intel_pm.c revision 1.3 1 /*
2 * Copyright 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov (at) intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #ifndef __NetBSD__
32 #include "../../../platform/x86/intel_ips.h"
33 #endif
34 #include <linux/module.h>
35 #include <linux/kgdb.h>
36 #include <linux/log2.h>
37 #include <linux/math64.h>
38 #include <linux/time.h>
39 #include <asm/param.h>
40 #include <linux/vgaarb.h>
41 #include <drm/i915_powerwell.h>
42 #include <linux/pm_runtime.h>
43
44 /**
45 * RC6 is a special power stage which allows the GPU to enter an very
46 * low-voltage mode when idle, using down to 0V while at this stage. This
47 * stage is entered automatically when the GPU is idle when RC6 support is
48 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
49 *
50 * There are different RC6 modes available in Intel GPU, which differentiate
51 * among each other with the latency required to enter and leave RC6 and
52 * voltage consumed by the GPU in different states.
53 *
54 * The combination of the following flags define which states GPU is allowed
55 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
56 * RC6pp is deepest RC6. Their support by hardware varies according to the
57 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
58 * which brings the most power savings; deeper states save more power, but
59 * require higher latency to switch to and wake up.
60 */
61 #define INTEL_RC6_ENABLE (1<<0)
62 #define INTEL_RC6p_ENABLE (1<<1)
63 #define INTEL_RC6pp_ENABLE (1<<2)
64
65 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
66 * framebuffer contents in-memory, aiming at reducing the required bandwidth
67 * during in-memory transfers and, therefore, reduce the power packet.
68 *
69 * The benefits of FBC are mostly visible with solid backgrounds and
70 * variation-less patterns.
71 *
72 * FBC-related functionality can be enabled by the means of the
73 * i915.i915_enable_fbc parameter
74 */
75
76 static void i8xx_disable_fbc(struct drm_device *dev)
77 {
78 struct drm_i915_private *dev_priv = dev->dev_private;
79 u32 fbc_ctl;
80
81 /* Disable compression */
82 fbc_ctl = I915_READ(FBC_CONTROL);
83 if ((fbc_ctl & FBC_CTL_EN) == 0)
84 return;
85
86 fbc_ctl &= ~FBC_CTL_EN;
87 I915_WRITE(FBC_CONTROL, fbc_ctl);
88
89 /* Wait for compressing bit to clear */
90 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
91 DRM_DEBUG_KMS("FBC idle timed out\n");
92 return;
93 }
94
95 DRM_DEBUG_KMS("disabled FBC\n");
96 }
97
98 static void i8xx_enable_fbc(struct drm_crtc *crtc)
99 {
100 struct drm_device *dev = crtc->dev;
101 struct drm_i915_private *dev_priv = dev->dev_private;
102 struct drm_framebuffer *fb = crtc->primary->fb;
103 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
104 struct drm_i915_gem_object *obj = intel_fb->obj;
105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
106 int cfb_pitch;
107 int i;
108 u32 fbc_ctl;
109
110 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
111 if (fb->pitches[0] < cfb_pitch)
112 cfb_pitch = fb->pitches[0];
113
114 /* FBC_CTL wants 32B or 64B units */
115 if (IS_GEN2(dev))
116 cfb_pitch = (cfb_pitch / 32) - 1;
117 else
118 cfb_pitch = (cfb_pitch / 64) - 1;
119
120 /* Clear old tags */
121 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
122 I915_WRITE(FBC_TAG + (i * 4), 0);
123
124 if (IS_GEN4(dev)) {
125 u32 fbc_ctl2;
126
127 /* Set it up... */
128 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
129 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
130 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
131 I915_WRITE(FBC_FENCE_OFF, crtc->y);
132 }
133
134 /* enable it... */
135 fbc_ctl = I915_READ(FBC_CONTROL);
136 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
137 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
138 if (IS_I945GM(dev))
139 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
140 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
141 fbc_ctl |= obj->fence_reg;
142 I915_WRITE(FBC_CONTROL, fbc_ctl);
143
144 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
145 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
146 }
147
148 static bool i8xx_fbc_enabled(struct drm_device *dev)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151
152 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
153 }
154
155 static void g4x_enable_fbc(struct drm_crtc *crtc)
156 {
157 struct drm_device *dev = crtc->dev;
158 struct drm_i915_private *dev_priv = dev->dev_private;
159 struct drm_framebuffer *fb = crtc->primary->fb;
160 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
161 struct drm_i915_gem_object *obj = intel_fb->obj;
162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
163 u32 dpfc_ctl;
164
165 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
166 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
167 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
168 else
169 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
170 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
171
172 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
173
174 /* enable it... */
175 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
176
177 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
178 }
179
180 static void g4x_disable_fbc(struct drm_device *dev)
181 {
182 struct drm_i915_private *dev_priv = dev->dev_private;
183 u32 dpfc_ctl;
184
185 /* Disable compression */
186 dpfc_ctl = I915_READ(DPFC_CONTROL);
187 if (dpfc_ctl & DPFC_CTL_EN) {
188 dpfc_ctl &= ~DPFC_CTL_EN;
189 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
190
191 DRM_DEBUG_KMS("disabled FBC\n");
192 }
193 }
194
195 static bool g4x_fbc_enabled(struct drm_device *dev)
196 {
197 struct drm_i915_private *dev_priv = dev->dev_private;
198
199 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
200 }
201
202 static void sandybridge_blit_fbc_update(struct drm_device *dev)
203 {
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 u32 blt_ecoskpd;
206
207 /* Make sure blitter notifies FBC of writes */
208
209 /* Blitter is part of Media powerwell on VLV. No impact of
210 * his param in other platforms for now */
211 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
212
213 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
214 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
215 GEN6_BLITTER_LOCK_SHIFT;
216 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
217 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
218 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
219 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
220 GEN6_BLITTER_LOCK_SHIFT);
221 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
222 POSTING_READ(GEN6_BLITTER_ECOSKPD);
223
224 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
225 }
226
227 static void ironlake_enable_fbc(struct drm_crtc *crtc)
228 {
229 struct drm_device *dev = crtc->dev;
230 struct drm_i915_private *dev_priv = dev->dev_private;
231 struct drm_framebuffer *fb = crtc->primary->fb;
232 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
233 struct drm_i915_gem_object *obj = intel_fb->obj;
234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
235 u32 dpfc_ctl;
236
237 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
238 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
239 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
240 else
241 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
242 dpfc_ctl |= DPFC_CTL_FENCE_EN;
243 if (IS_GEN5(dev))
244 dpfc_ctl |= obj->fence_reg;
245
246 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
247 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
248 /* enable it... */
249 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
250
251 if (IS_GEN6(dev)) {
252 I915_WRITE(SNB_DPFC_CTL_SA,
253 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
254 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
255 sandybridge_blit_fbc_update(dev);
256 }
257
258 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
259 }
260
261 static void ironlake_disable_fbc(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 u32 dpfc_ctl;
265
266 /* Disable compression */
267 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
268 if (dpfc_ctl & DPFC_CTL_EN) {
269 dpfc_ctl &= ~DPFC_CTL_EN;
270 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
271
272 DRM_DEBUG_KMS("disabled FBC\n");
273 }
274 }
275
276 static bool ironlake_fbc_enabled(struct drm_device *dev)
277 {
278 struct drm_i915_private *dev_priv = dev->dev_private;
279
280 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
281 }
282
283 static void gen7_enable_fbc(struct drm_crtc *crtc)
284 {
285 struct drm_device *dev = crtc->dev;
286 struct drm_i915_private *dev_priv = dev->dev_private;
287 struct drm_framebuffer *fb = crtc->primary->fb;
288 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
289 struct drm_i915_gem_object *obj = intel_fb->obj;
290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291 u32 dpfc_ctl;
292
293 dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
296 else
297 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
298 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
299
300 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
301
302 if (IS_IVYBRIDGE(dev)) {
303 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
304 I915_WRITE(ILK_DISPLAY_CHICKEN1,
305 I915_READ(ILK_DISPLAY_CHICKEN1) |
306 ILK_FBCQ_DIS);
307 } else {
308 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
309 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
310 I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
311 HSW_FBCQ_DIS);
312 }
313
314 I915_WRITE(SNB_DPFC_CTL_SA,
315 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
316 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
317
318 sandybridge_blit_fbc_update(dev);
319
320 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
321 }
322
323 bool intel_fbc_enabled(struct drm_device *dev)
324 {
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 if (!dev_priv->display.fbc_enabled)
328 return false;
329
330 return dev_priv->display.fbc_enabled(dev);
331 }
332
333 static void intel_fbc_work_fn(struct work_struct *__work)
334 {
335 struct intel_fbc_work *work =
336 container_of(to_delayed_work(__work),
337 struct intel_fbc_work, work);
338 struct drm_device *dev = work->crtc->dev;
339 struct drm_i915_private *dev_priv = dev->dev_private;
340
341 mutex_lock(&dev->struct_mutex);
342 if (work == dev_priv->fbc.fbc_work) {
343 /* Double check that we haven't switched fb without cancelling
344 * the prior work.
345 */
346 if (work->crtc->primary->fb == work->fb) {
347 dev_priv->display.enable_fbc(work->crtc);
348
349 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
350 dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
351 dev_priv->fbc.y = work->crtc->y;
352 }
353
354 dev_priv->fbc.fbc_work = NULL;
355 }
356 mutex_unlock(&dev->struct_mutex);
357
358 kfree(work);
359 }
360
361 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
362 {
363 if (dev_priv->fbc.fbc_work == NULL)
364 return;
365
366 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
367
368 /* Synchronisation is provided by struct_mutex and checking of
369 * dev_priv->fbc.fbc_work, so we can perform the cancellation
370 * entirely asynchronously.
371 */
372 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
373 /* tasklet was killed before being run, clean up */
374 kfree(dev_priv->fbc.fbc_work);
375
376 /* Mark the work as no longer wanted so that if it does
377 * wake-up (because the work was already running and waiting
378 * for our mutex), it will discover that is no longer
379 * necessary to run.
380 */
381 dev_priv->fbc.fbc_work = NULL;
382 }
383
384 static void intel_enable_fbc(struct drm_crtc *crtc)
385 {
386 struct intel_fbc_work *work;
387 struct drm_device *dev = crtc->dev;
388 struct drm_i915_private *dev_priv = dev->dev_private;
389
390 if (!dev_priv->display.enable_fbc)
391 return;
392
393 intel_cancel_fbc_work(dev_priv);
394
395 work = kzalloc(sizeof(*work), GFP_KERNEL);
396 if (work == NULL) {
397 DRM_ERROR("Failed to allocate FBC work structure\n");
398 dev_priv->display.enable_fbc(crtc);
399 return;
400 }
401
402 work->crtc = crtc;
403 work->fb = crtc->primary->fb;
404 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
405
406 dev_priv->fbc.fbc_work = work;
407
408 /* Delay the actual enabling to let pageflipping cease and the
409 * display to settle before starting the compression. Note that
410 * this delay also serves a second purpose: it allows for a
411 * vblank to pass after disabling the FBC before we attempt
412 * to modify the control registers.
413 *
414 * A more complicated solution would involve tracking vblanks
415 * following the termination of the page-flipping sequence
416 * and indeed performing the enable as a co-routine and not
417 * waiting synchronously upon the vblank.
418 *
419 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
420 */
421 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
422 }
423
424 void intel_disable_fbc(struct drm_device *dev)
425 {
426 struct drm_i915_private *dev_priv = dev->dev_private;
427
428 intel_cancel_fbc_work(dev_priv);
429
430 if (!dev_priv->display.disable_fbc)
431 return;
432
433 dev_priv->display.disable_fbc(dev);
434 dev_priv->fbc.plane = -1;
435 }
436
437 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
438 enum no_fbc_reason reason)
439 {
440 if (dev_priv->fbc.no_fbc_reason == reason)
441 return false;
442
443 dev_priv->fbc.no_fbc_reason = reason;
444 return true;
445 }
446
447 /**
448 * intel_update_fbc - enable/disable FBC as needed
449 * @dev: the drm_device
450 *
451 * Set up the framebuffer compression hardware at mode set time. We
452 * enable it if possible:
453 * - plane A only (on pre-965)
454 * - no pixel mulitply/line duplication
455 * - no alpha buffer discard
456 * - no dual wide
457 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
458 *
459 * We can't assume that any compression will take place (worst case),
460 * so the compressed buffer has to be the same size as the uncompressed
461 * one. It also must reside (along with the line length buffer) in
462 * stolen memory.
463 *
464 * We need to enable/disable FBC on a global basis.
465 */
466 void intel_update_fbc(struct drm_device *dev)
467 {
468 struct drm_i915_private *dev_priv = dev->dev_private;
469 struct drm_crtc *crtc = NULL, *tmp_crtc;
470 struct intel_crtc *intel_crtc;
471 struct drm_framebuffer *fb;
472 struct intel_framebuffer *intel_fb;
473 struct drm_i915_gem_object *obj;
474 const struct drm_display_mode *adjusted_mode;
475 unsigned int max_width, max_height;
476
477 if (!HAS_FBC(dev)) {
478 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
479 return;
480 }
481
482 if (!i915.powersave) {
483 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
484 DRM_DEBUG_KMS("fbc disabled per module param\n");
485 return;
486 }
487
488 /*
489 * If FBC is already on, we just have to verify that we can
490 * keep it that way...
491 * Need to disable if:
492 * - more than one pipe is active
493 * - changing FBC params (stride, fence, mode)
494 * - new fb is too large to fit in compressed buffer
495 * - going to an unsupported config (interlace, pixel multiply, etc.)
496 */
497 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
498 if (intel_crtc_active(tmp_crtc) &&
499 to_intel_crtc(tmp_crtc)->primary_enabled) {
500 if (crtc) {
501 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
502 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
503 goto out_disable;
504 }
505 crtc = tmp_crtc;
506 }
507 }
508
509 if (!crtc || crtc->primary->fb == NULL) {
510 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
511 DRM_DEBUG_KMS("no output, disabling\n");
512 goto out_disable;
513 }
514
515 intel_crtc = to_intel_crtc(crtc);
516 fb = crtc->primary->fb;
517 intel_fb = to_intel_framebuffer(fb);
518 obj = intel_fb->obj;
519 adjusted_mode = &intel_crtc->config.adjusted_mode;
520
521 if (i915.enable_fbc < 0 &&
522 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
523 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
524 DRM_DEBUG_KMS("disabled per chip default\n");
525 goto out_disable;
526 }
527 if (!i915.enable_fbc) {
528 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
529 DRM_DEBUG_KMS("fbc disabled per module param\n");
530 goto out_disable;
531 }
532 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
533 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
534 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
535 DRM_DEBUG_KMS("mode incompatible with compression, "
536 "disabling\n");
537 goto out_disable;
538 }
539
540 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
541 max_width = 4096;
542 max_height = 2048;
543 } else {
544 max_width = 2048;
545 max_height = 1536;
546 }
547 if (intel_crtc->config.pipe_src_w > max_width ||
548 intel_crtc->config.pipe_src_h > max_height) {
549 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
550 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
551 goto out_disable;
552 }
553 if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
554 intel_crtc->plane != PLANE_A) {
555 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
556 DRM_DEBUG_KMS("plane not A, disabling compression\n");
557 goto out_disable;
558 }
559
560 /* The use of a CPU fence is mandatory in order to detect writes
561 * by the CPU to the scanout and trigger updates to the FBC.
562 */
563 if (obj->tiling_mode != I915_TILING_X ||
564 obj->fence_reg == I915_FENCE_REG_NONE) {
565 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
566 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
567 goto out_disable;
568 }
569
570 /* If the kernel debugger is active, always disable compression */
571 if (in_dbg_master())
572 goto out_disable;
573
574 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
575 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
576 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
577 goto out_disable;
578 }
579
580 /* If the scanout has not changed, don't modify the FBC settings.
581 * Note that we make the fundamental assumption that the fb->obj
582 * cannot be unpinned (and have its GTT offset and fence revoked)
583 * without first being decoupled from the scanout and FBC disabled.
584 */
585 if (dev_priv->fbc.plane == intel_crtc->plane &&
586 dev_priv->fbc.fb_id == fb->base.id &&
587 dev_priv->fbc.y == crtc->y)
588 return;
589
590 if (intel_fbc_enabled(dev)) {
591 /* We update FBC along two paths, after changing fb/crtc
592 * configuration (modeswitching) and after page-flipping
593 * finishes. For the latter, we know that not only did
594 * we disable the FBC at the start of the page-flip
595 * sequence, but also more than one vblank has passed.
596 *
597 * For the former case of modeswitching, it is possible
598 * to switch between two FBC valid configurations
599 * instantaneously so we do need to disable the FBC
600 * before we can modify its control registers. We also
601 * have to wait for the next vblank for that to take
602 * effect. However, since we delay enabling FBC we can
603 * assume that a vblank has passed since disabling and
604 * that we can safely alter the registers in the deferred
605 * callback.
606 *
607 * In the scenario that we go from a valid to invalid
608 * and then back to valid FBC configuration we have
609 * no strict enforcement that a vblank occurred since
610 * disabling the FBC. However, along all current pipe
611 * disabling paths we do need to wait for a vblank at
612 * some point. And we wait before enabling FBC anyway.
613 */
614 DRM_DEBUG_KMS("disabling active FBC for update\n");
615 intel_disable_fbc(dev);
616 }
617
618 intel_enable_fbc(crtc);
619 dev_priv->fbc.no_fbc_reason = FBC_OK;
620 return;
621
622 out_disable:
623 /* Multiple disables should be harmless */
624 if (intel_fbc_enabled(dev)) {
625 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
626 intel_disable_fbc(dev);
627 }
628 i915_gem_stolen_cleanup_compression(dev);
629 }
630
631 static void i915_pineview_get_mem_freq(struct drm_device *dev)
632 {
633 struct drm_i915_private *dev_priv = dev->dev_private;
634 u32 tmp;
635
636 tmp = I915_READ(CLKCFG);
637
638 switch (tmp & CLKCFG_FSB_MASK) {
639 case CLKCFG_FSB_533:
640 dev_priv->fsb_freq = 533; /* 133*4 */
641 break;
642 case CLKCFG_FSB_800:
643 dev_priv->fsb_freq = 800; /* 200*4 */
644 break;
645 case CLKCFG_FSB_667:
646 dev_priv->fsb_freq = 667; /* 167*4 */
647 break;
648 case CLKCFG_FSB_400:
649 dev_priv->fsb_freq = 400; /* 100*4 */
650 break;
651 }
652
653 switch (tmp & CLKCFG_MEM_MASK) {
654 case CLKCFG_MEM_533:
655 dev_priv->mem_freq = 533;
656 break;
657 case CLKCFG_MEM_667:
658 dev_priv->mem_freq = 667;
659 break;
660 case CLKCFG_MEM_800:
661 dev_priv->mem_freq = 800;
662 break;
663 }
664
665 /* detect pineview DDR3 setting */
666 tmp = I915_READ(CSHRDDR3CTL);
667 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
668 }
669
670 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
671 {
672 struct drm_i915_private *dev_priv = dev->dev_private;
673 u16 ddrpll, csipll;
674
675 ddrpll = I915_READ16(DDRMPLL1);
676 csipll = I915_READ16(CSIPLL0);
677
678 switch (ddrpll & 0xff) {
679 case 0xc:
680 dev_priv->mem_freq = 800;
681 break;
682 case 0x10:
683 dev_priv->mem_freq = 1066;
684 break;
685 case 0x14:
686 dev_priv->mem_freq = 1333;
687 break;
688 case 0x18:
689 dev_priv->mem_freq = 1600;
690 break;
691 default:
692 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
693 ddrpll & 0xff);
694 dev_priv->mem_freq = 0;
695 break;
696 }
697
698 dev_priv->ips.r_t = dev_priv->mem_freq;
699
700 switch (csipll & 0x3ff) {
701 case 0x00c:
702 dev_priv->fsb_freq = 3200;
703 break;
704 case 0x00e:
705 dev_priv->fsb_freq = 3733;
706 break;
707 case 0x010:
708 dev_priv->fsb_freq = 4266;
709 break;
710 case 0x012:
711 dev_priv->fsb_freq = 4800;
712 break;
713 case 0x014:
714 dev_priv->fsb_freq = 5333;
715 break;
716 case 0x016:
717 dev_priv->fsb_freq = 5866;
718 break;
719 case 0x018:
720 dev_priv->fsb_freq = 6400;
721 break;
722 default:
723 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
724 csipll & 0x3ff);
725 dev_priv->fsb_freq = 0;
726 break;
727 }
728
729 if (dev_priv->fsb_freq == 3200) {
730 dev_priv->ips.c_m = 0;
731 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
732 dev_priv->ips.c_m = 1;
733 } else {
734 dev_priv->ips.c_m = 2;
735 }
736 }
737
738 static const struct cxsr_latency cxsr_latency_table[] = {
739 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
740 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
741 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
742 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
743 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
744
745 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
746 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
747 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
748 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
749 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
750
751 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
752 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
753 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
754 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
755 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
756
757 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
758 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
759 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
760 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
761 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
762
763 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
764 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
765 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
766 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
767 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
768
769 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
770 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
771 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
772 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
773 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
774 };
775
776 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
777 int is_ddr3,
778 int fsb,
779 int mem)
780 {
781 const struct cxsr_latency *latency;
782 int i;
783
784 if (fsb == 0 || mem == 0)
785 return NULL;
786
787 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
788 latency = &cxsr_latency_table[i];
789 if (is_desktop == latency->is_desktop &&
790 is_ddr3 == latency->is_ddr3 &&
791 fsb == latency->fsb_freq && mem == latency->mem_freq)
792 return latency;
793 }
794
795 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
796
797 return NULL;
798 }
799
800 static void pineview_disable_cxsr(struct drm_device *dev)
801 {
802 struct drm_i915_private *dev_priv = dev->dev_private;
803
804 /* deactivate cxsr */
805 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
806 }
807
808 /*
809 * Latency for FIFO fetches is dependent on several factors:
810 * - memory configuration (speed, channels)
811 * - chipset
812 * - current MCH state
813 * It can be fairly high in some situations, so here we assume a fairly
814 * pessimal value. It's a tradeoff between extra memory fetches (if we
815 * set this value too high, the FIFO will fetch frequently to stay full)
816 * and power consumption (set it too low to save power and we might see
817 * FIFO underruns and display "flicker").
818 *
819 * A value of 5us seems to be a good balance; safe for very low end
820 * platforms but not overly aggressive on lower latency configs.
