420 					    PLANE_NV12_BUF_CFG(pipe, i),
   3421 					    &new->ddb.y_plane[pipe][i]);
   3422 		}
   3423 
   3424 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
   3425 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
   3426 	}
   3427 }
   3428 
   3429 /*
   3430  * When setting up a new DDB allocation arrangement, we need to correctly
   3431  * sequence the times at which the new allocations for the pipes are taken into
   3432  * account or we'll have pipes fetching from space previously allocated to
   3433  * another pipe.
   3434  *
   3435  * Roughly the sequence looks like:
   3436  *  1. re-allocate the pipe(s) with the allocation being reduced and not
   3437  *     overlapping with a previous light-up pipe (another way to put it is:
   3438  *     pipes with their new allocation strickly included into their old ones).
   3439  *  2. re-allocate the other pipes that get their allocation reduced
   3440  *  3. allocate the pipes having their allocation increased
   3441  *
   3442  * Steps 1. and 2. are here to take care of the following case:
   3443  * - Initially DDB looks like this:
   3444  *     |   B    |   C    |
   3445  * - enable pipe A.
   3446  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
   3447  *   allocation
   3448  *     |  A  |  B  |  C  |
   3449  *
   3450  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
   3451  */
   3452 
   3453 static void
   3454 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
   3455 {
   3456 	int plane;
   3457 
   3458 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
   3459 
   3460 	for_each_plane(dev_priv, pipe, plane) {
   3461 		I915_WRITE(PLANE_SURF(pipe, plane),
   3462 			   I915_READ(PLANE_SURF(pipe, plane)));
   3463 	}
   3464 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
   3465 }
   3466 
   3467 static bool
   3468 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
   3469 			    const struct skl_ddb_allocation *new,
   3470 			    enum pipe pipe)
   3471 {
   3472 	uint16_t old_size, new_size;
   3473 
   3474 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
   3475 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
   3476 
   3477 	return old_size != new_size &&
   3478 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
   3479 	       new->pipe[pipe].end <= old->pipe[pipe].end;
   3480 }
   3481 
   3482 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
   3483 				struct skl_wm_values *new_values)
   3484 {
   3485 	struct drm_device *dev = dev_priv->dev;
   3486 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
   3487 	bool reallocated[I915_MAX_PIPES] = {};
   3488 	struct intel_crtc *crtc;
   3489 	enum pipe pipe;
   3490 
   3491 	new_ddb = &new_values->ddb;
   3492 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
   3493 
   3494 	/*
   3495 	 * First pass: flush the pipes with the new allocation contained into
   3496 	 * the old space.
   3497 	 *
   3498 	 * We'll wait for the vblank on those pipes to ensure we can safely
   3499 	 * re-allocate the freed space without this pipe fetching from it.
   3500 	 */
   3501 	for_each_intel_crtc(dev, crtc) {
   3502 		if (!crtc->active)
   3503 			continue;
   3504 
   3505 		pipe = crtc->pipe;
   3506 
   3507 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
   3508 			continue;
   3509 
   3510 		skl_wm_flush_pipe(dev_priv, pipe, 1);
   3511 		intel_wait_for_vblank(dev, pipe);
   3512 
   3513 		reallocated[pipe] = true;
   3514 	}
   3515 
   3516 
   3517 	/*
   3518 	 * Second pass: flush the pipes that are having their allocation
   3519 	 * reduced, but overlapping with a previous allocation.
   3520 	 *
   3521 	 * Here as well we need to wait for the vblank to make sure the freed
   3522 	 * space is not used anymore.
   3523 	 */
   3524 	for_each_intel_crtc(dev, crtc) {
   3525 		if (!crtc->active)
   3526 			continue;
   3527 
   3528 		pipe = crtc->pipe;
   3529 
   3530 		if (reallocated[pipe])
   3531 			continue;
   3532 
   3533 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
   3534 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
   3535 			skl_wm_flush_pipe(dev_priv, pipe, 2);
   3536 			intel_wait_for_vblank(dev, pipe);
   3537 			reallocated[pipe] = true;
   3538 		}
   3539 	}
   3540 
   3541 	/*
   3542 	 * Third pass: flush the pipes that got more space allocated.
   3543 	 *
   3544 	 * We don't need to actively wait for the update here, next vblank
   3545 	 * will just get more DDB space with the correct WM values.
   3546 	 */
   3547 	for_each_intel_crtc(dev, crtc) {
   3548 		if (!crtc->active)
   3549 			continue;
   3550 
   3551 		pipe = crtc->pipe;
   3552 
   3553 		/*
   3554 		 * At this point, only the pipes more space than before are
   3555 		 * left to re-allocate.
   3556 		 */
   3557 		if (reallocated[pipe])
   3558 			continue;
   3559 
   3560 		skl_wm_flush_pipe(dev_priv, pipe, 3);
   3561 	}
   3562 }
   3563 
   3564 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
   3565 			       struct skl_pipe_wm_parameters *params,
   3566 			       struct intel_wm_config *config,
   3567 			       struct skl_ddb_allocation *ddb, /* out */
   3568 			       struct skl_pipe_wm *pipe_wm /* out */)
   3569 {
   3570 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3571 
   3572 	skl_compute_wm_pipe_parameters(crtc, params);
   3573 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
   3574 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
   3575 
   3576 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
   3577 		return false;
   3578 
   3579 	intel_crtc->wm.skl_active = *pipe_wm;
   3580 
   3581 	return true;
   3582 }
   3583 
   3584 static void skl_update_other_pipe_wm(struct drm_device *dev,
   3585 				     struct drm_crtc *crtc,
   3586 				     struct intel_wm_config *config,
   3587 				     struct skl_wm_values *r)
   3588 {
   3589 	struct intel_crtc *intel_crtc;
   3590 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
   3591 
   3592 	/*
   3593 	 * If the WM update hasn't changed the allocation for this_crtc (the
   3594 	 * crtc we are currently computing the new WM values for), other
   3595 	 * enabled crtcs will keep the same allocation and we don't need to
   3596 	 * recompute anything for them.
   3597 	 */
   3598 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
   3599 		return;
   3600 
   3601 	/*
   3602 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
   3603 	 * other active pipes need new DDB allocation and WM values.
   3604 	 */
   3605 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
   3606 				base.head) {
   3607 		struct skl_pipe_wm_parameters params = {};
   3608 		struct skl_pipe_wm pipe_wm = {};
   3609 		bool wm_changed;
   3610 
   3611 		if (this_crtc->pipe == intel_crtc->pipe)
   3612 			continue;
   3613 
   3614 		if (!intel_crtc->active)
   3615 			continue;
   3616 
   3617 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
   3618 						&params, config,
   3619 						&r->ddb, &pipe_wm);
   3620 
   3621 		/*
   3622 		 * If we end up re-computing the other pipe WM values, it's
   3623 		 * because it was really needed, so we expect the WM values to
   3624 		 * be different.
   3625 		 */
   3626 		WARN_ON(!wm_changed);
   3627 
   3628 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
   3629 		r->dirty[intel_crtc->pipe] = true;
   3630 	}
   3631 }
   3632 
   3633 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
   3634 {
   3635 	watermarks->wm_linetime[pipe] = 0;
   3636 	memset(watermarks->plane[pipe], 0,
   3637 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
   3638 	memset(watermarks->plane_trans[pipe],
   3639 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
   3640 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
   3641 
   3642 	/* Clear ddb entries for pipe */
   3643 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
   3644 	memset(&watermarks->ddb.plane[pipe], 0,
   3645 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
   3646 	memset(&watermarks->ddb.y_plane[pipe], 0,
   3647 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
   3648 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
   3649 	       sizeof(struct skl_ddb_entry));
   3650 
   3651 }
   3652 
   3653 static void skl_update_wm(struct drm_crtc *crtc)
   3654 {
   3655 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3656 	struct drm_device *dev = crtc->dev;
   3657 	struct drm_i915_private *dev_priv = dev->dev_private;
   3658 	struct skl_pipe_wm_parameters params = {};
   3659 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
   3660 	struct skl_pipe_wm pipe_wm = {};
   3661 	struct intel_wm_config config = {};
   3662 
   3663 
   3664 	/* Clear all dirty flags */
   3665 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
   3666 
   3667 	skl_clear_wm(results, intel_crtc->pipe);
   3668 
   3669 	skl_compute_wm_global_parameters(dev, &config);
   3670 
   3671 	if (!skl_update_pipe_wm(crtc, &params, &config,
   3672 				&results->ddb, &pipe_wm))
   3673 		return;
   3674 
   3675 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
   3676 	results->dirty[intel_crtc->pipe] = true;
   3677 
   3678 	skl_update_other_pipe_wm(dev, crtc, &config, results);
   3679 	skl_write_wm_values(dev_priv, results);
   3680 	skl_flush_wm_values(dev_priv, results);
   3681 
   3682 	/* store the new configuration */
   3683 	dev_priv->wm.skl_hw = *results;
   3684 }
   3685 
   3686 static void
   3687 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
   3688 		     uint32_t sprite_width, uint32_t sprite_height,
   3689 		     int pixel_size, bool enabled, bool scaled)
   3690 {
   3691 	struct intel_plane *intel_plane = to_intel_plane(plane);
   3692 	struct drm_framebuffer *fb = plane->state->fb;
   3693 
   3694 	intel_plane->wm.enabled = enabled;
   3695 	intel_plane->wm.scaled = scaled;
   3696 	intel_plane->wm.horiz_pixels = sprite_width;
   3697 	intel_plane->wm.vert_pixels = sprite_height;
   3698 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
   3699 
   3700 	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
   3701 	intel_plane->wm.bytes_per_pixel =
   3702 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
   3703 		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
   3704 	intel_plane->wm.y_bytes_per_pixel =
   3705 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
   3706 		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
   3707 
   3708 	/*
   3709 	 * Framebuffer can be NULL on plane disable, but it does not
   3710 	 * matter for watermarks if we assume no tiling in that case.
   3711 	 */
   3712 	if (fb)
   3713 		intel_plane->wm.tiling = fb->modifier[0];
   3714 	intel_plane->wm.rotation = plane->state->rotation;
   3715 
   3716 	skl_update_wm(crtc);
   3717 }
   3718 
   3719 static void ilk_update_wm(struct drm_crtc *crtc)
   3720 {
   3721 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3722 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
   3723 	struct drm_device *dev = crtc->dev;
   3724 	struct drm_i915_private *dev_priv = dev->dev_private;
   3725 	struct ilk_wm_maximums max;
   3726 	static const struct ilk_wm_values zero_values;
   3727 	struct ilk_wm_values results = zero_values;
   3728 	enum intel_ddb_partitioning partitioning;
   3729 	static const struct intel_pipe_wm zero_wm;
   3730 	struct intel_pipe_wm pipe_wm = zero_wm;
   3731 	struct intel_pipe_wm lp_wm_1_2 = zero_wm, lp_wm_5_6 = zero_wm,
   3732 	    *best_lp_wm;
   3733 	static const struct intel_wm_config zero_config;
   3734 	struct intel_wm_config config = zero_config;
   3735 
   3736 	WARN_ON(cstate->base.active != intel_crtc->active);
   3737 
   3738 	intel_compute_pipe_wm(cstate, &pipe_wm);
   3739 
   3740 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
   3741 		return;
   3742 
   3743 	intel_crtc->wm.active = pipe_wm;
   3744 
   3745 	ilk_compute_wm_config(dev, &config);
   3746 
   3747 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
   3748 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
   3749 
   3750 	/* 5/6 split only in single pipe config on IVB+ */
   3751 	if (INTEL_INFO(dev)->gen >= 7 &&
   3752 	    config.num_pipes_active == 1 && config.sprites_enabled) {
   3753 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
   3754 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
   3755 
   3756 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
   3757 	} else {
   3758 		best_lp_wm = &lp_wm_1_2;
   3759 	}
   3760 
   3761 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
   3762 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
   3763 
   3764 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
   3765 
   3766 	ilk_write_wm_values(dev_priv, &results);
   3767 }
   3768 
   3769 static void
   3770 ilk_update_sprite_wm(struct drm_plane *plane,
   3771 		     struct drm_crtc *crtc,
   3772 		     uint32_t sprite_width, uint32_t sprite_height,
   3773 		     int pixel_size, bool enabled, bool scaled)
   3774 {
   3775 	struct drm_device *dev = plane->dev;
   3776 	struct intel_plane *intel_plane = to_intel_plane(plane);
   3777 
   3778 	/*
   3779 	 * IVB workaround: must disable low power watermarks for at least
   3780 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
   3781 	 * when scaling is disabled.
   3782 	 *
   3783 	 * WaCxSRDisabledForSpriteScaling:ivb
   3784 	 */
   3785 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
   3786 		intel_wait_for_vblank(dev, intel_plane->pipe);
   3787 
   3788 	ilk_update_wm(crtc);
   3789 }
   3790 
   3791 static void skl_pipe_wm_active_state(uint32_t val,
   3792 				     struct skl_pipe_wm *active,
   3793 				     bool is_transwm,
   3794 				     bool is_cursor,
   3795 				     int i,
   3796 				     int level)
   3797 {
   3798 	bool is_enabled = (val & PLANE_WM_EN) != 0;
   3799 
   3800 	if (!is_transwm) {
   3801 		if (!is_cursor) {
   3802 			active->wm[level].plane_en[i] = is_enabled;
   3803 			active->wm[level].plane_res_b[i] =
   3804 					val & PLANE_WM_BLOCKS_MASK;
   3805 			active->wm[level].plane_res_l[i] =
   3806 					(val >> PLANE_WM_LINES_SHIFT) &
   3807 						PLANE_WM_LINES_MASK;
   3808 		} else {
   3809 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
   3810 			active->wm[level].plane_res_b[PLANE_CURSOR] =
   3811 					val & PLANE_WM_BLOCKS_MASK;
   3812 			active->wm[level].plane_res_l[PLANE_CURSOR] =
   3813 					(val >> PLANE_WM_LINES_SHIFT) &
   3814 						PLANE_WM_LINES_MASK;
   3815 		}
   3816 	} else {
   3817 		if (!is_cursor) {
   3818 			active->trans_wm.plane_en[i] = is_enabled;
   3819 			active->trans_wm.plane_res_b[i] =
   3820 					val & PLANE_WM_BLOCKS_MASK;
   3821 			active->trans_wm.plane_res_l[i] =
   3822 					(val >> PLANE_WM_LINES_SHIFT) &
   3823 						PLANE_WM_LINES_MASK;
   3824 		} else {
   3825 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
   3826 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
   3827 					val & PLANE_WM_BLOCKS_MASK;
   3828 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
   3829 					(val >> PLANE_WM_LINES_SHIFT) &
   3830 						PLANE_WM_LINES_MASK;
   3831 		}
   3832 	}
   3833 }
   3834 
   3835 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   3836 {
   3837 	struct drm_device *dev = crtc->dev;
   3838 	struct drm_i915_private *dev_priv = dev->dev_private;
   3839 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
   3840 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3841 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
   3842 	enum pipe pipe = intel_crtc->pipe;
   3843 	int level, i, max_level;
   3844 	uint32_t temp;
   3845 
   3846 	max_level = ilk_wm_max_level(dev);
   3847 
   3848 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   3849 
   3850 	for (level = 0; level <= max_level; level++) {
   3851 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3852 			hw->plane[pipe][i][level] =
   3853 					I915_READ(PLANE_WM(pipe, i, level));
   3854 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
   3855 	}
   3856 
   3857 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
   3858 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
   3859 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
   3860 
   3861 	if (!intel_crtc->active)
   3862 		return;
   3863 
   3864 	hw->dirty[pipe] = true;
   3865 
   3866 	active->linetime = hw->wm_linetime[pipe];
   3867 
   3868 	for (level = 0; level <= max_level; level++) {
   3869 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3870 			temp = hw->plane[pipe][i][level];
   3871 			skl_pipe_wm_active_state(temp, active, false,
   3872 						false, i, level);
   3873 		}
   3874 		temp = hw->plane[pipe][PLANE_CURSOR][level];
   3875 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
   3876 	}
   3877 
   3878 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
   3879 		temp = hw->plane_trans[pipe][i];
   3880 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
   3881 	}
   3882 
   3883 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
   3884 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
   3885 }
   3886 
   3887 void skl_wm_get_hw_state(struct drm_device *dev)
   3888 {
   3889 	struct drm_i915_private *dev_priv = dev->dev_private;
   3890 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
   3891 	struct drm_crtc *crtc;
   3892 
   3893 	skl_ddb_get_hw_state(dev_priv, ddb);
   3894 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   3895 		skl_pipe_wm_get_hw_state(crtc);
   3896 }
   3897 
   3898 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   3899 {
   3900 	struct drm_device *dev = crtc->dev;
   3901 	struct drm_i915_private *dev_priv = dev->dev_private;
   3902 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   3903 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   3904 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
   3905 	enum pipe pipe = intel_crtc->pipe;
   3906 	static const unsigned int wm0_pipe_reg[] = {
   3907 		[PIPE_A] = WM0_PIPEA_ILK,
   3908 		[PIPE_B] = WM0_PIPEB_ILK,
   3909 		[PIPE_C] = WM0_PIPEC_IVB,
   3910 	};
   3911 
   3912 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
   3913 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   3914 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   3915 
   3916 	memset(active, 0, sizeof(*active));
   3917 
   3918 	active->pipe_enabled = intel_crtc->active;
   3919 
   3920 	if (active->pipe_enabled) {
   3921 		u32 tmp = hw->wm_pipe[pipe];
   3922 
   3923 		/*
   3924 		 * For active pipes LP0 watermark is marked as
   3925 		 * enabled, and LP1+ watermaks as disabled since
   3926 		 * we can't really reverse compute them in case
   3927 		 * multiple pipes are active.
