Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.3
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     25  *
     26  */
     27 
     28 #include <linux/cpufreq.h>
     29 #include "i915_drv.h"
     30 #include "intel_drv.h"
     31 #ifndef __NetBSD__
     32 #include "../../../platform/x86/intel_ips.h"
     33 #endif
     34 #include <linux/module.h>
     35 #include <linux/kgdb.h>
     36 #include <linux/log2.h>
     37 #include <linux/math64.h>
     38 #include <linux/time.h>
     39 #include <asm/param.h>
     40 #include <linux/vgaarb.h>
     41 #include <drm/i915_powerwell.h>
     42 #include <linux/pm_runtime.h>
     43 
     44 /**
     45  * RC6 is a special power stage which allows the GPU to enter an very
     46  * low-voltage mode when idle, using down to 0V while at this stage.  This
     47  * stage is entered automatically when the GPU is idle when RC6 support is
     48  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
     49  *
     50  * There are different RC6 modes available in Intel GPU, which differentiate
     51  * among each other with the latency required to enter and leave RC6 and
     52  * voltage consumed by the GPU in different states.
     53  *
     54  * The combination of the following flags define which states GPU is allowed
     55  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
     56  * RC6pp is deepest RC6. Their support by hardware varies according to the
     57  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
     58  * which brings the most power savings; deeper states save more power, but
     59  * require higher latency to switch to and wake up.
     60  */
     61 #define INTEL_RC6_ENABLE			(1<<0)
     62 #define INTEL_RC6p_ENABLE			(1<<1)
     63 #define INTEL_RC6pp_ENABLE			(1<<2)
     64 
     65 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
     66  * framebuffer contents in-memory, aiming at reducing the required bandwidth
     67  * during in-memory transfers and, therefore, reduce the power packet.
     68  *
     69  * The benefits of FBC are mostly visible with solid backgrounds and
     70  * variation-less patterns.
     71  *
     72  * FBC-related functionality can be enabled by the means of the
     73  * i915.i915_enable_fbc parameter
     74  */
     75 
     76 static void i8xx_disable_fbc(struct drm_device *dev)
     77 {
     78 	struct drm_i915_private *dev_priv = dev->dev_private;
     79 	u32 fbc_ctl;
     80 
     81 	/* Disable compression */
     82 	fbc_ctl = I915_READ(FBC_CONTROL);
     83 	if ((fbc_ctl & FBC_CTL_EN) == 0)
     84 		return;
     85 
     86 	fbc_ctl &= ~FBC_CTL_EN;
     87 	I915_WRITE(FBC_CONTROL, fbc_ctl);
     88 
     89 	/* Wait for compressing bit to clear */
     90 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
     91 		DRM_DEBUG_KMS("FBC idle timed out\n");
     92 		return;
     93 	}
     94 
     95 	DRM_DEBUG_KMS("disabled FBC\n");
     96 }
     97 
     98 static void i8xx_enable_fbc(struct drm_crtc *crtc)
     99 {
    100 	struct drm_device *dev = crtc->dev;
    101 	struct drm_i915_private *dev_priv = dev->dev_private;
    102 	struct drm_framebuffer *fb = crtc->primary->fb;
    103 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    104 	struct drm_i915_gem_object *obj = intel_fb->obj;
    105 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    106 	int cfb_pitch;
    107 	int i;
    108 	u32 fbc_ctl;
    109 
    110 	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
    111 	if (fb->pitches[0] < cfb_pitch)
    112 		cfb_pitch = fb->pitches[0];
    113 
    114 	/* FBC_CTL wants 32B or 64B units */
    115 	if (IS_GEN2(dev))
    116 		cfb_pitch = (cfb_pitch / 32) - 1;
    117 	else
    118 		cfb_pitch = (cfb_pitch / 64) - 1;
    119 
    120 	/* Clear old tags */
    121 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
    122 		I915_WRITE(FBC_TAG + (i * 4), 0);
    123 
    124 	if (IS_GEN4(dev)) {
    125 		u32 fbc_ctl2;
    126 
    127 		/* Set it up... */
    128 		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
    129 		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
    130 		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
    131 		I915_WRITE(FBC_FENCE_OFF, crtc->y);
    132 	}
    133 
    134 	/* enable it... */
    135 	fbc_ctl = I915_READ(FBC_CONTROL);
    136 	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
    137 	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
    138 	if (IS_I945GM(dev))
    139 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
    140 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
    141 	fbc_ctl |= obj->fence_reg;
    142 	I915_WRITE(FBC_CONTROL, fbc_ctl);
    143 
    144 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
    145 		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
    146 }
    147 
    148 static bool i8xx_fbc_enabled(struct drm_device *dev)
    149 {
    150 	struct drm_i915_private *dev_priv = dev->dev_private;
    151 
    152 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
    153 }
    154 
    155 static void g4x_enable_fbc(struct drm_crtc *crtc)
    156 {
    157 	struct drm_device *dev = crtc->dev;
    158 	struct drm_i915_private *dev_priv = dev->dev_private;
    159 	struct drm_framebuffer *fb = crtc->primary->fb;
    160 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    161 	struct drm_i915_gem_object *obj = intel_fb->obj;
    162 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    163 	u32 dpfc_ctl;
    164 
    165 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
    166 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    167 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    168 	else
    169 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    170 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
    171 
    172 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
    173 
    174 	/* enable it... */
    175 	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    176 
    177 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    178 }
    179 
    180 static void g4x_disable_fbc(struct drm_device *dev)
    181 {
    182 	struct drm_i915_private *dev_priv = dev->dev_private;
    183 	u32 dpfc_ctl;
    184 
    185 	/* Disable compression */
    186 	dpfc_ctl = I915_READ(DPFC_CONTROL);
    187 	if (dpfc_ctl & DPFC_CTL_EN) {
    188 		dpfc_ctl &= ~DPFC_CTL_EN;
    189 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
    190 
    191 		DRM_DEBUG_KMS("disabled FBC\n");
    192 	}
    193 }
    194 
    195 static bool g4x_fbc_enabled(struct drm_device *dev)
    196 {
    197 	struct drm_i915_private *dev_priv = dev->dev_private;
    198 
    199 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
    200 }
    201 
    202 static void sandybridge_blit_fbc_update(struct drm_device *dev)
    203 {
    204 	struct drm_i915_private *dev_priv = dev->dev_private;
    205 	u32 blt_ecoskpd;
    206 
    207 	/* Make sure blitter notifies FBC of writes */
    208 
    209 	/* Blitter is part of Media powerwell on VLV. No impact of
    210 	 * his param in other platforms for now */
    211 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
    212 
    213 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
    214 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
    215 		GEN6_BLITTER_LOCK_SHIFT;
    216 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    217 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
    218 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    219 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
    220 			 GEN6_BLITTER_LOCK_SHIFT);
    221 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    222 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
    223 
    224 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
    225 }
    226 
    227 static void ironlake_enable_fbc(struct drm_crtc *crtc)
    228 {
    229 	struct drm_device *dev = crtc->dev;
    230 	struct drm_i915_private *dev_priv = dev->dev_private;
    231 	struct drm_framebuffer *fb = crtc->primary->fb;
    232 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    233 	struct drm_i915_gem_object *obj = intel_fb->obj;
    234 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    235 	u32 dpfc_ctl;
    236 
    237 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
    238 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    239 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    240 	else
    241 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    242 	dpfc_ctl |= DPFC_CTL_FENCE_EN;
    243 	if (IS_GEN5(dev))
    244 		dpfc_ctl |= obj->fence_reg;
    245 
    246 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
    247 	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
    248 	/* enable it... */
    249 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    250 
    251 	if (IS_GEN6(dev)) {
    252 		I915_WRITE(SNB_DPFC_CTL_SA,
    253 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
    254 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
    255 		sandybridge_blit_fbc_update(dev);
    256 	}
    257 
    258 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    259 }
    260 
    261 static void ironlake_disable_fbc(struct drm_device *dev)
    262 {
    263 	struct drm_i915_private *dev_priv = dev->dev_private;
    264 	u32 dpfc_ctl;
    265 
    266 	/* Disable compression */
    267 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
    268 	if (dpfc_ctl & DPFC_CTL_EN) {
    269 		dpfc_ctl &= ~DPFC_CTL_EN;
    270 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
    271 
    272 		DRM_DEBUG_KMS("disabled FBC\n");
    273 	}
    274 }
    275 
    276 static bool ironlake_fbc_enabled(struct drm_device *dev)
    277 {
    278 	struct drm_i915_private *dev_priv = dev->dev_private;
    279 
    280 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
    281 }
    282 
    283 static void gen7_enable_fbc(struct drm_crtc *crtc)
    284 {
    285 	struct drm_device *dev = crtc->dev;
    286 	struct drm_i915_private *dev_priv = dev->dev_private;
    287 	struct drm_framebuffer *fb = crtc->primary->fb;
    288 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    289 	struct drm_i915_gem_object *obj = intel_fb->obj;
    290 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    291 	u32 dpfc_ctl;
    292 
    293 	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
    294 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    295 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    296 	else
    297 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    298 	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
    299 
    300 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    301 
    302 	if (IS_IVYBRIDGE(dev)) {
    303 		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
    304 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
    305 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
    306 			   ILK_FBCQ_DIS);
    307 	} else {
    308 		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
    309 		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
    310 			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
    311 			   HSW_FBCQ_DIS);
    312 	}
    313 
    314 	I915_WRITE(SNB_DPFC_CTL_SA,
    315 		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
    316 	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
    317 
    318 	sandybridge_blit_fbc_update(dev);
    319 
    320 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    321 }
    322 
    323 bool intel_fbc_enabled(struct drm_device *dev)
    324 {
    325 	struct drm_i915_private *dev_priv = dev->dev_private;
    326 
    327 	if (!dev_priv->display.fbc_enabled)
    328 		return false;
    329 
    330 	return dev_priv->display.fbc_enabled(dev);
    331 }
    332 
    333 static void intel_fbc_work_fn(struct work_struct *__work)
    334 {
    335 	struct intel_fbc_work *work =
    336 		container_of(to_delayed_work(__work),
    337 			     struct intel_fbc_work, work);
    338 	struct drm_device *dev = work->crtc->dev;
    339 	struct drm_i915_private *dev_priv = dev->dev_private;
    340 
    341 	mutex_lock(&dev->struct_mutex);
    342 	if (work == dev_priv->fbc.fbc_work) {
    343 		/* Double check that we haven't switched fb without cancelling
    344 		 * the prior work.
    345 		 */
    346 		if (work->crtc->primary->fb == work->fb) {
    347 			dev_priv->display.enable_fbc(work->crtc);
    348 
    349 			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
    350 			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
    351 			dev_priv->fbc.y = work->crtc->y;
    352 		}
    353 
    354 		dev_priv->fbc.fbc_work = NULL;
    355 	}
    356 	mutex_unlock(&dev->struct_mutex);
    357 
    358 	kfree(work);
    359 }
    360 
    361 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
    362 {
    363 	if (dev_priv->fbc.fbc_work == NULL)
    364 		return;
    365 
    366 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
    367 
    368 	/* Synchronisation is provided by struct_mutex and checking of
    369 	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
    370 	 * entirely asynchronously.
    371 	 */
    372 	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
    373 		/* tasklet was killed before being run, clean up */
    374 		kfree(dev_priv->fbc.fbc_work);
    375 
    376 	/* Mark the work as no longer wanted so that if it does
    377 	 * wake-up (because the work was already running and waiting
    378 	 * for our mutex), it will discover that is no longer
    379 	 * necessary to run.
    380 	 */
    381 	dev_priv->fbc.fbc_work = NULL;
    382 }
    383 
    384 static void intel_enable_fbc(struct drm_crtc *crtc)
    385 {
    386 	struct intel_fbc_work *work;
    387 	struct drm_device *dev = crtc->dev;
    388 	struct drm_i915_private *dev_priv = dev->dev_private;
    389 
    390 	if (!dev_priv->display.enable_fbc)
    391 		return;
    392 
    393 	intel_cancel_fbc_work(dev_priv);
    394 
    395 	work = kzalloc(sizeof(*work), GFP_KERNEL);
    396 	if (work == NULL) {
    397 		DRM_ERROR("Failed to allocate FBC work structure\n");
    398 		dev_priv->display.enable_fbc(crtc);
    399 		return;
    400 	}
    401 
    402 	work->crtc = crtc;
    403 	work->fb = crtc->primary->fb;
    404 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
    405 
    406 	dev_priv->fbc.fbc_work = work;
    407 
    408 	/* Delay the actual enabling to let pageflipping cease and the
    409 	 * display to settle before starting the compression. Note that
    410 	 * this delay also serves a second purpose: it allows for a
    411 	 * vblank to pass after disabling the FBC before we attempt
    412 	 * to modify the control registers.
    413 	 *
    414 	 * A more complicated solution would involve tracking vblanks
    415 	 * following the termination of the page-flipping sequence
    416 	 * and indeed performing the enable as a co-routine and not
    417 	 * waiting synchronously upon the vblank.
    418 	 *
    419 	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
    420 	 */
    421 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
    422 }
    423 
    424 void intel_disable_fbc(struct drm_device *dev)
    425 {
    426 	struct drm_i915_private *dev_priv = dev->dev_private;
    427 
    428 	intel_cancel_fbc_work(dev_priv);
    429 
    430 	if (!dev_priv->display.disable_fbc)
    431 		return;
    432 
    433 	dev_priv->display.disable_fbc(dev);
    434 	dev_priv->fbc.plane = -1;
    435 }
    436 
    437 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
    438 			      enum no_fbc_reason reason)
    439 {
    440 	if (dev_priv->fbc.no_fbc_reason == reason)
    441 		return false;
    442 
    443 	dev_priv->fbc.no_fbc_reason = reason;
    444 	return true;
    445 }
    446 
    447 /**
    448  * intel_update_fbc - enable/disable FBC as needed
    449  * @dev: the drm_device
    450  *
    451  * Set up the framebuffer compression hardware at mode set time.  We
    452  * enable it if possible:
    453  *   - plane A only (on pre-965)
    454  *   - no pixel mulitply/line duplication
    455  *   - no alpha buffer discard
    456  *   - no dual wide
    457  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
    458  *
    459  * We can't assume that any compression will take place (worst case),
    460  * so the compressed buffer has to be the same size as the uncompressed
    461  * one.  It also must reside (along with the line length buffer) in
    462  * stolen memory.
    463  *
    464  * We need to enable/disable FBC on a global basis.
    465  */
    466 void intel_update_fbc(struct drm_device *dev)
    467 {
    468 	struct drm_i915_private *dev_priv = dev->dev_private;
    469 	struct drm_crtc *crtc = NULL, *tmp_crtc;
    470 	struct intel_crtc *intel_crtc;
    471 	struct drm_framebuffer *fb;
    472 	struct intel_framebuffer *intel_fb;
    473 	struct drm_i915_gem_object *obj;
    474 	const struct drm_display_mode *adjusted_mode;
    475 	unsigned int max_width, max_height;
    476 
    477 	if (!HAS_FBC(dev)) {
    478 		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
    479 		return;
    480 	}
    481 
    482 	if (!i915.powersave) {
    483 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
    484 			DRM_DEBUG_KMS("fbc disabled per module param\n");
    485 		return;
    486 	}
    487 
    488 	/*
    489 	 * If FBC is already on, we just have to verify that we can
    490 	 * keep it that way...
    491 	 * Need to disable if:
    492 	 *   - more than one pipe is active
    493 	 *   - changing FBC params (stride, fence, mode)
    494 	 *   - new fb is too large to fit in compressed buffer
    495 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
    496 	 */
    497 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
    498 		if (intel_crtc_active(tmp_crtc) &&
    499 		    to_intel_crtc(tmp_crtc)->primary_enabled) {
    500 			if (crtc) {
    501 				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
    502 					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
    503 				goto out_disable;
    504 			}
    505 			crtc = tmp_crtc;
    506 		}
    507 	}
    508 
    509 	if (!crtc || crtc->primary->fb == NULL) {
    510 		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
    511 			DRM_DEBUG_KMS("no output, disabling\n");
    512 		goto out_disable;
    513 	}
    514 
    515 	intel_crtc = to_intel_crtc(crtc);
    516 	fb = crtc->primary->fb;
    517 	intel_fb = to_intel_framebuffer(fb);
    518 	obj = intel_fb->obj;
    519 	adjusted_mode = &intel_crtc->config.adjusted_mode;
    520 
    521 	if (i915.enable_fbc < 0 &&
    522 	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
    523 		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
    524 			DRM_DEBUG_KMS("disabled per chip default\n");
    525 		goto out_disable;
    526 	}
    527 	if (!i915.enable_fbc) {
    528 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
    529 			DRM_DEBUG_KMS("fbc disabled per module param\n");
    530 		goto out_disable;
    531 	}
    532 	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
    533 	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
    534 		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
    535 			DRM_DEBUG_KMS("mode incompatible with compression, "
    536 				      "disabling\n");
    537 		goto out_disable;
    538 	}
    539 
    540 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
    541 		max_width = 4096;
    542 		max_height = 2048;
    543 	} else {
    544 		max_width = 2048;
    545 		max_height = 1536;
    546 	}
    547 	if (intel_crtc->config.pipe_src_w > max_width ||
    548 	    intel_crtc->config.pipe_src_h > max_height) {
    549 		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
    550 			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
    551 		goto out_disable;
    552 	}
    553 	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
    554 	    intel_crtc->plane != PLANE_A) {
    555 		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
    556 			DRM_DEBUG_KMS("plane not A, disabling compression\n");
    557 		goto out_disable;
    558 	}
    559 
    560 	/* The use of a CPU fence is mandatory in order to detect writes
    561 	 * by the CPU to the scanout and trigger updates to the FBC.
    562 	 */
    563 	if (obj->tiling_mode != I915_TILING_X ||
    564 	    obj->fence_reg == I915_FENCE_REG_NONE) {
    565 		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
    566 			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
    567 		goto out_disable;
    568 	}
    569 
    570 	/* If the kernel debugger is active, always disable compression */
    571 	if (in_dbg_master())
    572 		goto out_disable;
    573 
    574 	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
    575 		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
    576 			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
    577 		goto out_disable;
    578 	}
    579 
    580 	/* If the scanout has not changed, don't modify the FBC settings.
    581 	 * Note that we make the fundamental assumption that the fb->obj
    582 	 * cannot be unpinned (and have its GTT offset and fence revoked)
    583 	 * without first being decoupled from the scanout and FBC disabled.
    584 	 */
    585 	if (dev_priv->fbc.plane == intel_crtc->plane &&
    586 	    dev_priv->fbc.fb_id == fb->base.id &&
    587 	    dev_priv->fbc.y == crtc->y)
    588 		return;
    589 
    590 	if (intel_fbc_enabled(dev)) {
    591 		/* We update FBC along two paths, after changing fb/crtc
    592 		 * configuration (modeswitching) and after page-flipping
    593 		 * finishes. For the latter, we know that not only did
    594 		 * we disable the FBC at the start of the page-flip
    595 		 * sequence, but also more than one vblank has passed.
    596 		 *
    597 		 * For the former case of modeswitching, it is possible
    598 		 * to switch between two FBC valid configurations
    599 		 * instantaneously so we do need to disable the FBC
    600 		 * before we can modify its control registers. We also
    601 		 * have to wait for the next vblank for that to take
    602 		 * effect. However, since we delay enabling FBC we can
    603 		 * assume that a vblank has passed since disabling and
    604 		 * that we can safely alter the registers in the deferred
    605 		 * callback.
    606 		 *
    607 		 * In the scenario that we go from a valid to invalid
    608 		 * and then back to valid FBC configuration we have
    609 		 * no strict enforcement that a vblank occurred since
    610 		 * disabling the FBC. However, along all current pipe
    611 		 * disabling paths we do need to wait for a vblank at
    612 		 * some point. And we wait before enabling FBC anyway.
    613 		 */
    614 		DRM_DEBUG_KMS("disabling active FBC for update\n");
    615 		intel_disable_fbc(dev);
    616 	}
    617 
    618 	intel_enable_fbc(crtc);
    619 	dev_priv->fbc.no_fbc_reason = FBC_OK;
    620 	return;
    621 
    622 out_disable:
    623 	/* Multiple disables should be harmless */
    624 	if (intel_fbc_enabled(dev)) {
    625 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
    626 		intel_disable_fbc(dev);
    627 	}
    628 	i915_gem_stolen_cleanup_compression(dev);
    629 }
    630 
    631 static void i915_pineview_get_mem_freq(struct drm_device *dev)
    632 {
    633 	struct drm_i915_private *dev_priv = dev->dev_private;
    634 	u32 tmp;
    635 
    636 	tmp = I915_READ(CLKCFG);
    637 
    638 	switch (tmp & CLKCFG_FSB_MASK) {
    639 	case CLKCFG_FSB_533:
    640 		dev_priv->fsb_freq = 533; /* 133*4 */
    641 		break;
    642 	case CLKCFG_FSB_800:
    643 		dev_priv->fsb_freq = 800; /* 200*4 */
    644 		break;
    645 	case CLKCFG_FSB_667:
    646 		dev_priv->fsb_freq =  667; /* 167*4 */
    647 		break;
    648 	case CLKCFG_FSB_400:
    649 		dev_priv->fsb_freq = 400; /* 100*4 */
    650 		break;
    651 	}
    652 
    653 	switch (tmp & CLKCFG_MEM_MASK) {
    654 	case CLKCFG_MEM_533:
    655 		dev_priv->mem_freq = 533;
    656 		break;
    657 	case CLKCFG_MEM_667:
    658 		dev_priv->mem_freq = 667;
    659 		break;
    660 	case CLKCFG_MEM_800:
    661 		dev_priv->mem_freq = 800;
    662 		break;
    663 	}
    664 
    665 	/* detect pineview DDR3 setting */
    666 	tmp = I915_READ(CSHRDDR3CTL);
    667 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    668 }
    669 
    670 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    671 {
    672 	struct drm_i915_private *dev_priv = dev->dev_private;
    673 	u16 ddrpll, csipll;
    674 
    675 	ddrpll = I915_READ16(DDRMPLL1);
    676 	csipll = I915_READ16(CSIPLL0);
    677 
    678 	switch (ddrpll & 0xff) {
    679 	case 0xc:
    680 		dev_priv->mem_freq = 800;
    681 		break;
    682 	case 0x10:
    683 		dev_priv->mem_freq = 1066;
    684 		break;
    685 	case 0x14:
    686 		dev_priv->mem_freq = 1333;
    687 		break;
    688 	case 0x18:
    689 		dev_priv->mem_freq = 1600;
    690 		break;
    691 	default:
    692 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    693 				 ddrpll & 0xff);
    694 		dev_priv->mem_freq = 0;
    695 		break;
    696 	}
    697 
    698 	dev_priv->ips.r_t = dev_priv->mem_freq;
    699 
    700 	switch (csipll & 0x3ff) {
    701 	case 0x00c:
    702 		dev_priv->fsb_freq = 3200;
    703 		break;
    704 	case 0x00e:
    705 		dev_priv->fsb_freq = 3733;
    706 		break;
    707 	case 0x010:
    708 		dev_priv->fsb_freq = 4266;
    709 		break;
    710 	case 0x012:
    711 		dev_priv->fsb_freq = 4800;
    712 		break;
    713 	case 0x014:
    714 		dev_priv->fsb_freq = 5333;
    715 		break;
    716 	case 0x016:
    717 		dev_priv->fsb_freq = 5866;
    718 		break;
    719 	case 0x018:
    720 		dev_priv->fsb_freq = 6400;
    721 		break;
    722 	default:
    723 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    724 				 csipll & 0x3ff);
    725 		dev_priv->fsb_freq = 0;
    726 		break;
    727 	}
    728 
    729 	if (dev_priv->fsb_freq == 3200) {
    730 		dev_priv->ips.c_m = 0;
    731 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    732 		dev_priv->ips.c_m = 1;
    733 	} else {
    734 		dev_priv->ips.c_m = 2;
    735 	}
    736 }
    737 
    738 static const struct cxsr_latency cxsr_latency_table[] = {
    739 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    740 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    741 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    742 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    743 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    744 
    745 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    746 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    747 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    748 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    749 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    750 
    751 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    752 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    753 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    754 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    755 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    756 
    757 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    758 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    759 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    760 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    761 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    762 
    763 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    764 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    765 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    766 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    767 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    768 
    769 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    770 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    771 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    772 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    773 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    774 };
    775 
    776 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    777 							 int is_ddr3,
    778 							 int fsb,
    779 							 int mem)
    780 {
    781 	const struct cxsr_latency *latency;
    782 	int i;
    783 
    784 	if (fsb == 0 || mem == 0)
    785 		return NULL;
    786 
    787 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    788 		latency = &cxsr_latency_table[i];
    789 		if (is_desktop == latency->is_desktop &&
    790 		    is_ddr3 == latency->is_ddr3 &&
    791 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    792 			return latency;
    793 	}
    794 
    795 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    796 
    797 	return NULL;
    798 }
    799 
    800 static void pineview_disable_cxsr(struct drm_device *dev)
    801 {
    802 	struct drm_i915_private *dev_priv = dev->dev_private;
    803 
    804 	/* deactivate cxsr */
    805 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
    806 }
    807 
    808 /*
    809  * Latency for FIFO fetches is dependent on several factors:
    810  *   - memory configuration (speed, channels)
    811  *   - chipset
    812  *   - current MCH state
    813  * It can be fairly high in some situations, so here we assume a fairly
    814  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    815  * set this value too high, the FIFO will fetch frequently to stay full)
    816  * and power consumption (set it too low to save power and we might see
    817  * FIFO underruns and display "flicker").
    818  *
    819  * A value of 5us seems to be a good balance; safe for very low end
    820  * platforms but not overly aggressive on lower latency configs.
