Home | History | Annotate | Line # | Download | only in i915
intel_pm.c revision 1.4.2.1
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eugeni Dodonov <eugeni.dodonov (at) intel.com>
     25  *
     26  */
     27 
     28 #include <linux/bitops.h>
     29 #include <linux/cpufreq.h>
     30 #include <linux/export.h>
     31 #include "i915_drv.h"
     32 #include "intel_drv.h"
     33 #ifndef __NetBSD__
     34 #include "../../../platform/x86/intel_ips.h"
     35 #endif
     36 #include <linux/module.h>
     37 #include <linux/kgdb.h>
     38 #include <linux/log2.h>
     39 #include <linux/math64.h>
     40 #include <linux/time.h>
     41 #include <asm/param.h>
     42 #include <linux/vgaarb.h>
     43 #include <drm/i915_powerwell.h>
     44 #include <linux/pm_runtime.h>
     45 
     46 /**
     47  * RC6 is a special power stage which allows the GPU to enter an very
     48  * low-voltage mode when idle, using down to 0V while at this stage.  This
     49  * stage is entered automatically when the GPU is idle when RC6 support is
     50  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
     51  *
     52  * There are different RC6 modes available in Intel GPU, which differentiate
     53  * among each other with the latency required to enter and leave RC6 and
     54  * voltage consumed by the GPU in different states.
     55  *
     56  * The combination of the following flags define which states GPU is allowed
     57  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
     58  * RC6pp is deepest RC6. Their support by hardware varies according to the
     59  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
     60  * which brings the most power savings; deeper states save more power, but
     61  * require higher latency to switch to and wake up.
     62  */
     63 #define INTEL_RC6_ENABLE			(1<<0)
     64 #define INTEL_RC6p_ENABLE			(1<<1)
     65 #define INTEL_RC6pp_ENABLE			(1<<2)
     66 
     67 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
     68  * framebuffer contents in-memory, aiming at reducing the required bandwidth
     69  * during in-memory transfers and, therefore, reduce the power packet.
     70  *
     71  * The benefits of FBC are mostly visible with solid backgrounds and
     72  * variation-less patterns.
     73  *
     74  * FBC-related functionality can be enabled by the means of the
     75  * i915.i915_enable_fbc parameter
     76  */
     77 
     78 static void i8xx_disable_fbc(struct drm_device *dev)
     79 {
     80 	struct drm_i915_private *dev_priv = dev->dev_private;
     81 	u32 fbc_ctl;
     82 
     83 	/* Disable compression */
     84 	fbc_ctl = I915_READ(FBC_CONTROL);
     85 	if ((fbc_ctl & FBC_CTL_EN) == 0)
     86 		return;
     87 
     88 	fbc_ctl &= ~FBC_CTL_EN;
     89 	I915_WRITE(FBC_CONTROL, fbc_ctl);
     90 
     91 	/* Wait for compressing bit to clear */
     92 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
     93 		DRM_DEBUG_KMS("FBC idle timed out\n");
     94 		return;
     95 	}
     96 
     97 	DRM_DEBUG_KMS("disabled FBC\n");
     98 }
     99 
    100 static void i8xx_enable_fbc(struct drm_crtc *crtc)
    101 {
    102 	struct drm_device *dev = crtc->dev;
    103 	struct drm_i915_private *dev_priv = dev->dev_private;
    104 	struct drm_framebuffer *fb = crtc->primary->fb;
    105 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    106 	struct drm_i915_gem_object *obj = intel_fb->obj;
    107 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    108 	int cfb_pitch;
    109 	int i;
    110 	u32 fbc_ctl;
    111 
    112 	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
    113 	if (fb->pitches[0] < cfb_pitch)
    114 		cfb_pitch = fb->pitches[0];
    115 
    116 	/* FBC_CTL wants 32B or 64B units */
    117 	if (IS_GEN2(dev))
    118 		cfb_pitch = (cfb_pitch / 32) - 1;
    119 	else
    120 		cfb_pitch = (cfb_pitch / 64) - 1;
    121 
    122 	/* Clear old tags */
    123 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
    124 		I915_WRITE(FBC_TAG + (i * 4), 0);
    125 
    126 	if (IS_GEN4(dev)) {
    127 		u32 fbc_ctl2;
    128 
    129 		/* Set it up... */
    130 		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
    131 		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
    132 		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
    133 		I915_WRITE(FBC_FENCE_OFF, crtc->y);
    134 	}
    135 
    136 	/* enable it... */
    137 	fbc_ctl = I915_READ(FBC_CONTROL);
    138 	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
    139 	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
    140 	if (IS_I945GM(dev))
    141 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
    142 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
    143 	fbc_ctl |= obj->fence_reg;
    144 	I915_WRITE(FBC_CONTROL, fbc_ctl);
    145 
    146 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
    147 		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
    148 }
    149 
    150 static bool i8xx_fbc_enabled(struct drm_device *dev)
    151 {
    152 	struct drm_i915_private *dev_priv = dev->dev_private;
    153 
    154 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
    155 }
    156 
    157 static void g4x_enable_fbc(struct drm_crtc *crtc)
    158 {
    159 	struct drm_device *dev = crtc->dev;
    160 	struct drm_i915_private *dev_priv = dev->dev_private;
    161 	struct drm_framebuffer *fb = crtc->primary->fb;
    162 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    163 	struct drm_i915_gem_object *obj = intel_fb->obj;
    164 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    165 	u32 dpfc_ctl;
    166 
    167 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
    168 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    169 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    170 	else
    171 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    172 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
    173 
    174 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
    175 
    176 	/* enable it... */
    177 	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    178 
    179 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    180 }
    181 
    182 static void g4x_disable_fbc(struct drm_device *dev)
    183 {
    184 	struct drm_i915_private *dev_priv = dev->dev_private;
    185 	u32 dpfc_ctl;
    186 
    187 	/* Disable compression */
    188 	dpfc_ctl = I915_READ(DPFC_CONTROL);
    189 	if (dpfc_ctl & DPFC_CTL_EN) {
    190 		dpfc_ctl &= ~DPFC_CTL_EN;
    191 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
    192 
    193 		DRM_DEBUG_KMS("disabled FBC\n");
    194 	}
    195 }
    196 
    197 static bool g4x_fbc_enabled(struct drm_device *dev)
    198 {
    199 	struct drm_i915_private *dev_priv = dev->dev_private;
    200 
    201 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
    202 }
    203 
    204 static void sandybridge_blit_fbc_update(struct drm_device *dev)
    205 {
    206 	struct drm_i915_private *dev_priv = dev->dev_private;
    207 	u32 blt_ecoskpd;
    208 
    209 	/* Make sure blitter notifies FBC of writes */
    210 
    211 	/* Blitter is part of Media powerwell on VLV. No impact of
    212 	 * his param in other platforms for now */
    213 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
    214 
    215 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
    216 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
    217 		GEN6_BLITTER_LOCK_SHIFT;
    218 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    219 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
    220 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    221 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
    222 			 GEN6_BLITTER_LOCK_SHIFT);
    223 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
    224 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
    225 
    226 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
    227 }
    228 
    229 static void ironlake_enable_fbc(struct drm_crtc *crtc)
    230 {
    231 	struct drm_device *dev = crtc->dev;
    232 	struct drm_i915_private *dev_priv = dev->dev_private;
    233 	struct drm_framebuffer *fb = crtc->primary->fb;
    234 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    235 	struct drm_i915_gem_object *obj = intel_fb->obj;
    236 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    237 	u32 dpfc_ctl;
    238 
    239 	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
    240 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    241 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    242 	else
    243 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    244 	dpfc_ctl |= DPFC_CTL_FENCE_EN;
    245 	if (IS_GEN5(dev))
    246 		dpfc_ctl |= obj->fence_reg;
    247 
    248 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
    249 	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
    250 	/* enable it... */
    251 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    252 
    253 	if (IS_GEN6(dev)) {
    254 		I915_WRITE(SNB_DPFC_CTL_SA,
    255 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
    256 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
    257 		sandybridge_blit_fbc_update(dev);
    258 	}
    259 
    260 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    261 }
    262 
    263 static void ironlake_disable_fbc(struct drm_device *dev)
    264 {
    265 	struct drm_i915_private *dev_priv = dev->dev_private;
    266 	u32 dpfc_ctl;
    267 
    268 	/* Disable compression */
    269 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
    270 	if (dpfc_ctl & DPFC_CTL_EN) {
    271 		dpfc_ctl &= ~DPFC_CTL_EN;
    272 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
    273 
    274 		DRM_DEBUG_KMS("disabled FBC\n");
    275 	}
    276 }
    277 
    278 static bool ironlake_fbc_enabled(struct drm_device *dev)
    279 {
    280 	struct drm_i915_private *dev_priv = dev->dev_private;
    281 
    282 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
    283 }
    284 
    285 static void gen7_enable_fbc(struct drm_crtc *crtc)
    286 {
    287 	struct drm_device *dev = crtc->dev;
    288 	struct drm_i915_private *dev_priv = dev->dev_private;
    289 	struct drm_framebuffer *fb = crtc->primary->fb;
    290 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
    291 	struct drm_i915_gem_object *obj = intel_fb->obj;
    292 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
    293 	u32 dpfc_ctl;
    294 
    295 	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
    296 	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
    297 		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
    298 	else
    299 		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
    300 	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
    301 
    302 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
    303 
    304 	if (IS_IVYBRIDGE(dev)) {
    305 		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
    306 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
    307 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
    308 			   ILK_FBCQ_DIS);
    309 	} else {
    310 		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
    311 		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
    312 			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
    313 			   HSW_FBCQ_DIS);
    314 	}
    315 
    316 	I915_WRITE(SNB_DPFC_CTL_SA,
    317 		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
    318 	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
    319 
    320 	sandybridge_blit_fbc_update(dev);
    321 
    322 	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
    323 }
    324 
    325 bool intel_fbc_enabled(struct drm_device *dev)
    326 {
    327 	struct drm_i915_private *dev_priv = dev->dev_private;
    328 
    329 	if (!dev_priv->display.fbc_enabled)
    330 		return false;
    331 
    332 	return dev_priv->display.fbc_enabled(dev);
    333 }
    334 
    335 static void intel_fbc_work_fn(struct work_struct *__work)
    336 {
    337 	struct intel_fbc_work *work =
    338 		container_of(to_delayed_work(__work),
    339 			     struct intel_fbc_work, work);
    340 	struct drm_device *dev = work->crtc->dev;
    341 	struct drm_i915_private *dev_priv = dev->dev_private;
    342 
    343 	mutex_lock(&dev->struct_mutex);
    344 	if (work == dev_priv->fbc.fbc_work) {
    345 		/* Double check that we haven't switched fb without cancelling
    346 		 * the prior work.
    347 		 */
    348 		if (work->crtc->primary->fb == work->fb) {
    349 			dev_priv->display.enable_fbc(work->crtc);
    350 
    351 			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
    352 			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
    353 			dev_priv->fbc.y = work->crtc->y;
    354 		}
    355 
    356 		dev_priv->fbc.fbc_work = NULL;
    357 	}
    358 	mutex_unlock(&dev->struct_mutex);
    359 
    360 	kfree(work);
    361 }
    362 
    363 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
    364 {
    365 	if (dev_priv->fbc.fbc_work == NULL)
    366 		return;
    367 
    368 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
    369 
    370 	/* Synchronisation is provided by struct_mutex and checking of
    371 	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
    372 	 * entirely asynchronously.
    373 	 */
    374 	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
    375 		/* tasklet was killed before being run, clean up */
    376 		kfree(dev_priv->fbc.fbc_work);
    377 
    378 	/* Mark the work as no longer wanted so that if it does
    379 	 * wake-up (because the work was already running and waiting
    380 	 * for our mutex), it will discover that is no longer
    381 	 * necessary to run.
    382 	 */
    383 	dev_priv->fbc.fbc_work = NULL;
    384 }
    385 
    386 static void intel_enable_fbc(struct drm_crtc *crtc)
    387 {
    388 	struct intel_fbc_work *work;
    389 	struct drm_device *dev = crtc->dev;
    390 	struct drm_i915_private *dev_priv = dev->dev_private;
    391 
    392 	if (!dev_priv->display.enable_fbc)
    393 		return;
    394 
    395 	intel_cancel_fbc_work(dev_priv);
    396 
    397 	work = kzalloc(sizeof(*work), GFP_KERNEL);
    398 	if (work == NULL) {
    399 		DRM_ERROR("Failed to allocate FBC work structure\n");
    400 		dev_priv->display.enable_fbc(crtc);
    401 		return;
    402 	}
    403 
    404 	work->crtc = crtc;
    405 	work->fb = crtc->primary->fb;
    406 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
    407 
    408 	dev_priv->fbc.fbc_work = work;
    409 
    410 	/* Delay the actual enabling to let pageflipping cease and the
    411 	 * display to settle before starting the compression. Note that
    412 	 * this delay also serves a second purpose: it allows for a
    413 	 * vblank to pass after disabling the FBC before we attempt
    414 	 * to modify the control registers.
    415 	 *
    416 	 * A more complicated solution would involve tracking vblanks
    417 	 * following the termination of the page-flipping sequence
    418 	 * and indeed performing the enable as a co-routine and not
    419 	 * waiting synchronously upon the vblank.
    420 	 *
    421 	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
    422 	 */
    423 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
    424 }
    425 
    426 void intel_disable_fbc(struct drm_device *dev)
    427 {
    428 	struct drm_i915_private *dev_priv = dev->dev_private;
    429 
    430 	intel_cancel_fbc_work(dev_priv);
    431 
    432 	if (!dev_priv->display.disable_fbc)
    433 		return;
    434 
    435 	dev_priv->display.disable_fbc(dev);
    436 	dev_priv->fbc.plane = -1;
    437 }
    438 
    439 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
    440 			      enum no_fbc_reason reason)
    441 {
    442 	if (dev_priv->fbc.no_fbc_reason == reason)
    443 		return false;
    444 
    445 	dev_priv->fbc.no_fbc_reason = reason;
    446 	return true;
    447 }
    448 
    449 /**
    450  * intel_update_fbc - enable/disable FBC as needed
    451  * @dev: the drm_device
    452  *
    453  * Set up the framebuffer compression hardware at mode set time.  We
    454  * enable it if possible:
    455  *   - plane A only (on pre-965)
    456  *   - no pixel mulitply/line duplication
    457  *   - no alpha buffer discard
    458  *   - no dual wide
    459  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
    460  *
    461  * We can't assume that any compression will take place (worst case),
    462  * so the compressed buffer has to be the same size as the uncompressed
    463  * one.  It also must reside (along with the line length buffer) in
    464  * stolen memory.
    465  *
    466  * We need to enable/disable FBC on a global basis.
    467  */
    468 void intel_update_fbc(struct drm_device *dev)
    469 {
    470 	struct drm_i915_private *dev_priv = dev->dev_private;
    471 	struct drm_crtc *crtc = NULL, *tmp_crtc;
    472 	struct intel_crtc *intel_crtc;
    473 	struct drm_framebuffer *fb;
    474 	struct intel_framebuffer *intel_fb;
    475 	struct drm_i915_gem_object *obj;
    476 	const struct drm_display_mode *adjusted_mode;
    477 	unsigned int max_width, max_height;
    478 
    479 	if (!HAS_FBC(dev)) {
    480 		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
    481 		return;
    482 	}
    483 
    484 	if (!i915.powersave) {
    485 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
    486 			DRM_DEBUG_KMS("fbc disabled per module param\n");
    487 		return;
    488 	}
    489 
    490 	/*
    491 	 * If FBC is already on, we just have to verify that we can
    492 	 * keep it that way...
    493 	 * Need to disable if:
    494 	 *   - more than one pipe is active
    495 	 *   - changing FBC params (stride, fence, mode)
    496 	 *   - new fb is too large to fit in compressed buffer
    497 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
    498 	 */
    499 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
    500 		if (intel_crtc_active(tmp_crtc) &&
    501 		    to_intel_crtc(tmp_crtc)->primary_enabled) {
    502 			if (crtc) {
    503 				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
    504 					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
    505 				goto out_disable;
    506 			}
    507 			crtc = tmp_crtc;
    508 		}
    509 	}
    510 
    511 	if (!crtc || crtc->primary->fb == NULL) {
    512 		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
    513 			DRM_DEBUG_KMS("no output, disabling\n");
    514 		goto out_disable;
    515 	}
    516 
    517 	intel_crtc = to_intel_crtc(crtc);
    518 	fb = crtc->primary->fb;
    519 	intel_fb = to_intel_framebuffer(fb);
    520 	obj = intel_fb->obj;
    521 	adjusted_mode = &intel_crtc->config.adjusted_mode;
    522 
    523 	if (i915.enable_fbc < 0 &&
    524 	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
    525 		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
    526 			DRM_DEBUG_KMS("disabled per chip default\n");
    527 		goto out_disable;
    528 	}
    529 	if (!i915.enable_fbc) {
    530 		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
    531 			DRM_DEBUG_KMS("fbc disabled per module param\n");
    532 		goto out_disable;
    533 	}
    534 	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
    535 	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
    536 		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
    537 			DRM_DEBUG_KMS("mode incompatible with compression, "
    538 				      "disabling\n");
    539 		goto out_disable;
    540 	}
    541 
    542 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
    543 		max_width = 4096;
    544 		max_height = 2048;
    545 	} else {
    546 		max_width = 2048;
    547 		max_height = 1536;
    548 	}
    549 	if (intel_crtc->config.pipe_src_w > max_width ||
    550 	    intel_crtc->config.pipe_src_h > max_height) {
    551 		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
    552 			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
    553 		goto out_disable;
    554 	}
    555 	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
    556 	    intel_crtc->plane != PLANE_A) {
    557 		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
    558 			DRM_DEBUG_KMS("plane not A, disabling compression\n");
    559 		goto out_disable;
    560 	}
    561 
    562 	/* The use of a CPU fence is mandatory in order to detect writes
    563 	 * by the CPU to the scanout and trigger updates to the FBC.
    564 	 */
    565 	if (obj->tiling_mode != I915_TILING_X ||
    566 	    obj->fence_reg == I915_FENCE_REG_NONE) {
    567 		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
    568 			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
    569 		goto out_disable;
    570 	}
    571 
    572 	/* If the kernel debugger is active, always disable compression */
    573 	if (in_dbg_master())
    574 		goto out_disable;
    575 
    576 	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
    577 		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
    578 			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
    579 		goto out_disable;
    580 	}
    581 
    582 	/* If the scanout has not changed, don't modify the FBC settings.
    583 	 * Note that we make the fundamental assumption that the fb->obj
    584 	 * cannot be unpinned (and have its GTT offset and fence revoked)
    585 	 * without first being decoupled from the scanout and FBC disabled.
    586 	 */
    587 	if (dev_priv->fbc.plane == intel_crtc->plane &&
    588 	    dev_priv->fbc.fb_id == fb->base.id &&
    589 	    dev_priv->fbc.y == crtc->y)
    590 		return;
    591 
    592 	if (intel_fbc_enabled(dev)) {
    593 		/* We update FBC along two paths, after changing fb/crtc
    594 		 * configuration (modeswitching) and after page-flipping
    595 		 * finishes. For the latter, we know that not only did
    596 		 * we disable the FBC at the start of the page-flip
    597 		 * sequence, but also more than one vblank has passed.
    598 		 *
    599 		 * For the former case of modeswitching, it is possible
    600 		 * to switch between two FBC valid configurations
    601 		 * instantaneously so we do need to disable the FBC
    602 		 * before we can modify its control registers. We also
    603 		 * have to wait for the next vblank for that to take
    604 		 * effect. However, since we delay enabling FBC we can
    605 		 * assume that a vblank has passed since disabling and
    606 		 * that we can safely alter the registers in the deferred
    607 		 * callback.
    608 		 *
    609 		 * In the scenario that we go from a valid to invalid
    610 		 * and then back to valid FBC configuration we have
    611 		 * no strict enforcement that a vblank occurred since
    612 		 * disabling the FBC. However, along all current pipe
    613 		 * disabling paths we do need to wait for a vblank at
    614 		 * some point. And we wait before enabling FBC anyway.
    615 		 */
    616 		DRM_DEBUG_KMS("disabling active FBC for update\n");
    617 		intel_disable_fbc(dev);
    618 	}
    619 
    620 	intel_enable_fbc(crtc);
    621 	dev_priv->fbc.no_fbc_reason = FBC_OK;
    622 	return;
    623 
    624 out_disable:
    625 	/* Multiple disables should be harmless */
    626 	if (intel_fbc_enabled(dev)) {
    627 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
    628 		intel_disable_fbc(dev);
    629 	}
    630 	i915_gem_stolen_cleanup_compression(dev);
    631 }
    632 
    633 static void i915_pineview_get_mem_freq(struct drm_device *dev)
    634 {
    635 	struct drm_i915_private *dev_priv = dev->dev_private;
    636 	u32 tmp;
    637 
    638 	tmp = I915_READ(CLKCFG);
    639 
    640 	switch (tmp & CLKCFG_FSB_MASK) {
    641 	case CLKCFG_FSB_533:
    642 		dev_priv->fsb_freq = 533; /* 133*4 */
    643 		break;
    644 	case CLKCFG_FSB_800:
    645 		dev_priv->fsb_freq = 800; /* 200*4 */
    646 		break;
    647 	case CLKCFG_FSB_667:
    648 		dev_priv->fsb_freq =  667; /* 167*4 */
    649 		break;
    650 	case CLKCFG_FSB_400:
    651 		dev_priv->fsb_freq = 400; /* 100*4 */
    652 		break;
    653 	}
    654 
    655 	switch (tmp & CLKCFG_MEM_MASK) {
    656 	case CLKCFG_MEM_533:
    657 		dev_priv->mem_freq = 533;
    658 		break;
    659 	case CLKCFG_MEM_667:
    660 		dev_priv->mem_freq = 667;
    661 		break;
    662 	case CLKCFG_MEM_800:
    663 		dev_priv->mem_freq = 800;
    664 		break;
    665 	}
    666 
    667 	/* detect pineview DDR3 setting */
    668 	tmp = I915_READ(CSHRDDR3CTL);
    669 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    670 }
    671 
    672 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
    673 {
    674 	struct drm_i915_private *dev_priv = dev->dev_private;
    675 	u16 ddrpll, csipll;
    676 
    677 	ddrpll = I915_READ16(DDRMPLL1);
    678 	csipll = I915_READ16(CSIPLL0);
    679 
    680 	switch (ddrpll & 0xff) {
    681 	case 0xc:
    682 		dev_priv->mem_freq = 800;
    683 		break;
    684 	case 0x10:
    685 		dev_priv->mem_freq = 1066;
    686 		break;
    687 	case 0x14:
    688 		dev_priv->mem_freq = 1333;
    689 		break;
    690 	case 0x18:
    691 		dev_priv->mem_freq = 1600;
    692 		break;
    693 	default:
    694 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
    695 				 ddrpll & 0xff);
    696 		dev_priv->mem_freq = 0;
    697 		break;
    698 	}
    699 
    700 	dev_priv->ips.r_t = dev_priv->mem_freq;
    701 
    702 	switch (csipll & 0x3ff) {
    703 	case 0x00c:
    704 		dev_priv->fsb_freq = 3200;
    705 		break;
    706 	case 0x00e:
    707 		dev_priv->fsb_freq = 3733;
    708 		break;
    709 	case 0x010:
    710 		dev_priv->fsb_freq = 4266;
    711 		break;
    712 	case 0x012:
    713 		dev_priv->fsb_freq = 4800;
    714 		break;
    715 	case 0x014:
    716 		dev_priv->fsb_freq = 5333;
    717 		break;
    718 	case 0x016:
    719 		dev_priv->fsb_freq = 5866;
    720 		break;
    721 	case 0x018:
    722 		dev_priv->fsb_freq = 6400;
    723 		break;
    724 	default:
    725 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
    726 				 csipll & 0x3ff);
    727 		dev_priv->fsb_freq = 0;
    728 		break;
    729 	}
    730 
    731 	if (dev_priv->fsb_freq == 3200) {
    732 		dev_priv->ips.c_m = 0;
    733 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
    734 		dev_priv->ips.c_m = 1;
    735 	} else {
    736 		dev_priv->ips.c_m = 2;
    737 	}
    738 }
    739 
    740 static const struct cxsr_latency cxsr_latency_table[] = {
    741 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    742 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    743 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    744 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    745 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    746 
    747 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    748 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    749 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    750 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    751 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    752 
    753 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    754 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    755 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    756 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    757 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    758 
    759 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    760 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    761 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    762 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    763 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    764 
    765 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    766 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    767 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    768 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    769 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    770 
    771 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    772 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    773 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    774 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    775 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    776 };
    777 
    778 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
    779 							 int is_ddr3,
    780 							 int fsb,
    781 							 int mem)
    782 {
    783 	const struct cxsr_latency *latency;
    784 	int i;
    785 
    786 	if (fsb == 0 || mem == 0)
    787 		return NULL;
    788 
    789 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    790 		latency = &cxsr_latency_table[i];
    791 		if (is_desktop == latency->is_desktop &&
    792 		    is_ddr3 == latency->is_ddr3 &&
    793 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    794 			return latency;
    795 	}
    796 
    797 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    798 
    799 	return NULL;
    800 }
    801 
    802 static void pineview_disable_cxsr(struct drm_device *dev)
    803 {
    804 	struct drm_i915_private *dev_priv = dev->dev_private;
    805 
    806 	/* deactivate cxsr */
    807 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
    808 }
    809 
    810 /*
    811  * Latency for FIFO fetches is dependent on several factors:
    812  *   - memory configuration (speed, channels)
    813  *   - chipset
    814  *   - current MCH state
    815  * It can be fairly high in some situations, so here we assume a fairly
    816  * pessimal value.  It's a tradeoff between extra memory fetches (if we
    817  * set this value too high, the FIFO will fetch frequently to stay full)
    818  * and power consumption (set it too low to save power and we might see
    819  * FIFO underruns and display "flicker").
    820  *
    821  * A value of 5us seems to be a good balance; safe for very low end
    822  * platforms but not overly aggressive on lower latency configs.
