intel_runtime_pm.c revision 1.5.2.3 1 /* $NetBSD: intel_runtime_pm.c,v 1.5.2.3 2018/09/30 01:45:54 pgoyette Exp $ */
2
3 /*
4 * Copyright 2012-2014 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eugeni Dodonov <eugeni.dodonov (at) intel.com>
27 * Daniel Vetter <daniel.vetter (at) ffwll.ch>
28 *
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: intel_runtime_pm.c,v 1.5.2.3 2018/09/30 01:45:54 pgoyette Exp $");
33
34 #include <linux/pm_runtime.h>
35 #include <linux/vgaarb.h>
36
37 #include "i915_drv.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: runtime pm
42 *
43 * The i915 driver supports dynamic enabling and disabling of entire hardware
44 * blocks at runtime. This is especially important on the display side where
45 * software is supposed to control many power gates manually on recent hardware,
46 * since on the GT side a lot of the power management is done by the hardware.
47 * But even there some manual control at the device level is required.
48 *
49 * Since i915 supports a diverse set of platforms with a unified codebase and
50 * hardware engineers just love to shuffle functionality around between power
51 * domains there's a sizeable amount of indirection required. This file provides
52 * generic functions to the driver for grabbing and releasing references for
53 * abstract power domains. It then maps those to the actual power wells
54 * present for a given platform.
55 */
56
57 #define GEN9_ENABLE_DC5(dev) 0
58 #define SKL_ENABLE_DC6(dev) (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
59
60 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
61 for (i = 0; \
62 i < (power_domains)->power_well_count && \
63 ((power_well) = &(power_domains)->power_wells[i]); \
64 i++) \
65 if ((power_well)->domains & (domain_mask))
66
67 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
68 for (i = (power_domains)->power_well_count - 1; \
69 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
70 i--) \
71 if ((power_well)->domains & (domain_mask))
72
73 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
74 int power_well_id);
75
76 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
77 struct i915_power_well *power_well)
78 {
79 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
80 power_well->ops->enable(dev_priv, power_well);
81 power_well->hw_enabled = true;
82 }
83
84 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
85 struct i915_power_well *power_well)
86 {
87 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
88 power_well->hw_enabled = false;
89 power_well->ops->disable(dev_priv, power_well);
90 }
91
92 /*
93 * We should only use the power well if we explicitly asked the hardware to
94 * enable it, so check if it's enabled and also check if we've requested it to
95 * be enabled.
96 */
97 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
98 struct i915_power_well *power_well)
99 {
100 return I915_READ(HSW_PWR_WELL_DRIVER) ==
101 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
102 }
103
104 /**
105 * __intel_display_power_is_enabled - unlocked check for a power domain
106 * @dev_priv: i915 device instance
107 * @domain: power domain to check
108 *
109 * This is the unlocked version of intel_display_power_is_enabled() and should
110 * only be used from error capture and recovery code where deadlocks are
111 * possible.
112 *
113 * Returns:
114 * True when the power domain is enabled, false otherwise.
115 */
116 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
117 enum intel_display_power_domain domain)
118 {
119 struct i915_power_domains *power_domains;
120 struct i915_power_well *power_well;
121 bool is_enabled;
122 int i;
123
124 if (dev_priv->pm.suspended)
125 return false;
126
127 power_domains = &dev_priv->power_domains;
128
129 is_enabled = true;
130
131 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
132 if (power_well->always_on)
133 continue;
134
135 if (!power_well->hw_enabled) {
136 is_enabled = false;
137 break;
138 }
139 }
140
141 return is_enabled;
142 }
143
144 /**
145 * intel_display_power_is_enabled - check for a power domain
146 * @dev_priv: i915 device instance
147 * @domain: power domain to check
148 *
149 * This function can be used to check the hw power domain state. It is mostly
150 * used in hardware state readout functions. Everywhere else code should rely
151 * upon explicit power domain reference counting to ensure that the hardware
152 * block is powered up before accessing it.
153 *
154 * Callers must hold the relevant modesetting locks to ensure that concurrent
155 * threads can't disable the power well while the caller tries to read a few
156 * registers.
157 *
158 * Returns:
159 * True when the power domain is enabled, false otherwise.
160 */
161 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
162 enum intel_display_power_domain domain)
163 {
164 struct i915_power_domains *power_domains;
165 bool ret;
166
167 power_domains = &dev_priv->power_domains;
168
169 mutex_lock(&power_domains->lock);
170 ret = __intel_display_power_is_enabled(dev_priv, domain);
171 mutex_unlock(&power_domains->lock);
172
173 return ret;
174 }
175
176 /**
177 * intel_display_set_init_power - set the initial power domain state
178 * @dev_priv: i915 device instance
179 * @enable: whether to enable or disable the initial power domain state
180 *
181 * For simplicity our driver load/unload and system suspend/resume code assumes
182 * that all power domains are always enabled. This functions controls the state
183 * of this little hack. While the initial power domain state is enabled runtime
184 * pm is effectively disabled.
185 */
186 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
187 bool enable)
188 {
189 if (dev_priv->power_domains.init_power_on == enable)
190 return;
191
192 if (enable)
193 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
194 else
195 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
196
197 dev_priv->power_domains.init_power_on = enable;
198 }
199
200 static inline void
201 touch_vga_msr(struct drm_device *dev)
202 {
203 #ifdef __NetBSD__
204 const bus_addr_t vgabase = 0x3c0;
205 const bus_space_tag_t iot = dev->pdev->pd_pa.pa_iot;
206 bus_space_handle_t ioh;
207 uint8_t msr;
208 int error;
209
210 error = bus_space_map(iot, vgabase, 0x10, 0, &ioh);
211 if (error) {
212 device_printf(dev->pdev->pd_dev,
213 "unable to map VGA registers: %d\n", error);
214 } else {
215 CTASSERT(vgabase <= VGA_MSR_READ);
216 msr = bus_space_read_1(iot, ioh, VGA_MSR_READ - vgabase);
217 bus_space_write_1(iot, ioh, VGA_MSR_READ - vgabase, msr);
218 bus_space_unmap(iot, ioh, 0x10);
219 }
220 #else
221 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
222 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
223 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
224 #endif
225 }
226
227 /*
228 * Starting with Haswell, we have a "Power Down Well" that can be turned off
229 * when not needed anymore. We have 4 registers that can request the power well
230 * to be enabled, and it will only be disabled if none of the registers is
231 * requesting it to be enabled.
232 */
233 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
234 {
235 struct drm_device *dev = dev_priv->dev;
236
237 /*
238 * After we re-enable the power well, if we touch VGA register 0x3d5
239 * we'll get unclaimed register interrupts. This stops after we write
240 * anything to the VGA MSR register. The vgacon module uses this
241 * register all the time, so if we unbind our driver and, as a
242 * consequence, bind vgacon, we'll get stuck in an infinite loop at
243 * console_unlock(). So make here we touch the VGA MSR register, making
244 * sure vgacon can keep working normally without triggering interrupts
245 * and error messages.