821 */
822 static const int latency_ns = 5000;
823
824 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
825 {
826 struct drm_i915_private *dev_priv = dev->dev_private;
827 uint32_t dsparb = I915_READ(DSPARB);
828 int size;
829
830 size = dsparb & 0x7f;
831 if (plane)
832 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
833
834 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
835 plane ? "B" : "A", size);
836
837 return size;
838 }
839
840 static int i830_get_fifo_size(struct drm_device *dev, int plane)
841 {
842 struct drm_i915_private *dev_priv = dev->dev_private;
843 uint32_t dsparb = I915_READ(DSPARB);
844 int size;
845
846 size = dsparb & 0x1ff;
847 if (plane)
848 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
849 size >>= 1; /* Convert to cachelines */
850
851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
852 plane ? "B" : "A", size);
853
854 return size;
855 }
856
857 static int i845_get_fifo_size(struct drm_device *dev, int plane)
858 {
859 struct drm_i915_private *dev_priv = dev->dev_private;
860 uint32_t dsparb = I915_READ(DSPARB);
861 int size;
862
863 size = dsparb & 0x7f;
864 size >>= 2; /* Convert to cachelines */
865
866 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
867 plane ? "B" : "A",
868 size);
869
870 return size;
871 }
872
873 /* Pineview has different values for various configs */
874 static const struct intel_watermark_params pineview_display_wm = {
875 PINEVIEW_DISPLAY_FIFO,
876 PINEVIEW_MAX_WM,
877 PINEVIEW_DFT_WM,
878 PINEVIEW_GUARD_WM,
879 PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_display_hplloff_wm = {
882 PINEVIEW_DISPLAY_FIFO,
883 PINEVIEW_MAX_WM,
884 PINEVIEW_DFT_HPLLOFF_WM,
885 PINEVIEW_GUARD_WM,
886 PINEVIEW_FIFO_LINE_SIZE
887 };
888 static const struct intel_watermark_params pineview_cursor_wm = {
889 PINEVIEW_CURSOR_FIFO,
890 PINEVIEW_CURSOR_MAX_WM,
891 PINEVIEW_CURSOR_DFT_WM,
892 PINEVIEW_CURSOR_GUARD_WM,
893 PINEVIEW_FIFO_LINE_SIZE,
894 };
895 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
896 PINEVIEW_CURSOR_FIFO,
897 PINEVIEW_CURSOR_MAX_WM,
898 PINEVIEW_CURSOR_DFT_WM,
899 PINEVIEW_CURSOR_GUARD_WM,
900 PINEVIEW_FIFO_LINE_SIZE
901 };
902 static const struct intel_watermark_params g4x_wm_info = {
903 G4X_FIFO_SIZE,
904 G4X_MAX_WM,
905 G4X_MAX_WM,
906 2,
907 G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params g4x_cursor_wm_info = {
910 I965_CURSOR_FIFO,
911 I965_CURSOR_MAX_WM,
912 I965_CURSOR_DFT_WM,
913 2,
914 G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_wm_info = {
917 VALLEYVIEW_FIFO_SIZE,
918 VALLEYVIEW_MAX_WM,
919 VALLEYVIEW_MAX_WM,
920 2,
921 G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params valleyview_cursor_wm_info = {
924 I965_CURSOR_FIFO,
925 VALLEYVIEW_CURSOR_MAX_WM,
926 I965_CURSOR_DFT_WM,
927 2,
928 G4X_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i965_cursor_wm_info = {
931 I965_CURSOR_FIFO,
932 I965_CURSOR_MAX_WM,
933 I965_CURSOR_DFT_WM,
934 2,
935 I915_FIFO_LINE_SIZE,
936 };
937 static const struct intel_watermark_params i945_wm_info = {
938 I945_FIFO_SIZE,
939 I915_MAX_WM,
940 1,
941 2,
942 I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i915_wm_info = {
945 I915_FIFO_SIZE,
946 I915_MAX_WM,
947 1,
948 2,
949 I915_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i830_wm_info = {
952 I855GM_FIFO_SIZE,
953 I915_MAX_WM,
954 1,
955 2,
956 I830_FIFO_LINE_SIZE
957 };
958 static const struct intel_watermark_params i845_wm_info = {
959 I830_FIFO_SIZE,
960 I915_MAX_WM,
961 1,
962 2,
963 I830_FIFO_LINE_SIZE
964 };
965
966 /**
967 * intel_calculate_wm - calculate watermark level
968 * @clock_in_khz: pixel clock
969 * @wm: chip FIFO params
970 * @pixel_size: display pixel size
971 * @latency_ns: memory latency for the platform
972 *
973 * Calculate the watermark level (the level at which the display plane will
974 * start fetching from memory again). Each chip has a different display
975 * FIFO size and allocation, so the caller needs to figure that out and pass
976 * in the correct intel_watermark_params structure.
977 *
978 * As the pixel clock runs, the FIFO will be drained at a rate that depends
979 * on the pixel size. When it reaches the watermark level, it'll start
980 * fetching FIFO line sized based chunks from memory until the FIFO fills
981 * past the watermark point. If the FIFO drains completely, a FIFO underrun
982 * will occur, and a display engine hang could result.
983 */
984 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
985 const struct intel_watermark_params *wm,
986 int fifo_size,
987 int pixel_size,
988 unsigned long latency_ns)
989 {
990 long entries_required, wm_size;
991
992 /*
993 * Note: we need to make sure we don't overflow for various clock &
994 * latency values.
995 * clocks go from a few thousand to several hundred thousand.
996 * latency is usually a few thousand
997 */
998 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
999 1000;
1000 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1001
1002 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1003
1004 wm_size = fifo_size - (entries_required + wm->guard_size);
1005
1006 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1007
1008 /* Don't promote wm_size to unsigned... */
1009 if (wm_size > (long)wm->max_wm)
1010 wm_size = wm->max_wm;
1011 if (wm_size <= 0)
1012 wm_size = wm->default_wm;
1013 return wm_size;
1014 }
1015
1016 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1017 {
1018 struct drm_crtc *crtc, *enabled = NULL;
1019
1020 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1021 if (intel_crtc_active(crtc)) {
1022 if (enabled)
1023 return NULL;
1024 enabled = crtc;
1025 }
1026 }
1027
1028 return enabled;
1029 }
1030
1031 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1032 {
1033 struct drm_device *dev = unused_crtc->dev;
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 struct drm_crtc *crtc;
1036 const struct cxsr_latency *latency;
1037 u32 reg;
1038 unsigned long wm;
1039
1040 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1041 dev_priv->fsb_freq, dev_priv->mem_freq);
1042 if (!latency) {
1043 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1044 pineview_disable_cxsr(dev);
1045 return;
1046 }
1047
1048 crtc = single_enabled_crtc(dev);
1049 if (crtc) {
1050 const struct drm_display_mode *adjusted_mode;
1051 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1052 int clock;
1053
1054 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1055 clock = adjusted_mode->crtc_clock;
1056
1057 /* Display SR */
1058 wm = intel_calculate_wm(clock, &pineview_display_wm,
1059 pineview_display_wm.fifo_size,
1060 pixel_size, latency->display_sr);
1061 reg = I915_READ(DSPFW1);
1062 reg &= ~DSPFW_SR_MASK;
1063 reg |= wm << DSPFW_SR_SHIFT;
1064 I915_WRITE(DSPFW1, reg);
1065 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1066
1067 /* cursor SR */
1068 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1069 pineview_display_wm.fifo_size,
1070 pixel_size, latency->cursor_sr);
1071 reg = I915_READ(DSPFW3);
1072 reg &= ~DSPFW_CURSOR_SR_MASK;
1073 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1074 I915_WRITE(DSPFW3, reg);
1075
1076 /* Display HPLL off SR */
1077 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1078 pineview_display_hplloff_wm.fifo_size,
1079 pixel_size, latency->display_hpll_disable);
1080 reg = I915_READ(DSPFW3);
1081 reg &= ~DSPFW_HPLL_SR_MASK;
1082 reg |= wm & DSPFW_HPLL_SR_MASK;
1083 I915_WRITE(DSPFW3, reg);
1084
1085 /* cursor HPLL off SR */
1086 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1087 pineview_display_hplloff_wm.fifo_size,
1088 pixel_size, latency->cursor_hpll_disable);
1089 reg = I915_READ(DSPFW3);
1090 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1091 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1092 I915_WRITE(DSPFW3, reg);
1093 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1094
1095 /* activate cxsr */
1096 I915_WRITE(DSPFW3,
1097 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1098 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1099 } else {
1100 pineview_disable_cxsr(dev);
1101 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1102 }
1103 }
1104
1105 static bool g4x_compute_wm0(struct drm_device *dev,
1106 int plane,
1107 const struct intel_watermark_params *display,
1108 int display_latency_ns,
1109 const struct intel_watermark_params *cursor,
1110 int cursor_latency_ns,
1111 int *plane_wm,
1112 int *cursor_wm)
1113 {
1114 struct drm_crtc *crtc;
1115 const struct drm_display_mode *adjusted_mode;
1116 int htotal, hdisplay, clock, pixel_size;
1117 int line_time_us, line_count;
1118 int entries, tlb_miss;
1119
1120 crtc = intel_get_crtc_for_plane(dev, plane);
1121 if (!intel_crtc_active(crtc)) {
1122 *cursor_wm = cursor->guard_size;
1123 *plane_wm = display->guard_size;
1124 return false;
1125 }
1126
1127 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1128 clock = adjusted_mode->crtc_clock;
1129 htotal = adjusted_mode->crtc_htotal;
1130 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1131 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1132
1133 /* Use the small buffer method to calculate plane watermark */
1134 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1135 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1136 if (tlb_miss > 0)
1137 entries += tlb_miss;
1138 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1139 *plane_wm = entries + display->guard_size;
1140 if (*plane_wm > (int)display->max_wm)
1141 *plane_wm = display->max_wm;
1142
1143 /* Use the large buffer method to calculate cursor watermark */
1144 line_time_us = max(htotal * 1000 / clock, 1);
1145 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1146 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1147 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1148 if (tlb_miss > 0)
1149 entries += tlb_miss;
1150 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1151 *cursor_wm = entries + cursor->guard_size;
1152 if (*cursor_wm > (int)cursor->max_wm)
1153 *cursor_wm = (int)cursor->max_wm;
1154
1155 return true;
1156 }
1157
1158 /*
1159 * Check the wm result.
1160 *
1161 * If any calculated watermark values is larger than the maximum value that
1162 * can be programmed into the associated watermark register, that watermark
1163 * must be disabled.
1164 */
1165 static bool g4x_check_srwm(struct drm_device *dev,
1166 int display_wm, int cursor_wm,
1167 const struct intel_watermark_params *display,
1168 const struct intel_watermark_params *cursor)
1169 {
1170 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1171 display_wm, cursor_wm);
1172
1173 if (display_wm > display->max_wm) {
1174 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1175 display_wm, display->max_wm);
1176 return false;
1177 }
1178
1179 if (cursor_wm > cursor->max_wm) {
1180 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1181 cursor_wm, cursor->max_wm);
1182 return false;
1183 }
1184
1185 if (!(display_wm || cursor_wm)) {
1186 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1187 return false;
1188 }
1189
1190 return true;
1191 }
1192
1193 static bool g4x_compute_srwm(struct drm_device *dev,
1194 int plane,
1195 int latency_ns,
1196 const struct intel_watermark_params *display,
1197 const struct intel_watermark_params *cursor,
1198 int *display_wm, int *cursor_wm)
1199 {
1200 struct drm_crtc *crtc;
1201 const struct drm_display_mode *adjusted_mode;
1202 int hdisplay, htotal, pixel_size, clock;
1203 unsigned long line_time_us;
1204 int line_count, line_size;
1205 int small, large;
1206 int entries;
1207
1208 if (!latency_ns) {
1209 *display_wm = *cursor_wm = 0;
1210 return false;
1211 }
1212
1213 crtc = intel_get_crtc_for_plane(dev, plane);
1214 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1215 clock = adjusted_mode->crtc_clock;
1216 htotal = adjusted_mode->crtc_htotal;
1217 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1218 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1219
1220 line_time_us = max(htotal * 1000 / clock, 1);
1221 line_count = (latency_ns / line_time_us + 1000) / 1000;
1222 line_size = hdisplay * pixel_size;
1223
1224 /* Use the minimum of the small and large buffer method for primary */
1225 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1226 large = line_count * line_size;
1227
1228 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1229 *display_wm = entries + display->guard_size;
1230
1231 /* calculate the self-refresh watermark for display cursor */
1232 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1233 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1234 *cursor_wm = entries + cursor->guard_size;
1235
1236 return g4x_check_srwm(dev,
1237 *display_wm, *cursor_wm,
1238 display, cursor);
1239 }
1240
1241 static bool vlv_compute_drain_latency(struct drm_device *dev,
1242 int plane,
1243 int *plane_prec_mult,
1244 int *plane_dl,
1245 int *cursor_prec_mult,
1246 int *cursor_dl)
1247 {
1248 struct drm_crtc *crtc;
1249 int clock, pixel_size;
1250 int entries;
1251
1252 crtc = intel_get_crtc_for_plane(dev, plane);
1253 if (!intel_crtc_active(crtc))
1254 return false;
1255
1256 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1257 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
1258
1259 entries = (clock / 1000) * pixel_size;
1260 *plane_prec_mult = (entries > 256) ?
1261 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1262 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1263 pixel_size);
1264
1265 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1266 *cursor_prec_mult = (entries > 256) ?
1267 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1268 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1269
1270 return true;
1271 }
1272
1273 /*
1274 * Update drain latency registers of memory arbiter
1275 *
1276 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1277 * to be programmed. Each plane has a drain latency multiplier and a drain
1278 * latency value.
1279 */
1280
1281 static void vlv_update_drain_latency(struct drm_device *dev)
1282 {
1283 struct drm_i915_private *dev_priv = dev->dev_private;
1284 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1285 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1286 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1287 either 16 or 32 */
1288
1289 /* For plane A, Cursor A */
1290 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1291 &cursor_prec_mult, &cursora_dl)) {
1292 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1293 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1294 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1295 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1296
1297 I915_WRITE(VLV_DDL1, cursora_prec |
1298 (cursora_dl << DDL_CURSORA_SHIFT) |
1299 planea_prec | planea_dl);
1300 }
1301
1302 /* For plane B, Cursor B */
1303 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1304 &cursor_prec_mult, &cursorb_dl)) {
1305 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1306 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1307 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1308 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1309
1310 I915_WRITE(VLV_DDL2, cursorb_prec |
1311 (cursorb_dl << DDL_CURSORB_SHIFT) |
1312 planeb_prec | planeb_dl);
1313 }
1314 }
1315
1316 #define single_plane_enabled(mask) is_power_of_2(mask)
1317
1318 static void valleyview_update_wm(struct drm_crtc *crtc)
1319 {
1320 struct drm_device *dev = crtc->dev;
1321 static const int sr_latency_ns = 12000;
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1324 int plane_sr, cursor_sr;
1325 int ignore_plane_sr, ignore_cursor_sr;
1326 unsigned int enabled = 0;
1327
1328 vlv_update_drain_latency(dev);
1329
1330 if (g4x_compute_wm0(dev, PIPE_A,
1331 &valleyview_wm_info, latency_ns,
1332 &valleyview_cursor_wm_info, latency_ns,
1333 &planea_wm, &cursora_wm))
1334 enabled |= 1 << PIPE_A;
1335
1336 if (g4x_compute_wm0(dev, PIPE_B,
1337 &valleyview_wm_info, latency_ns,
1338 &valleyview_cursor_wm_info, latency_ns,
1339 &planeb_wm, &cursorb_wm))
1340 enabled |= 1 << PIPE_B;
1341
1342 if (single_plane_enabled(enabled) &&
1343 g4x_compute_srwm(dev, ffs(enabled) - 1,
1344 sr_latency_ns,
1345 &valleyview_wm_info,
1346 &valleyview_cursor_wm_info,
1347 &plane_sr, &ignore_cursor_sr) &&
1348 g4x_compute_srwm(dev, ffs(enabled) - 1,
1349 2*sr_latency_ns,
1350 &valleyview_wm_info,
1351 &valleyview_cursor_wm_info,
1352 &ignore_plane_sr, &cursor_sr)) {
1353 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1354 } else {
1355 I915_WRITE(FW_BLC_SELF_VLV,
1356 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1357 plane_sr = cursor_sr = 0;
1358 }
1359
1360 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1361 planea_wm, cursora_wm,
1362 planeb_wm, cursorb_wm,
1363 plane_sr, cursor_sr);
1364
1365 I915_WRITE(DSPFW1,
1366 (plane_sr << DSPFW_SR_SHIFT) |
1367 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1368 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1369 planea_wm);
1370 I915_WRITE(DSPFW2,
1371 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1372 (cursora_wm << DSPFW_CURSORA_SHIFT));
1373 I915_WRITE(DSPFW3,
1374 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1375 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1376 }
1377
1378 static void g4x_update_wm(struct drm_crtc *crtc)
1379 {
1380 struct drm_device *dev = crtc->dev;
1381 static const int sr_latency_ns = 12000;
1382 struct drm_i915_private *dev_priv = dev->dev_private;
1383 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1384 int plane_sr, cursor_sr;
1385 unsigned int enabled = 0;
1386
1387 if (g4x_compute_wm0(dev, PIPE_A,
1388 &g4x_wm_info, latency_ns,
1389 &g4x_cursor_wm_info, latency_ns,
1390 &planea_wm, &cursora_wm))
1391 enabled |= 1 << PIPE_A;
1392
1393 if (g4x_compute_wm0(dev, PIPE_B,
1394 &g4x_wm_info, latency_ns,
1395 &g4x_cursor_wm_info, latency_ns,
1396 &planeb_wm, &cursorb_wm))
1397 enabled |= 1 << PIPE_B;
1398
1399 if (single_plane_enabled(enabled) &&
1400 g4x_compute_srwm(dev, ffs(enabled) - 1,
1401 sr_latency_ns,
1402 &g4x_wm_info,
1403 &g4x_cursor_wm_info,
1404 &plane_sr, &cursor_sr)) {
1405 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1406 } else {
1407 I915_WRITE(FW_BLC_SELF,
1408 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1409 plane_sr = cursor_sr = 0;
1410 }
1411
1412 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1413 planea_wm, cursora_wm,
1414 planeb_wm, cursorb_wm,
1415 plane_sr, cursor_sr);
1416
1417 I915_WRITE(DSPFW1,
1418 (plane_sr << DSPFW_SR_SHIFT) |
1419 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1420 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1421 planea_wm);
1422 I915_WRITE(DSPFW2,
1423 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1424 (cursora_wm << DSPFW_CURSORA_SHIFT));
1425 /* HPLL off in SR has some issues on G4x... disable it */
1426 I915_WRITE(DSPFW3,
1427 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1428 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1429 }
1430
1431 static void i965_update_wm(struct drm_crtc *unused_crtc)
1432 {
1433 struct drm_device *dev = unused_crtc->dev;
1434 struct drm_i915_private *dev_priv = dev->dev_private;
1435 struct drm_crtc *crtc;
1436 int srwm = 1;
1437 int cursor_sr = 16;
1438
1439 /* Calc sr entries for one plane configs */
1440 crtc = single_enabled_crtc(dev);
1441 if (crtc) {
1442 /* self-refresh has much higher latency */
1443 static const int sr_latency_ns = 12000;
1444 const struct drm_display_mode *adjusted_mode =
1445 &to_intel_crtc(crtc)->config.adjusted_mode;
1446 int clock = adjusted_mode->crtc_clock;
1447 int htotal = adjusted_mode->crtc_htotal;
1448 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1449 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1450 unsigned long line_time_us;
1451 int entries;
1452
1453 line_time_us = max(htotal * 1000 / clock, 1);
1454
1455 /* Use ns/us then divide to preserve precision */
1456 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1457 pixel_size * hdisplay;
1458 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1459 srwm = I965_FIFO_SIZE - entries;
1460 if (srwm < 0)
1461 srwm = 1;
1462 srwm &= 0x1ff;
1463 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1464 entries, srwm);
1465
1466 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1467 pixel_size * to_intel_crtc(crtc)->cursor_width;
1468 entries = DIV_ROUND_UP(entries,
1469 i965_cursor_wm_info.cacheline_size);
1470 cursor_sr = i965_cursor_wm_info.fifo_size -
1471 (entries + i965_cursor_wm_info.guard_size);
1472
1473 if (cursor_sr > i965_cursor_wm_info.max_wm)
1474 cursor_sr = i965_cursor_wm_info.max_wm;
1475
1476 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1477 "cursor %d\n", srwm, cursor_sr);
1478
1479 if (IS_CRESTLINE(dev))
1480 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1481 } else {
1482 /* Turn off self refresh if both pipes are enabled */
1483 if (IS_CRESTLINE(dev))
1484 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1485 & ~FW_BLC_SELF_EN);
1486 }
1487
1488 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1489 srwm);
1490
1491 /* 965 has limitations... */
1492 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1493 (8 << 16) | (8 << 8) | (8 << 0));
1494 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1495 /* update cursor SR watermark */
1496 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1497 }
1498
1499 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1500 {
1501 struct drm_device *dev = unused_crtc->dev;
1502 struct drm_i915_private *dev_priv = dev->dev_private;
1503 const struct intel_watermark_params *wm_info;
1504 uint32_t fwater_lo;
1505 uint32_t fwater_hi;
1506 int cwm, srwm = 1;
1507 int fifo_size;
1508 int planea_wm, planeb_wm;
1509 struct drm_crtc *crtc, *enabled = NULL;
1510
1511 if (IS_I945GM(dev))
1512 wm_info = &i945_wm_info;
1513 else if (!IS_GEN2(dev))
1514 wm_info = &i915_wm_info;
1515 else
1516 wm_info = &i830_wm_info;
1517
1518 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1519 crtc = intel_get_crtc_for_plane(dev, 0);
1520 if (intel_crtc_active(crtc)) {
1521 const struct drm_display_mode *adjusted_mode;
1522 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1523 if (IS_GEN2(dev))
1524 cpp = 4;
1525
1526 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1527 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1528 wm_info, fifo_size, cpp,
1529 latency_ns);
1530 enabled = crtc;
1531 } else
1532 planea_wm = fifo_size - wm_info->guard_size;
1533
1534 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1535 crtc = intel_get_crtc_for_plane(dev, 1);
1536 if (intel_crtc_active(crtc)) {
1537 const struct drm_display_mode *adjusted_mode;
1538 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1539 if (IS_GEN2(dev))
1540 cpp = 4;
1541
1542 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1543 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1544 wm_info, fifo_size, cpp,
1545 latency_ns);
1546 if (enabled == NULL)
1547 enabled = crtc;
1548 else
1549 enabled = NULL;
1550 } else
1551 planeb_wm = fifo_size - wm_info->guard_size;
1552
1553 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1554
1555 if (IS_I915GM(dev) && enabled) {
1556 struct intel_framebuffer *fb;
1557
1558 fb = to_intel_framebuffer(enabled->primary->fb);
1559
1560 /* self-refresh seems busted with untiled */
1561 if (fb->obj->tiling_mode == I915_TILING_NONE)
1562 enabled = NULL;
1563 }
1564
1565 /*
1566 * Overlay gets an aggressive default since video jitter is bad.