    823  */
    824 static const int latency_ns = 5000;
    825 
    826 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
    827 {
    828 	struct drm_i915_private *dev_priv = dev->dev_private;
    829 	uint32_t dsparb = I915_READ(DSPARB);
    830 	int size;
    831 
    832 	size = dsparb & 0x7f;
    833 	if (plane)
    834 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    835 
    836 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    837 		      plane ? "B" : "A", size);
    838 
    839 	return size;
    840 }
    841 
    842 static int i830_get_fifo_size(struct drm_device *dev, int plane)
    843 {
    844 	struct drm_i915_private *dev_priv = dev->dev_private;
    845 	uint32_t dsparb = I915_READ(DSPARB);
    846 	int size;
    847 
    848 	size = dsparb & 0x1ff;
    849 	if (plane)
    850 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    851 	size >>= 1; /* Convert to cachelines */
    852 
    853 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    854 		      plane ? "B" : "A", size);
    855 
    856 	return size;
    857 }
    858 
    859 static int i845_get_fifo_size(struct drm_device *dev, int plane)
    860 {
    861 	struct drm_i915_private *dev_priv = dev->dev_private;
    862 	uint32_t dsparb = I915_READ(DSPARB);
    863 	int size;
    864 
    865 	size = dsparb & 0x7f;
    866 	size >>= 2; /* Convert to cachelines */
    867 
    868 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
    869 		      plane ? "B" : "A",
    870 		      size);
    871 
    872 	return size;
    873 }
    874 
    875 /* Pineview has different values for various configs */
    876 static const struct intel_watermark_params pineview_display_wm = {
    877 	PINEVIEW_DISPLAY_FIFO,
    878 	PINEVIEW_MAX_WM,
    879 	PINEVIEW_DFT_WM,
    880 	PINEVIEW_GUARD_WM,
    881 	PINEVIEW_FIFO_LINE_SIZE
    882 };
    883 static const struct intel_watermark_params pineview_display_hplloff_wm = {
    884 	PINEVIEW_DISPLAY_FIFO,
    885 	PINEVIEW_MAX_WM,
    886 	PINEVIEW_DFT_HPLLOFF_WM,
    887 	PINEVIEW_GUARD_WM,
    888 	PINEVIEW_FIFO_LINE_SIZE
    889 };
    890 static const struct intel_watermark_params pineview_cursor_wm = {
    891 	PINEVIEW_CURSOR_FIFO,
    892 	PINEVIEW_CURSOR_MAX_WM,
    893 	PINEVIEW_CURSOR_DFT_WM,
    894 	PINEVIEW_CURSOR_GUARD_WM,
    895 	PINEVIEW_FIFO_LINE_SIZE,
    896 };
    897 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
    898 	PINEVIEW_CURSOR_FIFO,
    899 	PINEVIEW_CURSOR_MAX_WM,
    900 	PINEVIEW_CURSOR_DFT_WM,
    901 	PINEVIEW_CURSOR_GUARD_WM,
    902 	PINEVIEW_FIFO_LINE_SIZE
    903 };
    904 static const struct intel_watermark_params g4x_wm_info = {
    905 	G4X_FIFO_SIZE,
    906 	G4X_MAX_WM,
    907 	G4X_MAX_WM,
    908 	2,
    909 	G4X_FIFO_LINE_SIZE,
    910 };
    911 static const struct intel_watermark_params g4x_cursor_wm_info = {
    912 	I965_CURSOR_FIFO,
    913 	I965_CURSOR_MAX_WM,
    914 	I965_CURSOR_DFT_WM,
    915 	2,
    916 	G4X_FIFO_LINE_SIZE,
    917 };
    918 static const struct intel_watermark_params valleyview_wm_info = {
    919 	VALLEYVIEW_FIFO_SIZE,
    920 	VALLEYVIEW_MAX_WM,
    921 	VALLEYVIEW_MAX_WM,
    922 	2,
    923 	G4X_FIFO_LINE_SIZE,
    924 };
    925 static const struct intel_watermark_params valleyview_cursor_wm_info = {
    926 	I965_CURSOR_FIFO,
    927 	VALLEYVIEW_CURSOR_MAX_WM,
    928 	I965_CURSOR_DFT_WM,
    929 	2,
    930 	G4X_FIFO_LINE_SIZE,
    931 };
    932 static const struct intel_watermark_params i965_cursor_wm_info = {
    933 	I965_CURSOR_FIFO,
    934 	I965_CURSOR_MAX_WM,
    935 	I965_CURSOR_DFT_WM,
    936 	2,
    937 	I915_FIFO_LINE_SIZE,
    938 };
    939 static const struct intel_watermark_params i945_wm_info = {
    940 	I945_FIFO_SIZE,
    941 	I915_MAX_WM,
    942 	1,
    943 	2,
    944 	I915_FIFO_LINE_SIZE
    945 };
    946 static const struct intel_watermark_params i915_wm_info = {
    947 	I915_FIFO_SIZE,
    948 	I915_MAX_WM,
    949 	1,
    950 	2,
    951 	I915_FIFO_LINE_SIZE
    952 };
    953 static const struct intel_watermark_params i830_wm_info = {
    954 	I855GM_FIFO_SIZE,
    955 	I915_MAX_WM,
    956 	1,
    957 	2,
    958 	I830_FIFO_LINE_SIZE
    959 };
    960 static const struct intel_watermark_params i845_wm_info = {
    961 	I830_FIFO_SIZE,
    962 	I915_MAX_WM,
    963 	1,
    964 	2,
    965 	I830_FIFO_LINE_SIZE
    966 };
    967 
    968 /**
    969  * intel_calculate_wm - calculate watermark level
    970  * @clock_in_khz: pixel clock
    971  * @wm: chip FIFO params
    972  * @pixel_size: display pixel size
    973  * @latency_ns: memory latency for the platform
    974  *
    975  * Calculate the watermark level (the level at which the display plane will
    976  * start fetching from memory again).  Each chip has a different display
    977  * FIFO size and allocation, so the caller needs to figure that out and pass
    978  * in the correct intel_watermark_params structure.
    979  *
    980  * As the pixel clock runs, the FIFO will be drained at a rate that depends
    981  * on the pixel size.  When it reaches the watermark level, it'll start
    982  * fetching FIFO line sized based chunks from memory until the FIFO fills
    983  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    984  * will occur, and a display engine hang could result.
    985  */
    986 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
    987 					const struct intel_watermark_params *wm,
    988 					int fifo_size,
    989 					int pixel_size,
    990 					unsigned long latency_ns)
    991 {
    992 	long entries_required, wm_size;
    993 
    994 	/*
    995 	 * Note: we need to make sure we don't overflow for various clock &
    996 	 * latency values.
    997 	 * clocks go from a few thousand to several hundred thousand.
    998 	 * latency is usually a few thousand
    999 	 */
   1000 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
   1001 		1000;
   1002 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
   1003 
   1004 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
   1005 
   1006 	wm_size = fifo_size - (entries_required + wm->guard_size);
   1007 
   1008 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
   1009 
   1010 	/* Don't promote wm_size to unsigned... */
   1011 	if (wm_size > (long)wm->max_wm)
   1012 		wm_size = wm->max_wm;
   1013 	if (wm_size <= 0)
   1014 		wm_size = wm->default_wm;
   1015 	return wm_size;
   1016 }
   1017 
   1018 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
   1019 {
   1020 	struct drm_crtc *crtc, *enabled = NULL;
   1021 
   1022 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
   1023 		if (intel_crtc_active(crtc)) {
   1024 			if (enabled)
   1025 				return NULL;
   1026 			enabled = crtc;
   1027 		}
   1028 	}
   1029 
   1030 	return enabled;
   1031 }
   1032 
   1033 static void pineview_update_wm(struct drm_crtc *unused_crtc)
   1034 {
   1035 	struct drm_device *dev = unused_crtc->dev;
   1036 	struct drm_i915_private *dev_priv = dev->dev_private;
   1037 	struct drm_crtc *crtc;
   1038 	const struct cxsr_latency *latency;
   1039 	u32 reg;
   1040 	unsigned long wm;
   1041 
   1042 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
   1043 					 dev_priv->fsb_freq, dev_priv->mem_freq);
   1044 	if (!latency) {
   1045 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
   1046 		pineview_disable_cxsr(dev);
   1047 		return;
   1048 	}
   1049 
   1050 	crtc = single_enabled_crtc(dev);
   1051 	if (crtc) {
   1052 		const struct drm_display_mode *adjusted_mode;
   1053 		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1054 		int clock;
   1055 
   1056 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1057 		clock = adjusted_mode->crtc_clock;
   1058 
   1059 		/* Display SR */
   1060 		wm = intel_calculate_wm(clock, &pineview_display_wm,
   1061 					pineview_display_wm.fifo_size,
   1062 					pixel_size, latency->display_sr);
   1063 		reg = I915_READ(DSPFW1);
   1064 		reg &= ~DSPFW_SR_MASK;
   1065 		reg |= wm << DSPFW_SR_SHIFT;
   1066 		I915_WRITE(DSPFW1, reg);
   1067 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
   1068 
   1069 		/* cursor SR */
   1070 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
   1071 					pineview_display_wm.fifo_size,
   1072 					pixel_size, latency->cursor_sr);
   1073 		reg = I915_READ(DSPFW3);
   1074 		reg &= ~DSPFW_CURSOR_SR_MASK;
   1075 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
   1076 		I915_WRITE(DSPFW3, reg);
   1077 
   1078 		/* Display HPLL off SR */
   1079 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
   1080 					pineview_display_hplloff_wm.fifo_size,
   1081 					pixel_size, latency->display_hpll_disable);
   1082 		reg = I915_READ(DSPFW3);
   1083 		reg &= ~DSPFW_HPLL_SR_MASK;
   1084 		reg |= wm & DSPFW_HPLL_SR_MASK;
   1085 		I915_WRITE(DSPFW3, reg);
   1086 
   1087 		/* cursor HPLL off SR */
   1088 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
   1089 					pineview_display_hplloff_wm.fifo_size,
   1090 					pixel_size, latency->cursor_hpll_disable);
   1091 		reg = I915_READ(DSPFW3);
   1092 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
   1093 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
   1094 		I915_WRITE(DSPFW3, reg);
   1095 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
   1096 
   1097 		/* activate cxsr */
   1098 		I915_WRITE(DSPFW3,
   1099 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
   1100 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
   1101 	} else {
   1102 		pineview_disable_cxsr(dev);
   1103 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
   1104 	}
   1105 }
   1106 
   1107 static bool g4x_compute_wm0(struct drm_device *dev,
   1108 			    int plane,
   1109 			    const struct intel_watermark_params *display,
   1110 			    int display_latency_ns,
   1111 			    const struct intel_watermark_params *cursor,
   1112 			    int cursor_latency_ns,
   1113 			    int *plane_wm,
   1114 			    int *cursor_wm)
   1115 {
   1116 	struct drm_crtc *crtc;
   1117 	const struct drm_display_mode *adjusted_mode;
   1118 	int htotal, hdisplay, clock, pixel_size;
   1119 	int line_time_us, line_count;
   1120 	int entries, tlb_miss;
   1121 
   1122 	crtc = intel_get_crtc_for_plane(dev, plane);
   1123 	if (!intel_crtc_active(crtc)) {
   1124 		*cursor_wm = cursor->guard_size;
   1125 		*plane_wm = display->guard_size;
   1126 		return false;
   1127 	}
   1128 
   1129 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1130 	clock = adjusted_mode->crtc_clock;
   1131 	htotal = adjusted_mode->crtc_htotal;
   1132 	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1133 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1134 
   1135 	/* Use the small buffer method to calculate plane watermark */
   1136 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
   1137 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
   1138 	if (tlb_miss > 0)
   1139 		entries += tlb_miss;
   1140 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
   1141 	*plane_wm = entries + display->guard_size;
   1142 	if (*plane_wm > (int)display->max_wm)
   1143 		*plane_wm = display->max_wm;
   1144 
   1145 	/* Use the large buffer method to calculate cursor watermark */
   1146 	line_time_us = max(htotal * 1000 / clock, 1);
   1147 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
   1148 	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
   1149 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
   1150 	if (tlb_miss > 0)
   1151 		entries += tlb_miss;
   1152 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1153 	*cursor_wm = entries + cursor->guard_size;
   1154 	if (*cursor_wm > (int)cursor->max_wm)
   1155 		*cursor_wm = (int)cursor->max_wm;
   1156 
   1157 	return true;
   1158 }
   1159 
   1160 /*
   1161  * Check the wm result.
   1162  *
   1163  * If any calculated watermark values is larger than the maximum value that
   1164  * can be programmed into the associated watermark register, that watermark
   1165  * must be disabled.
   1166  */
   1167 static bool g4x_check_srwm(struct drm_device *dev,
   1168 			   int display_wm, int cursor_wm,
   1169 			   const struct intel_watermark_params *display,
   1170 			   const struct intel_watermark_params *cursor)
   1171 {
   1172 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
   1173 		      display_wm, cursor_wm);
   1174 
   1175 	if (display_wm > display->max_wm) {
   1176 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
   1177 			      display_wm, display->max_wm);
   1178 		return false;
   1179 	}
   1180 
   1181 	if (cursor_wm > cursor->max_wm) {
   1182 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
   1183 			      cursor_wm, cursor->max_wm);
   1184 		return false;
   1185 	}
   1186 
   1187 	if (!(display_wm || cursor_wm)) {
   1188 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
   1189 		return false;
   1190 	}
   1191 
   1192 	return true;
   1193 }
   1194 
   1195 static bool g4x_compute_srwm(struct drm_device *dev,
   1196 			     int plane,
   1197 			     int latency_ns,
   1198 			     const struct intel_watermark_params *display,
   1199 			     const struct intel_watermark_params *cursor,
   1200 			     int *display_wm, int *cursor_wm)
   1201 {
   1202 	struct drm_crtc *crtc;
   1203 	const struct drm_display_mode *adjusted_mode;
   1204 	int hdisplay, htotal, pixel_size, clock;
   1205 	unsigned long line_time_us;
   1206 	int line_count, line_size;
   1207 	int small, large;
   1208 	int entries;
   1209 
   1210 	if (!latency_ns) {
   1211 		*display_wm = *cursor_wm = 0;
   1212 		return false;
   1213 	}
   1214 
   1215 	crtc = intel_get_crtc_for_plane(dev, plane);
   1216 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1217 	clock = adjusted_mode->crtc_clock;
   1218 	htotal = adjusted_mode->crtc_htotal;
   1219 	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1220 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1221 
   1222 	line_time_us = max(htotal * 1000 / clock, 1);
   1223 	line_count = (latency_ns / line_time_us + 1000) / 1000;
   1224 	line_size = hdisplay * pixel_size;
   1225 
   1226 	/* Use the minimum of the small and large buffer method for primary */
   1227 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
   1228 	large = line_count * line_size;
   1229 
   1230 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
   1231 	*display_wm = entries + display->guard_size;
   1232 
   1233 	/* calculate the self-refresh watermark for display cursor */
   1234 	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
   1235 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
   1236 	*cursor_wm = entries + cursor->guard_size;
   1237 
   1238 	return g4x_check_srwm(dev,
   1239 			      *display_wm, *cursor_wm,
   1240 			      display, cursor);
   1241 }
   1242 
   1243 static bool vlv_compute_drain_latency(struct drm_device *dev,
   1244 				     int plane,
   1245 				     int *plane_prec_mult,
   1246 				     int *plane_dl,
   1247 				     int *cursor_prec_mult,
   1248 				     int *cursor_dl)
   1249 {
   1250 	struct drm_crtc *crtc;
   1251 	int clock, pixel_size;
   1252 	int entries;
   1253 
   1254 	crtc = intel_get_crtc_for_plane(dev, plane);
   1255 	if (!intel_crtc_active(crtc))
   1256 		return false;
   1257 
   1258 	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
   1259 	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
   1260 
   1261 	entries = (clock / 1000) * pixel_size;
   1262 	*plane_prec_mult = (entries > 256) ?
   1263 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1264 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
   1265 						     pixel_size);
   1266 
   1267 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
   1268 	*cursor_prec_mult = (entries > 256) ?
   1269 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
   1270 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
   1271 
   1272 	return true;
   1273 }
   1274 
   1275 /*
   1276  * Update drain latency registers of memory arbiter
   1277  *
   1278  * Valleyview SoC has a new memory arbiter and needs drain latency registers
   1279  * to be programmed. Each plane has a drain latency multiplier and a drain
   1280  * latency value.
   1281  */
   1282 
   1283 static void vlv_update_drain_latency(struct drm_device *dev)
   1284 {
   1285 	struct drm_i915_private *dev_priv = dev->dev_private;
   1286 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
   1287 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
   1288 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
   1289 							either 16 or 32 */
   1290 
   1291 	/* For plane A, Cursor A */
   1292 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
   1293 				      &cursor_prec_mult, &cursora_dl)) {
   1294 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1295 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
   1296 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1297 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
   1298 
   1299 		I915_WRITE(VLV_DDL1, cursora_prec |
   1300 				(cursora_dl << DDL_CURSORA_SHIFT) |
   1301 				planea_prec | planea_dl);
   1302 	}
   1303 
   1304 	/* For plane B, Cursor B */
   1305 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
   1306 				      &cursor_prec_mult, &cursorb_dl)) {
   1307 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1308 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
   1309 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
   1310 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
   1311 
   1312 		I915_WRITE(VLV_DDL2, cursorb_prec |
   1313 				(cursorb_dl << DDL_CURSORB_SHIFT) |
   1314 				planeb_prec | planeb_dl);
   1315 	}
   1316 }
   1317 
   1318 #define single_plane_enabled(mask) is_power_of_2(mask)
   1319 
   1320 static void valleyview_update_wm(struct drm_crtc *crtc)
   1321 {
   1322 	struct drm_device *dev = crtc->dev;
   1323 	static const int sr_latency_ns = 12000;
   1324 	struct drm_i915_private *dev_priv = dev->dev_private;
   1325 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1326 	int plane_sr, cursor_sr;
   1327 	int ignore_plane_sr, ignore_cursor_sr;
   1328 	unsigned int enabled = 0;
   1329 
   1330 	vlv_update_drain_latency(dev);
   1331 
   1332 	if (g4x_compute_wm0(dev, PIPE_A,
   1333 			    &valleyview_wm_info, latency_ns,
   1334 			    &valleyview_cursor_wm_info, latency_ns,
   1335 			    &planea_wm, &cursora_wm))
   1336 		enabled |= 1 << PIPE_A;
   1337 
   1338 	if (g4x_compute_wm0(dev, PIPE_B,
   1339 			    &valleyview_wm_info, latency_ns,
   1340 			    &valleyview_cursor_wm_info, latency_ns,
   1341 			    &planeb_wm, &cursorb_wm))
   1342 		enabled |= 1 << PIPE_B;
   1343 
   1344 	if (single_plane_enabled(enabled) &&
   1345 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1346 			     sr_latency_ns,
   1347 			     &valleyview_wm_info,
   1348 			     &valleyview_cursor_wm_info,
   1349 			     &plane_sr, &ignore_cursor_sr) &&
   1350 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1351 			     2*sr_latency_ns,
   1352 			     &valleyview_wm_info,
   1353 			     &valleyview_cursor_wm_info,
   1354 			     &ignore_plane_sr, &cursor_sr)) {
   1355 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
   1356 	} else {
   1357 		I915_WRITE(FW_BLC_SELF_VLV,
   1358 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
   1359 		plane_sr = cursor_sr = 0;
   1360 	}
   1361 
   1362 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1363 		      planea_wm, cursora_wm,
   1364 		      planeb_wm, cursorb_wm,
   1365 		      plane_sr, cursor_sr);
   1366 
   1367 	I915_WRITE(DSPFW1,
   1368 		   (plane_sr << DSPFW_SR_SHIFT) |
   1369 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1370 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1371 		   planea_wm);
   1372 	I915_WRITE(DSPFW2,
   1373 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1374 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1375 	I915_WRITE(DSPFW3,
   1376 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
   1377 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1378 }
   1379 
   1380 static void g4x_update_wm(struct drm_crtc *crtc)
   1381 {
   1382 	struct drm_device *dev = crtc->dev;
   1383 	static const int sr_latency_ns = 12000;
   1384 	struct drm_i915_private *dev_priv = dev->dev_private;
   1385 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
   1386 	int plane_sr, cursor_sr;
   1387 	unsigned int enabled = 0;
   1388 
   1389 	if (g4x_compute_wm0(dev, PIPE_A,
   1390 			    &g4x_wm_info, latency_ns,
   1391 			    &g4x_cursor_wm_info, latency_ns,
   1392 			    &planea_wm, &cursora_wm))
   1393 		enabled |= 1 << PIPE_A;
   1394 
   1395 	if (g4x_compute_wm0(dev, PIPE_B,
   1396 			    &g4x_wm_info, latency_ns,
   1397 			    &g4x_cursor_wm_info, latency_ns,
   1398 			    &planeb_wm, &cursorb_wm))
   1399 		enabled |= 1 << PIPE_B;
   1400 
   1401 	if (single_plane_enabled(enabled) &&
   1402 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
   1403 			     sr_latency_ns,
   1404 			     &g4x_wm_info,
   1405 			     &g4x_cursor_wm_info,
   1406 			     &plane_sr, &cursor_sr)) {
   1407 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1408 	} else {
   1409 		I915_WRITE(FW_BLC_SELF,
   1410 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
   1411 		plane_sr = cursor_sr = 0;
   1412 	}
   1413 
   1414 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
   1415 		      planea_wm, cursora_wm,
   1416 		      planeb_wm, cursorb_wm,
   1417 		      plane_sr, cursor_sr);
   1418 
   1419 	I915_WRITE(DSPFW1,
   1420 		   (plane_sr << DSPFW_SR_SHIFT) |
   1421 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
   1422 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
   1423 		   planea_wm);
   1424 	I915_WRITE(DSPFW2,
   1425 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
   1426 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
   1427 	/* HPLL off in SR has some issues on G4x... disable it */
   1428 	I915_WRITE(DSPFW3,
   1429 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
   1430 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1431 }
   1432 
   1433 static void i965_update_wm(struct drm_crtc *unused_crtc)
   1434 {
   1435 	struct drm_device *dev = unused_crtc->dev;
   1436 	struct drm_i915_private *dev_priv = dev->dev_private;
   1437 	struct drm_crtc *crtc;
   1438 	int srwm = 1;
   1439 	int cursor_sr = 16;
   1440 
   1441 	/* Calc sr entries for one plane configs */
   1442 	crtc = single_enabled_crtc(dev);
   1443 	if (crtc) {
   1444 		/* self-refresh has much higher latency */
   1445 		static const int sr_latency_ns = 12000;
   1446 		const struct drm_display_mode *adjusted_mode =
   1447 			&to_intel_crtc(crtc)->config.adjusted_mode;
   1448 		int clock = adjusted_mode->crtc_clock;
   1449 		int htotal = adjusted_mode->crtc_htotal;
   1450 		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
   1451 		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
   1452 		unsigned long line_time_us;
   1453 		int entries;
   1454 
   1455 		line_time_us = max(htotal * 1000 / clock, 1);
   1456 
   1457 		/* Use ns/us then divide to preserve precision */
   1458 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1459 			pixel_size * hdisplay;
   1460 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   1461 		srwm = I965_FIFO_SIZE - entries;
   1462 		if (srwm < 0)
   1463 			srwm = 1;
   1464 		srwm &= 0x1ff;
   1465 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
   1466 			      entries, srwm);
   1467 
   1468 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1469 			pixel_size * to_intel_crtc(crtc)->cursor_width;
   1470 		entries = DIV_ROUND_UP(entries,
   1471 					  i965_cursor_wm_info.cacheline_size);
   1472 		cursor_sr = i965_cursor_wm_info.fifo_size -
   1473 			(entries + i965_cursor_wm_info.guard_size);
   1474 
   1475 		if (cursor_sr > i965_cursor_wm_info.max_wm)
   1476 			cursor_sr = i965_cursor_wm_info.max_wm;
   1477 
   1478 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
   1479 			      "cursor %d\n", srwm, cursor_sr);
   1480 
   1481 		if (IS_CRESTLINE(dev))
   1482 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
   1483 	} else {
   1484 		/* Turn off self refresh if both pipes are enabled */
   1485 		if (IS_CRESTLINE(dev))
   1486 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
   1487 				   & ~FW_BLC_SELF_EN);
   1488 	}
   1489 
   1490 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   1491 		      srwm);
   1492 
   1493 	/* 965 has limitations... */
   1494 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
   1495 		   (8 << 16) | (8 << 8) | (8 << 0));
   1496 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
   1497 	/* update cursor SR watermark */
   1498 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
   1499 }
   1500 
   1501 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
   1502 {
   1503 	struct drm_device *dev = unused_crtc->dev;
   1504 	struct drm_i915_private *dev_priv = dev->dev_private;
   1505 	const struct intel_watermark_params *wm_info;
   1506 	uint32_t fwater_lo;
   1507 	uint32_t fwater_hi;
   1508 	int cwm, srwm = 1;
   1509 	int fifo_size;
   1510 	int planea_wm, planeb_wm;
   1511 	struct drm_crtc *crtc, *enabled = NULL;
   1512 
   1513 	if (IS_I945GM(dev))
   1514 		wm_info = &i945_wm_info;
   1515 	else if (!IS_GEN2(dev))
   1516 		wm_info = &i915_wm_info;
   1517 	else
   1518 		wm_info = &i830_wm_info;
   1519 
   1520 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
   1521 	crtc = intel_get_crtc_for_plane(dev, 0);
   1522 	if (intel_crtc_active(crtc)) {
   1523 		const struct drm_display_mode *adjusted_mode;
   1524 		int cpp = crtc->primary->fb->bits_per_pixel / 8;
   1525 		if (IS_GEN2(dev))
   1526 			cpp = 4;
   1527 
   1528 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1529 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1530 					       wm_info, fifo_size, cpp,
   1531 					       latency_ns);
   1532 		enabled = crtc;
   1533 	} else
   1534 		planea_wm = fifo_size - wm_info->guard_size;
   1535 
   1536 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
   1537 	crtc = intel_get_crtc_for_plane(dev, 1);
   1538 	if (intel_crtc_active(crtc)) {
   1539 		const struct drm_display_mode *adjusted_mode;
   1540 		int cpp = crtc->primary->fb->bits_per_pixel / 8;
   1541 		if (IS_GEN2(dev))
   1542 			cpp = 4;
   1543 
   1544 		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1545 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1546 					       wm_info, fifo_size, cpp,
   1547 					       latency_ns);
   1548 		if (enabled == NULL)
   1549 			enabled = crtc;
   1550 		else
   1551 			enabled = NULL;
   1552 	} else
   1553 		planeb_wm = fifo_size - wm_info->guard_size;
   1554 
   1555 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   1556 
   1557 	if (IS_I915GM(dev) && enabled) {
   1558 		struct intel_framebuffer *fb;
   1559 
   1560 		fb = to_intel_framebuffer(enabled->primary->fb);
   1561 
   1562 		/* self-refresh seems busted with untiled */
   1563 		if (fb->obj->tiling_mode == I915_TILING_NONE)
   1564 			enabled = NULL;
   1565 	}
   1566 
   1567 	/*
   1568 	 * Overlay gets an aggressive default since video jitter is bad.