   3928 		 */
   3929 		active->wm[0].enable = true;
   3930 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
   3931 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
   3932 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
   3933 		active->linetime = hw->wm_linetime[pipe];
   3934 	} else {
   3935 		int level, max_level = ilk_wm_max_level(dev);
   3936 
   3937 		/*
   3938 		 * For inactive pipes, all watermark levels
   3939 		 * should be marked as enabled but zeroed,
   3940 		 * which is what we'd compute them to.
   3941 		 */
   3942 		for (level = 0; level <= max_level; level++)
   3943 			active->wm[level].enable = true;
   3944 	}
   3945 }
   3946 
   3947 #define _FW_WM(value, plane) \
   3948 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
   3949 #define _FW_WM_VLV(value, plane) \
   3950 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
   3951 
   3952 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
   3953 			       struct vlv_wm_values *wm)
   3954 {
   3955 	enum pipe pipe;
   3956 	uint32_t tmp;
   3957 
   3958 	for_each_pipe(dev_priv, pipe) {
   3959 		tmp = I915_READ(VLV_DDL(pipe));
   3960 
   3961 		wm->ddl[pipe].primary =
   3962 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3963 		wm->ddl[pipe].cursor =
   3964 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3965 		wm->ddl[pipe].sprite[0] =
   3966 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3967 		wm->ddl[pipe].sprite[1] =
   3968 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   3969 	}
   3970 
   3971 	tmp = I915_READ(DSPFW1);
   3972 	wm->sr.plane = _FW_WM(tmp, SR);
   3973 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
   3974 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
   3975 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
   3976 
   3977 	tmp = I915_READ(DSPFW2);
   3978 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
   3979 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
   3980 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
   3981 
   3982 	tmp = I915_READ(DSPFW3);
   3983 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
   3984 
   3985 	if (IS_CHERRYVIEW(dev_priv)) {
   3986 		tmp = I915_READ(DSPFW7_CHV);
   3987 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
   3988 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
   3989 
   3990 		tmp = I915_READ(DSPFW8_CHV);
   3991 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
   3992 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
   3993 
   3994 		tmp = I915_READ(DSPFW9_CHV);
   3995 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
   3996 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
   3997 
   3998 		tmp = I915_READ(DSPHOWM);
   3999 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   4000 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
   4001 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
   4002 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
   4003 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   4004 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   4005 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
   4006 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   4007 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   4008 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
   4009 	} else {
   4010 		tmp = I915_READ(DSPFW7);
   4011 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
   4012 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
   4013 
   4014 		tmp = I915_READ(DSPHOWM);
   4015 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   4016 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   4017 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   4018 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
   4019 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   4020 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   4021 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
   4022 	}
   4023 }
   4024 
   4025 #undef _FW_WM
   4026 #undef _FW_WM_VLV
   4027 
   4028 void vlv_wm_get_hw_state(struct drm_device *dev)
   4029 {
   4030 	struct drm_i915_private *dev_priv = to_i915(dev);
   4031 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
   4032 	struct intel_plane *plane;
   4033 	enum pipe pipe;
   4034 	u32 val;
   4035 
   4036 	vlv_read_wm_values(dev_priv, wm);
   4037 
   4038 	for_each_intel_plane(dev, plane) {
   4039 		switch (plane->base.type) {
   4040 			int sprite;
   4041 		case DRM_PLANE_TYPE_CURSOR:
   4042 			plane->wm.fifo_size = 63;
   4043 			break;
   4044 		case DRM_PLANE_TYPE_PRIMARY:
   4045 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
   4046 			break;
   4047 		case DRM_PLANE_TYPE_OVERLAY:
   4048 			sprite = plane->plane;
   4049 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
   4050 			break;
   4051 		}
   4052 	}
   4053 
   4054 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
   4055 	wm->level = VLV_WM_LEVEL_PM2;
   4056 
   4057 	if (IS_CHERRYVIEW(dev_priv)) {
   4058 		mutex_lock(&dev_priv->rps.hw_lock);
   4059 
   4060 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
   4061 		if (val & DSP_MAXFIFO_PM5_ENABLE)
   4062 			wm->level = VLV_WM_LEVEL_PM5;
   4063 
   4064 		/*
   4065 		 * If DDR DVFS is disabled in the BIOS, Punit
   4066 		 * will never ack the request. So if that happens
   4067 		 * assume we don't have to enable/disable DDR DVFS
   4068 		 * dynamically. To test that just set the REQ_ACK
   4069 		 * bit to poke the Punit, but don't change the
   4070 		 * HIGH/LOW bits so that we don't actually change
   4071 		 * the current state.
   4072 		 */
   4073 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   4074 		val |= FORCE_DDR_FREQ_REQ_ACK;
   4075 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
   4076 
   4077 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
   4078 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
   4079 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
   4080 				      "assuming DDR DVFS is disabled\n");
   4081 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
   4082 		} else {
   4083 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   4084 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
   4085 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
   4086 		}
   4087 
   4088 		mutex_unlock(&dev_priv->rps.hw_lock);
   4089 	}
   4090 
   4091 	for_each_pipe(dev_priv, pipe)
   4092 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
   4093 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
   4094 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
   4095 
   4096 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
   4097 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
   4098 }
   4099 
   4100 void ilk_wm_get_hw_state(struct drm_device *dev)
   4101 {
   4102 	struct drm_i915_private *dev_priv = dev->dev_private;
   4103 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   4104 	struct drm_crtc *crtc;
   4105 
   4106 	for_each_crtc(dev, crtc)
   4107 		ilk_pipe_wm_get_hw_state(crtc);
   4108 
   4109 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
   4110 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
   4111 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
   4112 
   4113 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
   4114 	if (INTEL_INFO(dev)->gen >= 7) {
   4115 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
   4116 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
   4117 	}
   4118 
   4119 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4120 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
   4121 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   4122 	else if (IS_IVYBRIDGE(dev))
   4123 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
   4124 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   4125 
   4126 	hw->enable_fbc_wm =
   4127 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
   4128 }
   4129 
   4130 /**
   4131  * intel_update_watermarks - update FIFO watermark values based on current modes
   4132  *
   4133  * Calculate watermark values for the various WM regs based on current mode
   4134  * and plane configuration.
   4135  *
   4136  * There are several cases to deal with here:
   4137  *   - normal (i.e. non-self-refresh)
   4138  *   - self-refresh (SR) mode
   4139  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   4140  *   - lines are small relative to FIFO size (buffer can hold more than 2
   4141  *     lines), so need to account for TLB latency
   4142  *
   4143  *   The normal calculation is:
   4144  *     watermark = dotclock * bytes per pixel * latency
   4145  *   where latency is platform & configuration dependent (we assume pessimal
   4146  *   values here).
   4147  *
   4148  *   The SR calculation is:
   4149  *     watermark = (trunc(latency/line time)+1) * surface width *
   4150  *       bytes per pixel
   4151  *   where
   4152  *     line time = htotal / dotclock
   4153  *     surface width = hdisplay for normal plane and 64 for cursor
   4154  *   and latency is assumed to be high, as above.
   4155  *
   4156  * The final value programmed to the register should always be rounded up,
   4157  * and include an extra 2 entries to account for clock crossings.
   4158  *
   4159  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   4160  * to set the non-SR watermarks to 8.
   4161  */
   4162 void intel_update_watermarks(struct drm_crtc *crtc)
   4163 {
   4164 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
   4165 
   4166 	if (dev_priv->display.update_wm)
   4167 		dev_priv->display.update_wm(crtc);
   4168 }
   4169 
   4170 void intel_update_sprite_watermarks(struct drm_plane *plane,
   4171 				    struct drm_crtc *crtc,
   4172 				    uint32_t sprite_width,
   4173 				    uint32_t sprite_height,
   4174 				    int pixel_size,
   4175 				    bool enabled, bool scaled)
   4176 {
   4177 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
   4178 
   4179 	if (dev_priv->display.update_sprite_wm)
   4180 		dev_priv->display.update_sprite_wm(plane, crtc,
   4181 						   sprite_width, sprite_height,
   4182 						   pixel_size, enabled, scaled);
   4183 }
   4184 
   4185 /**
   4186  * Lock protecting IPS related data structures
   4187  */
   4188 #ifdef __NetBSD__
   4189 spinlock_t mchdev_lock;
   4190 #else
   4191 DEFINE_SPINLOCK(mchdev_lock);
   4192 #endif
   4193 
   4194 /* Global for IPS driver to get at the current i915 device. Protected by
   4195  * mchdev_lock. */
   4196 static struct drm_i915_private *i915_mch_dev;
   4197 
   4198 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   4199 {
   4200 	struct drm_i915_private *dev_priv = dev->dev_private;
   4201 	u16 rgvswctl;
   4202 
   4203 	assert_spin_locked(&mchdev_lock);
   4204 
   4205 	rgvswctl = I915_READ16(MEMSWCTL);
   4206 	if (rgvswctl & MEMCTL_CMD_STS) {
   4207 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   4208 		return false; /* still busy with another command */
   4209 	}
   4210 
   4211 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   4212 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   4213 	I915_WRITE16(MEMSWCTL, rgvswctl);
   4214 	POSTING_READ16(MEMSWCTL);
   4215 
   4216 	rgvswctl |= MEMCTL_CMD_STS;
   4217 	I915_WRITE16(MEMSWCTL, rgvswctl);
   4218 
   4219 	return true;
   4220 }
   4221 
   4222 static void ironlake_enable_drps(struct drm_device *dev)
   4223 {
   4224 	struct drm_i915_private *dev_priv = dev->dev_private;
   4225 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   4226 	u8 fmax, fmin, fstart, vstart;
   4227 
   4228 	spin_lock_irq(&mchdev_lock);
   4229 
   4230 	/* Enable temp reporting */
   4231 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   4232 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   4233 
   4234 	/* 100ms RC evaluation intervals */
   4235 	I915_WRITE(RCUPEI, 100000);
   4236 	I915_WRITE(RCDNEI, 100000);
   4237 
   4238 	/* Set max/min thresholds to 90ms and 80ms respectively */
   4239 	I915_WRITE(RCBMAXAVG, 90000);
   4240 	I915_WRITE(RCBMINAVG, 80000);
   4241 
   4242 	I915_WRITE(MEMIHYST, 1);
   4243 
   4244 	/* Set up min, max, and cur for interrupt handling */
   4245 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   4246 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   4247 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   4248 		MEMMODE_FSTART_SHIFT;
   4249 
   4250 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
   4251 		PXVFREQ_PX_SHIFT;
   4252 
   4253 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   4254 	dev_priv->ips.fstart = fstart;
   4255 
   4256 	dev_priv->ips.max_delay = fstart;
   4257 	dev_priv->ips.min_delay = fmin;
   4258 	dev_priv->ips.cur_delay = fstart;
   4259 
   4260 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   4261 			 fmax, fmin, fstart);
   4262 
   4263 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   4264 
   4265 	/*
   4266 	 * Interrupts will be enabled in ironlake_irq_postinstall
   4267 	 */
   4268 
   4269 	I915_WRITE(VIDSTART, vstart);
   4270 	POSTING_READ(VIDSTART);
   4271 
   4272 	rgvmodectl |= MEMMODE_SWMODE_EN;
   4273 	I915_WRITE(MEMMODECTL, rgvmodectl);
   4274 
   4275 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   4276 		DRM_ERROR("stuck trying to change perf mode\n");
   4277 	mdelay(1);
   4278 
   4279 	ironlake_set_drps(dev, fstart);
   4280 
   4281 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
   4282 		I915_READ(DDREC) + I915_READ(CSIEC);
   4283 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   4284 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
   4285 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
   4286 
   4287 	spin_unlock_irq(&mchdev_lock);
   4288 }
   4289 
   4290 static void ironlake_disable_drps(struct drm_device *dev)
   4291 {
   4292 	struct drm_i915_private *dev_priv = dev->dev_private;
   4293 	u16 rgvswctl;
   4294 
   4295 	spin_lock_irq(&mchdev_lock);
   4296 
   4297 	rgvswctl = I915_READ16(MEMSWCTL);
   4298 
   4299 	/* Ack interrupts, disable EFC interrupt */
   4300 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   4301 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   4302 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   4303 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   4304 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   4305 
   4306 	/* Go back to the starting frequency */
   4307 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   4308 	mdelay(1);
   4309 	rgvswctl |= MEMCTL_CMD_STS;
   4310 	I915_WRITE(MEMSWCTL, rgvswctl);
   4311 	mdelay(1);
   4312 
   4313 	spin_unlock_irq(&mchdev_lock);
   4314 }
   4315 
   4316 /* There's a funny hw issue where the hw returns all 0 when reading from
   4317  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   4318  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   4319  * all limits and the gpu stuck at whatever frequency it is at atm).
   4320  */
   4321 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
   4322 {
   4323 	u32 limits;
   4324 
   4325 	/* Only set the down limit when we've reached the lowest level to avoid
   4326 	 * getting more interrupts, otherwise leave this clear. This prevents a
   4327 	 * race in the hw when coming out of rc6: There's a tiny window where
   4328 	 * the hw runs at the minimal clock before selecting the desired
   4329 	 * frequency, if the down threshold expires in that window we will not
   4330 	 * receive a down interrupt. */
   4331 	if (IS_GEN9(dev_priv->dev)) {
   4332 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
   4333 		if (val <= dev_priv->rps.min_freq_softlimit)
   4334 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
   4335 	} else {
   4336 		limits = dev_priv->rps.max_freq_softlimit << 24;
   4337 		if (val <= dev_priv->rps.min_freq_softlimit)
   4338 			limits |= dev_priv->rps.min_freq_softlimit << 16;
   4339 	}
   4340 
   4341 	return limits;
   4342 }
   4343 
   4344 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
   4345 {
   4346 	int new_power;
   4347 	u32 threshold_up = 0, threshold_down = 0; /* in % */
   4348 	u32 ei_up = 0, ei_down = 0;
   4349 
   4350 	new_power = dev_priv->rps.power;
   4351 	switch (dev_priv->rps.power) {
   4352 	case LOW_POWER:
   4353 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
   4354 			new_power = BETWEEN;
   4355 		break;
   4356 
   4357 	case BETWEEN:
   4358 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
   4359 			new_power = LOW_POWER;
   4360 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
   4361 			new_power = HIGH_POWER;
   4362 		break;
   4363 
   4364 	case HIGH_POWER:
   4365 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
   4366 			new_power = BETWEEN;
   4367 		break;
   4368 	}
   4369 	/* Max/min bins are special */
   4370 	if (val <= dev_priv->rps.min_freq_softlimit)
   4371 		new_power = LOW_POWER;
   4372 	if (val >= dev_priv->rps.max_freq_softlimit)
   4373 		new_power = HIGH_POWER;
   4374 	if (new_power == dev_priv->rps.power)
   4375 		return;
   4376 
   4377 	/* Note the units here are not exactly 1us, but 1280ns. */
   4378 	switch (new_power) {
   4379 	case LOW_POWER:
   4380 		/* Upclock if more than 95% busy over 16ms */
   4381 		ei_up = 16000;
   4382 		threshold_up = 95;
   4383 
   4384 		/* Downclock if less than 85% busy over 32ms */
   4385 		ei_down = 32000;
   4386 		threshold_down = 85;
   4387 		break;
   4388 
   4389 	case BETWEEN:
   4390 		/* Upclock if more than 90% busy over 13ms */
   4391 		ei_up = 13000;
   4392 		threshold_up = 90;
   4393 
   4394 		/* Downclock if less than 75% busy over 32ms */
   4395 		ei_down = 32000;
   4396 		threshold_down = 75;
   4397 		break;
   4398 
   4399 	case HIGH_POWER:
   4400 		/* Upclock if more than 85% busy over 10ms */
   4401 		ei_up = 10000;
   4402 		threshold_up = 85;
   4403 
   4404 		/* Downclock if less than 60% busy over 32ms */
   4405 		ei_down = 32000;
   4406 		threshold_down = 60;
   4407 		break;
   4408 	}
   4409 
   4410 	/* When byt can survive without system hang with dynamic
   4411 	 * sw freq adjustments, this restriction can be lifted.