1567 */
1568 cwm = 2;
1569
1570 /* Play safe and disable self-refresh before adjusting watermarks. */
1571 if (IS_I945G(dev) || IS_I945GM(dev))
1572 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1573 else if (IS_I915GM(dev))
1574 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1575
1576 /* Calc sr entries for one plane configs */
1577 if (HAS_FW_BLC(dev) && enabled) {
1578 /* self-refresh has much higher latency */
1579 static const int sr_latency_ns = 6000;
1580 const struct drm_display_mode *adjusted_mode =
1581 &to_intel_crtc(enabled)->config.adjusted_mode;
1582 int clock = adjusted_mode->crtc_clock;
1583 int htotal = adjusted_mode->crtc_htotal;
1584 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1585 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1586 unsigned long line_time_us;
1587 int entries;
1588
1589 line_time_us = max(htotal * 1000 / clock, 1);
1590
1591 /* Use ns/us then divide to preserve precision */
1592 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1593 pixel_size * hdisplay;
1594 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1595 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1596 srwm = wm_info->fifo_size - entries;
1597 if (srwm < 0)
1598 srwm = 1;
1599
1600 if (IS_I945G(dev) || IS_I945GM(dev))
1601 I915_WRITE(FW_BLC_SELF,
1602 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1603 else if (IS_I915GM(dev))
1604 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1605 }
1606
1607 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1608 planea_wm, planeb_wm, cwm, srwm);
1609
1610 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1611 fwater_hi = (cwm & 0x1f);
1612
1613 /* Set request length to 8 cachelines per fetch */
1614 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1615 fwater_hi = fwater_hi | (1 << 8);
1616
1617 I915_WRITE(FW_BLC, fwater_lo);
1618 I915_WRITE(FW_BLC2, fwater_hi);
1619
1620 if (HAS_FW_BLC(dev)) {
1621 if (enabled) {
1622 if (IS_I945G(dev) || IS_I945GM(dev))
1623 I915_WRITE(FW_BLC_SELF,
1624 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1625 else if (IS_I915GM(dev))
1626 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1627 DRM_DEBUG_KMS("memory self refresh enabled\n");
1628 } else
1629 DRM_DEBUG_KMS("memory self refresh disabled\n");
1630 }
1631 }
1632
1633 static void i845_update_wm(struct drm_crtc *unused_crtc)
1634 {
1635 struct drm_device *dev = unused_crtc->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 struct drm_crtc *crtc;
1638 const struct drm_display_mode *adjusted_mode;
1639 uint32_t fwater_lo;
1640 int planea_wm;
1641
1642 crtc = single_enabled_crtc(dev);
1643 if (crtc == NULL)
1644 return;
1645
1646 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1647 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1648 &i845_wm_info,
1649 dev_priv->display.get_fifo_size(dev, 0),
1650 4, latency_ns);
1651 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1652 fwater_lo |= (3<<8) | planea_wm;
1653
1654 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1655
1656 I915_WRITE(FW_BLC, fwater_lo);
1657 }
1658
1659 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1660 struct drm_crtc *crtc)
1661 {
1662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1663 uint32_t pixel_rate;
1664
1665 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1666
1667 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1668 * adjust the pixel_rate here. */
1669
1670 if (intel_crtc->config.pch_pfit.enabled) {
1671 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1672 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1673
1674 pipe_w = intel_crtc->config.pipe_src_w;
1675 pipe_h = intel_crtc->config.pipe_src_h;
1676 pfit_w = (pfit_size >> 16) & 0xFFFF;
1677 pfit_h = pfit_size & 0xFFFF;
1678 if (pipe_w < pfit_w)
1679 pipe_w = pfit_w;
1680 if (pipe_h < pfit_h)
1681 pipe_h = pfit_h;
1682
1683 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1684 pfit_w * pfit_h);
1685 }
1686
1687 return pixel_rate;
1688 }
1689
1690 /* latency must be in 0.1us units. */
1691 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1692 uint32_t latency)
1693 {
1694 uint64_t ret;
1695
1696 if (WARN(latency == 0, "Latency value missing\n"))
1697 return UINT_MAX;
1698
1699 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1700 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1701
1702 return ret;
1703 }
1704
1705 /* latency must be in 0.1us units. */
1706 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1707 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1708 uint32_t latency)
1709 {
1710 uint32_t ret;
1711
1712 if (WARN(latency == 0, "Latency value missing\n"))
1713 return UINT_MAX;
1714
1715 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1716 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1717 ret = DIV_ROUND_UP(ret, 64) + 2;
1718 return ret;
1719 }
1720
1721 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1722 uint8_t bytes_per_pixel)
1723 {
1724 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1725 }
1726
1727 struct ilk_pipe_wm_parameters {
1728 bool active;
1729 uint32_t pipe_htotal;
1730 uint32_t pixel_rate;
1731 struct intel_plane_wm_parameters pri;
1732 struct intel_plane_wm_parameters spr;
1733 struct intel_plane_wm_parameters cur;
1734 };
1735
1736 struct ilk_wm_maximums {
1737 uint16_t pri;
1738 uint16_t spr;
1739 uint16_t cur;
1740 uint16_t fbc;
1741 };
1742
1743 /* used in computing the new watermarks state */
1744 struct intel_wm_config {
1745 unsigned int num_pipes_active;
1746 bool sprites_enabled;
1747 bool sprites_scaled;
1748 };
1749
1750 /*
1751 * For both WM_PIPE and WM_LP.
1752 * mem_value must be in 0.1us units.
1753 */
1754 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1755 uint32_t mem_value,
1756 bool is_lp)
1757 {
1758 uint32_t method1, method2;
1759
1760 if (!params->active || !params->pri.enabled)
1761 return 0;
1762
1763 method1 = ilk_wm_method1(params->pixel_rate,
1764 params->pri.bytes_per_pixel,
1765 mem_value);
1766
1767 if (!is_lp)
1768 return method1;
1769
1770 method2 = ilk_wm_method2(params->pixel_rate,
1771 params->pipe_htotal,
1772 params->pri.horiz_pixels,
1773 params->pri.bytes_per_pixel,
1774 mem_value);
1775
1776 return min(method1, method2);
1777 }
1778
1779 /*
1780 * For both WM_PIPE and WM_LP.
1781 * mem_value must be in 0.1us units.
1782 */
1783 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1784 uint32_t mem_value)
1785 {
1786 uint32_t method1, method2;
1787
1788 if (!params->active || !params->spr.enabled)
1789 return 0;
1790
1791 method1 = ilk_wm_method1(params->pixel_rate,
1792 params->spr.bytes_per_pixel,
1793 mem_value);
1794 method2 = ilk_wm_method2(params->pixel_rate,
1795 params->pipe_htotal,
1796 params->spr.horiz_pixels,
1797 params->spr.bytes_per_pixel,
1798 mem_value);
1799 return min(method1, method2);
1800 }
1801
1802 /*
1803 * For both WM_PIPE and WM_LP.
1804 * mem_value must be in 0.1us units.
1805 */
1806 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1807 uint32_t mem_value)
1808 {
1809 if (!params->active || !params->cur.enabled)
1810 return 0;
1811
1812 return ilk_wm_method2(params->pixel_rate,
1813 params->pipe_htotal,
1814 params->cur.horiz_pixels,
1815 params->cur.bytes_per_pixel,
1816 mem_value);
1817 }
1818
1819 /* Only for WM_LP. */
1820 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1821 uint32_t pri_val)
1822 {
1823 if (!params->active || !params->pri.enabled)
1824 return 0;
1825
1826 return ilk_wm_fbc(pri_val,
1827 params->pri.horiz_pixels,
1828 params->pri.bytes_per_pixel);
1829 }
1830
1831 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1832 {
1833 if (INTEL_INFO(dev)->gen >= 8)
1834 return 3072;
1835 else if (INTEL_INFO(dev)->gen >= 7)
1836 return 768;
1837 else
1838 return 512;
1839 }
1840
1841 /* Calculate the maximum primary/sprite plane watermark */
1842 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1843 int level,
1844 const struct intel_wm_config *config,
1845 enum intel_ddb_partitioning ddb_partitioning,
1846 bool is_sprite)
1847 {
1848 unsigned int fifo_size = ilk_display_fifo_size(dev);
1849 unsigned int max;
1850
1851 /* if sprites aren't enabled, sprites get nothing */
1852 if (is_sprite && !config->sprites_enabled)
1853 return 0;
1854
1855 /* HSW allows LP1+ watermarks even with multiple pipes */
1856 if (level == 0 || config->num_pipes_active > 1) {
1857 fifo_size /= INTEL_INFO(dev)->num_pipes;
1858
1859 /*
1860 * For some reason the non self refresh
1861 * FIFO size is only half of the self
1862 * refresh FIFO size on ILK/SNB.
1863 */
1864 if (INTEL_INFO(dev)->gen <= 6)
1865 fifo_size /= 2;
1866 }
1867
1868 if (config->sprites_enabled) {
1869 /* level 0 is always calculated with 1:1 split */
1870 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1871 if (is_sprite)
1872 fifo_size *= 5;
1873 fifo_size /= 6;
1874 } else {
1875 fifo_size /= 2;
1876 }
1877 }
1878
1879 /* clamp to max that the registers can hold */
1880 if (INTEL_INFO(dev)->gen >= 8)
1881 max = level == 0 ? 255 : 2047;
1882 else if (INTEL_INFO(dev)->gen >= 7)
1883 /* IVB/HSW primary/sprite plane watermarks */
1884 max = level == 0 ? 127 : 1023;
1885 else if (!is_sprite)
1886 /* ILK/SNB primary plane watermarks */
1887 max = level == 0 ? 127 : 511;
1888 else
1889 /* ILK/SNB sprite plane watermarks */
1890 max = level == 0 ? 63 : 255;
1891
1892 return min(fifo_size, max);
1893 }
1894
1895 /* Calculate the maximum cursor plane watermark */
1896 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1897 int level,
1898 const struct intel_wm_config *config)
1899 {
1900 /* HSW LP1+ watermarks w/ multiple pipes */
1901 if (level > 0 && config->num_pipes_active > 1)
1902 return 64;
1903
1904 /* otherwise just report max that registers can hold */
1905 if (INTEL_INFO(dev)->gen >= 7)
1906 return level == 0 ? 63 : 255;
1907 else
1908 return level == 0 ? 31 : 63;
1909 }
1910
1911 /* Calculate the maximum FBC watermark */
1912 static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
1913 {
1914 /* max that registers can hold */
1915 if (INTEL_INFO(dev)->gen >= 8)
1916 return 31;
1917 else
1918 return 15;
1919 }
1920
1921 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1922 int level,
1923 const struct intel_wm_config *config,
1924 enum intel_ddb_partitioning ddb_partitioning,
1925 struct ilk_wm_maximums *max)
1926 {
1927 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1928 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1929 max->cur = ilk_cursor_wm_max(dev, level, config);
1930 max->fbc = ilk_fbc_wm_max(dev);
1931 }
1932
1933 static bool ilk_validate_wm_level(int level,
1934 const struct ilk_wm_maximums *max,
1935 struct intel_wm_level *result)
1936 {
1937 bool ret;
1938
1939 /* already determined to be invalid? */
1940 if (!result->enable)
1941 return false;
1942
1943 result->enable = result->pri_val <= max->pri &&
1944 result->spr_val <= max->spr &&
1945 result->cur_val <= max->cur;
1946
1947 ret = result->enable;
1948
1949 /*
1950 * HACK until we can pre-compute everything,
1951 * and thus fail gracefully if LP0 watermarks
1952 * are exceeded...
1953 */
1954 if (level == 0 && !result->enable) {
1955 if (result->pri_val > max->pri)
1956 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1957 level, result->pri_val, max->pri);
1958 if (result->spr_val > max->spr)
1959 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1960 level, result->spr_val, max->spr);
1961 if (result->cur_val > max->cur)
1962 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1963 level, result->cur_val, max->cur);
1964
1965 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1966 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1967 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1968 result->enable = true;
1969 }
1970
1971 return ret;
1972 }
1973
1974 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1975 int level,
1976 const struct ilk_pipe_wm_parameters *p,
1977 struct intel_wm_level *result)
1978 {
1979 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1980 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1981 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1982
1983 /* WM1+ latency values stored in 0.5us units */
1984 if (level > 0) {
1985 pri_latency *= 5;
1986 spr_latency *= 5;
1987 cur_latency *= 5;
1988 }
1989
1990 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1991 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1992 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1993 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1994 result->enable = true;
1995 }
1996
1997 static uint32_t
1998 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1999 {
2000 struct drm_i915_private *dev_priv = dev->dev_private;
2001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2002 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2003 u32 linetime, ips_linetime;
2004
2005 if (!intel_crtc_active(crtc))
2006 return 0;
2007
2008 /* The WM are computed with base on how long it takes to fill a single
2009 * row at the given clock rate, multiplied by 8.
2010 * */
2011 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2012 mode->crtc_clock);
2013 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2014 intel_ddi_get_cdclk_freq(dev_priv));
2015
2016 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2017 PIPE_WM_LINETIME_TIME(linetime);
2018 }
2019
2020 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2021 {
2022 struct drm_i915_private *dev_priv = dev->dev_private;
2023
2024 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2025 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2026
2027 wm[0] = (sskpd >> 56) & 0xFF;
2028 if (wm[0] == 0)
2029 wm[0] = sskpd & 0xF;
2030 wm[1] = (sskpd >> 4) & 0xFF;
2031 wm[2] = (sskpd >> 12) & 0xFF;
2032 wm[3] = (sskpd >> 20) & 0x1FF;
2033 wm[4] = (sskpd >> 32) & 0x1FF;
2034 } else if (INTEL_INFO(dev)->gen >= 6) {
2035 uint32_t sskpd = I915_READ(MCH_SSKPD);
2036
2037 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2038 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2039 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2040 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2041 } else if (INTEL_INFO(dev)->gen >= 5) {
2042 uint32_t mltr = I915_READ(MLTR_ILK);
2043
2044 /* ILK primary LP0 latency is 700 ns */
2045 wm[0] = 7;
2046 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2047 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2048 }
2049 }
2050
2051 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2052 {
2053 /* ILK sprite LP0 latency is 1300 ns */
2054 if (INTEL_INFO(dev)->gen == 5)
2055 wm[0] = 13;
2056 }
2057
2058 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2059 {
2060 /* ILK cursor LP0 latency is 1300 ns */
2061 if (INTEL_INFO(dev)->gen == 5)
2062 wm[0] = 13;
2063
2064 /* WaDoubleCursorLP3Latency:ivb */
2065 if (IS_IVYBRIDGE(dev))
2066 wm[3] *= 2;
2067 }
2068
2069 static int ilk_wm_max_level(const struct drm_device *dev)
2070 {
2071 /* how many WM levels are we expecting */
2072 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2073 return 4;
2074 else if (INTEL_INFO(dev)->gen >= 6)
2075 return 3;
2076 else
2077 return 2;
2078 }
2079
2080 static void intel_print_wm_latency(struct drm_device *dev,
2081 const char *name,
2082 const uint16_t wm[5])
2083 {
2084 int level, max_level = ilk_wm_max_level(dev);
2085
2086 for (level = 0; level <= max_level; level++) {
2087 unsigned int latency = wm[level];
2088
2089 if (latency == 0) {
2090 DRM_ERROR("%s WM%d latency not provided\n",
2091 name, level);
2092 continue;
2093 }
2094
2095 /* WM1+ latency values in 0.5us units */
2096 if (level > 0)
2097 latency *= 5;
2098
2099 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2100 name, level, wm[level],
2101 latency / 10, latency % 10);
2102 }
2103 }
2104
2105 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2106 uint16_t wm[5], uint16_t min)
2107 {
2108 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2109
2110 if (wm[0] >= min)
2111 return false;
2112
2113 wm[0] = max(wm[0], min);
2114 for (level = 1; level <= max_level; level++)
2115 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2116
2117 return true;
2118 }
2119
2120 static void snb_wm_latency_quirk(struct drm_device *dev)
2121 {
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 bool changed;
2124
2125 /*
2126 * The BIOS provided WM memory latency values are often
2127 * inadequate for high resolution displays. Adjust them.
2128 */
2129 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2130 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2131 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2132
2133 if (!changed)
2134 return;
2135
2136 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2137 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2138 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2139 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2140 }
2141
2142 static void ilk_setup_wm_latency(struct drm_device *dev)
2143 {
2144 struct drm_i915_private *dev_priv = dev->dev_private;
2145
2146 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2147
2148 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2149 sizeof(dev_priv->wm.pri_latency));
2150 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2151 sizeof(dev_priv->wm.pri_latency));
2152
2153 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2154 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2155
2156 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2157 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2158 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2159
2160 if (IS_GEN6(dev))
2161 snb_wm_latency_quirk(dev);
2162 }
2163
2164 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2165 struct ilk_pipe_wm_parameters *p,
2166 struct intel_wm_config *config)
2167 {
2168 struct drm_device *dev = crtc->dev;
2169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2170 enum pipe pipe = intel_crtc->pipe;
2171 struct drm_plane *plane;
2172
2173 p->active = intel_crtc_active(crtc);
2174 if (p->active) {
2175 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2176 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2177 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2178 p->cur.bytes_per_pixel = 4;
2179 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2180 p->cur.horiz_pixels = intel_crtc->cursor_width;
2181 /* TODO: for now, assume primary and cursor planes are always enabled. */
2182 p->pri.enabled = true;
2183 p->cur.enabled = true;
2184 }
2185
2186 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2187 config->num_pipes_active += intel_crtc_active(crtc);
2188
2189 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2190 struct intel_plane *intel_plane = to_intel_plane(plane);
2191
2192 if (intel_plane->pipe == pipe)
2193 p->spr = intel_plane->wm;
2194
2195 config->sprites_enabled |= intel_plane->wm.enabled;
2196 config->sprites_scaled |= intel_plane->wm.scaled;
2197 }
2198 }
2199
2200 /* Compute new watermarks for the pipe */
2201 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2202 const struct ilk_pipe_wm_parameters *params,
2203 struct intel_pipe_wm *pipe_wm)
2204 {
2205 struct drm_device *dev = crtc->dev;
2206 const struct drm_i915_private *dev_priv = dev->dev_private;
2207 int level, max_level = ilk_wm_max_level(dev);
2208 /* LP0 watermark maximums depend on this pipe alone */
2209 struct intel_wm_config config = {
2210 .num_pipes_active = 1,
2211 .sprites_enabled = params->spr.enabled,
2212 .sprites_scaled = params->spr.scaled,
2213 };
2214 struct ilk_wm_maximums max;
2215
2216 /* LP0 watermarks always use 1/2 DDB partitioning */
2217 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2218
2219 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2220 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2221 max_level = 1;
2222
2223 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2224 if (params->spr.scaled)
2225 max_level = 0;
2226
2227 for (level = 0; level <= max_level; level++)
2228 ilk_compute_wm_level(dev_priv, level, params,
2229 &pipe_wm->wm[level]);
2230
2231 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2232 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2233
2234 /* At least LP0 must be valid */
2235 return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2236 }
2237
2238 /*
2239 * Merge the watermarks from all active pipes for a specific level.
2240 */
2241 static void ilk_merge_wm_level(struct drm_device *dev,
2242 int level,
2243 struct intel_wm_level *ret_wm)
2244 {
2245 const struct intel_crtc *intel_crtc;
2246
2247 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2248 const struct intel_wm_level *wm =
2249 &intel_crtc->wm.active.wm[level];
2250
2251 if (!wm->enable)
2252 return;
2253
2254 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2255 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2256 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2257 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2258 }
2259
2260 ret_wm->enable = true;
2261 }
2262
2263 /*
2264 * Merge all low power watermarks for all active pipes.
2265 */
2266 static void ilk_wm_merge(struct drm_device *dev,
2267 const struct intel_wm_config *config,
2268 const struct ilk_wm_maximums *max,
2269 struct intel_pipe_wm *merged)
2270 {
2271 int level, max_level = ilk_wm_max_level(dev);
2272
2273 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2274 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2275 config->num_pipes_active > 1)
2276 return;
2277
2278 /* ILK: FBC WM must be disabled always */
2279 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2280
2281 /* merge each WM1+ level */
2282 for (level = 1; level <= max_level; level++) {
2283 struct intel_wm_level *wm = &merged->wm[level];
2284
2285 ilk_merge_wm_level(dev, level, wm);
2286
2287 if (!ilk_validate_wm_level(level, max, wm))
2288 break;
2289
2290 /*
2291 * The spec says it is preferred to disable
2292 * FBC WMs instead of disabling a WM level.
2293 */
2294 if (wm->fbc_val > max->fbc) {
2295 merged->fbc_wm_enabled = false;
2296 wm->fbc_val = 0;
2297 }
2298 }
2299
2300 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2301 /*
2302 * FIXME this is racy. FBC might get enabled later.
2303 * What we should check here is whether FBC can be
2304 * enabled sometime later.