    821  */
    822 static const int latency_ns = 5000;
    823 
    824 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    825 {
    826 	struct drm_i915_private *dev_priv = dev->dev_private;
    827 	uint32_t dsparb = I915_READ(DSPARB);
    828 	int size;
    829 
    830 	size = dsparb & 0x7f;
    831 	if (plane)
    832 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    833 
    834 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    835 		      plane ? "B" : "A", size);
    836 
    837 	return size;
    838 }
    839 
    840 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    841 {
    842 	struct drm_i915_private *dev_priv = dev->dev_private;
    843 	uint32_t dsparb = I915_READ(DSPARB);
    844 	int size;
    845 
    846 	size = dsparb & 0x1ff;
    847 	if (plane)
    848 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    849 	size >>= 1; /* Convert to cachelines */
    850 
    851 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    852 		      plane ? "B" : "A", size);
    853 
    854 	return size;
    855 }
    856 
    857 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    858 {
    859 	struct drm_i915_private *dev_priv = dev->dev_private;
    860 	uint32_t dsparb = I915_READ(DSPARB);
    861 	int size;
    862 
    863 	size = dsparb & 0x7f;
    864 	size >>= 2; /* Convert to cachelines */
    865 
    866 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    867 		      plane ? "B" : "A",
    868 		      size);
    869 
    870 	return size;
    871 }
    872 
    873 /* Pineview has different values for various configs */
    874 static const struct intel_watermark_params pineview_display_wm = {
    875 	PINEVIEW_DISPLAY_FIFO,
    876 	PINEVIEW_MAX_WM,
    877 	PINEVIEW_DFT_WM,
    878 	PINEVIEW_GUARD_WM,
    879 	PINEVIEW_FIFO_LINE_SIZE
    880 };
    881 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    882 	PINEVIEW_DISPLAY_FIFO,
    883 	PINEVIEW_MAX_WM,
    884 	PINEVIEW_DFT_HPLLOFF_WM,
    885 	PINEVIEW_GUARD_WM,
    886 	PINEVIEW_FIFO_LINE_SIZE
    887 };
    888 static const struct intel_watermark_params pineview_cursor_wm = {
    889 	PINEVIEW_CURSOR_FIFO,
    890 	PINEVIEW_CURSOR_MAX_WM,
    891 	PINEVIEW_CURSOR_DFT_WM,
    892 	PINEVIEW_CURSOR_GUARD_WM,
    893 	PINEVIEW_FIFO_LINE_SIZE,
    894 };
    895 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    896 	PINEVIEW_CURSOR_FIFO,
    897 	PINEVIEW_CURSOR_MAX_WM,
    898 	PINEVIEW_CURSOR_DFT_WM,
    899 	PINEVIEW_CURSOR_GUARD_WM,
    900 	PINEVIEW_FIFO_LINE_SIZE
    901 };
    902 static const struct intel_watermark_params g4x_wm_info = {
    903 	G4X_FIFO_SIZE,
    904 	G4X_MAX_WM,
    905 	G4X_MAX_WM,
    906 	2,
    907 	G4X_FIFO_LINE_SIZE,
    908 };
    909 static const struct intel_watermark_params g4x_cursor_wm_info = {
    910 	I965_CURSOR_FIFO,
    911 	I965_CURSOR_MAX_WM,
    912 	I965_CURSOR_DFT_WM,
    913 	2,
    914 	G4X_FIFO_LINE_SIZE,
    915 };
    916 static const struct intel_watermark_params valleyview_wm_info = {
    917 	VALLEYVIEW_FIFO_SIZE,
    918 	VALLEYVIEW_MAX_WM,
    919 	VALLEYVIEW_MAX_WM,
    920 	2,
    921 	G4X_FIFO_LINE_SIZE,
    922 };
    923 static const struct intel_watermark_params valleyview_cursor_wm_info = {
    924 	I965_CURSOR_FIFO,
    925 	VALLEYVIEW_CURSOR_MAX_WM,
    926 	I965_CURSOR_DFT_WM,
    927 	2,
    928 	G4X_FIFO_LINE_SIZE,
    929 };
    930 static const struct intel_watermark_params i965_cursor_wm_info = {
    931 	I965_CURSOR_FIFO,
    932 	I965_CURSOR_MAX_WM,
    933 	I965_CURSOR_DFT_WM,
    934 	2,
    935 	I915_FIFO_LINE_SIZE,
    936 };
    937 static const struct intel_watermark_params i945_wm_info = {
    938 	I945_FIFO_SIZE,
    939 	I915_MAX_WM,
    940 	1,
    941 	2,
    942 	I915_FIFO_LINE_SIZE
    943 };
    944 static const struct intel_watermark_params i915_wm_info = {
    945 	I915_FIFO_SIZE,
    946 	I915_MAX_WM,
    947 	1,
    948 	2,
    949 	I915_FIFO_LINE_SIZE
    950 };
    951 static const struct intel_watermark_params i830_wm_info = {
    952 	I855GM_FIFO_SIZE,
    953 	I915_MAX_WM,
    954 	1,
    955 	2,
    956 	I830_FIFO_LINE_SIZE
    957 };
    958 static const struct intel_watermark_params i845_wm_info = {
    959 	I830_FIFO_SIZE,
    960 	I915_MAX_WM,
    961 	1,
    962 	2,
    963 	I830_FIFO_LINE_SIZE
    964 };
    965 
    966 /**
    967  * intel_calculate_wm - calculate watermark level
    968  * @clock_in_khz: pixel clock
    969  * @wm: chip FIFO params
    970  * @pixel_size: display pixel size
    971  * @latency_ns: memory latency for the platform
    972  *
    973  * Calculate the watermark level (the level at which the display plane will
    974  * start fetching from memory again).  Each chip has a different display
    975  * FIFO size and allocation, so the caller needs to figure that out and pass
    976  * in the correct intel_watermark_params structure.
    977  *
    978  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    979  * on the pixel size.  When it reaches the watermark level, it'll start
    980  * fetching FIFO line sized based chunks from memory until the FIFO fills
    981  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    982  * will occur, and a display engine hang could result.
    983  */
    984 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    985 					const struct intel_watermark_params *wm,
    986 					int fifo_size,
    987 					int pixel_size,
    988 					unsigned long latency_ns)
    989 {
    990 	long entries_required, wm_size;
    991 
    992 	/*
    993 	 * Note: we need to make sure we don't overflow for various clock &
    994 	 * latency values.
    995 	 * clocks go from a few thousand to several hundred thousand.
    996 	 * latency is usually a few thousand
    997 	 */
    998 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
    999 		1000;
   1000 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
   1001 
   1002 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
   1003 
   1004 	wm_size = fifo_size - (entries_required + wm->guard_size);
   1005 
   1006 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
   1007 
   1008 	/* Don't promote wm_size to unsigned... */
   1009 	if (wm_size > (long)wm->max_wm)
   1010 		wm_size = wm->max_wm;
   1011 	if (wm_size <= 0)
   1012 		wm_size = wm->default_wm;
   1013 	return wm_size;
   1014 }
   1015 
   1016 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
   1017 {
   1018 	struct drm_crtc *crtc, *enabled = NULL;
   1019 
   1020 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
   1021 		if (intel_crtc_active(crtc)) {
   1022 			if (enabled)
   1023 				return NULL;
   1024 			enabled = crtc;
   1025 		}
   1026 	}
   1027 
   1028 	return enabled;
   1029 }
   1030 
   1031 static void pineview_update_wm(struct drm_crtc *unused_crtc)
   1032 {
   1033 	struct drm_device *dev = unused_crtc->dev;
   1034 	struct drm_i915_private *dev_priv = dev->dev_private;
   1035 	struct drm_crtc *crtc;
   1036 	const struct cxsr_latency *latency;
   1037 	u32 reg;
   1038 	unsigned long wm;
   1039 
   1040 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
   1041 					 dev_priv->fsb_freq, dev_priv->mem_freq);
   1042 	if (!latency) {
   1043 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
   1044 		pineview_disable_cxsr(dev);
   1045 		return;
   1046 	}
   1047 
   1048 	crtc = single_enabled_crtc(dev);
   1049 	if (crtc) {
   1050 		const struct drm_display_mode *adjusted_mode;
   1051 		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1052 		int clock;
   1053 
   1054 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1055 		clock = adjusted_mode->crtc_clock;
   1056 
   1057 		/* Display SR */
   1058 		wm = intel_calculate_wm(clock, &pineview_display_wm,
   1059 					pineview_display_wm.fifo_size,
   1060 					pixel_size, latency->display_sr);
   1061 		reg = I915_READ(DSPFW1);
   1062 		reg &= ~DSPFW_SR_MASK;
   1063 		reg |= wm << DSPFW_SR_SHIFT;
   1064 		I915_WRITE(DSPFW1, reg);
   1065 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
   1066 
   1067 		/* cursor SR */
   1068 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
   1069 					pineview_display_wm.fifo_size,
   1070 					pixel_size, latency->cursor_sr);
   1071 		reg = I915_READ(DSPFW3);
   1072 		reg &= ~DSPFW_CURSOR_SR_MASK;
   1073 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
   1074 		I915_WRITE(DSPFW3, reg);
   1075 
   1076 		/* Display HPLL off SR */
   1077 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
   1078 					pineview_display_hplloff_wm.fifo_size,
   1079 					pixel_size, latency->display_hpll_disable);
   1080 		reg = I915_READ(DSPFW3);
   1081 		reg &= ~DSPFW_HPLL_SR_MASK;
   1082 		reg |= wm & DSPFW_HPLL_SR_MASK;
   1083 		I915_WRITE(DSPFW3, reg);
   1084 
   1085 		/* cursor HPLL off SR */
   1086 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
   1087 					pineview_display_hplloff_wm.fifo_size,
   1088 					pixel_size, latency->cursor_hpll_disable);
   1089 		reg = I915_READ(DSPFW3);
   1090 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
   1091 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
   1092 		I915_WRITE(DSPFW3, reg);
   1093 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
   1094 
   1095 		/* activate cxsr */
   1096 		I915_WRITE(DSPFW3,
   1097 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
   1098 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
   1099 	} else {
   1100 		pineview_disable_cxsr(dev);
   1101 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
   1102 	}
   1103 }
   1104 
   1105 static bool g4x_compute_wm0(struct drm_device *dev,
   1106 			    int plane,
   1107 			    const struct intel_watermark_params *display,
   1108 			    int display_latency_ns,
   1109 			    const struct intel_watermark_params *cursor,
   1110 			    int cursor_latency_ns,
   1111 			    int *plane_wm,
   1112 			    int *cursor_wm)
   1113 {
   1114 	struct drm_crtc *crtc;
   1115 	const struct drm_display_mode *adjusted_mode;
   1116 	int htotal, hdisplay, clock, pixel_size;
   1117 	int line_time_us, line_count;
   1118 	int entries, tlb_miss;
   1119 
   1120 	crtc = intel_get_crtc_for_plane(dev, plane);
   1121 	if (!intel_crtc_active(crtc)) {
   1122 		*cursor_wm = cursor->guard_size;
   1123 		*plane_wm = display->guard_size;
   1124 		return false;
   1125 	}
   1126 
   1127 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1128 	clock = adjusted_mode->crtc_clock;
   1129 	htotal = adjusted_mode->crtc_htotal;
   1130 	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1131 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1132 
   1133 	/* Use the small buffer method to calculate plane watermark */
   1134 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
   1135 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
   1136 	if (tlb_miss > 0)
   1137 		entries += tlb_miss;
   1138 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
   1139 	*plane_wm = entries + display->guard_size;
   1140 	if (*plane_wm > (int)display->max_wm)
   1141 		*plane_wm = display->max_wm;
   1142 
   1143 	/* Use the large buffer method to calculate cursor watermark */
   1144 	line_time_us = max(htotal * 1000 / clock, 1);
   1145 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
   1146 	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
   1147 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
   1148 	if (tlb_miss > 0)
   1149 		entries += tlb_miss;
   1150 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1151 	*cursor_wm = entries + cursor->guard_size;
   1152 	if (*cursor_wm > (int)cursor->max_wm)
   1153 		*cursor_wm = (int)cursor->max_wm;
   1154 
   1155 	return true;
   1156 }
   1157 
   1158 /*
   1159  * Check the wm result.
   1160  *
   1161  * If any calculated watermark values is larger than the maximum value that
   1162  * can be programmed into the associated watermark register, that watermark
   1163  * must be disabled.
   1164  */
   1165 static bool g4x_check_srwm(struct drm_device *dev,
   1166 			   int display_wm, int cursor_wm,
   1167 			   const struct intel_watermark_params *display,
   1168 			   const struct intel_watermark_params *cursor)
   1169 {
   1170 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
   1171 		      display_wm, cursor_wm);
   1172 
   1173 	if (display_wm > display->max_wm) {
   1174 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
   1175 			      display_wm, display->max_wm);
   1176 		return false;
   1177 	}
   1178 
   1179 	if (cursor_wm > cursor->max_wm) {
   1180 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
   1181 			      cursor_wm, cursor->max_wm);
   1182 		return false;
   1183 	}
   1184 
   1185 	if (!(display_wm || cursor_wm)) {
   1186 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
   1187 		return false;
   1188 	}
   1189 
   1190 	return true;
   1191 }
   1192 
   1193 static bool g4x_compute_srwm(struct drm_device *dev,
   1194 			     int plane,
   1195 			     int latency_ns,
   1196 			     const struct intel_watermark_params *display,
   1197 			     const struct intel_watermark_params *cursor,
   1198 			     int *display_wm, int *cursor_wm)
   1199 {
   1200 	struct drm_crtc *crtc;
   1201 	const struct drm_display_mode *adjusted_mode;
   1202 	int hdisplay, htotal, pixel_size, clock;
   1203 	unsigned long line_time_us;
   1204 	int line_count, line_size;
   1205 	int small, large;
   1206 	int entries;
   1207 
   1208 	if (!latency_ns) {
   1209 		*display_wm = *cursor_wm = 0;
   1210 		return false;
   1211 	}
   1212 
   1213 	crtc = intel_get_crtc_for_plane(dev, plane);
   1214 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1215 	clock = adjusted_mode->crtc_clock;
   1216 	htotal = adjusted_mode->crtc_htotal;
   1217 	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1218 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1219 
   1220 	line_time_us = max(htotal * 1000 / clock, 1);
   1221 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   1222 	line_size = hdisplay * pixel_size;
   1223 
   1224 	/* Use the minimum of the small and large buffer method for primary */
   1225 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   1226 	large = line_count * line_size;
   1227 
   1228 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   1229 	*display_wm = entries + display->guard_size;
   1230 
   1231 	/* calculate the self-refresh watermark for display cursor */
   1232 	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
   1233 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1234 	*cursor_wm = entries + cursor->guard_size;
   1235 
   1236 	return g4x_check_srwm(dev,
   1237 			      *display_wm, *cursor_wm,
   1238 			      display, cursor);
   1239 }
   1240 
   1241 static bool vlv_compute_drain_latency(struct drm_device *dev,
   1242 				     int plane,
   1243 				     int *plane_prec_mult,
   1244 				     int *plane_dl,
   1245 				     int *cursor_prec_mult,
   1246 				     int *cursor_dl)
   1247 {
   1248 	struct drm_crtc *crtc;
   1249 	int clock, pixel_size;
   1250 	int entries;
   1251 
   1252 	crtc = intel_get_crtc_for_plane(dev, plane);
   1253 	if (!intel_crtc_active(crtc))
   1254 		return false;
   1255 
   1256 	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
   1257 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
   1258 
   1259 	entries = (clock / 1000) * pixel_size;
   1260 	*plane_prec_mult = (entries > 256) ?
   1261 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1262 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
   1263 						     pixel_size);
   1264 
   1265 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
   1266 	*cursor_prec_mult = (entries > 256) ?
   1267 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1268 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
   1269 
   1270 	return true;
   1271 }
   1272 
   1273 /*
   1274  * Update drain latency registers of memory arbiter
   1275  *
   1276  * Valleyview SoC has a new memory arbiter and needs drain latency registers
   1277  * to be programmed. Each plane has a drain latency multiplier and a drain
   1278  * latency value.
   1279  */
   1280 
   1281 static void vlv_update_drain_latency(struct drm_device *dev)
   1282 {
   1283 	struct drm_i915_private *dev_priv = dev->dev_private;
   1284 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
   1285 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
   1286 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
   1287 							either 16 or 32 */
   1288 
   1289 	/* For plane A, Cursor A */
   1290 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
   1291 				      &cursor_prec_mult, &cursora_dl)) {
   1292 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1293 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
   1294 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1295 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
   1296 
   1297 		I915_WRITE(VLV_DDL1, cursora_prec |
   1298 				(cursora_dl << DDL_CURSORA_SHIFT) |
   1299 				planea_prec | planea_dl);
   1300 	}
   1301 
   1302 	/* For plane B, Cursor B */
   1303 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
   1304 				      &cursor_prec_mult, &cursorb_dl)) {
   1305 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1306 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
   1307 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1308 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
   1309 
   1310 		I915_WRITE(VLV_DDL2, cursorb_prec |
   1311 				(cursorb_dl << DDL_CURSORB_SHIFT) |
   1312 				planeb_prec | planeb_dl);
   1313 	}
   1314 }
   1315 
   1316 #define single_plane_enabled(mask) is_power_of_2(mask)
   1317 
   1318 static void valleyview_update_wm(struct drm_crtc *crtc)
   1319 {
   1320 	struct drm_device *dev = crtc->dev;
   1321 	static const int sr_latency_ns = 12000;
   1322 	struct drm_i915_private *dev_priv = dev->dev_private;
   1323 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1324 	int plane_sr, cursor_sr;
   1325 	int ignore_plane_sr, ignore_cursor_sr;
   1326 	unsigned int enabled = 0;
   1327 
   1328 	vlv_update_drain_latency(dev);
   1329 
   1330 	if (g4x_compute_wm0(dev, PIPE_A,
   1331 			    &valleyview_wm_info, latency_ns,
   1332 			    &valleyview_cursor_wm_info, latency_ns,
   1333 			    &planea_wm, &cursora_wm))
   1334 		enabled |= 1 << PIPE_A;
   1335 
   1336 	if (g4x_compute_wm0(dev, PIPE_B,
   1337 			    &valleyview_wm_info, latency_ns,
   1338 			    &valleyview_cursor_wm_info, latency_ns,
   1339 			    &planeb_wm, &cursorb_wm))
   1340 		enabled |= 1 << PIPE_B;
   1341 
   1342 	if (single_plane_enabled(enabled) &&
   1343 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1344 			     sr_latency_ns,
   1345 			     &valleyview_wm_info,
   1346 			     &valleyview_cursor_wm_info,
   1347 			     &plane_sr, &ignore_cursor_sr) &&
   1348 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1349 			     2*sr_latency_ns,
   1350 			     &valleyview_wm_info,
   1351 			     &valleyview_cursor_wm_info,
   1352 			     &ignore_plane_sr, &cursor_sr)) {
   1353 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
   1354 	} else {
   1355 		I915_WRITE(FW_BLC_SELF_VLV,
   1356 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
   1357 		plane_sr = cursor_sr = 0;
   1358 	}
   1359 
   1360 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1361 		      planea_wm, cursora_wm,
   1362 		      planeb_wm, cursorb_wm,
   1363 		      plane_sr, cursor_sr);
   1364 
   1365 	I915_WRITE(DSPFW1,
   1366 		   (plane_sr << DSPFW_SR_SHIFT) |
   1367 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1368 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1369 		   planea_wm);
   1370 	I915_WRITE(DSPFW2,
   1371 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1372 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1373 	I915_WRITE(DSPFW3,
   1374 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
   1375 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1376 }
   1377 
   1378 static void g4x_update_wm(struct drm_crtc *crtc)
   1379 {
   1380 	struct drm_device *dev = crtc->dev;
   1381 	static const int sr_latency_ns = 12000;
   1382 	struct drm_i915_private *dev_priv = dev->dev_private;
   1383 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1384 	int plane_sr, cursor_sr;
   1385 	unsigned int enabled = 0;
   1386 
   1387 	if (g4x_compute_wm0(dev, PIPE_A,
   1388 			    &g4x_wm_info, latency_ns,
   1389 			    &g4x_cursor_wm_info, latency_ns,
   1390 			    &planea_wm, &cursora_wm))
   1391 		enabled |= 1 << PIPE_A;
   1392 
   1393 	if (g4x_compute_wm0(dev, PIPE_B,
   1394 			    &g4x_wm_info, latency_ns,
   1395 			    &g4x_cursor_wm_info, latency_ns,
   1396 			    &planeb_wm, &cursorb_wm))
   1397 		enabled |= 1 << PIPE_B;
   1398 
   1399 	if (single_plane_enabled(enabled) &&
   1400 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1401 			     sr_latency_ns,
   1402 			     &g4x_wm_info,
   1403 			     &g4x_cursor_wm_info,
   1404 			     &plane_sr, &cursor_sr)) {
   1405 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1406 	} else {
   1407 		I915_WRITE(FW_BLC_SELF,
   1408 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
   1409 		plane_sr = cursor_sr = 0;
   1410 	}
   1411 
   1412 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1413 		      planea_wm, cursora_wm,
   1414 		      planeb_wm, cursorb_wm,
   1415 		      plane_sr, cursor_sr);
   1416 
   1417 	I915_WRITE(DSPFW1,
   1418 		   (plane_sr << DSPFW_SR_SHIFT) |
   1419 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1420 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1421 		   planea_wm);
   1422 	I915_WRITE(DSPFW2,
   1423 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1424 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1425 	/* HPLL off in SR has some issues on G4x... disable it */
   1426 	I915_WRITE(DSPFW3,
   1427 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1428 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1429 }
   1430 
   1431 static void i965_update_wm(struct drm_crtc *unused_crtc)
   1432 {
   1433 	struct drm_device *dev = unused_crtc->dev;
   1434 	struct drm_i915_private *dev_priv = dev->dev_private;
   1435 	struct drm_crtc *crtc;
   1436 	int srwm = 1;
   1437 	int cursor_sr = 16;
   1438 
   1439 	/* Calc sr entries for one plane configs */
   1440 	crtc = single_enabled_crtc(dev);
   1441 	if (crtc) {
   1442 		/* self-refresh has much higher latency */
   1443 		static const int sr_latency_ns = 12000;
   1444 		const struct drm_display_mode *adjusted_mode =
   1445 			&to_intel_crtc(crtc)->config.adjusted_mode;
   1446 		int clock = adjusted_mode->crtc_clock;
   1447 		int htotal = adjusted_mode->crtc_htotal;
   1448 		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1449 		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1450 		unsigned long line_time_us;
   1451 		int entries;
   1452 
   1453 		line_time_us = max(htotal * 1000 / clock, 1);
   1454 
   1455 		/* Use ns/us then divide to preserve precision */
   1456 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1457 			pixel_size * hdisplay;
   1458 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1459 		srwm = I965_FIFO_SIZE - entries;
   1460 		if (srwm < 0)
   1461 			srwm = 1;
   1462 		srwm &= 0x1ff;
   1463 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1464 			      entries, srwm);
   1465 
   1466 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1467 			pixel_size * to_intel_crtc(crtc)->cursor_width;
   1468 		entries = DIV_ROUND_UP(entries,
   1469 					  i965_cursor_wm_info.cacheline_size);
   1470 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1471 			(entries + i965_cursor_wm_info.guard_size);
   1472 
   1473 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1474 			cursor_sr = i965_cursor_wm_info.max_wm;
   1475 
   1476 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1477 			      "cursor %d\n", srwm, cursor_sr);
   1478 
   1479 		if (IS_CRESTLINE(dev))
   1480 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1481 	} else {
   1482 		/* Turn off self refresh if both pipes are enabled */
   1483 		if (IS_CRESTLINE(dev))
   1484 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
   1485 				   & ~FW_BLC_SELF_EN);
   1486 	}
   1487 
   1488 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1489 		      srwm);
   1490 
   1491 	/* 965 has limitations... */
   1492 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
   1493 		   (8 << 16) | (8 << 8) | (8 << 0));
   1494 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
   1495 	/* update cursor SR watermark */
   1496 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1497 }
   1498 
   1499 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
   1500 {
   1501 	struct drm_device *dev = unused_crtc->dev;
   1502 	struct drm_i915_private *dev_priv = dev->dev_private;
   1503 	const struct intel_watermark_params *wm_info;
   1504 	uint32_t fwater_lo;
   1505 	uint32_t fwater_hi;
   1506 	int cwm, srwm = 1;
   1507 	int fifo_size;
   1508 	int planea_wm, planeb_wm;
   1509 	struct drm_crtc *crtc, *enabled = NULL;
   1510 
   1511 	if (IS_I945GM(dev))
   1512 		wm_info = &i945_wm_info;
   1513 	else if (!IS_GEN2(dev))
   1514 		wm_info = &i915_wm_info;
   1515 	else
   1516 		wm_info = &i830_wm_info;
   1517 
   1518 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1519 	crtc = intel_get_crtc_for_plane(dev, 0);
   1520 	if (intel_crtc_active(crtc)) {
   1521 		const struct drm_display_mode *adjusted_mode;
   1522 		int cpp = crtc->primary->fb->bits_per_pixel / 8;
   1523 		if (IS_GEN2(dev))
   1524 			cpp = 4;
   1525 
   1526 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1527 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1528 					       wm_info, fifo_size, cpp,
   1529 					       latency_ns);
   1530 		enabled = crtc;
   1531 	} else
   1532 		planea_wm = fifo_size - wm_info->guard_size;
   1533 
   1534 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1535 	crtc = intel_get_crtc_for_plane(dev, 1);
   1536 	if (intel_crtc_active(crtc)) {
   1537 		const struct drm_display_mode *adjusted_mode;
   1538 		int cpp = crtc->primary->fb->bits_per_pixel / 8;
   1539 		if (IS_GEN2(dev))
   1540 			cpp = 4;
   1541 
   1542 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1543 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1544 					       wm_info, fifo_size, cpp,
   1545 					       latency_ns);
   1546 		if (enabled == NULL)
   1547 			enabled = crtc;
   1548 		else
   1549 			enabled = NULL;
   1550 	} else
   1551 		planeb_wm = fifo_size - wm_info->guard_size;
   1552 
   1553 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1554 
   1555 	if (IS_I915GM(dev) && enabled) {
   1556 		struct intel_framebuffer *fb;
   1557 
   1558 		fb = to_intel_framebuffer(enabled->primary->fb);
   1559 
   1560 		/* self-refresh seems busted with untiled */
   1561 		if (fb->obj->tiling_mode == I915_TILING_NONE)
   1562 			enabled = NULL;
   1563 	}
   1564 
   1565 	/*
   1566 	 * Overlay gets an aggressive default since video jitter is bad.