   4412 	 */
   4413 	if (IS_VALLEYVIEW(dev_priv))
   4414 		goto skip_hw_write;
   4415 
   4416 	I915_WRITE(GEN6_RP_UP_EI,
   4417 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
   4418 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
   4419 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
   4420 
   4421 	I915_WRITE(GEN6_RP_DOWN_EI,
   4422 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
   4423 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
   4424 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
   4425 
   4426 	 I915_WRITE(GEN6_RP_CONTROL,
   4427 		    GEN6_RP_MEDIA_TURBO |
   4428 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
   4429 		    GEN6_RP_MEDIA_IS_GFX |
   4430 		    GEN6_RP_ENABLE |
   4431 		    GEN6_RP_UP_BUSY_AVG |
   4432 		    GEN6_RP_DOWN_IDLE_AVG);
   4433 
   4434 skip_hw_write:
   4435 	dev_priv->rps.power = new_power;
   4436 	dev_priv->rps.up_threshold = threshold_up;
   4437 	dev_priv->rps.down_threshold = threshold_down;
   4438 	dev_priv->rps.last_adj = 0;
   4439 }
   4440 
   4441 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
   4442 {
   4443 	u32 mask = 0;
   4444 
   4445 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
   4446 	if (val > dev_priv->rps.min_freq_softlimit)
   4447 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
   4448 	if (val < dev_priv->rps.max_freq_softlimit)
   4449 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
   4450 
   4451 	mask &= dev_priv->pm_rps_events;
   4452 
   4453 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
   4454 }
   4455 
   4456 /* gen6_set_rps is called to update the frequency request, but should also be
   4457  * called when the range (min_delay and max_delay) is modified so that we can
   4458  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
   4459 static void gen6_set_rps(struct drm_device *dev, u8 val)
   4460 {
   4461 	struct drm_i915_private *dev_priv = dev->dev_private;
   4462 
   4463 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
   4464 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
   4465 		return;
   4466 
   4467 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4468 	WARN_ON(val > dev_priv->rps.max_freq);
   4469 	WARN_ON(val < dev_priv->rps.min_freq);
   4470 
   4471 	/* min/max delay may still have been modified so be sure to
   4472 	 * write the limits value.
   4473 	 */
   4474 	if (val != dev_priv->rps.cur_freq) {
   4475 		gen6_set_rps_thresholds(dev_priv, val);
   4476 
   4477 		if (IS_GEN9(dev))
   4478 			I915_WRITE(GEN6_RPNSWREQ,
   4479 				   GEN9_FREQUENCY(val));
   4480 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4481 			I915_WRITE(GEN6_RPNSWREQ,
   4482 				   HSW_FREQUENCY(val));
   4483 		else
   4484 			I915_WRITE(GEN6_RPNSWREQ,
   4485 				   GEN6_FREQUENCY(val) |
   4486 				   GEN6_OFFSET(0) |
   4487 				   GEN6_AGGRESSIVE_TURBO);
   4488 	}
   4489 
   4490 	/* Make sure we continue to get interrupts
   4491 	 * until we hit the minimum or maximum frequencies.
   4492 	 */
   4493 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
   4494 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   4495 
   4496 	POSTING_READ(GEN6_RPNSWREQ);
   4497 
   4498 	dev_priv->rps.cur_freq = val;
   4499 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
   4500 }
   4501 
   4502 static void valleyview_set_rps(struct drm_device *dev, u8 val)
   4503 {
   4504 	struct drm_i915_private *dev_priv = dev->dev_private;
   4505 
   4506 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4507 	WARN_ON(val > dev_priv->rps.max_freq);
   4508 	WARN_ON(val < dev_priv->rps.min_freq);
   4509 
   4510 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
   4511 		      "Odd GPU freq value\n"))
   4512 		val &= ~1;
   4513 
   4514 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   4515 
   4516 	if (val != dev_priv->rps.cur_freq) {
   4517 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
   4518 		if (!IS_CHERRYVIEW(dev_priv))
   4519 			gen6_set_rps_thresholds(dev_priv, val);
   4520 	}
   4521 
   4522 	dev_priv->rps.cur_freq = val;
   4523 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
   4524 }
   4525 
   4526 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
   4527  *
   4528  * * If Gfx is Idle, then
   4529  * 1. Forcewake Media well.
   4530  * 2. Request idle freq.
   4531  * 3. Release Forcewake of Media well.
   4532 */
   4533 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
   4534 {
   4535 	u32 val = dev_priv->rps.idle_freq;
   4536 
   4537 	if (dev_priv->rps.cur_freq <= val)
   4538 		return;
   4539 
   4540 	/* Wake up the media well, as that takes a lot less
   4541 	 * power than the Render well. */
   4542 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
   4543 	valleyview_set_rps(dev_priv->dev, val);
   4544 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
   4545 }
   4546 
   4547 void gen6_rps_busy(struct drm_i915_private *dev_priv)
   4548 {
   4549 	mutex_lock(&dev_priv->rps.hw_lock);
   4550 	if (dev_priv->rps.enabled) {
   4551 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
   4552 			gen6_rps_reset_ei(dev_priv);
   4553 		I915_WRITE(GEN6_PMINTRMSK,
   4554 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
   4555 	}
   4556 	mutex_unlock(&dev_priv->rps.hw_lock);
   4557 }
   4558 
   4559 void gen6_rps_idle(struct drm_i915_private *dev_priv)
   4560 {
   4561 	struct drm_device *dev = dev_priv->dev;
   4562 
   4563 	mutex_lock(&dev_priv->rps.hw_lock);
   4564 	if (dev_priv->rps.enabled) {
   4565 		if (IS_VALLEYVIEW(dev))
   4566 			vlv_set_rps_idle(dev_priv);
   4567 		else
   4568 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   4569 		dev_priv->rps.last_adj = 0;
   4570 		I915_WRITE(GEN6_PMINTRMSK,
   4571 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
   4572 	}
   4573 	mutex_unlock(&dev_priv->rps.hw_lock);
   4574 
   4575 	spin_lock(&dev_priv->rps.client_lock);
   4576 	while (!list_empty(&dev_priv->rps.clients))
   4577 		list_del_init(dev_priv->rps.clients.next);
   4578 	spin_unlock(&dev_priv->rps.client_lock);
   4579 }
   4580 
   4581 void gen6_rps_boost(struct drm_i915_private *dev_priv,
   4582 		    struct intel_rps_client *rps,
   4583 		    unsigned long submitted)
   4584 {
   4585 	/* This is intentionally racy! We peek at the state here, then
   4586 	 * validate inside the RPS worker.
   4587 	 */
   4588 	if (!(dev_priv->mm.busy &&
   4589 	      dev_priv->rps.enabled &&
   4590 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
   4591 		return;
   4592 
   4593 	/* Force a RPS boost (and don't count it against the client) if
   4594 	 * the GPU is severely congested.
   4595 	 */
   4596 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
   4597 		rps = NULL;
   4598 
   4599 	spin_lock(&dev_priv->rps.client_lock);
   4600 	if (rps == NULL || list_empty(&rps->link)) {
   4601 		spin_lock_irq(&dev_priv->irq_lock);
   4602 		if (dev_priv->rps.interrupts_enabled) {
   4603 			dev_priv->rps.client_boost = true;
   4604 			queue_work(dev_priv->wq, &dev_priv->rps.work);
   4605 		}
   4606 		spin_unlock_irq(&dev_priv->irq_lock);
   4607 
   4608 		if (rps != NULL) {
   4609 			list_add(&rps->link, &dev_priv->rps.clients);
   4610 			rps->boosts++;
   4611 		} else
   4612 			dev_priv->rps.boosts++;
   4613 	}
   4614 	spin_unlock(&dev_priv->rps.client_lock);
   4615 }
   4616 
   4617 void intel_set_rps(struct drm_device *dev, u8 val)
   4618 {
   4619 	if (IS_VALLEYVIEW(dev))
   4620 		valleyview_set_rps(dev, val);
   4621 	else
   4622 		gen6_set_rps(dev, val);
   4623 }
   4624 
   4625 static void gen9_disable_rc6(struct drm_device *dev)
   4626 {
   4627 	struct drm_i915_private *dev_priv = dev->dev_private;
   4628 
   4629 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4630 }
   4631 
   4632 static void gen9_disable_rps(struct drm_device *dev)
   4633 {
   4634 	struct drm_i915_private *dev_priv = dev->dev_private;
   4635 
   4636  	I915_WRITE(GEN9_PG_ENABLE, 0);
   4637  }
   4638 
   4639 static void gen6_disable_rc6(struct drm_device *dev)
   4640 {
   4641 	struct drm_i915_private *dev_priv = dev->dev_private;
   4642 
   4643 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4644 }
   4645 
   4646 static void gen6_disable_rps(struct drm_device *dev)
   4647 {
   4648 	struct drm_i915_private *dev_priv = dev->dev_private;
   4649 
   4650 	I915_WRITE(GEN6_RPNSWREQ, 1UL << 31);
   4651 }
   4652 
   4653 static void cherryview_disable_rc6(struct drm_device *dev)
   4654 {
   4655 	struct drm_i915_private *dev_priv = dev->dev_private;
   4656 
   4657 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4658 }
   4659 
   4660 static void valleyview_disable_rc6(struct drm_device *dev)
   4661 {
   4662 	struct drm_i915_private *dev_priv = dev->dev_private;
   4663 
   4664 	/* we're doing forcewake before Disabling RC6,
   4665 	 * This what the BIOS expects when going into suspend */
   4666 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4667 
   4668 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4669 
   4670 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4671 }
   4672 
   4673 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
   4674 {
   4675 	if (IS_VALLEYVIEW(dev)) {
   4676 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
   4677 			mode = GEN6_RC_CTL_RC6_ENABLE;
   4678 		else
   4679 			mode = 0;
   4680 	}
   4681 	if (HAS_RC6p(dev))
   4682 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
   4683 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   4684 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   4685 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   4686 
   4687 	else
   4688 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
   4689 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
   4690 }
   4691 
   4692 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
   4693 {
   4694 	/* No RC6 before Ironlake and code is gone for ilk. */
   4695 	if (INTEL_INFO(dev)->gen < 6)
   4696 		return 0;
   4697 
   4698 	/* Respect the kernel parameter if it is set */
   4699 	if (enable_rc6 >= 0) {
   4700 		int mask;
   4701 
   4702 		if (HAS_RC6p(dev))
   4703 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
   4704 			       INTEL_RC6pp_ENABLE;
   4705 		else
   4706 			mask = INTEL_RC6_ENABLE;
   4707 
   4708 		if ((enable_rc6 & mask) != enable_rc6)
   4709 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
   4710 				      enable_rc6 & mask, enable_rc6, mask);
   4711 
   4712 		return enable_rc6 & mask;
   4713 	}
   4714 
   4715 	if (IS_IVYBRIDGE(dev))
   4716 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   4717 
   4718 	return INTEL_RC6_ENABLE;
   4719 }
   4720 
   4721 int intel_enable_rc6(const struct drm_device *dev)
   4722 {
   4723 	return i915.enable_rc6;
   4724 }
   4725 
   4726 static void gen6_init_rps_frequencies(struct drm_device *dev)
   4727 {
   4728 	struct drm_i915_private *dev_priv = dev->dev_private;
   4729 	uint32_t rp_state_cap;
   4730 	u32 ddcc_status = 0;
   4731 	int ret;
   4732 
   4733 	/* All of these values are in units of 50MHz */
   4734 	dev_priv->rps.cur_freq		= 0;
   4735 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
   4736 	if (IS_BROXTON(dev)) {
   4737 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
   4738 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
   4739 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
   4740 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
   4741 	} else {
   4742 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   4743 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
   4744 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
   4745 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
   4746 	}
   4747 
   4748 	/* hw_max = RP0 until we check for overclocking */
   4749 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
   4750 
   4751 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
   4752 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
   4753 	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   4754 		ret = sandybridge_pcode_read(dev_priv,
   4755 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
   4756 					&ddcc_status);
   4757 		if (0 == ret)
   4758 			dev_priv->rps.efficient_freq =
   4759 				clamp_t(u8,
   4760 					((ddcc_status >> 8) & 0xff),
   4761 					dev_priv->rps.min_freq,
   4762 					dev_priv->rps.max_freq);
   4763 	}
   4764 
   4765 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   4766 		/* Store the frequency values in 16.66 MHZ units, which is
   4767 		   the natural hardware unit for SKL */
   4768 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
   4769 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
   4770 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
   4771 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
   4772 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
   4773 	}
   4774 
   4775 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   4776 
   4777 	/* Preserve min/max settings in case of re-init */
   4778 	if (dev_priv->rps.max_freq_softlimit == 0)
   4779 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   4780 
   4781 	if (dev_priv->rps.min_freq_softlimit == 0) {
   4782 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   4783 			dev_priv->rps.min_freq_softlimit =
   4784 				max_t(int, dev_priv->rps.efficient_freq,
   4785 				      intel_freq_opcode(dev_priv, 450));
   4786 		else
   4787 			dev_priv->rps.min_freq_softlimit =
   4788 				dev_priv->rps.min_freq;
   4789 	}
   4790 }
   4791 
   4792 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
   4793 static void gen9_enable_rps(struct drm_device *dev)
   4794 {
   4795 	struct drm_i915_private *dev_priv = dev->dev_private;
   4796 
   4797 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4798 
   4799 	gen6_init_rps_frequencies(dev);
   4800 
   4801 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
   4802 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
   4803 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4804 		return;
   4805 	}
   4806 
   4807 	/* Program defaults and thresholds for RPS*/
   4808 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   4809 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
   4810 
   4811 	/* 1 second timeout*/
   4812 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
   4813 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
   4814 
   4815 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
   4816 
   4817 	/* Leaning on the below call to gen6_set_rps to program/setup the
   4818 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
   4819 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
   4820 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   4821 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   4822 
   4823 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4824 }
   4825 
   4826 static void gen9_enable_rc6(struct drm_device *dev)
   4827 {
   4828 	struct drm_i915_private *dev_priv = dev->dev_private;
   4829 	struct intel_engine_cs *ring;
   4830 	uint32_t rc6_mask = 0;
   4831 	int unused;
   4832 
   4833 	/* 1a: Software RC state - RC0 */
   4834 	I915_WRITE(GEN6_RC_STATE, 0);
   4835 
   4836 	/* 1b: Get forcewake during program sequence. Although the driver
   4837 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   4838 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4839 
   4840 	/* 2a: Disable RC states. */
   4841 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4842 
   4843 	/* 2b: Program RC6 thresholds.*/
   4844 
   4845 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
   4846 	if (IS_SKYLAKE(dev))
   4847 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
   4848 	else
   4849 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
   4850 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   4851 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   4852 	for_each_ring(ring, dev_priv, unused)
   4853 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4854 
   4855 	if (HAS_GUC_UCODE(dev))
   4856 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
   4857 
   4858 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4859 
   4860 	/* 2c: Program Coarse Power Gating Policies. */
   4861 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
   4862 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
   4863 
   4864 	/* 3a: Enable RC6 */
   4865 	if (!dev_priv->rps.ctx_corrupted &&
   4866 	    intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   4867 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   4868 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
   4869 			"on" : "off");
   4870 	/* WaRsUseTimeoutMode */
   4871 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
   4872 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
   4873 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
   4874 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4875 			   GEN7_RC_CTL_TO_MODE |
   4876 			   rc6_mask);
   4877 	} else {
   4878 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
   4879 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4880 			   GEN6_RC_CTL_EI_MODE(1) |
   4881 			   rc6_mask);
   4882 	}
   4883 
   4884 	/*
   4885 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
   4886 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
   4887 	 */
   4888 	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
   4889 	    INTEL_INFO(dev)->gen == 9)
   4890 		I915_WRITE(GEN9_PG_ENABLE, 0);
   4891 	else
   4892 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
   4893 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
   4894 
   4895 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4896 
   4897 }
   4898 
   4899 static void gen8_enable_rps(struct drm_device *dev)
   4900 {
   4901 	struct drm_i915_private *dev_priv = dev->dev_private;
   4902 	struct intel_engine_cs *ring;
   4903 	uint32_t rc6_mask = 0;
   4904 	int unused;
   4905 
   4906 	/* 1a: Software RC state - RC0 */
   4907 	I915_WRITE(GEN6_RC_STATE, 0);
   4908 
   4909 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
   4910 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   4911 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   4912 
   4913 	/* 2a: Disable RC states. */
   4914 	I915_WRITE(GEN6_RC_CONTROL, 0);
   4915 
   4916 	/* Initialize rps frequencies */
   4917 	gen6_init_rps_frequencies(dev);
   4918 
   4919 	/* 2b: Program RC6 thresholds.*/
   4920 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   4921 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   4922 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   4923 	for_each_ring(ring, dev_priv, unused)
   4924 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   4925 	I915_WRITE(GEN6_RC_SLEEP, 0);
   4926 	if (IS_BROADWELL(dev))
   4927 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
   4928 	else
   4929 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
   4930 
   4931 	/* 3: Enable RC6 */
   4932 	if (!dev_priv->rps.ctx_corrupted &&
   4933 	    intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   4934 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   4935 	intel_print_rc6_info(dev, rc6_mask);
   4936 	if (IS_BROADWELL(dev))
   4937 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4938 				GEN7_RC_CTL_TO_MODE |
   4939 				rc6_mask);
   4940 	else
   4941 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   4942 				GEN6_RC_CTL_EI_MODE(1) |
   4943 				rc6_mask);
   4944 
   4945 	/* 4 Program defaults and thresholds for RPS*/
   4946 	I915_WRITE(GEN6_RPNSWREQ,
   4947 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
   4948 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
   4949 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
   4950 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
   4951 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
   4952 
   4953 	/* Docs recommend 900MHz, and 300 MHz respectively */
   4954 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   4955 		   dev_priv->rps.max_freq_softlimit << 24 |
   4956 		   dev_priv->rps.min_freq_softlimit << 16);
   4957 
   4958 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
   4959 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
   4960 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
   4961 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
   4962 
   4963 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   4964 
   4965 	/* 5: Enable RPS */
   4966 	I915_WRITE(GEN6_RP_CONTROL,
   4967 		   GEN6_RP_MEDIA_TURBO |
   4968 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   4969 		   GEN6_RP_MEDIA_IS_GFX |
   4970 		   GEN6_RP_ENABLE |
   4971 		   GEN6_RP_UP_BUSY_AVG |
   4972 		   GEN6_RP_DOWN_IDLE_AVG);
   4973 
   4974 	/* 6: Ring frequency + overclocking (our driver does this later */
   4975 
   4976 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   4977 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   4978 
   4979 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   4980 }
   4981 
   4982 static void gen6_enable_rps(struct drm_device *dev)
   4983 {
   4984 	struct drm_i915_private *dev_priv = dev->dev_private;
   4985 	struct intel_engine_cs *ring;
   4986 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
   4987 	u32 gtfifodbg;
   4988 	int rc6_mode;
   4989 	int i, ret;
   4990 
   4991 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   4992 
   4993 	/* Here begins a magic sequence of register writes to enable
   4994 	 * auto-downclocking.