246 */
247 touch_vga_msr(dev);
248
249 if (IS_BROADWELL(dev))
250 gen8_irq_power_well_post_enable(dev_priv,
251 1 << PIPE_C | 1 << PIPE_B);
252 }
253
254 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
255 struct i915_power_well *power_well)
256 {
257 struct drm_device *dev = dev_priv->dev;
258
259 /*
260 * After we re-enable the power well, if we touch VGA register 0x3d5
261 * we'll get unclaimed register interrupts. This stops after we write
262 * anything to the VGA MSR register. The vgacon module uses this
263 * register all the time, so if we unbind our driver and, as a
264 * consequence, bind vgacon, we'll get stuck in an infinite loop at
265 * console_unlock(). So make here we touch the VGA MSR register, making
266 * sure vgacon can keep working normally without triggering interrupts
267 * and error messages.
268 */
269 if (power_well->data == SKL_DISP_PW_2) {
270 touch_vga_msr(dev);
271
272 gen8_irq_power_well_post_enable(dev_priv,
273 1 << PIPE_C | 1 << PIPE_B);
274 }
275
276 if (power_well->data == SKL_DISP_PW_1) {
277 if (!dev_priv->power_domains.initializing)
278 intel_prepare_ddi(dev);
279 gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_A);
280 }
281 }
282
283 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
284 struct i915_power_well *power_well, bool enable)
285 {
286 bool is_enabled, enable_requested;
287 uint32_t tmp;
288
289 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
290 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
291 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
292
293 if (enable) {
294 if (!enable_requested)
295 I915_WRITE(HSW_PWR_WELL_DRIVER,
296 HSW_PWR_WELL_ENABLE_REQUEST);
297
298 if (!is_enabled) {
299 DRM_DEBUG_KMS("Enabling power well\n");
300 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
301 HSW_PWR_WELL_STATE_ENABLED), 20))
302 DRM_ERROR("Timeout enabling power well\n");
303 hsw_power_well_post_enable(dev_priv);
304 }
305
306 } else {
307 if (enable_requested) {
308 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
309 POSTING_READ(HSW_PWR_WELL_DRIVER);
310 DRM_DEBUG_KMS("Requesting to disable the power well\n");
311 }
312 }
313 }
314
315 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
316 BIT(POWER_DOMAIN_TRANSCODER_A) | \
317 BIT(POWER_DOMAIN_PIPE_B) | \
318 BIT(POWER_DOMAIN_TRANSCODER_B) | \
319 BIT(POWER_DOMAIN_PIPE_C) | \
320 BIT(POWER_DOMAIN_TRANSCODER_C) | \
321 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
322 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
323 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
324 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
325 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
326 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
327 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
328 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
329 BIT(POWER_DOMAIN_PORT_DDI_E_2_LANES) | \
330 BIT(POWER_DOMAIN_AUX_B) | \
331 BIT(POWER_DOMAIN_AUX_C) | \
332 BIT(POWER_DOMAIN_AUX_D) | \
333 BIT(POWER_DOMAIN_AUDIO) | \
334 BIT(POWER_DOMAIN_VGA) | \
335 BIT(POWER_DOMAIN_INIT))
336 #define SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
337 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
338 BIT(POWER_DOMAIN_PLLS) | \
339 BIT(POWER_DOMAIN_PIPE_A) | \
340 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
341 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
342 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
343 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
344 BIT(POWER_DOMAIN_AUX_A) | \
345 BIT(POWER_DOMAIN_INIT))
346 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
347 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
348 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
349 BIT(POWER_DOMAIN_PORT_DDI_E_2_LANES) | \
350 BIT(POWER_DOMAIN_INIT))
351 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
352 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
353 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
354 BIT(POWER_DOMAIN_INIT))
355 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
356 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
357 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
358 BIT(POWER_DOMAIN_INIT))
359 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
360 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
361 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
362 BIT(POWER_DOMAIN_INIT))
363 #define SKL_DISPLAY_MISC_IO_POWER_DOMAINS ( \
364 SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
365 BIT(POWER_DOMAIN_PLLS) | \
366 BIT(POWER_DOMAIN_INIT))
367 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
368 (POWER_DOMAIN_MASK & ~(SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
369 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
370 SKL_DISPLAY_DDI_A_E_POWER_DOMAINS | \
371 SKL_DISPLAY_DDI_B_POWER_DOMAINS | \
372 SKL_DISPLAY_DDI_C_POWER_DOMAINS | \
373 SKL_DISPLAY_DDI_D_POWER_DOMAINS | \
374 SKL_DISPLAY_MISC_IO_POWER_DOMAINS)) | \
375 BIT(POWER_DOMAIN_INIT))
376
377 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
378 BIT(POWER_DOMAIN_TRANSCODER_A) | \
379 BIT(POWER_DOMAIN_PIPE_B) | \
380 BIT(POWER_DOMAIN_TRANSCODER_B) | \
381 BIT(POWER_DOMAIN_PIPE_C) | \
382 BIT(POWER_DOMAIN_TRANSCODER_C) | \
383 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
384 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
385 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
386 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
387 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
388 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
389 BIT(POWER_DOMAIN_AUX_B) | \
390 BIT(POWER_DOMAIN_AUX_C) | \
391 BIT(POWER_DOMAIN_AUDIO) | \
392 BIT(POWER_DOMAIN_VGA) | \
393 BIT(POWER_DOMAIN_GMBUS) | \
394 BIT(POWER_DOMAIN_INIT))
395 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
396 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
397 BIT(POWER_DOMAIN_PIPE_A) | \
398 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
399 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
400 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
401 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
402 BIT(POWER_DOMAIN_AUX_A) | \
403 BIT(POWER_DOMAIN_PLLS) | \
404 BIT(POWER_DOMAIN_INIT))
405 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
406 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
407 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
408 BIT(POWER_DOMAIN_INIT))
409
410 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
411 {
412 struct drm_device *dev = dev_priv->dev;
413
414 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
415 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
416 "DC9 already programmed to be enabled.\n");
417 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
418 "DC5 still not disabled to enable DC9.\n");
419 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
420 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
421
422 /*
423 * TODO: check for the following to verify the conditions to enter DC9
424 * state are satisfied:
425 * 1] Check relevant display engine registers to verify if mode set
426 * disable sequence was followed.
427 * 2] Check if display uninitialize sequence is initialized.
428 */
429 }
430
431 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
432 {
433 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
434 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
435 "DC9 already programmed to be disabled.\n");
436 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
437 "DC5 still not disabled.\n");
438
439 /*
440 * TODO: check for the following to verify DC9 state was indeed
441 * entered before programming to disable it:
442 * 1] Check relevant display engine registers to verify if mode
443 * set disable sequence was followed.
444 * 2] Check if display uninitialize sequence is initialized.
445 */
446 }
447
448 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
449 {
450 uint32_t val;
451
452 assert_can_enable_dc9(dev_priv);
453
454 DRM_DEBUG_KMS("Enabling DC9\n");
455
456 val = I915_READ(DC_STATE_EN);
457 val |= DC_STATE_EN_DC9;
458 I915_WRITE(DC_STATE_EN, val);
459 POSTING_READ(DC_STATE_EN);
460 }
461
462 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
463 {
464 uint32_t val;
465
466 assert_can_disable_dc9(dev_priv);
467
468 DRM_DEBUG_KMS("Disabling DC9\n");
469
470 val = I915_READ(DC_STATE_EN);
471 val &= ~DC_STATE_EN_DC9;
472 I915_WRITE(DC_STATE_EN, val);
473 POSTING_READ(DC_STATE_EN);
474 }
475
476 static void gen9_set_dc_state_debugmask_memory_up(
477 struct drm_i915_private *dev_priv)
478 {
479 uint32_t val;
480
481 /* The below bit doesn't need to be cleared ever afterwards */
482 val = I915_READ(DC_STATE_DEBUG);
483 if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
484 val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
485 I915_WRITE(DC_STATE_DEBUG, val);
486 POSTING_READ(DC_STATE_DEBUG);
487 }
488 }
489
490 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
491 {
492 struct drm_device *dev = dev_priv->dev;
493 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
494 SKL_DISP_PW_2);
495
496 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
497 "Platform doesn't support DC5.\n");
498 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
499 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
500
501 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
502 "DC5 already programmed to be enabled.\n");
503 WARN_ONCE(dev_priv->pm.suspended,
504 "DC5 cannot be enabled, if platform is runtime-suspended.\n");
505
506 assert_csr_loaded(dev_priv);
507 }
508
509 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
510 {
511 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
512 SKL_DISP_PW_2);
513 /*
514 * During initialization, the firmware may not be loaded yet.