   1567 	 */
   1568 	cwm = 2;
   1569 
   1570 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1571 	if (IS_I945G(dev) || IS_I945GM(dev))
   1572 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
   1573 	else if (IS_I915GM(dev))
   1574 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
   1575 
   1576 	/* Calc sr entries for one plane configs */
   1577 	if (HAS_FW_BLC(dev) && enabled) {
   1578 		/* self-refresh has much higher latency */
   1579 		static const int sr_latency_ns = 6000;
   1580 		const struct drm_display_mode *adjusted_mode =
   1581 			&to_intel_crtc(enabled)->config.adjusted_mode;
   1582 		int clock = adjusted_mode->crtc_clock;
   1583 		int htotal = adjusted_mode->crtc_htotal;
   1584 		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
   1585 		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
   1586 		unsigned long line_time_us;
   1587 		int entries;
   1588 
   1589 		line_time_us = max(htotal * 1000 / clock, 1);
   1590 
   1591 		/* Use ns/us then divide to preserve precision */
   1592 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1593 			pixel_size * hdisplay;
   1594 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1595 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1596 		srwm = wm_info->fifo_size - entries;
   1597 		if (srwm < 0)
   1598 			srwm = 1;
   1599 
   1600 		if (IS_I945G(dev) || IS_I945GM(dev))
   1601 			I915_WRITE(FW_BLC_SELF,
   1602 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1603 		else if (IS_I915GM(dev))
   1604 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1605 	}
   1606 
   1607 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1608 		      planea_wm, planeb_wm, cwm, srwm);
   1609 
   1610 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1611 	fwater_hi = (cwm & 0x1f);
   1612 
   1613 	/* Set request length to 8 cachelines per fetch */
   1614 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1615 	fwater_hi = fwater_hi | (1 << 8);
   1616 
   1617 	I915_WRITE(FW_BLC, fwater_lo);
   1618 	I915_WRITE(FW_BLC2, fwater_hi);
   1619 
   1620 	if (HAS_FW_BLC(dev)) {
   1621 		if (enabled) {
   1622 			if (IS_I945G(dev) || IS_I945GM(dev))
   1623 				I915_WRITE(FW_BLC_SELF,
   1624 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
   1625 			else if (IS_I915GM(dev))
   1626 				I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
   1627 			DRM_DEBUG_KMS("memory self refresh enabled\n");
   1628 		} else
   1629 			DRM_DEBUG_KMS("memory self refresh disabled\n");
   1630 	}
   1631 }
   1632 
   1633 static void i845_update_wm(struct drm_crtc *unused_crtc)
   1634 {
   1635 	struct drm_device *dev = unused_crtc->dev;
   1636 	struct drm_i915_private *dev_priv = dev->dev_private;
   1637 	struct drm_crtc *crtc;
   1638 	const struct drm_display_mode *adjusted_mode;
   1639 	uint32_t fwater_lo;
   1640 	int planea_wm;
   1641 
   1642 	crtc = single_enabled_crtc(dev);
   1643 	if (crtc == NULL)
   1644 		return;
   1645 
   1646 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1647 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1648 				       &i845_wm_info,
   1649 				       dev_priv->display.get_fifo_size(dev, 0),
   1650 				       4, latency_ns);
   1651 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1652 	fwater_lo |= (3<<8) | planea_wm;
   1653 
   1654 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1655 
   1656 	I915_WRITE(FW_BLC, fwater_lo);
   1657 }
   1658 
   1659 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
   1660 				    struct drm_crtc *crtc)
   1661 {
   1662 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   1663 	uint32_t pixel_rate;
   1664 
   1665 	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
   1666 
   1667 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
   1668 	 * adjust the pixel_rate here. */
   1669 
   1670 	if (intel_crtc->config.pch_pfit.enabled) {
   1671 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
   1672 		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
   1673 
   1674 		pipe_w = intel_crtc->config.pipe_src_w;
   1675 		pipe_h = intel_crtc->config.pipe_src_h;
   1676 		pfit_w = (pfit_size >> 16) & 0xFFFF;
   1677 		pfit_h = pfit_size & 0xFFFF;
   1678 		if (pipe_w < pfit_w)
   1679 			pipe_w = pfit_w;
   1680 		if (pipe_h < pfit_h)
   1681 			pipe_h = pfit_h;
   1682 
   1683 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
   1684 				     pfit_w * pfit_h);
   1685 	}
   1686 
   1687 	return pixel_rate;
   1688 }
   1689 
   1690 /* latency must be in 0.1us units. */
   1691 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   1692 			       uint32_t latency)
   1693 {
   1694 	uint64_t ret;
   1695 
   1696 	if (WARN(latency == 0, "Latency value missing\n"))
   1697 		return UINT_MAX;
   1698 
   1699 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
   1700 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
   1701 
   1702 	return ret;
   1703 }
   1704 
   1705 /* latency must be in 0.1us units. */
   1706 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   1707 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   1708 			       uint32_t latency)
   1709 {
   1710 	uint32_t ret;
   1711 
   1712 	if (WARN(latency == 0, "Latency value missing\n"))
   1713 		return UINT_MAX;
   1714 
   1715 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
   1716 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
   1717 	ret = DIV_ROUND_UP(ret, 64) + 2;
   1718 	return ret;
   1719 }
   1720 
   1721 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
   1722 			   uint8_t bytes_per_pixel)
   1723 {
   1724 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
   1725 }
   1726 
   1727 struct ilk_pipe_wm_parameters {
   1728 	bool active;
   1729 	uint32_t pipe_htotal;
   1730 	uint32_t pixel_rate;
   1731 	struct intel_plane_wm_parameters pri;
   1732 	struct intel_plane_wm_parameters spr;
   1733 	struct intel_plane_wm_parameters cur;
   1734 };
   1735 
   1736 struct ilk_wm_maximums {
   1737 	uint16_t pri;
   1738 	uint16_t spr;
   1739 	uint16_t cur;
   1740 	uint16_t fbc;
   1741 };
   1742 
   1743 /* used in computing the new watermarks state */
   1744 struct intel_wm_config {
   1745 	unsigned int num_pipes_active;
   1746 	bool sprites_enabled;
   1747 	bool sprites_scaled;
   1748 };
   1749 
   1750 /*
   1751  * For both WM_PIPE and WM_LP.
   1752  * mem_value must be in 0.1us units.
   1753  */
   1754 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
   1755 				   uint32_t mem_value,
   1756 				   bool is_lp)
   1757 {
   1758 	uint32_t method1, method2;
   1759 
   1760 	if (!params->active || !params->pri.enabled)
   1761 		return 0;
   1762 
   1763 	method1 = ilk_wm_method1(params->pixel_rate,
   1764 				 params->pri.bytes_per_pixel,
   1765 				 mem_value);
   1766 
   1767 	if (!is_lp)
   1768 		return method1;
   1769 
   1770 	method2 = ilk_wm_method2(params->pixel_rate,
   1771 				 params->pipe_htotal,
   1772 				 params->pri.horiz_pixels,
   1773 				 params->pri.bytes_per_pixel,
   1774 				 mem_value);
   1775 
   1776 	return min(method1, method2);
   1777 }
   1778 
   1779 /*
   1780  * For both WM_PIPE and WM_LP.
   1781  * mem_value must be in 0.1us units.
   1782  */
   1783 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
   1784 				   uint32_t mem_value)
   1785 {
   1786 	uint32_t method1, method2;
   1787 
   1788 	if (!params->active || !params->spr.enabled)
   1789 		return 0;
   1790 
   1791 	method1 = ilk_wm_method1(params->pixel_rate,
   1792 				 params->spr.bytes_per_pixel,
   1793 				 mem_value);
   1794 	method2 = ilk_wm_method2(params->pixel_rate,
   1795 				 params->pipe_htotal,
   1796 				 params->spr.horiz_pixels,
   1797 				 params->spr.bytes_per_pixel,
   1798 				 mem_value);
   1799 	return min(method1, method2);
   1800 }
   1801 
   1802 /*
   1803  * For both WM_PIPE and WM_LP.
   1804  * mem_value must be in 0.1us units.
   1805  */
   1806 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
   1807 				   uint32_t mem_value)
   1808 {
   1809 	if (!params->active || !params->cur.enabled)
   1810 		return 0;
   1811 
   1812 	return ilk_wm_method2(params->pixel_rate,
   1813 			      params->pipe_htotal,
   1814 			      params->cur.horiz_pixels,
   1815 			      params->cur.bytes_per_pixel,
   1816 			      mem_value);
   1817 }
   1818 
   1819 /* Only for WM_LP. */
   1820 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
   1821 				   uint32_t pri_val)
   1822 {
   1823 	if (!params->active || !params->pri.enabled)
   1824 		return 0;
   1825 
   1826 	return ilk_wm_fbc(pri_val,
   1827 			  params->pri.horiz_pixels,
   1828 			  params->pri.bytes_per_pixel);
   1829 }
   1830 
   1831 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
   1832 {
   1833 	if (INTEL_INFO(dev)->gen >= 8)
   1834 		return 3072;
   1835 	else if (INTEL_INFO(dev)->gen >= 7)
   1836 		return 768;
   1837 	else
   1838 		return 512;
   1839 }
   1840 
   1841 /* Calculate the maximum primary/sprite plane watermark */
   1842 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
   1843 				     int level,
   1844 				     const struct intel_wm_config *config,
   1845 				     enum intel_ddb_partitioning ddb_partitioning,
   1846 				     bool is_sprite)
   1847 {
   1848 	unsigned int fifo_size = ilk_display_fifo_size(dev);
   1849 	unsigned int max;
   1850 
   1851 	/* if sprites aren't enabled, sprites get nothing */
   1852 	if (is_sprite && !config->sprites_enabled)
   1853 		return 0;
   1854 
   1855 	/* HSW allows LP1+ watermarks even with multiple pipes */
   1856 	if (level == 0 || config->num_pipes_active > 1) {
   1857 		fifo_size /= INTEL_INFO(dev)->num_pipes;
   1858 
   1859 		/*
   1860 		 * For some reason the non self refresh
   1861 		 * FIFO size is only half of the self
   1862 		 * refresh FIFO size on ILK/SNB.
   1863 		 */
   1864 		if (INTEL_INFO(dev)->gen <= 6)
   1865 			fifo_size /= 2;
   1866 	}
   1867 
   1868 	if (config->sprites_enabled) {
   1869 		/* level 0 is always calculated with 1:1 split */
   1870 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
   1871 			if (is_sprite)
   1872 				fifo_size *= 5;
   1873 			fifo_size /= 6;
   1874 		} else {
   1875 			fifo_size /= 2;
   1876 		}
   1877 	}
   1878 
   1879 	/* clamp to max that the registers can hold */
   1880 	if (INTEL_INFO(dev)->gen >= 8)
   1881 		max = level == 0 ? 255 : 2047;
   1882 	else if (INTEL_INFO(dev)->gen >= 7)
   1883 		/* IVB/HSW primary/sprite plane watermarks */
   1884 		max = level == 0 ? 127 : 1023;
   1885 	else if (!is_sprite)
   1886 		/* ILK/SNB primary plane watermarks */
   1887 		max = level == 0 ? 127 : 511;
   1888 	else
   1889 		/* ILK/SNB sprite plane watermarks */
   1890 		max = level == 0 ? 63 : 255;
   1891 
   1892 	return min(fifo_size, max);
   1893 }
   1894 
   1895 /* Calculate the maximum cursor plane watermark */
   1896 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
   1897 				      int level,
   1898 				      const struct intel_wm_config *config)
   1899 {
   1900 	/* HSW LP1+ watermarks w/ multiple pipes */
   1901 	if (level > 0 && config->num_pipes_active > 1)
   1902 		return 64;
   1903 
   1904 	/* otherwise just report max that registers can hold */
   1905 	if (INTEL_INFO(dev)->gen >= 7)
   1906 		return level == 0 ? 63 : 255;
   1907 	else
   1908 		return level == 0 ? 31 : 63;
   1909 }
   1910 
   1911 /* Calculate the maximum FBC watermark */
   1912 static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
   1913 {
   1914 	/* max that registers can hold */
   1915 	if (INTEL_INFO(dev)->gen >= 8)
   1916 		return 31;
   1917 	else
   1918 		return 15;
   1919 }
   1920 
   1921 static void ilk_compute_wm_maximums(const struct drm_device *dev,
   1922 				    int level,
   1923 				    const struct intel_wm_config *config,
   1924 				    enum intel_ddb_partitioning ddb_partitioning,
   1925 				    struct ilk_wm_maximums *max)
   1926 {
   1927 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
   1928 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
   1929 	max->cur = ilk_cursor_wm_max(dev, level, config);
   1930 	max->fbc = ilk_fbc_wm_max(dev);
   1931 }
   1932 
   1933 static bool ilk_validate_wm_level(int level,
   1934 				  const struct ilk_wm_maximums *max,
   1935 				  struct intel_wm_level *result)
   1936 {
   1937 	bool ret;
   1938 
   1939 	/* already determined to be invalid? */
   1940 	if (!result->enable)
   1941 		return false;
   1942 
   1943 	result->enable = result->pri_val <= max->pri &&
   1944 			 result->spr_val <= max->spr &&
   1945 			 result->cur_val <= max->cur;
   1946 
   1947 	ret = result->enable;
   1948 
   1949 	/*
   1950 	 * HACK until we can pre-compute everything,
   1951 	 * and thus fail gracefully if LP0 watermarks
   1952 	 * are exceeded...
   1953 	 */
   1954 	if (level == 0 && !result->enable) {
   1955 		if (result->pri_val > max->pri)
   1956 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
   1957 				      level, result->pri_val, max->pri);
   1958 		if (result->spr_val > max->spr)
   1959 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
   1960 				      level, result->spr_val, max->spr);
   1961 		if (result->cur_val > max->cur)
   1962 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
   1963 				      level, result->cur_val, max->cur);
   1964 
   1965 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
   1966 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
   1967 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
   1968 		result->enable = true;
   1969 	}
   1970 
   1971 	return ret;
   1972 }
   1973 
   1974 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
   1975 				 int level,
   1976 				 const struct ilk_pipe_wm_parameters *p,
   1977 				 struct intel_wm_level *result)
   1978 {
   1979 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
   1980 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
   1981 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
   1982 
   1983 	/* WM1+ latency values stored in 0.5us units */
   1984 	if (level > 0) {
   1985 		pri_latency *= 5;
   1986 		spr_latency *= 5;
   1987 		cur_latency *= 5;
   1988 	}
   1989 
   1990 	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
   1991 	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
   1992 	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
   1993 	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
   1994 	result->enable = true;
   1995 }
   1996 
   1997 static uint32_t
   1998 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
   1999 {
   2000 	struct drm_i915_private *dev_priv = dev->dev_private;
   2001 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2002 	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
   2003 	u32 linetime, ips_linetime;
   2004 
   2005 	if (!intel_crtc_active(crtc))
   2006 		return 0;
   2007 
   2008 	/* The WM are computed with base on how long it takes to fill a single
   2009 	 * row at the given clock rate, multiplied by 8.
   2010 	 * */
   2011 	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
   2012 				     mode->crtc_clock);
   2013 	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
   2014 					 intel_ddi_get_cdclk_freq(dev_priv));
   2015 
   2016 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
   2017 	       PIPE_WM_LINETIME_TIME(linetime);
   2018 }
   2019 
   2020 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2021 {
   2022 	struct drm_i915_private *dev_priv = dev->dev_private;
   2023 
   2024 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2025 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
   2026 
   2027 		wm[0] = (sskpd >> 56) & 0xFF;
   2028 		if (wm[0] == 0)
   2029 			wm[0] = sskpd & 0xF;
   2030 		wm[1] = (sskpd >> 4) & 0xFF;
   2031 		wm[2] = (sskpd >> 12) & 0xFF;
   2032 		wm[3] = (sskpd >> 20) & 0x1FF;
   2033 		wm[4] = (sskpd >> 32) & 0x1FF;
   2034 	} else if (INTEL_INFO(dev)->gen >= 6) {
   2035 		uint32_t sskpd = I915_READ(MCH_SSKPD);
   2036 
   2037 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
   2038 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
   2039 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
   2040 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
   2041 	} else if (INTEL_INFO(dev)->gen >= 5) {
   2042 		uint32_t mltr = I915_READ(MLTR_ILK);
   2043 
   2044 		/* ILK primary LP0 latency is 700 ns */
   2045 		wm[0] = 7;
   2046 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
   2047 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
   2048 	}
   2049 }
   2050 
   2051 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2052 {
   2053 	/* ILK sprite LP0 latency is 1300 ns */
   2054 	if (INTEL_INFO(dev)->gen == 5)
   2055 		wm[0] = 13;
   2056 }
   2057 
   2058 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2059 {
   2060 	/* ILK cursor LP0 latency is 1300 ns */
   2061 	if (INTEL_INFO(dev)->gen == 5)
   2062 		wm[0] = 13;
   2063 
   2064 	/* WaDoubleCursorLP3Latency:ivb */
   2065 	if (IS_IVYBRIDGE(dev))
   2066 		wm[3] *= 2;
   2067 }
   2068 
   2069 static int ilk_wm_max_level(const struct drm_device *dev)
   2070 {
   2071 	/* how many WM levels are we expecting */
   2072 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2073 		return 4;
   2074 	else if (INTEL_INFO(dev)->gen >= 6)
   2075 		return 3;
   2076 	else
   2077 		return 2;
   2078 }
   2079 
   2080 static void intel_print_wm_latency(struct drm_device *dev,
   2081 				   const char *name,
   2082 				   const uint16_t wm[5])
   2083 {
   2084 	int level, max_level = ilk_wm_max_level(dev);
   2085 
   2086 	for (level = 0; level <= max_level; level++) {
   2087 		unsigned int latency = wm[level];
   2088 
   2089 		if (latency == 0) {
   2090 			DRM_ERROR("%s WM%d latency not provided\n",
   2091 				  name, level);
   2092 			continue;
   2093 		}
   2094 
   2095 		/* WM1+ latency values in 0.5us units */
   2096 		if (level > 0)
   2097 			latency *= 5;
   2098 
   2099 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
   2100 			      name, level, wm[level],
   2101 			      latency / 10, latency % 10);
   2102 	}
   2103 }
   2104 
   2105 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
   2106 				    uint16_t wm[5], uint16_t min)
   2107 {
   2108 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
   2109 
   2110 	if (wm[0] >= min)
   2111 		return false;
   2112 
   2113 	wm[0] = max(wm[0], min);
   2114 	for (level = 1; level <= max_level; level++)
   2115 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
   2116 
   2117 	return true;
   2118 }
   2119 
   2120 static void snb_wm_latency_quirk(struct drm_device *dev)
   2121 {
   2122 	struct drm_i915_private *dev_priv = dev->dev_private;
   2123 	bool changed;
   2124 
   2125 	/*
   2126 	 * The BIOS provided WM memory latency values are often
   2127 	 * inadequate for high resolution displays. Adjust them.
   2128 	 */
   2129 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
   2130 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
   2131 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
   2132 
   2133 	if (!changed)
   2134 		return;
   2135 
   2136 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
   2137 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2138 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2139 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2140 }
   2141 
   2142 static void ilk_setup_wm_latency(struct drm_device *dev)
   2143 {
   2144 	struct drm_i915_private *dev_priv = dev->dev_private;
   2145 
   2146 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
   2147 
   2148 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
   2149 	       sizeof(dev_priv->wm.pri_latency));
   2150 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
   2151 	       sizeof(dev_priv->wm.pri_latency));
   2152 
   2153 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
   2154 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
   2155 
   2156 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2157 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2158 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2159 
   2160 	if (IS_GEN6(dev))
   2161 		snb_wm_latency_quirk(dev);
   2162 }
   2163 
   2164 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
   2165 				      struct ilk_pipe_wm_parameters *p,
   2166 				      struct intel_wm_config *config)
   2167 {
   2168 	struct drm_device *dev = crtc->dev;
   2169 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2170 	enum pipe pipe = intel_crtc->pipe;
   2171 	struct drm_plane *plane;
   2172 
   2173 	p->active = intel_crtc_active(crtc);
   2174 	if (p->active) {
   2175 		p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
   2176 		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
   2177 		p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
   2178 		p->cur.bytes_per_pixel = 4;
   2179 		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
   2180 		p->cur.horiz_pixels = intel_crtc->cursor_width;
   2181 		/* TODO: for now, assume primary and cursor planes are always enabled. */
   2182 		p->pri.enabled = true;
   2183 		p->cur.enabled = true;
   2184 	}
   2185 
   2186 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   2187 		config->num_pipes_active += intel_crtc_active(crtc);
   2188 
   2189 	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
   2190 		struct intel_plane *intel_plane = to_intel_plane(plane);
   2191 
   2192 		if (intel_plane->pipe == pipe)
   2193 			p->spr = intel_plane->wm;
   2194 
   2195 		config->sprites_enabled |= intel_plane->wm.enabled;
   2196 		config->sprites_scaled |= intel_plane->wm.scaled;
   2197 	}
   2198 }
   2199 
   2200 /* Compute new watermarks for the pipe */
   2201 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
   2202 				  const struct ilk_pipe_wm_parameters *params,
   2203 				  struct intel_pipe_wm *pipe_wm)
   2204 {
   2205 	struct drm_device *dev = crtc->dev;
   2206 	const struct drm_i915_private *dev_priv = dev->dev_private;
   2207 	int level, max_level = ilk_wm_max_level(dev);
   2208 	/* LP0 watermark maximums depend on this pipe alone */
   2209 	struct intel_wm_config config = {
   2210 		.num_pipes_active = 1,
   2211 		.sprites_enabled = params->spr.enabled,
   2212 		.sprites_scaled = params->spr.scaled,
   2213 	};
   2214 	struct ilk_wm_maximums max;
   2215 
   2216 	/* LP0 watermarks always use 1/2 DDB partitioning */
   2217 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
   2218 
   2219 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
   2220 	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
   2221 		max_level = 1;
   2222 
   2223 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
   2224 	if (params->spr.scaled)
   2225 		max_level = 0;
   2226 
   2227 	for (level = 0; level <= max_level; level++)
   2228 		ilk_compute_wm_level(dev_priv, level, params,
   2229 				     &pipe_wm->wm[level]);
   2230 
   2231 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2232 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
   2233 
   2234 	/* At least LP0 must be valid */
   2235 	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
   2236 }
   2237 
   2238 /*
   2239  * Merge the watermarks from all active pipes for a specific level.
   2240  */
   2241 static void ilk_merge_wm_level(struct drm_device *dev,
   2242 			       int level,
   2243 			       struct intel_wm_level *ret_wm)
   2244 {
   2245 	const struct intel_crtc *intel_crtc;
   2246 
   2247 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
   2248 		const struct intel_wm_level *wm =
   2249 			&intel_crtc->wm.active.wm[level];
   2250 
   2251 		if (!wm->enable)
   2252 			return;
   2253 
   2254 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
   2255 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
   2256 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
   2257 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
   2258 	}
   2259 
   2260 	ret_wm->enable = true;
   2261 }
   2262 
   2263 /*
   2264  * Merge all low power watermarks for all active pipes.
   2265  */
   2266 static void ilk_wm_merge(struct drm_device *dev,
   2267 			 const struct intel_wm_config *config,
   2268 			 const struct ilk_wm_maximums *max,
   2269 			 struct intel_pipe_wm *merged)
   2270 {
   2271 	int level, max_level = ilk_wm_max_level(dev);
   2272 
   2273 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
   2274 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
   2275 	    config->num_pipes_active > 1)
   2276 		return;
   2277 
   2278 	/* ILK: FBC WM must be disabled always */
   2279 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
   2280 
   2281 	/* merge each WM1+ level */
   2282 	for (level = 1; level <= max_level; level++) {
   2283 		struct intel_wm_level *wm = &merged->wm[level];
   2284 
   2285 		ilk_merge_wm_level(dev, level, wm);
   2286 
   2287 		if (!ilk_validate_wm_level(level, max, wm))
   2288 			break;
   2289 
   2290 		/*
   2291 		 * The spec says it is preferred to disable
   2292 		 * FBC WMs instead of disabling a WM level.
   2293 		 */
   2294 		if (wm->fbc_val > max->fbc) {
   2295 			merged->fbc_wm_enabled = false;
   2296 			wm->fbc_val = 0;
   2297 		}
   2298 	}
   2299 
   2300 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
   2301 	/*
   2302 	 * FIXME this is racy. FBC might get enabled later.
   2303 	 * What we should check here is whether FBC can be
   2304 	 * enabled sometime later.