   1569 	 */
   1570 	cwm = 2;
   1571 
   1572 	/* Play safe and disable self-refresh before adjusting watermarks. */
   1573 	if (IS_I945G(dev) || IS_I945GM(dev))
   1574 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
   1575 	else if (IS_I915GM(dev))
   1576 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
   1577 
   1578 	/* Calc sr entries for one plane configs */
   1579 	if (HAS_FW_BLC(dev) && enabled) {
   1580 		/* self-refresh has much higher latency */
   1581 		static const int sr_latency_ns = 6000;
   1582 		const struct drm_display_mode *adjusted_mode =
   1583 			&to_intel_crtc(enabled)->config.adjusted_mode;
   1584 		int clock = adjusted_mode->crtc_clock;
   1585 		int htotal = adjusted_mode->crtc_htotal;
   1586 		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
   1587 		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
   1588 		unsigned long line_time_us;
   1589 		int entries;
   1590 
   1591 		line_time_us = max(htotal * 1000 / clock, 1);
   1592 
   1593 		/* Use ns/us then divide to preserve precision */
   1594 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
   1595 			pixel_size * hdisplay;
   1596 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   1597 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
   1598 		srwm = wm_info->fifo_size - entries;
   1599 		if (srwm < 0)
   1600 			srwm = 1;
   1601 
   1602 		if (IS_I945G(dev) || IS_I945GM(dev))
   1603 			I915_WRITE(FW_BLC_SELF,
   1604 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   1605 		else if (IS_I915GM(dev))
   1606 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
   1607 	}
   1608 
   1609 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   1610 		      planea_wm, planeb_wm, cwm, srwm);
   1611 
   1612 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   1613 	fwater_hi = (cwm & 0x1f);
   1614 
   1615 	/* Set request length to 8 cachelines per fetch */
   1616 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   1617 	fwater_hi = fwater_hi | (1 << 8);
   1618 
   1619 	I915_WRITE(FW_BLC, fwater_lo);
   1620 	I915_WRITE(FW_BLC2, fwater_hi);
   1621 
   1622 	if (HAS_FW_BLC(dev)) {
   1623 		if (enabled) {
   1624 			if (IS_I945G(dev) || IS_I945GM(dev))
   1625 				I915_WRITE(FW_BLC_SELF,
   1626 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
   1627 			else if (IS_I915GM(dev))
   1628 				I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
   1629 			DRM_DEBUG_KMS("memory self refresh enabled\n");
   1630 		} else
   1631 			DRM_DEBUG_KMS("memory self refresh disabled\n");
   1632 	}
   1633 }
   1634 
   1635 static void i845_update_wm(struct drm_crtc *unused_crtc)
   1636 {
   1637 	struct drm_device *dev = unused_crtc->dev;
   1638 	struct drm_i915_private *dev_priv = dev->dev_private;
   1639 	struct drm_crtc *crtc;
   1640 	const struct drm_display_mode *adjusted_mode;
   1641 	uint32_t fwater_lo;
   1642 	int planea_wm;
   1643 
   1644 	crtc = single_enabled_crtc(dev);
   1645 	if (crtc == NULL)
   1646 		return;
   1647 
   1648 	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
   1649 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
   1650 				       &i845_wm_info,
   1651 				       dev_priv->display.get_fifo_size(dev, 0),
   1652 				       4, latency_ns);
   1653 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
   1654 	fwater_lo |= (3<<8) | planea_wm;
   1655 
   1656 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
   1657 
   1658 	I915_WRITE(FW_BLC, fwater_lo);
   1659 }
   1660 
   1661 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
   1662 				    struct drm_crtc *crtc)
   1663 {
   1664 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   1665 	uint32_t pixel_rate;
   1666 
   1667 	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
   1668 
   1669 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
   1670 	 * adjust the pixel_rate here. */
   1671 
   1672 	if (intel_crtc->config.pch_pfit.enabled) {
   1673 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
   1674 		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
   1675 
   1676 		pipe_w = intel_crtc->config.pipe_src_w;
   1677 		pipe_h = intel_crtc->config.pipe_src_h;
   1678 		pfit_w = (pfit_size >> 16) & 0xFFFF;
   1679 		pfit_h = pfit_size & 0xFFFF;
   1680 		if (pipe_w < pfit_w)
   1681 			pipe_w = pfit_w;
   1682 		if (pipe_h < pfit_h)
   1683 			pipe_h = pfit_h;
   1684 
   1685 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
   1686 				     pfit_w * pfit_h);
   1687 	}
   1688 
   1689 	return pixel_rate;
   1690 }
   1691 
   1692 /* latency must be in 0.1us units. */
   1693 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
   1694 			       uint32_t latency)
   1695 {
   1696 	uint64_t ret;
   1697 
   1698 	if (WARN(latency == 0, "Latency value missing\n"))
   1699 		return UINT_MAX;
   1700 
   1701 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
   1702 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
   1703 
   1704 	return ret;
   1705 }
   1706 
   1707 /* latency must be in 0.1us units. */
   1708 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
   1709 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
   1710 			       uint32_t latency)
   1711 {
   1712 	uint32_t ret;
   1713 
   1714 	if (WARN(latency == 0, "Latency value missing\n"))
   1715 		return UINT_MAX;
   1716 
   1717 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
   1718 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
   1719 	ret = DIV_ROUND_UP(ret, 64) + 2;
   1720 	return ret;
   1721 }
   1722 
   1723 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
   1724 			   uint8_t bytes_per_pixel)
   1725 {
   1726 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
   1727 }
   1728 
   1729 struct ilk_pipe_wm_parameters {
   1730 	bool active;
   1731 	uint32_t pipe_htotal;
   1732 	uint32_t pixel_rate;
   1733 	struct intel_plane_wm_parameters pri;
   1734 	struct intel_plane_wm_parameters spr;
   1735 	struct intel_plane_wm_parameters cur;
   1736 };
   1737 
   1738 struct ilk_wm_maximums {
   1739 	uint16_t pri;
   1740 	uint16_t spr;
   1741 	uint16_t cur;
   1742 	uint16_t fbc;
   1743 };
   1744 
   1745 /* used in computing the new watermarks state */
   1746 struct intel_wm_config {
   1747 	unsigned int num_pipes_active;
   1748 	bool sprites_enabled;
   1749 	bool sprites_scaled;
   1750 };
   1751 
   1752 /*
   1753  * For both WM_PIPE and WM_LP.
   1754  * mem_value must be in 0.1us units.
   1755  */
   1756 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
   1757 				   uint32_t mem_value,
   1758 				   bool is_lp)
   1759 {
   1760 	uint32_t method1, method2;
   1761 
   1762 	if (!params->active || !params->pri.enabled)
   1763 		return 0;
   1764 
   1765 	method1 = ilk_wm_method1(params->pixel_rate,
   1766 				 params->pri.bytes_per_pixel,
   1767 				 mem_value);
   1768 
   1769 	if (!is_lp)
   1770 		return method1;
   1771 
   1772 	method2 = ilk_wm_method2(params->pixel_rate,
   1773 				 params->pipe_htotal,
   1774 				 params->pri.horiz_pixels,
   1775 				 params->pri.bytes_per_pixel,
   1776 				 mem_value);
   1777 
   1778 	return min(method1, method2);
   1779 }
   1780 
   1781 /*
   1782  * For both WM_PIPE and WM_LP.
   1783  * mem_value must be in 0.1us units.
   1784  */
   1785 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
   1786 				   uint32_t mem_value)
   1787 {
   1788 	uint32_t method1, method2;
   1789 
   1790 	if (!params->active || !params->spr.enabled)
   1791 		return 0;
   1792 
   1793 	method1 = ilk_wm_method1(params->pixel_rate,
   1794 				 params->spr.bytes_per_pixel,
   1795 				 mem_value);
   1796 	method2 = ilk_wm_method2(params->pixel_rate,
   1797 				 params->pipe_htotal,
   1798 				 params->spr.horiz_pixels,
   1799 				 params->spr.bytes_per_pixel,
   1800 				 mem_value);
   1801 	return min(method1, method2);
   1802 }
   1803 
   1804 /*
   1805  * For both WM_PIPE and WM_LP.
   1806  * mem_value must be in 0.1us units.
   1807  */
   1808 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
   1809 				   uint32_t mem_value)
   1810 {
   1811 	if (!params->active || !params->cur.enabled)
   1812 		return 0;
   1813 
   1814 	return ilk_wm_method2(params->pixel_rate,
   1815 			      params->pipe_htotal,
   1816 			      params->cur.horiz_pixels,
   1817 			      params->cur.bytes_per_pixel,
   1818 			      mem_value);
   1819 }
   1820 
   1821 /* Only for WM_LP. */
   1822 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
   1823 				   uint32_t pri_val)
   1824 {
   1825 	if (!params->active || !params->pri.enabled)
   1826 		return 0;
   1827 
   1828 	return ilk_wm_fbc(pri_val,
   1829 			  params->pri.horiz_pixels,
   1830 			  params->pri.bytes_per_pixel);
   1831 }
   1832 
   1833 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
   1834 {
   1835 	if (INTEL_INFO(dev)->gen >= 8)
   1836 		return 3072;
   1837 	else if (INTEL_INFO(dev)->gen >= 7)
   1838 		return 768;
   1839 	else
   1840 		return 512;
   1841 }
   1842 
   1843 /* Calculate the maximum primary/sprite plane watermark */
   1844 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
   1845 				     int level,
   1846 				     const struct intel_wm_config *config,
   1847 				     enum intel_ddb_partitioning ddb_partitioning,
   1848 				     bool is_sprite)
   1849 {
   1850 	unsigned int fifo_size = ilk_display_fifo_size(dev);
   1851 	unsigned int max;
   1852 
   1853 	/* if sprites aren't enabled, sprites get nothing */
   1854 	if (is_sprite && !config->sprites_enabled)
   1855 		return 0;
   1856 
   1857 	/* HSW allows LP1+ watermarks even with multiple pipes */
   1858 	if (level == 0 || config->num_pipes_active > 1) {
   1859 		fifo_size /= INTEL_INFO(dev)->num_pipes;
   1860 
   1861 		/*
   1862 		 * For some reason the non self refresh
   1863 		 * FIFO size is only half of the self
   1864 		 * refresh FIFO size on ILK/SNB.
   1865 		 */
   1866 		if (INTEL_INFO(dev)->gen <= 6)
   1867 			fifo_size /= 2;
   1868 	}
   1869 
   1870 	if (config->sprites_enabled) {
   1871 		/* level 0 is always calculated with 1:1 split */
   1872 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
   1873 			if (is_sprite)
   1874 				fifo_size *= 5;
   1875 			fifo_size /= 6;
   1876 		} else {
   1877 			fifo_size /= 2;
   1878 		}
   1879 	}
   1880 
   1881 	/* clamp to max that the registers can hold */
   1882 	if (INTEL_INFO(dev)->gen >= 8)
   1883 		max = level == 0 ? 255 : 2047;
   1884 	else if (INTEL_INFO(dev)->gen >= 7)
   1885 		/* IVB/HSW primary/sprite plane watermarks */
   1886 		max = level == 0 ? 127 : 1023;
   1887 	else if (!is_sprite)
   1888 		/* ILK/SNB primary plane watermarks */
   1889 		max = level == 0 ? 127 : 511;
   1890 	else
   1891 		/* ILK/SNB sprite plane watermarks */
   1892 		max = level == 0 ? 63 : 255;
   1893 
   1894 	return min(fifo_size, max);
   1895 }
   1896 
   1897 /* Calculate the maximum cursor plane watermark */
   1898 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
   1899 				      int level,
   1900 				      const struct intel_wm_config *config)
   1901 {
   1902 	/* HSW LP1+ watermarks w/ multiple pipes */
   1903 	if (level > 0 && config->num_pipes_active > 1)
   1904 		return 64;
   1905 
   1906 	/* otherwise just report max that registers can hold */
   1907 	if (INTEL_INFO(dev)->gen >= 7)
   1908 		return level == 0 ? 63 : 255;
   1909 	else
   1910 		return level == 0 ? 31 : 63;
   1911 }
   1912 
   1913 /* Calculate the maximum FBC watermark */
   1914 static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
   1915 {
   1916 	/* max that registers can hold */
   1917 	if (INTEL_INFO(dev)->gen >= 8)
   1918 		return 31;
   1919 	else
   1920 		return 15;
   1921 }
   1922 
   1923 static void ilk_compute_wm_maximums(const struct drm_device *dev,
   1924 				    int level,
   1925 				    const struct intel_wm_config *config,
   1926 				    enum intel_ddb_partitioning ddb_partitioning,
   1927 				    struct ilk_wm_maximums *max)
   1928 {
   1929 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
   1930 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
   1931 	max->cur = ilk_cursor_wm_max(dev, level, config);
   1932 	max->fbc = ilk_fbc_wm_max(dev);
   1933 }
   1934 
   1935 static bool ilk_validate_wm_level(int level,
   1936 				  const struct ilk_wm_maximums *max,
   1937 				  struct intel_wm_level *result)
   1938 {
   1939 	bool ret;
   1940 
   1941 	/* already determined to be invalid? */
   1942 	if (!result->enable)
   1943 		return false;
   1944 
   1945 	result->enable = result->pri_val <= max->pri &&
   1946 			 result->spr_val <= max->spr &&
   1947 			 result->cur_val <= max->cur;
   1948 
   1949 	ret = result->enable;
   1950 
   1951 	/*
   1952 	 * HACK until we can pre-compute everything,
   1953 	 * and thus fail gracefully if LP0 watermarks
   1954 	 * are exceeded...
   1955 	 */
   1956 	if (level == 0 && !result->enable) {
   1957 		if (result->pri_val > max->pri)
   1958 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
   1959 				      level, result->pri_val, max->pri);
   1960 		if (result->spr_val > max->spr)
   1961 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
   1962 				      level, result->spr_val, max->spr);
   1963 		if (result->cur_val > max->cur)
   1964 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
   1965 				      level, result->cur_val, max->cur);
   1966 
   1967 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
   1968 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
   1969 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
   1970 		result->enable = true;
   1971 	}
   1972 
   1973 	return ret;
   1974 }
   1975 
   1976 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
   1977 				 int level,
   1978 				 const struct ilk_pipe_wm_parameters *p,
   1979 				 struct intel_wm_level *result)
   1980 {
   1981 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
   1982 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
   1983 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
   1984 
   1985 	/* WM1+ latency values stored in 0.5us units */
   1986 	if (level > 0) {
   1987 		pri_latency *= 5;
   1988 		spr_latency *= 5;
   1989 		cur_latency *= 5;
   1990 	}
   1991 
   1992 	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
   1993 	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
   1994 	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
   1995 	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
   1996 	result->enable = true;
   1997 }
   1998 
   1999 static uint32_t
   2000 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
   2001 {
   2002 	struct drm_i915_private *dev_priv = dev->dev_private;
   2003 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2004 	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
   2005 	u32 linetime, ips_linetime;
   2006 
   2007 	if (!intel_crtc_active(crtc))
   2008 		return 0;
   2009 
   2010 	/* The WM are computed with base on how long it takes to fill a single
   2011 	 * row at the given clock rate, multiplied by 8.
   2012 	 * */
   2013 	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
   2014 				     mode->crtc_clock);
   2015 	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
   2016 					 intel_ddi_get_cdclk_freq(dev_priv));
   2017 
   2018 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
   2019 	       PIPE_WM_LINETIME_TIME(linetime);
   2020 }
   2021 
   2022 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2023 {
   2024 	struct drm_i915_private *dev_priv = dev->dev_private;
   2025 
   2026 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2027 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
   2028 
   2029 		wm[0] = (sskpd >> 56) & 0xFF;
   2030 		if (wm[0] == 0)
   2031 			wm[0] = sskpd & 0xF;
   2032 		wm[1] = (sskpd >> 4) & 0xFF;
   2033 		wm[2] = (sskpd >> 12) & 0xFF;
   2034 		wm[3] = (sskpd >> 20) & 0x1FF;
   2035 		wm[4] = (sskpd >> 32) & 0x1FF;
   2036 	} else if (INTEL_INFO(dev)->gen >= 6) {
   2037 		uint32_t sskpd = I915_READ(MCH_SSKPD);
   2038 
   2039 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
   2040 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
   2041 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
   2042 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
   2043 	} else if (INTEL_INFO(dev)->gen >= 5) {
   2044 		uint32_t mltr = I915_READ(MLTR_ILK);
   2045 
   2046 		/* ILK primary LP0 latency is 700 ns */
   2047 		wm[0] = 7;
   2048 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
   2049 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
   2050 	}
   2051 }
   2052 
   2053 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2054 {
   2055 	/* ILK sprite LP0 latency is 1300 ns */
   2056 	if (INTEL_INFO(dev)->gen == 5)
   2057 		wm[0] = 13;
   2058 }
   2059 
   2060 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
   2061 {
   2062 	/* ILK cursor LP0 latency is 1300 ns */
   2063 	if (INTEL_INFO(dev)->gen == 5)
   2064 		wm[0] = 13;
   2065 
   2066 	/* WaDoubleCursorLP3Latency:ivb */
   2067 	if (IS_IVYBRIDGE(dev))
   2068 		wm[3] *= 2;
   2069 }
   2070 
   2071 static int ilk_wm_max_level(const struct drm_device *dev)
   2072 {
   2073 	/* how many WM levels are we expecting */
   2074 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2075 		return 4;
   2076 	else if (INTEL_INFO(dev)->gen >= 6)
   2077 		return 3;
   2078 	else
   2079 		return 2;
   2080 }
   2081 
   2082 static void intel_print_wm_latency(struct drm_device *dev,
   2083 				   const char *name,
   2084 				   const uint16_t wm[5])
   2085 {
   2086 	int level, max_level = ilk_wm_max_level(dev);
   2087 
   2088 	for (level = 0; level <= max_level; level++) {
   2089 		unsigned int latency = wm[level];
   2090 
   2091 		if (latency == 0) {
   2092 			DRM_ERROR("%s WM%d latency not provided\n",
   2093 				  name, level);
   2094 			continue;
   2095 		}
   2096 
   2097 		/* WM1+ latency values in 0.5us units */
   2098 		if (level > 0)
   2099 			latency *= 5;
   2100 
   2101 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
   2102 			      name, level, wm[level],
   2103 			      latency / 10, latency % 10);
   2104 	}
   2105 }
   2106 
   2107 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
   2108 				    uint16_t wm[5], uint16_t min)
   2109 {
   2110 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
   2111 
   2112 	if (wm[0] >= min)
   2113 		return false;
   2114 
   2115 	wm[0] = max(wm[0], min);
   2116 	for (level = 1; level <= max_level; level++)
   2117 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
   2118 
   2119 	return true;
   2120 }
   2121 
   2122 static void snb_wm_latency_quirk(struct drm_device *dev)
   2123 {
   2124 	struct drm_i915_private *dev_priv = dev->dev_private;
   2125 	bool changed;
   2126 
   2127 	/*
   2128 	 * The BIOS provided WM memory latency values are often
   2129 	 * inadequate for high resolution displays. Adjust them.
   2130 	 */
   2131 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
   2132 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
   2133 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
   2134 
   2135 	if (!changed)
   2136 		return;
   2137 
   2138 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
   2139 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2140 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2141 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2142 }
   2143 
   2144 static void ilk_setup_wm_latency(struct drm_device *dev)
   2145 {
   2146 	struct drm_i915_private *dev_priv = dev->dev_private;
   2147 
   2148 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
   2149 
   2150 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
   2151 	       sizeof(dev_priv->wm.pri_latency));
   2152 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
   2153 	       sizeof(dev_priv->wm.pri_latency));
   2154 
   2155 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
   2156 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
   2157 
   2158 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
   2159 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
   2160 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
   2161 
   2162 	if (IS_GEN6(dev))
   2163 		snb_wm_latency_quirk(dev);
   2164 }
   2165 
   2166 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
   2167 				      struct ilk_pipe_wm_parameters *p,
   2168 				      struct intel_wm_config *config)
   2169 {
   2170 	struct drm_device *dev = crtc->dev;
   2171 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2172 	enum i915_pipe pipe = intel_crtc->pipe;
   2173 	struct drm_plane *plane;
   2174 
   2175 	p->active = intel_crtc_active(crtc);
   2176 	if (p->active) {
   2177 		p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
   2178 		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
   2179 		p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
   2180 		p->cur.bytes_per_pixel = 4;
   2181 		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
   2182 		p->cur.horiz_pixels = intel_crtc->cursor_width;
   2183 		/* TODO: for now, assume primary and cursor planes are always enabled. */
   2184 		p->pri.enabled = true;
   2185 		p->cur.enabled = true;
   2186 	}
   2187 
   2188 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   2189 		config->num_pipes_active += intel_crtc_active(crtc);
   2190 
   2191 	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
   2192 		struct intel_plane *intel_plane = to_intel_plane(plane);
   2193 
   2194 		if (intel_plane->pipe == pipe)
   2195 			p->spr = intel_plane->wm;
   2196 
   2197 		config->sprites_enabled |= intel_plane->wm.enabled;
   2198 		config->sprites_scaled |= intel_plane->wm.scaled;
   2199 	}
   2200 }
   2201 
   2202 /* Compute new watermarks for the pipe */
   2203 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
   2204 				  const struct ilk_pipe_wm_parameters *params,
   2205 				  struct intel_pipe_wm *pipe_wm)
   2206 {
   2207 	struct drm_device *dev = crtc->dev;
   2208 	const struct drm_i915_private *dev_priv = dev->dev_private;
   2209 	int level, max_level = ilk_wm_max_level(dev);
   2210 	/* LP0 watermark maximums depend on this pipe alone */
   2211 	struct intel_wm_config config = {
   2212 		.num_pipes_active = 1,
   2213 		.sprites_enabled = params->spr.enabled,
   2214 		.sprites_scaled = params->spr.scaled,
   2215 	};
   2216 	struct ilk_wm_maximums max;
   2217 
   2218 	/* LP0 watermarks always use 1/2 DDB partitioning */
   2219 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
   2220 
   2221 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
   2222 	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
   2223 		max_level = 1;
   2224 
   2225 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
   2226 	if (params->spr.scaled)
   2227 		max_level = 0;
   2228 
   2229 	for (level = 0; level <= max_level; level++)
   2230 		ilk_compute_wm_level(dev_priv, level, params,
   2231 				     &pipe_wm->wm[level]);
   2232 
   2233 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2234 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
   2235 
   2236 	/* At least LP0 must be valid */
   2237 	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
   2238 }
   2239 
   2240 /*
   2241  * Merge the watermarks from all active pipes for a specific level.
   2242  */
   2243 static void ilk_merge_wm_level(struct drm_device *dev,
   2244 			       int level,
   2245 			       struct intel_wm_level *ret_wm)
   2246 {
   2247 	const struct intel_crtc *intel_crtc;
   2248 
   2249 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
   2250 		const struct intel_wm_level *wm =
   2251 			&intel_crtc->wm.active.wm[level];
   2252 
   2253 		if (!wm->enable)
   2254 			return;
   2255 
   2256 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
   2257 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
   2258 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
   2259 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
   2260 	}
   2261 
   2262 	ret_wm->enable = true;
   2263 }
   2264 
   2265 /*
   2266  * Merge all low power watermarks for all active pipes.
   2267  */
   2268 static void ilk_wm_merge(struct drm_device *dev,
   2269 			 const struct intel_wm_config *config,
   2270 			 const struct ilk_wm_maximums *max,
   2271 			 struct intel_pipe_wm *merged)
   2272 {
   2273 	int level, max_level = ilk_wm_max_level(dev);
   2274 
   2275 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
   2276 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
   2277 	    config->num_pipes_active > 1)
   2278 		return;
   2279 
   2280 	/* ILK: FBC WM must be disabled always */
   2281 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
   2282 
   2283 	/* merge each WM1+ level */
   2284 	for (level = 1; level <= max_level; level++) {
   2285 		struct intel_wm_level *wm = &merged->wm[level];
   2286 
   2287 		ilk_merge_wm_level(dev, level, wm);
   2288 
   2289 		if (!ilk_validate_wm_level(level, max, wm))
   2290 			break;
   2291 
   2292 		/*
   2293 		 * The spec says it is preferred to disable
   2294 		 * FBC WMs instead of disabling a WM level.
   2295 		 */
   2296 		if (wm->fbc_val > max->fbc) {
   2297 			merged->fbc_wm_enabled = false;
   2298 			wm->fbc_val = 0;
   2299 		}
   2300 	}
   2301 
   2302 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
   2303 	/*
   2304 	 * FIXME this is racy. FBC might get enabled later.
   2305 	 * What we should check here is whether FBC can be
   2306 	 * enabled sometime later.