2305 */
2306 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2307 for (level = 2; level <= max_level; level++) {
2308 struct intel_wm_level *wm = &merged->wm[level];
2309
2310 wm->enable = false;
2311 }
2312 }
2313 }
2314
2315 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2316 {
2317 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2318 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2319 }
2320
2321 /* The value we need to program into the WM_LPx latency field */
2322 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2323 {
2324 struct drm_i915_private *dev_priv = dev->dev_private;
2325
2326 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2327 return 2 * level;
2328 else
2329 return dev_priv->wm.pri_latency[level];
2330 }
2331
2332 static void ilk_compute_wm_results(struct drm_device *dev,
2333 const struct intel_pipe_wm *merged,
2334 enum intel_ddb_partitioning partitioning,
2335 struct ilk_wm_values *results)
2336 {
2337 struct intel_crtc *intel_crtc;
2338 int level, wm_lp;
2339
2340 results->enable_fbc_wm = merged->fbc_wm_enabled;
2341 results->partitioning = partitioning;
2342
2343 /* LP1+ register values */
2344 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2345 const struct intel_wm_level *r;
2346
2347 level = ilk_wm_lp_to_level(wm_lp, merged);
2348
2349 r = &merged->wm[level];
2350 if (!r->enable)
2351 break;
2352
2353 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2354 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2355 (r->pri_val << WM1_LP_SR_SHIFT) |
2356 r->cur_val;
2357
2358 if (INTEL_INFO(dev)->gen >= 8)
2359 results->wm_lp[wm_lp - 1] |=
2360 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2361 else
2362 results->wm_lp[wm_lp - 1] |=
2363 r->fbc_val << WM1_LP_FBC_SHIFT;
2364
2365 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2366 WARN_ON(wm_lp != 1);
2367 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2368 } else
2369 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2370 }
2371
2372 /* LP0 register values */
2373 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2374 enum pipe pipe = intel_crtc->pipe;
2375 const struct intel_wm_level *r =
2376 &intel_crtc->wm.active.wm[0];
2377
2378 if (WARN_ON(!r->enable))
2379 continue;
2380
2381 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2382
2383 results->wm_pipe[pipe] =
2384 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2385 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2386 r->cur_val;
2387 }
2388 }
2389
2390 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2391 * case both are at the same level. Prefer r1 in case they're the same. */
2392 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2393 struct intel_pipe_wm *r1,
2394 struct intel_pipe_wm *r2)
2395 {
2396 int level, max_level = ilk_wm_max_level(dev);
2397 int level1 = 0, level2 = 0;
2398
2399 for (level = 1; level <= max_level; level++) {
2400 if (r1->wm[level].enable)
2401 level1 = level;
2402 if (r2->wm[level].enable)
2403 level2 = level;
2404 }
2405
2406 if (level1 == level2) {
2407 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2408 return r2;
2409 else
2410 return r1;
2411 } else if (level1 > level2) {
2412 return r1;
2413 } else {
2414 return r2;
2415 }
2416 }
2417
2418 /* dirty bits used to track which watermarks need changes */
2419 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2420 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2421 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2422 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2423 #define WM_DIRTY_FBC (1 << 24)
2424 #define WM_DIRTY_DDB (1 << 25)
2425
2426 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2427 const struct ilk_wm_values *old,
2428 const struct ilk_wm_values *new)
2429 {
2430 unsigned int dirty = 0;
2431 enum pipe pipe;
2432 int wm_lp;
2433
2434 for_each_pipe(pipe) {
2435 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2436 dirty |= WM_DIRTY_LINETIME(pipe);
2437 /* Must disable LP1+ watermarks too */
2438 dirty |= WM_DIRTY_LP_ALL;
2439 }
2440
2441 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2442 dirty |= WM_DIRTY_PIPE(pipe);
2443 /* Must disable LP1+ watermarks too */
2444 dirty |= WM_DIRTY_LP_ALL;
2445 }
2446 }
2447
2448 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2449 dirty |= WM_DIRTY_FBC;
2450 /* Must disable LP1+ watermarks too */
2451 dirty |= WM_DIRTY_LP_ALL;
2452 }
2453
2454 if (old->partitioning != new->partitioning) {
2455 dirty |= WM_DIRTY_DDB;
2456 /* Must disable LP1+ watermarks too */
2457 dirty |= WM_DIRTY_LP_ALL;
2458 }
2459
2460 /* LP1+ watermarks already deemed dirty, no need to continue */
2461 if (dirty & WM_DIRTY_LP_ALL)
2462 return dirty;
2463
2464 /* Find the lowest numbered LP1+ watermark in need of an update... */
2465 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2466 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2467 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2468 break;
2469 }
2470
2471 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2472 for (; wm_lp <= 3; wm_lp++)
2473 dirty |= WM_DIRTY_LP(wm_lp);
2474
2475 return dirty;
2476 }
2477
2478 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2479 unsigned int dirty)
2480 {
2481 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2482 bool changed = false;
2483
2484 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2485 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2486 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2487 changed = true;
2488 }
2489 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2490 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2491 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2492 changed = true;
2493 }
2494 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2495 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2496 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2497 changed = true;
2498 }
2499
2500 /*
2501 * Don't touch WM1S_LP_EN here.
2502 * Doing so could cause underruns.
2503 */
2504
2505 return changed;
2506 }
2507
2508 /*
2509 * The spec says we shouldn't write when we don't need, because every write
2510 * causes WMs to be re-evaluated, expending some power.
2511 */
2512 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2513 struct ilk_wm_values *results)
2514 {
2515 struct drm_device *dev = dev_priv->dev;
2516 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2517 unsigned int dirty;
2518 uint32_t val;
2519
2520 dirty = ilk_compute_wm_dirty(dev, previous, results);
2521 if (!dirty)
2522 return;
2523
2524 _ilk_disable_lp_wm(dev_priv, dirty);
2525
2526 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2527 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2528 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2529 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2530 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2531 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2532
2533 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2534 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2535 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2536 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2537 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2538 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2539
2540 if (dirty & WM_DIRTY_DDB) {
2541 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2542 val = I915_READ(WM_MISC);
2543 if (results->partitioning == INTEL_DDB_PART_1_2)
2544 val &= ~WM_MISC_DATA_PARTITION_5_6;
2545 else
2546 val |= WM_MISC_DATA_PARTITION_5_6;
2547 I915_WRITE(WM_MISC, val);
2548 } else {
2549 val = I915_READ(DISP_ARB_CTL2);
2550 if (results->partitioning == INTEL_DDB_PART_1_2)
2551 val &= ~DISP_DATA_PARTITION_5_6;
2552 else
2553 val |= DISP_DATA_PARTITION_5_6;
2554 I915_WRITE(DISP_ARB_CTL2, val);
2555 }
2556 }
2557
2558 if (dirty & WM_DIRTY_FBC) {
2559 val = I915_READ(DISP_ARB_CTL);
2560 if (results->enable_fbc_wm)
2561 val &= ~DISP_FBC_WM_DIS;
2562 else
2563 val |= DISP_FBC_WM_DIS;
2564 I915_WRITE(DISP_ARB_CTL, val);
2565 }
2566
2567 if (dirty & WM_DIRTY_LP(1) &&
2568 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2569 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2570
2571 if (INTEL_INFO(dev)->gen >= 7) {
2572 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2573 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2574 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2575 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2576 }
2577
2578 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2579 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2580 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2581 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2582 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2583 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2584
2585 dev_priv->wm.hw = *results;
2586 }
2587
2588 static bool ilk_disable_lp_wm(struct drm_device *dev)
2589 {
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591
2592 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2593 }
2594
2595 static void ilk_update_wm(struct drm_crtc *crtc)
2596 {
2597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2598 struct drm_device *dev = crtc->dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct ilk_wm_maximums max;
2601 struct ilk_pipe_wm_parameters params = {};
2602 struct ilk_wm_values results = {};
2603 enum intel_ddb_partitioning partitioning;
2604 struct intel_pipe_wm pipe_wm = {};
2605 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2606 struct intel_wm_config config = {};
2607
2608 ilk_compute_wm_parameters(crtc, ¶ms, &config);
2609
2610 intel_compute_pipe_wm(crtc, ¶ms, &pipe_wm);
2611
2612 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2613 return;
2614
2615 intel_crtc->wm.active = pipe_wm;
2616
2617 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2618 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2619
2620 /* 5/6 split only in single pipe config on IVB+ */
2621 if (INTEL_INFO(dev)->gen >= 7 &&
2622 config.num_pipes_active == 1 && config.sprites_enabled) {
2623 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2624 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2625
2626 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2627 } else {
2628 best_lp_wm = &lp_wm_1_2;
2629 }
2630
2631 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2632 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2633
2634 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2635
2636 ilk_write_wm_values(dev_priv, &results);
2637 }
2638
2639 static void ilk_update_sprite_wm(struct drm_plane *plane,
2640 struct drm_crtc *crtc,
2641 uint32_t sprite_width, int pixel_size,
2642 bool enabled, bool scaled)
2643 {
2644 struct drm_device *dev = plane->dev;
2645 struct intel_plane *intel_plane = to_intel_plane(plane);
2646
2647 intel_plane->wm.enabled = enabled;
2648 intel_plane->wm.scaled = scaled;
2649 intel_plane->wm.horiz_pixels = sprite_width;
2650 intel_plane->wm.bytes_per_pixel = pixel_size;
2651
2652 /*
2653 * IVB workaround: must disable low power watermarks for at least
2654 * one frame before enabling scaling. LP watermarks can be re-enabled
2655 * when scaling is disabled.
2656 *
2657 * WaCxSRDisabledForSpriteScaling:ivb
2658 */
2659 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2660 intel_wait_for_vblank(dev, intel_plane->pipe);
2661
2662 ilk_update_wm(crtc);
2663 }
2664
2665 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2666 {
2667 struct drm_device *dev = crtc->dev;
2668 struct drm_i915_private *dev_priv = dev->dev_private;
2669 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2672 enum pipe pipe = intel_crtc->pipe;
2673 static const unsigned int wm0_pipe_reg[] = {
2674 [PIPE_A] = WM0_PIPEA_ILK,
2675 [PIPE_B] = WM0_PIPEB_ILK,
2676 [PIPE_C] = WM0_PIPEC_IVB,
2677 };
2678
2679 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2680 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2681 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2682
2683 if (intel_crtc_active(crtc)) {
2684 u32 tmp = hw->wm_pipe[pipe];
2685
2686 /*
2687 * For active pipes LP0 watermark is marked as
2688 * enabled, and LP1+ watermaks as disabled since
2689 * we can't really reverse compute them in case
2690 * multiple pipes are active.
2691 */
2692 active->wm[0].enable = true;
2693 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2694 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2695 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2696 active->linetime = hw->wm_linetime[pipe];
2697 } else {
2698 int level, max_level = ilk_wm_max_level(dev);
2699
2700 /*
2701 * For inactive pipes, all watermark levels
2702 * should be marked as enabled but zeroed,
2703 * which is what we'd compute them to.
2704 */
2705 for (level = 0; level <= max_level; level++)
2706 active->wm[level].enable = true;
2707 }
2708 }
2709
2710 void ilk_wm_get_hw_state(struct drm_device *dev)
2711 {
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2714 struct drm_crtc *crtc;
2715
2716 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2717 ilk_pipe_wm_get_hw_state(crtc);
2718
2719 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2720 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2721 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2722
2723 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2724 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2725 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2726
2727 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2728 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2729 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2730 else if (IS_IVYBRIDGE(dev))
2731 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2732 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2733
2734 hw->enable_fbc_wm =
2735 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2736 }
2737
2738 /**
2739 * intel_update_watermarks - update FIFO watermark values based on current modes
2740 *
2741 * Calculate watermark values for the various WM regs based on current mode
2742 * and plane configuration.
2743 *
2744 * There are several cases to deal with here:
2745 * - normal (i.e. non-self-refresh)
2746 * - self-refresh (SR) mode
2747 * - lines are large relative to FIFO size (buffer can hold up to 2)
2748 * - lines are small relative to FIFO size (buffer can hold more than 2
2749 * lines), so need to account for TLB latency
2750 *
2751 * The normal calculation is:
2752 * watermark = dotclock * bytes per pixel * latency
2753 * where latency is platform & configuration dependent (we assume pessimal
2754 * values here).
2755 *
2756 * The SR calculation is:
2757 * watermark = (trunc(latency/line time)+1) * surface width *
2758 * bytes per pixel
2759 * where
2760 * line time = htotal / dotclock
2761 * surface width = hdisplay for normal plane and 64 for cursor
2762 * and latency is assumed to be high, as above.
2763 *
2764 * The final value programmed to the register should always be rounded up,
2765 * and include an extra 2 entries to account for clock crossings.
2766 *
2767 * We don't use the sprite, so we can ignore that. And on Crestline we have
2768 * to set the non-SR watermarks to 8.
2769 */
2770 void intel_update_watermarks(struct drm_crtc *crtc)
2771 {
2772 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2773
2774 if (dev_priv->display.update_wm)
2775 dev_priv->display.update_wm(crtc);
2776 }
2777
2778 void intel_update_sprite_watermarks(struct drm_plane *plane,
2779 struct drm_crtc *crtc,
2780 uint32_t sprite_width, int pixel_size,
2781 bool enabled, bool scaled)
2782 {
2783 struct drm_i915_private *dev_priv = plane->dev->dev_private;
2784
2785 if (dev_priv->display.update_sprite_wm)
2786 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2787 pixel_size, enabled, scaled);
2788 }
2789
2790 static struct drm_i915_gem_object *
2791 intel_alloc_context_page(struct drm_device *dev)
2792 {
2793 struct drm_i915_gem_object *ctx;
2794 int ret;
2795
2796 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2797
2798 ctx = i915_gem_alloc_object(dev, 4096);
2799 if (!ctx) {
2800 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2801 return NULL;
2802 }
2803
2804 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2805 if (ret) {
2806 DRM_ERROR("failed to pin power context: %d\n", ret);
2807 goto err_unref;
2808 }
2809
2810 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2811 if (ret) {
2812 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2813 goto err_unpin;
2814 }
2815
2816 return ctx;
2817
2818 err_unpin:
2819 i915_gem_object_ggtt_unpin(ctx);
2820 err_unref:
2821 drm_gem_object_unreference(&ctx->base);
2822 return NULL;
2823 }
2824
2825 /**
2826 * Lock protecting IPS related data structures
2827 */
2828 #ifdef __NetBSD__
2829 spinlock_t mchdev_lock;
2830 #else
2831 DEFINE_SPINLOCK(mchdev_lock);
2832 #endif
2833
2834 /* Global for IPS driver to get at the current i915 device. Protected by
2835 * mchdev_lock. */
2836 static struct drm_i915_private *i915_mch_dev;
2837
2838 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2839 {
2840 struct drm_i915_private *dev_priv = dev->dev_private;
2841 u16 rgvswctl;
2842
2843 assert_spin_locked(&mchdev_lock);
2844
2845 rgvswctl = I915_READ16(MEMSWCTL);
2846 if (rgvswctl & MEMCTL_CMD_STS) {
2847 DRM_DEBUG("gpu busy, RCS change rejected\n");
2848 return false; /* still busy with another command */
2849 }
2850
2851 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2852 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2853 I915_WRITE16(MEMSWCTL, rgvswctl);
2854 POSTING_READ16(MEMSWCTL);
2855
2856 rgvswctl |= MEMCTL_CMD_STS;
2857 I915_WRITE16(MEMSWCTL, rgvswctl);
2858
2859 return true;
2860 }
2861
2862 static void ironlake_enable_drps(struct drm_device *dev)
2863 {
2864 struct drm_i915_private *dev_priv = dev->dev_private;
2865 u32 rgvmodectl = I915_READ(MEMMODECTL);
2866 u8 fmax, fmin, fstart, vstart;
2867
2868 spin_lock_irq(&mchdev_lock);
2869
2870 /* Enable temp reporting */
2871 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2872 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2873
2874 /* 100ms RC evaluation intervals */
2875 I915_WRITE(RCUPEI, 100000);
2876 I915_WRITE(RCDNEI, 100000);
2877
2878 /* Set max/min thresholds to 90ms and 80ms respectively */
2879 I915_WRITE(RCBMAXAVG, 90000);
2880 I915_WRITE(RCBMINAVG, 80000);
2881
2882 I915_WRITE(MEMIHYST, 1);
2883
2884 /* Set up min, max, and cur for interrupt handling */
2885 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2886 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2887 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2888 MEMMODE_FSTART_SHIFT;
2889
2890 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2891 PXVFREQ_PX_SHIFT;
2892
2893 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2894 dev_priv->ips.fstart = fstart;
2895
2896 dev_priv->ips.max_delay = fstart;
2897 dev_priv->ips.min_delay = fmin;
2898 dev_priv->ips.cur_delay = fstart;
2899
2900 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2901 fmax, fmin, fstart);
2902
2903 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2904
2905 /*
2906 * Interrupts will be enabled in ironlake_irq_postinstall
2907 */
2908
2909 I915_WRITE(VIDSTART, vstart);
2910 POSTING_READ(VIDSTART);
2911
2912 rgvmodectl |= MEMMODE_SWMODE_EN;
2913 I915_WRITE(MEMMODECTL, rgvmodectl);
2914
2915 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2916 DRM_ERROR("stuck trying to change perf mode\n");
2917 mdelay(1);
2918
2919 ironlake_set_drps(dev, fstart);
2920
2921 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2922 I915_READ(0x112e0);
2923 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2924 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2925 getrawmonotonic(&dev_priv->ips.last_time2);
2926
2927 spin_unlock_irq(&mchdev_lock);
2928 }
2929
2930 static void ironlake_disable_drps(struct drm_device *dev)
2931 {
2932 struct drm_i915_private *dev_priv = dev->dev_private;
2933 u16 rgvswctl;
2934
2935 spin_lock_irq(&mchdev_lock);
2936
2937 rgvswctl = I915_READ16(MEMSWCTL);
2938
2939 /* Ack interrupts, disable EFC interrupt */
2940 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2941 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2942 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2943 I915_WRITE(DEIIR, DE_PCU_EVENT);
2944 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2945
2946 /* Go back to the starting frequency */
2947 ironlake_set_drps(dev, dev_priv->ips.fstart);
2948 mdelay(1);
2949 rgvswctl |= MEMCTL_CMD_STS;
2950 I915_WRITE(MEMSWCTL, rgvswctl);
2951 mdelay(1);
2952
2953 spin_unlock_irq(&mchdev_lock);
2954 }
2955
2956 /* There's a funny hw issue where the hw returns all 0 when reading from
2957 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2958 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2959 * all limits and the gpu stuck at whatever frequency it is at atm).
2960 */
2961 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2962 {
2963 u32 limits;
2964
2965 /* Only set the down limit when we've reached the lowest level to avoid
2966 * getting more interrupts, otherwise leave this clear. This prevents a
2967 * race in the hw when coming out of rc6: There's a tiny window where
2968 * the hw runs at the minimal clock before selecting the desired
2969 * frequency, if the down threshold expires in that window we will not
2970 * receive a down interrupt. */
2971 limits = dev_priv->rps.max_freq_softlimit << 24;
2972 if (val <= dev_priv->rps.min_freq_softlimit)
2973 limits |= dev_priv->rps.min_freq_softlimit << 16;
2974
2975 return limits;
2976 }
2977
2978 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2979 {
2980 int new_power;
2981
2982 new_power = dev_priv->rps.power;
2983 switch (dev_priv->rps.power) {
2984 case LOW_POWER:
2985 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
2986 new_power = BETWEEN;
2987 break;
2988
2989 case BETWEEN:
2990 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
2991 new_power = LOW_POWER;
2992 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
2993 new_power = HIGH_POWER;
2994 break;
2995
2996 case HIGH_POWER:
2997 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
2998 new_power = BETWEEN;
2999 break;
3000 }
3001 /* Max/min bins are special */
3002 if (val == dev_priv->rps.min_freq_softlimit)
3003 new_power = LOW_POWER;
3004 if (val == dev_priv->rps.max_freq_softlimit)
3005 new_power = HIGH_POWER;
3006 if (new_power == dev_priv->rps.power)
3007 return;
3008
3009 /* Note the units here are not exactly 1us, but 1280ns. */
3010 switch (new_power) {
3011 case LOW_POWER:
3012 /* Upclock if more than 95% busy over 16ms */
3013 I915_WRITE(GEN6_RP_UP_EI, 12500);
3014 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3015
3016 /* Downclock if less than 85% busy over 32ms */
3017 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3018 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3019
3020 I915_WRITE(GEN6_RP_CONTROL,
3021 GEN6_RP_MEDIA_TURBO |
3022 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3023 GEN6_RP_MEDIA_IS_GFX |
3024 GEN6_RP_ENABLE |
3025 GEN6_RP_UP_BUSY_AVG |
3026 GEN6_RP_DOWN_IDLE_AVG);
3027 break;
3028
3029 case BETWEEN:
3030 /* Upclock if more than 90% busy over 13ms */
3031 I915_WRITE(GEN6_RP_UP_EI, 10250);
3032 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3033
3034 /* Downclock if less than 75% busy over 32ms */
3035 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3036 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3037
3038 I915_WRITE(GEN6_RP_CONTROL,
3039 GEN6_RP_MEDIA_TURBO |
3040 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3041 GEN6_RP_MEDIA_IS_GFX |
3042 GEN6_RP_ENABLE |
3043 GEN6_RP_UP_BUSY_AVG |
3044 GEN6_RP_DOWN_IDLE_AVG);
3045 break;
3046
3047 case HIGH_POWER:
3048 /* Upclock if more than 85% busy over 10ms */
3049 I915_WRITE(GEN6_RP_UP_EI, 8000);
3050 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3051
3052 /* Downclock if less than 60% busy over 32ms */
3053 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3054 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3055
3056 I915_WRITE(GEN6_RP_CONTROL,
3057 GEN6_RP_MEDIA_TURBO |
3058 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3059 GEN6_RP_MEDIA_IS_GFX |
3060 GEN6_RP_ENABLE |
3061 GEN6_RP_UP_BUSY_AVG |
3062 GEN6_RP_DOWN_IDLE_AVG);
3063 break;
3064 }
3065
3066 dev_priv->rps.power = new_power;
3067 dev_priv->rps.last_adj = 0;
3068 }
3069
3070 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3071 {
3072 u32 mask = 0;
3073
3074 if (val > dev_priv->rps.min_freq_softlimit)
3075 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3076 if (val < dev_priv->rps.max_freq_softlimit)
3077 mask |= GEN6_PM_RP_UP_THRESHOLD;
3078
3079 /* IVB and SNB hard hangs on looping batchbuffer
3080 * if GEN6_PM_UP_EI_EXPIRED is masked.
3081 */
3082 if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3083 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3084
3085 return ~mask;
3086 }
3087
3088 /* gen6_set_rps is called to update the frequency request, but should also be
3089 * called when the range (min_delay and max_delay) is modified so that we can
3090 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3091 void gen6_set_rps(struct drm_device *dev, u8 val)
3092 {
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094
3095 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3096 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3097 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3098
3099 /* min/max delay may still have been modified so be sure to
3100 * write the limits value.
3101 */
3102 if (val != dev_priv->rps.cur_freq) {
3103 gen6_set_rps_thresholds(dev_priv, val);
3104
3105 if (IS_HASWELL(dev))
3106 I915_WRITE(GEN6_RPNSWREQ,
3107 HSW_FREQUENCY(val));
3108 else
3109 I915_WRITE(GEN6_RPNSWREQ,
3110 GEN6_FREQUENCY(val) |
3111 GEN6_OFFSET(0) |
3112 GEN6_AGGRESSIVE_TURBO);
3113 }
3114
3115 /* Make sure we continue to get interrupts
3116 * until we hit the minimum or maximum frequencies.
3117 */
3118 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3119 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3120
3121 POSTING_READ(GEN6_RPNSWREQ);
3122
3123 dev_priv->rps.cur_freq = val;
3124 trace_intel_gpu_freq_change(val * 50);
3125 }
3126
3127 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3128 *
3129 * * If Gfx is Idle, then
3130 * 1. Mask Turbo interrupts
3131 * 2. Bring up Gfx clock
3132 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3133 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3134 * 5. Unmask Turbo interrupts
3135 */
3136 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3137 {
3138 /*
3139 * When we are idle. Drop to min voltage state.