515 * We still want to make sure that the DC enabling flag is cleared.
516 */
517 if (dev_priv->power_domains.initializing)
518 return;
519
520 WARN_ONCE(!pg2_enabled, "PG2 not enabled to disable DC5.\n");
521 WARN_ONCE(dev_priv->pm.suspended,
522 "Disabling of DC5 while platform is runtime-suspended should never happen.\n");
523 }
524
525 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
526 {
527 uint32_t val;
528
529 assert_can_enable_dc5(dev_priv);
530
531 DRM_DEBUG_KMS("Enabling DC5\n");
532
533 gen9_set_dc_state_debugmask_memory_up(dev_priv);
534
535 val = I915_READ(DC_STATE_EN);
536 val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK;
537 val |= DC_STATE_EN_UPTO_DC5;
538 I915_WRITE(DC_STATE_EN, val);
539 POSTING_READ(DC_STATE_EN);
540 }
541
542 static void gen9_disable_dc5(struct drm_i915_private *dev_priv)
543 {
544 uint32_t val;
545
546 assert_can_disable_dc5(dev_priv);
547
548 DRM_DEBUG_KMS("Disabling DC5\n");
549
550 val = I915_READ(DC_STATE_EN);
551 val &= ~DC_STATE_EN_UPTO_DC5;
552 I915_WRITE(DC_STATE_EN, val);
553 POSTING_READ(DC_STATE_EN);
554 }
555
556 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
557 {
558 struct drm_device *dev = dev_priv->dev;
559
560 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
561 "Platform doesn't support DC6.\n");
562 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
563 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
564 "Backlight is not disabled.\n");
565 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
566 "DC6 already programmed to be enabled.\n");
567
568 assert_csr_loaded(dev_priv);
569 }
570
571 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
572 {
573 /*
574 * During initialization, the firmware may not be loaded yet.
575 * We still want to make sure that the DC enabling flag is cleared.
576 */
577 if (dev_priv->power_domains.initializing)
578 return;
579
580 assert_csr_loaded(dev_priv);
581 WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
582 "DC6 already programmed to be disabled.\n");
583 }
584
585 static void skl_enable_dc6(struct drm_i915_private *dev_priv)
586 {
587 uint32_t val;
588
589 assert_can_enable_dc6(dev_priv);
590
591 DRM_DEBUG_KMS("Enabling DC6\n");
592
593 gen9_set_dc_state_debugmask_memory_up(dev_priv);
594
595 val = I915_READ(DC_STATE_EN);
596 val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK;
597 val |= DC_STATE_EN_UPTO_DC6;
598 I915_WRITE(DC_STATE_EN, val);
599 POSTING_READ(DC_STATE_EN);
600 }
601
602 static void skl_disable_dc6(struct drm_i915_private *dev_priv)
603 {
604 uint32_t val;
605
606 assert_can_disable_dc6(dev_priv);
607
608 DRM_DEBUG_KMS("Disabling DC6\n");
609
610 val = I915_READ(DC_STATE_EN);
611 val &= ~DC_STATE_EN_UPTO_DC6;
612 I915_WRITE(DC_STATE_EN, val);
613 POSTING_READ(DC_STATE_EN);
614 }
615
616 static void skl_set_power_well(struct drm_i915_private *dev_priv,
617 struct i915_power_well *power_well, bool enable)
618 {
619 struct drm_device *dev = dev_priv->dev;
620 uint32_t tmp, fuse_status;
621 uint32_t req_mask, state_mask;
622 bool is_enabled, enable_requested, check_fuse_status = false;
623
624 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
625 fuse_status = I915_READ(SKL_FUSE_STATUS);
626
627 switch (power_well->data) {
628 case SKL_DISP_PW_1:
629 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
630 SKL_FUSE_PG0_DIST_STATUS), 1)) {
631 DRM_ERROR("PG0 not enabled\n");
632 return;
633 }
634 break;
635 case SKL_DISP_PW_2:
636 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
637 DRM_ERROR("PG1 in disabled state\n");
638 return;
639 }
640 break;
641 case SKL_DISP_PW_DDI_A_E:
642 case SKL_DISP_PW_DDI_B:
643 case SKL_DISP_PW_DDI_C:
644 case SKL_DISP_PW_DDI_D:
645 case SKL_DISP_PW_MISC_IO:
646 break;
647 default:
648 WARN(1, "Unknown power well %lu\n", power_well->data);
649 return;
650 }
651
652 req_mask = SKL_POWER_WELL_REQ(power_well->data);
653 enable_requested = tmp & req_mask;
654 state_mask = SKL_POWER_WELL_STATE(power_well->data);
655 is_enabled = tmp & state_mask;
656
657 if (enable) {
658 if (!enable_requested) {
659 WARN((tmp & state_mask) &&
660 !I915_READ(HSW_PWR_WELL_BIOS),
661 "Invalid for power well status to be enabled, unless done by the BIOS, \
662 when request is to disable!\n");
663 if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) &&
664 power_well->data == SKL_DISP_PW_2) {
665 if (SKL_ENABLE_DC6(dev)) {
666 skl_disable_dc6(dev_priv);
667 /*
668 * DDI buffer programming unnecessary during driver-load/resume
669 * as it's already done during modeset initialization then.
670 * It's also invalid here as encoder list is still uninitialized.
671 */
672 if (!dev_priv->power_domains.initializing)
673 intel_prepare_ddi(dev);
674 } else {
675 gen9_disable_dc5(dev_priv);
676 }
677 }
678 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
679 }
680
681 if (!is_enabled) {
682 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
683 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
684 state_mask), 1))
685 DRM_ERROR("%s enable timeout\n",
686 power_well->name);
687 check_fuse_status = true;
688 }
689 } else {
690 if (enable_requested) {
691 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
692 (power_well->data == SKL_DISP_PW_1) &&
693 (intel_csr_load_status_get(dev_priv) == FW_LOADED))
694 DRM_DEBUG_KMS("Not Disabling PW1, dmc will handle\n");
695 else {
696 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
697 POSTING_READ(HSW_PWR_WELL_DRIVER);
698 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
699 }
700
701 if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) &&
702 power_well->data == SKL_DISP_PW_2) {
703 enum csr_state state;
704 /* TODO: wait for a completion event or
705 * similar here instead of busy
706 * waiting using wait_for function.