   2307 	 */
   2308 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
   2309 		for (level = 2; level <= max_level; level++) {
   2310 			struct intel_wm_level *wm = &merged->wm[level];
   2311 
   2312 			wm->enable = false;
   2313 		}
   2314 	}
   2315 }
   2316 
   2317 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
   2318 {
   2319 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
   2320 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
   2321 }
   2322 
   2323 /* The value we need to program into the WM_LPx latency field */
   2324 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
   2325 {
   2326 	struct drm_i915_private *dev_priv = dev->dev_private;
   2327 
   2328 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2329 		return 2 * level;
   2330 	else
   2331 		return dev_priv->wm.pri_latency[level];
   2332 }
   2333 
   2334 static void ilk_compute_wm_results(struct drm_device *dev,
   2335 				   const struct intel_pipe_wm *merged,
   2336 				   enum intel_ddb_partitioning partitioning,
   2337 				   struct ilk_wm_values *results)
   2338 {
   2339 	struct intel_crtc *intel_crtc;
   2340 	int level, wm_lp;
   2341 
   2342 	results->enable_fbc_wm = merged->fbc_wm_enabled;
   2343 	results->partitioning = partitioning;
   2344 
   2345 	/* LP1+ register values */
   2346 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2347 		const struct intel_wm_level *r;
   2348 
   2349 		level = ilk_wm_lp_to_level(wm_lp, merged);
   2350 
   2351 		r = &merged->wm[level];
   2352 		if (!r->enable)
   2353 			break;
   2354 
   2355 		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
   2356 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
   2357 			(r->pri_val << WM1_LP_SR_SHIFT) |
   2358 			r->cur_val;
   2359 
   2360 		if (INTEL_INFO(dev)->gen >= 8)
   2361 			results->wm_lp[wm_lp - 1] |=
   2362 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
   2363 		else
   2364 			results->wm_lp[wm_lp - 1] |=
   2365 				r->fbc_val << WM1_LP_FBC_SHIFT;
   2366 
   2367 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
   2368 			WARN_ON(wm_lp != 1);
   2369 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
   2370 		} else
   2371 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
   2372 	}
   2373 
   2374 	/* LP0 register values */
   2375 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
   2376 		enum i915_pipe pipe = intel_crtc->pipe;
   2377 		const struct intel_wm_level *r =
   2378 			&intel_crtc->wm.active.wm[0];
   2379 
   2380 		if (WARN_ON(!r->enable))
   2381 			continue;
   2382 
   2383 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
   2384 
   2385 		results->wm_pipe[pipe] =
   2386 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
   2387 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
   2388 			r->cur_val;
   2389 	}
   2390 }
   2391 
   2392 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
   2393  * case both are at the same level. Prefer r1 in case they're the same. */
   2394 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
   2395 						  struct intel_pipe_wm *r1,
   2396 						  struct intel_pipe_wm *r2)
   2397 {
   2398 	int level, max_level = ilk_wm_max_level(dev);
   2399 	int level1 = 0, level2 = 0;
   2400 
   2401 	for (level = 1; level <= max_level; level++) {
   2402 		if (r1->wm[level].enable)
   2403 			level1 = level;
   2404 		if (r2->wm[level].enable)
   2405 			level2 = level;
   2406 	}
   2407 
   2408 	if (level1 == level2) {
   2409 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
   2410 			return r2;
   2411 		else
   2412 			return r1;
   2413 	} else if (level1 > level2) {
   2414 		return r1;
   2415 	} else {
   2416 		return r2;
   2417 	}
   2418 }
   2419 
   2420 /* dirty bits used to track which watermarks need changes */
   2421 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
   2422 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
   2423 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
   2424 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
   2425 #define WM_DIRTY_FBC (1 << 24)
   2426 #define WM_DIRTY_DDB (1 << 25)
   2427 
   2428 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
   2429 					 const struct ilk_wm_values *old,
   2430 					 const struct ilk_wm_values *new)
   2431 {
   2432 	unsigned int dirty = 0;
   2433 	enum i915_pipe pipe;
   2434 	int wm_lp;
   2435 
   2436 	for_each_pipe(pipe) {
   2437 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
   2438 			dirty |= WM_DIRTY_LINETIME(pipe);
   2439 			/* Must disable LP1+ watermarks too */
   2440 			dirty |= WM_DIRTY_LP_ALL;
   2441 		}
   2442 
   2443 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
   2444 			dirty |= WM_DIRTY_PIPE(pipe);
   2445 			/* Must disable LP1+ watermarks too */
   2446 			dirty |= WM_DIRTY_LP_ALL;
   2447 		}
   2448 	}
   2449 
   2450 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
   2451 		dirty |= WM_DIRTY_FBC;
   2452 		/* Must disable LP1+ watermarks too */
   2453 		dirty |= WM_DIRTY_LP_ALL;
   2454 	}
   2455 
   2456 	if (old->partitioning != new->partitioning) {
   2457 		dirty |= WM_DIRTY_DDB;
   2458 		/* Must disable LP1+ watermarks too */
   2459 		dirty |= WM_DIRTY_LP_ALL;
   2460 	}
   2461 
   2462 	/* LP1+ watermarks already deemed dirty, no need to continue */
   2463 	if (dirty & WM_DIRTY_LP_ALL)
   2464 		return dirty;
   2465 
   2466 	/* Find the lowest numbered LP1+ watermark in need of an update... */
   2467 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   2468 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
   2469 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
   2470 			break;
   2471 	}
   2472 
   2473 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
   2474 	for (; wm_lp <= 3; wm_lp++)
   2475 		dirty |= WM_DIRTY_LP(wm_lp);
   2476 
   2477 	return dirty;
   2478 }
   2479 
   2480 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
   2481 			       unsigned int dirty)
   2482 {
   2483 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2484 	bool changed = false;
   2485 
   2486 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
   2487 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
   2488 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
   2489 		changed = true;
   2490 	}
   2491 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
   2492 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
   2493 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
   2494 		changed = true;
   2495 	}
   2496 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
   2497 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
   2498 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
   2499 		changed = true;
   2500 	}
   2501 
   2502 	/*
   2503 	 * Don't touch WM1S_LP_EN here.
   2504 	 * Doing so could cause underruns.
   2505 	 */
   2506 
   2507 	return changed;
   2508 }
   2509 
   2510 /*
   2511  * The spec says we shouldn't write when we don't need, because every write
   2512  * causes WMs to be re-evaluated, expending some power.
   2513  */
   2514 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
   2515 				struct ilk_wm_values *results)
   2516 {
   2517 	struct drm_device *dev = dev_priv->dev;
   2518 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   2519 	unsigned int dirty;
   2520 	uint32_t val;
   2521 
   2522 	dirty = ilk_compute_wm_dirty(dev, previous, results);
   2523 	if (!dirty)
   2524 		return;
   2525 
   2526 	_ilk_disable_lp_wm(dev_priv, dirty);
   2527 
   2528 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
   2529 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
   2530 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
   2531 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
   2532 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
   2533 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
   2534 
   2535 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
   2536 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
   2537 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
   2538 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
   2539 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
   2540 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
   2541 
   2542 	if (dirty & WM_DIRTY_DDB) {
   2543 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
   2544 			val = I915_READ(WM_MISC);
   2545 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2546 				val &= ~WM_MISC_DATA_PARTITION_5_6;
   2547 			else
   2548 				val |= WM_MISC_DATA_PARTITION_5_6;
   2549 			I915_WRITE(WM_MISC, val);
   2550 		} else {
   2551 			val = I915_READ(DISP_ARB_CTL2);
   2552 			if (results->partitioning == INTEL_DDB_PART_1_2)
   2553 				val &= ~DISP_DATA_PARTITION_5_6;
   2554 			else
   2555 				val |= DISP_DATA_PARTITION_5_6;
   2556 			I915_WRITE(DISP_ARB_CTL2, val);
   2557 		}
   2558 	}
   2559 
   2560 	if (dirty & WM_DIRTY_FBC) {
   2561 		val = I915_READ(DISP_ARB_CTL);
   2562 		if (results->enable_fbc_wm)
   2563 			val &= ~DISP_FBC_WM_DIS;
   2564 		else
   2565 			val |= DISP_FBC_WM_DIS;
   2566 		I915_WRITE(DISP_ARB_CTL, val);
   2567 	}
   2568 
   2569 	if (dirty & WM_DIRTY_LP(1) &&
   2570 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
   2571 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
   2572 
   2573 	if (INTEL_INFO(dev)->gen >= 7) {
   2574 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
   2575 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
   2576 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
   2577 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
   2578 	}
   2579 
   2580 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
   2581 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
   2582 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
   2583 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
   2584 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
   2585 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
   2586 
   2587 	dev_priv->wm.hw = *results;
   2588 }
   2589 
   2590 static bool ilk_disable_lp_wm(struct drm_device *dev)
   2591 {
   2592 	struct drm_i915_private *dev_priv = dev->dev_private;
   2593 
   2594 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
   2595 }
   2596 
   2597 static void ilk_update_wm(struct drm_crtc *crtc)
   2598 {
   2599 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2600 	struct drm_device *dev = crtc->dev;
   2601 	struct drm_i915_private *dev_priv = dev->dev_private;
   2602 	struct ilk_wm_maximums max;
   2603 	static const struct ilk_pipe_wm_parameters zero_params;
   2604 	struct ilk_pipe_wm_parameters params = zero_params;
   2605 	static const struct ilk_wm_values zero_values;
   2606 	struct ilk_wm_values results = zero_values;
   2607 	enum intel_ddb_partitioning partitioning;
   2608 	static const struct intel_pipe_wm zero_wm;
   2609 	struct intel_pipe_wm pipe_wm = zero_wm;
   2610 	struct intel_pipe_wm lp_wm_1_2 = zero_wm, lp_wm_5_6 = zero_wm,
   2611 	    *best_lp_wm;
   2612 	static const struct intel_wm_config zero_config;
   2613 	struct intel_wm_config config = zero_config;
   2614 
   2615 	ilk_compute_wm_parameters(crtc, &params, &config);
   2616 
   2617 	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
   2618 
   2619 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
   2620 		return;
   2621 
   2622 	intel_crtc->wm.active = pipe_wm;
   2623 
   2624 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
   2625 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
   2626 
   2627 	/* 5/6 split only in single pipe config on IVB+ */
   2628 	if (INTEL_INFO(dev)->gen >= 7 &&
   2629 	    config.num_pipes_active == 1 && config.sprites_enabled) {
   2630 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
   2631 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
   2632 
   2633 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
   2634 	} else {
   2635 		best_lp_wm = &lp_wm_1_2;
   2636 	}
   2637 
   2638 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
   2639 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
   2640 
   2641 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
   2642 
   2643 	ilk_write_wm_values(dev_priv, &results);
   2644 }
   2645 
   2646 static void ilk_update_sprite_wm(struct drm_plane *plane,
   2647 				     struct drm_crtc *crtc,
   2648 				     uint32_t sprite_width, int pixel_size,
   2649 				     bool enabled, bool scaled)
   2650 {
   2651 	struct drm_device *dev = plane->dev;
   2652 	struct intel_plane *intel_plane = to_intel_plane(plane);
   2653 
   2654 	intel_plane->wm.enabled = enabled;
   2655 	intel_plane->wm.scaled = scaled;
   2656 	intel_plane->wm.horiz_pixels = sprite_width;
   2657 	intel_plane->wm.bytes_per_pixel = pixel_size;
   2658 
   2659 	/*
   2660 	 * IVB workaround: must disable low power watermarks for at least
   2661 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
   2662 	 * when scaling is disabled.
   2663 	 *
   2664 	 * WaCxSRDisabledForSpriteScaling:ivb
   2665 	 */
   2666 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
   2667 		intel_wait_for_vblank(dev, intel_plane->pipe);
   2668 
   2669 	ilk_update_wm(crtc);
   2670 }
   2671 
   2672 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
   2673 {
   2674 	struct drm_device *dev = crtc->dev;
   2675 	struct drm_i915_private *dev_priv = dev->dev_private;
   2676 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   2677 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
   2678 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
   2679 	enum i915_pipe pipe = intel_crtc->pipe;
   2680 	static const unsigned int wm0_pipe_reg[] = {
   2681 		[PIPE_A] = WM0_PIPEA_ILK,
   2682 		[PIPE_B] = WM0_PIPEB_ILK,
   2683 		[PIPE_C] = WM0_PIPEC_IVB,
   2684 	};
   2685 
   2686 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
   2687 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2688 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
   2689 
   2690 	if (intel_crtc_active(crtc)) {
   2691 		u32 tmp = hw->wm_pipe[pipe];
   2692 
   2693 		/*
   2694 		 * For active pipes LP0 watermark is marked as
   2695 		 * enabled, and LP1+ watermaks as disabled since
   2696 		 * we can't really reverse compute them in case
   2697 		 * multiple pipes are active.
   2698 		 */
   2699 		active->wm[0].enable = true;
   2700 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
   2701 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
   2702 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
   2703 		active->linetime = hw->wm_linetime[pipe];
   2704 	} else {
   2705 		int level, max_level = ilk_wm_max_level(dev);
   2706 
   2707 		/*
   2708 		 * For inactive pipes, all watermark levels
   2709 		 * should be marked as enabled but zeroed,
   2710 		 * which is what we'd compute them to.
   2711 		 */
   2712 		for (level = 0; level <= max_level; level++)
   2713 			active->wm[level].enable = true;
   2714 	}
   2715 }
   2716 
   2717 void ilk_wm_get_hw_state(struct drm_device *dev)
   2718 {
   2719 	struct drm_i915_private *dev_priv = dev->dev_private;
   2720 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   2721 	struct drm_crtc *crtc;
   2722 
   2723 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
   2724 		ilk_pipe_wm_get_hw_state(crtc);
   2725 
   2726 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
   2727 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
   2728 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
   2729 
   2730 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
   2731 	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
   2732 	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
   2733 
   2734 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
   2735 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
   2736 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   2737 	else if (IS_IVYBRIDGE(dev))
   2738 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
   2739 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   2740 
   2741 	hw->enable_fbc_wm =
   2742 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
   2743 }
   2744 
   2745 /**
   2746  * intel_update_watermarks - update FIFO watermark values based on current modes
   2747  *
   2748  * Calculate watermark values for the various WM regs based on current mode
   2749  * and plane configuration.
   2750  *
   2751  * There are several cases to deal with here:
   2752  *   - normal (i.e. non-self-refresh)
   2753  *   - self-refresh (SR) mode
   2754  *   - lines are large relative to FIFO size (buffer can hold up to 2)
   2755  *   - lines are small relative to FIFO size (buffer can hold more than 2
   2756  *     lines), so need to account for TLB latency
   2757  *
   2758  *   The normal calculation is:
   2759  *     watermark = dotclock * bytes per pixel * latency
   2760  *   where latency is platform & configuration dependent (we assume pessimal
   2761  *   values here).
   2762  *
   2763  *   The SR calculation is:
   2764  *     watermark = (trunc(latency/line time)+1) * surface width *
   2765  *       bytes per pixel
   2766  *   where
   2767  *     line time = htotal / dotclock
   2768  *     surface width = hdisplay for normal plane and 64 for cursor
   2769  *   and latency is assumed to be high, as above.
   2770  *
   2771  * The final value programmed to the register should always be rounded up,
   2772  * and include an extra 2 entries to account for clock crossings.
   2773  *
   2774  * We don't use the sprite, so we can ignore that.  And on Crestline we have
   2775  * to set the non-SR watermarks to 8.
   2776  */
   2777 void intel_update_watermarks(struct drm_crtc *crtc)
   2778 {
   2779 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
   2780 
   2781 	if (dev_priv->display.update_wm)
   2782 		dev_priv->display.update_wm(crtc);
   2783 }
   2784 
   2785 void intel_update_sprite_watermarks(struct drm_plane *plane,
   2786 				    struct drm_crtc *crtc,
   2787 				    uint32_t sprite_width, int pixel_size,
   2788 				    bool enabled, bool scaled)
   2789 {
   2790 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
   2791 
   2792 	if (dev_priv->display.update_sprite_wm)
   2793 		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
   2794 						   pixel_size, enabled, scaled);
   2795 }
   2796 
   2797 static struct drm_i915_gem_object *
   2798 intel_alloc_context_page(struct drm_device *dev)
   2799 {
   2800 	struct drm_i915_gem_object *ctx;
   2801 	int ret;
   2802 
   2803 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   2804 
   2805 	ctx = i915_gem_alloc_object(dev, 4096);
   2806 	if (!ctx) {
   2807 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
   2808 		return NULL;
   2809 	}
   2810 
   2811 	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
   2812 	if (ret) {
   2813 		DRM_ERROR("failed to pin power context: %d\n", ret);
   2814 		goto err_unref;
   2815 	}
   2816 
   2817 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
   2818 	if (ret) {
   2819 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
   2820 		goto err_unpin;
   2821 	}
   2822 
   2823 	return ctx;
   2824 
   2825 err_unpin:
   2826 	i915_gem_object_ggtt_unpin(ctx);
   2827 err_unref:
   2828 	drm_gem_object_unreference(&ctx->base);
   2829 	return NULL;
   2830 }
   2831 
   2832 /**
   2833  * Lock protecting IPS related data structures
   2834  */
   2835 #ifdef __NetBSD__
   2836 spinlock_t mchdev_lock;
   2837 #else
   2838 DEFINE_SPINLOCK(mchdev_lock);
   2839 #endif
   2840 
   2841 /* Global for IPS driver to get at the current i915 device. Protected by
   2842  * mchdev_lock. */
   2843 static struct drm_i915_private *i915_mch_dev;
   2844 
   2845 bool ironlake_set_drps(struct drm_device *dev, u8 val)
   2846 {
   2847 	struct drm_i915_private *dev_priv = dev->dev_private;
   2848 	u16 rgvswctl;
   2849 
   2850 	assert_spin_locked(&mchdev_lock);
   2851 
   2852 	rgvswctl = I915_READ16(MEMSWCTL);
   2853 	if (rgvswctl & MEMCTL_CMD_STS) {
   2854 		DRM_DEBUG("gpu busy, RCS change rejected\n");
   2855 		return false; /* still busy with another command */
   2856 	}
   2857 
   2858 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
   2859 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
   2860 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2861 	POSTING_READ16(MEMSWCTL);
   2862 
   2863 	rgvswctl |= MEMCTL_CMD_STS;
   2864 	I915_WRITE16(MEMSWCTL, rgvswctl);
   2865 
   2866 	return true;
   2867 }
   2868 
   2869 static void ironlake_enable_drps(struct drm_device *dev)
   2870 {
   2871 	struct drm_i915_private *dev_priv = dev->dev_private;
   2872 	u32 rgvmodectl = I915_READ(MEMMODECTL);
   2873 	u8 fmax, fmin, fstart, vstart;
   2874 
   2875 	spin_lock_irq(&mchdev_lock);
   2876 
   2877 	/* Enable temp reporting */
   2878 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
   2879 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
   2880 
   2881 	/* 100ms RC evaluation intervals */
   2882 	I915_WRITE(RCUPEI, 100000);
   2883 	I915_WRITE(RCDNEI, 100000);
   2884 
   2885 	/* Set max/min thresholds to 90ms and 80ms respectively */
   2886 	I915_WRITE(RCBMAXAVG, 90000);
   2887 	I915_WRITE(RCBMINAVG, 80000);
   2888 
   2889 	I915_WRITE(MEMIHYST, 1);
   2890 
   2891 	/* Set up min, max, and cur for interrupt handling */
   2892 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
   2893 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
   2894 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
   2895 		MEMMODE_FSTART_SHIFT;
   2896 
   2897 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
   2898 		PXVFREQ_PX_SHIFT;
   2899 
   2900 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
   2901 	dev_priv->ips.fstart = fstart;
   2902 
   2903 	dev_priv->ips.max_delay = fstart;
   2904 	dev_priv->ips.min_delay = fmin;
   2905 	dev_priv->ips.cur_delay = fstart;
   2906 
   2907 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
   2908 			 fmax, fmin, fstart);
   2909 
   2910 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
   2911 
   2912 	/*
   2913 	 * Interrupts will be enabled in ironlake_irq_postinstall
   2914 	 */
   2915 
   2916 	I915_WRITE(VIDSTART, vstart);
   2917 	POSTING_READ(VIDSTART);
   2918 
   2919 	rgvmodectl |= MEMMODE_SWMODE_EN;
   2920 	I915_WRITE(MEMMODECTL, rgvmodectl);
   2921 
   2922 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
   2923 		DRM_ERROR("stuck trying to change perf mode\n");
   2924 	mdelay(1);
   2925 
   2926 	ironlake_set_drps(dev, fstart);
   2927 
   2928 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
   2929 		I915_READ(0x112e0);
   2930 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
   2931 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
   2932 	getrawmonotonic(&dev_priv->ips.last_time2);
   2933 
   2934 	spin_unlock_irq(&mchdev_lock);
   2935 }
   2936 
   2937 static void ironlake_disable_drps(struct drm_device *dev)
   2938 {
   2939 	struct drm_i915_private *dev_priv = dev->dev_private;
   2940 	u16 rgvswctl;
   2941 
   2942 	spin_lock_irq(&mchdev_lock);
   2943 
   2944 	rgvswctl = I915_READ16(MEMSWCTL);
   2945 
   2946 	/* Ack interrupts, disable EFC interrupt */
   2947 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
   2948 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
   2949 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
   2950 	I915_WRITE(DEIIR, DE_PCU_EVENT);
   2951 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
   2952 
   2953 	/* Go back to the starting frequency */
   2954 	ironlake_set_drps(dev, dev_priv->ips.fstart);
   2955 	mdelay(1);
   2956 	rgvswctl |= MEMCTL_CMD_STS;
   2957 	I915_WRITE(MEMSWCTL, rgvswctl);
   2958 	mdelay(1);
   2959 
   2960 	spin_unlock_irq(&mchdev_lock);
   2961 }
   2962 
   2963 /* There's a funny hw issue where the hw returns all 0 when reading from
   2964  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
   2965  * ourselves, instead of doing a rmw cycle (which might result in us clearing
   2966  * all limits and the gpu stuck at whatever frequency it is at atm).
   2967  */
   2968 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
   2969 {
   2970 	u32 limits;
   2971 
   2972 	/* Only set the down limit when we've reached the lowest level to avoid
   2973 	 * getting more interrupts, otherwise leave this clear. This prevents a
   2974 	 * race in the hw when coming out of rc6: There's a tiny window where
   2975 	 * the hw runs at the minimal clock before selecting the desired
   2976 	 * frequency, if the down threshold expires in that window we will not
   2977 	 * receive a down interrupt. */
   2978 	limits = dev_priv->rps.max_freq_softlimit << 24;
   2979 	if (val <= dev_priv->rps.min_freq_softlimit)
   2980 		limits |= dev_priv->rps.min_freq_softlimit << 16;
   2981 
   2982 	return limits;
   2983 }
   2984 
   2985 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
   2986 {
   2987 	int new_power;
   2988 
   2989 	new_power = dev_priv->rps.power;
   2990 	switch (dev_priv->rps.power) {
   2991 	case LOW_POWER:
   2992 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
   2993 			new_power = BETWEEN;
   2994 		break;
   2995 
   2996 	case BETWEEN:
   2997 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
   2998 			new_power = LOW_POWER;
   2999 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
   3000 			new_power = HIGH_POWER;
   3001 		break;
   3002 
   3003 	case HIGH_POWER:
   3004 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
   3005 			new_power = BETWEEN;
   3006 		break;
   3007 	}
   3008 	/* Max/min bins are special */
   3009 	if (val == dev_priv->rps.min_freq_softlimit)
   3010 		new_power = LOW_POWER;
   3011 	if (val == dev_priv->rps.max_freq_softlimit)
   3012 		new_power = HIGH_POWER;
   3013 	if (new_power == dev_priv->rps.power)
   3014 		return;
   3015 
   3016 	/* Note the units here are not exactly 1us, but 1280ns. */
   3017 	switch (new_power) {
   3018 	case LOW_POWER:
   3019 		/* Upclock if more than 95% busy over 16ms */
   3020 		I915_WRITE(GEN6_RP_UP_EI, 12500);
   3021 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
   3022 
   3023 		/* Downclock if less than 85% busy over 32ms */
   3024 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3025 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
   3026 
   3027 		I915_WRITE(GEN6_RP_CONTROL,
   3028 			   GEN6_RP_MEDIA_TURBO |
   3029 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3030 			   GEN6_RP_MEDIA_IS_GFX |
   3031 			   GEN6_RP_ENABLE |
   3032 			   GEN6_RP_UP_BUSY_AVG |
   3033 			   GEN6_RP_DOWN_IDLE_AVG);
   3034 		break;
   3035 
   3036 	case BETWEEN:
   3037 		/* Upclock if more than 90% busy over 13ms */
   3038 		I915_WRITE(GEN6_RP_UP_EI, 10250);
   3039 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
   3040 
   3041 		/* Downclock if less than 75% busy over 32ms */
   3042 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3043 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
   3044 
   3045 		I915_WRITE(GEN6_RP_CONTROL,
   3046 			   GEN6_RP_MEDIA_TURBO |
   3047 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3048 			   GEN6_RP_MEDIA_IS_GFX |
   3049 			   GEN6_RP_ENABLE |
   3050 			   GEN6_RP_UP_BUSY_AVG |
   3051 			   GEN6_RP_DOWN_IDLE_AVG);
   3052 		break;
   3053 
   3054 	case HIGH_POWER:
   3055 		/* Upclock if more than 85% busy over 10ms */
   3056 		I915_WRITE(GEN6_RP_UP_EI, 8000);
   3057 		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
   3058 
   3059 		/* Downclock if less than 60% busy over 32ms */
   3060 		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
   3061 		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
   3062 
   3063 		I915_WRITE(GEN6_RP_CONTROL,
   3064 			   GEN6_RP_MEDIA_TURBO |
   3065 			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3066 			   GEN6_RP_MEDIA_IS_GFX |
   3067 			   GEN6_RP_ENABLE |
   3068 			   GEN6_RP_UP_BUSY_AVG |
   3069 			   GEN6_RP_DOWN_IDLE_AVG);
   3070 		break;
   3071 	}
   3072 
   3073 	dev_priv->rps.power = new_power;
   3074 	dev_priv->rps.last_adj = 0;
   3075 }
   3076 
   3077 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
   3078 {
   3079 	u32 mask = 0;
   3080 
   3081 	if (val > dev_priv->rps.min_freq_softlimit)
   3082 		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
   3083 	if (val < dev_priv->rps.max_freq_softlimit)
   3084 		mask |= GEN6_PM_RP_UP_THRESHOLD;
   3085 
   3086 	/* IVB and SNB hard hangs on looping batchbuffer
   3087 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
   3088 	 */
   3089 	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
   3090 		mask |= GEN6_PM_RP_UP_EI_EXPIRED;
   3091 
   3092 	return ~mask;
   3093 }
   3094 
   3095 /* gen6_set_rps is called to update the frequency request, but should also be
   3096  * called when the range (min_delay and max_delay) is modified so that we can
   3097  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
   3098 void gen6_set_rps(struct drm_device *dev, u8 val)
   3099 {
   3100 	struct drm_i915_private *dev_priv = dev->dev_private;
   3101 
   3102 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3103 	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
   3104 	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
   3105 
   3106 	/* min/max delay may still have been modified so be sure to
   3107 	 * write the limits value.
   3108 	 */
   3109 	if (val != dev_priv->rps.cur_freq) {
   3110 		gen6_set_rps_thresholds(dev_priv, val);
   3111 
   3112 		if (IS_HASWELL(dev))
   3113 			I915_WRITE(GEN6_RPNSWREQ,
   3114 				   HSW_FREQUENCY(val));
   3115 		else
   3116 			I915_WRITE(GEN6_RPNSWREQ,
   3117 				   GEN6_FREQUENCY(val) |
   3118 				   GEN6_OFFSET(0) |
   3119 				   GEN6_AGGRESSIVE_TURBO);
   3120 	}
   3121 
   3122 	/* Make sure we continue to get interrupts
   3123 	 * until we hit the minimum or maximum frequencies.
   3124 	 */
   3125 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
   3126 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   3127 
   3128 	POSTING_READ(GEN6_RPNSWREQ);
   3129 
   3130 	dev_priv->rps.cur_freq = val;
   3131 	trace_intel_gpu_freq_change(val * 50);
   3132 }
   3133 
   3134 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
   3135  *
   3136  * * If Gfx is Idle, then
   3137  * 1. Mask Turbo interrupts
   3138  * 2. Bring up Gfx clock
   3139  * 3. Change the freq to Rpn and wait till P-Unit updates freq
   3140  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
   3141  * 5. Unmask Turbo interrupts
   3142 */
   3143 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
   3144 {
   3145 	/*
   3146 	 * When we are idle.  Drop to min voltage state.