3140 */
3141
3142 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3143 return;
3144
3145 /* Mask turbo interrupt so that they will not come in between */
3146 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3147
3148 /* Bring up the Gfx clock */
3149 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3150 I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3151 VLV_GFX_CLK_FORCE_ON_BIT);
3152
3153 if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3154 I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3155 DRM_ERROR("GFX_CLK_ON request timed out\n");
3156 return;
3157 }
3158
3159 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3160
3161 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3162 dev_priv->rps.min_freq_softlimit);
3163
3164 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3165 & GENFREQSTATUS) == 0, 5))
3166 DRM_ERROR("timed out waiting for Punit\n");
3167
3168 /* Release the Gfx clock */
3169 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3170 I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3171 ~VLV_GFX_CLK_FORCE_ON_BIT);
3172
3173 I915_WRITE(GEN6_PMINTRMSK,
3174 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3175 }
3176
3177 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3178 {
3179 struct drm_device *dev = dev_priv->dev;
3180
3181 mutex_lock(&dev_priv->rps.hw_lock);
3182 if (dev_priv->rps.enabled) {
3183 if (IS_VALLEYVIEW(dev))
3184 vlv_set_rps_idle(dev_priv);
3185 else
3186 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3187 dev_priv->rps.last_adj = 0;
3188 }
3189 mutex_unlock(&dev_priv->rps.hw_lock);
3190 }
3191
3192 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3193 {
3194 struct drm_device *dev = dev_priv->dev;
3195
3196 mutex_lock(&dev_priv->rps.hw_lock);
3197 if (dev_priv->rps.enabled) {
3198 if (IS_VALLEYVIEW(dev))
3199 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3200 else
3201 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3202 dev_priv->rps.last_adj = 0;
3203 }
3204 mutex_unlock(&dev_priv->rps.hw_lock);
3205 }
3206
3207 void valleyview_set_rps(struct drm_device *dev, u8 val)
3208 {
3209 struct drm_i915_private *dev_priv = dev->dev_private;
3210
3211 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3212 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3213 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3214
3215 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3216 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3217 dev_priv->rps.cur_freq,
3218 vlv_gpu_freq(dev_priv, val), val);
3219
3220 if (val != dev_priv->rps.cur_freq)
3221 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3222
3223 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3224
3225 dev_priv->rps.cur_freq = val;
3226 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3227 }
3228
3229 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3230 {
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232
3233 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3234 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3235 ~dev_priv->pm_rps_events);
3236 /* Complete PM interrupt masking here doesn't race with the rps work
3237 * item again unmasking PM interrupts because that is using a different
3238 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3239 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3240
3241 spin_lock_irq(&dev_priv->irq_lock);
3242 dev_priv->rps.pm_iir = 0;
3243 spin_unlock_irq(&dev_priv->irq_lock);
3244
3245 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3246 }
3247
3248 static void gen6_disable_rps(struct drm_device *dev)
3249 {
3250 struct drm_i915_private *dev_priv = dev->dev_private;
3251
3252 I915_WRITE(GEN6_RC_CONTROL, 0);
3253 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3254
3255 gen6_disable_rps_interrupts(dev);
3256 }
3257
3258 static void valleyview_disable_rps(struct drm_device *dev)
3259 {
3260 struct drm_i915_private *dev_priv = dev->dev_private;
3261
3262 I915_WRITE(GEN6_RC_CONTROL, 0);
3263
3264 gen6_disable_rps_interrupts(dev);
3265 }
3266
3267 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3268 {
3269 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3270 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3271 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3272 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3273 }
3274
3275 int intel_enable_rc6(const struct drm_device *dev)
3276 {
3277 /* No RC6 before Ironlake */
3278 if (INTEL_INFO(dev)->gen < 5)
3279 return 0;
3280
3281 /* Respect the kernel parameter if it is set */
3282 if (i915.enable_rc6 >= 0)
3283 return i915.enable_rc6;
3284
3285 /* Disable RC6 on Ironlake */
3286 if (INTEL_INFO(dev)->gen == 5)
3287 return 0;
3288
3289 if (IS_IVYBRIDGE(dev))
3290 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3291
3292 return INTEL_RC6_ENABLE;
3293 }
3294
3295 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3296 {
3297 struct drm_i915_private *dev_priv = dev->dev_private;
3298
3299 spin_lock_irq(&dev_priv->irq_lock);
3300 WARN_ON(dev_priv->rps.pm_iir);
3301 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3302 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3303 spin_unlock_irq(&dev_priv->irq_lock);
3304 }
3305
3306 static void gen8_enable_rps(struct drm_device *dev)
3307 {
3308 struct drm_i915_private *dev_priv = dev->dev_private;
3309 struct intel_ring_buffer *ring;
3310 uint32_t rc6_mask = 0, rp_state_cap;
3311 int unused;
3312
3313 /* 1a: Software RC state - RC0 */
3314 I915_WRITE(GEN6_RC_STATE, 0);
3315
3316 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3317 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3318 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3319
3320 /* 2a: Disable RC states. */
3321 I915_WRITE(GEN6_RC_CONTROL, 0);
3322
3323 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3324
3325 /* 2b: Program RC6 thresholds.*/
3326 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3327 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3328 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3329 for_each_ring(ring, dev_priv, unused)
3330 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3331 I915_WRITE(GEN6_RC_SLEEP, 0);
3332 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3333
3334 /* 3: Enable RC6 */
3335 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3336 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3337 intel_print_rc6_info(dev, rc6_mask);
3338 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3339 GEN6_RC_CTL_EI_MODE(1) |
3340 rc6_mask);
3341
3342 /* 4 Program defaults and thresholds for RPS*/
3343 I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3344 I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3345 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3346 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3347
3348 /* Docs recommend 900MHz, and 300 MHz respectively */
3349 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3350 dev_priv->rps.max_freq_softlimit << 24 |
3351 dev_priv->rps.min_freq_softlimit << 16);
3352
3353 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3354 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3355 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3356 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3357
3358 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3359
3360 /* 5: Enable RPS */
3361 I915_WRITE(GEN6_RP_CONTROL,
3362 GEN6_RP_MEDIA_TURBO |
3363 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3364 GEN6_RP_MEDIA_IS_GFX |
3365 GEN6_RP_ENABLE |
3366 GEN6_RP_UP_BUSY_AVG |
3367 GEN6_RP_DOWN_IDLE_AVG);
3368
3369 /* 6: Ring frequency + overclocking (our driver does this later */
3370
3371 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3372
3373 gen6_enable_rps_interrupts(dev);
3374
3375 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3376 }
3377
3378 static void gen6_enable_rps(struct drm_device *dev)
3379 {
3380 struct drm_i915_private *dev_priv = dev->dev_private;
3381 struct intel_ring_buffer *ring;
3382 u32 rp_state_cap;
3383 u32 gt_perf_status;
3384 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3385 u32 gtfifodbg;
3386 int rc6_mode;
3387 int i, ret;
3388
3389 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3390
3391 /* Here begins a magic sequence of register writes to enable
3392 * auto-downclocking.
3393 *
3394 * Perhaps there might be some value in exposing these to
3395 * userspace...
3396 */
3397 I915_WRITE(GEN6_RC_STATE, 0);
3398
3399 /* Clear the DBG now so we don't confuse earlier errors */
3400 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3401 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3402 I915_WRITE(GTFIFODBG, gtfifodbg);
3403 }
3404
3405 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3406
3407 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3408 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3409
3410 /* All of these values are in units of 50MHz */
3411 dev_priv->rps.cur_freq = 0;
3412 /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3413 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
3414 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
3415 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
3416 /* XXX: only BYT has a special efficient freq */
3417 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
3418 /* hw_max = RP0 until we check for overclocking */
3419 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
3420
3421 /* Preserve min/max settings in case of re-init */
3422 if (dev_priv->rps.max_freq_softlimit == 0)
3423 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3424
3425 if (dev_priv->rps.min_freq_softlimit == 0)
3426 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3427
3428 /* disable the counters and set deterministic thresholds */
3429 I915_WRITE(GEN6_RC_CONTROL, 0);
3430
3431 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3432 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3433 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3434 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3435 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3436
3437 for_each_ring(ring, dev_priv, i)
3438 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3439
3440 I915_WRITE(GEN6_RC_SLEEP, 0);
3441 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3442 if (IS_IVYBRIDGE(dev))
3443 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3444 else
3445 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3446 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3447 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3448
3449 /* Check if we are enabling RC6 */
3450 rc6_mode = intel_enable_rc6(dev_priv->dev);
3451 if (rc6_mode & INTEL_RC6_ENABLE)
3452 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3453
3454 /* We don't use those on Haswell */
3455 if (!IS_HASWELL(dev)) {
3456 if (rc6_mode & INTEL_RC6p_ENABLE)
3457 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3458
3459 if (rc6_mode & INTEL_RC6pp_ENABLE)
3460 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3461 }
3462
3463 intel_print_rc6_info(dev, rc6_mask);
3464
3465 I915_WRITE(GEN6_RC_CONTROL,
3466 rc6_mask |
3467 GEN6_RC_CTL_EI_MODE(1) |
3468 GEN6_RC_CTL_HW_ENABLE);
3469
3470 /* Power down if completely idle for over 50ms */
3471 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3472 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3473
3474 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3475 if (ret)
3476 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3477
3478 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3479 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3480 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3481 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3482 (pcu_mbox & 0xff) * 50);
3483 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3484 }
3485
3486 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3487 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3488
3489 gen6_enable_rps_interrupts(dev);
3490
3491 rc6vids = 0;
3492 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3493 if (IS_GEN6(dev) && ret) {
3494 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3495 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3496 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3497 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3498 rc6vids &= 0xffff00;
3499 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3500 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3501 if (ret)
3502 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3503 }
3504
3505 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3506 }
3507
3508 void gen6_update_ring_freq(struct drm_device *dev)
3509 {
3510 struct drm_i915_private *dev_priv = dev->dev_private;
3511 int min_freq = 15;
3512 unsigned int gpu_freq;
3513 unsigned int max_ia_freq, min_ring_freq;
3514 int scaling_factor = 180;
3515 #ifndef __NetBSD__
3516 struct cpufreq_policy *policy;
3517 #endif
3518
3519 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3520
3521 #ifdef __NetBSD__
3522 {
3523 extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
3524 max_ia_freq = (tsc_freq / 1000);
3525 }
3526 #else
3527 policy = cpufreq_cpu_get(0);
3528 if (policy) {
3529 max_ia_freq = policy->cpuinfo.max_freq;
3530 cpufreq_cpu_put(policy);
3531 } else {
3532 /*
3533 * Default to measured freq if none found, PCU will ensure we
3534 * don't go over
3535 */
3536 max_ia_freq = tsc_khz;
3537 }
3538 #endif
3539
3540 /* Convert from kHz to MHz */
3541 max_ia_freq /= 1000;
3542
3543 min_ring_freq = I915_READ(DCLK) & 0xf;
3544 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3545 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3546
3547 /*
3548 * For each potential GPU frequency, load a ring frequency we'd like
3549 * to use for memory access. We do this by specifying the IA frequency
3550 * the PCU should use as a reference to determine the ring frequency.
3551 */
3552 for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3553 gpu_freq--) {
3554 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3555 unsigned int ia_freq = 0, ring_freq = 0;
3556
3557 if (INTEL_INFO(dev)->gen >= 8) {
3558 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3559 ring_freq = max(min_ring_freq, gpu_freq);
3560 } else if (IS_HASWELL(dev)) {
3561 ring_freq = mult_frac(gpu_freq, 5, 4);
3562 ring_freq = max(min_ring_freq, ring_freq);
3563 /* leave ia_freq as the default, chosen by cpufreq */
3564 } else {
3565 /* On older processors, there is no separate ring
3566 * clock domain, so in order to boost the bandwidth
3567 * of the ring, we need to upclock the CPU (ia_freq).
3568 *
3569 * For GPU frequencies less than 750MHz,
3570 * just use the lowest ring freq.
3571 */
3572 if (gpu_freq < min_freq)
3573 ia_freq = 800;
3574 else
3575 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3576 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3577 }
3578
3579 sandybridge_pcode_write(dev_priv,
3580 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3581 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3582 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3583 gpu_freq);
3584 }
3585 }
3586
3587 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3588 {
3589 u32 val, rp0;
3590
3591 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3592
3593 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3594 /* Clamp to max */
3595 rp0 = min_t(u32, rp0, 0xea);
3596
3597 return rp0;
3598 }
3599
3600 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3601 {
3602 u32 val, rpe;
3603
3604 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3605 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3606 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3607 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3608
3609 return rpe;
3610 }
3611
3612 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3613 {
3614 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3615 }
3616
3617 /* Check that the pctx buffer wasn't move under us. */
3618 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3619 {
3620 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3621
3622 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3623 dev_priv->vlv_pctx->stolen->start);
3624 }
3625
3626 static void valleyview_setup_pctx(struct drm_device *dev)
3627 {
3628 struct drm_i915_private *dev_priv = dev->dev_private;
3629 struct drm_i915_gem_object *pctx;
3630 unsigned long pctx_paddr;
3631 u32 pcbr;
3632 int pctx_size = 24*1024;
3633
3634 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3635
3636 pcbr = I915_READ(VLV_PCBR);
3637 if (pcbr) {
3638 /* BIOS set it up already, grab the pre-alloc'd space */
3639 int pcbr_offset;
3640
3641 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3642 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3643 pcbr_offset,
3644 I915_GTT_OFFSET_NONE,
3645 pctx_size);
3646 goto out;
3647 }
3648
3649 /*
3650 * From the Gunit register HAS:
3651 * The Gfx driver is expected to program this register and ensure
3652 * proper allocation within Gfx stolen memory. For example, this
3653 * register should be programmed such than the PCBR range does not
3654 * overlap with other ranges, such as the frame buffer, protected
3655 * memory, or any other relevant ranges.
3656 */
3657 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3658 if (!pctx) {
3659 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3660 return;
3661 }
3662
3663 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3664 I915_WRITE(VLV_PCBR, pctx_paddr);
3665
3666 out:
3667 dev_priv->vlv_pctx = pctx;
3668 }
3669
3670 static void valleyview_cleanup_pctx(struct drm_device *dev)
3671 {
3672 struct drm_i915_private *dev_priv = dev->dev_private;
3673
3674 if (WARN_ON(!dev_priv->vlv_pctx))
3675 return;
3676
3677 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3678 dev_priv->vlv_pctx = NULL;
3679 }
3680
3681 static void valleyview_enable_rps(struct drm_device *dev)
3682 {
3683 struct drm_i915_private *dev_priv = dev->dev_private;
3684 struct intel_ring_buffer *ring;
3685 u32 gtfifodbg, val, rc6_mode = 0;
3686 int i;
3687
3688 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3689
3690 valleyview_check_pctx(dev_priv);
3691
3692 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3693 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3694 gtfifodbg);
3695 I915_WRITE(GTFIFODBG, gtfifodbg);
3696 }
3697
3698 /* If VLV, Forcewake all wells, else re-direct to regular path */
3699 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3700
3701 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3702 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3703 I915_WRITE(GEN6_RP_UP_EI, 66000);
3704 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3705
3706 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3707
3708 I915_WRITE(GEN6_RP_CONTROL,
3709 GEN6_RP_MEDIA_TURBO |
3710 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3711 GEN6_RP_MEDIA_IS_GFX |
3712 GEN6_RP_ENABLE |
3713 GEN6_RP_UP_BUSY_AVG |
3714 GEN6_RP_DOWN_IDLE_CONT);
3715
3716 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3717 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3718 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3719
3720 for_each_ring(ring, dev_priv, i)
3721 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3722
3723 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3724
3725 /* allows RC6 residency counter to work */
3726 I915_WRITE(VLV_COUNTER_CONTROL,
3727 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3728 VLV_MEDIA_RC6_COUNT_EN |
3729 VLV_RENDER_RC6_COUNT_EN));
3730 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3731 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3732
3733 intel_print_rc6_info(dev, rc6_mode);
3734
3735 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3736
3737 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3738
3739 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3740 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3741
3742 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3743 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3744 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3745 dev_priv->rps.cur_freq);
3746
3747 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3748 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3749 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3750 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3751 dev_priv->rps.max_freq);
3752
3753 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3754 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3755 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3756 dev_priv->rps.efficient_freq);
3757
3758 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3759 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3760 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3761 dev_priv->rps.min_freq);
3762
3763 /* Preserve min/max settings in case of re-init */
3764 if (dev_priv->rps.max_freq_softlimit == 0)
3765 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3766
3767 if (dev_priv->rps.min_freq_softlimit == 0)
3768 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3769
3770 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3771 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3772 dev_priv->rps.efficient_freq);
3773
3774 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3775
3776 gen6_enable_rps_interrupts(dev);
3777
3778 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3779 }
3780
3781 void ironlake_teardown_rc6(struct drm_device *dev)
3782 {
3783 struct drm_i915_private *dev_priv = dev->dev_private;
3784
3785 if (dev_priv->ips.renderctx) {
3786 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3787 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3788 dev_priv->ips.renderctx = NULL;
3789 }
3790
3791 if (dev_priv->ips.pwrctx) {
3792 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3793 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3794 dev_priv->ips.pwrctx = NULL;
3795 }
3796 }
3797
3798 static void ironlake_disable_rc6(struct drm_device *dev)
3799 {
3800 struct drm_i915_private *dev_priv = dev->dev_private;
3801
3802 if (I915_READ(PWRCTXA)) {
3803 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3804 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3805 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3806 50);
3807
3808 I915_WRITE(PWRCTXA, 0);
3809 POSTING_READ(PWRCTXA);
3810
3811 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3812 POSTING_READ(RSTDBYCTL);
3813 }
3814 }
3815
3816 static int ironlake_setup_rc6(struct drm_device *dev)
3817 {
3818 struct drm_i915_private *dev_priv = dev->dev_private;
3819
3820 if (dev_priv->ips.renderctx == NULL)
3821 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3822 if (!dev_priv->ips.renderctx)
3823 return -ENOMEM;
3824
3825 if (dev_priv->ips.pwrctx == NULL)
3826 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3827 if (!dev_priv->ips.pwrctx) {
3828 ironlake_teardown_rc6(dev);
3829 return -ENOMEM;
3830 }
3831
3832 return 0;
3833 }
3834
3835 static void ironlake_enable_rc6(struct drm_device *dev)
3836 {
3837 struct drm_i915_private *dev_priv = dev->dev_private;
3838 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3839 bool was_interruptible;
3840 int ret;
3841
3842 /* rc6 disabled by default due to repeated reports of hanging during
3843 * boot and resume.
3844 */
3845 if (!intel_enable_rc6(dev))
3846 return;
3847
3848 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3849
3850 ret = ironlake_setup_rc6(dev);
3851 if (ret)
3852 return;
3853
3854 was_interruptible = dev_priv->mm.interruptible;
3855 dev_priv->mm.interruptible = false;
3856
3857 /*
3858 * GPU can automatically power down the render unit if given a page
3859 * to save state.
3860 */
3861 ret = intel_ring_begin(ring, 6);
3862 if (ret) {
3863 ironlake_teardown_rc6(dev);
3864 dev_priv->mm.interruptible = was_interruptible;
3865 return;
3866 }
3867
3868 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3869 intel_ring_emit(ring, MI_SET_CONTEXT);
3870 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3871 MI_MM_SPACE_GTT |
3872 MI_SAVE_EXT_STATE_EN |
3873 MI_RESTORE_EXT_STATE_EN |
3874 MI_RESTORE_INHIBIT);
3875 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3876 intel_ring_emit(ring, MI_NOOP);
3877 intel_ring_emit(ring, MI_FLUSH);
3878 intel_ring_advance(ring);
3879
3880 /*
3881 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3882 * does an implicit flush, combined with MI_FLUSH above, it should be
3883 * safe to assume that renderctx is valid
3884 */
3885 ret = intel_ring_idle(ring);
3886 dev_priv->mm.interruptible = was_interruptible;
3887 if (ret) {
3888 DRM_ERROR("failed to enable ironlake power savings\n");
3889 ironlake_teardown_rc6(dev);
3890 return;
3891 }
3892
3893 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3894 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3895
3896 intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3897 }
3898
3899 static unsigned long intel_pxfreq(u32 vidfreq)
3900 {
3901 unsigned long freq;
3902 int div = (vidfreq & 0x3f0000) >> 16;
3903 int post = (vidfreq & 0x3000) >> 12;
3904 int pre = (vidfreq & 0x7);
3905
3906 if (!pre)
3907 return 0;
3908
3909 freq = ((div * 133333) / ((1<<post) * pre));
3910
3911 return freq;
3912 }
3913
3914 static const struct cparams {
3915 u16 i;
3916 u16 t;
3917 u16 m;
3918 u16 c;
3919 } cparams[] = {
3920 { 1, 1333, 301, 28664 },
3921 { 1, 1066, 294, 24460 },
3922 { 1, 800, 294, 25192 },
3923 { 0, 1333, 276, 27605 },
3924 { 0, 1066, 276, 27605 },
3925 { 0, 800, 231, 23784 },
3926 };
3927
3928 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3929 {
3930 u64 total_count, diff, ret;
3931 u32 count1, count2, count3, m = 0, c = 0;
3932 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3933 int i;
3934
3935 assert_spin_locked(&mchdev_lock);
3936
3937 diff1 = now - dev_priv->ips.last_time1;
3938
3939 /* Prevent division-by-zero if we are asking too fast.
3940 * Also, we don't get interesting results if we are polling
3941 * faster than once in 10ms, so just return the saved value
3942 * in such cases.