707 */
708 wait_for((state = intel_csr_load_status_get(dev_priv)) !=
709 FW_UNINITIALIZED, 1000);
710 if (state != FW_LOADED)
711 DRM_DEBUG("CSR firmware not ready (%d)\n",
712 state);
713 else
714 if (SKL_ENABLE_DC6(dev))
715 skl_enable_dc6(dev_priv);
716 else
717 gen9_enable_dc5(dev_priv);
718 }
719 }
720 }
721
722 if (check_fuse_status) {
723 if (power_well->data == SKL_DISP_PW_1) {
724 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
725 SKL_FUSE_PG1_DIST_STATUS), 1))
726 DRM_ERROR("PG1 distributing status timeout\n");
727 } else if (power_well->data == SKL_DISP_PW_2) {
728 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
729 SKL_FUSE_PG2_DIST_STATUS), 1))
730 DRM_ERROR("PG2 distributing status timeout\n");
731 }
732 }
733
734 if (enable && !is_enabled)
735 skl_power_well_post_enable(dev_priv, power_well);
736 }
737
738 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
739 struct i915_power_well *power_well)
740 {
741 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
742
743 /*
744 * We're taking over the BIOS, so clear any requests made by it since
745 * the driver is in charge now.
746 */
747 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
748 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
749 }
750
751 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
752 struct i915_power_well *power_well)
753 {
754 hsw_set_power_well(dev_priv, power_well, true);
755 }
756
757 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
758 struct i915_power_well *power_well)
759 {
760 hsw_set_power_well(dev_priv, power_well, false);
761 }
762
763 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
764 struct i915_power_well *power_well)
765 {
766 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
767 SKL_POWER_WELL_STATE(power_well->data);
768
769 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
770 }
771
772 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
773 struct i915_power_well *power_well)
774 {
775 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
776
777 /* Clear any request made by BIOS as driver is taking over */
778 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
779 }
780
781 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
782 struct i915_power_well *power_well)
783 {
784 skl_set_power_well(dev_priv, power_well, true);
785 }
786
787 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
788 struct i915_power_well *power_well)
789 {
790 skl_set_power_well(dev_priv, power_well, false);
791 }
792
793 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
794 struct i915_power_well *power_well)
795 {
796 }
797
798 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
799 struct i915_power_well *power_well)
800 {
801 return true;
802 }
803
804 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
805 struct i915_power_well *power_well, bool enable)
806 {
807 enum punit_power_well power_well_id = power_well->data;
808 u32 mask;
809 u32 state;
810 u32 ctrl;
811
812 mask = PUNIT_PWRGT_MASK(power_well_id);
813 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
814 PUNIT_PWRGT_PWR_GATE(power_well_id);
815
816 mutex_lock(&dev_priv->rps.hw_lock);
817
818 #define COND \
819 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
820
821 if (COND)
822 goto out;
823
824 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
825 ctrl &= ~mask;
826 ctrl |= state;
827 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
828
829 if (wait_for(COND, 100))
830 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
831 state,
832 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
833
834 #undef COND
835
836 out:
837 mutex_unlock(&dev_priv->rps.hw_lock);
838 }
839
840 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
841 struct i915_power_well *power_well)
842 {
843 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
844 }
845
846 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
847 struct i915_power_well *power_well)
848 {
849 vlv_set_power_well(dev_priv, power_well, true);
850 }
851
852 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
853 struct i915_power_well *power_well)
854 {
855 vlv_set_power_well(dev_priv, power_well, false);
856 }
857
858 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
859 struct i915_power_well *power_well)
860 {
861 int power_well_id = power_well->data;
862 bool enabled = false;
863 u32 mask;
864 u32 state;
865 u32 ctrl;
866
867 mask = PUNIT_PWRGT_MASK(power_well_id);
868 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
869
870 mutex_lock(&dev_priv->rps.hw_lock);
871
872 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
873 /*
874 * We only ever set the power-on and power-gate states, anything
875 * else is unexpected.
876 */
877 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
878 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
879 if (state == ctrl)
880 enabled = true;
881
882 /*
883 * A transient state at this point would mean some unexpected party
884 * is poking at the power controls too.
885 */
886 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
887 WARN_ON(ctrl != state);
888
889 mutex_unlock(&dev_priv->rps.hw_lock);
890
891 return enabled;
892 }
893
894 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
895 {
896 enum i915_pipe pipe;
897
898 /*
899 * Enable the CRI clock source so we can get at the
900 * display and the reference clock for VGA
901 * hotplug / manual detection. Supposedly DSI also
902 * needs the ref clock up and running.
903 *
904 * CHV DPLL B/C have some issues if VGA mode is enabled.
905 */
906 for_each_pipe(dev_priv->dev, pipe) {
907 u32 val = I915_READ(DPLL(pipe));
908
909 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
910 if (pipe != PIPE_A)
911 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
912
913 I915_WRITE(DPLL(pipe), val);
914 }
915
916 spin_lock_irq(&dev_priv->irq_lock);
917 valleyview_enable_display_irqs(dev_priv);
918 spin_unlock_irq(&dev_priv->irq_lock);
919
920 /*
921 * During driver initialization/resume we can avoid restoring the
922 * part of the HW/SW state that will be inited anyway explicitly.
923 */
924 if (dev_priv->power_domains.initializing)
925 return;
926
927 intel_hpd_init(dev_priv);
928
929 i915_redisable_vga_power_on(dev_priv->dev);
930 }
931
932 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
933 {
934 spin_lock_irq(&dev_priv->irq_lock);
935 valleyview_disable_display_irqs(dev_priv);
936 spin_unlock_irq(&dev_priv->irq_lock);
937
938 vlv_power_sequencer_reset(dev_priv);
939 }
940
941 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
942 struct i915_power_well *power_well)
943 {
944 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
945
946 vlv_set_power_well(dev_priv, power_well, true);
947
948 vlv_display_power_well_init(dev_priv);
949 }
950
951 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
952 struct i915_power_well *power_well)
953 {
954 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
955
956 vlv_display_power_well_deinit(dev_priv);
957
958 vlv_set_power_well(dev_priv, power_well, false);
959 }
960
961 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
962 struct i915_power_well *power_well)
963 {
964 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
965
966 /* since ref/cri clock was enabled */
967 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
968
969 vlv_set_power_well(dev_priv, power_well, true);
970
971 /*
972 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
973 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
974 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
975 * b. The other bits such as sfr settings / modesel may all
976 * be set to 0.
977 *
978 * This should only be done on init and resume from S3 with
979 * both PLLs disabled, or we risk losing DPIO and PLL
980 * synchronization.
981 */
982 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
983 }
984
985 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
986 struct i915_power_well *power_well)
987 {
988 enum i915_pipe pipe;
989
990 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
991
992 for_each_pipe(dev_priv, pipe)
993 assert_pll_disabled(dev_priv, pipe);
994
995 /* Assert common reset */
996 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
997
998 vlv_set_power_well(dev_priv, power_well, false);
999 }
1000
1001 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1002
1003 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1004 int power_well_id)
1005 {
1006 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1007 struct i915_power_well *power_well;
1008 int i;
1009
1010 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
1011 if (power_well->data == power_well_id)
1012 return power_well;
1013 }
1014
1015 return NULL;
1016 }
1017
1018 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1019
1020 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1021 {
1022 struct i915_power_well *cmn_bc =
1023 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1024 struct i915_power_well *cmn_d =
1025 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1026 u32 phy_control = dev_priv->chv_phy_control;
1027 u32 phy_status = 0;
1028 u32 phy_status_mask = 0xffffffff;
1029 u32 tmp;
1030
1031 /*
1032 * The BIOS can leave the PHY is some weird state
1033 * where it doesn't fully power down some parts.