   2305 	 */
   2306 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
   2307 		for (level = 2; level <= max_level; level++) {
   2308 			struct intel_wm_level *wm = &merged->wm[level];
   2309 
   2310 			wm->enable = false;
   2311 		}
   2312 	}
   2313 }
   2314 
   2315 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
   2316 {
   2317 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
   2318 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
   2319 }
   2320 
   2321 /* The value we need to program into the WM_LPx latency field */
   2322 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
   2323 {
   2324 	struct drm_i915_private *dev_priv = dev->dev_private;
   2325 
   2326 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2327 		return 2 * level;
   2328 	else
   2329 		return dev_priv->wm.pri_latency[level];
   2330 }
   2331 
   2332 static void ilk_compute_wm_results(struct drm_device *dev,
   2333 				   const struct intel_pipe_wm *merged,
   2334 				   enum intel_ddb_partitioning partitioning,
   2335 				   struct ilk_wm_values *results)
   2336 {
   2337 	struct intel_crtc *intel_crtc;
   2338 	int level, wm_lp;
   2339 
   2340 	results->enable_fbc_wm = merged->fbc_wm_enabled;
   2341 	results->partitioning = partitioning;
   2342 
   2343 	/* LP1+ register values */
   2344 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2345 		const struct intel_wm_level *r;
   2346 
   2347 		level = ilk_wm_lp_to_level(wm_lp, merged);
   2348 
   2349 		r = &merged->wm[level];
   2350 		if (!r->enable)
   2351 			break;
   2352 
   2353 		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
   2354 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
   2355 			(r->pri_val << WM1_LP_SR_SHIFT) |
   2356 			r->cur_val;
   2357 
   2358 		if (INTEL_INFO(dev)->gen >= 8)
   2359 			results->wm_lp[wm_lp - 1] |=
   2360 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
   2361 		else
   2362 			results->wm_lp[wm_lp - 1] |=
   2363 				r->fbc_val << WM1_LP_FBC_SHIFT;
   2364 
   2365 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
   2366 			WARN_ON(wm_lp != 1);
   2367 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
   2368 		} else
   2369 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
   2370 	}
   2371 
   2372 	/* LP0 register values */
   2373 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
   2374 		enum pipe pipe = intel_crtc->pipe;
   2375 		const struct intel_wm_level *r =
   2376 			&intel_crtc->wm.active.wm[0];
   2377 
   2378 		if (WARN_ON(!r->enable))
   2379 			continue;
   2380 
   2381 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
   2382 
   2383 		results->wm_pipe[pipe] =
   2384 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
   2385 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
   2386 			r->cur_val;
   2387 	}
   2388 }
   2389 
   2390 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
   2391  * case both are at the same level. Prefer r1 in case they're the same. */
   2392 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
   2393 						  struct intel_pipe_wm *r1,
   2394 						  struct intel_pipe_wm *r2)
   2395 {
   2396 	int level, max_level = ilk_wm_max_level(dev);
   2397 	int level1 = 0, level2 = 0;
   2398 
   2399 	for (level = 1; level <= max_level; level++) {
   2400 		if (r1->wm[level].enable)
   2401 			level1 = level;
   2402 		if (r2->wm[level].enable)
   2403 			level2 = level;
   2404 	}
   2405 
   2406 	if (level1 == level2) {
   2407 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
   2408 			return r2;
   2409 		else
   2410 			return r1;
   2411 	} else if (level1 > level2) {
   2412 		return r1;
   2413 	} else {
   2414 		return r2;
   2415 	}
   2416 }
   2417 
   2418 /* dirty bits used to track which watermarks need changes */
   2419 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
   2420 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
   2421 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
   2422 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
   2423 #define WM_DIRTY_FBC (1 << 24)
   2424 #define WM_DIRTY_DDB (1 << 25)
   2425 
   2426 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
   2427 					 const struct ilk_wm_values *old,
   2428 					 const struct ilk_wm_values *new)
   2429 {
   2430 	unsigned int dirty = 0;
   2431 	enum pipe pipe;
   2432 	int wm_lp;
   2433 
   2434 	for_each_pipe(pipe) {
   2435 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
   2436 			dirty |= WM_DIRTY_LINETIME(pipe);
   2437 			/* Must disable LP1+ watermarks too */
   2438 			dirty |= WM_DIRTY_LP_ALL;
   2439 		}
   2440 
   2441 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
   2442 			dirty |= WM_DIRTY_PIPE(pipe);
   2443 			/* Must disable LP1+ watermarks too */
   2444 			dirty |= WM_DIRTY_LP_ALL;
   2445 		}
   2446 	}
   2447 
   2448 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
   2449 		dirty |= WM_DIRTY_FBC;
   2450 		/* Must disable LP1+ watermarks too */
   2451 		dirty |= WM_DIRTY_LP_ALL;
   2452 	}
   2453 
   2454 	if (old->partitioning != new->partitioning) {
   2455 		dirty |= WM_DIRTY_DDB;
   2456 		/* Must disable LP1+ watermarks too */
   2457 		dirty |= WM_DIRTY_LP_ALL;
   2458 	}
   2459 
   2460 	/* LP1+ watermarks already deemed dirty, no need to continue */
   2461 	if (dirty & WM_DIRTY_LP_ALL)
   2462 		return dirty;
   2463 
   2464 	/* Find the lowest numbered LP1+ watermark in need of an update... */
   2465 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2466 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
   2467 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
   2468 			break;
   2469 	}
   2470 
   2471 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
   2472 	for (; wm_lp <= 3; wm_lp++)
   2473 		dirty |= WM_DIRTY_LP(wm_lp);
   2474 
   2475 	return dirty;
   2476 }
   2477 
   2478 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
   2479 			       unsigned int dirty)
   2480 {
   2481 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2482 	bool changed = false;
   2483 
   2484 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
   2485 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
   2486 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
   2487 		changed = true;
   2488 	}
   2489 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
   2490 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
   2491 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
   2492 		changed = true;
   2493 	}
   2494 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
   2495 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
   2496 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
   2497 		changed = true;
   2498 	}
   2499 
   2500 	/*
   2501 	 * Don't touch WM1S_LP_EN here.
   2502 	 * Doing so could cause underruns.
   2503 	 */
   2504 
   2505 	return changed;
   2506 }
   2507 
   2508 /*
   2509  * The spec says we shouldn't write when we don't need, because every write
   2510  * causes WMs to be re-evaluated, expending some power.
   2511  */
   2512 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
   2513 				struct ilk_wm_values *results)
   2514 {
   2515 	struct drm_device *dev = dev_priv->dev;
   2516 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2517 	unsigned int dirty;
   2518 	uint32_t val;
   2519 
   2520 	dirty = ilk_compute_wm_dirty(dev, previous, results);
   2521 	if (!dirty)
   2522 		return;
   2523 
   2524 	_ilk_disable_lp_wm(dev_priv, dirty);
   2525 
   2526 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
   2527 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
   2528 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
   2529 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
   2530 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
   2531 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
   2532 
   2533 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
   2534 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
   2535 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
   2536 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
   2537 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
   2538 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
   2539 
   2540 	if (dirty & WM_DIRTY_DDB) {
   2541 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2542 			val = I915_READ(WM_MISC);
   2543 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2544 				val &= ~WM_MISC_DATA_PARTITION_5_6;
   2545 			else
   2546 				val |= WM_MISC_DATA_PARTITION_5_6;
   2547 			I915_WRITE(WM_MISC, val);
   2548 		} else {
   2549 			val = I915_READ(DISP_ARB_CTL2);
   2550 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2551 				val &= ~DISP_DATA_PARTITION_5_6;
   2552 			else
   2553 				val |= DISP_DATA_PARTITION_5_6;
   2554 			I915_WRITE(DISP_ARB_CTL2, val);
   2555 		}
   2556 	}
   2557 
   2558 	if (dirty & WM_DIRTY_FBC) {
   2559 		val = I915_READ(DISP_ARB_CTL);
   2560 		if (results->enable_fbc_wm)
   2561 			val &= ~DISP_FBC_WM_DIS;
   2562 		else
   2563 			val |= DISP_FBC_WM_DIS;
   2564 		I915_WRITE(DISP_ARB_CTL, val);
   2565 	}
   2566 
   2567 	if (dirty & WM_DIRTY_LP(1) &&
   2568 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
   2569 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
   2570 
   2571 	if (INTEL_INFO(dev)->gen >= 7) {
   2572 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
   2573 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
   2574 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
   2575 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
   2576 	}
   2577 
   2578 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
   2579 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
   2580 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
   2581 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
   2582 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
   2583 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
   2584 
   2585 	dev_priv->wm.hw = *results;
   2586 }
   2587 
   2588 static bool ilk_disable_lp_wm(struct drm_device *dev)
   2589 {
   2590 	struct drm_i915_private *dev_priv = dev->dev_private;
   2591 
   2592 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
   2593 }
   2594 
   2595 static void ilk_update_wm(struct drm_crtc *crtc)
   2596 {
   2597 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2598 	struct drm_device *dev = crtc->dev;
   2599 	struct drm_i915_private *dev_priv = dev->dev_private;
   2600 	struct ilk_wm_maximums max;
   2601 	struct ilk_pipe_wm_parameters params = {};
   2602 	struct ilk_wm_values results = {};
   2603 	enum intel_ddb_partitioning partitioning;
   2604 	struct intel_pipe_wm pipe_wm = {};
   2605 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
   2606 	struct intel_wm_config config = {};
   2607 
   2608 	ilk_compute_wm_parameters(crtc, &params, &config);
   2609 
   2610 	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
   2611 
   2612 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
   2613 		return;
   2614 
   2615 	intel_crtc->wm.active = pipe_wm;
   2616 
   2617 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
   2618 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
   2619 
   2620 	/* 5/6 split only in single pipe config on IVB+ */
   2621 	if (INTEL_INFO(dev)->gen >= 7 &&
   2622 	    config.num_pipes_active == 1 && config.sprites_enabled) {
   2623 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
   2624 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
   2625 
   2626 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
   2627 	} else {
   2628 		best_lp_wm = &lp_wm_1_2;
   2629 	}
   2630 
   2631 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
   2632 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
   2633 
   2634 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
   2635 
   2636 	ilk_write_wm_values(dev_priv, &results);
   2637 }
   2638 
   2639 static void ilk_update_sprite_wm(struct drm_plane *plane,
   2640 				     struct drm_crtc *crtc,
   2641 				     uint32_t sprite_width, int pixel_size,
   2642 				     bool enabled, bool scaled)
   2643 {
   2644 	struct drm_device *dev = plane->dev;
   2645 	struct intel_plane *intel_plane = to_intel_plane(plane);
   2646 
   2647 	intel_plane->wm.enabled = enabled;
   2648 	intel_plane->wm.scaled = scaled;
   2649 	intel_plane->wm.horiz_pixels = sprite_width;
   2650 	intel_plane->wm.bytes_per_pixel = pixel_size;
   2651 
   2652 	/*
   2653 	 * IVB workaround: must disable low power watermarks for at least
   2654 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
   2655 	 * when scaling is disabled.
   2656 	 *
   2657 	 * WaCxSRDisabledForSpriteScaling:ivb
   2658 	 */
   2659 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
   2660 		intel_wait_for_vblank(dev, intel_plane->pipe);
   2661 
   2662 	ilk_update_wm(crtc);
   2663 }
   2664 
   2665 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   2666 {
   2667 	struct drm_device *dev = crtc->dev;
   2668 	struct drm_i915_private *dev_priv = dev->dev_private;
   2669 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   2670 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2671 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
   2672 	enum pipe pipe = intel_crtc->pipe;
   2673 	static const unsigned int wm0_pipe_reg[] = {
   2674 		[PIPE_A] = WM0_PIPEA_ILK,
   2675 		[PIPE_B] = WM0_PIPEB_ILK,
   2676 		[PIPE_C] = WM0_PIPEC_IVB,
   2677 	};
   2678 
   2679 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
   2680 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2681 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   2682 
   2683 	if (intel_crtc_active(crtc)) {
   2684 		u32 tmp = hw->wm_pipe[pipe];
   2685 
   2686 		/*
   2687 		 * For active pipes LP0 watermark is marked as
   2688 		 * enabled, and LP1+ watermaks as disabled since
   2689 		 * we can't really reverse compute them in case
   2690 		 * multiple pipes are active.
   2691 		 */
   2692 		active->wm[0].enable = true;
   2693 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
   2694 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
   2695 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
   2696 		active->linetime = hw->wm_linetime[pipe];
   2697 	} else {
   2698 		int level, max_level = ilk_wm_max_level(dev);
   2699 
   2700 		/*
   2701 		 * For inactive pipes, all watermark levels
   2702 		 * should be marked as enabled but zeroed,
   2703 		 * which is what we'd compute them to.
   2704 		 */
   2705 		for (level = 0; level <= max_level; level++)
   2706 			active->wm[level].enable = true;
   2707 	}
   2708 }
   2709 
   2710 void ilk_wm_get_hw_state(struct drm_device *dev)
   2711 {
   2712 	struct drm_i915_private *dev_priv = dev->dev_private;
   2713 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   2714 	struct drm_crtc *crtc;
   2715 
   2716 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   2717 		ilk_pipe_wm_get_hw_state(crtc);
   2718 
   2719 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
   2720 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
   2721 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
   2722 
   2723 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
   2724 	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
   2725 	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
   2726 
   2727 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2728 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
   2729 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   2730 	else if (IS_IVYBRIDGE(dev))
   2731 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
   2732 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   2733 
   2734 	hw->enable_fbc_wm =
   2735 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
   2736 }
   2737 
   2738 /**
   2739  * intel_update_watermarks - update FIFO watermark values based on current modes
   2740  *
   2741  * Calculate watermark values for the various WM regs based on current mode
   2742  * and plane configuration.
   2743  *
   2744  * There are several cases to deal with here:
   2745  *   - normal (i.e. non-self-refresh)
   2746  *   - self-refresh (SR) mode
   2747  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   2748  *   - lines are small relative to FIFO size (buffer can hold more than 2
   2749  *     lines), so need to account for TLB latency
   2750  *
   2751  *   The normal calculation is:
   2752  *     watermark = dotclock * bytes per pixel * latency
   2753  *   where latency is platform & configuration dependent (we assume pessimal
   2754  *   values here).
   2755  *
   2756  *   The SR calculation is:
   2757  *     watermark = (trunc(latency/line time)+1) * surface width *
   2758  *       bytes per pixel
   2759  *   where
   2760  *     line time = htotal / dotclock
   2761  *     surface width = hdisplay for normal plane and 64 for cursor
   2762  *   and latency is assumed to be high, as above.
   2763  *
   2764  * The final value programmed to the register should always be rounded up,
   2765  * and include an extra 2 entries to account for clock crossings.
   2766  *
   2767  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   2768  * to set the non-SR watermarks to 8.
   2769  */
   2770 void intel_update_watermarks(struct drm_crtc *crtc)
   2771 {
   2772 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
   2773 
   2774 	if (dev_priv->display.update_wm)
   2775 		dev_priv->display.update_wm(crtc);
   2776 }
   2777 
   2778 void intel_update_sprite_watermarks(struct drm_plane *plane,
   2779 				    struct drm_crtc *crtc,
   2780 				    uint32_t sprite_width, int pixel_size,
   2781 				    bool enabled, bool scaled)
   2782 {
   2783 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
   2784 
   2785 	if (dev_priv->display.update_sprite_wm)
   2786 		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
   2787 						   pixel_size, enabled, scaled);
   2788 }
   2789 
   2790 static struct drm_i915_gem_object *
   2791 intel_alloc_context_page(struct drm_device *dev)
   2792 {
   2793 	struct drm_i915_gem_object *ctx;
   2794 	int ret;
   2795 
   2796 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   2797 
   2798 	ctx = i915_gem_alloc_object(dev, 4096);
   2799 	if (!ctx) {
   2800 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
   2801 		return NULL;
   2802 	}
   2803 
   2804 	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
   2805 	if (ret) {
   2806 		DRM_ERROR("failed to pin power context: %d\n", ret);
   2807 		goto err_unref;
   2808 	}
   2809 
   2810 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
   2811 	if (ret) {
   2812 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
   2813 		goto err_unpin;
   2814 	}
   2815 
   2816 	return ctx;
   2817 
   2818 err_unpin:
   2819 	i915_gem_object_ggtt_unpin(ctx);
   2820 err_unref:
   2821 	drm_gem_object_unreference(&ctx->base);
   2822 	return NULL;
   2823 }
   2824 
   2825 /**
   2826  * Lock protecting IPS related data structures
   2827  */
   2828 #ifdef __NetBSD__
   2829 spinlock_t mchdev_lock;
   2830 #else
   2831 DEFINE_SPINLOCK(mchdev_lock);
   2832 #endif
   2833 
   2834 /* Global for IPS driver to get at the current i915 device. Protected by
   2835  * mchdev_lock. */
   2836 static struct drm_i915_private *i915_mch_dev;
   2837 
   2838 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   2839 {
   2840 	struct drm_i915_private *dev_priv = dev->dev_private;
   2841 	u16 rgvswctl;
   2842 
   2843 	assert_spin_locked(&mchdev_lock);
   2844 
   2845 	rgvswctl = I915_READ16(MEMSWCTL);
   2846 	if (rgvswctl & MEMCTL_CMD_STS) {
   2847 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   2848 		return false; /* still busy with another command */
   2849 	}
   2850 
   2851 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   2852 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   2853 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2854 	POSTING_READ16(MEMSWCTL);
   2855 
   2856 	rgvswctl |= MEMCTL_CMD_STS;
   2857 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2858 
   2859 	return true;
   2860 }
   2861 
   2862 static void ironlake_enable_drps(struct drm_device *dev)
   2863 {
   2864 	struct drm_i915_private *dev_priv = dev->dev_private;
   2865 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   2866 	u8 fmax, fmin, fstart, vstart;
   2867 
   2868 	spin_lock_irq(&mchdev_lock);
   2869 
   2870 	/* Enable temp reporting */
   2871 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   2872 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   2873 
   2874 	/* 100ms RC evaluation intervals */
   2875 	I915_WRITE(RCUPEI, 100000);
   2876 	I915_WRITE(RCDNEI, 100000);
   2877 
   2878 	/* Set max/min thresholds to 90ms and 80ms respectively */
   2879 	I915_WRITE(RCBMAXAVG, 90000);
   2880 	I915_WRITE(RCBMINAVG, 80000);
   2881 
   2882 	I915_WRITE(MEMIHYST, 1);
   2883 
   2884 	/* Set up min, max, and cur for interrupt handling */
   2885 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   2886 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   2887 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   2888 		MEMMODE_FSTART_SHIFT;
   2889 
   2890 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
   2891 		PXVFREQ_PX_SHIFT;
   2892 
   2893 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   2894 	dev_priv->ips.fstart = fstart;
   2895 
   2896 	dev_priv->ips.max_delay = fstart;
   2897 	dev_priv->ips.min_delay = fmin;
   2898 	dev_priv->ips.cur_delay = fstart;
   2899 
   2900 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   2901 			 fmax, fmin, fstart);
   2902 
   2903 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   2904 
   2905 	/*
   2906 	 * Interrupts will be enabled in ironlake_irq_postinstall
   2907 	 */
   2908 
   2909 	I915_WRITE(VIDSTART, vstart);
   2910 	POSTING_READ(VIDSTART);
   2911 
   2912 	rgvmodectl |= MEMMODE_SWMODE_EN;
   2913 	I915_WRITE(MEMMODECTL, rgvmodectl);
   2914 
   2915 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   2916 		DRM_ERROR("stuck trying to change perf mode\n");
   2917 	mdelay(1);
   2918 
   2919 	ironlake_set_drps(dev, fstart);
   2920 
   2921 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
   2922 		I915_READ(0x112e0);
   2923 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   2924 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
   2925 	getrawmonotonic(&dev_priv->ips.last_time2);
   2926 
   2927 	spin_unlock_irq(&mchdev_lock);
   2928 }
   2929 
   2930 static void ironlake_disable_drps(struct drm_device *dev)
   2931 {
   2932 	struct drm_i915_private *dev_priv = dev->dev_private;
   2933 	u16 rgvswctl;
   2934 
   2935 	spin_lock_irq(&mchdev_lock);
   2936 
   2937 	rgvswctl = I915_READ16(MEMSWCTL);
   2938 
   2939 	/* Ack interrupts, disable EFC interrupt */
   2940 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   2941 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   2942 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   2943 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   2944 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   2945 
   2946 	/* Go back to the starting frequency */
   2947 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   2948 	mdelay(1);
   2949 	rgvswctl |= MEMCTL_CMD_STS;
   2950 	I915_WRITE(MEMSWCTL, rgvswctl);
   2951 	mdelay(1);
   2952 
   2953 	spin_unlock_irq(&mchdev_lock);
   2954 }
   2955 
   2956 /* There's a funny hw issue where the hw returns all 0 when reading from
   2957  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   2958  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   2959  * all limits and the gpu stuck at whatever frequency it is at atm).
   2960  */
   2961 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
   2962 {
   2963 	u32 limits;
   2964 
   2965 	/* Only set the down limit when we've reached the lowest level to avoid
   2966 	 * getting more interrupts, otherwise leave this clear. This prevents a
   2967 	 * race in the hw when coming out of rc6: There's a tiny window where
   2968 	 * the hw runs at the minimal clock before selecting the desired
   2969 	 * frequency, if the down threshold expires in that window we will not
   2970 	 * receive a down interrupt. */
   2971 	limits = dev_priv->rps.max_freq_softlimit << 24;
   2972 	if (val <= dev_priv->rps.min_freq_softlimit)
   2973 		limits |= dev_priv->rps.min_freq_softlimit << 16;
   2974 
   2975 	return limits;
   2976 }
   2977 
   2978 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
   2979 {
   2980 	int new_power;
   2981 
   2982 	new_power = dev_priv->rps.power;
   2983 	switch (dev_priv->rps.power) {
   2984 	case LOW_POWER:
   2985 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
   2986 			new_power = BETWEEN;
   2987 		break;
   2988 
   2989 	case BETWEEN:
   2990 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
   2991 			new_power = LOW_POWER;
   2992 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
   2993 			new_power = HIGH_POWER;
   2994 		break;
   2995 
   2996 	case HIGH_POWER:
   2997 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
   2998 			new_power = BETWEEN;
   2999 		break;
   3000 	}
   3001 	/* Max/min bins are special */
   3002 	if (val == dev_priv->rps.min_freq_softlimit)
   3003 		new_power = LOW_POWER;
   3004 	if (val == dev_priv->rps.max_freq_softlimit)
   3005 		new_power = HIGH_POWER;
   3006 	if (new_power == dev_priv->rps.power)
   3007 		return;
   3008 
   3009 	/* Note the units here are not exactly 1us, but 1280ns. */
   3010 	switch (new_power) {
   3011 	case LOW_POWER:
   3012 		/* Upclock if more than 95% busy over 16ms */
   3013 		I915_WRITE(GEN6_RP_UP_EI, 12500);
   3014 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
   3015 
   3016 		/* Downclock if less than 85% busy over 32ms */
   3017 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3018 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
   3019 
   3020 		I915_WRITE(GEN6_RP_CONTROL,
   3021 			   GEN6_RP_MEDIA_TURBO |
   3022 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3023 			   GEN6_RP_MEDIA_IS_GFX |
   3024 			   GEN6_RP_ENABLE |
   3025 			   GEN6_RP_UP_BUSY_AVG |
   3026 			   GEN6_RP_DOWN_IDLE_AVG);
   3027 		break;
   3028 
   3029 	case BETWEEN:
   3030 		/* Upclock if more than 90% busy over 13ms */
   3031 		I915_WRITE(GEN6_RP_UP_EI, 10250);
   3032 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
   3033 
   3034 		/* Downclock if less than 75% busy over 32ms */
   3035 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3036 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
   3037 
   3038 		I915_WRITE(GEN6_RP_CONTROL,
   3039 			   GEN6_RP_MEDIA_TURBO |
   3040 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3041 			   GEN6_RP_MEDIA_IS_GFX |
   3042 			   GEN6_RP_ENABLE |
   3043 			   GEN6_RP_UP_BUSY_AVG |
   3044 			   GEN6_RP_DOWN_IDLE_AVG);
   3045 		break;
   3046 
   3047 	case HIGH_POWER:
   3048 		/* Upclock if more than 85% busy over 10ms */
   3049 		I915_WRITE(GEN6_RP_UP_EI, 8000);
   3050 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
   3051 
   3052 		/* Downclock if less than 60% busy over 32ms */
   3053 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3054 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
   3055 
   3056 		I915_WRITE(GEN6_RP_CONTROL,
   3057 			   GEN6_RP_MEDIA_TURBO |
   3058 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3059 			   GEN6_RP_MEDIA_IS_GFX |
   3060 			   GEN6_RP_ENABLE |
   3061 			   GEN6_RP_UP_BUSY_AVG |
   3062 			   GEN6_RP_DOWN_IDLE_AVG);
   3063 		break;
   3064 	}
   3065 
   3066 	dev_priv->rps.power = new_power;
   3067 	dev_priv->rps.last_adj = 0;
   3068 }
   3069 
   3070 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
   3071 {
   3072 	u32 mask = 0;
   3073 
   3074 	if (val > dev_priv->rps.min_freq_softlimit)
   3075 		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
   3076 	if (val < dev_priv->rps.max_freq_softlimit)
   3077 		mask |= GEN6_PM_RP_UP_THRESHOLD;
   3078 
   3079 	/* IVB and SNB hard hangs on looping batchbuffer
   3080 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
   3081 	 */
   3082 	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
   3083 		mask |= GEN6_PM_RP_UP_EI_EXPIRED;
   3084 
   3085 	return ~mask;
   3086 }
   3087 
   3088 /* gen6_set_rps is called to update the frequency request, but should also be
   3089  * called when the range (min_delay and max_delay) is modified so that we can
   3090  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
   3091 void gen6_set_rps(struct drm_device *dev, u8 val)
   3092 {
   3093 	struct drm_i915_private *dev_priv = dev->dev_private;
   3094 
   3095 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3096 	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
   3097 	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
   3098 
   3099 	/* min/max delay may still have been modified so be sure to
   3100 	 * write the limits value.
   3101 	 */
   3102 	if (val != dev_priv->rps.cur_freq) {
   3103 		gen6_set_rps_thresholds(dev_priv, val);
   3104 
   3105 		if (IS_HASWELL(dev))
   3106 			I915_WRITE(GEN6_RPNSWREQ,
   3107 				   HSW_FREQUENCY(val));
   3108 		else
   3109 			I915_WRITE(GEN6_RPNSWREQ,
   3110 				   GEN6_FREQUENCY(val) |
   3111 				   GEN6_OFFSET(0) |
   3112 				   GEN6_AGGRESSIVE_TURBO);
   3113 	}
   3114 
   3115 	/* Make sure we continue to get interrupts
   3116 	 * until we hit the minimum or maximum frequencies.
   3117 	 */
   3118 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
   3119 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   3120 
   3121 	POSTING_READ(GEN6_RPNSWREQ);
   3122 
   3123 	dev_priv->rps.cur_freq = val;
   3124 	trace_intel_gpu_freq_change(val * 50);
   3125 }
   3126 
   3127 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
   3128  *
   3129  * * If Gfx is Idle, then
   3130  * 1. Mask Turbo interrupts
   3131  * 2. Bring up Gfx clock
   3132  * 3. Change the freq to Rpn and wait till P-Unit updates freq
   3133  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
   3134  * 5. Unmask Turbo interrupts
   3135 */
   3136 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
   3137 {
   3138 	/*
   3139 	 * When we are idle.  Drop to min voltage state.