   3147 	 */
   3148 
   3149 	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
   3150 		return;
   3151 
   3152 	/* Mask turbo interrupt so that they will not come in between */
   3153 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
   3154 
   3155 	/* Bring up the Gfx clock */
   3156 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
   3157 		I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
   3158 				VLV_GFX_CLK_FORCE_ON_BIT);
   3159 
   3160 	if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
   3161 		I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
   3162 			DRM_ERROR("GFX_CLK_ON request timed out\n");
   3163 		return;
   3164 	}
   3165 
   3166 	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
   3167 
   3168 	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
   3169 					dev_priv->rps.min_freq_softlimit);
   3170 
   3171 	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
   3172 				& GENFREQSTATUS) == 0, 5))
   3173 		DRM_ERROR("timed out waiting for Punit\n");
   3174 
   3175 	/* Release the Gfx clock */
   3176 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
   3177 		I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
   3178 				~VLV_GFX_CLK_FORCE_ON_BIT);
   3179 
   3180 	I915_WRITE(GEN6_PMINTRMSK,
   3181 		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
   3182 }
   3183 
   3184 void gen6_rps_idle(struct drm_i915_private *dev_priv)
   3185 {
   3186 	struct drm_device *dev = dev_priv->dev;
   3187 
   3188 	mutex_lock(&dev_priv->rps.hw_lock);
   3189 	if (dev_priv->rps.enabled) {
   3190 		if (IS_VALLEYVIEW(dev))
   3191 			vlv_set_rps_idle(dev_priv);
   3192 		else
   3193 			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   3194 		dev_priv->rps.last_adj = 0;
   3195 	}
   3196 	mutex_unlock(&dev_priv->rps.hw_lock);
   3197 }
   3198 
   3199 void gen6_rps_boost(struct drm_i915_private *dev_priv)
   3200 {
   3201 	struct drm_device *dev = dev_priv->dev;
   3202 
   3203 	mutex_lock(&dev_priv->rps.hw_lock);
   3204 	if (dev_priv->rps.enabled) {
   3205 		if (IS_VALLEYVIEW(dev))
   3206 			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
   3207 		else
   3208 			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
   3209 		dev_priv->rps.last_adj = 0;
   3210 	}
   3211 	mutex_unlock(&dev_priv->rps.hw_lock);
   3212 }
   3213 
   3214 void valleyview_set_rps(struct drm_device *dev, u8 val)
   3215 {
   3216 	struct drm_i915_private *dev_priv = dev->dev_private;
   3217 
   3218 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3219 	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
   3220 	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
   3221 
   3222 	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
   3223 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   3224 			 dev_priv->rps.cur_freq,
   3225 			 vlv_gpu_freq(dev_priv, val), val);
   3226 
   3227 	if (val != dev_priv->rps.cur_freq)
   3228 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
   3229 
   3230 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
   3231 
   3232 	dev_priv->rps.cur_freq = val;
   3233 	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
   3234 }
   3235 
   3236 static void gen6_disable_rps_interrupts(struct drm_device *dev)
   3237 {
   3238 	struct drm_i915_private *dev_priv = dev->dev_private;
   3239 
   3240 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
   3241 	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
   3242 				~dev_priv->pm_rps_events);
   3243 	/* Complete PM interrupt masking here doesn't race with the rps work
   3244 	 * item again unmasking PM interrupts because that is using a different
   3245 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
   3246 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
   3247 
   3248 	spin_lock_irq(&dev_priv->irq_lock);
   3249 	dev_priv->rps.pm_iir = 0;
   3250 	spin_unlock_irq(&dev_priv->irq_lock);
   3251 
   3252 	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
   3253 }
   3254 
   3255 static void gen6_disable_rps(struct drm_device *dev)
   3256 {
   3257 	struct drm_i915_private *dev_priv = dev->dev_private;
   3258 
   3259 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3260 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
   3261 
   3262 	gen6_disable_rps_interrupts(dev);
   3263 }
   3264 
   3265 static void valleyview_disable_rps(struct drm_device *dev)
   3266 {
   3267 	struct drm_i915_private *dev_priv = dev->dev_private;
   3268 
   3269 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3270 
   3271 	gen6_disable_rps_interrupts(dev);
   3272 }
   3273 
   3274 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
   3275 {
   3276 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
   3277 		 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
   3278 		 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
   3279 		 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
   3280 }
   3281 
   3282 int intel_enable_rc6(const struct drm_device *dev)
   3283 {
   3284 	/* No RC6 before Ironlake */
   3285 	if (INTEL_INFO(dev)->gen < 5)
   3286 		return 0;
   3287 
   3288 	/* Respect the kernel parameter if it is set */
   3289 	if (i915.enable_rc6 >= 0)
   3290 		return i915.enable_rc6;
   3291 
   3292 	/* Disable RC6 on Ironlake */
   3293 	if (INTEL_INFO(dev)->gen == 5)
   3294 		return 0;
   3295 
   3296 	if (IS_IVYBRIDGE(dev))
   3297 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
   3298 
   3299 	return INTEL_RC6_ENABLE;
   3300 }
   3301 
   3302 static void gen6_enable_rps_interrupts(struct drm_device *dev)
   3303 {
   3304 	struct drm_i915_private *dev_priv = dev->dev_private;
   3305 
   3306 	spin_lock_irq(&dev_priv->irq_lock);
   3307 	WARN_ON(dev_priv->rps.pm_iir);
   3308 	snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
   3309 	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
   3310 	spin_unlock_irq(&dev_priv->irq_lock);
   3311 }
   3312 
   3313 static void gen8_enable_rps(struct drm_device *dev)
   3314 {
   3315 	struct drm_i915_private *dev_priv = dev->dev_private;
   3316 	struct intel_ring_buffer *ring;
   3317 	uint32_t rc6_mask = 0;
   3318 	int unused;
   3319 
   3320 	/* 1a: Software RC state - RC0 */
   3321 	I915_WRITE(GEN6_RC_STATE, 0);
   3322 
   3323 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
   3324 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
   3325 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3326 
   3327 	/* 2a: Disable RC states. */
   3328 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3329 
   3330 	(void)I915_READ(GEN6_RP_STATE_CAP);
   3331 
   3332 	/* 2b: Program RC6 thresholds.*/
   3333 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
   3334 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
   3335 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
   3336 	for_each_ring(ring, dev_priv, unused)
   3337 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3338 	I915_WRITE(GEN6_RC_SLEEP, 0);
   3339 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
   3340 
   3341 	/* 3: Enable RC6 */
   3342 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   3343 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
   3344 	intel_print_rc6_info(dev, rc6_mask);
   3345 	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
   3346 				    GEN6_RC_CTL_EI_MODE(1) |
   3347 				    rc6_mask);
   3348 
   3349 	/* 4 Program defaults and thresholds for RPS*/
   3350 	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
   3351 	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
   3352 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
   3353 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
   3354 
   3355 	/* Docs recommend 900MHz, and 300 MHz respectively */
   3356 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
   3357 		   dev_priv->rps.max_freq_softlimit << 24 |
   3358 		   dev_priv->rps.min_freq_softlimit << 16);
   3359 
   3360 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
   3361 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
   3362 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
   3363 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
   3364 
   3365 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3366 
   3367 	/* 5: Enable RPS */
   3368 	I915_WRITE(GEN6_RP_CONTROL,
   3369 		   GEN6_RP_MEDIA_TURBO |
   3370 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3371 		   GEN6_RP_MEDIA_IS_GFX |
   3372 		   GEN6_RP_ENABLE |
   3373 		   GEN6_RP_UP_BUSY_AVG |
   3374 		   GEN6_RP_DOWN_IDLE_AVG);
   3375 
   3376 	/* 6: Ring frequency + overclocking (our driver does this later */
   3377 
   3378 	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
   3379 
   3380 	gen6_enable_rps_interrupts(dev);
   3381 
   3382 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3383 }
   3384 
   3385 static void gen6_enable_rps(struct drm_device *dev)
   3386 {
   3387 	struct drm_i915_private *dev_priv = dev->dev_private;
   3388 	struct intel_ring_buffer *ring;
   3389 	u32 rp_state_cap;
   3390 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
   3391 	u32 gtfifodbg;
   3392 	int rc6_mode;
   3393 	int i, ret;
   3394 
   3395 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3396 
   3397 	/* Here begins a magic sequence of register writes to enable
   3398 	 * auto-downclocking.
   3399 	 *
   3400 	 * Perhaps there might be some value in exposing these to
   3401 	 * userspace...
   3402 	 */
   3403 	I915_WRITE(GEN6_RC_STATE, 0);
   3404 
   3405 	/* Clear the DBG now so we don't confuse earlier errors */
   3406 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   3407 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
   3408 		I915_WRITE(GTFIFODBG, gtfifodbg);
   3409 	}
   3410 
   3411 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3412 
   3413 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
   3414 	(void)I915_READ(GEN6_GT_PERF_STATUS);
   3415 
   3416 	/* All of these values are in units of 50MHz */
   3417 	dev_priv->rps.cur_freq		= 0;
   3418 	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
   3419 	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
   3420 	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
   3421 	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
   3422 	/* XXX: only BYT has a special efficient freq */
   3423 	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
   3424 	/* hw_max = RP0 until we check for overclocking */
   3425 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
   3426 
   3427 	/* Preserve min/max settings in case of re-init */
   3428 	if (dev_priv->rps.max_freq_softlimit == 0)
   3429 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   3430 
   3431 	if (dev_priv->rps.min_freq_softlimit == 0)
   3432 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   3433 
   3434 	/* disable the counters and set deterministic thresholds */
   3435 	I915_WRITE(GEN6_RC_CONTROL, 0);
   3436 
   3437 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
   3438 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
   3439 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
   3440 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   3441 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   3442 
   3443 	for_each_ring(ring, dev_priv, i)
   3444 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3445 
   3446 	I915_WRITE(GEN6_RC_SLEEP, 0);
   3447 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
   3448 	if (IS_IVYBRIDGE(dev))
   3449 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
   3450 	else
   3451 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
   3452 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
   3453 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
   3454 
   3455 	/* Check if we are enabling RC6 */
   3456 	rc6_mode = intel_enable_rc6(dev_priv->dev);
   3457 	if (rc6_mode & INTEL_RC6_ENABLE)
   3458 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
   3459 
   3460 	/* We don't use those on Haswell */
   3461 	if (!IS_HASWELL(dev)) {
   3462 		if (rc6_mode & INTEL_RC6p_ENABLE)
   3463 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
   3464 
   3465 		if (rc6_mode & INTEL_RC6pp_ENABLE)
   3466 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
   3467 	}
   3468 
   3469 	intel_print_rc6_info(dev, rc6_mask);
   3470 
   3471 	I915_WRITE(GEN6_RC_CONTROL,
   3472 		   rc6_mask |
   3473 		   GEN6_RC_CTL_EI_MODE(1) |
   3474 		   GEN6_RC_CTL_HW_ENABLE);
   3475 
   3476 	/* Power down if completely idle for over 50ms */
   3477 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
   3478 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3479 
   3480 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
   3481 	if (ret)
   3482 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
   3483 
   3484 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
   3485 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
   3486 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
   3487 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
   3488 				 (pcu_mbox & 0xff) * 50);
   3489 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
   3490 	}
   3491 
   3492 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
   3493 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
   3494 
   3495 	gen6_enable_rps_interrupts(dev);
   3496 
   3497 	rc6vids = 0;
   3498 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
   3499 	if (IS_GEN6(dev) && ret) {
   3500 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
   3501 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
   3502 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
   3503 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
   3504 		rc6vids &= 0xffff00;
   3505 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
   3506 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
   3507 		if (ret)
   3508 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
   3509 	}
   3510 
   3511 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3512 }
   3513 
   3514 void gen6_update_ring_freq(struct drm_device *dev)
   3515 {
   3516 	struct drm_i915_private *dev_priv = dev->dev_private;
   3517 	int min_freq = 15;
   3518 	unsigned int gpu_freq;
   3519 	unsigned int max_ia_freq, min_ring_freq;
   3520 	int scaling_factor = 180;
   3521 #ifndef __NetBSD__
   3522 	struct cpufreq_policy *policy;
   3523 #endif
   3524 
   3525 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3526 
   3527 #ifdef __NetBSD__
   3528 	{
   3529 		extern uint64_t tsc_freq; /* x86 TSC frequency in Hz */
   3530 		max_ia_freq = (tsc_freq / 1000);
   3531 	}
   3532 #else
   3533 	policy = cpufreq_cpu_get(0);
   3534 	if (policy) {
   3535 		max_ia_freq = policy->cpuinfo.max_freq;
   3536 		cpufreq_cpu_put(policy);
   3537 	} else {
   3538 		/*
   3539 		 * Default to measured freq if none found, PCU will ensure we
   3540 		 * don't go over
   3541 		 */
   3542 		max_ia_freq = tsc_khz;
   3543 	}
   3544 #endif
   3545 
   3546 	/* Convert from kHz to MHz */
   3547 	max_ia_freq /= 1000;
   3548 
   3549 	min_ring_freq = I915_READ(DCLK) & 0xf;
   3550 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
   3551 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
   3552 
   3553 	/*
   3554 	 * For each potential GPU frequency, load a ring frequency we'd like
   3555 	 * to use for memory access.  We do this by specifying the IA frequency
   3556 	 * the PCU should use as a reference to determine the ring frequency.
   3557 	 */
   3558 	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
   3559 	     gpu_freq--) {
   3560 		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
   3561 		unsigned int ia_freq = 0, ring_freq = 0;
   3562 
   3563 		if (INTEL_INFO(dev)->gen >= 8) {
   3564 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
   3565 			ring_freq = max(min_ring_freq, gpu_freq);
   3566 		} else if (IS_HASWELL(dev)) {
   3567 			ring_freq = mult_frac(gpu_freq, 5, 4);
   3568 			ring_freq = max(min_ring_freq, ring_freq);
   3569 			/* leave ia_freq as the default, chosen by cpufreq */
   3570 		} else {
   3571 			/* On older processors, there is no separate ring
   3572 			 * clock domain, so in order to boost the bandwidth
   3573 			 * of the ring, we need to upclock the CPU (ia_freq).
   3574 			 *
   3575 			 * For GPU frequencies less than 750MHz,
   3576 			 * just use the lowest ring freq.
   3577 			 */
   3578 			if (gpu_freq < min_freq)
   3579 				ia_freq = 800;
   3580 			else
   3581 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
   3582 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
   3583 		}
   3584 
   3585 		sandybridge_pcode_write(dev_priv,
   3586 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
   3587 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
   3588 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
   3589 					gpu_freq);
   3590 	}
   3591 }
   3592 
   3593 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
   3594 {
   3595 	u32 val, rp0;
   3596 
   3597 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
   3598 
   3599 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
   3600 	/* Clamp to max */
   3601 	rp0 = min_t(u32, rp0, 0xea);
   3602 
   3603 	return rp0;
   3604 }
   3605 
   3606 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
   3607 {
   3608 	u32 val, rpe;
   3609 
   3610 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
   3611 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
   3612 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
   3613 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
   3614 
   3615 	return rpe;
   3616 }
   3617 
   3618 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
   3619 {
   3620 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
   3621 }
   3622 
   3623 /* Check that the pctx buffer wasn't move under us. */
   3624 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
   3625 {
   3626 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
   3627 
   3628 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
   3629 			     dev_priv->vlv_pctx->stolen->start);
   3630 }
   3631 
   3632 static void valleyview_setup_pctx(struct drm_device *dev)
   3633 {
   3634 	struct drm_i915_private *dev_priv = dev->dev_private;
   3635 	struct drm_i915_gem_object *pctx;
   3636 	unsigned long pctx_paddr;
   3637 	u32 pcbr;
   3638 	int pctx_size = 24*1024;
   3639 
   3640 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   3641 
   3642 	pcbr = I915_READ(VLV_PCBR);
   3643 	if (pcbr) {
   3644 		/* BIOS set it up already, grab the pre-alloc'd space */
   3645 		int pcbr_offset;
   3646 
   3647 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
   3648 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
   3649 								      pcbr_offset,
   3650 								      I915_GTT_OFFSET_NONE,
   3651 								      pctx_size);
   3652 		goto out;
   3653 	}
   3654 
   3655 	/*
   3656 	 * From the Gunit register HAS:
   3657 	 * The Gfx driver is expected to program this register and ensure
   3658 	 * proper allocation within Gfx stolen memory.  For example, this
   3659 	 * register should be programmed such than the PCBR range does not
   3660 	 * overlap with other ranges, such as the frame buffer, protected
   3661 	 * memory, or any other relevant ranges.
   3662 	 */
   3663 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
   3664 	if (!pctx) {
   3665 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
   3666 		return;
   3667 	}
   3668 
   3669 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
   3670 	I915_WRITE(VLV_PCBR, pctx_paddr);
   3671 
   3672 out:
   3673 	dev_priv->vlv_pctx = pctx;
   3674 }
   3675 
   3676 static void valleyview_cleanup_pctx(struct drm_device *dev)
   3677 {
   3678 	struct drm_i915_private *dev_priv = dev->dev_private;
   3679 
   3680 	if (WARN_ON(!dev_priv->vlv_pctx))
   3681 		return;
   3682 
   3683 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
   3684 	dev_priv->vlv_pctx = NULL;
   3685 }
   3686 
   3687 static void valleyview_enable_rps(struct drm_device *dev)
   3688 {
   3689 	struct drm_i915_private *dev_priv = dev->dev_private;
   3690 	struct intel_ring_buffer *ring;
   3691 	u32 gtfifodbg, val, rc6_mode = 0;
   3692 	int i;
   3693 
   3694 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   3695 
   3696 	valleyview_check_pctx(dev_priv);
   3697 
   3698 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
   3699 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
   3700 				 gtfifodbg);
   3701 		I915_WRITE(GTFIFODBG, gtfifodbg);
   3702 	}
   3703 
   3704 	/* If VLV, Forcewake all wells, else re-direct to regular path */
   3705 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
   3706 
   3707 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
   3708 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
   3709 	I915_WRITE(GEN6_RP_UP_EI, 66000);
   3710 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
   3711 
   3712 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
   3713 
   3714 	I915_WRITE(GEN6_RP_CONTROL,
   3715 		   GEN6_RP_MEDIA_TURBO |
   3716 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
   3717 		   GEN6_RP_MEDIA_IS_GFX |
   3718 		   GEN6_RP_ENABLE |
   3719 		   GEN6_RP_UP_BUSY_AVG |
   3720 		   GEN6_RP_DOWN_IDLE_CONT);
   3721 
   3722 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
   3723 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
   3724 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
   3725 
   3726 	for_each_ring(ring, dev_priv, i)
   3727 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
   3728 
   3729 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
   3730 
   3731 	/* allows RC6 residency counter to work */
   3732 	I915_WRITE(VLV_COUNTER_CONTROL,
   3733 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
   3734 				      VLV_MEDIA_RC6_COUNT_EN |
   3735 				      VLV_RENDER_RC6_COUNT_EN));
   3736 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
   3737 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
   3738 
   3739 	intel_print_rc6_info(dev, rc6_mode);
   3740 
   3741 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
   3742 
   3743 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   3744 
   3745 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
   3746 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
   3747 
   3748 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
   3749 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
   3750 			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
   3751 			 dev_priv->rps.cur_freq);
   3752 
   3753 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
   3754 	dev_priv->rps.rp0_freq  = dev_priv->rps.max_freq;
   3755 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
   3756 			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
   3757 			 dev_priv->rps.max_freq);
   3758 
   3759 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
   3760 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
   3761 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   3762 			 dev_priv->rps.efficient_freq);
   3763 
   3764 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
   3765 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
   3766 			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
   3767 			 dev_priv->rps.min_freq);
   3768 
   3769 	/* Preserve min/max settings in case of re-init */
   3770 	if (dev_priv->rps.max_freq_softlimit == 0)
   3771 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
   3772 
   3773 	if (dev_priv->rps.min_freq_softlimit == 0)
   3774 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
   3775 
   3776 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
   3777 			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
   3778 			 dev_priv->rps.efficient_freq);
   3779 
   3780 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
   3781 
   3782 	gen6_enable_rps_interrupts(dev);
   3783 
   3784 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
   3785 }
   3786 
   3787 void ironlake_teardown_rc6(struct drm_device *dev)
   3788 {
   3789 	struct drm_i915_private *dev_priv = dev->dev_private;
   3790 
   3791 	if (dev_priv->ips.renderctx) {
   3792 		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
   3793 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
   3794 		dev_priv->ips.renderctx = NULL;
   3795 	}
   3796 
   3797 	if (dev_priv->ips.pwrctx) {
   3798 		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
   3799 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
   3800 		dev_priv->ips.pwrctx = NULL;
   3801 	}
   3802 }
   3803 
   3804 static void ironlake_disable_rc6(struct drm_device *dev)
   3805 {
   3806 	struct drm_i915_private *dev_priv = dev->dev_private;
   3807 
   3808 	if (I915_READ(PWRCTXA)) {
   3809 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
   3810 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
   3811 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
   3812 			 50);
   3813 
   3814 		I915_WRITE(PWRCTXA, 0);
   3815 		POSTING_READ(PWRCTXA);
   3816 
   3817 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   3818 		POSTING_READ(RSTDBYCTL);
   3819 	}
   3820 }
   3821 
   3822 static int ironlake_setup_rc6(struct drm_device *dev)
   3823 {
   3824 	struct drm_i915_private *dev_priv = dev->dev_private;
   3825 
   3826 	if (dev_priv->ips.renderctx == NULL)
   3827 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
   3828 	if (!dev_priv->ips.renderctx)
   3829 		return -ENOMEM;
   3830 
   3831 	if (dev_priv->ips.pwrctx == NULL)
   3832 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
   3833 	if (!dev_priv->ips.pwrctx) {
   3834 		ironlake_teardown_rc6(dev);
   3835 		return -ENOMEM;
   3836 	}
   3837 
   3838 	return 0;
   3839 }
   3840 
   3841 static void ironlake_enable_rc6(struct drm_device *dev)
   3842 {
   3843 	struct drm_i915_private *dev_priv = dev->dev_private;
   3844 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
   3845 	bool was_interruptible;
   3846 	int ret;
   3847 
   3848 	/* rc6 disabled by default due to repeated reports of hanging during
   3849 	 * boot and resume.
   3850 	 */
   3851 	if (!intel_enable_rc6(dev))
   3852 		return;
   3853 
   3854 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
   3855 
   3856 	ret = ironlake_setup_rc6(dev);
   3857 	if (ret)
   3858 		return;
   3859 
   3860 	was_interruptible = dev_priv->mm.interruptible;
   3861 	dev_priv->mm.interruptible = false;
   3862 
   3863 	/*
   3864 	 * GPU can automatically power down the render unit if given a page
   3865 	 * to save state.
   3866 	 */
   3867 	ret = intel_ring_begin(ring, 6);
   3868 	if (ret) {
   3869 		ironlake_teardown_rc6(dev);
   3870 		dev_priv->mm.interruptible = was_interruptible;
   3871 		return;
   3872 	}
   3873 
   3874 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
   3875 	intel_ring_emit(ring, MI_SET_CONTEXT);
   3876 	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
   3877 			MI_MM_SPACE_GTT |
   3878 			MI_SAVE_EXT_STATE_EN |
   3879 			MI_RESTORE_EXT_STATE_EN |
   3880 			MI_RESTORE_INHIBIT);
   3881 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
   3882 	intel_ring_emit(ring, MI_NOOP);
   3883 	intel_ring_emit(ring, MI_FLUSH);
   3884 	intel_ring_advance(ring);
   3885 
   3886 	/*
   3887 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
   3888 	 * does an implicit flush, combined with MI_FLUSH above, it should be
   3889 	 * safe to assume that renderctx is valid
   3890 	 */
   3891 	ret = intel_ring_idle(ring);
   3892 	dev_priv->mm.interruptible = was_interruptible;
   3893 	if (ret) {
   3894 		DRM_ERROR("failed to enable ironlake power savings\n");
   3895 		ironlake_teardown_rc6(dev);
   3896 		return;
   3897 	}
   3898 
   3899 	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
   3900 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
   3901 
   3902 	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
   3903 }
   3904 
   3905 static unsigned long intel_pxfreq(u32 vidfreq)
   3906 {
   3907 	unsigned long freq;
   3908 	int div = (vidfreq & 0x3f0000) >> 16;
   3909 	int post = (vidfreq & 0x3000) >> 12;
   3910 	int pre = (vidfreq & 0x7);
   3911 
   3912 	if (!pre)
   3913 		return 0;
   3914 
   3915 	freq = ((div * 133333) / ((1<<post) * pre));
   3916 
   3917 	return freq;
   3918 }
   3919 
   3920 static const struct cparams {
   3921 	u16 i;
   3922 	u16 t;
   3923 	u16 m;
   3924 	u16 c;
   3925 } cparams[] = {
   3926 	{ 1, 1333, 301, 28664 },
   3927 	{ 1, 1066, 294, 24460 },
   3928 	{ 1, 800, 294, 25192 },
   3929 	{ 0, 1333, 276, 27605 },
   3930 	{ 0, 1066, 276, 27605 },
   3931 	{ 0, 800, 231, 23784 },
   3932 };
   3933 
   3934 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
   3935 {
   3936 	u64 total_count, diff, ret;
   3937 	u32 count1, count2, count3, m = 0, c = 0;
   3938 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
   3939 	int i;
   3940 
   3941 	assert_spin_locked(&mchdev_lock);
   3942 
   3943 	diff1 = now - dev_priv->ips.last_time1;
   3944 
   3945 	/* Prevent division-by-zero if we are asking too fast.
   3946 	 * Also, we don't get interesting results if we are polling
   3947 	 * faster than once in 10ms, so just return the saved value
   3948 	 * in such cases.