   4995 	 *
   4996 	 * Perhaps there might be some value in exposing these to
   4997 	 * userspace...
   4998 	 */
   4999 	I915_WRITE(GEN6_RC_STATE, 0);
   5000 
   5001 	/* Clear the DBG now so we don't confuse earlier errors */
   5002 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   5003 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   5004 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5005 	}
   5006 
   5007 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5008 
   5009 	/* Initialize rps frequencies */
   5010 	gen6_init_rps_frequencies(dev);
   5011 
   5012 	/* disable the counters and set deterministic thresholds */
   5013 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5014 
   5015 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   5016 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   5017 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   5018 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   5019 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   5020 
   5021 	for_each_ring(ring, dev_priv, i)
   5022 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5023 
   5024 	I915_WRITE(GEN6_RC_SLEEP, 0);
   5025 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   5026 	if (IS_IVYBRIDGE(dev))
   5027 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
   5028 	else
   5029 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   5030 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
   5031 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   5032 
   5033 	/* Check if we are enabling RC6 */
   5034 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   5035 	if (rc6_mode & INTEL_RC6_ENABLE)
   5036 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   5037 
   5038 	/* We don't use those on Haswell */
   5039 	if (!IS_HASWELL(dev)) {
   5040 		if (rc6_mode & INTEL_RC6p_ENABLE)
   5041 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   5042 
   5043 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   5044 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   5045 	}
   5046 
   5047 	intel_print_rc6_info(dev, rc6_mask);
   5048 
   5049 	I915_WRITE(GEN6_RC_CONTROL,
   5050 		   rc6_mask |
   5051 		   GEN6_RC_CTL_EI_MODE(1) |
   5052 		   GEN6_RC_CTL_HW_ENABLE);
   5053 
   5054 	/* Power down if completely idle for over 50ms */
   5055 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
   5056 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5057 
   5058 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   5059 	if (ret)
   5060 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   5061 
   5062 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   5063 	if (!ret && (pcu_mbox & __BIT(31))) { /* OC supported */
   5064 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
   5065 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
   5066 				 (pcu_mbox & 0xff) * 50);
   5067 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
   5068 	}
   5069 
   5070 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   5071 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
   5072 
   5073 	rc6vids = 0;
   5074 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   5075 	if (IS_GEN6(dev) && ret) {
   5076 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   5077 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   5078 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   5079 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   5080 		rc6vids &= 0xffff00;
   5081 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   5082 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   5083 		if (ret)
   5084 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   5085 	}
   5086 
   5087 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5088 }
   5089 
   5090 static void __gen6_update_ring_freq(struct drm_device *dev)
   5091 {
   5092 	struct drm_i915_private *dev_priv = dev->dev_private;
   5093 	int min_freq = 15;
   5094 	unsigned int gpu_freq;
   5095 	unsigned int max_ia_freq, min_ring_freq;
   5096 	unsigned int max_gpu_freq, min_gpu_freq;
   5097 	int scaling_factor = 180;
   5098 #ifndef __NetBSD__
   5099 	struct cpufreq_policy *policy;
   5100 #endif
   5101 
   5102 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5103 
   5104 #ifdef __NetBSD__
   5105 	{
   5106 		extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
   5107 		max_ia_freq = (tsc_freq / 1000);
   5108 	}
   5109 #else
   5110 	policy = cpufreq_cpu_get(0);
   5111 	if (policy) {
   5112 		max_ia_freq = policy->cpuinfo.max_freq;
   5113 		cpufreq_cpu_put(policy);
   5114 	} else {
   5115 		/*
   5116 		 * Default to measured freq if none found, PCU will ensure we
   5117 		 * don't go over
   5118 		 */
   5119 		max_ia_freq = tsc_khz;
   5120 	}
   5121 #endif
   5122 
   5123 	/* Convert from kHz to MHz */
   5124 	max_ia_freq /= 1000;
   5125 
   5126 	min_ring_freq = I915_READ(DCLK) & 0xf;
   5127 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
   5128 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
   5129 
   5130 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   5131 		/* Convert GT frequency to 50 HZ units */
   5132 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
   5133 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
   5134 	} else {
   5135 		min_gpu_freq = dev_priv->rps.min_freq;
   5136 		max_gpu_freq = dev_priv->rps.max_freq;
   5137 	}
   5138 
   5139 	/*
   5140 	 * For each potential GPU frequency, load a ring frequency we'd like
   5141 	 * to use for memory access.  We do this by specifying the IA frequency
   5142 	 * the PCU should use as a reference to determine the ring frequency.
   5143 	 */
   5144 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
   5145 		int diff = max_gpu_freq - gpu_freq;
   5146 		unsigned int ia_freq = 0, ring_freq = 0;
   5147 
   5148 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
   5149 			/*
   5150 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
   5151 			 * No floor required for ring frequency on SKL.
   5152 			 */
   5153 			ring_freq = gpu_freq;
   5154 		} else if (INTEL_INFO(dev)->gen >= 8) {
   5155 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
   5156 			ring_freq = max(min_ring_freq, gpu_freq);
   5157 		} else if (IS_HASWELL(dev)) {
   5158 			ring_freq = mult_frac(gpu_freq, 5, 4);
   5159 			ring_freq = max(min_ring_freq, ring_freq);
   5160 			/* leave ia_freq as the default, chosen by cpufreq */
   5161 		} else {
   5162 			/* On older processors, there is no separate ring
   5163 			 * clock domain, so in order to boost the bandwidth
   5164 			 * of the ring, we need to upclock the CPU (ia_freq).
   5165 			 *
   5166 			 * For GPU frequencies less than 750MHz,
   5167 			 * just use the lowest ring freq.
   5168 			 */
   5169 			if (gpu_freq < min_freq)
   5170 				ia_freq = 800;
   5171 			else
   5172 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   5173 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   5174 		}
   5175 
   5176 		sandybridge_pcode_write(dev_priv,
   5177 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   5178 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
   5179 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
   5180 					gpu_freq);
   5181 	}
   5182 }
   5183 
   5184 void gen6_update_ring_freq(struct drm_device *dev)
   5185 {
   5186 	struct drm_i915_private *dev_priv = dev->dev_private;
   5187 
   5188 	if (!HAS_CORE_RING_FREQ(dev))
   5189 		return;
   5190 
   5191 	mutex_lock(&dev_priv->rps.hw_lock);
   5192 	__gen6_update_ring_freq(dev);
   5193 	mutex_unlock(&dev_priv->rps.hw_lock);
   5194 }
   5195 
   5196 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
   5197 {
   5198 	struct drm_device *dev = dev_priv->dev;
   5199 	u32 val, rp0;
   5200 
   5201 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
   5202 
   5203 	switch (INTEL_INFO(dev)->eu_total) {
   5204 	case 8:
   5205 		/* (2 * 4) config */
   5206 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
   5207 		break;
   5208 	case 12:
   5209 		/* (2 * 6) config */
   5210 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
   5211 		break;
   5212 	case 16:
   5213 		/* (2 * 8) config */
   5214 	default:
   5215 		/* Setting (2 * 8) Min RP0 for any other combination */
   5216 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
   5217 		break;
   5218 	}
   5219 
   5220 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
   5221 
   5222 	return rp0;
   5223 }
   5224 
   5225 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   5226 {
   5227 	u32 val, rpe;
   5228 
   5229 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
   5230 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
   5231 
   5232 	return rpe;
   5233 }
   5234 
   5235 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
   5236 {
   5237 	u32 val, rp1;
   5238 
   5239 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
   5240 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
   5241 
   5242 	return rp1;
   5243 }
   5244 
   5245 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
   5246 {
   5247 	u32 val, rp1;
   5248 
   5249 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   5250 
   5251 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
   5252 
   5253 	return rp1;
   5254 }
   5255 
   5256 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
   5257 {
   5258 	u32 val, rp0;
   5259 
   5260 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   5261 
   5262 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
   5263 	/* Clamp to max */
   5264 	rp0 = min_t(u32, rp0, 0xea);
   5265 
   5266 	return rp0;
   5267 }
   5268 
   5269 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   5270 {
   5271 	u32 val, rpe;
   5272 
   5273 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
   5274 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
   5275 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
   5276 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
   5277 
   5278 	return rpe;
   5279 }
   5280 
   5281 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
   5282 {
   5283 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
   5284 }
   5285 
   5286 /* Check that the pctx buffer wasn't move under us. */
   5287 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
   5288 {
   5289 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   5290 
   5291 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
   5292 			     dev_priv->vlv_pctx->stolen->start);
   5293 }
   5294 
   5295 
   5296 /* Check that the pcbr address is not empty. */
   5297 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
   5298 {
   5299 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   5300 
   5301 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
   5302 }
   5303 
   5304 static void cherryview_setup_pctx(struct drm_device *dev)
   5305 {
   5306 	struct drm_i915_private *dev_priv = dev->dev_private;
   5307 	unsigned long pctx_paddr, paddr;
   5308 	struct i915_gtt *gtt = &dev_priv->gtt;
   5309 	u32 pcbr;
   5310 	int pctx_size = 32*1024;
   5311 
   5312 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   5313 
   5314 	pcbr = I915_READ(VLV_PCBR);
   5315 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
   5316 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
   5317 		paddr = (dev_priv->mm.stolen_base +
   5318 			 (gtt->stolen_size - pctx_size));
   5319 
   5320 		pctx_paddr = (paddr & (~4095));
   5321 		I915_WRITE(VLV_PCBR, pctx_paddr);
   5322 	}
   5323 
   5324 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
   5325 }
   5326 
   5327 static void valleyview_setup_pctx(struct drm_device *dev)
   5328 {
   5329 	struct drm_i915_private *dev_priv = dev->dev_private;
   5330 	struct drm_i915_gem_object *pctx;
   5331 	unsigned long pctx_paddr;
   5332 	u32 pcbr;
   5333 	int pctx_size = 24*1024;
   5334 
   5335 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   5336 
   5337 	pcbr = I915_READ(VLV_PCBR);
   5338 	if (pcbr) {
   5339 		/* BIOS set it up already, grab the pre-alloc'd space */
   5340 		int pcbr_offset;
   5341 
   5342 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
   5343 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
   5344 								      pcbr_offset,
   5345 								      I915_GTT_OFFSET_NONE,
   5346 								      pctx_size);
   5347 		goto out;
   5348 	}
   5349 
   5350 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
   5351 
   5352 	/*
   5353 	 * From the Gunit register HAS:
   5354 	 * The Gfx driver is expected to program this register and ensure
   5355 	 * proper allocation within Gfx stolen memory.  For example, this
   5356 	 * register should be programmed such than the PCBR range does not
   5357 	 * overlap with other ranges, such as the frame buffer, protected
   5358 	 * memory, or any other relevant ranges.