3943 */
3944 if (diff1 <= 10)
3945 return dev_priv->ips.chipset_power;
3946
3947 count1 = I915_READ(DMIEC);
3948 count2 = I915_READ(DDREC);
3949 count3 = I915_READ(CSIEC);
3950
3951 total_count = count1 + count2 + count3;
3952
3953 /* FIXME: handle per-counter overflow */
3954 if (total_count < dev_priv->ips.last_count1) {
3955 diff = ~0UL - dev_priv->ips.last_count1;
3956 diff += total_count;
3957 } else {
3958 diff = total_count - dev_priv->ips.last_count1;
3959 }
3960
3961 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3962 if (cparams[i].i == dev_priv->ips.c_m &&
3963 cparams[i].t == dev_priv->ips.r_t) {
3964 m = cparams[i].m;
3965 c = cparams[i].c;
3966 break;
3967 }
3968 }
3969
3970 diff = div_u64(diff, diff1);
3971 ret = ((m * diff) + c);
3972 ret = div_u64(ret, 10);
3973
3974 dev_priv->ips.last_count1 = total_count;
3975 dev_priv->ips.last_time1 = now;
3976
3977 dev_priv->ips.chipset_power = ret;
3978
3979 return ret;
3980 }
3981
3982 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3983 {
3984 struct drm_device *dev = dev_priv->dev;
3985 unsigned long val;
3986
3987 if (INTEL_INFO(dev)->gen != 5)
3988 return 0;
3989
3990 spin_lock_irq(&mchdev_lock);
3991
3992 val = __i915_chipset_val(dev_priv);
3993
3994 spin_unlock_irq(&mchdev_lock);
3995
3996 return val;
3997 }
3998
3999 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4000 {
4001 unsigned long m, x, b;
4002 u32 tsfs;
4003
4004 tsfs = I915_READ(TSFS);
4005
4006 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4007 x = I915_READ8(TR1);
4008
4009 b = tsfs & TSFS_INTR_MASK;
4010
4011 return ((m * x) / 127) - b;
4012 }
4013
4014 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4015 {
4016 struct drm_device *dev = dev_priv->dev;
4017 static const struct v_table {
4018 u16 vd; /* in .1 mil */
4019 u16 vm; /* in .1 mil */
4020 } v_table[] = {
4021 { 0, 0, },
4022 { 375, 0, },
4023 { 500, 0, },
4024 { 625, 0, },
4025 { 750, 0, },
4026 { 875, 0, },
4027 { 1000, 0, },
4028 { 1125, 0, },
4029 { 4125, 3000, },
4030 { 4125, 3000, },
4031 { 4125, 3000, },
4032 { 4125, 3000, },
4033 { 4125, 3000, },
4034 { 4125, 3000, },
4035 { 4125, 3000, },
4036 { 4125, 3000, },
4037 { 4125, 3000, },
4038 { 4125, 3000, },
4039 { 4125, 3000, },
4040 { 4125, 3000, },
4041 { 4125, 3000, },
4042 { 4125, 3000, },
4043 { 4125, 3000, },
4044 { 4125, 3000, },
4045 { 4125, 3000, },
4046 { 4125, 3000, },
4047 { 4125, 3000, },
4048 { 4125, 3000, },
4049 { 4125, 3000, },
4050 { 4125, 3000, },
4051 { 4125, 3000, },
4052 { 4125, 3000, },
4053 { 4250, 3125, },
4054 { 4375, 3250, },
4055 { 4500, 3375, },
4056 { 4625, 3500, },
4057 { 4750, 3625, },
4058 { 4875, 3750, },
4059 { 5000, 3875, },
4060 { 5125, 4000, },
4061 { 5250, 4125, },
4062 { 5375, 4250, },
4063 { 5500, 4375, },
4064 { 5625, 4500, },
4065 { 5750, 4625, },
4066 { 5875, 4750, },
4067 { 6000, 4875, },
4068 { 6125, 5000, },
4069 { 6250, 5125, },
4070 { 6375, 5250, },
4071 { 6500, 5375, },
4072 { 6625, 5500, },
4073 { 6750, 5625, },
4074 { 6875, 5750, },
4075 { 7000, 5875, },
4076 { 7125, 6000, },
4077 { 7250, 6125, },
4078 { 7375, 6250, },
4079 { 7500, 6375, },
4080 { 7625, 6500, },
4081 { 7750, 6625, },
4082 { 7875, 6750, },
4083 { 8000, 6875, },
4084 { 8125, 7000, },
4085 { 8250, 7125, },
4086 { 8375, 7250, },
4087 { 8500, 7375, },
4088 { 8625, 7500, },
4089 { 8750, 7625, },
4090 { 8875, 7750, },
4091 { 9000, 7875, },
4092 { 9125, 8000, },
4093 { 9250, 8125, },
4094 { 9375, 8250, },
4095 { 9500, 8375, },
4096 { 9625, 8500, },
4097 { 9750, 8625, },
4098 { 9875, 8750, },
4099 { 10000, 8875, },
4100 { 10125, 9000, },
4101 { 10250, 9125, },
4102 { 10375, 9250, },
4103 { 10500, 9375, },
4104 { 10625, 9500, },
4105 { 10750, 9625, },
4106 { 10875, 9750, },
4107 { 11000, 9875, },
4108 { 11125, 10000, },
4109 { 11250, 10125, },
4110 { 11375, 10250, },
4111 { 11500, 10375, },
4112 { 11625, 10500, },
4113 { 11750, 10625, },
4114 { 11875, 10750, },
4115 { 12000, 10875, },
4116 { 12125, 11000, },
4117 { 12250, 11125, },
4118 { 12375, 11250, },
4119 { 12500, 11375, },
4120 { 12625, 11500, },
4121 { 12750, 11625, },
4122 { 12875, 11750, },
4123 { 13000, 11875, },
4124 { 13125, 12000, },
4125 { 13250, 12125, },
4126 { 13375, 12250, },
4127 { 13500, 12375, },
4128 { 13625, 12500, },
4129 { 13750, 12625, },
4130 { 13875, 12750, },
4131 { 14000, 12875, },
4132 { 14125, 13000, },
4133 { 14250, 13125, },
4134 { 14375, 13250, },
4135 { 14500, 13375, },
4136 { 14625, 13500, },
4137 { 14750, 13625, },
4138 { 14875, 13750, },
4139 { 15000, 13875, },
4140 { 15125, 14000, },
4141 { 15250, 14125, },
4142 { 15375, 14250, },
4143 { 15500, 14375, },
4144 { 15625, 14500, },
4145 { 15750, 14625, },
4146 { 15875, 14750, },
4147 { 16000, 14875, },
4148 { 16125, 15000, },
4149 };
4150 if (INTEL_INFO(dev)->is_mobile)
4151 return v_table[pxvid].vm;
4152 else
4153 return v_table[pxvid].vd;
4154 }
4155
4156 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4157 {
4158 struct timespec now, diff1;
4159 u64 diff;
4160 unsigned long diffms;
4161 u32 count;
4162
4163 assert_spin_locked(&mchdev_lock);
4164
4165 getrawmonotonic(&now);
4166 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4167
4168 /* Don't divide by 0 */
4169 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4170 if (!diffms)
4171 return;
4172
4173 count = I915_READ(GFXEC);
4174
4175 if (count < dev_priv->ips.last_count2) {
4176 diff = ~0UL - dev_priv->ips.last_count2;
4177 diff += count;
4178 } else {
4179 diff = count - dev_priv->ips.last_count2;
4180 }
4181
4182 dev_priv->ips.last_count2 = count;
4183 dev_priv->ips.last_time2 = now;
4184
4185 /* More magic constants... */
4186 diff = diff * 1181;
4187 diff = div_u64(diff, diffms * 10);
4188 dev_priv->ips.gfx_power = diff;
4189 }
4190
4191 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4192 {
4193 struct drm_device *dev = dev_priv->dev;
4194
4195 if (INTEL_INFO(dev)->gen != 5)
4196 return;
4197
4198 spin_lock_irq(&mchdev_lock);
4199
4200 __i915_update_gfx_val(dev_priv);
4201
4202 spin_unlock_irq(&mchdev_lock);
4203 }
4204
4205 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4206 {
4207 unsigned long t, corr, state1, corr2, state2;
4208 u32 pxvid, ext_v;
4209
4210 assert_spin_locked(&mchdev_lock);
4211
4212 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4213 pxvid = (pxvid >> 24) & 0x7f;
4214 ext_v = pvid_to_extvid(dev_priv, pxvid);
4215
4216 state1 = ext_v;
4217
4218 t = i915_mch_val(dev_priv);
4219
4220 /* Revel in the empirically derived constants */
4221
4222 /* Correction factor in 1/100000 units */
4223 if (t > 80)
4224 corr = ((t * 2349) + 135940);
4225 else if (t >= 50)
4226 corr = ((t * 964) + 29317);
4227 else /* < 50 */
4228 corr = ((t * 301) + 1004);
4229
4230 corr = corr * ((150142 * state1) / 10000 - 78642);
4231 corr /= 100000;
4232 corr2 = (corr * dev_priv->ips.corr);
4233
4234 state2 = (corr2 * state1) / 10000;
4235 state2 /= 100; /* convert to mW */
4236
4237 __i915_update_gfx_val(dev_priv);
4238
4239 return dev_priv->ips.gfx_power + state2;
4240 }
4241
4242 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4243 {
4244 struct drm_device *dev = dev_priv->dev;
4245 unsigned long val;
4246
4247 if (INTEL_INFO(dev)->gen != 5)
4248 return 0;
4249
4250 spin_lock_irq(&mchdev_lock);
4251
4252 val = __i915_gfx_val(dev_priv);
4253
4254 spin_unlock_irq(&mchdev_lock);
4255
4256 return val;
4257 }
4258
4259 /**
4260 * i915_read_mch_val - return value for IPS use
4261 *
4262 * Calculate and return a value for the IPS driver to use when deciding whether
4263 * we have thermal and power headroom to increase CPU or GPU power budget.
4264 */
4265 unsigned long i915_read_mch_val(void)
4266 {
4267 struct drm_i915_private *dev_priv;
4268 unsigned long chipset_val, graphics_val, ret = 0;
4269
4270 spin_lock_irq(&mchdev_lock);
4271 if (!i915_mch_dev)
4272 goto out_unlock;
4273 dev_priv = i915_mch_dev;
4274
4275 chipset_val = __i915_chipset_val(dev_priv);
4276 graphics_val = __i915_gfx_val(dev_priv);
4277
4278 ret = chipset_val + graphics_val;
4279
4280 out_unlock:
4281 spin_unlock_irq(&mchdev_lock);
4282
4283 return ret;
4284 }
4285 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4286
4287 /**
4288 * i915_gpu_raise - raise GPU frequency limit
4289 *
4290 * Raise the limit; IPS indicates we have thermal headroom.
4291 */
4292 bool i915_gpu_raise(void)
4293 {
4294 struct drm_i915_private *dev_priv;
4295 bool ret = true;
4296
4297 spin_lock_irq(&mchdev_lock);
4298 if (!i915_mch_dev) {
4299 ret = false;
4300 goto out_unlock;
4301 }
4302 dev_priv = i915_mch_dev;
4303
4304 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4305 dev_priv->ips.max_delay--;
4306
4307 out_unlock:
4308 spin_unlock_irq(&mchdev_lock);
4309
4310 return ret;
4311 }
4312 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4313
4314 /**
4315 * i915_gpu_lower - lower GPU frequency limit
4316 *
4317 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4318 * frequency maximum.
4319 */
4320 bool i915_gpu_lower(void)
4321 {
4322 struct drm_i915_private *dev_priv;
4323 bool ret = true;
4324
4325 spin_lock_irq(&mchdev_lock);
4326 if (!i915_mch_dev) {
4327 ret = false;
4328 goto out_unlock;
4329 }
4330 dev_priv = i915_mch_dev;
4331
4332 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4333 dev_priv->ips.max_delay++;
4334
4335 out_unlock:
4336 spin_unlock_irq(&mchdev_lock);
4337
4338 return ret;
4339 }
4340 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4341
4342 /**
4343 * i915_gpu_busy - indicate GPU business to IPS
4344 *
4345 * Tell the IPS driver whether or not the GPU is busy.
4346 */
4347 bool i915_gpu_busy(void)
4348 {
4349 struct drm_i915_private *dev_priv;
4350 struct intel_ring_buffer *ring;
4351 bool ret = false;
4352 int i;
4353
4354 spin_lock_irq(&mchdev_lock);
4355 if (!i915_mch_dev)
4356 goto out_unlock;
4357 dev_priv = i915_mch_dev;
4358
4359 for_each_ring(ring, dev_priv, i)
4360 ret |= !list_empty(&ring->request_list);
4361
4362 out_unlock:
4363 spin_unlock_irq(&mchdev_lock);
4364
4365 return ret;
4366 }
4367 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4368
4369 /**
4370 * i915_gpu_turbo_disable - disable graphics turbo
4371 *
4372 * Disable graphics turbo by resetting the max frequency and setting the
4373 * current frequency to the default.
4374 */
4375 bool i915_gpu_turbo_disable(void)
4376 {
4377 struct drm_i915_private *dev_priv;
4378 bool ret = true;
4379
4380 spin_lock_irq(&mchdev_lock);
4381 if (!i915_mch_dev) {
4382 ret = false;
4383 goto out_unlock;
4384 }
4385 dev_priv = i915_mch_dev;
4386
4387 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4388
4389 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4390 ret = false;
4391
4392 out_unlock:
4393 spin_unlock_irq(&mchdev_lock);
4394
4395 return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4398
4399 /**
4400 * Tells the intel_ips driver that the i915 driver is now loaded, if
4401 * IPS got loaded first.
4402 *
4403 * This awkward dance is so that neither module has to depend on the
4404 * other in order for IPS to do the appropriate communication of
4405 * GPU turbo limits to i915.
4406 */
4407 static void
4408 ips_ping_for_i915_load(void)
4409 {
4410 void (*link)(void);
4411
4412 link = symbol_get(ips_link_to_i915_driver);
4413 if (link) {
4414 link();
4415 symbol_put(ips_link_to_i915_driver);
4416 }
4417 }
4418
4419 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4420 {
4421 #ifdef __NetBSD__ /* XXX */
4422 /*
4423 * This seems as good a place as any to initialize mchdev_lock.
4424 * Taking the lock in the rest of this routine is silly, but...
4425 */
4426 spin_lock_init(&mchdev_lock);
4427 #endif
4428
4429 /* We only register the i915 ips part with intel-ips once everything is
4430 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4431 spin_lock_irq(&mchdev_lock);
4432 i915_mch_dev = dev_priv;
4433 spin_unlock_irq(&mchdev_lock);
4434
4435 ips_ping_for_i915_load();
4436 }
4437
4438 void intel_gpu_ips_teardown(void)
4439 {
4440 #ifdef __NetBSD__
4441 if (i915_mch_dev == NULL)
4442 return;
4443 #endif
4444
4445 spin_lock_irq(&mchdev_lock);
4446 i915_mch_dev = NULL;
4447 spin_unlock_irq(&mchdev_lock);
4448
4449 #ifdef __NetBSD__
4450 spin_lock_destroy(&mchdev_lock);
4451 #endif
4452 }
4453
4454 static void intel_init_emon(struct drm_device *dev)
4455 {
4456 struct drm_i915_private *dev_priv = dev->dev_private;
4457 u32 lcfuse;
4458 u8 pxw[16];
4459 int i;
4460
4461 /* Disable to program */
4462 I915_WRITE(ECR, 0);
4463 POSTING_READ(ECR);
4464
4465 /* Program energy weights for various events */
4466 I915_WRITE(SDEW, 0x15040d00);
4467 I915_WRITE(CSIEW0, 0x007f0000);
4468 I915_WRITE(CSIEW1, 0x1e220004);
4469 I915_WRITE(CSIEW2, 0x04000004);
4470
4471 for (i = 0; i < 5; i++)
4472 I915_WRITE(PEW + (i * 4), 0);
4473 for (i = 0; i < 3; i++)
4474 I915_WRITE(DEW + (i * 4), 0);
4475
4476 /* Program P-state weights to account for frequency power adjustment */
4477 for (i = 0; i < 16; i++) {
4478 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4479 unsigned long freq = intel_pxfreq(pxvidfreq);
4480 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4481 PXVFREQ_PX_SHIFT;
4482 unsigned long val;
4483
4484 val = vid * vid;
4485 val *= (freq / 1000);
4486 val *= 255;
4487 val /= (127*127*900);
4488 if (val > 0xff)
4489 DRM_ERROR("bad pxval: %ld\n", val);
4490 pxw[i] = val;
4491 }
4492 /* Render standby states get 0 weight */
4493 pxw[14] = 0;
4494 pxw[15] = 0;
4495
4496 for (i = 0; i < 4; i++) {
4497 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4498 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4499 I915_WRITE(PXW + (i * 4), val);
4500 }
4501
4502 /* Adjust magic regs to magic values (more experimental results) */
4503 I915_WRITE(OGW0, 0);
4504 I915_WRITE(OGW1, 0);
4505 I915_WRITE(EG0, 0x00007f00);
4506 I915_WRITE(EG1, 0x0000000e);
4507 I915_WRITE(EG2, 0x000e0000);
4508 I915_WRITE(EG3, 0x68000300);
4509 I915_WRITE(EG4, 0x42000000);
4510 I915_WRITE(EG5, 0x00140031);
4511 I915_WRITE(EG6, 0);
4512 I915_WRITE(EG7, 0);
4513
4514 for (i = 0; i < 8; i++)
4515 I915_WRITE(PXWL + (i * 4), 0);
4516
4517 /* Enable PMON + select events */
4518 I915_WRITE(ECR, 0x80000019);
4519
4520 lcfuse = I915_READ(LCFUSE02);
4521
4522 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4523 }
4524
4525 void intel_init_gt_powersave(struct drm_device *dev)
4526 {
4527 if (IS_VALLEYVIEW(dev))
4528 valleyview_setup_pctx(dev);
4529 }
4530
4531 void intel_cleanup_gt_powersave(struct drm_device *dev)
4532 {
4533 if (IS_VALLEYVIEW(dev))
4534 valleyview_cleanup_pctx(dev);
4535 }
4536
4537 void intel_disable_gt_powersave(struct drm_device *dev)
4538 {
4539 struct drm_i915_private *dev_priv = dev->dev_private;
4540
4541 /* Interrupts should be disabled already to avoid re-arming. */
4542 WARN_ON(dev->irq_enabled);
4543
4544 if (IS_IRONLAKE_M(dev)) {
4545 ironlake_disable_drps(dev);
4546 ironlake_disable_rc6(dev);
4547 } else if (INTEL_INFO(dev)->gen >= 6) {
4548 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4549 cancel_work_sync(&dev_priv->rps.work);
4550 mutex_lock(&dev_priv->rps.hw_lock);
4551 if (IS_VALLEYVIEW(dev))
4552 valleyview_disable_rps(dev);
4553 else
4554 gen6_disable_rps(dev);
4555 dev_priv->rps.enabled = false;
4556 mutex_unlock(&dev_priv->rps.hw_lock);
4557 }
4558 }
4559
4560 static void intel_gen6_powersave_work(struct work_struct *work)
4561 {
4562 struct drm_i915_private *dev_priv =
4563 container_of(work, struct drm_i915_private,
4564 rps.delayed_resume_work.work);
4565 struct drm_device *dev = dev_priv->dev;
4566
4567 mutex_lock(&dev_priv->rps.hw_lock);
4568
4569 if (IS_VALLEYVIEW(dev)) {
4570 valleyview_enable_rps(dev);
4571 } else if (IS_BROADWELL(dev)) {
4572 gen8_enable_rps(dev);
4573 gen6_update_ring_freq(dev);
4574 } else {
4575 gen6_enable_rps(dev);
4576 gen6_update_ring_freq(dev);
4577 }
4578 dev_priv->rps.enabled = true;
4579 mutex_unlock(&dev_priv->rps.hw_lock);
4580 }
4581
4582 void intel_enable_gt_powersave(struct drm_device *dev)
4583 {
4584 struct drm_i915_private *dev_priv = dev->dev_private;
4585
4586 if (IS_IRONLAKE_M(dev)) {
4587 ironlake_enable_drps(dev);
4588 ironlake_enable_rc6(dev);
4589 intel_init_emon(dev);
4590 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4591 /*
4592 * PCU communication is slow and this doesn't need to be
4593 * done at any specific time, so do this out of our fast path
4594 * to make resume and init faster.
4595 */
4596 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4597 round_jiffies_up_relative(HZ));
4598 }
4599 }
4600
4601 static void ibx_init_clock_gating(struct drm_device *dev)
4602 {
4603 struct drm_i915_private *dev_priv = dev->dev_private;
4604
4605 /*
4606 * On Ibex Peak and Cougar Point, we need to disable clock
4607 * gating for the panel power sequencer or it will fail to
4608 * start up when no ports are active.
4609 */
4610 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4611 }
4612
4613 static void g4x_disable_trickle_feed(struct drm_device *dev)
4614 {
4615 struct drm_i915_private *dev_priv = dev->dev_private;
4616 int pipe;
4617
4618 for_each_pipe(pipe) {
4619 I915_WRITE(DSPCNTR(pipe),
4620 I915_READ(DSPCNTR(pipe)) |
4621 DISPPLANE_TRICKLE_FEED_DISABLE);
4622 intel_flush_primary_plane(dev_priv, pipe);
4623 }
4624 }
4625
4626 static void ilk_init_lp_watermarks(struct drm_device *dev)
4627 {
4628 struct drm_i915_private *dev_priv = dev->dev_private;
4629
4630 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4631 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4632 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4633
4634 /*
4635 * Don't touch WM1S_LP_EN here.
4636 * Doing so could cause underruns.
4637 */
4638 }
4639
4640 static void ironlake_init_clock_gating(struct drm_device *dev)
4641 {
4642 struct drm_i915_private *dev_priv = dev->dev_private;
4643 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4644
4645 /*
4646 * Required for FBC
4647 * WaFbcDisableDpfcClockGating:ilk
4648 */
4649 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4650 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4651 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4652
4653 I915_WRITE(PCH_3DCGDIS0,
4654 MARIUNIT_CLOCK_GATE_DISABLE |
4655 SVSMUNIT_CLOCK_GATE_DISABLE);
4656 I915_WRITE(PCH_3DCGDIS1,
4657 VFMUNIT_CLOCK_GATE_DISABLE);
4658
4659 /*
4660 * According to the spec the following bits should be set in
4661 * order to enable memory self-refresh
4662 * The bit 22/21 of 0x42004
4663 * The bit 5 of 0x42020
4664 * The bit 15 of 0x45000
4665 */
4666 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4667 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4668 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4669 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4670 I915_WRITE(DISP_ARB_CTL,
4671 (I915_READ(DISP_ARB_CTL) |
4672 DISP_FBC_WM_DIS));
4673
4674 ilk_init_lp_watermarks(dev);
4675
4676 /*
4677 * Based on the document from hardware guys the following bits
4678 * should be set unconditionally in order to enable FBC.
4679 * The bit 22 of 0x42000
4680 * The bit 22 of 0x42004
4681 * The bit 7,8,9 of 0x42020.