   3949 	 */
   3950 	if (diff1 <= 10)
   3951 		return dev_priv->ips.chipset_power;
   3952 
   3953 	count1 = I915_READ(DMIEC);
   3954 	count2 = I915_READ(DDREC);
   3955 	count3 = I915_READ(CSIEC);
   3956 
   3957 	total_count = count1 + count2 + count3;
   3958 
   3959 	/* FIXME: handle per-counter overflow */
   3960 	if (total_count < dev_priv->ips.last_count1) {
   3961 		diff = ~0UL - dev_priv->ips.last_count1;
   3962 		diff += total_count;
   3963 	} else {
   3964 		diff = total_count - dev_priv->ips.last_count1;
   3965 	}
   3966 
   3967 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
   3968 		if (cparams[i].i == dev_priv->ips.c_m &&
   3969 		    cparams[i].t == dev_priv->ips.r_t) {
   3970 			m = cparams[i].m;
   3971 			c = cparams[i].c;
   3972 			break;
   3973 		}
   3974 	}
   3975 
   3976 	diff = div_u64(diff, diff1);
   3977 	ret = ((m * diff) + c);
   3978 	ret = div_u64(ret, 10);
   3979 
   3980 	dev_priv->ips.last_count1 = total_count;
   3981 	dev_priv->ips.last_time1 = now;
   3982 
   3983 	dev_priv->ips.chipset_power = ret;
   3984 
   3985 	return ret;
   3986 }
   3987 
   3988 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
   3989 {
   3990 	struct drm_device *dev = dev_priv->dev;
   3991 	unsigned long val;
   3992 
   3993 	if (INTEL_INFO(dev)->gen != 5)
   3994 		return 0;
   3995 
   3996 	spin_lock_irq(&mchdev_lock);
   3997 
   3998 	val = __i915_chipset_val(dev_priv);
   3999 
   4000 	spin_unlock_irq(&mchdev_lock);
   4001 
   4002 	return val;
   4003 }
   4004 
   4005 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
   4006 {
   4007 	unsigned long m, x, b;
   4008 	u32 tsfs;
   4009 
   4010 	tsfs = I915_READ(TSFS);
   4011 
   4012 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
   4013 	x = I915_READ8(TR1);
   4014 
   4015 	b = tsfs & TSFS_INTR_MASK;
   4016 
   4017 	return ((m * x) / 127) - b;
   4018 }
   4019 
   4020 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
   4021 {
   4022 	struct drm_device *dev = dev_priv->dev;
   4023 	static const struct v_table {
   4024 		u16 vd; /* in .1 mil */
   4025 		u16 vm; /* in .1 mil */
   4026 	} v_table[] = {
   4027 		{ 0, 0, },
   4028 		{ 375, 0, },
   4029 		{ 500, 0, },
   4030 		{ 625, 0, },
   4031 		{ 750, 0, },
   4032 		{ 875, 0, },
   4033 		{ 1000, 0, },
   4034 		{ 1125, 0, },
   4035 		{ 4125, 3000, },
   4036 		{ 4125, 3000, },
   4037 		{ 4125, 3000, },
   4038 		{ 4125, 3000, },
   4039 		{ 4125, 3000, },
   4040 		{ 4125, 3000, },
   4041 		{ 4125, 3000, },
   4042 		{ 4125, 3000, },
   4043 		{ 4125, 3000, },
   4044 		{ 4125, 3000, },
   4045 		{ 4125, 3000, },
   4046 		{ 4125, 3000, },
   4047 		{ 4125, 3000, },
   4048 		{ 4125, 3000, },
   4049 		{ 4125, 3000, },
   4050 		{ 4125, 3000, },
   4051 		{ 4125, 3000, },
   4052 		{ 4125, 3000, },
   4053 		{ 4125, 3000, },
   4054 		{ 4125, 3000, },
   4055 		{ 4125, 3000, },
   4056 		{ 4125, 3000, },
   4057 		{ 4125, 3000, },
   4058 		{ 4125, 3000, },
   4059 		{ 4250, 3125, },
   4060 		{ 4375, 3250, },
   4061 		{ 4500, 3375, },
   4062 		{ 4625, 3500, },
   4063 		{ 4750, 3625, },
   4064 		{ 4875, 3750, },
   4065 		{ 5000, 3875, },
   4066 		{ 5125, 4000, },
   4067 		{ 5250, 4125, },
   4068 		{ 5375, 4250, },
   4069 		{ 5500, 4375, },
   4070 		{ 5625, 4500, },
   4071 		{ 5750, 4625, },
   4072 		{ 5875, 4750, },
   4073 		{ 6000, 4875, },
   4074 		{ 6125, 5000, },
   4075 		{ 6250, 5125, },
   4076 		{ 6375, 5250, },
   4077 		{ 6500, 5375, },
   4078 		{ 6625, 5500, },
   4079 		{ 6750, 5625, },
   4080 		{ 6875, 5750, },
   4081 		{ 7000, 5875, },
   4082 		{ 7125, 6000, },
   4083 		{ 7250, 6125, },
   4084 		{ 7375, 6250, },
   4085 		{ 7500, 6375, },
   4086 		{ 7625, 6500, },
   4087 		{ 7750, 6625, },
   4088 		{ 7875, 6750, },
   4089 		{ 8000, 6875, },
   4090 		{ 8125, 7000, },
   4091 		{ 8250, 7125, },
   4092 		{ 8375, 7250, },
   4093 		{ 8500, 7375, },
   4094 		{ 8625, 7500, },
   4095 		{ 8750, 7625, },
   4096 		{ 8875, 7750, },
   4097 		{ 9000, 7875, },
   4098 		{ 9125, 8000, },
   4099 		{ 9250, 8125, },
   4100 		{ 9375, 8250, },
   4101 		{ 9500, 8375, },
   4102 		{ 9625, 8500, },
   4103 		{ 9750, 8625, },
   4104 		{ 9875, 8750, },
   4105 		{ 10000, 8875, },
   4106 		{ 10125, 9000, },
   4107 		{ 10250, 9125, },
   4108 		{ 10375, 9250, },
   4109 		{ 10500, 9375, },
   4110 		{ 10625, 9500, },
   4111 		{ 10750, 9625, },
   4112 		{ 10875, 9750, },
   4113 		{ 11000, 9875, },
   4114 		{ 11125, 10000, },
   4115 		{ 11250, 10125, },
   4116 		{ 11375, 10250, },
   4117 		{ 11500, 10375, },
   4118 		{ 11625, 10500, },
   4119 		{ 11750, 10625, },
   4120 		{ 11875, 10750, },
   4121 		{ 12000, 10875, },
   4122 		{ 12125, 11000, },
   4123 		{ 12250, 11125, },
   4124 		{ 12375, 11250, },
   4125 		{ 12500, 11375, },
   4126 		{ 12625, 11500, },
   4127 		{ 12750, 11625, },
   4128 		{ 12875, 11750, },
   4129 		{ 13000, 11875, },
   4130 		{ 13125, 12000, },
   4131 		{ 13250, 12125, },
   4132 		{ 13375, 12250, },
   4133 		{ 13500, 12375, },
   4134 		{ 13625, 12500, },
   4135 		{ 13750, 12625, },
   4136 		{ 13875, 12750, },
   4137 		{ 14000, 12875, },
   4138 		{ 14125, 13000, },
   4139 		{ 14250, 13125, },
   4140 		{ 14375, 13250, },
   4141 		{ 14500, 13375, },
   4142 		{ 14625, 13500, },
   4143 		{ 14750, 13625, },
   4144 		{ 14875, 13750, },
   4145 		{ 15000, 13875, },
   4146 		{ 15125, 14000, },
   4147 		{ 15250, 14125, },
   4148 		{ 15375, 14250, },
   4149 		{ 15500, 14375, },
   4150 		{ 15625, 14500, },
   4151 		{ 15750, 14625, },
   4152 		{ 15875, 14750, },
   4153 		{ 16000, 14875, },
   4154 		{ 16125, 15000, },
   4155 	};
   4156 	if (INTEL_INFO(dev)->is_mobile)
   4157 		return v_table[pxvid].vm;
   4158 	else
   4159 		return v_table[pxvid].vd;
   4160 }
   4161 
   4162 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
   4163 {
   4164 	struct timespec now, diff1;
   4165 	u64 diff;
   4166 	unsigned long diffms;
   4167 	u32 count;
   4168 
   4169 	assert_spin_locked(&mchdev_lock);
   4170 
   4171 	getrawmonotonic(&now);
   4172 	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
   4173 
   4174 	/* Don't divide by 0 */
   4175 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
   4176 	if (!diffms)
   4177 		return;
   4178 
   4179 	count = I915_READ(GFXEC);
   4180 
   4181 	if (count < dev_priv->ips.last_count2) {
   4182 		diff = ~0UL - dev_priv->ips.last_count2;
   4183 		diff += count;
   4184 	} else {
   4185 		diff = count - dev_priv->ips.last_count2;
   4186 	}
   4187 
   4188 	dev_priv->ips.last_count2 = count;
   4189 	dev_priv->ips.last_time2 = now;
   4190 
   4191 	/* More magic constants... */
   4192 	diff = diff * 1181;
   4193 	diff = div_u64(diff, diffms * 10);
   4194 	dev_priv->ips.gfx_power = diff;
   4195 }
   4196 
   4197 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
   4198 {
   4199 	struct drm_device *dev = dev_priv->dev;
   4200 
   4201 	if (INTEL_INFO(dev)->gen != 5)
   4202 		return;
   4203 
   4204 	spin_lock_irq(&mchdev_lock);
   4205 
   4206 	__i915_update_gfx_val(dev_priv);
   4207 
   4208 	spin_unlock_irq(&mchdev_lock);
   4209 }
   4210 
   4211 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
   4212 {
   4213 	unsigned long t, corr, state1, corr2, state2;
   4214 	u32 pxvid, ext_v;
   4215 
   4216 	assert_spin_locked(&mchdev_lock);
   4217 
   4218 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
   4219 	pxvid = (pxvid >> 24) & 0x7f;
   4220 	ext_v = pvid_to_extvid(dev_priv, pxvid);
   4221 
   4222 	state1 = ext_v;
   4223 
   4224 	t = i915_mch_val(dev_priv);
   4225 
   4226 	/* Revel in the empirically derived constants */
   4227 
   4228 	/* Correction factor in 1/100000 units */
   4229 	if (t > 80)
   4230 		corr = ((t * 2349) + 135940);
   4231 	else if (t >= 50)
   4232 		corr = ((t * 964) + 29317);
   4233 	else /* < 50 */
   4234 		corr = ((t * 301) + 1004);
   4235 
   4236 	corr = corr * ((150142 * state1) / 10000 - 78642);
   4237 	corr /= 100000;
   4238 	corr2 = (corr * dev_priv->ips.corr);
   4239 
   4240 	state2 = (corr2 * state1) / 10000;
   4241 	state2 /= 100; /* convert to mW */
   4242 
   4243 	__i915_update_gfx_val(dev_priv);
   4244 
   4245 	return dev_priv->ips.gfx_power + state2;
   4246 }
   4247 
   4248 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
   4249 {
   4250 	struct drm_device *dev = dev_priv->dev;
   4251 	unsigned long val;
   4252 
   4253 	if (INTEL_INFO(dev)->gen != 5)
   4254 		return 0;
   4255 
   4256 	spin_lock_irq(&mchdev_lock);
   4257 
   4258 	val = __i915_gfx_val(dev_priv);
   4259 
   4260 	spin_unlock_irq(&mchdev_lock);
   4261 
   4262 	return val;
   4263 }
   4264 
   4265 /**
   4266  * i915_read_mch_val - return value for IPS use
   4267  *
   4268  * Calculate and return a value for the IPS driver to use when deciding whether
   4269  * we have thermal and power headroom to increase CPU or GPU power budget.
   4270  */
   4271 unsigned long i915_read_mch_val(void)
   4272 {
   4273 	struct drm_i915_private *dev_priv;
   4274 	unsigned long chipset_val, graphics_val, ret = 0;
   4275 
   4276 	spin_lock_irq(&mchdev_lock);
   4277 	if (!i915_mch_dev)
   4278 		goto out_unlock;
   4279 	dev_priv = i915_mch_dev;
   4280 
   4281 	chipset_val = __i915_chipset_val(dev_priv);
   4282 	graphics_val = __i915_gfx_val(dev_priv);
   4283 
   4284 	ret = chipset_val + graphics_val;
   4285 
   4286 out_unlock:
   4287 	spin_unlock_irq(&mchdev_lock);
   4288 
   4289 	return ret;
   4290 }
   4291 EXPORT_SYMBOL_GPL(i915_read_mch_val);
   4292 
   4293 /**
   4294  * i915_gpu_raise - raise GPU frequency limit
   4295  *
   4296  * Raise the limit; IPS indicates we have thermal headroom.
   4297  */
   4298 bool i915_gpu_raise(void)
   4299 {
   4300 	struct drm_i915_private *dev_priv;
   4301 	bool ret = true;
   4302 
   4303 	spin_lock_irq(&mchdev_lock);
   4304 	if (!i915_mch_dev) {
   4305 		ret = false;
   4306 		goto out_unlock;
   4307 	}
   4308 	dev_priv = i915_mch_dev;
   4309 
   4310 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
   4311 		dev_priv->ips.max_delay--;
   4312 
   4313 out_unlock:
   4314 	spin_unlock_irq(&mchdev_lock);
   4315 
   4316 	return ret;
   4317 }
   4318 EXPORT_SYMBOL_GPL(i915_gpu_raise);
   4319 
   4320 /**
   4321  * i915_gpu_lower - lower GPU frequency limit
   4322  *
   4323  * IPS indicates we're close to a thermal limit, so throttle back the GPU
   4324  * frequency maximum.
   4325  */
   4326 bool i915_gpu_lower(void)
   4327 {
   4328 	struct drm_i915_private *dev_priv;
   4329 	bool ret = true;
   4330 
   4331 	spin_lock_irq(&mchdev_lock);
   4332 	if (!i915_mch_dev) {
   4333 		ret = false;
   4334 		goto out_unlock;
   4335 	}
   4336 	dev_priv = i915_mch_dev;
   4337 
   4338 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
   4339 		dev_priv->ips.max_delay++;
   4340 
   4341 out_unlock:
   4342 	spin_unlock_irq(&mchdev_lock);
   4343 
   4344 	return ret;
   4345 }
   4346 EXPORT_SYMBOL_GPL(i915_gpu_lower);
   4347 
   4348 /**
   4349  * i915_gpu_busy - indicate GPU business to IPS
   4350  *
   4351  * Tell the IPS driver whether or not the GPU is busy.
   4352  */
   4353 bool i915_gpu_busy(void)
   4354 {
   4355 	struct drm_i915_private *dev_priv;
   4356 	struct intel_ring_buffer *ring;
   4357 	bool ret = false;
   4358 	int i;
   4359 
   4360 	spin_lock_irq(&mchdev_lock);
   4361 	if (!i915_mch_dev)
   4362 		goto out_unlock;
   4363 	dev_priv = i915_mch_dev;
   4364 
   4365 	for_each_ring(ring, dev_priv, i)
   4366 		ret |= !list_empty(&ring->request_list);
   4367 
   4368 out_unlock:
   4369 	spin_unlock_irq(&mchdev_lock);
   4370 
   4371 	return ret;
   4372 }
   4373 EXPORT_SYMBOL_GPL(i915_gpu_busy);
   4374 
   4375 /**
   4376  * i915_gpu_turbo_disable - disable graphics turbo
   4377  *
   4378  * Disable graphics turbo by resetting the max frequency and setting the
   4379  * current frequency to the default.
   4380  */
   4381 bool i915_gpu_turbo_disable(void)
   4382 {
   4383 	struct drm_i915_private *dev_priv;
   4384 	bool ret = true;
   4385 
   4386 	spin_lock_irq(&mchdev_lock);
   4387 	if (!i915_mch_dev) {
   4388 		ret = false;
   4389 		goto out_unlock;
   4390 	}
   4391 	dev_priv = i915_mch_dev;
   4392 
   4393 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
   4394 
   4395 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
   4396 		ret = false;
   4397 
   4398 out_unlock:
   4399 	spin_unlock_irq(&mchdev_lock);
   4400 
   4401 	return ret;
   4402 }
   4403 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
   4404 
   4405 /**
   4406  * Tells the intel_ips driver that the i915 driver is now loaded, if
   4407  * IPS got loaded first.
   4408  *
   4409  * This awkward dance is so that neither module has to depend on the
   4410  * other in order for IPS to do the appropriate communication of
   4411  * GPU turbo limits to i915.
   4412  */
   4413 static void
   4414 ips_ping_for_i915_load(void)
   4415 {
   4416 #ifndef __NetBSD__		/* XXX IPS GPU turbo limits what?  */
   4417 	void (*link)(void);
   4418 
   4419 	link = symbol_get(ips_link_to_i915_driver);
   4420 	if (link) {
   4421 		link();
   4422 		symbol_put(ips_link_to_i915_driver);
   4423 	}
   4424 #endif
   4425 }
   4426 
   4427 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
   4428 {
   4429 #ifdef __NetBSD__		/* XXX */
   4430 	/*
   4431 	 * This seems as good a place as any to initialize mchdev_lock.
   4432 	 * Taking the lock in the rest of this routine is silly, but...
   4433 	 */
   4434 	spin_lock_init(&mchdev_lock);
   4435 #endif
   4436 
   4437 	/* We only register the i915 ips part with intel-ips once everything is
   4438 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
   4439 	spin_lock_irq(&mchdev_lock);
   4440 	i915_mch_dev = dev_priv;
   4441 	spin_unlock_irq(&mchdev_lock);
   4442 
   4443 	ips_ping_for_i915_load();
   4444 }
   4445 
   4446 void intel_gpu_ips_teardown(void)
   4447 {
   4448 #ifdef __NetBSD__
   4449 	if (i915_mch_dev == NULL)
   4450 		return;
   4451 #endif
   4452 
   4453 	spin_lock_irq(&mchdev_lock);
   4454 	i915_mch_dev = NULL;
   4455 	spin_unlock_irq(&mchdev_lock);
   4456 
   4457 #ifdef __NetBSD__
   4458 	spin_lock_destroy(&mchdev_lock);
   4459 #endif
   4460 }
   4461 
   4462 static void intel_init_emon(struct drm_device *dev)
   4463 {
   4464 	struct drm_i915_private *dev_priv = dev->dev_private;
   4465 	u32 lcfuse;
   4466 	u8 pxw[16];
   4467 	int i;
   4468 
   4469 	/* Disable to program */
   4470 	I915_WRITE(ECR, 0);
   4471 	POSTING_READ(ECR);
   4472 
   4473 	/* Program energy weights for various events */
   4474 	I915_WRITE(SDEW, 0x15040d00);
   4475 	I915_WRITE(CSIEW0, 0x007f0000);
   4476 	I915_WRITE(CSIEW1, 0x1e220004);
   4477 	I915_WRITE(CSIEW2, 0x04000004);
   4478 
   4479 	for (i = 0; i < 5; i++)
   4480 		I915_WRITE(PEW + (i * 4), 0);
   4481 	for (i = 0; i < 3; i++)
   4482 		I915_WRITE(DEW + (i * 4), 0);
   4483 
   4484 	/* Program P-state weights to account for frequency power adjustment */
   4485 	for (i = 0; i < 16; i++) {
   4486 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
   4487 		unsigned long freq = intel_pxfreq(pxvidfreq);
   4488 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
   4489 			PXVFREQ_PX_SHIFT;
   4490 		unsigned long val;
   4491 
   4492 		val = vid * vid;
   4493 		val *= (freq / 1000);
   4494 		val *= 255;
   4495 		val /= (127*127*900);
   4496 		if (val > 0xff)
   4497 			DRM_ERROR("bad pxval: %ld\n", val);
   4498 		pxw[i] = val;
   4499 	}
   4500 	/* Render standby states get 0 weight */
   4501 	pxw[14] = 0;
   4502 	pxw[15] = 0;
   4503 
   4504 	for (i = 0; i < 4; i++) {
   4505 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
   4506 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
   4507 		I915_WRITE(PXW + (i * 4), val);
   4508 	}
   4509 
   4510 	/* Adjust magic regs to magic values (more experimental results) */
   4511 	I915_WRITE(OGW0, 0);
   4512 	I915_WRITE(OGW1, 0);
   4513 	I915_WRITE(EG0, 0x00007f00);
   4514 	I915_WRITE(EG1, 0x0000000e);
   4515 	I915_WRITE(EG2, 0x000e0000);
   4516 	I915_WRITE(EG3, 0x68000300);
   4517 	I915_WRITE(EG4, 0x42000000);
   4518 	I915_WRITE(EG5, 0x00140031);
   4519 	I915_WRITE(EG6, 0);
   4520 	I915_WRITE(EG7, 0);
   4521 
   4522 	for (i = 0; i < 8; i++)
   4523 		I915_WRITE(PXWL + (i * 4), 0);
   4524 
   4525 	/* Enable PMON + select events */
   4526 	I915_WRITE(ECR, 0x80000019);
   4527 
   4528 	lcfuse = I915_READ(LCFUSE02);
   4529 
   4530 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
   4531 }
   4532 
   4533 void intel_init_gt_powersave(struct drm_device *dev)
   4534 {
   4535 	if (IS_VALLEYVIEW(dev))
   4536 		valleyview_setup_pctx(dev);
   4537 }
   4538 
   4539 void intel_cleanup_gt_powersave(struct drm_device *dev)
   4540 {
   4541 	if (IS_VALLEYVIEW(dev))
   4542 		valleyview_cleanup_pctx(dev);
   4543 }
   4544 
   4545 void intel_disable_gt_powersave(struct drm_device *dev)
   4546 {
   4547 	struct drm_i915_private *dev_priv = dev->dev_private;
   4548 
   4549 	/* Interrupts should be disabled already to avoid re-arming. */
   4550 	WARN_ON(dev->irq_enabled);
   4551 
   4552 	if (IS_IRONLAKE_M(dev)) {
   4553 		ironlake_disable_drps(dev);
   4554 		ironlake_disable_rc6(dev);
   4555 	} else if (INTEL_INFO(dev)->gen >= 6) {
   4556 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
   4557 		cancel_work_sync(&dev_priv->rps.work);
   4558 		mutex_lock(&dev_priv->rps.hw_lock);
   4559 		if (IS_VALLEYVIEW(dev))
   4560 			valleyview_disable_rps(dev);
   4561 		else
   4562 			gen6_disable_rps(dev);
   4563 		dev_priv->rps.enabled = false;
   4564 		mutex_unlock(&dev_priv->rps.hw_lock);
   4565 	}
   4566 }
   4567 
   4568 static void intel_gen6_powersave_work(struct work_struct *work)
   4569 {
   4570 	struct drm_i915_private *dev_priv =
   4571 		container_of(work, struct drm_i915_private,
   4572 			     rps.delayed_resume_work.work);
   4573 	struct drm_device *dev = dev_priv->dev;
   4574 
   4575 	mutex_lock(&dev_priv->rps.hw_lock);
   4576 
   4577 	if (IS_VALLEYVIEW(dev)) {
   4578 		valleyview_enable_rps(dev);
   4579 	} else if (IS_BROADWELL(dev)) {
   4580 		gen8_enable_rps(dev);
   4581 		gen6_update_ring_freq(dev);
   4582 	} else {
   4583 		gen6_enable_rps(dev);
   4584 		gen6_update_ring_freq(dev);
   4585 	}
   4586 	dev_priv->rps.enabled = true;
   4587 	mutex_unlock(&dev_priv->rps.hw_lock);
   4588 }
   4589 
   4590 void intel_enable_gt_powersave(struct drm_device *dev)
   4591 {
   4592 	struct drm_i915_private *dev_priv = dev->dev_private;
   4593 
   4594 	if (IS_IRONLAKE_M(dev)) {
   4595 		ironlake_enable_drps(dev);
   4596 		ironlake_enable_rc6(dev);
   4597 		intel_init_emon(dev);
   4598 	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
   4599 		/*
   4600 		 * PCU communication is slow and this doesn't need to be
   4601 		 * done at any specific time, so do this out of our fast path
   4602 		 * to make resume and init faster.
   4603 		 */
   4604 		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
   4605 				      round_jiffies_up_relative(HZ));
   4606 	}
   4607 }
   4608 
   4609 static void ibx_init_clock_gating(struct drm_device *dev)
   4610 {
   4611 	struct drm_i915_private *dev_priv = dev->dev_private;
   4612 
   4613 	/*
   4614 	 * On Ibex Peak and Cougar Point, we need to disable clock
   4615 	 * gating for the panel power sequencer or it will fail to
   4616 	 * start up when no ports are active.
   4617 	 */
   4618 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   4619 }
   4620 
   4621 static void g4x_disable_trickle_feed(struct drm_device *dev)
   4622 {
   4623 	struct drm_i915_private *dev_priv = dev->dev_private;
   4624 	int pipe;
   4625 
   4626 	for_each_pipe(pipe) {
   4627 		I915_WRITE(DSPCNTR(pipe),
   4628 			   I915_READ(DSPCNTR(pipe)) |
   4629 			   DISPPLANE_TRICKLE_FEED_DISABLE);
   4630 		intel_flush_primary_plane(dev_priv, pipe);
   4631 	}
   4632 }
   4633 
   4634 static void ilk_init_lp_watermarks(struct drm_device *dev)
   4635 {
   4636 	struct drm_i915_private *dev_priv = dev->dev_private;
   4637 
   4638 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
   4639 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
   4640 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
   4641 
   4642 	/*
   4643 	 * Don't touch WM1S_LP_EN here.
   4644 	 * Doing so could cause underruns.
   4645 	 */
   4646 }
   4647 
   4648 static void ironlake_init_clock_gating(struct drm_device *dev)
   4649 {
   4650 	struct drm_i915_private *dev_priv = dev->dev_private;
   4651 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   4652 
   4653 	/*
   4654 	 * Required for FBC
   4655 	 * WaFbcDisableDpfcClockGating:ilk
   4656 	 */
   4657 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   4658 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   4659 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   4660 
   4661 	I915_WRITE(PCH_3DCGDIS0,
   4662 		   MARIUNIT_CLOCK_GATE_DISABLE |
   4663 		   SVSMUNIT_CLOCK_GATE_DISABLE);
   4664 	I915_WRITE(PCH_3DCGDIS1,
   4665 		   VFMUNIT_CLOCK_GATE_DISABLE);
   4666 
   4667 	/*
   4668 	 * According to the spec the following bits should be set in
   4669 	 * order to enable memory self-refresh
   4670 	 * The bit 22/21 of 0x42004
   4671 	 * The bit 5 of 0x42020
   4672 	 * The bit 15 of 0x45000
   4673 	 */
   4674 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4675 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
   4676 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   4677 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   4678 	I915_WRITE(DISP_ARB_CTL,
   4679 		   (I915_READ(DISP_ARB_CTL) |
   4680 		    DISP_FBC_WM_DIS));
   4681 
   4682 	ilk_init_lp_watermarks(dev);
   4683 
   4684 	/*
   4685 	 * Based on the document from hardware guys the following bits
   4686 	 * should be set unconditionally in order to enable FBC.