   3140 	 */
   3141 
   3142 	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
   3143 		return;
   3144 
   3145 	/* Mask turbo interrupt so that they will not come in between */
   3146 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
   3147 
   3148 	/* Bring up the Gfx clock */
   3149 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
   3150 		I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
   3151 				VLV_GFX_CLK_FORCE_ON_BIT);
   3152 
   3153 	if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
   3154 		I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
   3155 			DRM_ERROR("GFX_CLK_ON request timed out\n");
   3156 		return;
   3157 	}
   3158 
   3159 	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
   3160 
   3161 	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
   3162 					dev_priv->rps.min_freq_softlimit);
   3163 
   3164 	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
   3165 				& GENFREQSTATUS) == 0, 5))
   3166 		DRM_ERROR("timed out waiting for Punit\n");
   3167 
   3168 	/* Release the Gfx clock */
   3169 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
   3170 		I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
   3171 				~VLV_GFX_CLK_FORCE_ON_BIT);
   3172 
   3173 	I915_WRITE(GEN6_PMINTRMSK,
   3174 		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
   3175 }
   3176 
   3177 void gen6_rps_idle(struct drm_i915_private *dev_priv)
   3178 {
   3179 	struct drm_device *dev = dev_priv->dev;
   3180 
   3181 	mutex_lock(&dev_priv->rps.hw_lock);
   3182 	if (dev_priv->rps.enabled) {
   3183 		if (IS_VALLEYVIEW(dev))
   3184 			vlv_set_rps_idle(dev_priv);
   3185 		else
   3186 			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   3187 		dev_priv->rps.last_adj = 0;
   3188 	}
   3189 	mutex_unlock(&dev_priv->rps.hw_lock);
   3190 }
   3191 
   3192 void gen6_rps_boost(struct drm_i915_private *dev_priv)
   3193 {
   3194 	struct drm_device *dev = dev_priv->dev;
   3195 
   3196 	mutex_lock(&dev_priv->rps.hw_lock);
   3197 	if (dev_priv->rps.enabled) {
   3198 		if (IS_VALLEYVIEW(dev))
   3199 			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
   3200 		else
   3201 			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
   3202 		dev_priv->rps.last_adj = 0;
   3203 	}
   3204 	mutex_unlock(&dev_priv->rps.hw_lock);
   3205 }
   3206 
   3207 void valleyview_set_rps(struct drm_device *dev, u8 val)
   3208 {
   3209 	struct drm_i915_private *dev_priv = dev->dev_private;
   3210 
   3211 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3212 	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
   3213 	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
   3214 
   3215 	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
   3216 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   3217 			 dev_priv->rps.cur_freq,
   3218 			 vlv_gpu_freq(dev_priv, val), val);
   3219 
   3220 	if (val != dev_priv->rps.cur_freq)
   3221 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
   3222 
   3223 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   3224 
   3225 	dev_priv->rps.cur_freq = val;
   3226 	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
   3227 }
   3228 
   3229 static void gen6_disable_rps_interrupts(struct drm_device *dev)
   3230 {
   3231 	struct drm_i915_private *dev_priv = dev->dev_private;
   3232 
   3233 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
   3234 	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
   3235 				~dev_priv->pm_rps_events);
   3236 	/* Complete PM interrupt masking here doesn't race with the rps work
   3237 	 * item again unmasking PM interrupts because that is using a different
   3238 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
   3239 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
   3240 
   3241 	spin_lock_irq(&dev_priv->irq_lock);
   3242 	dev_priv->rps.pm_iir = 0;
   3243 	spin_unlock_irq(&dev_priv->irq_lock);
   3244 
   3245 	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
   3246 }
   3247 
   3248 static void gen6_disable_rps(struct drm_device *dev)
   3249 {
   3250 	struct drm_i915_private *dev_priv = dev->dev_private;
   3251 
   3252 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3253 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
   3254 
   3255 	gen6_disable_rps_interrupts(dev);
   3256 }
   3257 
   3258 static void valleyview_disable_rps(struct drm_device *dev)
   3259 {
   3260 	struct drm_i915_private *dev_priv = dev->dev_private;
   3261 
   3262 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3263 
   3264 	gen6_disable_rps_interrupts(dev);
   3265 }
   3266 
   3267 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
   3268 {
   3269 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
   3270 		 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   3271 		 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   3272 		 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   3273 }
   3274 
   3275 int intel_enable_rc6(const struct drm_device *dev)
   3276 {
   3277 	/* No RC6 before Ironlake */
   3278 	if (INTEL_INFO(dev)->gen < 5)
   3279 		return 0;
   3280 
   3281 	/* Respect the kernel parameter if it is set */
   3282 	if (i915.enable_rc6 >= 0)
   3283 		return i915.enable_rc6;
   3284 
   3285 	/* Disable RC6 on Ironlake */
   3286 	if (INTEL_INFO(dev)->gen == 5)
   3287 		return 0;
   3288 
   3289 	if (IS_IVYBRIDGE(dev))
   3290 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   3291 
   3292 	return INTEL_RC6_ENABLE;
   3293 }
   3294 
   3295 static void gen6_enable_rps_interrupts(struct drm_device *dev)
   3296 {
   3297 	struct drm_i915_private *dev_priv = dev->dev_private;
   3298 
   3299 	spin_lock_irq(&dev_priv->irq_lock);
   3300 	WARN_ON(dev_priv->rps.pm_iir);
   3301 	snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
   3302 	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
   3303 	spin_unlock_irq(&dev_priv->irq_lock);
   3304 }
   3305 
   3306 static void gen8_enable_rps(struct drm_device *dev)
   3307 {
   3308 	struct drm_i915_private *dev_priv = dev->dev_private;
   3309 	struct intel_ring_buffer *ring;
   3310 	uint32_t rc6_mask = 0, rp_state_cap;
   3311 	int unused;
   3312 
   3313 	/* 1a: Software RC state - RC0 */
   3314 	I915_WRITE(GEN6_RC_STATE, 0);
   3315 
   3316 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
   3317 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   3318 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3319 
   3320 	/* 2a: Disable RC states. */
   3321 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3322 
   3323 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   3324 
   3325 	/* 2b: Program RC6 thresholds.*/
   3326 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   3327 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   3328 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   3329 	for_each_ring(ring, dev_priv, unused)
   3330 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3331 	I915_WRITE(GEN6_RC_SLEEP, 0);
   3332 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
   3333 
   3334 	/* 3: Enable RC6 */
   3335 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   3336 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   3337 	intel_print_rc6_info(dev, rc6_mask);
   3338 	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   3339 				    GEN6_RC_CTL_EI_MODE(1) |
   3340 				    rc6_mask);
   3341 
   3342 	/* 4 Program defaults and thresholds for RPS*/
   3343 	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
   3344 	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
   3345 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
   3346 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
   3347 
   3348 	/* Docs recommend 900MHz, and 300 MHz respectively */
   3349 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   3350 		   dev_priv->rps.max_freq_softlimit << 24 |
   3351 		   dev_priv->rps.min_freq_softlimit << 16);
   3352 
   3353 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
   3354 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
   3355 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
   3356 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
   3357 
   3358 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3359 
   3360 	/* 5: Enable RPS */
   3361 	I915_WRITE(GEN6_RP_CONTROL,
   3362 		   GEN6_RP_MEDIA_TURBO |
   3363 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3364 		   GEN6_RP_MEDIA_IS_GFX |
   3365 		   GEN6_RP_ENABLE |
   3366 		   GEN6_RP_UP_BUSY_AVG |
   3367 		   GEN6_RP_DOWN_IDLE_AVG);
   3368 
   3369 	/* 6: Ring frequency + overclocking (our driver does this later */
   3370 
   3371 	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
   3372 
   3373 	gen6_enable_rps_interrupts(dev);
   3374 
   3375 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3376 }
   3377 
   3378 static void gen6_enable_rps(struct drm_device *dev)
   3379 {
   3380 	struct drm_i915_private *dev_priv = dev->dev_private;
   3381 	struct intel_ring_buffer *ring;
   3382 	u32 rp_state_cap;
   3383 	u32 gt_perf_status;
   3384 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
   3385 	u32 gtfifodbg;
   3386 	int rc6_mode;
   3387 	int i, ret;
   3388 
   3389 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3390 
   3391 	/* Here begins a magic sequence of register writes to enable
   3392 	 * auto-downclocking.
   3393 	 *
   3394 	 * Perhaps there might be some value in exposing these to
   3395 	 * userspace...
   3396 	 */
   3397 	I915_WRITE(GEN6_RC_STATE, 0);
   3398 
   3399 	/* Clear the DBG now so we don't confuse earlier errors */
   3400 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   3401 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   3402 		I915_WRITE(GTFIFODBG, gtfifodbg);
   3403 	}
   3404 
   3405 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3406 
   3407 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   3408 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
   3409 
   3410 	/* All of these values are in units of 50MHz */
   3411 	dev_priv->rps.cur_freq		= 0;
   3412 	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
   3413 	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
   3414 	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
   3415 	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
   3416 	/* XXX: only BYT has a special efficient freq */
   3417 	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
   3418 	/* hw_max = RP0 until we check for overclocking */
   3419 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
   3420 
   3421 	/* Preserve min/max settings in case of re-init */
   3422 	if (dev_priv->rps.max_freq_softlimit == 0)
   3423 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   3424 
   3425 	if (dev_priv->rps.min_freq_softlimit == 0)
   3426 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   3427 
   3428 	/* disable the counters and set deterministic thresholds */
   3429 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3430 
   3431 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   3432 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   3433 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   3434 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   3435 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   3436 
   3437 	for_each_ring(ring, dev_priv, i)
   3438 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3439 
   3440 	I915_WRITE(GEN6_RC_SLEEP, 0);
   3441 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   3442 	if (IS_IVYBRIDGE(dev))
   3443 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
   3444 	else
   3445 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   3446 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
   3447 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   3448 
   3449 	/* Check if we are enabling RC6 */
   3450 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   3451 	if (rc6_mode & INTEL_RC6_ENABLE)
   3452 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   3453 
   3454 	/* We don't use those on Haswell */
   3455 	if (!IS_HASWELL(dev)) {
   3456 		if (rc6_mode & INTEL_RC6p_ENABLE)
   3457 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   3458 
   3459 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   3460 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   3461 	}
   3462 
   3463 	intel_print_rc6_info(dev, rc6_mask);
   3464 
   3465 	I915_WRITE(GEN6_RC_CONTROL,
   3466 		   rc6_mask |
   3467 		   GEN6_RC_CTL_EI_MODE(1) |
   3468 		   GEN6_RC_CTL_HW_ENABLE);
   3469 
   3470 	/* Power down if completely idle for over 50ms */
   3471 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
   3472 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3473 
   3474 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   3475 	if (ret)
   3476 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   3477 
   3478 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   3479 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
   3480 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
   3481 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
   3482 				 (pcu_mbox & 0xff) * 50);
   3483 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
   3484 	}
   3485 
   3486 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   3487 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   3488 
   3489 	gen6_enable_rps_interrupts(dev);
   3490 
   3491 	rc6vids = 0;
   3492 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   3493 	if (IS_GEN6(dev) && ret) {
   3494 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   3495 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   3496 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   3497 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   3498 		rc6vids &= 0xffff00;
   3499 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   3500 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   3501 		if (ret)
   3502 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   3503 	}
   3504 
   3505 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3506 }
   3507 
   3508 void gen6_update_ring_freq(struct drm_device *dev)
   3509 {
   3510 	struct drm_i915_private *dev_priv = dev->dev_private;
   3511 	int min_freq = 15;
   3512 	unsigned int gpu_freq;
   3513 	unsigned int max_ia_freq, min_ring_freq;
   3514 	int scaling_factor = 180;
   3515 #ifndef __NetBSD__
   3516 	struct cpufreq_policy *policy;
   3517 #endif
   3518 
   3519 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3520 
   3521 #ifdef __NetBSD__
   3522 	{
   3523 		extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
   3524 		max_ia_freq = (tsc_freq / 1000);
   3525 	}
   3526 #else
   3527 	policy = cpufreq_cpu_get(0);
   3528 	if (policy) {
   3529 		max_ia_freq = policy->cpuinfo.max_freq;
   3530 		cpufreq_cpu_put(policy);
   3531 	} else {
   3532 		/*
   3533 		 * Default to measured freq if none found, PCU will ensure we
   3534 		 * don't go over
   3535 		 */
   3536 		max_ia_freq = tsc_khz;
   3537 	}
   3538 #endif
   3539 
   3540 	/* Convert from kHz to MHz */
   3541 	max_ia_freq /= 1000;
   3542 
   3543 	min_ring_freq = I915_READ(DCLK) & 0xf;
   3544 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
   3545 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
   3546 
   3547 	/*
   3548 	 * For each potential GPU frequency, load a ring frequency we'd like
   3549 	 * to use for memory access.  We do this by specifying the IA frequency
   3550 	 * the PCU should use as a reference to determine the ring frequency.
   3551 	 */
   3552 	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
   3553 	     gpu_freq--) {
   3554 		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
   3555 		unsigned int ia_freq = 0, ring_freq = 0;
   3556 
   3557 		if (INTEL_INFO(dev)->gen >= 8) {
   3558 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
   3559 			ring_freq = max(min_ring_freq, gpu_freq);
   3560 		} else if (IS_HASWELL(dev)) {
   3561 			ring_freq = mult_frac(gpu_freq, 5, 4);
   3562 			ring_freq = max(min_ring_freq, ring_freq);
   3563 			/* leave ia_freq as the default, chosen by cpufreq */
   3564 		} else {
   3565 			/* On older processors, there is no separate ring
   3566 			 * clock domain, so in order to boost the bandwidth
   3567 			 * of the ring, we need to upclock the CPU (ia_freq).
   3568 			 *
   3569 			 * For GPU frequencies less than 750MHz,
   3570 			 * just use the lowest ring freq.
   3571 			 */
   3572 			if (gpu_freq < min_freq)
   3573 				ia_freq = 800;
   3574 			else
   3575 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   3576 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   3577 		}
   3578 
   3579 		sandybridge_pcode_write(dev_priv,
   3580 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   3581 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
   3582 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
   3583 					gpu_freq);
   3584 	}
   3585 }
   3586 
   3587 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
   3588 {
   3589 	u32 val, rp0;
   3590 
   3591 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   3592 
   3593 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
   3594 	/* Clamp to max */
   3595 	rp0 = min_t(u32, rp0, 0xea);
   3596 
   3597 	return rp0;
   3598 }
   3599 
   3600 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   3601 {
   3602 	u32 val, rpe;
   3603 
   3604 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
   3605 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
   3606 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
   3607 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
   3608 
   3609 	return rpe;
   3610 }
   3611 
   3612 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
   3613 {
   3614 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
   3615 }
   3616 
   3617 /* Check that the pctx buffer wasn't move under us. */
   3618 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
   3619 {
   3620 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   3621 
   3622 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
   3623 			     dev_priv->vlv_pctx->stolen->start);
   3624 }
   3625 
   3626 static void valleyview_setup_pctx(struct drm_device *dev)
   3627 {
   3628 	struct drm_i915_private *dev_priv = dev->dev_private;
   3629 	struct drm_i915_gem_object *pctx;
   3630 	unsigned long pctx_paddr;
   3631 	u32 pcbr;
   3632 	int pctx_size = 24*1024;
   3633 
   3634 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   3635 
   3636 	pcbr = I915_READ(VLV_PCBR);
   3637 	if (pcbr) {
   3638 		/* BIOS set it up already, grab the pre-alloc'd space */
   3639 		int pcbr_offset;
   3640 
   3641 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
   3642 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
   3643 								      pcbr_offset,
   3644 								      I915_GTT_OFFSET_NONE,
   3645 								      pctx_size);
   3646 		goto out;
   3647 	}
   3648 
   3649 	/*
   3650 	 * From the Gunit register HAS:
   3651 	 * The Gfx driver is expected to program this register and ensure
   3652 	 * proper allocation within Gfx stolen memory.  For example, this
   3653 	 * register should be programmed such than the PCBR range does not
   3654 	 * overlap with other ranges, such as the frame buffer, protected
   3655 	 * memory, or any other relevant ranges.
   3656 	 */
   3657 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
   3658 	if (!pctx) {
   3659 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
   3660 		return;
   3661 	}
   3662 
   3663 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
   3664 	I915_WRITE(VLV_PCBR, pctx_paddr);
   3665 
   3666 out:
   3667 	dev_priv->vlv_pctx = pctx;
   3668 }
   3669 
   3670 static void valleyview_cleanup_pctx(struct drm_device *dev)
   3671 {
   3672 	struct drm_i915_private *dev_priv = dev->dev_private;
   3673 
   3674 	if (WARN_ON(!dev_priv->vlv_pctx))
   3675 		return;
   3676 
   3677 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
   3678 	dev_priv->vlv_pctx = NULL;
   3679 }
   3680 
   3681 static void valleyview_enable_rps(struct drm_device *dev)
   3682 {
   3683 	struct drm_i915_private *dev_priv = dev->dev_private;
   3684 	struct intel_ring_buffer *ring;
   3685 	u32 gtfifodbg, val, rc6_mode = 0;
   3686 	int i;
   3687 
   3688 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3689 
   3690 	valleyview_check_pctx(dev_priv);
   3691 
   3692 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   3693 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   3694 				 gtfifodbg);
   3695 		I915_WRITE(GTFIFODBG, gtfifodbg);
   3696 	}
   3697 
   3698 	/* If VLV, Forcewake all wells, else re-direct to regular path */
   3699 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3700 
   3701 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   3702 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   3703 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   3704 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   3705 
   3706 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3707 
   3708 	I915_WRITE(GEN6_RP_CONTROL,
   3709 		   GEN6_RP_MEDIA_TURBO |
   3710 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3711 		   GEN6_RP_MEDIA_IS_GFX |
   3712 		   GEN6_RP_ENABLE |
   3713 		   GEN6_RP_UP_BUSY_AVG |
   3714 		   GEN6_RP_DOWN_IDLE_CONT);
   3715 
   3716 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
   3717 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   3718 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   3719 
   3720 	for_each_ring(ring, dev_priv, i)
   3721 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3722 
   3723 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
   3724 
   3725 	/* allows RC6 residency counter to work */
   3726 	I915_WRITE(VLV_COUNTER_CONTROL,
   3727 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
   3728 				      VLV_MEDIA_RC6_COUNT_EN |
   3729 				      VLV_RENDER_RC6_COUNT_EN));
   3730 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   3731 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
   3732 
   3733 	intel_print_rc6_info(dev, rc6_mode);
   3734 
   3735 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   3736 
   3737 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   3738 
   3739 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
   3740 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   3741 
   3742 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   3743 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   3744 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   3745 			 dev_priv->rps.cur_freq);
   3746 
   3747 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
   3748 	dev_priv->rps.rp0_freq  = dev_priv->rps.max_freq;
   3749 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   3750 			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   3751 			 dev_priv->rps.max_freq);
   3752 
   3753 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
   3754 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   3755 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   3756 			 dev_priv->rps.efficient_freq);
   3757 
   3758 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
   3759 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   3760 			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   3761 			 dev_priv->rps.min_freq);
   3762 
   3763 	/* Preserve min/max settings in case of re-init */
   3764 	if (dev_priv->rps.max_freq_softlimit == 0)
   3765 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   3766 
   3767 	if (dev_priv->rps.min_freq_softlimit == 0)
   3768 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   3769 
   3770 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   3771 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   3772 			 dev_priv->rps.efficient_freq);
   3773 
   3774 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   3775 
   3776 	gen6_enable_rps_interrupts(dev);
   3777 
   3778 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3779 }
   3780 
   3781 void ironlake_teardown_rc6(struct drm_device *dev)
   3782 {
   3783 	struct drm_i915_private *dev_priv = dev->dev_private;
   3784 
   3785 	if (dev_priv->ips.renderctx) {
   3786 		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
   3787 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
   3788 		dev_priv->ips.renderctx = NULL;
   3789 	}
   3790 
   3791 	if (dev_priv->ips.pwrctx) {
   3792 		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
   3793 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
   3794 		dev_priv->ips.pwrctx = NULL;
   3795 	}
   3796 }
   3797 
   3798 static void ironlake_disable_rc6(struct drm_device *dev)
   3799 {
   3800 	struct drm_i915_private *dev_priv = dev->dev_private;
   3801 
   3802 	if (I915_READ(PWRCTXA)) {
   3803 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
   3804 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
   3805 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
   3806 			 50);
   3807 
   3808 		I915_WRITE(PWRCTXA, 0);
   3809 		POSTING_READ(PWRCTXA);
   3810 
   3811 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   3812 		POSTING_READ(RSTDBYCTL);
   3813 	}
   3814 }
   3815 
   3816 static int ironlake_setup_rc6(struct drm_device *dev)
   3817 {
   3818 	struct drm_i915_private *dev_priv = dev->dev_private;
   3819 
   3820 	if (dev_priv->ips.renderctx == NULL)
   3821 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
   3822 	if (!dev_priv->ips.renderctx)
   3823 		return -ENOMEM;
   3824 
   3825 	if (dev_priv->ips.pwrctx == NULL)
   3826 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
   3827 	if (!dev_priv->ips.pwrctx) {
   3828 		ironlake_teardown_rc6(dev);
   3829 		return -ENOMEM;
   3830 	}
   3831 
   3832 	return 0;
   3833 }
   3834 
   3835 static void ironlake_enable_rc6(struct drm_device *dev)
   3836 {
   3837 	struct drm_i915_private *dev_priv = dev->dev_private;
   3838 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
   3839 	bool was_interruptible;
   3840 	int ret;
   3841 
   3842 	/* rc6 disabled by default due to repeated reports of hanging during
   3843 	 * boot and resume.
   3844 	 */
   3845 	if (!intel_enable_rc6(dev))
   3846 		return;
   3847 
   3848 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   3849 
   3850 	ret = ironlake_setup_rc6(dev);
   3851 	if (ret)
   3852 		return;
   3853 
   3854 	was_interruptible = dev_priv->mm.interruptible;
   3855 	dev_priv->mm.interruptible = false;
   3856 
   3857 	/*
   3858 	 * GPU can automatically power down the render unit if given a page
   3859 	 * to save state.
   3860 	 */
   3861 	ret = intel_ring_begin(ring, 6);
   3862 	if (ret) {
   3863 		ironlake_teardown_rc6(dev);
   3864 		dev_priv->mm.interruptible = was_interruptible;
   3865 		return;
   3866 	}
   3867 
   3868 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
   3869 	intel_ring_emit(ring, MI_SET_CONTEXT);
   3870 	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
   3871 			MI_MM_SPACE_GTT |
   3872 			MI_SAVE_EXT_STATE_EN |
   3873 			MI_RESTORE_EXT_STATE_EN |
   3874 			MI_RESTORE_INHIBIT);
   3875 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
   3876 	intel_ring_emit(ring, MI_NOOP);
   3877 	intel_ring_emit(ring, MI_FLUSH);
   3878 	intel_ring_advance(ring);
   3879 
   3880 	/*
   3881 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
   3882 	 * does an implicit flush, combined with MI_FLUSH above, it should be
   3883 	 * safe to assume that renderctx is valid
   3884 	 */
   3885 	ret = intel_ring_idle(ring);
   3886 	dev_priv->mm.interruptible = was_interruptible;
   3887 	if (ret) {
   3888 		DRM_ERROR("failed to enable ironlake power savings\n");
   3889 		ironlake_teardown_rc6(dev);
   3890 		return;
   3891 	}
   3892 
   3893 	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
   3894 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   3895 
   3896 	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
   3897 }
   3898 
   3899 static unsigned long intel_pxfreq(u32 vidfreq)
   3900 {
   3901 	unsigned long freq;
   3902 	int div = (vidfreq & 0x3f0000) >> 16;
   3903 	int post = (vidfreq & 0x3000) >> 12;
   3904 	int pre = (vidfreq & 0x7);
   3905 
   3906 	if (!pre)
   3907 		return 0;
   3908 
   3909 	freq = ((div * 133333) / ((1<<post) * pre));
   3910 
   3911 	return freq;
   3912 }
   3913 
   3914 static const struct cparams {
   3915 	u16 i;
   3916 	u16 t;
   3917 	u16 m;
   3918 	u16 c;
   3919 } cparams[] = {
   3920 	{ 1, 1333, 301, 28664 },
   3921 	{ 1, 1066, 294, 24460 },
   3922 	{ 1, 800, 294, 25192 },
   3923 	{ 0, 1333, 276, 27605 },
   3924 	{ 0, 1066, 276, 27605 },
   3925 	{ 0, 800, 231, 23784 },
   3926 };
   3927 
   3928 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   3929 {
   3930 	u64 total_count, diff, ret;
   3931 	u32 count1, count2, count3, m = 0, c = 0;
   3932 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   3933 	int i;
   3934 
   3935 	assert_spin_locked(&mchdev_lock);
   3936 
   3937 	diff1 = now - dev_priv->ips.last_time1;
   3938 
   3939 	/* Prevent division-by-zero if we are asking too fast.
   3940 	 * Also, we don't get interesting results if we are polling
   3941 	 * faster than once in 10ms, so just return the saved value
   3942 	 * in such cases.