1034 * Disable the asserts until the PHY has been fully
1035 * reset (ie. the power well has been disabled at
1036 * least once).
1037 */
1038 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1039 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1040 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1041 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1042 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1043 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1044 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1045
1046 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1047 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1048 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1049 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1050
1051 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1052 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1053
1054 /* this assumes override is only used to enable lanes */
1055 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1056 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1057
1058 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1059 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1060
1061 /* CL1 is on whenever anything is on in either channel */
1062 if (BITS_SET(phy_control,
1063 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1064 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1065 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1066
1067 /*
1068 * The DPLLB check accounts for the pipe B + port A usage
1069 * with CL2 powered up but all the lanes in the second channel
1070 * powered down.
1071 */
1072 if (BITS_SET(phy_control,
1073 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1074 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1075 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1076
1077 if (BITS_SET(phy_control,
1078 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1079 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1080 if (BITS_SET(phy_control,
1081 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1082 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1083
1084 if (BITS_SET(phy_control,
1085 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1086 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1087 if (BITS_SET(phy_control,
1088 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1089 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1090 }
1091
1092 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1093 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1094
1095 /* this assumes override is only used to enable lanes */
1096 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1097 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1098
1099 if (BITS_SET(phy_control,
1100 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1101 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1102
1103 if (BITS_SET(phy_control,
1104 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1105 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1106 if (BITS_SET(phy_control,
1107 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1108 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1109 }
1110
1111 phy_status &= phy_status_mask;
1112
1113 /*
1114 * The PHY may be busy with some initial calibration and whatnot,
1115 * so the power state can take a while to actually change.
1116 */
1117 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1118 WARN(phy_status != tmp,
1119 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1120 tmp, phy_status, dev_priv->chv_phy_control);
1121 }
1122
1123 #undef BITS_SET
1124
1125 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1126 struct i915_power_well *power_well)
1127 {
1128 enum dpio_phy phy;
1129 enum i915_pipe pipe;
1130 uint32_t tmp;
1131
1132 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1133 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1134
1135 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1136 pipe = PIPE_A;
1137 phy = DPIO_PHY0;
1138 } else {
1139 pipe = PIPE_C;
1140 phy = DPIO_PHY1;
1141 }
1142
1143 /* since ref/cri clock was enabled */
1144 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1145 vlv_set_power_well(dev_priv, power_well, true);
1146
1147 /* Poll for phypwrgood signal */
1148 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1149 DRM_ERROR("Display PHY %d is not power up\n", phy);
1150
1151 mutex_lock(&dev_priv->sb_lock);
1152
1153 /* Enable dynamic power down */
1154 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1155 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1156 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1157 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1158
1159 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1160 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1161 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1162 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1163 } else {
1164 /*
1165 * Force the non-existing CL2 off. BXT does this
1166 * too, so maybe it saves some power even though
1167 * CL2 doesn't exist?
1168 */
1169 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1170 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1171 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1172 }
1173
1174 mutex_unlock(&dev_priv->sb_lock);
1175
1176 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1177 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1178
1179 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1180 phy, dev_priv->chv_phy_control);
1181
1182 assert_chv_phy_status(dev_priv);
1183 }
1184
1185 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1186 struct i915_power_well *power_well)
1187 {
1188 enum dpio_phy phy;
1189
1190 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1191 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1192
1193 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1194 phy = DPIO_PHY0;
1195 assert_pll_disabled(dev_priv, PIPE_A);
1196 assert_pll_disabled(dev_priv, PIPE_B);
1197 } else {
1198 phy = DPIO_PHY1;
1199 assert_pll_disabled(dev_priv, PIPE_C);
1200 }
1201
1202 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1203 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1204
1205 vlv_set_power_well(dev_priv, power_well, false);
1206
1207 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1208 phy, dev_priv->chv_phy_control);
1209
1210 /* PHY is fully reset now, so we can enable the PHY state asserts */
1211 dev_priv->chv_phy_assert[phy] = true;
1212
1213 assert_chv_phy_status(dev_priv);
1214 }
1215
1216 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1217 enum dpio_channel ch, bool override, unsigned int mask)
1218 {
1219 enum i915_pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1220 u32 reg, val, expected, actual;
1221
1222 /*
1223 * The BIOS can leave the PHY is some weird state
1224 * where it doesn't fully power down some parts.
1225 * Disable the asserts until the PHY has been fully
1226 * reset (ie. the power well has been disabled at
1227 * least once).
1228 */
1229 if (!dev_priv->chv_phy_assert[phy])
1230 return;
1231
1232 if (ch == DPIO_CH0)
1233 reg = _CHV_CMN_DW0_CH0;
1234 else
1235 reg = _CHV_CMN_DW6_CH1;
1236
1237 mutex_lock(&dev_priv->sb_lock);
1238 val = vlv_dpio_read(dev_priv, pipe, reg);
1239 mutex_unlock(&dev_priv->sb_lock);
1240
1241 /*
1242 * This assumes !override is only used when the port is disabled.
1243 * All lanes should power down even without the override when
1244 * the port is disabled.
1245 */
1246 if (!override || mask == 0xf) {
1247 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1248 /*
1249 * If CH1 common lane is not active anymore
1250 * (eg. for pipe B DPLL) the entire channel will
1251 * shut down, which causes the common lane registers
1252 * to read as 0. That means we can't actually check
1253 * the lane power down status bits, but as the entire
1254 * register reads as 0 it's a good indication that the
1255 * channel is indeed entirely powered down.
1256 */
1257 if (ch == DPIO_CH1 && val == 0)
1258 expected = 0;
1259 } else if (mask != 0x0) {
1260 expected = DPIO_ANYDL_POWERDOWN;
1261 } else {
1262 expected = 0;
1263 }
1264
1265 if (ch == DPIO_CH0)
1266 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1267 else
1268 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1269 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1270
1271 WARN(actual != expected,
1272 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1273 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1274 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1275 reg, val);
1276 }
1277
1278 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1279 enum dpio_channel ch, bool override)
1280 {
1281 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1282 bool was_override;
1283
1284 mutex_lock(&power_domains->lock);
1285
1286 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1287
1288 if (override == was_override)
1289 goto out;
1290
1291 if (override)
1292 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1293 else
1294 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1295
1296 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1297
1298 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1299 phy, ch, dev_priv->chv_phy_control);
1300
1301 assert_chv_phy_status(dev_priv);
1302
1303 out:
1304 mutex_unlock(&power_domains->lock);
1305
1306 return was_override;
1307 }
1308
1309 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1310 bool override, unsigned int mask)
1311 {
1312 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1313 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1314 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1315 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1316
1317 mutex_lock(&power_domains->lock);
1318
1319 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1320 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1321
1322 if (override)
1323 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1324 else
1325 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1326
1327 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1328
1329 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1330 phy, ch, mask, dev_priv->chv_phy_control);
1331
1332 assert_chv_phy_status(dev_priv);
1333
1334 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1335
1336 mutex_unlock(&power_domains->lock);
1337 }
1338
1339 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1340 struct i915_power_well *power_well)
1341 {
1342 enum i915_pipe pipe = power_well->data;
1343 bool enabled;
1344 u32 state, ctrl;
1345
1346 mutex_lock(&dev_priv->rps.hw_lock);
1347
1348 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1349 /*
1350 * We only ever set the power-on and power-gate states, anything
1351 * else is unexpected.