   4687 	 * The bit 22 of 0x42000
   4688 	 * The bit 22 of 0x42004
   4689 	 * The bit 7,8,9 of 0x42020.
   4690 	 */
   4691 	if (IS_IRONLAKE_M(dev)) {
   4692 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
   4693 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
   4694 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
   4695 			   ILK_FBCQ_DIS);
   4696 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4697 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4698 			   ILK_DPARB_GATE);
   4699 	}
   4700 
   4701 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   4702 
   4703 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4704 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4705 		   ILK_ELPIN_409_SELECT);
   4706 	I915_WRITE(_3D_CHICKEN2,
   4707 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
   4708 		   _3D_CHICKEN2_WM_READ_PIPELINED);
   4709 
   4710 	/* WaDisableRenderCachePipelinedFlush:ilk */
   4711 	I915_WRITE(CACHE_MODE_0,
   4712 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   4713 
   4714 	g4x_disable_trickle_feed(dev);
   4715 
   4716 	ibx_init_clock_gating(dev);
   4717 }
   4718 
   4719 static void cpt_init_clock_gating(struct drm_device *dev)
   4720 {
   4721 	struct drm_i915_private *dev_priv = dev->dev_private;
   4722 	int pipe;
   4723 	uint32_t val;
   4724 
   4725 	/*
   4726 	 * On Ibex Peak and Cougar Point, we need to disable clock
   4727 	 * gating for the panel power sequencer or it will fail to
   4728 	 * start up when no ports are active.
   4729 	 */
   4730 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
   4731 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
   4732 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
   4733 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
   4734 		   DPLS_EDP_PPS_FIX_DIS);
   4735 	/* The below fixes the weird display corruption, a few pixels shifted
   4736 	 * downward, on (only) LVDS of some HP laptops with IVY.
   4737 	 */
   4738 	for_each_pipe(pipe) {
   4739 		val = I915_READ(TRANS_CHICKEN2(pipe));
   4740 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
   4741 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   4742 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
   4743 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   4744 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
   4745 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
   4746 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
   4747 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
   4748 	}
   4749 	/* WADP0ClockGatingDisable */
   4750 	for_each_pipe(pipe) {
   4751 		I915_WRITE(TRANS_CHICKEN1(pipe),
   4752 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   4753 	}
   4754 }
   4755 
   4756 static void gen6_check_mch_setup(struct drm_device *dev)
   4757 {
   4758 	struct drm_i915_private *dev_priv = dev->dev_private;
   4759 	uint32_t tmp;
   4760 
   4761 	tmp = I915_READ(MCH_SSKPD);
   4762 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
   4763 		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
   4764 		DRM_INFO("This can cause pipe underruns and display issues.\n");
   4765 		DRM_INFO("Please upgrade your BIOS to fix this.\n");
   4766 	}
   4767 }
   4768 
   4769 static void gen6_init_clock_gating(struct drm_device *dev)
   4770 {
   4771 	struct drm_i915_private *dev_priv = dev->dev_private;
   4772 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   4773 
   4774 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
   4775 
   4776 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4777 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4778 		   ILK_ELPIN_409_SELECT);
   4779 
   4780 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
   4781 	I915_WRITE(_3D_CHICKEN,
   4782 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
   4783 
   4784 	/* WaSetupGtModeTdRowDispatch:snb */
   4785 	if (IS_SNB_GT1(dev))
   4786 		I915_WRITE(GEN6_GT_MODE,
   4787 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
   4788 
   4789 	/*
   4790 	 * BSpec recoomends 8x4 when MSAA is used,
   4791 	 * however in practice 16x4 seems fastest.
   4792 	 *
   4793 	 * Note that PS/WM thread counts depend on the WIZ hashing
   4794 	 * disable bit, which we don't touch here, but it's good
   4795 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   4796 	 */
   4797 	I915_WRITE(GEN6_GT_MODE,
   4798 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   4799 
   4800 	ilk_init_lp_watermarks(dev);
   4801 
   4802 	I915_WRITE(CACHE_MODE_0,
   4803 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
   4804 
   4805 	I915_WRITE(GEN6_UCGCTL1,
   4806 		   I915_READ(GEN6_UCGCTL1) |
   4807 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   4808 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   4809 
   4810 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   4811 	 * gating disable must be set.  Failure to set it results in
   4812 	 * flickering pixels due to Z write ordering failures after
   4813 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   4814 	 * Sanctuary and Tropics, and apparently anything else with
   4815 	 * alpha test or pixel discard.
   4816 	 *
   4817 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   4818 	 * but we didn't debug actual testcases to find it out.
   4819 	 *
   4820 	 * WaDisableRCCUnitClockGating:snb
   4821 	 * WaDisableRCPBUnitClockGating:snb
   4822 	 */
   4823 	I915_WRITE(GEN6_UCGCTL2,
   4824 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   4825 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   4826 
   4827 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
   4828 	I915_WRITE(_3D_CHICKEN3,
   4829 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
   4830 
   4831 	/*
   4832 	 * Bspec says:
   4833 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
   4834 	 * 3DSTATE_SF number of SF output attributes is more than 16."
   4835 	 */
   4836 	I915_WRITE(_3D_CHICKEN3,
   4837 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
   4838 
   4839 	/*
   4840 	 * According to the spec the following bits should be
   4841 	 * set in order to enable memory self-refresh and fbc:
   4842 	 * The bit21 and bit22 of 0x42000
   4843 	 * The bit21 and bit22 of 0x42004
   4844 	 * The bit5 and bit7 of 0x42020
   4845 	 * The bit14 of 0x70180
   4846 	 * The bit14 of 0x71180
   4847 	 *
   4848 	 * WaFbcAsynchFlipDisableFbcQueue:snb
   4849 	 */
   4850 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
   4851 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
   4852 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   4853 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
   4854 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
   4855 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   4856 	I915_WRITE(ILK_DSPCLK_GATE_D,
   4857 		   I915_READ(ILK_DSPCLK_GATE_D) |
   4858 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   4859 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   4860 
   4861 	g4x_disable_trickle_feed(dev);
   4862 
   4863 	cpt_init_clock_gating(dev);
   4864 
   4865 	gen6_check_mch_setup(dev);
   4866 }
   4867 
   4868 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
   4869 {
   4870 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
   4871 
   4872 	/*
   4873 	 * WaVSThreadDispatchOverride:ivb,vlv
   4874 	 *
   4875 	 * This actually overrides the dispatch
   4876 	 * mode for all thread types.
   4877 	 */
   4878 	reg &= ~GEN7_FF_SCHED_MASK;
   4879 	reg |= GEN7_FF_TS_SCHED_HW;
   4880 	reg |= GEN7_FF_VS_SCHED_HW;
   4881 	reg |= GEN7_FF_DS_SCHED_HW;
   4882 
   4883 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
   4884 }
   4885 
   4886 static void lpt_init_clock_gating(struct drm_device *dev)
   4887 {
   4888 	struct drm_i915_private *dev_priv = dev->dev_private;
   4889 
   4890 	/*
   4891 	 * TODO: this bit should only be enabled when really needed, then
   4892 	 * disabled when not needed anymore in order to save power.
   4893 	 */
   4894 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
   4895 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
   4896 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
   4897 			   PCH_LP_PARTITION_LEVEL_DISABLE);
   4898 
   4899 	/* WADPOClockGatingDisable:hsw */
   4900 	I915_WRITE(_TRANSA_CHICKEN1,
   4901 		   I915_READ(_TRANSA_CHICKEN1) |
   4902 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   4903 }
   4904 
   4905 static void lpt_suspend_hw(struct drm_device *dev)
   4906 {
   4907 	struct drm_i915_private *dev_priv = dev->dev_private;
   4908 
   4909 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
   4910 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
   4911 
   4912 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
   4913 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
   4914 	}
   4915 }
   4916 
   4917 static void gen8_init_clock_gating(struct drm_device *dev)
   4918 {
   4919 	struct drm_i915_private *dev_priv = dev->dev_private;
   4920 	enum i915_pipe pipe;
   4921 
   4922 	I915_WRITE(WM3_LP_ILK, 0);
   4923 	I915_WRITE(WM2_LP_ILK, 0);
   4924 	I915_WRITE(WM1_LP_ILK, 0);
   4925 
   4926 	/* FIXME(BDW): Check all the w/a, some might only apply to
   4927 	 * pre-production hw. */
   4928 
   4929 	/* WaDisablePartialInstShootdown:bdw */
   4930 	I915_WRITE(GEN8_ROW_CHICKEN,
   4931 		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
   4932 
   4933 	/* WaDisableThreadStallDopClockGating:bdw */
   4934 	/* FIXME: Unclear whether we really need this on production bdw. */
   4935 	I915_WRITE(GEN8_ROW_CHICKEN,
   4936 		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
   4937 
   4938 	/*
   4939 	 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
   4940 	 * pre-production hardware
   4941 	 */
   4942 	I915_WRITE(HALF_SLICE_CHICKEN3,
   4943 		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
   4944 	I915_WRITE(HALF_SLICE_CHICKEN3,
   4945 		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
   4946 	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
   4947 
   4948 	I915_WRITE(_3D_CHICKEN3,
   4949 		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
   4950 
   4951 	I915_WRITE(COMMON_SLICE_CHICKEN2,
   4952 		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
   4953 
   4954 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   4955 		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
   4956 
   4957 	/* WaSwitchSolVfFArbitrationPriority:bdw */
   4958 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   4959 
   4960 	/* WaPsrDPAMaskVBlankInSRD:bdw */
   4961 	I915_WRITE(CHICKEN_PAR1_1,
   4962 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
   4963 
   4964 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
   4965 	for_each_pipe(pipe) {
   4966 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
   4967 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
   4968 			   BDW_DPRS_MASK_VBLANK_SRD);
   4969 	}
   4970 
   4971 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
   4972 	 * workaround for for a possible hang in the unlikely event a TLB
   4973 	 * invalidation occurs during a PSD flush.
   4974 	 */
   4975 	I915_WRITE(HDC_CHICKEN0,
   4976 		   I915_READ(HDC_CHICKEN0) |
   4977 		   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
   4978 
   4979 	/* WaVSRefCountFullforceMissDisable:bdw */
   4980 	/* WaDSRefCountFullforceMissDisable:bdw */
   4981 	I915_WRITE(GEN7_FF_THREAD_MODE,
   4982 		   I915_READ(GEN7_FF_THREAD_MODE) &
   4983 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   4984 
   4985 	/*
   4986 	 * BSpec recommends 8x4 when MSAA is used,
   4987 	 * however in practice 16x4 seems fastest.
   4988 	 *
   4989 	 * Note that PS/WM thread counts depend on the WIZ hashing
   4990 	 * disable bit, which we don't touch here, but it's good
   4991 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   4992 	 */
   4993 	I915_WRITE(GEN7_GT_MODE,
   4994 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   4995 
   4996 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
   4997 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   4998 
   4999 	/* WaDisableSDEUnitClockGating:bdw */
   5000 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
   5001 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   5002 
   5003 	/* Wa4x4STCOptimizationDisable:bdw */
   5004 	I915_WRITE(CACHE_MODE_1,
   5005 		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
   5006 }
   5007 
   5008 static void haswell_init_clock_gating(struct drm_device *dev)
   5009 {
   5010 	struct drm_i915_private *dev_priv = dev->dev_private;
   5011 
   5012 	ilk_init_lp_watermarks(dev);
   5013 
   5014 	/* L3 caching of data atomics doesn't work -- disable it. */
   5015 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
   5016 	I915_WRITE(HSW_ROW_CHICKEN3,
   5017 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
   5018 
   5019 	/* This is required by WaCatErrorRejectionIssue:hsw */
   5020 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   5021 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   5022 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   5023 
   5024 	/* WaVSRefCountFullforceMissDisable:hsw */
   5025 	I915_WRITE(GEN7_FF_THREAD_MODE,
   5026 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
   5027 
   5028 	/* enable HiZ Raw Stall Optimization */
   5029 	I915_WRITE(CACHE_MODE_0_GEN7,
   5030 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   5031 
   5032 	/* WaDisable4x2SubspanOptimization:hsw */
   5033 	I915_WRITE(CACHE_MODE_1,
   5034 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   5035 
   5036 	/*
   5037 	 * BSpec recommends 8x4 when MSAA is used,
   5038 	 * however in practice 16x4 seems fastest.
   5039 	 *
   5040 	 * Note that PS/WM thread counts depend on the WIZ hashing
   5041 	 * disable bit, which we don't touch here, but it's good
   5042 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   5043 	 */
   5044 	I915_WRITE(GEN7_GT_MODE,
   5045 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   5046 
   5047 	/* WaSwitchSolVfFArbitrationPriority:hsw */
   5048 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   5049 
   5050 	/* WaRsPkgCStateDisplayPMReq:hsw */
   5051 	I915_WRITE(CHICKEN_PAR1_1,
   5052 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
   5053 
   5054 	lpt_init_clock_gating(dev);
   5055 }
   5056 
   5057 static void ivybridge_init_clock_gating(struct drm_device *dev)
   5058 {
   5059 	struct drm_i915_private *dev_priv = dev->dev_private;
   5060 	uint32_t snpcr;
   5061 
   5062 	ilk_init_lp_watermarks(dev);
   5063 
   5064 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   5065 
   5066 	/* WaDisableEarlyCull:ivb */
   5067 	I915_WRITE(_3D_CHICKEN3,
   5068 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   5069 
   5070 	/* WaDisableBackToBackFlipFix:ivb */
   5071 	I915_WRITE(IVB_CHICKEN3,
   5072 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   5073 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   5074 
   5075 	/* WaDisablePSDDualDispatchEnable:ivb */
   5076 	if (IS_IVB_GT1(dev))
   5077 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   5078 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   5079 
   5080 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
   5081 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
   5082 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
   5083 
   5084 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
   5085 	I915_WRITE(GEN7_L3CNTLREG1,
   5086 			GEN7_WA_FOR_GEN7_L3_CONTROL);
   5087 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
   5088 		   GEN7_WA_L3_CHICKEN_MODE);
   5089 	if (IS_IVB_GT1(dev))
   5090 		I915_WRITE(GEN7_ROW_CHICKEN2,
   5091 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5092 	else {
   5093 		/* must write both registers */
   5094 		I915_WRITE(GEN7_ROW_CHICKEN2,
   5095 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5096 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
   5097 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5098 	}
   5099 
   5100 	/* WaForceL3Serialization:ivb */
   5101 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   5102 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   5103 
   5104 	/*
   5105 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   5106 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
   5107 	 */
   5108 	I915_WRITE(GEN6_UCGCTL2,
   5109 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   5110 
   5111 	/* This is required by WaCatErrorRejectionIssue:ivb */
   5112 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   5113 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   5114 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   5115 
   5116 	g4x_disable_trickle_feed(dev);
   5117 
   5118 	gen7_setup_fixed_func_scheduler(dev_priv);
   5119 
   5120 	if (0) { /* causes HiZ corruption on ivb:gt1 */
   5121 		/* enable HiZ Raw Stall Optimization */
   5122 		I915_WRITE(CACHE_MODE_0_GEN7,
   5123 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
   5124 	}
   5125 
   5126 	/* WaDisable4x2SubspanOptimization:ivb */
   5127 	I915_WRITE(CACHE_MODE_1,
   5128 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   5129 
   5130 	/*
   5131 	 * BSpec recommends 8x4 when MSAA is used,
   5132 	 * however in practice 16x4 seems fastest.
   5133 	 *
   5134 	 * Note that PS/WM thread counts depend on the WIZ hashing
   5135 	 * disable bit, which we don't touch here, but it's good
   5136 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
   5137 	 */
   5138 	I915_WRITE(GEN7_GT_MODE,
   5139 		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
   5140 
   5141 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
   5142 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   5143 	snpcr |= GEN6_MBC_SNPCR_MED;
   5144 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
   5145 
   5146 	if (!HAS_PCH_NOP(dev))
   5147 		cpt_init_clock_gating(dev);
   5148 
   5149 	gen6_check_mch_setup(dev);
   5150 }
   5151 
   5152 static void valleyview_init_clock_gating(struct drm_device *dev)
   5153 {
   5154 	struct drm_i915_private *dev_priv = dev->dev_private;
   5155 	u32 val;
   5156 
   5157 	mutex_lock(&dev_priv->rps.hw_lock);
   5158 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
   5159 	mutex_unlock(&dev_priv->rps.hw_lock);
   5160 	switch ((val >> 6) & 3) {
   5161 	case 0:
   5162 	case 1:
   5163 		dev_priv->mem_freq = 800;
   5164 		break;
   5165 	case 2:
   5166 		dev_priv->mem_freq = 1066;
   5167 		break;
   5168 	case 3:
   5169 		dev_priv->mem_freq = 1333;
   5170 		break;
   5171 	}
   5172 	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
   5173 
   5174 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
   5175 
   5176 	/* WaDisableEarlyCull:vlv */
   5177 	I915_WRITE(_3D_CHICKEN3,
   5178 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
   5179 
   5180 	/* WaDisableBackToBackFlipFix:vlv */
   5181 	I915_WRITE(IVB_CHICKEN3,
   5182 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   5183 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   5184 
   5185 	/* WaPsdDispatchEnable:vlv */
   5186 	/* WaDisablePSDDualDispatchEnable:vlv */
   5187 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
   5188 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
   5189 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
   5190 
   5191 	/* WaForceL3Serialization:vlv */
   5192 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
   5193 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
   5194 
   5195 	/* WaDisableDopClockGating:vlv */
   5196 	I915_WRITE(GEN7_ROW_CHICKEN2,
   5197 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   5198 
   5199 	/* This is required by WaCatErrorRejectionIssue:vlv */
   5200 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   5201 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   5202 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   5203 
   5204 	gen7_setup_fixed_func_scheduler(dev_priv);
   5205 
   5206 	/*
   5207 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   5208 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
   5209 	 */
   5210 	I915_WRITE(GEN6_UCGCTL2,
   5211 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   5212 
   5213 	/* WaDisableL3Bank2xClockGate:vlv */
   5214 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   5215 
   5216 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
   5217 
   5218 	/*
   5219 	 * BSpec says this must be set, even though
   5220 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
   5221 	 */
   5222 	I915_WRITE(CACHE_MODE_1,
   5223 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
   5224 
   5225 	/*
   5226 	 * WaIncreaseL3CreditsForVLVB0:vlv
   5227 	 * This is the hardware default actually.
   5228 	 */
   5229 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
   5230 
   5231 	/*
   5232 	 * WaDisableVLVClockGating_VBIIssue:vlv
   5233 	 * Disable clock gating on th GCFG unit to prevent a delay
   5234 	 * in the reporting of vblank events.
   5235 	 */
   5236 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   5237 }
   5238 
   5239 static void g4x_init_clock_gating(struct drm_device *dev)
   5240 {
   5241 	struct drm_i915_private *dev_priv = dev->dev_private;
   5242 	uint32_t dspclk_gate;
   5243 
   5244 	I915_WRITE(RENCLK_GATE_D1, 0);
   5245 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   5246 		   GS_UNIT_CLOCK_GATE_DISABLE |
   5247 		   CL_UNIT_CLOCK_GATE_DISABLE);
   5248 	I915_WRITE(RAMCLK_GATE_D, 0);
   5249 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   5250 		OVRUNIT_CLOCK_GATE_DISABLE |
   5251 		OVCUNIT_CLOCK_GATE_DISABLE;
   5252 	if (IS_GM45(dev))
   5253 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   5254 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
   5255 
   5256 	/* WaDisableRenderCachePipelinedFlush */
   5257 	I915_WRITE(CACHE_MODE_0,
   5258 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
   5259 
   5260 	g4x_disable_trickle_feed(dev);
   5261 }
   5262 
   5263 static void crestline_init_clock_gating(struct drm_device *dev)
   5264 {
   5265 	struct drm_i915_private *dev_priv = dev->dev_private;
   5266 
   5267 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   5268 	I915_WRITE(RENCLK_GATE_D2, 0);
   5269 	I915_WRITE(DSPCLK_GATE_D, 0);
   5270 	I915_WRITE(RAMCLK_GATE_D, 0);
   5271 	I915_WRITE16(DEUC, 0);
   5272 	I915_WRITE(MI_ARB_STATE,
   5273 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   5274 }
   5275 
   5276 static void broadwater_init_clock_gating(struct drm_device *dev)
   5277 {
   5278 	struct drm_i915_private *dev_priv = dev->dev_private;
   5279 
   5280 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   5281 		   I965_RCC_CLOCK_GATE_DISABLE |
   5282 		   I965_RCPB_CLOCK_GATE_DISABLE |
   5283 		   I965_ISC_CLOCK_GATE_DISABLE |
   5284 		   I965_FBC_CLOCK_GATE_DISABLE);
   5285 	I915_WRITE(RENCLK_GATE_D2, 0);
   5286 	I915_WRITE(MI_ARB_STATE,
   5287 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   5288 }
   5289 
   5290 static void gen3_init_clock_gating(struct drm_device *dev)
   5291 {
   5292 	struct drm_i915_private *dev_priv = dev->dev_private;
   5293 	u32 dstate = I915_READ(D_STATE);
   5294 
   5295 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   5296 		DSTATE_DOT_CLOCK_GATING;
   5297 	I915_WRITE(D_STATE, dstate);
   5298 
   5299 	if (IS_PINEVIEW(dev))
   5300 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   5301 
   5302 	/* IIR "flip pending" means done if this bit is set */
   5303 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   5304 }
   5305 
   5306 static void i85x_init_clock_gating(struct drm_device *dev)
   5307 {
   5308 	struct drm_i915_private *dev_priv = dev->dev_private;
   5309 
   5310 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   5311 }
   5312 
   5313 static void i830_init_clock_gating(struct drm_device *dev)
   5314 {
   5315 	struct drm_i915_private *dev_priv = dev->dev_private;
   5316 
   5317 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
   5318 }
   5319 
   5320 void intel_init_clock_gating(struct drm_device *dev)
   5321 {
   5322 	struct drm_i915_private *dev_priv = dev->dev_private;
   5323 
   5324 	dev_priv->display.init_clock_gating(dev);
   5325 }
   5326 
   5327 void intel_suspend_hw(struct drm_device *dev)
   5328 {
   5329 	if (HAS_PCH_LPT(dev))
   5330 		lpt_suspend_hw(dev);
   5331 }
   5332 
   5333 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
   5334 	for (i = 0;							\
   5335 	     i < (power_domains)->power_well_count &&			\
   5336 		 ((power_well) = &(power_domains)->power_wells[i]);	\
   5337 	     i++)							\
   5338 		if ((power_well)->domains & (domain_mask))
   5339 
   5340 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
   5341 	for (i = (power_domains)->power_well_count - 1;			 \
   5342 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
   5343 	     i--)							 \
   5344 		if ((power_well)->domains & (domain_mask))
   5345 
   5346 /**
   5347  * We should only use the power well if we explicitly asked the hardware to
   5348  * enable it, so check if it's enabled and also check if we've requested it to
   5349  * be enabled.
   5350  */
   5351 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
   5352 				   struct i915_power_well *power_well)
   5353 {
   5354 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
   5355 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
   5356 }
   5357 
   5358 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
   5359 				    enum intel_display_power_domain domain)
   5360 {
   5361 	struct i915_power_domains *power_domains;
   5362 
   5363 	power_domains = &dev_priv->power_domains;
   5364 
   5365 	return power_domains->domain_use_count[domain];
   5366 }
   5367 
   5368 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
   5369 				 enum intel_display_power_domain domain)
   5370 {
   5371 	struct i915_power_domains *power_domains;
   5372 	struct i915_power_well *power_well;
   5373 	bool is_enabled;
   5374 	int i;
   5375 
   5376 	if (dev_priv->pm.suspended)
   5377 		return false;
   5378 
   5379 	power_domains = &dev_priv->power_domains;
   5380 
   5381 	is_enabled = true;
   5382 
   5383 	mutex_lock(&power_domains->lock);
   5384 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
   5385 		if (power_well->always_on)
   5386 			continue;
   5387 
   5388 		if (!power_well->ops->is_enabled(dev_priv, power_well)) {
   5389 			is_enabled = false;
   5390 			break;
   5391 		}
   5392 	}
   5393 	mutex_unlock(&power_domains->lock);
   5394 
   5395 	return is_enabled;
   5396 }
   5397 
   5398 /*
   5399  * Starting with Haswell, we have a "Power Down Well" that can be turned off
   5400  * when not needed anymore. We have 4 registers that can request the power well
   5401  * to be enabled, and it will only be disabled if none of the registers is
   5402  * requesting it to be enabled.
   5403  */
   5404 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
   5405 {
   5406 	struct drm_device *dev = dev_priv->dev;
   5407 	unsigned long irqflags;
   5408 
   5409 #ifndef __NetBSD__		/* XXX Haswell VGA what?  */
   5410 	/*
   5411 	 * After we re-enable the power well, if we touch VGA register 0x3d5
   5412 	 * we'll get unclaimed register interrupts. This stops after we write
   5413 	 * anything to the VGA MSR register. The vgacon module uses this
   5414 	 * register all the time, so if we unbind our driver and, as a
   5415 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
   5416 	 * console_unlock(). So make here we touch the VGA MSR register, making
   5417 	 * sure vgacon can keep working normally without triggering interrupts
   5418 	 * and error messages.
   5419 	 */
   5420 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
   5421 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
   5422 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
   5423 #endif
   5424 
   5425 	if (IS_BROADWELL(dev)) {
   5426 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
   5427 		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
   5428 			   dev_priv->de_irq_mask[PIPE_B]);
   5429 		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
   5430 			   ~dev_priv->de_irq_mask[PIPE_B] |
   5431 			   GEN8_PIPE_VBLANK);
   5432 		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
   5433 			   dev_priv->de_irq_mask[PIPE_C]);
   5434 		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
   5435 			   ~dev_priv->de_irq_mask[PIPE_C] |
   5436 			   GEN8_PIPE_VBLANK);
   5437 		POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
   5438 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
   5439 	}
   5440 }
   5441 
   5442 static void reset_vblank_counter(struct drm_device *dev, enum i915_pipe pipe)
   5443 {
   5444 	assert_spin_locked(&dev->vbl_lock);
   5445 
   5446 	dev->vblank[pipe].last = 0;
   5447 }
   5448 
   5449 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
   5450 {
   5451 	struct drm_device *dev = dev_priv->dev;
   5452 	enum i915_pipe pipe;
   5453 	unsigned long irqflags;
   5454 
   5455 	/*
   5456 	 * After this, the registers on the pipes that are part of the power
   5457 	 * well will become zero, so we have to adjust our counters according to
   5458 	 * that.
   5459 	 *
   5460 	 * FIXME: Should we do this in general in drm_vblank_post_modeset?