   5359 	 */
   5360 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
   5361 	if (!pctx) {
   5362 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
   5363 		return;
   5364 	}
   5365 
   5366 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
   5367 	I915_WRITE(VLV_PCBR, pctx_paddr);
   5368 
   5369 out:
   5370 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
   5371 	dev_priv->vlv_pctx = pctx;
   5372 }
   5373 
   5374 static void valleyview_cleanup_pctx(struct drm_device *dev)
   5375 {
   5376 	struct drm_i915_private *dev_priv = dev->dev_private;
   5377 
   5378 	if (WARN_ON(!dev_priv->vlv_pctx))
   5379 		return;
   5380 
   5381 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
   5382 	dev_priv->vlv_pctx = NULL;
   5383 }
   5384 
   5385 static void valleyview_init_gt_powersave(struct drm_device *dev)
   5386 {
   5387 	struct drm_i915_private *dev_priv = dev->dev_private;
   5388 	u32 val;
   5389 
   5390 	valleyview_setup_pctx(dev);
   5391 
   5392 	mutex_lock(&dev_priv->rps.hw_lock);
   5393 
   5394 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5395 	switch ((val >> 6) & 3) {
   5396 	case 0:
   5397 	case 1:
   5398 		dev_priv->mem_freq = 800;
   5399 		break;
   5400 	case 2:
   5401 		dev_priv->mem_freq = 1066;
   5402 		break;
   5403 	case 3:
   5404 		dev_priv->mem_freq = 1333;
   5405 		break;
   5406 	}
   5407 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
   5408 
   5409 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
   5410 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
   5411 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   5412 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   5413 			 dev_priv->rps.max_freq);
   5414 
   5415 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
   5416 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   5417 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5418 			 dev_priv->rps.efficient_freq);
   5419 
   5420 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
   5421 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
   5422 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
   5423 			 dev_priv->rps.rp1_freq);
   5424 
   5425 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
   5426 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   5427 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   5428 			 dev_priv->rps.min_freq);
   5429 
   5430 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   5431 
   5432 	/* Preserve min/max settings in case of re-init */
   5433 	if (dev_priv->rps.max_freq_softlimit == 0)
   5434 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   5435 
   5436 	if (dev_priv->rps.min_freq_softlimit == 0)
   5437 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   5438 
   5439 	mutex_unlock(&dev_priv->rps.hw_lock);
   5440 }
   5441 
   5442 static void cherryview_init_gt_powersave(struct drm_device *dev)
   5443 {
   5444 	struct drm_i915_private *dev_priv = dev->dev_private;
   5445 	u32 val;
   5446 
   5447 	cherryview_setup_pctx(dev);
   5448 
   5449 	mutex_lock(&dev_priv->rps.hw_lock);
   5450 
   5451 	mutex_lock(&dev_priv->sb_lock);
   5452 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
   5453 	mutex_unlock(&dev_priv->sb_lock);
   5454 
   5455 	switch ((val >> 2) & 0x7) {
   5456 	case 3:
   5457 		dev_priv->mem_freq = 2000;
   5458 		break;
   5459 	default:
   5460 		dev_priv->mem_freq = 1600;
   5461 		break;
   5462 	}
   5463 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
   5464 
   5465 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
   5466 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
   5467 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   5468 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   5469 			 dev_priv->rps.max_freq);
   5470 
   5471 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
   5472 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   5473 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5474 			 dev_priv->rps.efficient_freq);
   5475 
   5476 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
   5477 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
   5478 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
   5479 			 dev_priv->rps.rp1_freq);
   5480 
   5481 	/* PUnit validated range is only [RPe, RP0] */
   5482 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
   5483 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   5484 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   5485 			 dev_priv->rps.min_freq);
   5486 
   5487 	WARN_ONCE((dev_priv->rps.max_freq |
   5488 		   dev_priv->rps.efficient_freq |
   5489 		   dev_priv->rps.rp1_freq |
   5490 		   dev_priv->rps.min_freq) & 1,
   5491 		  "Odd GPU freq values\n");
   5492 
   5493 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
   5494 
   5495 	/* Preserve min/max settings in case of re-init */
   5496 	if (dev_priv->rps.max_freq_softlimit == 0)
   5497 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   5498 
   5499 	if (dev_priv->rps.min_freq_softlimit == 0)
   5500 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   5501 
   5502 	mutex_unlock(&dev_priv->rps.hw_lock);
   5503 }
   5504 
   5505 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
   5506 {
   5507 	valleyview_cleanup_pctx(dev);
   5508 }
   5509 
   5510 static void cherryview_enable_rps(struct drm_device *dev)
   5511 {
   5512 	struct drm_i915_private *dev_priv = dev->dev_private;
   5513 	struct intel_engine_cs *ring;
   5514 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
   5515 	int i;
   5516 
   5517 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5518 
   5519 	gtfifodbg = I915_READ(GTFIFODBG);
   5520 	if (gtfifodbg) {
   5521 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   5522 				 gtfifodbg);
   5523 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5524 	}
   5525 
   5526 	cherryview_check_pctx(dev_priv);
   5527 
   5528 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
   5529 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   5530 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5531 
   5532 	/*  Disable RC states. */
   5533 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5534 
   5535 	/* 2a: Program RC6 thresholds.*/
   5536 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   5537 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   5538 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   5539 
   5540 	for_each_ring(ring, dev_priv, i)
   5541 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5542 	I915_WRITE(GEN6_RC_SLEEP, 0);
   5543 
   5544 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
   5545 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
   5546 
   5547 	/* allows RC6 residency counter to work */
   5548 	I915_WRITE(VLV_COUNTER_CONTROL,
   5549 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
   5550 				      VLV_MEDIA_RC6_COUNT_EN |
   5551 				      VLV_RENDER_RC6_COUNT_EN));
   5552 
   5553 	/* For now we assume BIOS is allocating and populating the PCBR  */
   5554 	pcbr = I915_READ(VLV_PCBR);
   5555 
   5556 	/* 3: Enable RC6 */
   5557 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
   5558 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
   5559 		rc6_mode = GEN7_RC_CTL_TO_MODE;
   5560 
   5561 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   5562 
   5563 	/* 4 Program defaults and thresholds for RPS*/
   5564 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   5565 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   5566 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   5567 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   5568 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   5569 
   5570 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5571 
   5572 	/* 5: Enable RPS */
   5573 	I915_WRITE(GEN6_RP_CONTROL,
   5574 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   5575 		   GEN6_RP_MEDIA_IS_GFX |
   5576 		   GEN6_RP_ENABLE |
   5577 		   GEN6_RP_UP_BUSY_AVG |
   5578 		   GEN6_RP_DOWN_IDLE_AVG);
   5579 
   5580 	/* Setting Fixed Bias */
   5581 	val = VLV_OVERRIDE_EN |
   5582 		  VLV_SOC_TDP_EN |
   5583 		  CHV_BIAS_CPU_50_SOC_50;
   5584 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
   5585 
   5586 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5587 
   5588 	/* RPS code assumes GPLL is used */
   5589 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
   5590 
   5591 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
   5592 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   5593 
   5594 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   5595 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   5596 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   5597 			 dev_priv->rps.cur_freq);
   5598 
   5599 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   5600 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5601 			 dev_priv->rps.efficient_freq);
   5602 
   5603 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   5604 
   5605 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5606 }
   5607 
   5608 static void valleyview_enable_rps(struct drm_device *dev)
   5609 {
   5610 	struct drm_i915_private *dev_priv = dev->dev_private;
   5611 	struct intel_engine_cs *ring;
   5612 	u32 gtfifodbg, val, rc6_mode = 0;
   5613 	int i;
   5614 
   5615 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   5616 
   5617 	valleyview_check_pctx(dev_priv);
   5618 
   5619 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   5620 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   5621 				 gtfifodbg);
   5622 		I915_WRITE(GTFIFODBG, gtfifodbg);
   5623 	}
   5624 
   5625 	/* If VLV, Forcewake all wells, else re-direct to regular path */
   5626 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
   5627 
   5628 	/*  Disable RC states. */
   5629 	I915_WRITE(GEN6_RC_CONTROL, 0);
   5630 
   5631 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
   5632 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   5633 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   5634 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   5635 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   5636 
   5637 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   5638 
   5639 	I915_WRITE(GEN6_RP_CONTROL,
   5640 		   GEN6_RP_MEDIA_TURBO |
   5641 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   5642 		   GEN6_RP_MEDIA_IS_GFX |
   5643 		   GEN6_RP_ENABLE |
   5644 		   GEN6_RP_UP_BUSY_AVG |
   5645 		   GEN6_RP_DOWN_IDLE_CONT);
   5646 
   5647 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
   5648 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   5649 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   5650 
   5651 	for_each_ring(ring, dev_priv, i)
   5652 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   5653 
   5654 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
   5655 
   5656 	/* allows RC6 residency counter to work */
   5657 	I915_WRITE(VLV_COUNTER_CONTROL,
   5658 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
   5659 				      VLV_RENDER_RC0_COUNT_EN |
   5660 				      VLV_MEDIA_RC6_COUNT_EN |
   5661 				      VLV_RENDER_RC6_COUNT_EN));
   5662 
   5663 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   5664 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
   5665 
   5666 	intel_print_rc6_info(dev, rc6_mode);
   5667 
   5668 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   5669 
   5670 	/* Setting Fixed Bias */
   5671 	val = VLV_OVERRIDE_EN |
   5672 		  VLV_SOC_TDP_EN |
   5673 		  VLV_BIAS_CPU_125_SOC_875;
   5674 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
   5675 
   5676 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5677 
   5678 	/* RPS code assumes GPLL is used */
   5679 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
   5680 
   5681 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
   5682 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   5683 
   5684 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   5685 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   5686 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   5687 			 dev_priv->rps.cur_freq);
   5688 
   5689 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   5690 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   5691 			 dev_priv->rps.efficient_freq);
   5692 
   5693 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   5694 
   5695 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
   5696 }
   5697 
   5698 static unsigned long intel_pxfreq(u32 vidfreq)
   5699 {
   5700 	unsigned long freq;
   5701 	int div = (vidfreq & 0x3f0000) >> 16;
   5702 	int post = (vidfreq & 0x3000) >> 12;
   5703 	int pre = (vidfreq & 0x7);
   5704 
   5705 	if (!pre)
   5706 		return 0;
   5707 
   5708 	freq = ((div * 133333) / ((1<<post) * pre));
   5709 
   5710 	return freq;
   5711 }
   5712 
   5713 static const struct cparams {
   5714 	u16 i;
   5715 	u16 t;
   5716 	u16 m;
   5717 	u16 c;
   5718 } cparams[] = {
   5719 	{ 1, 1333, 301, 28664 },
   5720 	{ 1, 1066, 294, 24460 },
   5721 	{ 1, 800, 294, 25192 },
   5722 	{ 0, 1333, 276, 27605 },
   5723 	{ 0, 1066, 276, 27605 },
   5724 	{ 0, 800, 231, 23784 },
   5725 };
   5726 
   5727 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   5728 {
   5729 	u64 total_count, diff, ret;
   5730 	u32 count1, count2, count3, m = 0, c = 0;
   5731 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   5732 	int i;
   5733 
   5734 	assert_spin_locked(&mchdev_lock);
   5735 
   5736 	diff1 = now - dev_priv->ips.last_time1;
   5737 
   5738 	/* Prevent division-by-zero if we are asking too fast.
   5739 	 * Also, we don't get interesting results if we are polling
   5740 	 * faster than once in 10ms, so just return the saved value
   5741 	 * in such cases.
   5742 	 */
   5743 	if (diff1 <= 10)
   5744 		return dev_priv->ips.chipset_power;
   5745 
   5746 	count1 = I915_READ(DMIEC);
   5747 	count2 = I915_READ(DDREC);
   5748 	count3 = I915_READ(CSIEC);
   5749 
   5750 	total_count = count1 + count2 + count3;
   5751 
   5752 	/* FIXME: handle per-counter overflow */
   5753 	if (total_count < dev_priv->ips.last_count1) {
   5754 		diff = ~0UL - dev_priv->ips.last_count1;
   5755 		diff += total_count;
   5756 	} else {
   5757 		diff = total_count - dev_priv->ips.last_count1;
   5758 	}
   5759 
   5760 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   5761 		if (cparams[i].i == dev_priv->ips.c_m &&
   5762 		    cparams[i].t == dev_priv->ips.r_t) {
   5763 			m = cparams[i].m;
   5764 			c = cparams[i].c;
   5765 			break;
   5766 		}
   5767 	}
   5768 
   5769 	diff = div_u64(diff, diff1);
   5770 	ret = ((m * diff) + c);
   5771 	ret = div_u64(ret, 10);
   5772 
   5773 	dev_priv->ips.last_count1 = total_count;
   5774 	dev_priv->ips.last_time1 = now;
   5775 
   5776 	dev_priv->ips.chipset_power = ret;
   5777 
   5778 	return ret;
   5779 }
   5780 
   5781 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   5782 {
   5783 	struct drm_device *dev = dev_priv->dev;
   5784 	unsigned long val;
   5785 
   5786 	if (INTEL_INFO(dev)->gen != 5)
   5787 		return 0;
   5788 
   5789 	spin_lock_irq(&mchdev_lock);
   5790 
   5791 	val = __i915_chipset_val(dev_priv);
   5792 
   5793 	spin_unlock_irq(&mchdev_lock);
   5794 
   5795 	return val;
   5796 }
   5797 
   5798 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   5799 {
   5800 	unsigned long m, x, b;
   5801 	u32 tsfs;
   5802 
   5803 	tsfs = I915_READ(TSFS);
   5804 
   5805 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   5806 	x = I915_READ8(TR1);
   5807 
   5808 	b = tsfs & TSFS_INTR_MASK;
   5809 
   5810 	return ((m * x) / 127) - b;
   5811 }
   5812 
   5813 static int _pxvid_to_vd(u8 pxvid)
   5814 {
   5815 	if (pxvid == 0)
   5816 		return 0;
   5817 
   5818 	if (pxvid >= 8 && pxvid < 31)
   5819 		pxvid = 31;
   5820 
   5821 	return (pxvid + 2) * 125;
   5822 }
   5823 
   5824 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   5825 {
   5826 	struct drm_device *dev = dev_priv->dev;
   5827 	const int vd = _pxvid_to_vd(pxvid);
   5828 	const int vm = vd - 1125;
   5829 
   5830 	if (INTEL_INFO(dev)->is_mobile)
   5831 		return vm > 0 ? vm : 0;
   5832 
   5833 	return vd;
   5834 }
   5835 
   5836 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   5837 {
   5838 	u64 now, diff, diffms;
   5839 	u32 count;
   5840 
   5841 	assert_spin_locked(&mchdev_lock);
   5842 
   5843 	now = ktime_get_raw_ns();
   5844 	diffms = now - dev_priv->ips.last_time2;
   5845 	do_div(diffms, NSEC_PER_MSEC);
   5846 
   5847 	/* Don't divide by 0 */
   5848 	if (!diffms)
   5849 		return;
   5850 
   5851 	count = I915_READ(GFXEC);
   5852 
   5853 	if (count < dev_priv->ips.last_count2) {
   5854 		diff = ~0UL - dev_priv->ips.last_count2;
   5855 		diff += count;
   5856 	} else {
   5857 		diff = count - dev_priv->ips.last_count2;
   5858 	}
   5859 
   5860 	dev_priv->ips.last_count2 = count;
   5861 	dev_priv->ips.last_time2 = now;
   5862 
   5863 	/* More magic constants... */
   5864 	diff = diff * 1181;
   5865 	diff = div_u64(diff, diffms * 10);
   5866 	dev_priv->ips.gfx_power = diff;
   5867 }
   5868 
   5869 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   5870 {
   5871 	struct drm_device *dev = dev_priv->dev;
   5872 
   5873 	if (INTEL_INFO(dev)->gen != 5)
   5874 		return;
   5875 
   5876 	spin_lock_irq(&mchdev_lock);
   5877 
   5878 	__i915_update_gfx_val(dev_priv);
   5879 
   5880 	spin_unlock_irq(&mchdev_lock);
   5881 }
   5882 
   5883 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   5884 {
   5885 	unsigned long t, corr, state1, corr2, state2;
   5886 	u32 pxvid, ext_v;
   5887 
   5888 	assert_spin_locked(&mchdev_lock);
   5889 
   5890 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
   5891 	pxvid = (pxvid >> 24) & 0x7f;
   5892 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   5893 
   5894 	state1 = ext_v;
   5895 
   5896 	t = i915_mch_val(dev_priv);
   5897 
   5898 	/* Revel in the empirically derived constants */
   5899 
   5900 	/* Correction factor in 1/100000 units */
   5901 	if (t > 80)
   5902 		corr = ((t * 2349) + 135940);
   5903 	else if (t >= 50)
   5904 		corr = ((t * 964) + 29317);
   5905 	else /* < 50 */
   5906 		corr = ((t * 301) + 1004);
   5907 
   5908 	corr = corr * ((150142 * state1) / 10000 - 78642);
   5909 	corr /= 100000;
   5910 	corr2 = (corr * dev_priv->ips.corr);
   5911 
   5912 	state2 = (corr2 * state1) / 10000;
   5913 	state2 /= 100; /* convert to mW */
   5914 
   5915 	__i915_update_gfx_val(dev_priv);
   5916 
   5917 	return dev_priv->ips.gfx_power + state2;
   5918 }
   5919 
   5920 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   5921 {
   5922 	struct drm_device *dev = dev_priv->dev;
   5923 	unsigned long val;
   5924 
   5925 	if (INTEL_INFO(dev)->gen != 5)
   5926 		return 0;
   5927 
   5928 	spin_lock_irq(&mchdev_lock);
   5929 
   5930 	val = __i915_gfx_val(dev_priv);
   5931 
   5932 	spin_unlock_irq(&mchdev_lock);
   5933 
   5934 	return val;
   5935 }
   5936 
   5937 /**
   5938  * i915_read_mch_val - return value for IPS use
   5939  *
   5940  * Calculate and return a value for the IPS driver to use when deciding whether
   5941  * we have thermal and power headroom to increase CPU or GPU power budget.
   5942  */
   5943 unsigned long i915_read_mch_val(void)
   5944 {
   5945 	struct drm_i915_private *dev_priv;
   5946 	unsigned long chipset_val, graphics_val, ret = 0;
   5947 
   5948 	spin_lock_irq(&mchdev_lock);
   5949 	if (!i915_mch_dev)
   5950 		goto out_unlock;
   5951 	dev_priv = i915_mch_dev;
   5952 
   5953 	chipset_val = __i915_chipset_val(dev_priv);
   5954 	graphics_val = __i915_gfx_val(dev_priv);
   5955 
   5956 	ret = chipset_val + graphics_val;
   5957 
   5958 out_unlock:
   5959 	spin_unlock_irq(&mchdev_lock);
   5960 
   5961 	return ret;
   5962 }
   5963 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   5964 
   5965 /**
   5966  * i915_gpu_raise - raise GPU frequency limit
   5967  *
   5968  * Raise the limit; IPS indicates we have thermal headroom.
   5969  */
   5970 bool i915_gpu_raise(void)
   5971 {
   5972 	struct drm_i915_private *dev_priv;
   5973 	bool ret = true;
   5974 
   5975 	spin_lock_irq(&mchdev_lock);
   5976 	if (!i915_mch_dev) {
   5977 		ret = false;
   5978 		goto out_unlock;
   5979 	}
   5980 	dev_priv = i915_mch_dev;
   5981 
   5982 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   5983 		dev_priv->ips.max_delay--;
   5984 
   5985 out_unlock:
   5986 	spin_unlock_irq(&mchdev_lock);
   5987 
   5988 	return ret;
   5989 }
   5990 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   5991 
   5992 /**
   5993  * i915_gpu_lower - lower GPU frequency limit
   5994  *
   5995  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   5996  * frequency maximum.
   5997  */
   5998 bool i915_gpu_lower(void)
   5999 {
   6000 	struct drm_i915_private *dev_priv;
   6001 	bool ret = true;
   6002 
   6003 	spin_lock_irq(&mchdev_lock);
   6004 	if (!i915_mch_dev) {
   6005 		ret = false;
   6006 		goto out_unlock;
   6007 	}
   6008 	dev_priv = i915_mch_dev;
   6009 
   6010 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   6011 		dev_priv->ips.max_delay++;
   6012 
   6013 out_unlock:
   6014 	spin_unlock_irq(&mchdev_lock);
   6015 
   6016 	return ret;
   6017 }
   6018 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   6019 
   6020 /**
   6021  * i915_gpu_busy - indicate GPU business to IPS
   6022  *
   6023  * Tell the IPS driver whether or not the GPU is busy.
   6024  */
   6025 bool i915_gpu_busy(void)
   6026 {
   6027 	struct drm_i915_private *dev_priv;
   6028 	struct intel_engine_cs *ring;
   6029 	bool ret = false;
   6030 	int i;
   6031 
   6032 	spin_lock_irq(&mchdev_lock);
   6033 	if (!i915_mch_dev)
   6034 		goto out_unlock;
   6035 	dev_priv = i915_mch_dev;
   6036 
   6037 	for_each_ring(ring, dev_priv, i)
   6038 		ret |= !list_empty(&ring->request_list);
   6039 
   6040 out_unlock:
   6041 	spin_unlock_irq(&mchdev_lock);
   6042 
   6043 	return ret;
   6044 }
   6045 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   6046 
   6047 /**
   6048  * i915_gpu_turbo_disable - disable graphics turbo
   6049  *
   6050  * Disable graphics turbo by resetting the max frequency and setting the
   6051  * current frequency to the default.