1352 */
1353 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1354 enabled = state == DP_SSS_PWR_ON(pipe);
1355
1356 /*
1357 * A transient state at this point would mean some unexpected party
1358 * is poking at the power controls too.
1359 */
1360 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1361 WARN_ON(ctrl << 16 != state);
1362
1363 mutex_unlock(&dev_priv->rps.hw_lock);
1364
1365 return enabled;
1366 }
1367
1368 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1369 struct i915_power_well *power_well,
1370 bool enable)
1371 {
1372 enum i915_pipe pipe = power_well->data;
1373 u32 state;
1374 u32 ctrl;
1375
1376 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1377
1378 mutex_lock(&dev_priv->rps.hw_lock);
1379
1380 #define COND \
1381 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1382
1383 if (COND)
1384 goto out;
1385
1386 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1387 ctrl &= ~DP_SSC_MASK(pipe);
1388 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1389 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1390
1391 if (wait_for(COND, 100))
1392 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1393 state,
1394 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1395
1396 #undef COND
1397
1398 out:
1399 mutex_unlock(&dev_priv->rps.hw_lock);
1400 }
1401
1402 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1403 struct i915_power_well *power_well)
1404 {
1405 WARN_ON_ONCE(power_well->data != PIPE_A);
1406
1407 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1408 }
1409
1410 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1411 struct i915_power_well *power_well)
1412 {
1413 WARN_ON_ONCE(power_well->data != PIPE_A);
1414
1415 chv_set_pipe_power_well(dev_priv, power_well, true);
1416
1417 vlv_display_power_well_init(dev_priv);
1418 }
1419
1420 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1421 struct i915_power_well *power_well)
1422 {
1423 WARN_ON_ONCE(power_well->data != PIPE_A);
1424
1425 vlv_display_power_well_deinit(dev_priv);
1426
1427 chv_set_pipe_power_well(dev_priv, power_well, false);
1428 }
1429
1430 /**
1431 * intel_display_power_get - grab a power domain reference
1432 * @dev_priv: i915 device instance
1433 * @domain: power domain to reference
1434 *
1435 * This function grabs a power domain reference for @domain and ensures that the
1436 * power domain and all its parents are powered up. Therefore users should only
1437 * grab a reference to the innermost power domain they need.
1438 *
1439 * Any power domain reference obtained by this function must have a symmetric
1440 * call to intel_display_power_put() to release the reference again.
1441 */
1442 void intel_display_power_get(struct drm_i915_private *dev_priv,
1443 enum intel_display_power_domain domain)
1444 {
1445 struct i915_power_domains *power_domains;
1446 struct i915_power_well *power_well;
1447 int i;
1448
1449 intel_runtime_pm_get(dev_priv);
1450
1451 power_domains = &dev_priv->power_domains;
1452
1453 mutex_lock(&power_domains->lock);
1454
1455 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1456 if (!power_well->count++)
1457 intel_power_well_enable(dev_priv, power_well);
1458 }
1459
1460 power_domains->domain_use_count[domain]++;
1461
1462 mutex_unlock(&power_domains->lock);
1463 }
1464
1465 /**
1466 * intel_display_power_put - release a power domain reference
1467 * @dev_priv: i915 device instance
1468 * @domain: power domain to reference
1469 *
1470 * This function drops the power domain reference obtained by
1471 * intel_display_power_get() and might power down the corresponding hardware
1472 * block right away if this is the last reference.
1473 */
1474 void intel_display_power_put(struct drm_i915_private *dev_priv,
1475 enum intel_display_power_domain domain)
1476 {
1477 struct i915_power_domains *power_domains;
1478 struct i915_power_well *power_well;
1479 int i;
1480
1481 power_domains = &dev_priv->power_domains;
1482
1483 mutex_lock(&power_domains->lock);
1484
1485 WARN_ON(!power_domains->domain_use_count[domain]);
1486 power_domains->domain_use_count[domain]--;
1487
1488 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1489 WARN_ON(!power_well->count);
1490
1491 if (!--power_well->count && i915.disable_power_well)
1492 intel_power_well_disable(dev_priv, power_well);
1493 }
1494
1495 mutex_unlock(&power_domains->lock);
1496
1497 intel_runtime_pm_put(dev_priv);
1498 }
1499
1500 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
1501 BIT(POWER_DOMAIN_PIPE_A) | \
1502 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
1503 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
1504 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
1505 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
1506 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1507 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
1508 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1509 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
1510 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
1511 BIT(POWER_DOMAIN_PORT_CRT) | \
1512 BIT(POWER_DOMAIN_PLLS) | \
1513 BIT(POWER_DOMAIN_AUX_A) | \
1514 BIT(POWER_DOMAIN_AUX_B) | \
1515 BIT(POWER_DOMAIN_AUX_C) | \
1516 BIT(POWER_DOMAIN_AUX_D) | \
1517 BIT(POWER_DOMAIN_GMBUS) | \
1518 BIT(POWER_DOMAIN_INIT))
1519 #define HSW_DISPLAY_POWER_DOMAINS ( \
1520 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
1521 BIT(POWER_DOMAIN_INIT))
1522
1523 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
1524 HSW_ALWAYS_ON_POWER_DOMAINS | \
1525 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1526 #define BDW_DISPLAY_POWER_DOMAINS ( \
1527 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
1528 BIT(POWER_DOMAIN_INIT))
1529
1530 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
1531 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
1532
1533 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1534 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
1535 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1536 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
1537 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1538 BIT(POWER_DOMAIN_PORT_CRT) | \
1539 BIT(POWER_DOMAIN_AUX_B) | \
1540 BIT(POWER_DOMAIN_AUX_C) | \
1541 BIT(POWER_DOMAIN_INIT))
1542
1543 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1544 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
1545 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1546 BIT(POWER_DOMAIN_AUX_B) | \
1547 BIT(POWER_DOMAIN_INIT))
1548
1549 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1550 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1551 BIT(POWER_DOMAIN_AUX_B) | \
1552 BIT(POWER_DOMAIN_INIT))
1553
1554 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1555 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
1556 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1557 BIT(POWER_DOMAIN_AUX_C) | \
1558 BIT(POWER_DOMAIN_INIT))
1559
1560 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1561 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1562 BIT(POWER_DOMAIN_AUX_C) | \
1563 BIT(POWER_DOMAIN_INIT))
1564
1565 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1566 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
1567 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1568 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
1569 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1570 BIT(POWER_DOMAIN_AUX_B) | \
1571 BIT(POWER_DOMAIN_AUX_C) | \
1572 BIT(POWER_DOMAIN_INIT))
1573
1574 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1575 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
1576 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
1577 BIT(POWER_DOMAIN_AUX_D) | \
1578 BIT(POWER_DOMAIN_INIT))
1579
1580 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1581 .sync_hw = i9xx_always_on_power_well_noop,
1582 .enable = i9xx_always_on_power_well_noop,
1583 .disable = i9xx_always_on_power_well_noop,
1584 .is_enabled = i9xx_always_on_power_well_enabled,
1585 };
1586
1587 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1588 .sync_hw = chv_pipe_power_well_sync_hw,
1589 .enable = chv_pipe_power_well_enable,
1590 .disable = chv_pipe_power_well_disable,
1591 .is_enabled = chv_pipe_power_well_enabled,
1592 };
1593
1594 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1595 .sync_hw = vlv_power_well_sync_hw,