   5461 	 */
   5462 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   5463 	for_each_pipe(pipe)
   5464 		if (pipe != PIPE_A)
   5465 			reset_vblank_counter(dev, pipe);
   5466 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   5467 }
   5468 
   5469 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
   5470 			       struct i915_power_well *power_well, bool enable)
   5471 {
   5472 	bool is_enabled, enable_requested;
   5473 	uint32_t tmp;
   5474 
   5475 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
   5476 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
   5477 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
   5478 
   5479 	if (enable) {
   5480 		if (!enable_requested)
   5481 			I915_WRITE(HSW_PWR_WELL_DRIVER,
   5482 				   HSW_PWR_WELL_ENABLE_REQUEST);
   5483 
   5484 		if (!is_enabled) {
   5485 			DRM_DEBUG_KMS("Enabling power well\n");
   5486 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
   5487 				      HSW_PWR_WELL_STATE_ENABLED), 20))
   5488 				DRM_ERROR("Timeout enabling power well\n");
   5489 		}
   5490 
   5491 		hsw_power_well_post_enable(dev_priv);
   5492 	} else {
   5493 		if (enable_requested) {
   5494 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
   5495 			POSTING_READ(HSW_PWR_WELL_DRIVER);
   5496 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
   5497 
   5498 			hsw_power_well_post_disable(dev_priv);
   5499 		}
   5500 	}
   5501 }
   5502 
   5503 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
   5504 				   struct i915_power_well *power_well)
   5505 {
   5506 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
   5507 
   5508 	/*
   5509 	 * We're taking over the BIOS, so clear any requests made by it since
   5510 	 * the driver is in charge now.
   5511 	 */
   5512 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
   5513 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
   5514 }
   5515 
   5516 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
   5517 				  struct i915_power_well *power_well)
   5518 {
   5519 	hsw_set_power_well(dev_priv, power_well, true);
   5520 }
   5521 
   5522 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
   5523 				   struct i915_power_well *power_well)
   5524 {
   5525 	hsw_set_power_well(dev_priv, power_well, false);
   5526 }
   5527 
   5528 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
   5529 					   struct i915_power_well *power_well)
   5530 {
   5531 }
   5532 
   5533 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
   5534 					     struct i915_power_well *power_well)
   5535 {
   5536 	return true;
   5537 }
   5538 
   5539 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
   5540 			       struct i915_power_well *power_well, bool enable)
   5541 {
   5542 	enum punit_power_well power_well_id = power_well->data;
   5543 	u32 mask;
   5544 	u32 state;
   5545 	u32 ctrl;
   5546 
   5547 	mask = PUNIT_PWRGT_MASK(power_well_id);
   5548 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
   5549 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
   5550 
   5551 	mutex_lock(&dev_priv->rps.hw_lock);
   5552 
   5553 #define COND \
   5554 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
   5555 
   5556 	if (COND)
   5557 		goto out;
   5558 
   5559 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
   5560 	ctrl &= ~mask;
   5561 	ctrl |= state;
   5562 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
   5563 
   5564 	if (wait_for(COND, 100))
   5565 		DRM_ERROR("timout setting power well state %08x (%08x)\n",
   5566 			  state,
   5567 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
   5568 
   5569 #undef COND
   5570 
   5571 out:
   5572 	mutex_unlock(&dev_priv->rps.hw_lock);
   5573 }
   5574 
   5575 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
   5576 				   struct i915_power_well *power_well)
   5577 {
   5578 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
   5579 }
   5580 
   5581 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
   5582 				  struct i915_power_well *power_well)
   5583 {
   5584 	vlv_set_power_well(dev_priv, power_well, true);
   5585 }
   5586 
   5587 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
   5588 				   struct i915_power_well *power_well)
   5589 {
   5590 	vlv_set_power_well(dev_priv, power_well, false);
   5591 }
   5592 
   5593 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
   5594 				   struct i915_power_well *power_well)
   5595 {
   5596 	int power_well_id = power_well->data;
   5597 	bool enabled = false;
   5598 	u32 mask;
   5599 	u32 state;
   5600 	u32 ctrl;
   5601 
   5602 	mask = PUNIT_PWRGT_MASK(power_well_id);
   5603 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
   5604 
   5605 	mutex_lock(&dev_priv->rps.hw_lock);
   5606 
   5607 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
   5608 	/*
   5609 	 * We only ever set the power-on and power-gate states, anything
   5610 	 * else is unexpected.
   5611 	 */
   5612 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
   5613 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
   5614 	if (state == ctrl)
   5615 		enabled = true;
   5616 
   5617 	/*
   5618 	 * A transient state at this point would mean some unexpected party
   5619 	 * is poking at the power controls too.
   5620 	 */
   5621 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
   5622 	WARN_ON(ctrl != state);
   5623 
   5624 	mutex_unlock(&dev_priv->rps.hw_lock);
   5625 
   5626 	return enabled;
   5627 }
   5628 
   5629 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
   5630 					  struct i915_power_well *power_well)
   5631 {
   5632 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
   5633 
   5634 	vlv_set_power_well(dev_priv, power_well, true);
   5635 
   5636 	spin_lock_irq(&dev_priv->irq_lock);
   5637 	valleyview_enable_display_irqs(dev_priv);
   5638 	spin_unlock_irq(&dev_priv->irq_lock);
   5639 
   5640 	/*
   5641 	 * During driver initialization we need to defer enabling hotplug
   5642 	 * processing until fbdev is set up.
   5643 	 */
   5644 	if (dev_priv->enable_hotplug_processing)
   5645 		intel_hpd_init(dev_priv->dev);
   5646 
   5647 	i915_redisable_vga_power_on(dev_priv->dev);
   5648 }
   5649 
   5650 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
   5651 					   struct i915_power_well *power_well)
   5652 {
   5653 	struct drm_device *dev = dev_priv->dev;
   5654 	enum i915_pipe pipe;
   5655 
   5656 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
   5657 
   5658 	spin_lock_irq(&dev_priv->irq_lock);
   5659 	for_each_pipe(pipe)
   5660 		__intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
   5661 
   5662 	valleyview_disable_display_irqs(dev_priv);
   5663 	spin_unlock_irq(&dev_priv->irq_lock);
   5664 
   5665 	spin_lock_irq(&dev->vbl_lock);
   5666 	for_each_pipe(pipe)
   5667 		reset_vblank_counter(dev, pipe);
   5668 	spin_unlock_irq(&dev->vbl_lock);
   5669 
   5670 	vlv_set_power_well(dev_priv, power_well, false);
   5671 }
   5672 
   5673 static void check_power_well_state(struct drm_i915_private *dev_priv,
   5674 				   struct i915_power_well *power_well)
   5675 {
   5676 	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
   5677 
   5678 	if (power_well->always_on || !i915.disable_power_well) {
   5679 		if (!enabled)
   5680 			goto mismatch;
   5681 
   5682 		return;
   5683 	}
   5684 
   5685 	if (enabled != (power_well->count > 0))
   5686 		goto mismatch;
   5687 
   5688 	return;
   5689 
   5690 mismatch:
   5691 	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
   5692 		  power_well->name, power_well->always_on, enabled,
   5693 		  power_well->count, i915.disable_power_well);
   5694 }
   5695 
   5696 void intel_display_power_get(struct drm_i915_private *dev_priv,
   5697 			     enum intel_display_power_domain domain)
   5698 {
   5699 	struct i915_power_domains *power_domains;
   5700 	struct i915_power_well *power_well;
   5701 	int i;
   5702 
   5703 	intel_runtime_pm_get(dev_priv);
   5704 
   5705 	power_domains = &dev_priv->power_domains;
   5706 
   5707 	mutex_lock(&power_domains->lock);
   5708 
   5709 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
   5710 		if (!power_well->count++) {
   5711 			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
   5712 			power_well->ops->enable(dev_priv, power_well);
   5713 		}
   5714 
   5715 		check_power_well_state(dev_priv, power_well);
   5716 	}
   5717 
   5718 	power_domains->domain_use_count[domain]++;
   5719 
   5720 	mutex_unlock(&power_domains->lock);
   5721 }
   5722 
   5723 void intel_display_power_put(struct drm_i915_private *dev_priv,
   5724 			     enum intel_display_power_domain domain)
   5725 {
   5726 	struct i915_power_domains *power_domains;
   5727 	struct i915_power_well *power_well;
   5728 	int i;
   5729 
   5730 	power_domains = &dev_priv->power_domains;
   5731 
   5732 	mutex_lock(&power_domains->lock);
   5733 
   5734 	WARN_ON(!power_domains->domain_use_count[domain]);
   5735 	power_domains->domain_use_count[domain]--;
   5736 
   5737 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
   5738 		WARN_ON(!power_well->count);
   5739 
   5740 		if (!--power_well->count && i915.disable_power_well) {
   5741 			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
   5742 			power_well->ops->disable(dev_priv, power_well);
   5743 		}
   5744 
   5745 		check_power_well_state(dev_priv, power_well);
   5746 	}
   5747 
   5748 	mutex_unlock(&power_domains->lock);
   5749 
   5750 	intel_runtime_pm_put(dev_priv);
   5751 }
   5752 
   5753 static struct i915_power_domains *hsw_pwr;
   5754 
   5755 /* Display audio driver power well request */
   5756 void i915_request_power_well(void)
   5757 {
   5758 	struct drm_i915_private *dev_priv;
   5759 
   5760 	if (WARN_ON(!hsw_pwr))
   5761 		return;
   5762 
   5763 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
   5764 				power_domains);
   5765 	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
   5766 }
   5767 EXPORT_SYMBOL_GPL(i915_request_power_well);
   5768 
   5769 /* Display audio driver power well release */
   5770 void i915_release_power_well(void)
   5771 {
   5772 	struct drm_i915_private *dev_priv;
   5773 
   5774 	if (WARN_ON(!hsw_pwr))
   5775 		return;
   5776 
   5777 	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
   5778 				power_domains);
   5779 	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
   5780 }
   5781 EXPORT_SYMBOL_GPL(i915_release_power_well);
   5782 
   5783 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
   5784 
   5785 #define HSW_ALWAYS_ON_POWER_DOMAINS (			\
   5786 	BIT(POWER_DOMAIN_PIPE_A) |			\
   5787 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
   5788 	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
   5789 	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
   5790 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
   5791 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
   5792 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
   5793 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
   5794 	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
   5795 	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
   5796 	BIT(POWER_DOMAIN_PORT_CRT) |			\
   5797 	BIT(POWER_DOMAIN_INIT))
   5798 #define HSW_DISPLAY_POWER_DOMAINS (				\
   5799 	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
   5800 	BIT(POWER_DOMAIN_INIT))
   5801 
   5802 #define BDW_ALWAYS_ON_POWER_DOMAINS (			\
   5803 	HSW_ALWAYS_ON_POWER_DOMAINS |			\
   5804 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
   5805 #define BDW_DISPLAY_POWER_DOMAINS (				\
   5806 	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
   5807 	BIT(POWER_DOMAIN_INIT))
   5808 
   5809 #define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
   5810 #define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
   5811 
   5812 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
   5813 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
   5814 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5815 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
   5816 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5817 	BIT(POWER_DOMAIN_PORT_CRT) |		\
   5818 	BIT(POWER_DOMAIN_INIT))
   5819 
   5820 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
   5821 	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
   5822 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5823 	BIT(POWER_DOMAIN_INIT))
   5824 
   5825 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
   5826 	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
   5827 	BIT(POWER_DOMAIN_INIT))
   5828 
   5829 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
   5830 	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
   5831 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5832 	BIT(POWER_DOMAIN_INIT))
   5833 
   5834 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
   5835 	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
   5836 	BIT(POWER_DOMAIN_INIT))
   5837 
   5838 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
   5839 	.sync_hw = i9xx_always_on_power_well_noop,
   5840 	.enable = i9xx_always_on_power_well_noop,
   5841 	.disable = i9xx_always_on_power_well_noop,
   5842 	.is_enabled = i9xx_always_on_power_well_enabled,
   5843 };
   5844 
   5845 static struct i915_power_well i9xx_always_on_power_well[] = {
   5846 	{
   5847 		.name = "always-on",
   5848 		.always_on = 1,
   5849 		.domains = POWER_DOMAIN_MASK,
   5850 		.ops = &i9xx_always_on_power_well_ops,
   5851 	},
   5852 };
   5853 
   5854 static const struct i915_power_well_ops hsw_power_well_ops = {
   5855 	.sync_hw = hsw_power_well_sync_hw,
   5856 	.enable = hsw_power_well_enable,
   5857 	.disable = hsw_power_well_disable,
   5858 	.is_enabled = hsw_power_well_enabled,
   5859 };
   5860 
   5861 static struct i915_power_well hsw_power_wells[] = {
   5862 	{
   5863 		.name = "always-on",
   5864 		.always_on = 1,
   5865 		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
   5866 		.ops = &i9xx_always_on_power_well_ops,
   5867 	},
   5868 	{
   5869 		.name = "display",
   5870 		.domains = HSW_DISPLAY_POWER_DOMAINS,
   5871 		.ops = &hsw_power_well_ops,
   5872 	},
   5873 };
   5874 
   5875 static struct i915_power_well bdw_power_wells[] = {
   5876 	{
   5877 		.name = "always-on",
   5878 		.always_on = 1,
   5879 		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
   5880 		.ops = &i9xx_always_on_power_well_ops,
   5881 	},
   5882 	{
   5883 		.name = "display",
   5884 		.domains = BDW_DISPLAY_POWER_DOMAINS,
   5885 		.ops = &hsw_power_well_ops,
   5886 	},
   5887 };
   5888 
   5889 static const struct i915_power_well_ops vlv_display_power_well_ops = {
   5890 	.sync_hw = vlv_power_well_sync_hw,
   5891 	.enable = vlv_display_power_well_enable,
   5892 	.disable = vlv_display_power_well_disable,
   5893 	.is_enabled = vlv_power_well_enabled,
   5894 };
   5895 
   5896 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
   5897 	.sync_hw = vlv_power_well_sync_hw,
   5898 	.enable = vlv_power_well_enable,
   5899 	.disable = vlv_power_well_disable,
   5900 	.is_enabled = vlv_power_well_enabled,
   5901 };
   5902 
   5903 static struct i915_power_well vlv_power_wells[] = {
   5904 	{
   5905 		.name = "always-on",
   5906 		.always_on = 1,
   5907 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
   5908 		.ops = &i9xx_always_on_power_well_ops,
   5909 	},
   5910 	{
   5911 		.name = "display",
   5912 		.domains = VLV_DISPLAY_POWER_DOMAINS,
   5913 		.data = PUNIT_POWER_WELL_DISP2D,
   5914 		.ops = &vlv_display_power_well_ops,
   5915 	},
   5916 	{
   5917 		.name = "dpio-common",
   5918 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
   5919 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
   5920 		.ops = &vlv_dpio_power_well_ops,
   5921 	},
   5922 	{
   5923 		.name = "dpio-tx-b-01",
   5924 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5925 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5926 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5927 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5928 		.ops = &vlv_dpio_power_well_ops,
   5929 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
   5930 	},
   5931 	{
   5932 		.name = "dpio-tx-b-23",
   5933 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5934 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5935 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5936 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5937 		.ops = &vlv_dpio_power_well_ops,
   5938 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
   5939 	},
   5940 	{
   5941 		.name = "dpio-tx-c-01",
   5942 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5943 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5944 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5945 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5946 		.ops = &vlv_dpio_power_well_ops,
   5947 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
   5948 	},
   5949 	{
   5950 		.name = "dpio-tx-c-23",
   5951 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
   5952 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
   5953 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
   5954 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
   5955 		.ops = &vlv_dpio_power_well_ops,
   5956 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
   5957 	},
   5958 };
   5959 
   5960 #define set_power_wells(power_domains, __power_wells) ({		\
   5961 	(power_domains)->power_wells = (__power_wells);			\
   5962 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
   5963 })
   5964 
   5965 int intel_power_domains_init(struct drm_i915_private *dev_priv)
   5966 {
   5967 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
   5968 
   5969 #ifdef __NetBSD__
   5970 	linux_mutex_init(&power_domains->lock);
   5971 #else
   5972 	mutex_init(&power_domains->lock);
   5973 #endif
   5974 
   5975 	/*
   5976 	 * The enabling order will be from lower to higher indexed wells,
   5977 	 * the disabling order is reversed.
   5978 	 */
   5979 	if (IS_HASWELL(dev_priv->dev)) {
   5980 		set_power_wells(power_domains, hsw_power_wells);
   5981 		hsw_pwr = power_domains;
   5982 	} else if (IS_BROADWELL(dev_priv->dev)) {
   5983 		set_power_wells(power_domains, bdw_power_wells);
   5984 		hsw_pwr = power_domains;
   5985 	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
   5986 		set_power_wells(power_domains, vlv_power_wells);
   5987 	} else {
   5988 		set_power_wells(power_domains, i9xx_always_on_power_well);
   5989 	}
   5990 
   5991 	return 0;
   5992 }
   5993 
   5994 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
   5995 {
   5996 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
   5997 
   5998 	hsw_pwr = NULL;
   5999 #ifdef __NetBSD__
   6000 	linux_mutex_destroy(&power_domains->lock);
   6001 #else
   6002 	mutex_destroy(&power_domains->lock);
   6003 #endif
   6004 }
   6005 
   6006 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
   6007 {
   6008 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
   6009 	struct i915_power_well *power_well;
   6010 	int i;
   6011 
   6012 	mutex_lock(&power_domains->lock);
   6013 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
   6014 		power_well->ops->sync_hw(dev_priv, power_well);
   6015 	mutex_unlock(&power_domains->lock);
   6016 }
   6017 
   6018 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
   6019 {
   6020 	/* For now, we need the power well to be always enabled. */
   6021 	intel_display_set_init_power(dev_priv, true);
   6022 	intel_power_domains_resume(dev_priv);
   6023 }
   6024 
   6025 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
   6026 {
   6027 	intel_runtime_pm_get(dev_priv);
   6028 }
   6029 
   6030 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
   6031 {
   6032 	intel_runtime_pm_put(dev_priv);
   6033 }
   6034 
   6035 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
   6036 {
   6037 	struct drm_device *dev = dev_priv->dev;
   6038 	struct device *device = &dev->pdev->dev;
   6039 
   6040 	if (!HAS_RUNTIME_PM(dev))
   6041 		return;
   6042 
   6043 	pm_runtime_get_sync(device);
   6044 	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
   6045 }
   6046 
   6047 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
   6048 {
   6049 	struct drm_device *dev = dev_priv->dev;
   6050 	struct device *device = &dev->pdev->dev;
   6051 
   6052 	if (!HAS_RUNTIME_PM(dev))
   6053 		return;
   6054 
   6055 	pm_runtime_mark_last_busy(device);
   6056 	pm_runtime_put_autosuspend(device);
   6057 }
   6058 
   6059 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
   6060 {
   6061 	struct drm_device *dev = dev_priv->dev;
   6062 	struct device *device = &dev->pdev->dev;
   6063 
   6064 	if (!HAS_RUNTIME_PM(dev))
   6065 		return;
   6066 
   6067 	pm_runtime_set_active(device);
   6068 
   6069 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
   6070 	pm_runtime_mark_last_busy(device);
   6071 	pm_runtime_use_autosuspend(device);
   6072 
   6073 	pm_runtime_put_autosuspend(device);
   6074 }
   6075 
   6076 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
   6077 {
   6078 	struct drm_device *dev = dev_priv->dev;
   6079 	struct device *device = &dev->pdev->dev;
   6080 
   6081 	if (!HAS_RUNTIME_PM(dev))
   6082 		return;
   6083 
   6084 	/* Make sure we're not suspended first. */
   6085 	pm_runtime_get_sync(device);
   6086 	pm_runtime_disable(device);
   6087 }
   6088 
   6089 /* Set up chip specific power management-related functions */
   6090 void intel_init_pm(struct drm_device *dev)
   6091 {
   6092 	struct drm_i915_private *dev_priv = dev->dev_private;
   6093 
   6094 	if (HAS_FBC(dev)) {
   6095 		if (INTEL_INFO(dev)->gen >= 7) {
   6096 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
   6097 			dev_priv->display.enable_fbc = gen7_enable_fbc;
   6098 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
   6099 		} else if (INTEL_INFO(dev)->gen >= 5) {
   6100 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
   6101 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
   6102 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
   6103 		} else if (IS_GM45(dev)) {
   6104 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
   6105 			dev_priv->display.enable_fbc = g4x_enable_fbc;
   6106 			dev_priv->display.disable_fbc = g4x_disable_fbc;
   6107 		} else {
   6108 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
   6109 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
   6110 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
   6111 
   6112 			/* This value was pulled out of someone's hat */
   6113 			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
   6114 		}
   6115 	}
   6116 
   6117 	/* For cxsr */
   6118 	if (IS_PINEVIEW(dev))
   6119 		i915_pineview_get_mem_freq(dev);
   6120 	else if (IS_GEN5(dev))
   6121 		i915_ironlake_get_mem_freq(dev);
   6122 
   6123 	/* For FIFO watermark updates */
   6124 	if (HAS_PCH_SPLIT(dev)) {
   6125 		ilk_setup_wm_latency(dev);
   6126 
   6127 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
   6128 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
   6129 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
   6130 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
   6131 			dev_priv->display.update_wm = ilk_update_wm;
   6132 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
   6133 		} else {
   6134 			DRM_DEBUG_KMS("Failed to read display plane latency. "
   6135 				      "Disable CxSR\n");
   6136 		}
   6137 
   6138 		if (IS_GEN5(dev))
   6139 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
   6140 		else if (IS_GEN6(dev))
   6141 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
   6142 		else if (IS_IVYBRIDGE(dev))
   6143 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
   6144 		else if (IS_HASWELL(dev))
   6145 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
   6146 		else if (INTEL_INFO(dev)->gen == 8)
   6147 			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
   6148 	} else if (IS_VALLEYVIEW(dev)) {
   6149 		dev_priv->display.update_wm = valleyview_update_wm;
   6150 		dev_priv->display.init_clock_gating =
   6151 			valleyview_init_clock_gating;
   6152 	} else if (IS_PINEVIEW(dev)) {
   6153 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
   6154 					    dev_priv->is_ddr3,
   6155 					    dev_priv->fsb_freq,
   6156 					    dev_priv->mem_freq)) {
   6157 			DRM_INFO("failed to find known CxSR latency "
   6158 				 "(found ddr%s fsb freq %d, mem freq %d), "
   6159 				 "disabling CxSR\n",
   6160 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   6161 				 dev_priv->fsb_freq, dev_priv->mem_freq);
   6162 			/* Disable CxSR and never update its watermark again */
   6163 			pineview_disable_cxsr(dev);
   6164 			dev_priv->display.update_wm = NULL;
   6165 		} else
   6166 			dev_priv->display.update_wm = pineview_update_wm;
   6167 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   6168 	} else if (IS_G4X(dev)) {
   6169 		dev_priv->display.update_wm = g4x_update_wm;
   6170 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
   6171 	} else if (IS_GEN4(dev)) {
   6172 		dev_priv->display.update_wm = i965_update_wm;
   6173 		if (IS_CRESTLINE(dev))
   6174 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
   6175 		else if (IS_BROADWATER(dev))
   6176 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
   6177 	} else if (IS_GEN3(dev)) {
   6178 		dev_priv->display.update_wm = i9xx_update_wm;
   6179 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
   6180 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
   6181 	} else if (IS_GEN2(dev)) {
   6182 		if (INTEL_INFO(dev)->num_pipes == 1) {
   6183 			dev_priv->display.update_wm = i845_update_wm;
   6184 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
   6185 		} else {
   6186 			dev_priv->display.update_wm = i9xx_update_wm;
   6187 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
   6188 		}
   6189 
   6190 		if (IS_I85X(dev) || IS_I865G(dev))
   6191 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
   6192 		else
   6193 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
   6194 	} else {
   6195 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
   6196 	}
   6197 }
   6198 
   6199 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
   6200 {
   6201 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   6202 
   6203 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   6204 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
   6205 		return -EAGAIN;
   6206 	}
   6207 
   6208 	I915_WRITE(GEN6_PCODE_DATA, *val);
   6209 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   6210 
   6211 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   6212 		     500)) {
   6213 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
   6214 		return -ETIMEDOUT;
   6215 	}
   6216 
   6217 	*val = I915_READ(GEN6_PCODE_DATA);
   6218 	I915_WRITE(GEN6_PCODE_DATA, 0);
   6219 
   6220 	return 0;
   6221 }
   6222 
   6223 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
   6224 {
   6225 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
   6226 
   6227 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
   6228 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
   6229 		return -EAGAIN;
   6230 	}
   6231 
   6232 	I915_WRITE(GEN6_PCODE_DATA, val);
   6233 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
   6234 
   6235 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
   6236 		     500)) {
   6237 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
   6238 		return -ETIMEDOUT;
   6239 	}
   6240 
   6241 	I915_WRITE(GEN6_PCODE_DATA, 0);
   6242 
   6243 	return 0;
   6244 }
   6245 
   6246 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
   6247 {
   6248 	int div;
   6249 
   6250 	/* 4 x czclk */
   6251 	switch (dev_priv->mem_freq) {
   6252 	case 800:
   6253 		div = 10;
   6254 		break;
   6255 	case 1066:
   6256 		div = 12;
   6257 		break;
   6258 	case 1333:
   6259 		div = 16;
   6260 		break;
   6261 	default:
   6262 		return -1;
   6263 	}
   6264 
   6265 	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
   6266 }
   6267 
   6268 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
   6269 {
   6270 	int mul;
   6271 
   6272 	/* 4 x czclk */
   6273 	switch (dev_priv->mem_freq) {
   6274 	case 800:
   6275 		mul = 10;
   6276 		break;
   6277 	case 1066:
   6278 		mul = 12;
   6279 		break;
   6280 	case 1333:
   6281 		mul = 16;
   6282 		break;
   6283 	default:
   6284 		return -1;
   6285 	}
   6286 
   6287 	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
   6288 }
   6289 
   6290 void intel_pm_setup(struct drm_device *dev)
   6291 {
   6292 	struct drm_i915_private *dev_priv = dev->dev_private;
   6293 
   6294 #ifdef __NetBSD__
   6295 	linux_mutex_init(&dev_priv->rps.hw_lock);
   6296 #else
   6297 	mutex_init(&dev_priv->rps.hw_lock);
   6298 #endif
   6299 
   6300 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
   6301 			  intel_gen6_powersave_work);
   6302 
   6303 	dev_priv->pm.suspended = false;
   6304 	dev_priv->pm.irqs_disabled = false;
   6305 }
   6306