   3943 	 */
   3944 	if (diff1 <= 10)
   3945 		return dev_priv->ips.chipset_power;
   3946 
   3947 	count1 = I915_READ(DMIEC);
   3948 	count2 = I915_READ(DDREC);
   3949 	count3 = I915_READ(CSIEC);
   3950 
   3951 	total_count = count1 + count2 + count3;
   3952 
   3953 	/* FIXME: handle per-counter overflow */
   3954 	if (total_count < dev_priv->ips.last_count1) {
   3955 		diff = ~0UL - dev_priv->ips.last_count1;
   3956 		diff += total_count;
   3957 	} else {
   3958 		diff = total_count - dev_priv->ips.last_count1;
   3959 	}
   3960 
   3961 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   3962 		if (cparams[i].i == dev_priv->ips.c_m &&
   3963 		    cparams[i].t == dev_priv->ips.r_t) {
   3964 			m = cparams[i].m;
   3965 			c = cparams[i].c;
   3966 			break;
   3967 		}
   3968 	}
   3969 
   3970 	diff = div_u64(diff, diff1);
   3971 	ret = ((m * diff) + c);
   3972 	ret = div_u64(ret, 10);
   3973 
   3974 	dev_priv->ips.last_count1 = total_count;
   3975 	dev_priv->ips.last_time1 = now;
   3976 
   3977 	dev_priv->ips.chipset_power = ret;
   3978 
   3979 	return ret;
   3980 }
   3981 
   3982 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   3983 {
   3984 	struct drm_device *dev = dev_priv->dev;
   3985 	unsigned long val;
   3986 
   3987 	if (INTEL_INFO(dev)->gen != 5)
   3988 		return 0;
   3989 
   3990 	spin_lock_irq(&mchdev_lock);
   3991 
   3992 	val = __i915_chipset_val(dev_priv);
   3993 
   3994 	spin_unlock_irq(&mchdev_lock);
   3995 
   3996 	return val;
   3997 }
   3998 
   3999 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   4000 {
   4001 	unsigned long m, x, b;
   4002 	u32 tsfs;
   4003 
   4004 	tsfs = I915_READ(TSFS);
   4005 
   4006 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   4007 	x = I915_READ8(TR1);
   4008 
   4009 	b = tsfs & TSFS_INTR_MASK;
   4010 
   4011 	return ((m * x) / 127) - b;
   4012 }
   4013 
   4014 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   4015 {
   4016 	struct drm_device *dev = dev_priv->dev;
   4017 	static const struct v_table {
   4018 		u16 vd; /* in .1 mil */
   4019 		u16 vm; /* in .1 mil */
   4020 	} v_table[] = {
   4021 		{ 0, 0, },
   4022 		{ 375, 0, },
   4023 		{ 500, 0, },
   4024 		{ 625, 0, },
   4025 		{ 750, 0, },
   4026 		{ 875, 0, },
   4027 		{ 1000, 0, },
   4028 		{ 1125, 0, },
   4029 		{ 4125, 3000, },
   4030 		{ 4125, 3000, },
   4031 		{ 4125, 3000, },
   4032 		{ 4125, 3000, },
   4033 		{ 4125, 3000, },
   4034 		{ 4125, 3000, },
   4035 		{ 4125, 3000, },
   4036 		{ 4125, 3000, },
   4037 		{ 4125, 3000, },
   4038 		{ 4125, 3000, },
   4039 		{ 4125, 3000, },
   4040 		{ 4125, 3000, },
   4041 		{ 4125, 3000, },
   4042 		{ 4125, 3000, },
   4043 		{ 4125, 3000, },
   4044 		{ 4125, 3000, },
   4045 		{ 4125, 3000, },
   4046 		{ 4125, 3000, },
   4047 		{ 4125, 3000, },
   4048 		{ 4125, 3000, },
   4049 		{ 4125, 3000, },
   4050 		{ 4125, 3000, },
   4051 		{ 4125, 3000, },
   4052 		{ 4125, 3000, },
   4053 		{ 4250, 3125, },
   4054 		{ 4375, 3250, },
   4055 		{ 4500, 3375, },
   4056 		{ 4625, 3500, },
   4057 		{ 4750, 3625, },
   4058 		{ 4875, 3750, },
   4059 		{ 5000, 3875, },
   4060 		{ 5125, 4000, },
   4061 		{ 5250, 4125, },
   4062 		{ 5375, 4250, },
   4063 		{ 5500, 4375, },
   4064 		{ 5625, 4500, },
   4065 		{ 5750, 4625, },
   4066 		{ 5875, 4750, },
   4067 		{ 6000, 4875, },
   4068 		{ 6125, 5000, },
   4069 		{ 6250, 5125, },
   4070 		{ 6375, 5250, },
   4071 		{ 6500, 5375, },
   4072 		{ 6625, 5500, },
   4073 		{ 6750, 5625, },
   4074 		{ 6875, 5750, },
   4075 		{ 7000, 5875, },
   4076 		{ 7125, 6000, },
   4077 		{ 7250, 6125, },
   4078 		{ 7375, 6250, },
   4079 		{ 7500, 6375, },
   4080 		{ 7625, 6500, },
   4081 		{ 7750, 6625, },
   4082 		{ 7875, 6750, },
   4083 		{ 8000, 6875, },
   4084 		{ 8125, 7000, },
   4085 		{ 8250, 7125, },
   4086 		{ 8375, 7250, },
   4087 		{ 8500, 7375, },
   4088 		{ 8625, 7500, },
   4089 		{ 8750, 7625, },
   4090 		{ 8875, 7750, },
   4091 		{ 9000, 7875, },
   4092 		{ 9125, 8000, },
   4093 		{ 9250, 8125, },
   4094 		{ 9375, 8250, },
   4095 		{ 9500, 8375, },
   4096 		{ 9625, 8500, },
   4097 		{ 9750, 8625, },
   4098 		{ 9875, 8750, },
   4099 		{ 10000, 8875, },
   4100 		{ 10125, 9000, },
   4101 		{ 10250, 9125, },
   4102 		{ 10375, 9250, },
   4103 		{ 10500, 9375, },
   4104 		{ 10625, 9500, },
   4105 		{ 10750, 9625, },
   4106 		{ 10875, 9750, },
   4107 		{ 11000, 9875, },
   4108 		{ 11125, 10000, },
   4109 		{ 11250, 10125, },
   4110 		{ 11375, 10250, },
   4111 		{ 11500, 10375, },
   4112 		{ 11625, 10500, },
   4113 		{ 11750, 10625, },
   4114 		{ 11875, 10750, },
   4115 		{ 12000, 10875, },
   4116 		{ 12125, 11000, },
   4117 		{ 12250, 11125, },
   4118 		{ 12375, 11250, },
   4119 		{ 12500, 11375, },
   4120 		{ 12625, 11500, },
   4121 		{ 12750, 11625, },
   4122 		{ 12875, 11750, },
   4123 		{ 13000, 11875, },
   4124 		{ 13125, 12000, },
   4125 		{ 13250, 12125, },
   4126 		{ 13375, 12250, },
   4127 		{ 13500, 12375, },
   4128 		{ 13625, 12500, },
   4129 		{ 13750, 12625, },
   4130 		{ 13875, 12750, },
   4131 		{ 14000, 12875, },
   4132 		{ 14125, 13000, },
   4133 		{ 14250, 13125, },
   4134 		{ 14375, 13250, },
   4135 		{ 14500, 13375, },
   4136 		{ 14625, 13500, },
   4137 		{ 14750, 13625, },
   4138 		{ 14875, 13750, },
   4139 		{ 15000, 13875, },
   4140 		{ 15125, 14000, },
   4141 		{ 15250, 14125, },
   4142 		{ 15375, 14250, },
   4143 		{ 15500, 14375, },
   4144 		{ 15625, 14500, },
   4145 		{ 15750, 14625, },
   4146 		{ 15875, 14750, },
   4147 		{ 16000, 14875, },
   4148 		{ 16125, 15000, },
   4149 	};
   4150 	if (INTEL_INFO(dev)->is_mobile)
   4151 		return v_table[pxvid].vm;
   4152 	else
   4153 		return v_table[pxvid].vd;
   4154 }
   4155 
   4156 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   4157 {
   4158 	struct timespec now, diff1;
   4159 	u64 diff;
   4160 	unsigned long diffms;
   4161 	u32 count;
   4162 
   4163 	assert_spin_locked(&mchdev_lock);
   4164 
   4165 	getrawmonotonic(&now);
   4166 	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
   4167 
   4168 	/* Don't divide by 0 */
   4169 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
   4170 	if (!diffms)
   4171 		return;
   4172 
   4173 	count = I915_READ(GFXEC);
   4174 
   4175 	if (count < dev_priv->ips.last_count2) {
   4176 		diff = ~0UL - dev_priv->ips.last_count2;
   4177 		diff += count;
   4178 	} else {
   4179 		diff = count - dev_priv->ips.last_count2;
   4180 	}
   4181 
   4182 	dev_priv->ips.last_count2 = count;
   4183 	dev_priv->ips.last_time2 = now;
   4184 
   4185 	/* More magic constants... */
   4186 	diff = diff * 1181;
   4187 	diff = div_u64(diff, diffms * 10);
   4188 	dev_priv->ips.gfx_power = diff;
   4189 }
   4190 
   4191 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   4192 {
   4193 	struct drm_device *dev = dev_priv->dev;
   4194 
   4195 	if (INTEL_INFO(dev)->gen != 5)
   4196 		return;
   4197 
   4198 	spin_lock_irq(&mchdev_lock);
   4199 
   4200 	__i915_update_gfx_val(dev_priv);
   4201 
   4202 	spin_unlock_irq(&mchdev_lock);
   4203 }
   4204 
   4205 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   4206 {
   4207 	unsigned long t, corr, state1, corr2, state2;
   4208 	u32 pxvid, ext_v;
   4209 
   4210 	assert_spin_locked(&mchdev_lock);
   4211 
   4212 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
   4213 	pxvid = (pxvid >> 24) & 0x7f;
   4214 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   4215 
   4216 	state1 = ext_v;
   4217 
   4218 	t = i915_mch_val(dev_priv);
   4219 
   4220 	/* Revel in the empirically derived constants */
   4221 
   4222 	/* Correction factor in 1/100000 units */
   4223 	if (t > 80)
   4224 		corr = ((t * 2349) + 135940);
   4225 	else if (t >= 50)
   4226 		corr = ((t * 964) + 29317);
   4227 	else /* < 50 */
   4228 		corr = ((t * 301) + 1004);
   4229 
   4230 	corr = corr * ((150142 * state1) / 10000 - 78642);
   4231 	corr /= 100000;
   4232 	corr2 = (corr * dev_priv->ips.corr);
   4233 
   4234 	state2 = (corr2 * state1) / 10000;
   4235 	state2 /= 100; /* convert to mW */
   4236 
   4237 	__i915_update_gfx_val(dev_priv);
   4238 
   4239 	return dev_priv->ips.gfx_power + state2;
   4240 }
   4241 
   4242 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   4243 {
   4244 	struct drm_device *dev = dev_priv->dev;
   4245 	unsigned long val;
   4246 
   4247 	if (INTEL_INFO(dev)->gen != 5)
   4248 		return 0;
   4249 
   4250 	spin_lock_irq(&mchdev_lock);
   4251 
   4252 	val = __i915_gfx_val(dev_priv);
   4253 
   4254 	spin_unlock_irq(&mchdev_lock);
   4255 
   4256 	return val;
   4257 }
   4258 
   4259 /**
   4260  * i915_read_mch_val - return value for IPS use
   4261  *
   4262  * Calculate and return a value for the IPS driver to use when deciding whether
   4263  * we have thermal and power headroom to increase CPU or GPU power budget.
   4264  */
   4265 unsigned long i915_read_mch_val(void)
   4266 {
   4267 	struct drm_i915_private *dev_priv;
   4268 	unsigned long chipset_val, graphics_val, ret = 0;
   4269 
   4270 	spin_lock_irq(&mchdev_lock);
   4271 	if (!i915_mch_dev)
   4272 		goto out_unlock;
   4273 	dev_priv = i915_mch_dev;
   4274 
   4275 	chipset_val = __i915_chipset_val(dev_priv);
   4276 	graphics_val = __i915_gfx_val(dev_priv);
   4277 
   4278 	ret = chipset_val + graphics_val;
   4279 
   4280 out_unlock:
   4281 	spin_unlock_irq(&mchdev_lock);
   4282 
   4283 	return ret;
   4284 }
   4285 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   4286 
   4287 /**
   4288  * i915_gpu_raise - raise GPU frequency limit
   4289  *
   4290  * Raise the limit; IPS indicates we have thermal headroom.
   4291  */
   4292 bool i915_gpu_raise(void)
   4293 {
   4294 	struct drm_i915_private *dev_priv;
   4295 	bool ret = true;
   4296 
   4297 	spin_lock_irq(&mchdev_lock);
   4298 	if (!i915_mch_dev) {
   4299 		ret = false;
   4300 		goto out_unlock;
   4301 	}
   4302 	dev_priv = i915_mch_dev;
   4303 
   4304 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   4305 		dev_priv->ips.max_delay--;
   4306 
   4307 out_unlock:
   4308 	spin_unlock_irq(&mchdev_lock);
   4309 
   4310 	return ret;
   4311 }
   4312 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   4313 
   4314 /**
   4315  * i915_gpu_lower - lower GPU frequency limit
   4316  *
   4317  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   4318  * frequency maximum.
   4319  */
   4320 bool i915_gpu_lower(void)
   4321 {
   4322 	struct drm_i915_private *dev_priv;
   4323 	bool ret = true;
   4324 
   4325 	spin_lock_irq(&mchdev_lock);
   4326 	if (!i915_mch_dev) {
   4327 		ret = false;
   4328 		goto out_unlock;
   4329 	}
   4330 	dev_priv = i915_mch_dev;
   4331 
   4332 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   4333 		dev_priv->ips.max_delay++;
   4334 
   4335 out_unlock:
   4336 	spin_unlock_irq(&mchdev_lock);
   4337 
   4338 	return ret;
   4339 }
   4340 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   4341 
   4342 /**
   4343  * i915_gpu_busy - indicate GPU business to IPS
   4344  *
   4345  * Tell the IPS driver whether or not the GPU is busy.
   4346  */
   4347 bool i915_gpu_busy(void)
   4348 {
   4349 	struct drm_i915_private *dev_priv;
   4350 	struct intel_ring_buffer *ring;
   4351 	bool ret = false;
   4352 	int i;
   4353 
   4354 	spin_lock_irq(&mchdev_lock);
   4355 	if (!i915_mch_dev)
   4356 		goto out_unlock;
   4357 	dev_priv = i915_mch_dev;
   4358 
   4359 	for_each_ring(ring, dev_priv, i)
   4360 		ret |= !list_empty(&ring->request_list);
   4361 
   4362 out_unlock:
   4363 	spin_unlock_irq(&mchdev_lock);
   4364 
   4365 	return ret;
   4366 }
   4367 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   4368 
   4369 /**
   4370  * i915_gpu_turbo_disable - disable graphics turbo
   4371  *
   4372  * Disable graphics turbo by resetting the max frequency and setting the
   4373  * current frequency to the default.
   4374  */
   4375 bool i915_gpu_turbo_disable(void)
   4376 {
   4377 	struct drm_i915_private *dev_priv;
   4378 	bool ret = true;
   4379 
   4380 	spin_lock_irq(&mchdev_lock);
   4381 	if (!i915_mch_dev) {
   4382 		ret = false;
   4383 		goto out_unlock;
   4384 	}
   4385 	dev_priv = i915_mch_dev;
   4386 
   4387 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   4388 
   4389 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   4390 		ret = false;
   4391 
   4392 out_unlock:
   4393 	spin_unlock_irq(&mchdev_lock);
   4394 
   4395 	return ret;
   4396 }
   4397 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   4398 
   4399 /**
   4400  * Tells the intel_ips driver that the i915 driver is now loaded, if
   4401  * IPS got loaded first.
   4402  *
   4403  * This awkward dance is so that neither module has to depend on the
   4404  * other in order for IPS to do the appropriate communication of
   4405  * GPU turbo limits to i915.
   4406  */
   4407 static void
   4408 ips_ping_for_i915_load(void)
   4409 {
   4410 	void (*link)(void);
   4411 
   4412 	link = symbol_get(ips_link_to_i915_driver);
   4413 	if (link) {
   4414 		link();
   4415 		symbol_put(ips_link_to_i915_driver);
   4416 	}
   4417 }
   4418 
   4419 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   4420 {
   4421 #ifdef __NetBSD__		/* XXX */
   4422 	/*
   4423 	 * This seems as good a place as any to initialize mchdev_lock.
   4424 	 * Taking the lock in the rest of this routine is silly, but...
   4425 	 */
   4426 	spin_lock_init(&mchdev_lock);
   4427 #endif
   4428 
   4429 	/* We only register the i915 ips part with intel-ips once everything is
   4430 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   4431 	spin_lock_irq(&mchdev_lock);
   4432 	i915_mch_dev = dev_priv;
   4433 	spin_unlock_irq(&mchdev_lock);
   4434 
   4435 	ips_ping_for_i915_load();
   4436 }
   4437 
   4438 void intel_gpu_ips_teardown(void)
   4439 {
   4440 #ifdef __NetBSD__
   4441 	if (i915_mch_dev == NULL)
   4442 		return;
   4443 #endif
   4444 
   4445 	spin_lock_irq(&mchdev_lock);
   4446 	i915_mch_dev = NULL;
   4447 	spin_unlock_irq(&mchdev_lock);
   4448 
   4449 #ifdef __NetBSD__
   4450 	spin_lock_destroy(&mchdev_lock);
   4451 #endif
   4452 }
   4453 
   4454 static void intel_init_emon(struct drm_device *dev)
   4455 {
   4456 	struct drm_i915_private *dev_priv = dev->dev_private;
   4457 	u32 lcfuse;
   4458 	u8 pxw[16];
   4459 	int i;
   4460 
   4461 	/* Disable to program */
   4462 	I915_WRITE(ECR, 0);
   4463 	POSTING_READ(ECR);
   4464 
   4465 	/* Program energy weights for various events */
   4466 	I915_WRITE(SDEW, 0x15040d00);
   4467 	I915_WRITE(CSIEW0, 0x007f0000);
   4468 	I915_WRITE(CSIEW1, 0x1e220004);
   4469 	I915_WRITE(CSIEW2, 0x04000004);
   4470 
   4471 	for (i = 0; i < 5; i++)
   4472 		I915_WRITE(PEW + (i * 4), 0);
   4473 	for (i = 0; i < 3; i++)
   4474 		I915_WRITE(DEW + (i * 4), 0);
   4475 
   4476 	/* Program P-state weights to account for frequency power adjustment */
   4477 	for (i = 0; i < 16; i++) {
   4478 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
   4479 		unsigned long freq = intel_pxfreq(pxvidfreq);
   4480 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   4481 			PXVFREQ_PX_SHIFT;
   4482 		unsigned long val;
   4483 
   4484 		val = vid * vid;
   4485 		val *= (freq / 1000);
   4486 		val *= 255;
   4487 		val /= (127*127*900);
   4488 		if (val > 0xff)
   4489 			DRM_ERROR("bad pxval: %ld\n", val);
   4490 		pxw[i] = val;
   4491 	}
   4492 	/* Render standby states get 0 weight */
   4493 	pxw[14] = 0;
   4494 	pxw[15] = 0;
   4495 
   4496 	for (i = 0; i < 4; i++) {
   4497 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
   4498 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
   4499 		I915_WRITE(PXW + (i * 4), val);
   4500 	}
   4501 
   4502 	/* Adjust magic regs to magic values (more experimental results) */
   4503 	I915_WRITE(OGW0, 0);
   4504 	I915_WRITE(OGW1, 0);
   4505 	I915_WRITE(EG0, 0x00007f00);
   4506 	I915_WRITE(EG1, 0x0000000e);
   4507 	I915_WRITE(EG2, 0x000e0000);
   4508 	I915_WRITE(EG3, 0x68000300);
   4509 	I915_WRITE(EG4, 0x42000000);
   4510 	I915_WRITE(EG5, 0x00140031);
   4511 	I915_WRITE(EG6, 0);
   4512 	I915_WRITE(EG7, 0);
   4513 
   4514 	for (i = 0; i < 8; i++)
   4515 		I915_WRITE(PXWL + (i * 4), 0);
   4516 
   4517 	/* Enable PMON + select events */
   4518 	I915_WRITE(ECR, 0x80000019);
   4519 
   4520 	lcfuse = I915_READ(LCFUSE02);
   4521 
   4522 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   4523 }
   4524 
   4525 void intel_init_gt_powersave(struct drm_device *dev)
   4526 {
   4527 	if (IS_VALLEYVIEW(dev))
   4528 		valleyview_setup_pctx(dev);
   4529 }
   4530 
   4531 void intel_cleanup_gt_powersave(struct drm_device *dev)
   4532 {
   4533 	if (IS_VALLEYVIEW(dev))
   4534 		valleyview_cleanup_pctx(dev);
   4535 }
   4536 
   4537 void intel_disable_gt_powersave(struct drm_device *dev)
   4538 {
   4539 	struct drm_i915_private *dev_priv = dev->dev_private;
   4540 
   4541 	/* Interrupts should be disabled already to avoid re-arming. */
   4542 	WARN_ON(dev->irq_enabled);
   4543 
   4544 	if (IS_IRONLAKE_M(dev)) {
   4545 		ironlake_disable_drps(dev);
   4546 		ironlake_disable_rc6(dev);
   4547 	} else if (INTEL_INFO(dev)->gen >= 6) {
   4548 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
   4549 		cancel_work_sync(&dev_priv->rps.work);
   4550 		mutex_lock(&dev_priv->rps.hw_lock);
   4551 		if (IS_VALLEYVIEW(dev))
   4552 			valleyview_disable_rps(dev);
   4553 		else
   4554 			gen6_disable_rps(dev);
   4555 		dev_priv->rps.enabled = false;
   4556 		mutex_unlock(&dev_priv->rps.hw_lock);
   4557 	}
   4558 }
   4559 
   4560 static void intel_gen6_powersave_work(struct work_struct *work)
   4561 {
   4562 	struct drm_i915_private *dev_priv =
   4563 		container_of(work, struct drm_i915_private,
   4564 			     rps.delayed_resume_work.work);
   4565 	struct drm_device *dev = dev_priv->dev;
   4566 
   4567 	mutex_lock(&dev_priv->rps.hw_lock);
   4568 
   4569 	if (IS_VALLEYVIEW(dev)) {
   4570 		valleyview_enable_rps(dev);
   4571 	} else if (IS_BROADWELL(dev)) {
   4572 		gen8_enable_rps(dev);
   4573 		gen6_update_ring_freq(dev);
   4574 	} else {
   4575 		gen6_enable_rps(dev);
   4576 		gen6_update_ring_freq(dev);
   4577 	}
   4578 	dev_priv->rps.enabled = true;
   4579 	mutex_unlock(&dev_priv->rps.hw_lock);
   4580 }
   4581 
   4582 void intel_enable_gt_powersave(struct drm_device *dev)
   4583 {
   4584 	struct drm_i915_private *dev_priv = dev->dev_private;
   4585 
   4586 	if (IS_IRONLAKE_M(dev)) {
   4587 		ironlake_enable_drps(dev);
   4588 		ironlake_enable_rc6(dev);
   4589 		intel_init_emon(dev);
   4590 	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
   4591 		/*
   4592 		 * PCU communication is slow and this doesn't need to be
   4593 		 * done at any specific time, so do this out of our fast path
   4594 		 * to make resume and init faster.
   4595 		 */
   4596 		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   4597 				      round_jiffies_up_relative(HZ));
   4598 	}
   4599 }
   4600 
   4601 static void ibx_init_clock_gating(struct drm_device *dev)
   4602 {
   4603 	struct drm_i915_private *dev_priv = dev->dev_private;
   4604 
   4605 	/*
   4606 	 * On Ibex Peak and Cougar Point, we need to disable clock
   4607 	 * gating for the panel power sequencer or it will fail to
   4608 	 * start up when no ports are active.
   4609 	 */
   4610 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   4611 }
   4612 
   4613 static void g4x_disable_trickle_feed(struct drm_device *dev)
   4614 {
   4615 	struct drm_i915_private *dev_priv = dev->dev_private;
   4616 	int pipe;
   4617 
   4618 	for_each_pipe(pipe) {
   4619 		I915_WRITE(DSPCNTR(pipe),
   4620 			   I915_READ(DSPCNTR(pipe)) |
   4621 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   4622 		intel_flush_primary_plane(dev_priv, pipe);
   4623 	}
   4624 }
   4625 
   4626 static void ilk_init_lp_watermarks(struct drm_device *dev)
   4627 {
   4628 	struct drm_i915_private *dev_priv = dev->dev_private;
   4629 
   4630 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
   4631 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
   4632 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
   4633 
   4634 	/*
   4635 	 * Don't touch WM1S_LP_EN here.
   4636 	 * Doing so could cause underruns.
   4637 	 */
   4638 }
   4639 
   4640 static void ironlake_init_clock_gating(struct drm_device *dev)
   4641 {
   4642 	struct drm_i915_private *dev_priv = dev->dev_private;
   4643 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   4644 
   4645 	/*
   4646 	 * Required for FBC
   4647 	 * WaFbcDisableDpfcClockGating:ilk
   4648 	 */
   4649 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   4650 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   4651 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   4652 
   4653 	I915_WRITE(PCH_3DCGDIS0,
   4654 		   MARIUNIT_CLOCK_GATE_DISABLE |
   4655 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   4656 	I915_WRITE(PCH_3DCGDIS1,
   4657 		   VFMUNIT_CLOCK_GATE_DISABLE);
   4658 
   4659 	/*
   4660 	 * According to the spec the following bits should be set in
   4661 	 * order to enable memory self-refresh
   4662 	 * The bit 22/21 of 0x42004
   4663 	 * The bit 5 of 0x42020
   4664 	 * The bit 15 of 0x45000
   4665 	 */
   4666 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4667 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   4668 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   4669 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   4670 	I915_WRITE(DISP_ARB_CTL,
   4671 		   (I915_READ(DISP_ARB_CTL) |
   4672 		    DISP_FBC_WM_DIS));
   4673 
   4674 	ilk_init_lp_watermarks(dev);
   4675 
   4676 	/*
   4677 	 * Based on the document from hardware guys the following bits
   4678 	 * should be set unconditionally in order to enable FBC.
   4679 	 * The bit 22 of 0x42000
   4680 	 * The bit 22 of 0x42004
   4681 	 * The bit 7,8,9 of 0x42020.