1596 .enable = chv_dpio_cmn_power_well_enable,
1597 .disable = chv_dpio_cmn_power_well_disable,
1598 .is_enabled = vlv_power_well_enabled,
1599 };
1600
1601 static struct i915_power_well i9xx_always_on_power_well[] = {
1602 {
1603 .name = "always-on",
1604 .always_on = 1,
1605 .domains = POWER_DOMAIN_MASK,
1606 .ops = &i9xx_always_on_power_well_ops,
1607 },
1608 };
1609
1610 static const struct i915_power_well_ops hsw_power_well_ops = {
1611 .sync_hw = hsw_power_well_sync_hw,
1612 .enable = hsw_power_well_enable,
1613 .disable = hsw_power_well_disable,
1614 .is_enabled = hsw_power_well_enabled,
1615 };
1616
1617 static const struct i915_power_well_ops skl_power_well_ops = {
1618 .sync_hw = skl_power_well_sync_hw,
1619 .enable = skl_power_well_enable,
1620 .disable = skl_power_well_disable,
1621 .is_enabled = skl_power_well_enabled,
1622 };
1623
1624 static struct i915_power_well hsw_power_wells[] = {
1625 {
1626 .name = "always-on",
1627 .always_on = 1,
1628 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1629 .ops = &i9xx_always_on_power_well_ops,
1630 },
1631 {
1632 .name = "display",
1633 .domains = HSW_DISPLAY_POWER_DOMAINS,
1634 .ops = &hsw_power_well_ops,
1635 },
1636 };
1637
1638 static struct i915_power_well bdw_power_wells[] = {
1639 {
1640 .name = "always-on",
1641 .always_on = 1,
1642 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1643 .ops = &i9xx_always_on_power_well_ops,
1644 },
1645 {
1646 .name = "display",
1647 .domains = BDW_DISPLAY_POWER_DOMAINS,
1648 .ops = &hsw_power_well_ops,
1649 },
1650 };
1651
1652 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1653 .sync_hw = vlv_power_well_sync_hw,
1654 .enable = vlv_display_power_well_enable,
1655 .disable = vlv_display_power_well_disable,
1656 .is_enabled = vlv_power_well_enabled,
1657 };
1658
1659 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1660 .sync_hw = vlv_power_well_sync_hw,
1661 .enable = vlv_dpio_cmn_power_well_enable,
1662 .disable = vlv_dpio_cmn_power_well_disable,
1663 .is_enabled = vlv_power_well_enabled,
1664 };
1665
1666 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1667 .sync_hw = vlv_power_well_sync_hw,
1668 .enable = vlv_power_well_enable,
1669 .disable = vlv_power_well_disable,
1670 .is_enabled = vlv_power_well_enabled,
1671 };
1672
1673 static struct i915_power_well vlv_power_wells[] = {
1674 {
1675 .name = "always-on",
1676 .always_on = 1,
1677 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1678 .ops = &i9xx_always_on_power_well_ops,
1679 },
1680 {
1681 .name = "display",
1682 .domains = VLV_DISPLAY_POWER_DOMAINS,
1683 .data = PUNIT_POWER_WELL_DISP2D,
1684 .ops = &vlv_display_power_well_ops,
1685 },
1686 {
1687 .name = "dpio-tx-b-01",
1688 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1689 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1690 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1691 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1692 .ops = &vlv_dpio_power_well_ops,
1693 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1694 },
1695 {
1696 .name = "dpio-tx-b-23",
1697 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1698 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1699 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1700 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1701 .ops = &vlv_dpio_power_well_ops,
1702 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1703 },
1704 {
1705 .name = "dpio-tx-c-01",
1706 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1707 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1708 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1709 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1710 .ops = &vlv_dpio_power_well_ops,
1711 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1712 },
1713 {
1714 .name = "dpio-tx-c-23",
1715 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1716 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1717 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1718 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1719 .ops = &vlv_dpio_power_well_ops,
1720 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1721 },
1722 {
1723 .name = "dpio-common",
1724 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1725 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1726 .ops = &vlv_dpio_cmn_power_well_ops,
1727 },
1728 };
1729
1730 static struct i915_power_well chv_power_wells[] = {
1731 {
1732 .name = "always-on",
1733 .always_on = 1,
1734 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1735 .ops = &i9xx_always_on_power_well_ops,
1736 },
1737 {
1738 .name = "display",
1739 /*
1740 * Pipe A power well is the new disp2d well. Pipe B and C
1741 * power wells don't actually exist. Pipe A power well is
1742 * required for any pipe to work.
1743 */
1744 .domains = VLV_DISPLAY_POWER_DOMAINS,
1745 .data = PIPE_A,
1746 .ops = &chv_pipe_power_well_ops,
1747 },
1748 {
1749 .name = "dpio-common-bc",
1750 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1751 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1752 .ops = &chv_dpio_cmn_power_well_ops,
1753 },
1754 {
1755 .name = "dpio-common-d",
1756 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1757 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1758 .ops = &chv_dpio_cmn_power_well_ops,
1759 },
1760 };
1761
1762 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1763 int power_well_id)
1764 {
1765 struct i915_power_well *power_well;
1766 bool ret;
1767
1768 power_well = lookup_power_well(dev_priv, power_well_id);
1769 ret = power_well->ops->is_enabled(dev_priv, power_well);
1770
1771 return ret;
1772 }
1773
1774 static struct i915_power_well skl_power_wells[] = {
1775 {
1776 .name = "always-on",
1777 .always_on = 1,
1778 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1779 .ops = &i9xx_always_on_power_well_ops,
1780 },
1781 {
1782 .name = "power well 1",
1783 .domains = SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1784 .ops = &skl_power_well_ops,
1785 .data = SKL_DISP_PW_1,
1786 },
1787 {
1788 .name = "MISC IO power well",
1789 .domains = SKL_DISPLAY_MISC_IO_POWER_DOMAINS,
1790 .ops = &skl_power_well_ops,
1791 .data = SKL_DISP_PW_MISC_IO,
1792 },
1793 {
1794 .name = "power well 2",
1795 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1796 .ops = &skl_power_well_ops,
1797 .data = SKL_DISP_PW_2,
1798 },
1799 {
1800 .name = "DDI A/E power well",
1801 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1802 .ops = &skl_power_well_ops,
1803 .data = SKL_DISP_PW_DDI_A_E,
1804 },
1805 {
1806 .name = "DDI B power well",
1807 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1808 .ops = &skl_power_well_ops,
1809 .data = SKL_DISP_PW_DDI_B,
1810 },
1811 {
1812 .name = "DDI C power well",
1813 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1814 .ops = &skl_power_well_ops,
1815 .data = SKL_DISP_PW_DDI_C,
1816 },
1817 {
1818 .name = "DDI D power well",
1819 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1820 .ops = &skl_power_well_ops,
1821 .data = SKL_DISP_PW_DDI_D,
1822 },
1823 };
1824
1825 static struct i915_power_well bxt_power_wells[] = {
1826 {
1827 .name = "always-on",
1828 .always_on = 1,
1829 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1830 .ops = &i9xx_always_on_power_well_ops,
1831 },
1832 {
1833 .name = "power well 1",
1834 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1835 .ops = &skl_power_well_ops,
1836 .data = SKL_DISP_PW_1,
1837 },
1838 {
1839 .name = "power well 2",
1840 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1841 .ops = &skl_power_well_ops,
1842 .data = SKL_DISP_PW_2,
1843 }
1844 };
1845
1846 static int
1847 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
1848 int disable_power_well)
1849 {
1850 if (disable_power_well >= 0)
1851 return !!disable_power_well;
1852
1853 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1854 DRM_DEBUG_KMS("Disabling display power well support\n");
1855 return 0;
1856 }
1857
1858 return 1;
1859 }
1860
1861 #define set_power_wells(power_domains, __power_wells) ({ \
1862 (power_domains)->power_wells = (__power_wells); \
1863 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
1864 })
1865
1866 /**
1867 * intel_power_domains_init - initializes the power domain structures
1868 * @dev_priv: i915 device instance
1869 *
1870 * Initializes the power domain structures for @dev_priv depending upon the
1871 * supported platform.