   6052  */
   6053 bool i915_gpu_turbo_disable(void)
   6054 {
   6055 	struct drm_i915_private *dev_priv;
   6056 	bool ret = true;
   6057 
   6058 	spin_lock_irq(&mchdev_lock);
   6059 	if (!i915_mch_dev) {
   6060 		ret = false;
   6061 		goto out_unlock;
   6062 	}
   6063 	dev_priv = i915_mch_dev;
   6064 
   6065 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   6066 
   6067 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   6068 		ret = false;
   6069 
   6070 out_unlock:
   6071 	spin_unlock_irq(&mchdev_lock);
   6072 
   6073 	return ret;
   6074 }
   6075 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   6076 
   6077 /**
   6078  * Tells the intel_ips driver that the i915 driver is now loaded, if
   6079  * IPS got loaded first.
   6080  *
   6081  * This awkward dance is so that neither module has to depend on the
   6082  * other in order for IPS to do the appropriate communication of
   6083  * GPU turbo limits to i915.
   6084  */
   6085 static void
   6086 ips_ping_for_i915_load(void)
   6087 {
   6088 #ifndef __NetBSD__		/* XXX IPS GPU turbo limits what?  */
   6089 	void (*link)(void);
   6090 
   6091 	link = symbol_get(ips_link_to_i915_driver);
   6092 	if (link) {
   6093 		link();
   6094 		symbol_put(ips_link_to_i915_driver);
   6095 	}
   6096 #endif
   6097 }
   6098 
   6099 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   6100 {
   6101 	/* We only register the i915 ips part with intel-ips once everything is
   6102 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   6103 	spin_lock_irq(&mchdev_lock);
   6104 	i915_mch_dev = dev_priv;
   6105 	spin_unlock_irq(&mchdev_lock);
   6106 
   6107 	ips_ping_for_i915_load();
   6108 }
   6109 
   6110 void intel_gpu_ips_teardown(void)
   6111 {
   6112 	spin_lock_irq(&mchdev_lock);
   6113 	i915_mch_dev = NULL;
   6114 	spin_unlock_irq(&mchdev_lock);
   6115 }
   6116 
   6117 static void intel_init_emon(struct drm_device *dev)
   6118 {
   6119 	struct drm_i915_private *dev_priv = dev->dev_private;
   6120 	u32 lcfuse;
   6121 	u8 pxw[16];
   6122 	int i;
   6123 
   6124 	/* Disable to program */
   6125 	I915_WRITE(ECR, 0);
   6126 	POSTING_READ(ECR);
   6127 
   6128 	/* Program energy weights for various events */
   6129 	I915_WRITE(SDEW, 0x15040d00);
   6130 	I915_WRITE(CSIEW0, 0x007f0000);
   6131 	I915_WRITE(CSIEW1, 0x1e220004);
   6132 	I915_WRITE(CSIEW2, 0x04000004);
   6133 
   6134 	for (i = 0; i < 5; i++)
   6135 		I915_WRITE(PEW(i), 0);
   6136 	for (i = 0; i < 3; i++)
   6137 		I915_WRITE(DEW(i), 0);
   6138 
   6139 	/* Program P-state weights to account for frequency power adjustment */
   6140 	for (i = 0; i < 16; i++) {
   6141 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
   6142 		unsigned long freq = intel_pxfreq(pxvidfreq);
   6143 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   6144 			PXVFREQ_PX_SHIFT;
   6145 		unsigned long val;
   6146 
   6147 		val = vid * vid;
   6148 		val *= (freq / 1000);
   6149 		val *= 255;
   6150 		val /= (127*127*900);
   6151 		if (val > 0xff)
   6152 			DRM_ERROR("bad pxval: %ld\n", val);
   6153 		pxw[i] = val;
   6154 	}
   6155 	/* Render standby states get 0 weight */
   6156 	pxw[14] = 0;
   6157 	pxw[15] = 0;
   6158 
   6159 	for (i = 0; i < 4; i++) {
   6160 		u32 val = ((u32)pxw[i*4] << 24) | ((u32)pxw[(i*4)+1] << 16) |
   6161 			((u32)pxw[(i*4)+2] << 8) | ((u32)pxw[(i*4)+3]);
   6162 		I915_WRITE(PXW(i), val);
   6163 	}
   6164 
   6165 	/* Adjust magic regs to magic values (more experimental results) */
   6166 	I915_WRITE(OGW0, 0);
   6167 	I915_WRITE(OGW1, 0);
   6168 	I915_WRITE(EG0, 0x00007f00);
   6169 	I915_WRITE(EG1, 0x0000000e);
   6170 	I915_WRITE(EG2, 0x000e0000);
   6171 	I915_WRITE(EG3, 0x68000300);
   6172 	I915_WRITE(EG4, 0x42000000);
   6173 	I915_WRITE(EG5, 0x00140031);
   6174 	I915_WRITE(EG6, 0);
   6175 	I915_WRITE(EG7, 0);
   6176 
   6177 	for (i = 0; i < 8; i++)
   6178 		I915_WRITE(PXWL(i), 0);
   6179 
   6180 	/* Enable PMON + select events */
   6181 	I915_WRITE(ECR, 0x80000019);
   6182 
   6183 	lcfuse = I915_READ(LCFUSE02);
   6184 
   6185 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   6186 }
   6187 
   6188 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
   6189 {
   6190 	return !I915_READ(GEN8_RC6_CTX_INFO);
   6191 }
   6192 
   6193 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
   6194 {
   6195 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
   6196 		return;
   6197 
   6198 	if (i915_rc6_ctx_corrupted(i915)) {
   6199 		DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
   6200 		i915->rps.ctx_corrupted = true;
   6201 		intel_runtime_pm_get(i915);
   6202 	}
   6203 }
   6204 
   6205 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
   6206 {
   6207 	if (i915->rps.ctx_corrupted) {
   6208 		intel_runtime_pm_put(i915);
   6209 		i915->rps.ctx_corrupted = false;
   6210 	}
   6211 }
   6212 
   6213 /**
   6214  * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
   6215  * @i915: i915 device
   6216  *
   6217  * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
   6218  */
   6219 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
   6220 {
   6221 	if (i915->rps.ctx_corrupted)
   6222 		intel_runtime_pm_put(i915);
   6223 }
   6224 
   6225 /**
   6226  * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
   6227  * @i915: i915 device
   6228  *
   6229  * Perform any steps needed to re-init the RC6 CTX WA after system resume.
   6230  */
   6231 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
   6232 {
   6233 	if (!i915->rps.ctx_corrupted)
   6234 		return;
   6235 
   6236 	if (i915_rc6_ctx_corrupted(i915)) {
   6237 		intel_runtime_pm_get(i915);
   6238 		return;
   6239 	}
   6240 
   6241 	DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
   6242 	i915->rps.ctx_corrupted = false;
   6243 }
   6244 
   6245 static void intel_disable_rc6(struct drm_device *dev);
   6246 
   6247 /**
   6248  * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
   6249  * @i915: i915 device
   6250  *
   6251  * Check if an RC6 CTX corruption has happened since the last check and if so
   6252  * disable RC6 and runtime power management.
   6253  *
   6254  * Return false if no context corruption has happened since the last call of
   6255  * this function, true otherwise.
   6256 */
   6257 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
   6258 {
   6259 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
   6260 		return false;
   6261 
   6262 	if (i915->rps.ctx_corrupted)
   6263 		return false;
   6264 
   6265 	if (!i915_rc6_ctx_corrupted(i915))
   6266 		return false;
   6267 
   6268 	DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
   6269 
   6270 	intel_disable_rc6(i915->dev);
   6271 	i915->rps.ctx_corrupted = true;
   6272 	intel_runtime_pm_get_noresume(i915);
   6273 
   6274 	return true;
   6275 }
   6276 
   6277 void intel_init_gt_powersave(struct drm_device *dev)
   6278 {
   6279 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
   6280 
   6281 	i915_rc6_ctx_wa_init(to_i915(dev));
   6282 
   6283 	if (IS_CHERRYVIEW(dev))
   6284 		cherryview_init_gt_powersave(dev);
   6285 	else if (IS_VALLEYVIEW(dev))
   6286 		valleyview_init_gt_powersave(dev);
   6287 }
   6288 
   6289 void intel_cleanup_gt_powersave(struct drm_device *dev)
   6290 {
   6291 	if (IS_CHERRYVIEW(dev))
   6292 		return;
   6293 	else if (IS_VALLEYVIEW(dev))
   6294 		valleyview_cleanup_gt_powersave(dev);
   6295 
   6296 	i915_rc6_ctx_wa_cleanup(to_i915(dev));
   6297 }
   6298 
   6299 static void gen6_suspend_rps(struct drm_device *dev)
   6300 {
   6301 	struct drm_i915_private *dev_priv = dev->dev_private;
   6302 
   6303 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
   6304 
   6305 	gen6_disable_rps_interrupts(dev);
   6306 }
   6307 
   6308 /**
   6309  * intel_suspend_gt_powersave - suspend PM work and helper threads
   6310  * @dev: drm device
   6311  *
   6312  * We don't want to disable RC6 or other features here, we just want
   6313  * to make sure any work we've queued has finished and won't bother
   6314  * us while we're suspended.
   6315  */
   6316 void intel_suspend_gt_powersave(struct drm_device *dev)
   6317 {
   6318 	struct drm_i915_private *dev_priv = dev->dev_private;
   6319 
   6320 	if (INTEL_INFO(dev)->gen < 6)
   6321 		return;
   6322 
   6323 	gen6_suspend_rps(dev);
   6324 
   6325 	/* Force GPU to min freq during suspend */
   6326 	gen6_rps_idle(dev_priv);
   6327 }
   6328 
   6329 static void __intel_disable_rc6(struct drm_device *dev)
   6330 {
   6331 	if (INTEL_INFO(dev)->gen >= 9)
   6332 		gen9_disable_rc6(dev);
   6333 	else if (IS_CHERRYVIEW(dev))
   6334 		cherryview_disable_rc6(dev);
   6335 	else if (IS_VALLEYVIEW(dev))
   6336 		valleyview_disable_rc6(dev);
   6337 	else
   6338 		gen6_disable_rc6(dev);
   6339 }
   6340 
   6341 static void intel_disable_rc6(struct drm_device *dev)
   6342 {
   6343 	struct drm_i915_private *dev_priv = to_i915(dev);
   6344 
   6345 	mutex_lock(&dev_priv->rps.hw_lock);
   6346 	__intel_disable_rc6(dev);
   6347 	mutex_unlock(&dev_priv->rps.hw_lock);
   6348 }
   6349 
   6350 static void intel_disable_rps(struct drm_device *dev)
   6351 {
   6352 	if (IS_CHERRYVIEW(dev) || IS_VALLEYVIEW(dev))
   6353 		return;
   6354 
   6355 	if (INTEL_INFO(dev)->gen >= 9)
   6356 		gen9_disable_rps(dev);
   6357 	else
   6358 		gen6_disable_rps(dev);
   6359 }
   6360 
   6361 void intel_disable_gt_powersave(struct drm_device *dev)
   6362 {
   6363 	struct drm_i915_private *dev_priv = dev->dev_private;
   6364 
   6365 	if (IS_IRONLAKE_M(dev)) {
   6366 		ironlake_disable_drps(dev);
   6367 	} else if (INTEL_INFO(dev)->gen >= 6) {
   6368 		intel_suspend_gt_powersave(dev);
   6369 
   6370 		mutex_lock(&dev_priv->rps.hw_lock);
   6371 
   6372 		__intel_disable_rc6(dev);
   6373 		intel_disable_rps(dev);
   6374 
   6375 		dev_priv->rps.enabled = false;
   6376 
   6377 		mutex_unlock(&dev_priv->rps.hw_lock);
   6378 	}
   6379 }
   6380 
   6381 static void intel_gen6_powersave_work(struct work_struct *work)
   6382 {
   6383 	struct drm_i915_private *dev_priv =
   6384 		container_of(work, struct drm_i915_private,
   6385 			     rps.delayed_resume_work.work);
   6386 	struct drm_device *dev = dev_priv->dev;
   6387 
   6388 	mutex_lock(&dev_priv->rps.hw_lock);
   6389 
   6390 	gen6_reset_rps_interrupts(dev);
   6391 
   6392 	if (IS_CHERRYVIEW(dev)) {
   6393 		cherryview_enable_rps(dev);
   6394 	} else if (IS_VALLEYVIEW(dev)) {
   6395 		valleyview_enable_rps(dev);
   6396 	} else if (INTEL_INFO(dev)->gen >= 9) {
   6397 		gen9_enable_rc6(dev);
   6398 		gen9_enable_rps(dev);
   6399 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
   6400 			__gen6_update_ring_freq(dev);
   6401 	} else if (IS_BROADWELL(dev)) {
   6402 		gen8_enable_rps(dev);
   6403 		__gen6_update_ring_freq(dev);
   6404 	} else {
   6405 		gen6_enable_rps(dev);
   6406 		__gen6_update_ring_freq(dev);
   6407 	}
   6408 
   6409 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
   6410 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
   6411 
   6412 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
   6413 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
   6414 
   6415 	dev_priv->rps.enabled = true;
   6416 
   6417 	gen6_enable_rps_interrupts(dev);
   6418 
   6419 	mutex_unlock(&dev_priv->rps.hw_lock);
   6420 
   6421 	intel_runtime_pm_put(dev_priv);
   6422 }
   6423 
   6424 void intel_enable_gt_powersave(struct drm_device *dev)
   6425 {
   6426 	struct drm_i915_private *dev_priv = dev->dev_private;
   6427 
   6428 	/* Powersaving is controlled by the host when inside a VM */
   6429 	if (intel_vgpu_active(dev))
   6430 		return;
   6431 
   6432 	if (IS_IRONLAKE_M(dev)) {
   6433 		mutex_lock(&dev->struct_mutex);
   6434 		ironlake_enable_drps(dev);
   6435 		intel_init_emon(dev);
   6436 		mutex_unlock(&dev->struct_mutex);
   6437 	} else if (INTEL_INFO(dev)->gen >= 6) {
   6438 		/*
   6439 		 * PCU communication is slow and this doesn't need to be
   6440 		 * done at any specific time, so do this out of our fast path
   6441 		 * to make resume and init faster.
   6442 		 *
   6443 		 * We depend on the HW RC6 power context save/restore
   6444 		 * mechanism when entering D3 through runtime PM suspend. So
   6445 		 * disable RPM until RPS/RC6 is properly setup. We can only
   6446 		 * get here via the driver load/system resume/runtime resume
   6447 		 * paths, so the _noresume version is enough (and in case of
   6448 		 * runtime resume it's necessary).
   6449 		 */
   6450 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   6451 					   round_jiffies_up_relative(HZ)))
   6452 			intel_runtime_pm_get_noresume(dev_priv);
   6453 	}
   6454 }
   6455 
   6456 void intel_reset_gt_powersave(struct drm_device *dev)
   6457 {
   6458 	struct drm_i915_private *dev_priv = dev->dev_private;
   6459 
   6460 	if (INTEL_INFO(dev)->gen < 6)
   6461 		return;
   6462 
   6463 	gen6_suspend_rps(dev);
   6464 	dev_priv->rps.enabled = false;
   6465 }
   6466 
   6467 static void ibx_init_clock_gating(struct drm_device *dev)
   6468 {
   6469 	struct drm_i915_private *dev_priv = dev->dev_private;
   6470 
   6471 	/*
   6472 	 * On Ibex Peak and Cougar Point, we need to disable clock
   6473 	 * gating for the panel power sequencer or it will fail to
   6474 	 * start up when no ports are active.
   6475 	 */
   6476 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   6477 }
   6478 
   6479 static void g4x_disable_trickle_feed(struct drm_device *dev)
   6480 {
   6481 	struct drm_i915_private *dev_priv = dev->dev_private;
   6482 	enum pipe pipe;
   6483 
   6484 	for_each_pipe(dev_priv, pipe) {
   6485 		I915_WRITE(DSPCNTR(pipe),
   6486 			   I915_READ(DSPCNTR(pipe)) |
   6487 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   6488 
   6489 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
   6490 		POSTING_READ(DSPSURF(pipe));
   6491 	}
   6492 }
   6493 
   6494 static void ilk_init_lp_watermarks(struct drm_device *dev)
   6495 {
   6496 	struct drm_i915_private *dev_priv = dev->dev_private;
   6497 
   6498 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
   6499 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
   6500 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
   6501 
   6502 	/*
   6503 	 * Don't touch WM1S_LP_EN here.
   6504 	 * Doing so could cause underruns.