4682 */
4683 if (IS_IRONLAKE_M(dev)) {
4684 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4685 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4686 I915_READ(ILK_DISPLAY_CHICKEN1) |
4687 ILK_FBCQ_DIS);
4688 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4689 I915_READ(ILK_DISPLAY_CHICKEN2) |
4690 ILK_DPARB_GATE);
4691 }
4692
4693 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4694
4695 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4696 I915_READ(ILK_DISPLAY_CHICKEN2) |
4697 ILK_ELPIN_409_SELECT);
4698 I915_WRITE(_3D_CHICKEN2,
4699 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4700 _3D_CHICKEN2_WM_READ_PIPELINED);
4701
4702 /* WaDisableRenderCachePipelinedFlush:ilk */
4703 I915_WRITE(CACHE_MODE_0,
4704 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4705
4706 g4x_disable_trickle_feed(dev);
4707
4708 ibx_init_clock_gating(dev);
4709 }
4710
4711 static void cpt_init_clock_gating(struct drm_device *dev)
4712 {
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714 int pipe;
4715 uint32_t val;
4716
4717 /*
4718 * On Ibex Peak and Cougar Point, we need to disable clock
4719 * gating for the panel power sequencer or it will fail to
4720 * start up when no ports are active.
4721 */
4722 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4723 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4724 PCH_CPUNIT_CLOCK_GATE_DISABLE);
4725 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4726 DPLS_EDP_PPS_FIX_DIS);
4727 /* The below fixes the weird display corruption, a few pixels shifted
4728 * downward, on (only) LVDS of some HP laptops with IVY.
4729 */
4730 for_each_pipe(pipe) {
4731 val = I915_READ(TRANS_CHICKEN2(pipe));
4732 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4733 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4734 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4735 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4736 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4737 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4738 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4739 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4740 }
4741 /* WADP0ClockGatingDisable */
4742 for_each_pipe(pipe) {
4743 I915_WRITE(TRANS_CHICKEN1(pipe),
4744 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4745 }
4746 }
4747
4748 static void gen6_check_mch_setup(struct drm_device *dev)
4749 {
4750 struct drm_i915_private *dev_priv = dev->dev_private;
4751 uint32_t tmp;
4752
4753 tmp = I915_READ(MCH_SSKPD);
4754 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4755 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4756 DRM_INFO("This can cause pipe underruns and display issues.\n");
4757 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4758 }
4759 }
4760
4761 static void gen6_init_clock_gating(struct drm_device *dev)
4762 {
4763 struct drm_i915_private *dev_priv = dev->dev_private;
4764 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4765
4766 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4767
4768 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4769 I915_READ(ILK_DISPLAY_CHICKEN2) |
4770 ILK_ELPIN_409_SELECT);
4771
4772 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4773 I915_WRITE(_3D_CHICKEN,
4774 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4775
4776 /* WaSetupGtModeTdRowDispatch:snb */
4777 if (IS_SNB_GT1(dev))
4778 I915_WRITE(GEN6_GT_MODE,
4779 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4780
4781 /*
4782 * BSpec recoomends 8x4 when MSAA is used,
4783 * however in practice 16x4 seems fastest.
4784 *
4785 * Note that PS/WM thread counts depend on the WIZ hashing
4786 * disable bit, which we don't touch here, but it's good
4787 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4788 */
4789 I915_WRITE(GEN6_GT_MODE,
4790 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4791
4792 ilk_init_lp_watermarks(dev);
4793
4794 I915_WRITE(CACHE_MODE_0,
4795 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4796
4797 I915_WRITE(GEN6_UCGCTL1,
4798 I915_READ(GEN6_UCGCTL1) |
4799 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4800 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4801
4802 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4803 * gating disable must be set. Failure to set it results in
4804 * flickering pixels due to Z write ordering failures after
4805 * some amount of runtime in the Mesa "fire" demo, and Unigine
4806 * Sanctuary and Tropics, and apparently anything else with
4807 * alpha test or pixel discard.
4808 *
4809 * According to the spec, bit 11 (RCCUNIT) must also be set,
4810 * but we didn't debug actual testcases to find it out.
4811 *
4812 * WaDisableRCCUnitClockGating:snb
4813 * WaDisableRCPBUnitClockGating:snb
4814 */
4815 I915_WRITE(GEN6_UCGCTL2,
4816 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4817 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4818
4819 /* WaStripsFansDisableFastClipPerformanceFix:snb */
4820 I915_WRITE(_3D_CHICKEN3,
4821 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4822
4823 /*
4824 * Bspec says:
4825 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4826 * 3DSTATE_SF number of SF output attributes is more than 16."
4827 */
4828 I915_WRITE(_3D_CHICKEN3,
4829 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4830
4831 /*
4832 * According to the spec the following bits should be
4833 * set in order to enable memory self-refresh and fbc:
4834 * The bit21 and bit22 of 0x42000
4835 * The bit21 and bit22 of 0x42004
4836 * The bit5 and bit7 of 0x42020
4837 * The bit14 of 0x70180
4838 * The bit14 of 0x71180
4839 *
4840 * WaFbcAsynchFlipDisableFbcQueue:snb
4841 */
4842 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4843 I915_READ(ILK_DISPLAY_CHICKEN1) |
4844 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4845 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4846 I915_READ(ILK_DISPLAY_CHICKEN2) |
4847 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4848 I915_WRITE(ILK_DSPCLK_GATE_D,
4849 I915_READ(ILK_DSPCLK_GATE_D) |
4850 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4851 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4852
4853 g4x_disable_trickle_feed(dev);
4854
4855 cpt_init_clock_gating(dev);
4856
4857 gen6_check_mch_setup(dev);
4858 }
4859
4860 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4861 {
4862 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4863
4864 /*
4865 * WaVSThreadDispatchOverride:ivb,vlv
4866 *
4867 * This actually overrides the dispatch
4868 * mode for all thread types.
4869 */
4870 reg &= ~GEN7_FF_SCHED_MASK;
4871 reg |= GEN7_FF_TS_SCHED_HW;
4872 reg |= GEN7_FF_VS_SCHED_HW;
4873 reg |= GEN7_FF_DS_SCHED_HW;
4874
4875 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4876 }
4877
4878 static void lpt_init_clock_gating(struct drm_device *dev)
4879 {
4880 struct drm_i915_private *dev_priv = dev->dev_private;
4881
4882 /*
4883 * TODO: this bit should only be enabled when really needed, then
4884 * disabled when not needed anymore in order to save power.
4885 */
4886 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4887 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4888 I915_READ(SOUTH_DSPCLK_GATE_D) |
4889 PCH_LP_PARTITION_LEVEL_DISABLE);
4890
4891 /* WADPOClockGatingDisable:hsw */
4892 I915_WRITE(_TRANSA_CHICKEN1,
4893 I915_READ(_TRANSA_CHICKEN1) |
4894 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4895 }
4896
4897 static void lpt_suspend_hw(struct drm_device *dev)
4898 {
4899 struct drm_i915_private *dev_priv = dev->dev_private;
4900
4901 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4902 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4903
4904 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4905 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4906 }
4907 }
4908
4909 static void gen8_init_clock_gating(struct drm_device *dev)
4910 {
4911 struct drm_i915_private *dev_priv = dev->dev_private;
4912 enum pipe pipe;
4913
4914 I915_WRITE(WM3_LP_ILK, 0);
4915 I915_WRITE(WM2_LP_ILK, 0);
4916 I915_WRITE(WM1_LP_ILK, 0);
4917
4918 /* FIXME(BDW): Check all the w/a, some might only apply to
4919 * pre-production hw. */
4920
4921 /* WaDisablePartialInstShootdown:bdw */
4922 I915_WRITE(GEN8_ROW_CHICKEN,
4923 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
4924
4925 /* WaDisableThreadStallDopClockGating:bdw */
4926 /* FIXME: Unclear whether we really need this on production bdw. */
4927 I915_WRITE(GEN8_ROW_CHICKEN,
4928 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
4929
4930 /*
4931 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4932 * pre-production hardware
4933 */
4934 I915_WRITE(HALF_SLICE_CHICKEN3,
4935 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4936 I915_WRITE(HALF_SLICE_CHICKEN3,
4937 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4938 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4939
4940 I915_WRITE(_3D_CHICKEN3,
4941 _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4942
4943 I915_WRITE(COMMON_SLICE_CHICKEN2,
4944 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4945
4946 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4947 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4948
4949 /* WaSwitchSolVfFArbitrationPriority:bdw */
4950 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4951
4952 /* WaPsrDPAMaskVBlankInSRD:bdw */
4953 I915_WRITE(CHICKEN_PAR1_1,
4954 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4955
4956 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4957 for_each_pipe(pipe) {
4958 I915_WRITE(CHICKEN_PIPESL_1(pipe),
4959 I915_READ(CHICKEN_PIPESL_1(pipe)) |
4960 BDW_DPRS_MASK_VBLANK_SRD);
4961 }
4962
4963 /* Use Force Non-Coherent whenever executing a 3D context. This is a
4964 * workaround for for a possible hang in the unlikely event a TLB
4965 * invalidation occurs during a PSD flush.
4966 */
4967 I915_WRITE(HDC_CHICKEN0,
4968 I915_READ(HDC_CHICKEN0) |
4969 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4970
4971 /* WaVSRefCountFullforceMissDisable:bdw */
4972 /* WaDSRefCountFullforceMissDisable:bdw */
4973 I915_WRITE(GEN7_FF_THREAD_MODE,
4974 I915_READ(GEN7_FF_THREAD_MODE) &
4975 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4976
4977 /*
4978 * BSpec recommends 8x4 when MSAA is used,
4979 * however in practice 16x4 seems fastest.
4980 *
4981 * Note that PS/WM thread counts depend on the WIZ hashing
4982 * disable bit, which we don't touch here, but it's good
4983 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4984 */
4985 I915_WRITE(GEN7_GT_MODE,
4986 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4987
4988 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
4989 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4990
4991 /* WaDisableSDEUnitClockGating:bdw */
4992 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
4993 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4994
4995 /* Wa4x4STCOptimizationDisable:bdw */
4996 I915_WRITE(CACHE_MODE_1,
4997 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
4998 }
4999
5000 static void haswell_init_clock_gating(struct drm_device *dev)
5001 {
5002 struct drm_i915_private *dev_priv = dev->dev_private;
5003
5004 ilk_init_lp_watermarks(dev);
5005
5006 /* L3 caching of data atomics doesn't work -- disable it. */
5007 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5008 I915_WRITE(HSW_ROW_CHICKEN3,
5009 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5010
5011 /* This is required by WaCatErrorRejectionIssue:hsw */
5012 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5013 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5014 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5015
5016 /* WaVSRefCountFullforceMissDisable:hsw */
5017 I915_WRITE(GEN7_FF_THREAD_MODE,
5018 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5019
5020 /* enable HiZ Raw Stall Optimization */
5021 I915_WRITE(CACHE_MODE_0_GEN7,
5022 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5023
5024 /* WaDisable4x2SubspanOptimization:hsw */
5025 I915_WRITE(CACHE_MODE_1,
5026 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5027
5028 /*
5029 * BSpec recommends 8x4 when MSAA is used,
5030 * however in practice 16x4 seems fastest.
5031 *
5032 * Note that PS/WM thread counts depend on the WIZ hashing
5033 * disable bit, which we don't touch here, but it's good
5034 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5035 */
5036 I915_WRITE(GEN7_GT_MODE,
5037 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5038
5039 /* WaSwitchSolVfFArbitrationPriority:hsw */
5040 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5041
5042 /* WaRsPkgCStateDisplayPMReq:hsw */
5043 I915_WRITE(CHICKEN_PAR1_1,
5044 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5045
5046 lpt_init_clock_gating(dev);
5047 }
5048
5049 static void ivybridge_init_clock_gating(struct drm_device *dev)
5050 {
5051 struct drm_i915_private *dev_priv = dev->dev_private;
5052 uint32_t snpcr;
5053
5054 ilk_init_lp_watermarks(dev);
5055
5056 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5057
5058 /* WaDisableEarlyCull:ivb */
5059 I915_WRITE(_3D_CHICKEN3,
5060 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5061
5062 /* WaDisableBackToBackFlipFix:ivb */
5063 I915_WRITE(IVB_CHICKEN3,
5064 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5065 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5066
5067 /* WaDisablePSDDualDispatchEnable:ivb */
5068 if (IS_IVB_GT1(dev))
5069 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5070 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5071
5072 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5073 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5074 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5075
5076 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5077 I915_WRITE(GEN7_L3CNTLREG1,
5078 GEN7_WA_FOR_GEN7_L3_CONTROL);
5079 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5080 GEN7_WA_L3_CHICKEN_MODE);
5081 if (IS_IVB_GT1(dev))
5082 I915_WRITE(GEN7_ROW_CHICKEN2,
5083 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5084 else {
5085 /* must write both registers */
5086 I915_WRITE(GEN7_ROW_CHICKEN2,
5087 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5088 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5089 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5090 }
5091
5092 /* WaForceL3Serialization:ivb */
5093 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5094 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5095
5096 /*
5097 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5098 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5099 */
5100 I915_WRITE(GEN6_UCGCTL2,
5101 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5102
5103 /* This is required by WaCatErrorRejectionIssue:ivb */
5104 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5105 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5106 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5107
5108 g4x_disable_trickle_feed(dev);
5109
5110 gen7_setup_fixed_func_scheduler(dev_priv);
5111
5112 if (0) { /* causes HiZ corruption on ivb:gt1 */
5113 /* enable HiZ Raw Stall Optimization */
5114 I915_WRITE(CACHE_MODE_0_GEN7,
5115 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5116 }
5117
5118 /* WaDisable4x2SubspanOptimization:ivb */
5119 I915_WRITE(CACHE_MODE_1,
5120 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5121
5122 /*
5123 * BSpec recommends 8x4 when MSAA is used,
5124 * however in practice 16x4 seems fastest.
5125 *
5126 * Note that PS/WM thread counts depend on the WIZ hashing
5127 * disable bit, which we don't touch here, but it's good
5128 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5129 */
5130 I915_WRITE(GEN7_GT_MODE,
5131 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5132
5133 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5134 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5135 snpcr |= GEN6_MBC_SNPCR_MED;
5136 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5137
5138 if (!HAS_PCH_NOP(dev))
5139 cpt_init_clock_gating(dev);
5140
5141 gen6_check_mch_setup(dev);
5142 }
5143
5144 static void valleyview_init_clock_gating(struct drm_device *dev)
5145 {
5146 struct drm_i915_private *dev_priv = dev->dev_private;
5147 u32 val;
5148
5149 mutex_lock(&dev_priv->rps.hw_lock);
5150 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5151 mutex_unlock(&dev_priv->rps.hw_lock);
5152 switch ((val >> 6) & 3) {
5153 case 0:
5154 case 1:
5155 dev_priv->mem_freq = 800;
5156 break;
5157 case 2:
5158 dev_priv->mem_freq = 1066;
5159 break;
5160 case 3:
5161 dev_priv->mem_freq = 1333;
5162 break;
5163 }
5164 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5165
5166 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5167
5168 /* WaDisableEarlyCull:vlv */
5169 I915_WRITE(_3D_CHICKEN3,
5170 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5171
5172 /* WaDisableBackToBackFlipFix:vlv */
5173 I915_WRITE(IVB_CHICKEN3,
5174 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5175 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5176
5177 /* WaPsdDispatchEnable:vlv */
5178 /* WaDisablePSDDualDispatchEnable:vlv */
5179 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5180 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5181 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5182
5183 /* WaForceL3Serialization:vlv */
5184 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5185 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5186
5187 /* WaDisableDopClockGating:vlv */
5188 I915_WRITE(GEN7_ROW_CHICKEN2,
5189 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5190
5191 /* This is required by WaCatErrorRejectionIssue:vlv */
5192 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5193 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5194 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5195
5196 gen7_setup_fixed_func_scheduler(dev_priv);
5197
5198 /*
5199 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5200 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5201 */
5202 I915_WRITE(GEN6_UCGCTL2,
5203 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5204
5205 /* WaDisableL3Bank2xClockGate:vlv */
5206 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5207
5208 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5209
5210 /*
5211 * BSpec says this must be set, even though
5212 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5213 */
5214 I915_WRITE(CACHE_MODE_1,
5215 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5216
5217 /*
5218 * WaIncreaseL3CreditsForVLVB0:vlv
5219 * This is the hardware default actually.
5220 */
5221 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5222
5223 /*
5224 * WaDisableVLVClockGating_VBIIssue:vlv
5225 * Disable clock gating on th GCFG unit to prevent a delay
5226 * in the reporting of vblank events.
5227 */
5228 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5229 }
5230
5231 static void g4x_init_clock_gating(struct drm_device *dev)
5232 {
5233 struct drm_i915_private *dev_priv = dev->dev_private;
5234 uint32_t dspclk_gate;
5235
5236 I915_WRITE(RENCLK_GATE_D1, 0);
5237 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5238 GS_UNIT_CLOCK_GATE_DISABLE |
5239 CL_UNIT_CLOCK_GATE_DISABLE);
5240 I915_WRITE(RAMCLK_GATE_D, 0);
5241 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5242 OVRUNIT_CLOCK_GATE_DISABLE |
5243 OVCUNIT_CLOCK_GATE_DISABLE;
5244 if (IS_GM45(dev))
5245 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5246 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5247
5248 /* WaDisableRenderCachePipelinedFlush */
5249 I915_WRITE(CACHE_MODE_0,
5250 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5251
5252 g4x_disable_trickle_feed(dev);
5253 }
5254
5255 static void crestline_init_clock_gating(struct drm_device *dev)
5256 {
5257 struct drm_i915_private *dev_priv = dev->dev_private;
5258
5259 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5260 I915_WRITE(RENCLK_GATE_D2, 0);
5261 I915_WRITE(DSPCLK_GATE_D, 0);
5262 I915_WRITE(RAMCLK_GATE_D, 0);
5263 I915_WRITE16(DEUC, 0);
5264 I915_WRITE(MI_ARB_STATE,
5265 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5266 }
5267
5268 static void broadwater_init_clock_gating(struct drm_device *dev)
5269 {
5270 struct drm_i915_private *dev_priv = dev->dev_private;
5271
5272 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5273 I965_RCC_CLOCK_GATE_DISABLE |
5274 I965_RCPB_CLOCK_GATE_DISABLE |
5275 I965_ISC_CLOCK_GATE_DISABLE |
5276 I965_FBC_CLOCK_GATE_DISABLE);
5277 I915_WRITE(RENCLK_GATE_D2, 0);
5278 I915_WRITE(MI_ARB_STATE,
5279 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5280 }
5281
5282 static void gen3_init_clock_gating(struct drm_device *dev)
5283 {
5284 struct drm_i915_private *dev_priv = dev->dev_private;
5285 u32 dstate = I915_READ(D_STATE);
5286
5287 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5288 DSTATE_DOT_CLOCK_GATING;
5289 I915_WRITE(D_STATE, dstate);
5290
5291 if (IS_PINEVIEW(dev))
5292 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5293
5294 /* IIR "flip pending" means done if this bit is set */
5295 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5296 }
5297
5298 static void i85x_init_clock_gating(struct drm_device *dev)
5299 {
5300 struct drm_i915_private *dev_priv = dev->dev_private;
5301
5302 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5303 }
5304
5305 static void i830_init_clock_gating(struct drm_device *dev)
5306 {
5307 struct drm_i915_private *dev_priv = dev->dev_private;
5308
5309 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5310 }
5311
5312 void intel_init_clock_gating(struct drm_device *dev)
5313 {
5314 struct drm_i915_private *dev_priv = dev->dev_private;
5315
5316 dev_priv->display.init_clock_gating(dev);
5317 }
5318
5319 void intel_suspend_hw(struct drm_device *dev)
5320 {
5321 if (HAS_PCH_LPT(dev))
5322 lpt_suspend_hw(dev);
5323 }
5324
5325 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
5326 for (i = 0; \
5327 i < (power_domains)->power_well_count && \
5328 ((power_well) = &(power_domains)->power_wells[i]); \
5329 i++) \
5330 if ((power_well)->domains & (domain_mask))
5331
5332 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5333 for (i = (power_domains)->power_well_count - 1; \
5334 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5335 i--) \
5336 if ((power_well)->domains & (domain_mask))
5337
5338 /**
5339 * We should only use the power well if we explicitly asked the hardware to
5340 * enable it, so check if it's enabled and also check if we've requested it to
5341 * be enabled.
5342 */
5343 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5344 struct i915_power_well *power_well)
5345 {
5346 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5347 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5348 }
5349
5350 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5351 enum intel_display_power_domain domain)
5352 {
5353 struct i915_power_domains *power_domains;
5354
5355 power_domains = &dev_priv->power_domains;
5356
5357 return power_domains->domain_use_count[domain];
5358 }
5359
5360 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5361 enum intel_display_power_domain domain)
5362 {
5363 struct i915_power_domains *power_domains;
5364 struct i915_power_well *power_well;
5365 bool is_enabled;
5366 int i;
5367
5368 if (dev_priv->pm.suspended)
5369 return false;
5370
5371 power_domains = &dev_priv->power_domains;
5372
5373 is_enabled = true;
5374
5375 mutex_lock(&power_domains->lock);
5376 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5377 if (power_well->always_on)
5378 continue;
5379
5380 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5381 is_enabled = false;
5382 break;
5383 }
5384 }
5385 mutex_unlock(&power_domains->lock);
5386
5387 return is_enabled;
5388 }
5389
5390 /*
5391 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5392 * when not needed anymore. We have 4 registers that can request the power well
5393 * to be enabled, and it will only be disabled if none of the registers is
5394 * requesting it to be enabled.
5395 */
5396 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5397 {
5398 struct drm_device *dev = dev_priv->dev;
5399 unsigned long irqflags;
5400
5401 /*
5402 * After we re-enable the power well, if we touch VGA register 0x3d5
5403 * we'll get unclaimed register interrupts. This stops after we write
5404 * anything to the VGA MSR register. The vgacon module uses this
5405 * register all the time, so if we unbind our driver and, as a
5406 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5407 * console_unlock(). So make here we touch the VGA MSR register, making
5408 * sure vgacon can keep working normally without triggering interrupts
5409 * and error messages.
5410 */
5411 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5412 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5413 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5414
5415 if (IS_BROADWELL(dev)) {
5416 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5417 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5418 dev_priv->de_irq_mask[PIPE_B]);
5419 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5420 ~dev_priv->de_irq_mask[PIPE_B] |
5421 GEN8_PIPE_VBLANK);
5422 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5423 dev_priv->de_irq_mask[PIPE_C]);
5424 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5425 ~dev_priv->de_irq_mask[PIPE_C] |
5426 GEN8_PIPE_VBLANK);
5427 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5428 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5429 }
5430 }
5431
5432 static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
5433 {
5434 assert_spin_locked(&dev->vbl_lock);
5435
5436 dev->vblank[pipe].last = 0;
5437 }
5438
5439 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5440 {
5441 struct drm_device *dev = dev_priv->dev;
5442 enum pipe pipe;
5443 unsigned long irqflags;
5444
5445 /*
5446 * After this, the registers on the pipes that are part of the power
5447 * well will become zero, so we have to adjust our counters according to
5448 * that.
5449 *
5450 * FIXME: Should we do this in general in drm_vblank_post_modeset?