   4682 	 */
   4683 	if (IS_IRONLAKE_M(dev)) {
   4684 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
   4685 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   4686 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   4687 			   ILK_FBCQ_DIS);
   4688 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4689 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4690 			   ILK_DPARB_GATE);
   4691 	}
   4692 
   4693 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   4694 
   4695 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4696 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4697 		   ILK_ELPIN_409_SELECT);
   4698 	I915_WRITE(_3D_CHICKEN2,
   4699 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   4700 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   4701 
   4702 	/* WaDisableRenderCachePipelinedFlush:ilk */
   4703 	I915_WRITE(CACHE_MODE_0,
   4704 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   4705 
   4706 	g4x_disable_trickle_feed(dev);
   4707 
   4708 	ibx_init_clock_gating(dev);
   4709 }
   4710 
   4711 static void cpt_init_clock_gating(struct drm_device *dev)
   4712 {
   4713 	struct drm_i915_private *dev_priv = dev->dev_private;
   4714 	int pipe;
   4715 	uint32_t val;
   4716 
   4717 	/*
   4718 	 * On Ibex Peak and Cougar Point, we need to disable clock
   4719 	 * gating for the panel power sequencer or it will fail to
   4720 	 * start up when no ports are active.
   4721 	 */
   4722 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
   4723 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
   4724 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
   4725 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   4726 		   DPLS_EDP_PPS_FIX_DIS);
   4727 	/* The below fixes the weird display corruption, a few pixels shifted
   4728 	 * downward, on (only) LVDS of some HP laptops with IVY.
   4729 	 */
   4730 	for_each_pipe(pipe) {
   4731 		val = I915_READ(TRANS_CHICKEN2(pipe));
   4732 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
   4733 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   4734 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
   4735 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   4736 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
   4737 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
   4738 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
   4739 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
   4740 	}
   4741 	/* WADP0ClockGatingDisable */
   4742 	for_each_pipe(pipe) {
   4743 		I915_WRITE(TRANS_CHICKEN1(pipe),
   4744 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   4745 	}
   4746 }
   4747 
   4748 static void gen6_check_mch_setup(struct drm_device *dev)
   4749 {
   4750 	struct drm_i915_private *dev_priv = dev->dev_private;
   4751 	uint32_t tmp;
   4752 
   4753 	tmp = I915_READ(MCH_SSKPD);
   4754 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
   4755 		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
   4756 		DRM_INFO("This can cause pipe underruns and display issues.\n");
   4757 		DRM_INFO("Please upgrade your BIOS to fix this.\n");
   4758 	}
   4759 }
   4760 
   4761 static void gen6_init_clock_gating(struct drm_device *dev)
   4762 {
   4763 	struct drm_i915_private *dev_priv = dev->dev_private;
   4764 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   4765 
   4766 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   4767 
   4768 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4769 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4770 		   ILK_ELPIN_409_SELECT);
   4771 
   4772 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
   4773 	I915_WRITE(_3D_CHICKEN,
   4774 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   4775 
   4776 	/* WaSetupGtModeTdRowDispatch:snb */
   4777 	if (IS_SNB_GT1(dev))
   4778 		I915_WRITE(GEN6_GT_MODE,
   4779 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
   4780 
   4781 	/*
   4782 	 * BSpec recoomends 8x4 when MSAA is used,
   4783 	 * however in practice 16x4 seems fastest.
   4784 	 *
   4785 	 * Note that PS/WM thread counts depend on the WIZ hashing
   4786 	 * disable bit, which we don't touch here, but it's good
   4787 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   4788 	 */
   4789 	I915_WRITE(GEN6_GT_MODE,
   4790 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   4791 
   4792 	ilk_init_lp_watermarks(dev);
   4793 
   4794 	I915_WRITE(CACHE_MODE_0,
   4795 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   4796 
   4797 	I915_WRITE(GEN6_UCGCTL1,
   4798 		   I915_READ(GEN6_UCGCTL1) |
   4799 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   4800 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   4801 
   4802 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   4803 	 * gating disable must be set.  Failure to set it results in
   4804 	 * flickering pixels due to Z write ordering failures after
   4805 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   4806 	 * Sanctuary and Tropics, and apparently anything else with
   4807 	 * alpha test or pixel discard.
   4808 	 *
   4809 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   4810 	 * but we didn't debug actual testcases to find it out.
   4811 	 *
   4812 	 * WaDisableRCCUnitClockGating:snb
   4813 	 * WaDisableRCPBUnitClockGating:snb
   4814 	 */
   4815 	I915_WRITE(GEN6_UCGCTL2,
   4816 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   4817 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   4818 
   4819 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
   4820 	I915_WRITE(_3D_CHICKEN3,
   4821 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
   4822 
   4823 	/*
   4824 	 * Bspec says:
   4825 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
   4826 	 * 3DSTATE_SF number of SF output attributes is more than 16."
   4827 	 */
   4828 	I915_WRITE(_3D_CHICKEN3,
   4829 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
   4830 
   4831 	/*
   4832 	 * According to the spec the following bits should be
   4833 	 * set in order to enable memory self-refresh and fbc:
   4834 	 * The bit21 and bit22 of 0x42000
   4835 	 * The bit21 and bit22 of 0x42004
   4836 	 * The bit5 and bit7 of 0x42020
   4837 	 * The bit14 of 0x70180
   4838 	 * The bit14 of 0x71180
   4839 	 *
   4840 	 * WaFbcAsynchFlipDisableFbcQueue:snb
   4841 	 */
   4842 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   4843 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   4844 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   4845 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4846 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4847 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   4848 	I915_WRITE(ILK_DSPCLK_GATE_D,
   4849 		   I915_READ(ILK_DSPCLK_GATE_D) |
   4850 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   4851 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   4852 
   4853 	g4x_disable_trickle_feed(dev);
   4854 
   4855 	cpt_init_clock_gating(dev);
   4856 
   4857 	gen6_check_mch_setup(dev);
   4858 }
   4859 
   4860 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   4861 {
   4862 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   4863 
   4864 	/*
   4865 	 * WaVSThreadDispatchOverride:ivb,vlv
   4866 	 *
   4867 	 * This actually overrides the dispatch
   4868 	 * mode for all thread types.
   4869 	 */
   4870 	reg &= ~GEN7_FF_SCHED_MASK;
   4871 	reg |= GEN7_FF_TS_SCHED_HW;
   4872 	reg |= GEN7_FF_VS_SCHED_HW;
   4873 	reg |= GEN7_FF_DS_SCHED_HW;
   4874 
   4875 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   4876 }
   4877 
   4878 static void lpt_init_clock_gating(struct drm_device *dev)
   4879 {
   4880 	struct drm_i915_private *dev_priv = dev->dev_private;
   4881 
   4882 	/*
   4883 	 * TODO: this bit should only be enabled when really needed, then
   4884 	 * disabled when not needed anymore in order to save power.
   4885 	 */
   4886 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
   4887 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   4888 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   4889 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   4890 
   4891 	/* WADPOClockGatingDisable:hsw */
   4892 	I915_WRITE(_TRANSA_CHICKEN1,
   4893 		   I915_READ(_TRANSA_CHICKEN1) |
   4894 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   4895 }
   4896 
   4897 static void lpt_suspend_hw(struct drm_device *dev)
   4898 {
   4899 	struct drm_i915_private *dev_priv = dev->dev_private;
   4900 
   4901 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
   4902 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
   4903 
   4904 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
   4905 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
   4906 	}
   4907 }
   4908 
   4909 static void gen8_init_clock_gating(struct drm_device *dev)
   4910 {
   4911 	struct drm_i915_private *dev_priv = dev->dev_private;
   4912 	enum pipe pipe;
   4913 
   4914 	I915_WRITE(WM3_LP_ILK, 0);
   4915 	I915_WRITE(WM2_LP_ILK, 0);
   4916 	I915_WRITE(WM1_LP_ILK, 0);
   4917 
   4918 	/* FIXME(BDW): Check all the w/a, some might only apply to
   4919 	 * pre-production hw. */
   4920 
   4921 	/* WaDisablePartialInstShootdown:bdw */
   4922 	I915_WRITE(GEN8_ROW_CHICKEN,
   4923 		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
   4924 
   4925 	/* WaDisableThreadStallDopClockGating:bdw */
   4926 	/* FIXME: Unclear whether we really need this on production bdw. */
   4927 	I915_WRITE(GEN8_ROW_CHICKEN,
   4928 		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
   4929 
   4930 	/*
   4931 	 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
   4932 	 * pre-production hardware
   4933 	 */
   4934 	I915_WRITE(HALF_SLICE_CHICKEN3,
   4935 		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
   4936 	I915_WRITE(HALF_SLICE_CHICKEN3,
   4937 		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
   4938 	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
   4939 
   4940 	I915_WRITE(_3D_CHICKEN3,
   4941 		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
   4942 
   4943 	I915_WRITE(COMMON_SLICE_CHICKEN2,
   4944 		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
   4945 
   4946 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   4947 		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
   4948 
   4949 	/* WaSwitchSolVfFArbitrationPriority:bdw */
   4950 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   4951 
   4952 	/* WaPsrDPAMaskVBlankInSRD:bdw */
   4953 	I915_WRITE(CHICKEN_PAR1_1,
   4954 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
   4955 
   4956 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
   4957 	for_each_pipe(pipe) {
   4958 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
   4959 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
   4960 			   BDW_DPRS_MASK_VBLANK_SRD);
   4961 	}
   4962 
   4963 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
   4964 	 * workaround for for a possible hang in the unlikely event a TLB
   4965 	 * invalidation occurs during a PSD flush.
   4966 	 */
   4967 	I915_WRITE(HDC_CHICKEN0,
   4968 		   I915_READ(HDC_CHICKEN0) |
   4969 		   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
   4970 
   4971 	/* WaVSRefCountFullforceMissDisable:bdw */
   4972 	/* WaDSRefCountFullforceMissDisable:bdw */
   4973 	I915_WRITE(GEN7_FF_THREAD_MODE,
   4974 		   I915_READ(GEN7_FF_THREAD_MODE) &
   4975 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   4976 
   4977 	/*
   4978 	 * BSpec recommends 8x4 when MSAA is used,
   4979 	 * however in practice 16x4 seems fastest.
   4980 	 *
   4981 	 * Note that PS/WM thread counts depend on the WIZ hashing
   4982 	 * disable bit, which we don't touch here, but it's good
   4983 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   4984 	 */
   4985 	I915_WRITE(GEN7_GT_MODE,
   4986 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   4987 
   4988 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   4989 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   4990 
   4991 	/* WaDisableSDEUnitClockGating:bdw */
   4992 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   4993 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   4994 
   4995 	/* Wa4x4STCOptimizationDisable:bdw */
   4996 	I915_WRITE(CACHE_MODE_1,
   4997 		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
   4998 }
   4999 
   5000 static void haswell_init_clock_gating(struct drm_device *dev)
   5001 {
   5002 	struct drm_i915_private *dev_priv = dev->dev_private;
   5003 
   5004 	ilk_init_lp_watermarks(dev);
   5005 
   5006 	/* L3 caching of data atomics doesn't work -- disable it. */
   5007 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
   5008 	I915_WRITE(HSW_ROW_CHICKEN3,
   5009 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
   5010 
   5011 	/* This is required by WaCatErrorRejectionIssue:hsw */
   5012 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   5013 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   5014 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   5015 
   5016 	/* WaVSRefCountFullforceMissDisable:hsw */
   5017 	I915_WRITE(GEN7_FF_THREAD_MODE,
   5018 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
   5019 
   5020 	/* enable HiZ Raw Stall Optimization */
   5021 	I915_WRITE(CACHE_MODE_0_GEN7,
   5022 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   5023 
   5024 	/* WaDisable4x2SubspanOptimization:hsw */
   5025 	I915_WRITE(CACHE_MODE_1,
   5026 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   5027 
   5028 	/*
   5029 	 * BSpec recommends 8x4 when MSAA is used,
   5030 	 * however in practice 16x4 seems fastest.
   5031 	 *
   5032 	 * Note that PS/WM thread counts depend on the WIZ hashing
   5033 	 * disable bit, which we don't touch here, but it's good
   5034 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   5035 	 */
   5036 	I915_WRITE(GEN7_GT_MODE,
   5037 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   5038 
   5039 	/* WaSwitchSolVfFArbitrationPriority:hsw */
   5040 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   5041 
   5042 	/* WaRsPkgCStateDisplayPMReq:hsw */
   5043 	I915_WRITE(CHICKEN_PAR1_1,
   5044 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
   5045 
   5046 	lpt_init_clock_gating(dev);
   5047 }
   5048 
   5049 static void ivybridge_init_clock_gating(struct drm_device *dev)
   5050 {
   5051 	struct drm_i915_private *dev_priv = dev->dev_private;
   5052 	uint32_t snpcr;
   5053 
   5054 	ilk_init_lp_watermarks(dev);
   5055 
   5056 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   5057 
   5058 	/* WaDisableEarlyCull:ivb */
   5059 	I915_WRITE(_3D_CHICKEN3,
   5060 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   5061 
   5062 	/* WaDisableBackToBackFlipFix:ivb */
   5063 	I915_WRITE(IVB_CHICKEN3,
   5064 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   5065 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   5066 
   5067 	/* WaDisablePSDDualDispatchEnable:ivb */
   5068 	if (IS_IVB_GT1(dev))
   5069 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   5070 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   5071 
   5072 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
   5073 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   5074 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   5075 
   5076 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
   5077 	I915_WRITE(GEN7_L3CNTLREG1,
   5078 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   5079 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   5080 		   GEN7_WA_L3_CHICKEN_MODE);
   5081 	if (IS_IVB_GT1(dev))
   5082 		I915_WRITE(GEN7_ROW_CHICKEN2,
   5083 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5084 	else {
   5085 		/* must write both registers */
   5086 		I915_WRITE(GEN7_ROW_CHICKEN2,
   5087 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5088 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   5089 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5090 	}
   5091 
   5092 	/* WaForceL3Serialization:ivb */
   5093 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   5094 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   5095 
   5096 	/*
   5097 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   5098 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
   5099 	 */
   5100 	I915_WRITE(GEN6_UCGCTL2,
   5101 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   5102 
   5103 	/* This is required by WaCatErrorRejectionIssue:ivb */
   5104 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   5105 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   5106 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   5107 
   5108 	g4x_disable_trickle_feed(dev);
   5109 
   5110 	gen7_setup_fixed_func_scheduler(dev_priv);
   5111 
   5112 	if (0) { /* causes HiZ corruption on ivb:gt1 */
   5113 		/* enable HiZ Raw Stall Optimization */
   5114 		I915_WRITE(CACHE_MODE_0_GEN7,
   5115 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   5116 	}
   5117 
   5118 	/* WaDisable4x2SubspanOptimization:ivb */
   5119 	I915_WRITE(CACHE_MODE_1,
   5120 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   5121 
   5122 	/*
   5123 	 * BSpec recommends 8x4 when MSAA is used,
   5124 	 * however in practice 16x4 seems fastest.
   5125 	 *
   5126 	 * Note that PS/WM thread counts depend on the WIZ hashing
   5127 	 * disable bit, which we don't touch here, but it's good
   5128 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   5129 	 */
   5130 	I915_WRITE(GEN7_GT_MODE,
   5131 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   5132 
   5133 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   5134 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   5135 	snpcr |= GEN6_MBC_SNPCR_MED;
   5136 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   5137 
   5138 	if (!HAS_PCH_NOP(dev))
   5139 		cpt_init_clock_gating(dev);
   5140 
   5141 	gen6_check_mch_setup(dev);
   5142 }
   5143 
   5144 static void valleyview_init_clock_gating(struct drm_device *dev)
   5145 {
   5146 	struct drm_i915_private *dev_priv = dev->dev_private;
   5147 	u32 val;
   5148 
   5149 	mutex_lock(&dev_priv->rps.hw_lock);
   5150 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5151 	mutex_unlock(&dev_priv->rps.hw_lock);
   5152 	switch ((val >> 6) & 3) {
   5153 	case 0:
   5154 	case 1:
   5155 		dev_priv->mem_freq = 800;
   5156 		break;
   5157 	case 2:
   5158 		dev_priv->mem_freq = 1066;
   5159 		break;
   5160 	case 3:
   5161 		dev_priv->mem_freq = 1333;
   5162 		break;
   5163 	}
   5164 	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
   5165 
   5166 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
   5167 
   5168 	/* WaDisableEarlyCull:vlv */
   5169 	I915_WRITE(_3D_CHICKEN3,
   5170 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   5171 
   5172 	/* WaDisableBackToBackFlipFix:vlv */
   5173 	I915_WRITE(IVB_CHICKEN3,
   5174 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   5175 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   5176 
   5177 	/* WaPsdDispatchEnable:vlv */
   5178 	/* WaDisablePSDDualDispatchEnable:vlv */
   5179 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   5180 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
   5181 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   5182 
   5183 	/* WaForceL3Serialization:vlv */
   5184 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   5185 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   5186 
   5187 	/* WaDisableDopClockGating:vlv */
   5188 	I915_WRITE(GEN7_ROW_CHICKEN2,
   5189 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5190 
   5191 	/* This is required by WaCatErrorRejectionIssue:vlv */
   5192 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   5193 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   5194 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   5195 
   5196 	gen7_setup_fixed_func_scheduler(dev_priv);
   5197 
   5198 	/*
   5199 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   5200 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
   5201 	 */
   5202 	I915_WRITE(GEN6_UCGCTL2,
   5203 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   5204 
   5205 	/* WaDisableL3Bank2xClockGate:vlv */
   5206 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   5207 
   5208 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
   5209 
   5210 	/*
   5211 	 * BSpec says this must be set, even though
   5212 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
   5213 	 */
   5214 	I915_WRITE(CACHE_MODE_1,
   5215 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   5216 
   5217 	/*
   5218 	 * WaIncreaseL3CreditsForVLVB0:vlv
   5219 	 * This is the hardware default actually.
   5220 	 */
   5221 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
   5222 
   5223 	/*
   5224 	 * WaDisableVLVClockGating_VBIIssue:vlv
   5225 	 * Disable clock gating on th GCFG unit to prevent a delay
   5226 	 * in the reporting of vblank events.
   5227 	 */
   5228 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   5229 }
   5230 
   5231 static void g4x_init_clock_gating(struct drm_device *dev)
   5232 {
   5233 	struct drm_i915_private *dev_priv = dev->dev_private;
   5234 	uint32_t dspclk_gate;
   5235 
   5236 	I915_WRITE(RENCLK_GATE_D1, 0);
   5237 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   5238 		   GS_UNIT_CLOCK_GATE_DISABLE |
   5239 		   CL_UNIT_CLOCK_GATE_DISABLE);
   5240 	I915_WRITE(RAMCLK_GATE_D, 0);
   5241 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   5242 		OVRUNIT_CLOCK_GATE_DISABLE |
   5243 		OVCUNIT_CLOCK_GATE_DISABLE;
   5244 	if (IS_GM45(dev))
   5245 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   5246 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   5247 
   5248 	/* WaDisableRenderCachePipelinedFlush */
   5249 	I915_WRITE(CACHE_MODE_0,
   5250 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   5251 
   5252 	g4x_disable_trickle_feed(dev);
   5253 }
   5254 
   5255 static void crestline_init_clock_gating(struct drm_device *dev)
   5256 {
   5257 	struct drm_i915_private *dev_priv = dev->dev_private;
   5258 
   5259 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   5260 	I915_WRITE(RENCLK_GATE_D2, 0);
   5261 	I915_WRITE(DSPCLK_GATE_D, 0);
   5262 	I915_WRITE(RAMCLK_GATE_D, 0);
   5263 	I915_WRITE16(DEUC, 0);
   5264 	I915_WRITE(MI_ARB_STATE,
   5265 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   5266 }
   5267 
   5268 static void broadwater_init_clock_gating(struct drm_device *dev)
   5269 {
   5270 	struct drm_i915_private *dev_priv = dev->dev_private;
   5271 
   5272 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   5273 		   I965_RCC_CLOCK_GATE_DISABLE |
   5274 		   I965_RCPB_CLOCK_GATE_DISABLE |
   5275 		   I965_ISC_CLOCK_GATE_DISABLE |
   5276 		   I965_FBC_CLOCK_GATE_DISABLE);
   5277 	I915_WRITE(RENCLK_GATE_D2, 0);
   5278 	I915_WRITE(MI_ARB_STATE,
   5279 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   5280 }
   5281 
   5282 static void gen3_init_clock_gating(struct drm_device *dev)
   5283 {
   5284 	struct drm_i915_private *dev_priv = dev->dev_private;
   5285 	u32 dstate = I915_READ(D_STATE);
   5286 
   5287 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   5288 		DSTATE_DOT_CLOCK_GATING;
   5289 	I915_WRITE(D_STATE, dstate);
   5290 
   5291 	if (IS_PINEVIEW(dev))
   5292 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   5293 
   5294 	/* IIR "flip pending" means done if this bit is set */
   5295 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   5296 }
   5297 
   5298 static void i85x_init_clock_gating(struct drm_device *dev)
   5299 {
   5300 	struct drm_i915_private *dev_priv = dev->dev_private;
   5301 
   5302 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   5303 }
   5304 
   5305 static void i830_init_clock_gating(struct drm_device *dev)
   5306 {
   5307 	struct drm_i915_private *dev_priv = dev->dev_private;
   5308 
   5309 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   5310 }
   5311 
   5312 void intel_init_clock_gating(struct drm_device *dev)
   5313 {
   5314 	struct drm_i915_private *dev_priv = dev->dev_private;
   5315 
   5316 	dev_priv->display.init_clock_gating(dev);
   5317 }
   5318 
   5319 void intel_suspend_hw(struct drm_device *dev)
   5320 {
   5321 	if (HAS_PCH_LPT(dev))
   5322 		lpt_suspend_hw(dev);
   5323 }
   5324 
   5325 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
   5326 	for (i = 0;							\
   5327 	     i < (power_domains)->power_well_count &&			\
   5328 		 ((power_well) = &(power_domains)->power_wells[i]);	\
   5329 	     i++)							\
   5330 		if ((power_well)->domains & (domain_mask))
   5331 
   5332 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
   5333 	for (i = (power_domains)->power_well_count - 1;			 \
   5334 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
   5335 	     i--)							 \
   5336 		if ((power_well)->domains & (domain_mask))
   5337 
   5338 /**
   5339  * We should only use the power well if we explicitly asked the hardware to
   5340  * enable it, so check if it's enabled and also check if we've requested it to
   5341  * be enabled.
   5342  */
   5343 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
   5344 				   struct i915_power_well *power_well)
   5345 {
   5346 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
   5347 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
   5348 }
   5349 
   5350 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
   5351 				    enum intel_display_power_domain domain)
   5352 {
   5353 	struct i915_power_domains *power_domains;
   5354 
   5355 	power_domains = &dev_priv->power_domains;
   5356 
   5357 	return power_domains->domain_use_count[domain];
   5358 }
   5359 
   5360 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
   5361 				 enum intel_display_power_domain domain)
   5362 {
   5363 	struct i915_power_domains *power_domains;
   5364 	struct i915_power_well *power_well;
   5365 	bool is_enabled;
   5366 	int i;
   5367 
   5368 	if (dev_priv->pm.suspended)
   5369 		return false;
   5370 
   5371 	power_domains = &dev_priv->power_domains;
   5372 
   5373 	is_enabled = true;
   5374 
   5375 	mutex_lock(&power_domains->lock);
   5376 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
   5377 		if (power_well->always_on)
   5378 			continue;
   5379 
   5380 		if (!power_well->ops->is_enabled(dev_priv, power_well)) {
   5381 			is_enabled = false;
   5382 			break;
   5383 		}
   5384 	}
   5385 	mutex_unlock(&power_domains->lock);
   5386 
   5387 	return is_enabled;
   5388 }
   5389 
   5390 /*
   5391  * Starting with Haswell, we have a "Power Down Well" that can be turned off
   5392  * when not needed anymore. We have 4 registers that can request the power well
   5393  * to be enabled, and it will only be disabled if none of the registers is
   5394  * requesting it to be enabled.
   5395  */
   5396 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
   5397 {
   5398 	struct drm_device *dev = dev_priv->dev;
   5399 	unsigned long irqflags;
   5400 
   5401 	/*
   5402 	 * After we re-enable the power well, if we touch VGA register 0x3d5
   5403 	 * we'll get unclaimed register interrupts. This stops after we write
   5404 	 * anything to the VGA MSR register. The vgacon module uses this
   5405 	 * register all the time, so if we unbind our driver and, as a
   5406 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
   5407 	 * console_unlock(). So make here we touch the VGA MSR register, making
   5408 	 * sure vgacon can keep working normally without triggering interrupts
   5409 	 * and error messages.
   5410 	 */
   5411 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
   5412 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
   5413 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
   5414 
   5415 	if (IS_BROADWELL(dev)) {
   5416 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
   5417 		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
   5418 			   dev_priv->de_irq_mask[PIPE_B]);
   5419 		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
   5420 			   ~dev_priv->de_irq_mask[PIPE_B] |
   5421 			   GEN8_PIPE_VBLANK);
   5422 		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
   5423 			   dev_priv->de_irq_mask[PIPE_C]);
   5424 		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
   5425 			   ~dev_priv->de_irq_mask[PIPE_C] |
   5426 			   GEN8_PIPE_VBLANK);
   5427 		POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
   5428 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
   5429 	}
   5430 }
   5431 
   5432 static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
   5433 {
   5434 	assert_spin_locked(&dev->vbl_lock);
   5435 
   5436 	dev->vblank[pipe].last = 0;
   5437 }
   5438 
   5439 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
   5440 {
   5441 	struct drm_device *dev = dev_priv->dev;
   5442 	enum pipe pipe;
   5443 	unsigned long irqflags;
   5444 
   5445 	/*
   5446 	 * After this, the registers on the pipes that are part of the power
   5447 	 * well will become zero, so we have to adjust our counters according to
   5448 	 * that.
   5449 	 *
   5450 	 * FIXME: Should we do this in general in drm_vblank_post_modeset?