   6505 	 */
   6506 }
   6507 
   6508 static void ironlake_init_clock_gating(struct drm_device *dev)
   6509 {
   6510 	struct drm_i915_private *dev_priv = dev->dev_private;
   6511 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   6512 
   6513 	/*
   6514 	 * Required for FBC
   6515 	 * WaFbcDisableDpfcClockGating:ilk
   6516 	 */
   6517 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   6518 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   6519 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   6520 
   6521 	I915_WRITE(PCH_3DCGDIS0,
   6522 		   MARIUNIT_CLOCK_GATE_DISABLE |
   6523 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   6524 	I915_WRITE(PCH_3DCGDIS1,
   6525 		   VFMUNIT_CLOCK_GATE_DISABLE);
   6526 
   6527 	/*
   6528 	 * According to the spec the following bits should be set in
   6529 	 * order to enable memory self-refresh
   6530 	 * The bit 22/21 of 0x42004
   6531 	 * The bit 5 of 0x42020
   6532 	 * The bit 15 of 0x45000
   6533 	 */
   6534 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6535 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   6536 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   6537 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   6538 	I915_WRITE(DISP_ARB_CTL,
   6539 		   (I915_READ(DISP_ARB_CTL) |
   6540 		    DISP_FBC_WM_DIS));
   6541 
   6542 	ilk_init_lp_watermarks(dev);
   6543 
   6544 	/*
   6545 	 * Based on the document from hardware guys the following bits
   6546 	 * should be set unconditionally in order to enable FBC.
   6547 	 * The bit 22 of 0x42000
   6548 	 * The bit 22 of 0x42004
   6549 	 * The bit 7,8,9 of 0x42020.
   6550 	 */
   6551 	if (IS_IRONLAKE_M(dev)) {
   6552 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
   6553 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   6554 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   6555 			   ILK_FBCQ_DIS);
   6556 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6557 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6558 			   ILK_DPARB_GATE);
   6559 	}
   6560 
   6561 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   6562 
   6563 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6564 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6565 		   ILK_ELPIN_409_SELECT);
   6566 	I915_WRITE(_3D_CHICKEN2,
   6567 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   6568 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   6569 
   6570 	/* WaDisableRenderCachePipelinedFlush:ilk */
   6571 	I915_WRITE(CACHE_MODE_0,
   6572 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   6573 
   6574 	/* WaDisable_RenderCache_OperationalFlush:ilk */
   6575 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6576 
   6577 	g4x_disable_trickle_feed(dev);
   6578 
   6579 	ibx_init_clock_gating(dev);
   6580 }
   6581 
   6582 static void cpt_init_clock_gating(struct drm_device *dev)
   6583 {
   6584 	struct drm_i915_private *dev_priv = dev->dev_private;
   6585 	int pipe;
   6586 	uint32_t val;
   6587 
   6588 	/*
   6589 	 * On Ibex Peak and Cougar Point, we need to disable clock
   6590 	 * gating for the panel power sequencer or it will fail to
   6591 	 * start up when no ports are active.
   6592 	 */
   6593 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
   6594 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
   6595 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
   6596 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   6597 		   DPLS_EDP_PPS_FIX_DIS);
   6598 	/* The below fixes the weird display corruption, a few pixels shifted
   6599 	 * downward, on (only) LVDS of some HP laptops with IVY.
   6600 	 */
   6601 	for_each_pipe(dev_priv, pipe) {
   6602 		val = I915_READ(TRANS_CHICKEN2(pipe));
   6603 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
   6604 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   6605 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
   6606 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   6607 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
   6608 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
   6609 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
   6610 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
   6611 	}
   6612 	/* WADP0ClockGatingDisable */
   6613 	for_each_pipe(dev_priv, pipe) {
   6614 		I915_WRITE(TRANS_CHICKEN1(pipe),
   6615 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   6616 	}
   6617 }
   6618 
   6619 static void gen6_check_mch_setup(struct drm_device *dev)
   6620 {
   6621 	struct drm_i915_private *dev_priv = dev->dev_private;
   6622 	uint32_t tmp;
   6623 
   6624 	tmp = I915_READ(MCH_SSKPD);
   6625 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
   6626 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
   6627 			      tmp);
   6628 }
   6629 
   6630 static void gen6_init_clock_gating(struct drm_device *dev)
   6631 {
   6632 	struct drm_i915_private *dev_priv = dev->dev_private;
   6633 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   6634 
   6635 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   6636 
   6637 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6638 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6639 		   ILK_ELPIN_409_SELECT);
   6640 
   6641 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
   6642 	I915_WRITE(_3D_CHICKEN,
   6643 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   6644 
   6645 	/* WaDisable_RenderCache_OperationalFlush:snb */
   6646 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6647 
   6648 	/*
   6649 	 * BSpec recoomends 8x4 when MSAA is used,
   6650 	 * however in practice 16x4 seems fastest.
   6651 	 *
   6652 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6653 	 * disable bit, which we don't touch here, but it's good
   6654 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6655 	 */
   6656 	I915_WRITE(GEN6_GT_MODE,
   6657 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6658 
   6659 	ilk_init_lp_watermarks(dev);
   6660 
   6661 	I915_WRITE(CACHE_MODE_0,
   6662 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   6663 
   6664 	I915_WRITE(GEN6_UCGCTL1,
   6665 		   I915_READ(GEN6_UCGCTL1) |
   6666 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   6667 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   6668 
   6669 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   6670 	 * gating disable must be set.  Failure to set it results in
   6671 	 * flickering pixels due to Z write ordering failures after
   6672 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   6673 	 * Sanctuary and Tropics, and apparently anything else with
   6674 	 * alpha test or pixel discard.
   6675 	 *
   6676 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   6677 	 * but we didn't debug actual testcases to find it out.
   6678 	 *
   6679 	 * WaDisableRCCUnitClockGating:snb
   6680 	 * WaDisableRCPBUnitClockGating:snb
   6681 	 */
   6682 	I915_WRITE(GEN6_UCGCTL2,
   6683 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   6684 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   6685 
   6686 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
   6687 	I915_WRITE(_3D_CHICKEN3,
   6688 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
   6689 
   6690 	/*
   6691 	 * Bspec says:
   6692 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
   6693 	 * 3DSTATE_SF number of SF output attributes is more than 16."
   6694 	 */
   6695 	I915_WRITE(_3D_CHICKEN3,
   6696 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
   6697 
   6698 	/*
   6699 	 * According to the spec the following bits should be
   6700 	 * set in order to enable memory self-refresh and fbc:
   6701 	 * The bit21 and bit22 of 0x42000
   6702 	 * The bit21 and bit22 of 0x42004
   6703 	 * The bit5 and bit7 of 0x42020
   6704 	 * The bit14 of 0x70180
   6705 	 * The bit14 of 0x71180
   6706 	 *
   6707 	 * WaFbcAsynchFlipDisableFbcQueue:snb
   6708 	 */
   6709 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   6710 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   6711 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   6712 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   6713 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   6714 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   6715 	I915_WRITE(ILK_DSPCLK_GATE_D,
   6716 		   I915_READ(ILK_DSPCLK_GATE_D) |
   6717 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   6718 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   6719 
   6720 	g4x_disable_trickle_feed(dev);
   6721 
   6722 	cpt_init_clock_gating(dev);
   6723 
   6724 	gen6_check_mch_setup(dev);
   6725 }
   6726 
   6727 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   6728 {
   6729 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   6730 
   6731 	/*
   6732 	 * WaVSThreadDispatchOverride:ivb,vlv
   6733 	 *
   6734 	 * This actually overrides the dispatch
   6735 	 * mode for all thread types.
   6736 	 */
   6737 	reg &= ~GEN7_FF_SCHED_MASK;
   6738 	reg |= GEN7_FF_TS_SCHED_HW;
   6739 	reg |= GEN7_FF_VS_SCHED_HW;
   6740 	reg |= GEN7_FF_DS_SCHED_HW;
   6741 
   6742 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   6743 }
   6744 
   6745 static void lpt_init_clock_gating(struct drm_device *dev)
   6746 {
   6747 	struct drm_i915_private *dev_priv = dev->dev_private;
   6748 
   6749 	/*
   6750 	 * TODO: this bit should only be enabled when really needed, then
   6751 	 * disabled when not needed anymore in order to save power.
   6752 	 */
   6753 	if (HAS_PCH_LPT_LP(dev))
   6754 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   6755 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   6756 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   6757 
   6758 	/* WADPOClockGatingDisable:hsw */
   6759 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
   6760 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
   6761 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   6762 }
   6763 
   6764 static void lpt_suspend_hw(struct drm_device *dev)
   6765 {
   6766 	struct drm_i915_private *dev_priv = dev->dev_private;
   6767 
   6768 	if (HAS_PCH_LPT_LP(dev)) {
   6769 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
   6770 
   6771 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
   6772 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
   6773 	}
   6774 }
   6775 
   6776 static void broadwell_init_clock_gating(struct drm_device *dev)
   6777 {
   6778 	struct drm_i915_private *dev_priv = dev->dev_private;
   6779 	enum pipe pipe;
   6780 	uint32_t misccpctl;
   6781 
   6782 	ilk_init_lp_watermarks(dev);
   6783 
   6784 	/* WaSwitchSolVfFArbitrationPriority:bdw */
   6785 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   6786 
   6787 	/* WaPsrDPAMaskVBlankInSRD:bdw */
   6788 	I915_WRITE(CHICKEN_PAR1_1,
   6789 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
   6790 
   6791 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
   6792 	for_each_pipe(dev_priv, pipe) {
   6793 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
   6794 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
   6795 			   BDW_DPRS_MASK_VBLANK_SRD);
   6796 	}
   6797 
   6798 	/* WaVSRefCountFullforceMissDisable:bdw */
   6799 	/* WaDSRefCountFullforceMissDisable:bdw */
   6800 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6801 		   I915_READ(GEN7_FF_THREAD_MODE) &
   6802 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   6803 
   6804 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   6805 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   6806 
   6807 	/* WaDisableSDEUnitClockGating:bdw */
   6808 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   6809 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   6810 
   6811 	/*
   6812 	 * WaProgramL3SqcReg1Default:bdw
   6813 	 * WaTempDisableDOPClkGating:bdw
   6814 	 */
   6815 	misccpctl = I915_READ(GEN7_MISCCPCTL);
   6816 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
   6817 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
   6818 	/*
   6819 	 * Wait at least 100 clocks before re-enabling clock gating. See
   6820 	 * the definition of L3SQCREG1 in BSpec.
   6821 	 */
   6822 	POSTING_READ(GEN8_L3SQCREG1);
   6823 	udelay(1);
   6824 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
   6825 
   6826 	/*
   6827 	 * WaGttCachingOffByDefault:bdw
   6828 	 * GTT cache may not work with big pages, so if those
   6829 	 * are ever enabled GTT cache may need to be disabled.
   6830 	 */
   6831 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
   6832 
   6833 	lpt_init_clock_gating(dev);
   6834 }
   6835 
   6836 static void haswell_init_clock_gating(struct drm_device *dev)
   6837 {
   6838 	struct drm_i915_private *dev_priv = dev->dev_private;
   6839 
   6840 	ilk_init_lp_watermarks(dev);
   6841 
   6842 	/* L3 caching of data atomics doesn't work -- disable it. */
   6843 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
   6844 	I915_WRITE(HSW_ROW_CHICKEN3,
   6845 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
   6846 
   6847 	/* This is required by WaCatErrorRejectionIssue:hsw */
   6848 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6849 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6850 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6851 
   6852 	/* WaVSRefCountFullforceMissDisable:hsw */
   6853 	I915_WRITE(GEN7_FF_THREAD_MODE,
   6854 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
   6855 
   6856 	/* WaDisable_RenderCache_OperationalFlush:hsw */
   6857 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6858 
   6859 	/* enable HiZ Raw Stall Optimization */
   6860 	I915_WRITE(CACHE_MODE_0_GEN7,
   6861 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   6862 
   6863 	/* WaDisable4x2SubspanOptimization:hsw */
   6864 	I915_WRITE(CACHE_MODE_1,
   6865 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6866 
   6867 	/*
   6868 	 * BSpec recommends 8x4 when MSAA is used,
   6869 	 * however in practice 16x4 seems fastest.
   6870 	 *
   6871 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6872 	 * disable bit, which we don't touch here, but it's good
   6873 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6874 	 */
   6875 	I915_WRITE(GEN7_GT_MODE,
   6876 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6877 
   6878 	/* WaSampleCChickenBitEnable:hsw */
   6879 	I915_WRITE(HALF_SLICE_CHICKEN3,
   6880 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
   6881 
   6882 	/* WaSwitchSolVfFArbitrationPriority:hsw */
   6883 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   6884 
   6885 	/* WaRsPkgCStateDisplayPMReq:hsw */
   6886 	I915_WRITE(CHICKEN_PAR1_1,
   6887 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
   6888 
   6889 	lpt_init_clock_gating(dev);
   6890 }
   6891 
   6892 static void ivybridge_init_clock_gating(struct drm_device *dev)
   6893 {
   6894 	struct drm_i915_private *dev_priv = dev->dev_private;
   6895 	uint32_t snpcr;
   6896 
   6897 	ilk_init_lp_watermarks(dev);
   6898 
   6899 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   6900 
   6901 	/* WaDisableEarlyCull:ivb */
   6902 	I915_WRITE(_3D_CHICKEN3,
   6903 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   6904 
   6905 	/* WaDisableBackToBackFlipFix:ivb */
   6906 	I915_WRITE(IVB_CHICKEN3,
   6907 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   6908 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   6909 
   6910 	/* WaDisablePSDDualDispatchEnable:ivb */
   6911 	if (IS_IVB_GT1(dev))
   6912 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   6913 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   6914 
   6915 	/* WaDisable_RenderCache_OperationalFlush:ivb */
   6916 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   6917 
   6918 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
   6919 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   6920 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   6921 
   6922 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
   6923 	I915_WRITE(GEN7_L3CNTLREG1,
   6924 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   6925 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   6926 		   GEN7_WA_L3_CHICKEN_MODE);
   6927 	if (IS_IVB_GT1(dev))
   6928 		I915_WRITE(GEN7_ROW_CHICKEN2,
   6929 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6930 	else {
   6931 		/* must write both registers */
   6932 		I915_WRITE(GEN7_ROW_CHICKEN2,
   6933 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6934 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   6935 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   6936 	}
   6937 
   6938 	/* WaForceL3Serialization:ivb */
   6939 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   6940 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   6941 
   6942 	/*
   6943 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   6944 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
   6945 	 */
   6946 	I915_WRITE(GEN6_UCGCTL2,
   6947 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   6948 
   6949 	/* This is required by WaCatErrorRejectionIssue:ivb */
   6950 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   6951 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   6952 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   6953 
   6954 	g4x_disable_trickle_feed(dev);
   6955 
   6956 	gen7_setup_fixed_func_scheduler(dev_priv);
   6957 
   6958 	if (0) { /* causes HiZ corruption on ivb:gt1 */
   6959 		/* enable HiZ Raw Stall Optimization */
   6960 		I915_WRITE(CACHE_MODE_0_GEN7,
   6961 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   6962 	}
   6963 
   6964 	/* WaDisable4x2SubspanOptimization:ivb */
   6965 	I915_WRITE(CACHE_MODE_1,
   6966 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   6967 
   6968 	/*
   6969 	 * BSpec recommends 8x4 when MSAA is used,
   6970 	 * however in practice 16x4 seems fastest.
   6971 	 *
   6972 	 * Note that PS/WM thread counts depend on the WIZ hashing
   6973 	 * disable bit, which we don't touch here, but it's good
   6974 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   6975 	 */
   6976 	I915_WRITE(GEN7_GT_MODE,
   6977 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   6978 
   6979 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   6980 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   6981 	snpcr |= GEN6_MBC_SNPCR_MED;
   6982 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   6983 
   6984 	if (!HAS_PCH_NOP(dev))
   6985 		cpt_init_clock_gating(dev);
   6986 
   6987 	gen6_check_mch_setup(dev);
   6988 }
   6989 
   6990 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
   6991 {
   6992         u32 val;
   6993 
   6994         /*
   6995         * On driver load, a pipe may be active and driving a DSI display.
   6996         * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
   6997         * (and never recovering) in this case. intel_dsi_post_disable() will
   6998         * clear it when we turn off the display.