5451 */
5452 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5453 for_each_pipe(pipe)
5454 if (pipe != PIPE_A)
5455 reset_vblank_counter(dev, pipe);
5456 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5457 }
5458
5459 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5460 struct i915_power_well *power_well, bool enable)
5461 {
5462 bool is_enabled, enable_requested;
5463 uint32_t tmp;
5464
5465 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5466 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5467 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5468
5469 if (enable) {
5470 if (!enable_requested)
5471 I915_WRITE(HSW_PWR_WELL_DRIVER,
5472 HSW_PWR_WELL_ENABLE_REQUEST);
5473
5474 if (!is_enabled) {
5475 DRM_DEBUG_KMS("Enabling power well\n");
5476 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5477 HSW_PWR_WELL_STATE_ENABLED), 20))
5478 DRM_ERROR("Timeout enabling power well\n");
5479 }
5480
5481 hsw_power_well_post_enable(dev_priv);
5482 } else {
5483 if (enable_requested) {
5484 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5485 POSTING_READ(HSW_PWR_WELL_DRIVER);
5486 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5487
5488 hsw_power_well_post_disable(dev_priv);
5489 }
5490 }
5491 }
5492
5493 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5494 struct i915_power_well *power_well)
5495 {
5496 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5497
5498 /*
5499 * We're taking over the BIOS, so clear any requests made by it since
5500 * the driver is in charge now.
5501 */
5502 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5503 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5504 }
5505
5506 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5507 struct i915_power_well *power_well)
5508 {
5509 hsw_set_power_well(dev_priv, power_well, true);
5510 }
5511
5512 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5513 struct i915_power_well *power_well)
5514 {
5515 hsw_set_power_well(dev_priv, power_well, false);
5516 }
5517
5518 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5519 struct i915_power_well *power_well)
5520 {
5521 }
5522
5523 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5524 struct i915_power_well *power_well)
5525 {
5526 return true;
5527 }
5528
5529 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5530 struct i915_power_well *power_well, bool enable)
5531 {
5532 enum punit_power_well power_well_id = power_well->data;
5533 u32 mask;
5534 u32 state;
5535 u32 ctrl;
5536
5537 mask = PUNIT_PWRGT_MASK(power_well_id);
5538 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5539 PUNIT_PWRGT_PWR_GATE(power_well_id);
5540
5541 mutex_lock(&dev_priv->rps.hw_lock);
5542
5543 #define COND \
5544 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5545
5546 if (COND)
5547 goto out;
5548
5549 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5550 ctrl &= ~mask;
5551 ctrl |= state;
5552 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5553
5554 if (wait_for(COND, 100))
5555 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5556 state,
5557 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5558
5559 #undef COND
5560
5561 out:
5562 mutex_unlock(&dev_priv->rps.hw_lock);
5563 }
5564
5565 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5566 struct i915_power_well *power_well)
5567 {
5568 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5569 }
5570
5571 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5572 struct i915_power_well *power_well)
5573 {
5574 vlv_set_power_well(dev_priv, power_well, true);
5575 }
5576
5577 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5578 struct i915_power_well *power_well)
5579 {
5580 vlv_set_power_well(dev_priv, power_well, false);
5581 }
5582
5583 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5584 struct i915_power_well *power_well)
5585 {
5586 int power_well_id = power_well->data;
5587 bool enabled = false;
5588 u32 mask;
5589 u32 state;
5590 u32 ctrl;
5591
5592 mask = PUNIT_PWRGT_MASK(power_well_id);
5593 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5594
5595 mutex_lock(&dev_priv->rps.hw_lock);
5596
5597 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5598 /*
5599 * We only ever set the power-on and power-gate states, anything
5600 * else is unexpected.
5601 */
5602 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5603 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5604 if (state == ctrl)
5605 enabled = true;
5606
5607 /*
5608 * A transient state at this point would mean some unexpected party
5609 * is poking at the power controls too.
5610 */
5611 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5612 WARN_ON(ctrl != state);
5613
5614 mutex_unlock(&dev_priv->rps.hw_lock);
5615
5616 return enabled;
5617 }
5618
5619 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5620 struct i915_power_well *power_well)
5621 {
5622 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5623
5624 vlv_set_power_well(dev_priv, power_well, true);
5625
5626 spin_lock_irq(&dev_priv->irq_lock);
5627 valleyview_enable_display_irqs(dev_priv);
5628 spin_unlock_irq(&dev_priv->irq_lock);
5629
5630 /*
5631 * During driver initialization we need to defer enabling hotplug
5632 * processing until fbdev is set up.
5633 */
5634 if (dev_priv->enable_hotplug_processing)
5635 intel_hpd_init(dev_priv->dev);
5636
5637 i915_redisable_vga_power_on(dev_priv->dev);
5638 }
5639
5640 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5641 struct i915_power_well *power_well)
5642 {
5643 struct drm_device *dev = dev_priv->dev;
5644 enum pipe pipe;
5645
5646 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5647
5648 spin_lock_irq(&dev_priv->irq_lock);
5649 for_each_pipe(pipe)
5650 __intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5651
5652 valleyview_disable_display_irqs(dev_priv);
5653 spin_unlock_irq(&dev_priv->irq_lock);
5654
5655 spin_lock_irq(&dev->vbl_lock);
5656 for_each_pipe(pipe)
5657 reset_vblank_counter(dev, pipe);
5658 spin_unlock_irq(&dev->vbl_lock);
5659
5660 vlv_set_power_well(dev_priv, power_well, false);
5661 }
5662
5663 static void check_power_well_state(struct drm_i915_private *dev_priv,
5664 struct i915_power_well *power_well)
5665 {
5666 bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5667
5668 if (power_well->always_on || !i915.disable_power_well) {
5669 if (!enabled)
5670 goto mismatch;
5671
5672 return;
5673 }
5674
5675 if (enabled != (power_well->count > 0))
5676 goto mismatch;
5677
5678 return;
5679
5680 mismatch:
5681 WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5682 power_well->name, power_well->always_on, enabled,
5683 power_well->count, i915.disable_power_well);
5684 }
5685
5686 void intel_display_power_get(struct drm_i915_private *dev_priv,
5687 enum intel_display_power_domain domain)
5688 {
5689 struct i915_power_domains *power_domains;
5690 struct i915_power_well *power_well;
5691 int i;
5692
5693 intel_runtime_pm_get(dev_priv);
5694
5695 power_domains = &dev_priv->power_domains;
5696
5697 mutex_lock(&power_domains->lock);
5698
5699 for_each_power_well(i, power_well, BIT(domain), power_domains) {
5700 if (!power_well->count++) {
5701 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5702 power_well->ops->enable(dev_priv, power_well);
5703 }
5704
5705 check_power_well_state(dev_priv, power_well);
5706 }
5707
5708 power_domains->domain_use_count[domain]++;
5709
5710 mutex_unlock(&power_domains->lock);
5711 }
5712
5713 void intel_display_power_put(struct drm_i915_private *dev_priv,
5714 enum intel_display_power_domain domain)
5715 {
5716 struct i915_power_domains *power_domains;
5717 struct i915_power_well *power_well;
5718 int i;
5719
5720 power_domains = &dev_priv->power_domains;
5721
5722 mutex_lock(&power_domains->lock);
5723
5724 WARN_ON(!power_domains->domain_use_count[domain]);
5725 power_domains->domain_use_count[domain]--;
5726
5727 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5728 WARN_ON(!power_well->count);
5729
5730 if (!--power_well->count && i915.disable_power_well) {
5731 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5732 power_well->ops->disable(dev_priv, power_well);
5733 }
5734
5735 check_power_well_state(dev_priv, power_well);
5736 }
5737
5738 mutex_unlock(&power_domains->lock);
5739
5740 intel_runtime_pm_put(dev_priv);
5741 }
5742
5743 static struct i915_power_domains *hsw_pwr;
5744
5745 /* Display audio driver power well request */
5746 void i915_request_power_well(void)
5747 {
5748 struct drm_i915_private *dev_priv;
5749
5750 if (WARN_ON(!hsw_pwr))
5751 return;
5752
5753 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5754 power_domains);
5755 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5756 }
5757 EXPORT_SYMBOL_GPL(i915_request_power_well);
5758
5759 /* Display audio driver power well release */
5760 void i915_release_power_well(void)
5761 {
5762 struct drm_i915_private *dev_priv;
5763
5764 if (WARN_ON(!hsw_pwr))
5765 return;
5766
5767 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5768 power_domains);
5769 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5770 }
5771 EXPORT_SYMBOL_GPL(i915_release_power_well);
5772
5773 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5774
5775 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
5776 BIT(POWER_DOMAIN_PIPE_A) | \
5777 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
5778 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
5779 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
5780 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5781 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5782 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5783 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5784 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
5785 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
5786 BIT(POWER_DOMAIN_PORT_CRT) | \
5787 BIT(POWER_DOMAIN_INIT))
5788 #define HSW_DISPLAY_POWER_DOMAINS ( \
5789 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
5790 BIT(POWER_DOMAIN_INIT))
5791
5792 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
5793 HSW_ALWAYS_ON_POWER_DOMAINS | \
5794 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5795 #define BDW_DISPLAY_POWER_DOMAINS ( \
5796 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
5797 BIT(POWER_DOMAIN_INIT))
5798
5799 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
5800 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
5801
5802 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
5803 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5804 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5805 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5806 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5807 BIT(POWER_DOMAIN_PORT_CRT) | \
5808 BIT(POWER_DOMAIN_INIT))
5809
5810 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
5811 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5812 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5813 BIT(POWER_DOMAIN_INIT))
5814
5815 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
5816 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5817 BIT(POWER_DOMAIN_INIT))
5818
5819 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
5820 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5821 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5822 BIT(POWER_DOMAIN_INIT))
5823
5824 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
5825 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5826 BIT(POWER_DOMAIN_INIT))
5827
5828 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5829 .sync_hw = i9xx_always_on_power_well_noop,
5830 .enable = i9xx_always_on_power_well_noop,
5831 .disable = i9xx_always_on_power_well_noop,
5832 .is_enabled = i9xx_always_on_power_well_enabled,
5833 };
5834
5835 static struct i915_power_well i9xx_always_on_power_well[] = {
5836 {
5837 .name = "always-on",
5838 .always_on = 1,
5839 .domains = POWER_DOMAIN_MASK,
5840 .ops = &i9xx_always_on_power_well_ops,
5841 },
5842 };
5843
5844 static const struct i915_power_well_ops hsw_power_well_ops = {
5845 .sync_hw = hsw_power_well_sync_hw,
5846 .enable = hsw_power_well_enable,
5847 .disable = hsw_power_well_disable,
5848 .is_enabled = hsw_power_well_enabled,
5849 };
5850
5851 static struct i915_power_well hsw_power_wells[] = {
5852 {
5853 .name = "always-on",
5854 .always_on = 1,
5855 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5856 .ops = &i9xx_always_on_power_well_ops,
5857 },
5858 {
5859 .name = "display",
5860 .domains = HSW_DISPLAY_POWER_DOMAINS,
5861 .ops = &hsw_power_well_ops,
5862 },
5863 };
5864
5865 static struct i915_power_well bdw_power_wells[] = {
5866 {
5867 .name = "always-on",
5868 .always_on = 1,
5869 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5870 .ops = &i9xx_always_on_power_well_ops,
5871 },
5872 {
5873 .name = "display",
5874 .domains = BDW_DISPLAY_POWER_DOMAINS,
5875 .ops = &hsw_power_well_ops,
5876 },
5877 };
5878
5879 static const struct i915_power_well_ops vlv_display_power_well_ops = {
5880 .sync_hw = vlv_power_well_sync_hw,
5881 .enable = vlv_display_power_well_enable,
5882 .disable = vlv_display_power_well_disable,
5883 .is_enabled = vlv_power_well_enabled,
5884 };
5885
5886 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5887 .sync_hw = vlv_power_well_sync_hw,
5888 .enable = vlv_power_well_enable,
5889 .disable = vlv_power_well_disable,
5890 .is_enabled = vlv_power_well_enabled,
5891 };
5892
5893 static struct i915_power_well vlv_power_wells[] = {
5894 {
5895 .name = "always-on",
5896 .always_on = 1,
5897 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5898 .ops = &i9xx_always_on_power_well_ops,
5899 },
5900 {
5901 .name = "display",
5902 .domains = VLV_DISPLAY_POWER_DOMAINS,
5903 .data = PUNIT_POWER_WELL_DISP2D,
5904 .ops = &vlv_display_power_well_ops,
5905 },
5906 {
5907 .name = "dpio-common",
5908 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5909 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5910 .ops = &vlv_dpio_power_well_ops,
5911 },
5912 {
5913 .name = "dpio-tx-b-01",
5914 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5915 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5916 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5917 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5918 .ops = &vlv_dpio_power_well_ops,
5919 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
5920 },
5921 {
5922 .name = "dpio-tx-b-23",
5923 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5924 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5925 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5926 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5927 .ops = &vlv_dpio_power_well_ops,
5928 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
5929 },
5930 {
5931 .name = "dpio-tx-c-01",
5932 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5933 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5934 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5935 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5936 .ops = &vlv_dpio_power_well_ops,
5937 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
5938 },
5939 {
5940 .name = "dpio-tx-c-23",
5941 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5942 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5943 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5944 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5945 .ops = &vlv_dpio_power_well_ops,
5946 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
5947 },
5948 };
5949
5950 #define set_power_wells(power_domains, __power_wells) ({ \
5951 (power_domains)->power_wells = (__power_wells); \
5952 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
5953 })
5954
5955 int intel_power_domains_init(struct drm_i915_private *dev_priv)
5956 {
5957 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5958
5959 mutex_init(&power_domains->lock);
5960
5961 /*
5962 * The enabling order will be from lower to higher indexed wells,
5963 * the disabling order is reversed.
5964 */
5965 if (IS_HASWELL(dev_priv->dev)) {
5966 set_power_wells(power_domains, hsw_power_wells);
5967 hsw_pwr = power_domains;
5968 } else if (IS_BROADWELL(dev_priv->dev)) {
5969 set_power_wells(power_domains, bdw_power_wells);
5970 hsw_pwr = power_domains;
5971 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
5972 set_power_wells(power_domains, vlv_power_wells);
5973 } else {
5974 set_power_wells(power_domains, i9xx_always_on_power_well);
5975 }
5976
5977 return 0;
5978 }
5979
5980 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
5981 {
5982 hsw_pwr = NULL;
5983 }
5984
5985 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
5986 {
5987 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5988 struct i915_power_well *power_well;
5989 int i;
5990
5991 mutex_lock(&power_domains->lock);
5992 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
5993 power_well->ops->sync_hw(dev_priv, power_well);
5994 mutex_unlock(&power_domains->lock);
5995 }
5996
5997 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
5998 {
5999 /* For now, we need the power well to be always enabled. */
6000 intel_display_set_init_power(dev_priv, true);
6001 intel_power_domains_resume(dev_priv);
6002 }
6003
6004 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6005 {
6006 intel_runtime_pm_get(dev_priv);
6007 }
6008
6009 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6010 {
6011 intel_runtime_pm_put(dev_priv);
6012 }
6013
6014 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6015 {
6016 struct drm_device *dev = dev_priv->dev;
6017 struct device *device = &dev->pdev->dev;
6018
6019 if (!HAS_RUNTIME_PM(dev))
6020 return;
6021
6022 pm_runtime_get_sync(device);
6023 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6024 }
6025
6026 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6027 {
6028 struct drm_device *dev = dev_priv->dev;
6029 struct device *device = &dev->pdev->dev;
6030
6031 if (!HAS_RUNTIME_PM(dev))
6032 return;
6033
6034 pm_runtime_mark_last_busy(device);
6035 pm_runtime_put_autosuspend(device);
6036 }
6037
6038 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6039 {
6040 struct drm_device *dev = dev_priv->dev;
6041 struct device *device = &dev->pdev->dev;
6042
6043 if (!HAS_RUNTIME_PM(dev))
6044 return;
6045
6046 pm_runtime_set_active(device);
6047
6048 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6049 pm_runtime_mark_last_busy(device);
6050 pm_runtime_use_autosuspend(device);
6051
6052 pm_runtime_put_autosuspend(device);
6053 }
6054
6055 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6056 {
6057 struct drm_device *dev = dev_priv->dev;
6058 struct device *device = &dev->pdev->dev;
6059
6060 if (!HAS_RUNTIME_PM(dev))
6061 return;
6062
6063 /* Make sure we're not suspended first. */
6064 pm_runtime_get_sync(device);
6065 pm_runtime_disable(device);
6066 }
6067
6068 /* Set up chip specific power management-related functions */
6069 void intel_init_pm(struct drm_device *dev)
6070 {
6071 struct drm_i915_private *dev_priv = dev->dev_private;
6072
6073 if (HAS_FBC(dev)) {
6074 if (INTEL_INFO(dev)->gen >= 7) {
6075 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6076 dev_priv->display.enable_fbc = gen7_enable_fbc;
6077 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6078 } else if (INTEL_INFO(dev)->gen >= 5) {
6079 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6080 dev_priv->display.enable_fbc = ironlake_enable_fbc;
6081 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6082 } else if (IS_GM45(dev)) {
6083 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6084 dev_priv->display.enable_fbc = g4x_enable_fbc;
6085 dev_priv->display.disable_fbc = g4x_disable_fbc;
6086 } else {
6087 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6088 dev_priv->display.enable_fbc = i8xx_enable_fbc;
6089 dev_priv->display.disable_fbc = i8xx_disable_fbc;
6090
6091 /* This value was pulled out of someone's hat */
6092 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6093 }
6094 }
6095
6096 /* For cxsr */
6097 if (IS_PINEVIEW(dev))
6098 i915_pineview_get_mem_freq(dev);
6099 else if (IS_GEN5(dev))
6100 i915_ironlake_get_mem_freq(dev);
6101
6102 /* For FIFO watermark updates */
6103 if (HAS_PCH_SPLIT(dev)) {
6104 ilk_setup_wm_latency(dev);
6105
6106 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6107 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6108 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6109 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6110 dev_priv->display.update_wm = ilk_update_wm;
6111 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6112 } else {
6113 DRM_DEBUG_KMS("Failed to read display plane latency. "
6114 "Disable CxSR\n");
6115 }
6116
6117 if (IS_GEN5(dev))
6118 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6119 else if (IS_GEN6(dev))
6120 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6121 else if (IS_IVYBRIDGE(dev))
6122 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6123 else if (IS_HASWELL(dev))
6124 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6125 else if (INTEL_INFO(dev)->gen == 8)
6126 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6127 } else if (IS_VALLEYVIEW(dev)) {
6128 dev_priv->display.update_wm = valleyview_update_wm;
6129 dev_priv->display.init_clock_gating =
6130 valleyview_init_clock_gating;
6131 } else if (IS_PINEVIEW(dev)) {
6132 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6133 dev_priv->is_ddr3,
6134 dev_priv->fsb_freq,
6135 dev_priv->mem_freq)) {
6136 DRM_INFO("failed to find known CxSR latency "
6137 "(found ddr%s fsb freq %d, mem freq %d), "
6138 "disabling CxSR\n",
6139 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6140 dev_priv->fsb_freq, dev_priv->mem_freq);
6141 /* Disable CxSR and never update its watermark again */
6142 pineview_disable_cxsr(dev);
6143 dev_priv->display.update_wm = NULL;
6144 } else
6145 dev_priv->display.update_wm = pineview_update_wm;
6146 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6147 } else if (IS_G4X(dev)) {
6148 dev_priv->display.update_wm = g4x_update_wm;
6149 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6150 } else if (IS_GEN4(dev)) {
6151 dev_priv->display.update_wm = i965_update_wm;
6152 if (IS_CRESTLINE(dev))
6153 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6154 else if (IS_BROADWATER(dev))
6155 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6156 } else if (IS_GEN3(dev)) {
6157 dev_priv->display.update_wm = i9xx_update_wm;
6158 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6159 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6160 } else if (IS_GEN2(dev)) {
6161 if (INTEL_INFO(dev)->num_pipes == 1) {
6162 dev_priv->display.update_wm = i845_update_wm;
6163 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6164 } else {
6165 dev_priv->display.update_wm = i9xx_update_wm;
6166 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6167 }
6168
6169 if (IS_I85X(dev) || IS_I865G(dev))
6170 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6171 else
6172 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6173 } else {
6174 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6175 }
6176 }
6177
6178 #ifdef __NetBSD__ /* XXX gt fini */
6179 void
6180 intel_gt_fini(struct drm_device *dev)
6181 {
6182 struct drm_i915_private *dev_priv = dev->dev_private;
6183
6184 spin_lock_destroy(&dev_priv->gt_lock);
6185 }
6186 #endif
6187
6188 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6189 {
6190 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6191
6192 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6193 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6194 return -EAGAIN;
6195 }
6196
6197 I915_WRITE(GEN6_PCODE_DATA, *val);
6198 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6199
6200 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6201 500)) {
6202 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6203 return -ETIMEDOUT;
6204 }
6205
6206 *val = I915_READ(GEN6_PCODE_DATA);
6207 I915_WRITE(GEN6_PCODE_DATA, 0);
6208
6209 return 0;
6210 }
6211
6212 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6213 {
6214 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6215
6216 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6217 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6218 return -EAGAIN;
6219 }
6220
6221 I915_WRITE(GEN6_PCODE_DATA, val);
6222 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6223
6224 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6225 500)) {
6226 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6227 return -ETIMEDOUT;
6228 }
6229
6230 I915_WRITE(GEN6_PCODE_DATA, 0);
6231
6232 return 0;
6233 }
6234
6235 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6236 {
6237 int div;
6238
6239 /* 4 x czclk */
6240 switch (dev_priv->mem_freq) {
6241 case 800:
6242 div = 10;
6243 break;
6244 case 1066:
6245 div = 12;
6246 break;
6247 case 1333:
6248 div = 16;
6249 break;
6250 default:
6251 return -1;
6252 }
6253
6254 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6255 }
6256
6257 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6258 {
6259 int mul;
6260
6261 /* 4 x czclk */
6262 switch (dev_priv->mem_freq) {
6263 case 800:
6264 mul = 10;
6265 break;
6266 case 1066:
6267 mul = 12;
6268 break;
6269 case 1333:
6270 mul = 16;
6271 break;
6272 default:
6273 return -1;
6274 }
6275
6276 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6277 }
6278
6279 void intel_pm_setup(struct drm_device *dev)
6280 {
6281 struct drm_i915_private *dev_priv = dev->dev_private;
6282
6283 mutex_init(&dev_priv->rps.hw_lock);
6284
6285 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6286 intel_gen6_powersave_work);
6287
6288 dev_priv->pm.suspended = false;
6289 dev_priv->pm.irqs_disabled = false;
6290 }
6291