   5451 	 */
   5452 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   5453 	for_each_pipe(pipe)
   5454 		if (pipe != PIPE_A)
   5455 			reset_vblank_counter(dev, pipe);
   5456 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   5457 }
   5458 
   5459 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
   5460 			       struct i915_power_well *power_well, bool enable)
   5461 {
   5462 	bool is_enabled, enable_requested;
   5463 	uint32_t tmp;
   5464 
   5465 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
   5466 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
   5467 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
   5468 
   5469 	if (enable) {
   5470 		if (!enable_requested)
   5471 			I915_WRITE(HSW_PWR_WELL_DRIVER,
   5472 				   HSW_PWR_WELL_ENABLE_REQUEST);
   5473 
   5474 		if (!is_enabled) {
   5475 			DRM_DEBUG_KMS("Enabling power well\n");
   5476 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
   5477 				      HSW_PWR_WELL_STATE_ENABLED), 20))
   5478 				DRM_ERROR("Timeout enabling power well\n");
   5479 		}
   5480 
   5481 		hsw_power_well_post_enable(dev_priv);
   5482 	} else {
   5483 		if (enable_requested) {
   5484 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
   5485 			POSTING_READ(HSW_PWR_WELL_DRIVER);
   5486 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
   5487 
   5488 			hsw_power_well_post_disable(dev_priv);
   5489 		}
   5490 	}
   5491 }
   5492 
   5493 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
   5494 				   struct i915_power_well *power_well)
   5495 {
   5496 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
   5497 
   5498 	/*
   5499 	 * We're taking over the BIOS, so clear any requests made by it since
   5500 	 * the driver is in charge now.
   5501 	 */
   5502 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
   5503 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
   5504 }
   5505 
   5506 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
   5507 				  struct i915_power_well *power_well)
   5508 {
   5509 	hsw_set_power_well(dev_priv, power_well, true);
   5510 }
   5511 
   5512 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
   5513 				   struct i915_power_well *power_well)
   5514 {
   5515 	hsw_set_power_well(dev_priv, power_well, false);
   5516 }
   5517 
   5518 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
   5519 					   struct i915_power_well *power_well)
   5520 {
   5521 }
   5522 
   5523 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
   5524 					     struct i915_power_well *power_well)
   5525 {
   5526 	return true;
   5527 }
   5528 
   5529 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
   5530 			       struct i915_power_well *power_well, bool enable)
   5531 {
   5532 	enum punit_power_well power_well_id = power_well->data;
   5533 	u32 mask;
   5534 	u32 state;
   5535 	u32 ctrl;
   5536 
   5537 	mask = PUNIT_PWRGT_MASK(power_well_id);
   5538 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
   5539 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
   5540 
   5541 	mutex_lock(&dev_priv->rps.hw_lock);
   5542 
   5543 #define COND \
   5544 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
   5545 
   5546 	if (COND)
   5547 		goto out;
   5548 
   5549 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
   5550 	ctrl &= ~mask;
   5551 	ctrl |= state;
   5552 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
   5553 
   5554 	if (wait_for(COND, 100))
   5555 		DRM_ERROR("timout setting power well state %08x (%08x)\n",
   5556 			  state,
   5557 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
   5558 
   5559 #undef COND
   5560 
   5561 out:
   5562 	mutex_unlock(&dev_priv->rps.hw_lock);
   5563 }
   5564 
   5565 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
   5566 				   struct i915_power_well *power_well)
   5567 {
   5568 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
   5569 }
   5570 
   5571 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
   5572 				  struct i915_power_well *power_well)
   5573 {
   5574 	vlv_set_power_well(dev_priv, power_well, true);
   5575 }
   5576 
   5577 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
   5578 				   struct i915_power_well *power_well)
   5579 {
   5580 	vlv_set_power_well(dev_priv, power_well, false);
   5581 }
   5582 
   5583 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
   5584 				   struct i915_power_well *power_well)
   5585 {
   5586 	int power_well_id = power_well->data;
   5587 	bool enabled = false;
   5588 	u32 mask;
   5589 	u32 state;
   5590 	u32 ctrl;
   5591 
   5592 	mask = PUNIT_PWRGT_MASK(power_well_id);
   5593 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
   5594 
   5595 	mutex_lock(&dev_priv->rps.hw_lock);
   5596 
   5597 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
   5598 	/*
   5599 	 * We only ever set the power-on and power-gate states, anything
   5600 	 * else is unexpected.
   5601 	 */
   5602 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
   5603 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
   5604 	if (state == ctrl)
   5605 		enabled = true;
   5606 
   5607 	/*
   5608 	 * A transient state at this point would mean some unexpected party
   5609 	 * is poking at the power controls too.
   5610 	 */
   5611 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
   5612 	WARN_ON(ctrl != state);
   5613 
   5614 	mutex_unlock(&dev_priv->rps.hw_lock);
   5615 
   5616 	return enabled;
   5617 }
   5618 
   5619 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
   5620 					  struct i915_power_well *power_well)
   5621 {
   5622 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
   5623 
   5624 	vlv_set_power_well(dev_priv, power_well, true);
   5625 
   5626 	spin_lock_irq(&dev_priv->irq_lock);
   5627 	valleyview_enable_display_irqs(dev_priv);
   5628 	spin_unlock_irq(&dev_priv->irq_lock);
   5629 
   5630 	/*
   5631 	 * During driver initialization we need to defer enabling hotplug
   5632 	 * processing until fbdev is set up.
   5633 	 */
   5634 	if (dev_priv->enable_hotplug_processing)
   5635 		intel_hpd_init(dev_priv->dev);
   5636 
   5637 	i915_redisable_vga_power_on(dev_priv->dev);
   5638 }
   5639 
   5640 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
   5641 					   struct i915_power_well *power_well)
   5642 {
   5643 	struct drm_device *dev = dev_priv->dev;
   5644 	enum pipe pipe;
   5645 
   5646 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
   5647 
   5648 	spin_lock_irq(&dev_priv->irq_lock);
   5649 	for_each_pipe(pipe)
   5650 		__intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
   5651 
   5652 	valleyview_disable_display_irqs(dev_priv);
   5653 	spin_unlock_irq(&dev_priv->irq_lock);
   5654 
   5655 	spin_lock_irq(&dev->vbl_lock);
   5656 	for_each_pipe(pipe)
   5657 		reset_vblank_counter(dev, pipe);
   5658 	spin_unlock_irq(&dev->vbl_lock);
   5659 
   5660 	vlv_set_power_well(dev_priv, power_well, false);
   5661 }
   5662 
   5663 static void check_power_well_state(struct drm_i915_private *dev_priv,
   5664 				   struct i915_power_well *power_well)
   5665 {
   5666 	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
   5667 
   5668 	if (power_well->always_on || !i915.disable_power_well) {
   5669 		if (!enabled)
   5670 			goto mismatch;
   5671 
   5672 		return;
   5673 	}
   5674 
   5675 	if (enabled != (power_well->count > 0))
   5676 		goto mismatch;
   5677 
   5678 	return;
   5679 
   5680 mismatch:
   5681 	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
   5682 		  power_well->name, power_well->always_on, enabled,
   5683 		  power_well->count, i915.disable_power_well);
   5684 }
   5685 
   5686 void intel_display_power_get(struct drm_i915_private *dev_priv,
   5687 			     enum intel_display_power_domain domain)
   5688 {
   5689 	struct i915_power_domains *power_domains;
   5690 	struct i915_power_well *power_well;
   5691 	int i;
   5692 
   5693 	intel_runtime_pm_get(dev_priv);
   5694 
   5695 	power_domains = &dev_priv->power_domains;
   5696 
   5697 	mutex_lock(&power_domains->lock);
   5698 
   5699 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
   5700 		if (!power_well->count++) {
   5701 			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
   5702 			power_well->ops->enable(dev_priv, power_well);
   5703 		}
   5704 
   5705 		check_power_well_state(dev_priv, power_well);
   5706 	}
   5707 
   5708 	power_domains->domain_use_count[domain]++;
   5709 
   5710 	mutex_unlock(&power_domains->lock);
   5711 }
   5712 
   5713 void intel_display_power_put(struct drm_i915_private *dev_priv,
   5714 			     enum intel_display_power_domain domain)
   5715 {
   5716 	struct i915_power_domains *power_domains;
   5717 	struct i915_power_well *power_well;
   5718 	int i;
   5719 
   5720 	power_domains = &dev_priv->power_domains;
   5721 
   5722 	mutex_lock(&power_domains->lock);
   5723 
   5724 	WARN_ON(!power_domains->domain_use_count[domain]);
   5725 	power_domains->domain_use_count[domain]--;
   5726 
   5727 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
   5728 		WARN_ON(!power_well->count);
   5729 
   5730 		if (!--power_well->count && i915.disable_power_well) {
   5731 			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
   5732 			power_well->ops->disable(dev_priv, power_well);
   5733 		}
   5734 
   5735 		check_power_well_state(dev_priv, power_well);
   5736 	}
   5737 
   5738 	mutex_unlock(&power_domains->lock);
   5739 
   5740 	intel_runtime_pm_put(dev_priv);
   5741 }
   5742 
   5743 static struct i915_power_domains *hsw_pwr;
   5744 
   5745 /* Display audio driver power well request */
   5746 void i915_request_power_well(void)
   5747 {
   5748 	struct drm_i915_private *dev_priv;
   5749 
   5750 	if (WARN_ON(!hsw_pwr))
   5751 		return;
   5752 
   5753 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
   5754 				power_domains);
   5755 	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
   5756 }
   5757 EXPORT_SYMBOL_GPL(i915_request_power_well);
   5758 
   5759 /* Display audio driver power well release */
   5760 void i915_release_power_well(void)
   5761 {
   5762 	struct drm_i915_private *dev_priv;
   5763 
   5764 	if (WARN_ON(!hsw_pwr))
   5765 		return;
   5766 
   5767 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
   5768 				power_domains);
   5769 	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
   5770 }
   5771 EXPORT_SYMBOL_GPL(i915_release_power_well);
   5772 
   5773 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
   5774 
   5775 #define HSW_ALWAYS_ON_POWER_DOMAINS (			\
   5776 	BIT(POWER_DOMAIN_PIPE_A) |			\
   5777 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
   5778 	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
   5779 	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
   5780 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
   5781 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
   5782 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
   5783 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
   5784 	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
   5785 	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
   5786 	BIT(POWER_DOMAIN_PORT_CRT) |			\
   5787 	BIT(POWER_DOMAIN_INIT))
   5788 #define HSW_DISPLAY_POWER_DOMAINS (				\
   5789 	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
   5790 	BIT(POWER_DOMAIN_INIT))
   5791 
   5792 #define BDW_ALWAYS_ON_POWER_DOMAINS (			\
   5793 	HSW_ALWAYS_ON_POWER_DOMAINS |			\
   5794 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
   5795 #define BDW_DISPLAY_POWER_DOMAINS (				\
   5796 	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
   5797 	BIT(POWER_DOMAIN_INIT))
   5798 
   5799 #define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
   5800 #define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
   5801 
   5802 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
   5803 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
   5804 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5805 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
   5806 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5807 	BIT(POWER_DOMAIN_PORT_CRT) |		\
   5808 	BIT(POWER_DOMAIN_INIT))
   5809 
   5810 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
   5811 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
   5812 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5813 	BIT(POWER_DOMAIN_INIT))
   5814 
   5815 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
   5816 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5817 	BIT(POWER_DOMAIN_INIT))
   5818 
   5819 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
   5820 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
   5821 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5822 	BIT(POWER_DOMAIN_INIT))
   5823 
   5824 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
   5825 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5826 	BIT(POWER_DOMAIN_INIT))
   5827 
   5828 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
   5829 	.sync_hw = i9xx_always_on_power_well_noop,
   5830 	.enable = i9xx_always_on_power_well_noop,
   5831 	.disable = i9xx_always_on_power_well_noop,
   5832 	.is_enabled = i9xx_always_on_power_well_enabled,
   5833 };
   5834 
   5835 static struct i915_power_well i9xx_always_on_power_well[] = {
   5836 	{
   5837 		.name = "always-on",
   5838 		.always_on = 1,
   5839 		.domains = POWER_DOMAIN_MASK,
   5840 		.ops = &i9xx_always_on_power_well_ops,
   5841 	},
   5842 };
   5843 
   5844 static const struct i915_power_well_ops hsw_power_well_ops = {
   5845 	.sync_hw = hsw_power_well_sync_hw,
   5846 	.enable = hsw_power_well_enable,
   5847 	.disable = hsw_power_well_disable,
   5848 	.is_enabled = hsw_power_well_enabled,
   5849 };
   5850 
   5851 static struct i915_power_well hsw_power_wells[] = {
   5852 	{
   5853 		.name = "always-on",
   5854 		.always_on = 1,
   5855 		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
   5856 		.ops = &i9xx_always_on_power_well_ops,
   5857 	},
   5858 	{
   5859 		.name = "display",
   5860 		.domains = HSW_DISPLAY_POWER_DOMAINS,
   5861 		.ops = &hsw_power_well_ops,
   5862 	},
   5863 };
   5864 
   5865 static struct i915_power_well bdw_power_wells[] = {
   5866 	{
   5867 		.name = "always-on",
   5868 		.always_on = 1,
   5869 		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
   5870 		.ops = &i9xx_always_on_power_well_ops,
   5871 	},
   5872 	{
   5873 		.name = "display",
   5874 		.domains = BDW_DISPLAY_POWER_DOMAINS,
   5875 		.ops = &hsw_power_well_ops,
   5876 	},
   5877 };
   5878 
   5879 static const struct i915_power_well_ops vlv_display_power_well_ops = {
   5880 	.sync_hw = vlv_power_well_sync_hw,
   5881 	.enable = vlv_display_power_well_enable,
   5882 	.disable = vlv_display_power_well_disable,
   5883 	.is_enabled = vlv_power_well_enabled,
   5884 };
   5885 
   5886 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
   5887 	.sync_hw = vlv_power_well_sync_hw,
   5888 	.enable = vlv_power_well_enable,
   5889 	.disable = vlv_power_well_disable,
   5890 	.is_enabled = vlv_power_well_enabled,
   5891 };
   5892 
   5893 static struct i915_power_well vlv_power_wells[] = {
   5894 	{
   5895 		.name = "always-on",
   5896 		.always_on = 1,
   5897 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
   5898 		.ops = &i9xx_always_on_power_well_ops,
   5899 	},
   5900 	{
   5901 		.name = "display",
   5902 		.domains = VLV_DISPLAY_POWER_DOMAINS,
   5903 		.data = PUNIT_POWER_WELL_DISP2D,
   5904 		.ops = &vlv_display_power_well_ops,
   5905 	},
   5906 	{
   5907 		.name = "dpio-common",
   5908 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
   5909 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
   5910 		.ops = &vlv_dpio_power_well_ops,
   5911 	},
   5912 	{
   5913 		.name = "dpio-tx-b-01",
   5914 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5915 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5916 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5917 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5918 		.ops = &vlv_dpio_power_well_ops,
   5919 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
   5920 	},
   5921 	{
   5922 		.name = "dpio-tx-b-23",
   5923 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5924 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5925 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5926 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5927 		.ops = &vlv_dpio_power_well_ops,
   5928 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
   5929 	},
   5930 	{
   5931 		.name = "dpio-tx-c-01",
   5932 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5933 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5934 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5935 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5936 		.ops = &vlv_dpio_power_well_ops,
   5937 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
   5938 	},
   5939 	{
   5940 		.name = "dpio-tx-c-23",
   5941 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5942 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5943 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5944 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5945 		.ops = &vlv_dpio_power_well_ops,
   5946 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
   5947 	},
   5948 };
   5949 
   5950 #define set_power_wells(power_domains, __power_wells) ({		\
   5951 	(power_domains)->power_wells = (__power_wells);			\
   5952 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
   5953 })
   5954 
   5955 int intel_power_domains_init(struct drm_i915_private *dev_priv)
   5956 {
   5957 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
   5958 
   5959 	mutex_init(&power_domains->lock);
   5960 
   5961 	/*
   5962 	 * The enabling order will be from lower to higher indexed wells,
   5963 	 * the disabling order is reversed.
   5964 	 */
   5965 	if (IS_HASWELL(dev_priv->dev)) {
   5966 		set_power_wells(power_domains, hsw_power_wells);
   5967 		hsw_pwr = power_domains;
   5968 	} else if (IS_BROADWELL(dev_priv->dev)) {
   5969 		set_power_wells(power_domains, bdw_power_wells);
   5970 		hsw_pwr = power_domains;
   5971 	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
   5972 		set_power_wells(power_domains, vlv_power_wells);
   5973 	} else {
   5974 		set_power_wells(power_domains, i9xx_always_on_power_well);
   5975 	}
   5976 
   5977 	return 0;
   5978 }
   5979 
   5980 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
   5981 {
   5982 	hsw_pwr = NULL;
   5983 }
   5984 
   5985 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
   5986 {
   5987 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
   5988 	struct i915_power_well *power_well;
   5989 	int i;
   5990 
   5991 	mutex_lock(&power_domains->lock);
   5992 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
   5993 		power_well->ops->sync_hw(dev_priv, power_well);
   5994 	mutex_unlock(&power_domains->lock);
   5995 }
   5996 
   5997 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
   5998 {
   5999 	/* For now, we need the power well to be always enabled. */
   6000 	intel_display_set_init_power(dev_priv, true);
   6001 	intel_power_domains_resume(dev_priv);
   6002 }
   6003 
   6004 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
   6005 {
   6006 	intel_runtime_pm_get(dev_priv);
   6007 }
   6008 
   6009 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
   6010 {
   6011 	intel_runtime_pm_put(dev_priv);
   6012 }
   6013 
   6014 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
   6015 {
   6016 	struct drm_device *dev = dev_priv->dev;
   6017 	struct device *device = &dev->pdev->dev;
   6018 
   6019 	if (!HAS_RUNTIME_PM(dev))
   6020 		return;
   6021 
   6022 	pm_runtime_get_sync(device);
   6023 	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
   6024 }
   6025 
   6026 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
   6027 {
   6028 	struct drm_device *dev = dev_priv->dev;
   6029 	struct device *device = &dev->pdev->dev;
   6030 
   6031 	if (!HAS_RUNTIME_PM(dev))
   6032 		return;
   6033 
   6034 	pm_runtime_mark_last_busy(device);
   6035 	pm_runtime_put_autosuspend(device);
   6036 }
   6037 
   6038 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
   6039 {
   6040 	struct drm_device *dev = dev_priv->dev;
   6041 	struct device *device = &dev->pdev->dev;
   6042 
   6043 	if (!HAS_RUNTIME_PM(dev))
   6044 		return;
   6045 
   6046 	pm_runtime_set_active(device);
   6047 
   6048 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
   6049 	pm_runtime_mark_last_busy(device);
   6050 	pm_runtime_use_autosuspend(device);
   6051 
   6052 	pm_runtime_put_autosuspend(device);
   6053 }
   6054 
   6055 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
   6056 {
   6057 	struct drm_device *dev = dev_priv->dev;
   6058 	struct device *device = &dev->pdev->dev;
   6059 
   6060 	if (!HAS_RUNTIME_PM(dev))
   6061 		return;
   6062 
   6063 	/* Make sure we're not suspended first. */
   6064 	pm_runtime_get_sync(device);
   6065 	pm_runtime_disable(device);
   6066 }
   6067 
   6068 /* Set up chip specific power management-related functions */
   6069 void intel_init_pm(struct drm_device *dev)
   6070 {
   6071 	struct drm_i915_private *dev_priv = dev->dev_private;
   6072 
   6073 	if (HAS_FBC(dev)) {
   6074 		if (INTEL_INFO(dev)->gen >= 7) {
   6075 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
   6076 			dev_priv->display.enable_fbc = gen7_enable_fbc;
   6077 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
   6078 		} else if (INTEL_INFO(dev)->gen >= 5) {
   6079 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
   6080 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
   6081 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
   6082 		} else if (IS_GM45(dev)) {
   6083 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
   6084 			dev_priv->display.enable_fbc = g4x_enable_fbc;
   6085 			dev_priv->display.disable_fbc = g4x_disable_fbc;
   6086 		} else {
   6087 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
   6088 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
   6089 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
   6090 
   6091 			/* This value was pulled out of someone's hat */
   6092 			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
   6093 		}
   6094 	}
   6095 
   6096 	/* For cxsr */
   6097 	if (IS_PINEVIEW(dev))
   6098 		i915_pineview_get_mem_freq(dev);
   6099 	else if (IS_GEN5(dev))
   6100 		i915_ironlake_get_mem_freq(dev);
   6101 
   6102 	/* For FIFO watermark updates */
   6103 	if (HAS_PCH_SPLIT(dev)) {
   6104 		ilk_setup_wm_latency(dev);
   6105 
   6106 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
   6107 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
   6108 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
   6109 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
   6110 			dev_priv->display.update_wm = ilk_update_wm;
   6111 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
   6112 		} else {
   6113 			DRM_DEBUG_KMS("Failed to read display plane latency. "
   6114 				      "Disable CxSR\n");
   6115 		}
   6116 
   6117 		if (IS_GEN5(dev))
   6118 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   6119 		else if (IS_GEN6(dev))
   6120 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   6121 		else if (IS_IVYBRIDGE(dev))
   6122 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   6123 		else if (IS_HASWELL(dev))
   6124 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   6125 		else if (INTEL_INFO(dev)->gen == 8)
   6126 			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
   6127 	} else if (IS_VALLEYVIEW(dev)) {
   6128 		dev_priv->display.update_wm = valleyview_update_wm;
   6129 		dev_priv->display.init_clock_gating =
   6130 			valleyview_init_clock_gating;
   6131 	} else if (IS_PINEVIEW(dev)) {
   6132 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   6133 					    dev_priv->is_ddr3,
   6134 					    dev_priv->fsb_freq,
   6135 					    dev_priv->mem_freq)) {
   6136 			DRM_INFO("failed to find known CxSR latency "
   6137 				 "(found ddr%s fsb freq %d, mem freq %d), "
   6138 				 "disabling CxSR\n",
   6139 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   6140 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   6141 			/* Disable CxSR and never update its watermark again */
   6142 			pineview_disable_cxsr(dev);
   6143 			dev_priv->display.update_wm = NULL;
   6144 		} else
   6145 			dev_priv->display.update_wm = pineview_update_wm;
   6146 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   6147 	} else if (IS_G4X(dev)) {
   6148 		dev_priv->display.update_wm = g4x_update_wm;
   6149 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   6150 	} else if (IS_GEN4(dev)) {
   6151 		dev_priv->display.update_wm = i965_update_wm;
   6152 		if (IS_CRESTLINE(dev))
   6153 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   6154 		else if (IS_BROADWATER(dev))
   6155 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   6156 	} else if (IS_GEN3(dev)) {
   6157 		dev_priv->display.update_wm = i9xx_update_wm;
   6158 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   6159 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   6160 	} else if (IS_GEN2(dev)) {
   6161 		if (INTEL_INFO(dev)->num_pipes == 1) {
   6162 			dev_priv->display.update_wm = i845_update_wm;
   6163 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   6164 		} else {
   6165 			dev_priv->display.update_wm = i9xx_update_wm;
   6166 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   6167 		}
   6168 
   6169 		if (IS_I85X(dev) || IS_I865G(dev))
   6170 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   6171 		else
   6172 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
   6173 	} else {
   6174 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
   6175 	}
   6176 }
   6177 
   6178 #ifdef __NetBSD__		/* XXX gt fini */
   6179 void
   6180 intel_gt_fini(struct drm_device *dev)
   6181 {
   6182 	struct drm_i915_private *dev_priv = dev->dev_private;
   6183 
   6184 	spin_lock_destroy(&dev_priv->gt_lock);
   6185 }
   6186 #endif
   6187 
   6188 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
   6189 {
   6190 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   6191 
   6192 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   6193 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   6194 		return -EAGAIN;
   6195 	}
   6196 
   6197 	I915_WRITE(GEN6_PCODE_DATA, *val);
   6198 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   6199 
   6200 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   6201 		     500)) {
   6202 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   6203 		return -ETIMEDOUT;
   6204 	}
   6205 
   6206 	*val = I915_READ(GEN6_PCODE_DATA);
   6207 	I915_WRITE(GEN6_PCODE_DATA, 0);
   6208 
   6209 	return 0;
   6210 }
   6211 
   6212 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
   6213 {
   6214 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   6215 
   6216 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   6217 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   6218 		return -EAGAIN;
   6219 	}
   6220 
   6221 	I915_WRITE(GEN6_PCODE_DATA, val);
   6222 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   6223 
   6224 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   6225 		     500)) {
   6226 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   6227 		return -ETIMEDOUT;
   6228 	}
   6229 
   6230 	I915_WRITE(GEN6_PCODE_DATA, 0);
   6231 
   6232 	return 0;
   6233 }
   6234 
   6235 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
   6236 {
   6237 	int div;
   6238 
   6239 	/* 4 x czclk */
   6240 	switch (dev_priv->mem_freq) {
   6241 	case 800:
   6242 		div = 10;
   6243 		break;
   6244 	case 1066:
   6245 		div = 12;
   6246 		break;
   6247 	case 1333:
   6248 		div = 16;
   6249 		break;
   6250 	default:
   6251 		return -1;
   6252 	}
   6253 
   6254 	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
   6255 }
   6256 
   6257 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
   6258 {
   6259 	int mul;
   6260 
   6261 	/* 4 x czclk */
   6262 	switch (dev_priv->mem_freq) {
   6263 	case 800:
   6264 		mul = 10;
   6265 		break;
   6266 	case 1066:
   6267 		mul = 12;
   6268 		break;
   6269 	case 1333:
   6270 		mul = 16;
   6271 		break;
   6272 	default:
   6273 		return -1;
   6274 	}
   6275 
   6276 	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
   6277 }
   6278 
   6279 void intel_pm_setup(struct drm_device *dev)
   6280 {
   6281 	struct drm_i915_private *dev_priv = dev->dev_private;
   6282 
   6283 	mutex_init(&dev_priv->rps.hw_lock);
   6284 
   6285 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   6286 			  intel_gen6_powersave_work);
   6287 
   6288 	dev_priv->pm.suspended = false;
   6289 	dev_priv->pm.irqs_disabled = false;
   6290 }
   6291