   6999         */
   7000         val = I915_READ(DSPCLK_GATE_D);
   7001         val &= DPOUNIT_CLOCK_GATE_DISABLE;
   7002         val |= VRHUNIT_CLOCK_GATE_DISABLE;
   7003         I915_WRITE(DSPCLK_GATE_D, val);
   7004 
   7005 	/*
   7006 	 * Disable trickle feed and enable pnd deadline calculation
   7007 	 */
   7008 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
   7009 	I915_WRITE(CBR1_VLV, 0);
   7010 }
   7011 
   7012 static void valleyview_init_clock_gating(struct drm_device *dev)
   7013 {
   7014 	struct drm_i915_private *dev_priv = dev->dev_private;
   7015 
   7016 	vlv_init_display_clock_gating(dev_priv);
   7017 
   7018 	/* WaDisableEarlyCull:vlv */
   7019 	I915_WRITE(_3D_CHICKEN3,
   7020 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   7021 
   7022 	/* WaDisableBackToBackFlipFix:vlv */
   7023 	I915_WRITE(IVB_CHICKEN3,
   7024 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   7025 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   7026 
   7027 	/* WaPsdDispatchEnable:vlv */
   7028 	/* WaDisablePSDDualDispatchEnable:vlv */
   7029 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   7030 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
   7031 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   7032 
   7033 	/* WaDisable_RenderCache_OperationalFlush:vlv */
   7034 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7035 
   7036 	/* WaForceL3Serialization:vlv */
   7037 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   7038 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   7039 
   7040 	/* WaDisableDopClockGating:vlv */
   7041 	I915_WRITE(GEN7_ROW_CHICKEN2,
   7042 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   7043 
   7044 	/* This is required by WaCatErrorRejectionIssue:vlv */
   7045 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   7046 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   7047 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   7048 
   7049 	gen7_setup_fixed_func_scheduler(dev_priv);
   7050 
   7051 	/*
   7052 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   7053 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
   7054 	 */
   7055 	I915_WRITE(GEN6_UCGCTL2,
   7056 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   7057 
   7058 	/* WaDisableL3Bank2xClockGate:vlv
   7059 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
   7060 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
   7061 	I915_WRITE(GEN7_UCGCTL4,
   7062 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   7063 
   7064 	/*
   7065 	 * BSpec says this must be set, even though
   7066 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
   7067 	 */
   7068 	I915_WRITE(CACHE_MODE_1,
   7069 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   7070 
   7071 	/*
   7072 	 * BSpec recommends 8x4 when MSAA is used,
   7073 	 * however in practice 16x4 seems fastest.
   7074 	 *
   7075 	 * Note that PS/WM thread counts depend on the WIZ hashing
   7076 	 * disable bit, which we don't touch here, but it's good
   7077 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   7078 	 */
   7079 	I915_WRITE(GEN7_GT_MODE,
   7080 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
   7081 
   7082 	/*
   7083 	 * WaIncreaseL3CreditsForVLVB0:vlv
   7084 	 * This is the hardware default actually.
   7085 	 */
   7086 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
   7087 
   7088 	/*
   7089 	 * WaDisableVLVClockGating_VBIIssue:vlv
   7090 	 * Disable clock gating on th GCFG unit to prevent a delay
   7091 	 * in the reporting of vblank events.
   7092 	 */
   7093 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   7094 }
   7095 
   7096 static void cherryview_init_clock_gating(struct drm_device *dev)
   7097 {
   7098 	struct drm_i915_private *dev_priv = dev->dev_private;
   7099 
   7100 	vlv_init_display_clock_gating(dev_priv);
   7101 
   7102 	/* WaVSRefCountFullforceMissDisable:chv */
   7103 	/* WaDSRefCountFullforceMissDisable:chv */
   7104 	I915_WRITE(GEN7_FF_THREAD_MODE,
   7105 		   I915_READ(GEN7_FF_THREAD_MODE) &
   7106 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   7107 
   7108 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
   7109 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   7110 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   7111 
   7112 	/* WaDisableCSUnitClockGating:chv */
   7113 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
   7114 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   7115 
   7116 	/* WaDisableSDEUnitClockGating:chv */
   7117 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   7118 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   7119 
   7120 	/*
   7121 	 * GTT cache may not work with big pages, so if those
   7122 	 * are ever enabled GTT cache may need to be disabled.
   7123 	 */
   7124 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
   7125 }
   7126 
   7127 static void g4x_init_clock_gating(struct drm_device *dev)
   7128 {
   7129 	struct drm_i915_private *dev_priv = dev->dev_private;
   7130 	uint32_t dspclk_gate;
   7131 
   7132 	I915_WRITE(RENCLK_GATE_D1, 0);
   7133 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   7134 		   GS_UNIT_CLOCK_GATE_DISABLE |
   7135 		   CL_UNIT_CLOCK_GATE_DISABLE);
   7136 	I915_WRITE(RAMCLK_GATE_D, 0);
   7137 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   7138 		OVRUNIT_CLOCK_GATE_DISABLE |
   7139 		OVCUNIT_CLOCK_GATE_DISABLE;
   7140 	if (IS_GM45(dev))
   7141 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   7142 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   7143 
   7144 	/* WaDisableRenderCachePipelinedFlush */
   7145 	I915_WRITE(CACHE_MODE_0,
   7146 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   7147 
   7148 	/* WaDisable_RenderCache_OperationalFlush:g4x */
   7149 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7150 
   7151 	g4x_disable_trickle_feed(dev);
   7152 }
   7153 
   7154 static void crestline_init_clock_gating(struct drm_device *dev)
   7155 {
   7156 	struct drm_i915_private *dev_priv = dev->dev_private;
   7157 
   7158 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   7159 	I915_WRITE(RENCLK_GATE_D2, 0);
   7160 	I915_WRITE(DSPCLK_GATE_D, 0);
   7161 	I915_WRITE(RAMCLK_GATE_D, 0);
   7162 	I915_WRITE16(DEUC, 0);
   7163 	I915_WRITE(MI_ARB_STATE,
   7164 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7165 
   7166 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
   7167 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7168 }
   7169 
   7170 static void broadwater_init_clock_gating(struct drm_device *dev)
   7171 {
   7172 	struct drm_i915_private *dev_priv = dev->dev_private;
   7173 
   7174 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   7175 		   I965_RCC_CLOCK_GATE_DISABLE |
   7176 		   I965_RCPB_CLOCK_GATE_DISABLE |
   7177 		   I965_ISC_CLOCK_GATE_DISABLE |
   7178 		   I965_FBC_CLOCK_GATE_DISABLE);
   7179 	I915_WRITE(RENCLK_GATE_D2, 0);
   7180 	I915_WRITE(MI_ARB_STATE,
   7181 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7182 
   7183 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
   7184 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
   7185 }
   7186 
   7187 static void gen3_init_clock_gating(struct drm_device *dev)
   7188 {
   7189 	struct drm_i915_private *dev_priv = dev->dev_private;
   7190 	u32 dstate = I915_READ(D_STATE);
   7191 
   7192 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   7193 		DSTATE_DOT_CLOCK_GATING;
   7194 	I915_WRITE(D_STATE, dstate);
   7195 
   7196 	if (IS_PINEVIEW(dev))
   7197 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   7198 
   7199 	/* IIR "flip pending" means done if this bit is set */
   7200 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   7201 
   7202 	/* interrupts should cause a wake up from C3 */
   7203 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
   7204 
   7205 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   7206 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   7207 
   7208 	I915_WRITE(MI_ARB_STATE,
   7209 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7210 }
   7211 
   7212 static void i85x_init_clock_gating(struct drm_device *dev)
   7213 {
   7214 	struct drm_i915_private *dev_priv = dev->dev_private;
   7215 
   7216 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   7217 
   7218 	/* interrupts should cause a wake up from C3 */
   7219 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
   7220 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
   7221 
   7222 	I915_WRITE(MEM_MODE,
   7223 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
   7224 }
   7225 
   7226 static void i830_init_clock_gating(struct drm_device *dev)
   7227 {
   7228 	struct drm_i915_private *dev_priv = dev->dev_private;
   7229 
   7230 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   7231 
   7232 	I915_WRITE(MEM_MODE,
   7233 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
   7234 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
   7235 }
   7236 
   7237 void intel_init_clock_gating(struct drm_device *dev)
   7238 {
   7239 	struct drm_i915_private *dev_priv = dev->dev_private;
   7240 
   7241 	if (dev_priv->display.init_clock_gating)
   7242 		dev_priv->display.init_clock_gating(dev);
   7243 }
   7244 
   7245 void intel_suspend_hw(struct drm_device *dev)
   7246 {
   7247 	if (HAS_PCH_LPT(dev))
   7248 		lpt_suspend_hw(dev);
   7249 }
   7250 
   7251 /* Set up chip specific power management-related functions */
   7252 void intel_init_pm(struct drm_device *dev)
   7253 {
   7254 	struct drm_i915_private *dev_priv = dev->dev_private;
   7255 
   7256 	intel_fbc_init(dev_priv);
   7257 
   7258 	/* For cxsr */
   7259 	if (IS_PINEVIEW(dev))
   7260 		i915_pineview_get_mem_freq(dev);
   7261 	else if (IS_GEN5(dev))
   7262 		i915_ironlake_get_mem_freq(dev);
   7263 
   7264 	/* For FIFO watermark updates */
   7265 	if (INTEL_INFO(dev)->gen >= 9) {
   7266 		skl_setup_wm_latency(dev);
   7267 
   7268 		if (IS_BROXTON(dev))
   7269 			dev_priv->display.init_clock_gating =
   7270 				bxt_init_clock_gating;
   7271 		dev_priv->display.update_wm = skl_update_wm;
   7272 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
   7273 	} else if (HAS_PCH_SPLIT(dev)) {
   7274 		ilk_setup_wm_latency(dev);
   7275 
   7276 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
   7277 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
   7278 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
   7279 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
   7280 			dev_priv->display.update_wm = ilk_update_wm;
   7281 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
   7282 		} else {
   7283 			DRM_DEBUG_KMS("Failed to read display plane latency. "
   7284 				      "Disable CxSR\n");
   7285 		}
   7286 
   7287 		if (IS_GEN5(dev))
   7288 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   7289 		else if (IS_GEN6(dev))
   7290 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   7291 		else if (IS_IVYBRIDGE(dev))
   7292 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   7293 		else if (IS_HASWELL(dev))
   7294 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   7295 		else if (INTEL_INFO(dev)->gen == 8)
   7296 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
   7297 	} else if (IS_CHERRYVIEW(dev)) {
   7298 		vlv_setup_wm_latency(dev);
   7299 
   7300 		dev_priv->display.update_wm = vlv_update_wm;
   7301 		dev_priv->display.init_clock_gating =
   7302 			cherryview_init_clock_gating;
   7303 	} else if (IS_VALLEYVIEW(dev)) {
   7304 		vlv_setup_wm_latency(dev);
   7305 
   7306 		dev_priv->display.update_wm = vlv_update_wm;
   7307 		dev_priv->display.init_clock_gating =
   7308 			valleyview_init_clock_gating;
   7309 	} else if (IS_PINEVIEW(dev)) {
   7310 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   7311 					    dev_priv->is_ddr3,
   7312 					    dev_priv->fsb_freq,
   7313 					    dev_priv->mem_freq)) {
   7314 			DRM_INFO("failed to find known CxSR latency "
   7315 				 "(found ddr%s fsb freq %d, mem freq %d), "
   7316 				 "disabling CxSR\n",
   7317 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   7318 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   7319 			/* Disable CxSR and never update its watermark again */
   7320 			intel_set_memory_cxsr(dev_priv, false);
   7321 			dev_priv->display.update_wm = NULL;
   7322 		} else
   7323 			dev_priv->display.update_wm = pineview_update_wm;
   7324 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   7325 	} else if (IS_G4X(dev)) {
   7326 		dev_priv->display.update_wm = g4x_update_wm;
   7327 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   7328 	} else if (IS_GEN4(dev)) {
   7329 		dev_priv->display.update_wm = i965_update_wm;
   7330 		if (IS_CRESTLINE(dev))
   7331 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   7332 		else if (IS_BROADWATER(dev))
   7333 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   7334 	} else if (IS_GEN3(dev)) {
   7335 		dev_priv->display.update_wm = i9xx_update_wm;
   7336 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   7337 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   7338 	} else if (IS_GEN2(dev)) {
   7339 		if (INTEL_INFO(dev)->num_pipes == 1) {
   7340 			dev_priv->display.update_wm = i845_update_wm;
   7341 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   7342 		} else {
   7343 			dev_priv->display.update_wm = i9xx_update_wm;
   7344 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   7345 		}
   7346 
   7347 		if (IS_I85X(dev) || IS_I865G(dev))
   7348 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   7349 		else
   7350 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
   7351 	} else {
   7352 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
   7353 	}
   7354 }
   7355 
   7356 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
   7357 {
   7358 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   7359 
   7360 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   7361 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   7362 		return -EAGAIN;
   7363 	}
   7364 
   7365 	I915_WRITE(GEN6_PCODE_DATA, *val);
   7366 	I915_WRITE(GEN6_PCODE_DATA1, 0);
   7367 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   7368 
   7369 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   7370 		     500)) {
   7371 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   7372 		return -ETIMEDOUT;
   7373 	}
   7374 
   7375 	*val = I915_READ(GEN6_PCODE_DATA);
   7376 	I915_WRITE(GEN6_PCODE_DATA, 0);
   7377 
   7378 	return 0;
   7379 }
   7380 
   7381 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
   7382 {
   7383 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   7384 
   7385 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   7386 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   7387 		return -EAGAIN;
   7388 	}
   7389 
   7390 	I915_WRITE(GEN6_PCODE_DATA, val);
   7391 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   7392 
   7393 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   7394 		     500)) {
   7395 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   7396 		return -ETIMEDOUT;
   7397 	}
   7398 
   7399 	I915_WRITE(GEN6_PCODE_DATA, 0);
   7400 
   7401 	return 0;
   7402 }
   7403 
   7404 static int vlv_gpu_freq_div(unsigned int czclk_freq)
   7405 {
   7406 	switch (czclk_freq) {
   7407 	case 200:
   7408 		return 10;
   7409 	case 267:
   7410 		return 12;
   7411 	case 320:
   7412 	case 333:
   7413 		return 16;
   7414 	case 400:
   7415 		return 20;
   7416 	default:
   7417 		return -1;
   7418 	}
   7419 }
   7420 
   7421 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7422 {
   7423 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7424 
   7425 	div = vlv_gpu_freq_div(czclk_freq);
   7426 	if (div < 0)
   7427 		return div;
   7428 
   7429 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
   7430 }
   7431 
   7432 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7433 {
   7434 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7435 
   7436 	mul = vlv_gpu_freq_div(czclk_freq);
   7437 	if (mul < 0)
   7438 		return mul;
   7439 
   7440 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
   7441 }
   7442 
   7443 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7444 {
   7445 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7446 
   7447 	div = vlv_gpu_freq_div(czclk_freq) / 2;
   7448 	if (div < 0)
   7449 		return div;
   7450 
   7451 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
   7452 }
   7453 
   7454 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7455 {
   7456 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
   7457 
   7458 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
   7459 	if (mul < 0)
   7460 		return mul;
   7461 
   7462 	/* CHV needs even values */
   7463 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
   7464 }
   7465 
   7466 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
   7467 {
   7468 	if (IS_GEN9(dev_priv->dev))
   7469 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
   7470 					 GEN9_FREQ_SCALER);
   7471 	else if (IS_CHERRYVIEW(dev_priv->dev))
   7472 		return chv_gpu_freq(dev_priv, val);
   7473 	else if (IS_VALLEYVIEW(dev_priv->dev))
   7474 		return byt_gpu_freq(dev_priv, val);
   7475 	else
   7476 		return val * GT_FREQUENCY_MULTIPLIER;
   7477 }
   7478 
   7479 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
   7480 {
   7481 	if (IS_GEN9(dev_priv->dev))
   7482 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
   7483 					 GT_FREQUENCY_MULTIPLIER);
   7484 	else if (IS_CHERRYVIEW(dev_priv->dev))
   7485 		return chv_freq_opcode(dev_priv, val);
   7486 	else if (IS_VALLEYVIEW(dev_priv->dev))
   7487 		return byt_freq_opcode(dev_priv, val);
   7488 	else
   7489 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
   7490 }
   7491 
   7492 struct request_boost {
   7493 	struct work_struct work;
   7494 	struct drm_i915_gem_request *req;
   7495 };
   7496 
   7497 static void __intel_rps_boost_work(struct work_struct *work)
   7498 {
   7499 	struct request_boost *boost = container_of(work, struct request_boost, work);
   7500 	struct drm_i915_gem_request *req = boost->req;
   7501 
   7502 	if (!i915_gem_request_completed(req, true))
   7503 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
   7504 			       req->emitted_jiffies);
   7505 
   7506 	i915_gem_request_unreference__unlocked(req);
   7507 	kfree(boost);
   7508 }
   7509 
   7510 void intel_queue_rps_boost_for_request(struct drm_device *dev,
   7511 				       struct drm_i915_gem_request *req)
   7512 {
   7513 	struct request_boost *boost;
   7514 
   7515 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
   7516 		return;
   7517 
   7518 	if (i915_gem_request_completed(req, true))
   7519 		return;
   7520 
   7521 	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
   7522 	if (boost == NULL)
   7523 		return;
   7524 
   7525 	i915_gem_request_reference(req);
   7526 	boost->req = req;
   7527 
   7528 	INIT_WORK(&boost->work, __intel_rps_boost_work);
   7529 	queue_work(to_i915(dev)->wq, &boost->work);
   7530 }
   7531 
   7532 void intel_pm_setup(struct drm_device *dev)
   7533 {
   7534 	struct drm_i915_private *dev_priv = dev->dev_private;
   7535 
   7536 	mutex_init(&dev_priv->rps.hw_lock);
   7537 	spin_lock_init(&dev_priv->rps.client_lock);
   7538 
   7539 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   7540 			  intel_gen6_powersave_work);
   7541 	INIT_LIST_HEAD(&dev_priv->rps.clients);
   7542 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
   7543 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
   7544 
   7545 	dev_priv->pm.suspended = false;
   7546 }
   7547