1872 */
1873 int intel_power_domains_init(struct drm_i915_private *dev_priv)
1874 {
1875 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1876
1877 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
1878 i915.disable_power_well);
1879
1880 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
1881
1882 #ifdef __NetBSD__
1883 linux_mutex_init(&power_domains->lock);
1884 #else
1885 mutex_init(&power_domains->lock);
1886 #endif
1887
1888 /*
1889 * The enabling order will be from lower to higher indexed wells,
1890 * the disabling order is reversed.
1891 */
1892 if (IS_HASWELL(dev_priv->dev)) {
1893 set_power_wells(power_domains, hsw_power_wells);
1894 } else if (IS_BROADWELL(dev_priv->dev)) {
1895 set_power_wells(power_domains, bdw_power_wells);
1896 } else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
1897 set_power_wells(power_domains, skl_power_wells);
1898 } else if (IS_BROXTON(dev_priv->dev)) {
1899 set_power_wells(power_domains, bxt_power_wells);
1900 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1901 set_power_wells(power_domains, chv_power_wells);
1902 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
1903 set_power_wells(power_domains, vlv_power_wells);
1904 } else {
1905 set_power_wells(power_domains, i9xx_always_on_power_well);
1906 }
1907
1908 return 0;
1909 }
1910
1911 static void intel_runtime_pm_disable(struct drm_i915_private *dev_priv)
1912 {
1913 struct drm_device *dev = dev_priv->dev;
1914 struct device *device = dev->dev;
1915
1916 if (!HAS_RUNTIME_PM(dev))
1917 return;
1918
1919 if (!intel_enable_rc6(dev))
1920 return;
1921
1922 /* Make sure we're not suspended first. */
1923 pm_runtime_get_sync(device);
1924 }
1925
1926 /**
1927 * intel_power_domains_fini - finalizes the power domain structures
1928 * @dev_priv: i915 device instance
1929 *
1930 * Finalizes the power domain structures for @dev_priv depending upon the
1931 * supported platform. This function also disables runtime pm and ensures that
1932 * the device stays powered up so that the driver can be reloaded.
1933 */
1934 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
1935 {
1936 intel_runtime_pm_disable(dev_priv);
1937
1938 /* The i915.ko module is still not prepared to be loaded when
1939 * the power well is not enabled, so just enable it in case
1940 * we're going to unload/reload. */
1941 intel_display_set_init_power(dev_priv, true);
1942
1943 #ifdef __NetBSD__
1944 linux_mutex_destroy(&dev_priv->power_domains.lock);
1945 #else
1946 mutex_destroy(&dev_priv->power_domains.lock);
1947 #endif
1948 }
1949
1950 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
1951 {
1952 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1953 struct i915_power_well *power_well;
1954 int i;
1955
1956 mutex_lock(&power_domains->lock);
1957 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
1958 power_well->ops->sync_hw(dev_priv, power_well);
1959 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
1960 power_well);
1961 }
1962 mutex_unlock(&power_domains->lock);
1963 }
1964
1965 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1966 {
1967 struct i915_power_well *cmn_bc =
1968 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1969 struct i915_power_well *cmn_d =
1970 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1971
1972 /*
1973 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1974 * workaround never ever read DISPLAY_PHY_CONTROL, and
1975 * instead maintain a shadow copy ourselves. Use the actual
1976 * power well state and lane status to reconstruct the
1977 * expected initial value.
1978 */
1979 dev_priv->chv_phy_control =
1980 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1981 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1982 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1983 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1984 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1985
1986 /*
1987 * If all lanes are disabled we leave the override disabled
1988 * with all power down bits cleared to match the state we
1989 * would use after disabling the port. Otherwise enable the
1990 * override and set the lane powerdown bits accding to the
1991 * current lane status.
1992 */
1993 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1994 uint32_t status = I915_READ(DPLL(PIPE_A));
1995 unsigned int mask;
1996
1997 mask = status & DPLL_PORTB_READY_MASK;
1998 if (mask == 0xf)
1999 mask = 0x0;
2000 else
2001 dev_priv->chv_phy_control |=
2002 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2003
2004 dev_priv->chv_phy_control |=
2005 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2006
2007 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2008 if (mask == 0xf)
2009 mask = 0x0;
2010 else
2011 dev_priv->chv_phy_control |=
2012 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2013
2014 dev_priv->chv_phy_control |=
2015 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2016
2017 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2018
2019 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2020 } else {
2021 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2022 }
2023
2024 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2025 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2026 unsigned int mask;
2027
2028 mask = status & DPLL_PORTD_READY_MASK;
2029
2030 if (mask == 0xf)
2031 mask = 0x0;
2032 else
2033 dev_priv->chv_phy_control |=
2034 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2035
2036 dev_priv->chv_phy_control |=
2037 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2038
2039 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2040
2041 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2042 } else {
2043 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2044 }
2045
2046 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2047
2048 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2049 dev_priv->chv_phy_control);
2050 }
2051
2052 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2053 {
2054 struct i915_power_well *cmn =
2055 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2056 struct i915_power_well *disp2d =
2057 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2058
2059 /* If the display might be already active skip this */
2060 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2061 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2062 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2063 return;
2064
2065 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2066
2067 /* cmnlane needs DPLL registers */
2068 disp2d->ops->enable(dev_priv, disp2d);
2069
2070 /*
2071 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2072 * Need to assert and de-assert PHY SB reset by gating the
2073 * common lane power, then un-gating it.
2074 * Simply ungating isn't enough to reset the PHY enough to get
2075 * ports and lanes running.
2076 */
2077 cmn->ops->disable(dev_priv, cmn);
2078 }
2079
2080 /**
2081 * intel_power_domains_init_hw - initialize hardware power domain state
2082 * @dev_priv: i915 device instance
2083 *
2084 * This function initializes the hardware power domain state and enables all
2085 * power domains using intel_display_set_init_power().
2086 */
2087 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
2088 {
2089 struct drm_device *dev = dev_priv->dev;
2090 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2091
2092 power_domains->initializing = true;
2093
2094 if (IS_CHERRYVIEW(dev)) {
2095 mutex_lock(&power_domains->lock);
2096 chv_phy_control_init(dev_priv);
2097 mutex_unlock(&power_domains->lock);
2098 } else if (IS_VALLEYVIEW(dev)) {
2099 mutex_lock(&power_domains->lock);
2100 vlv_cmnlane_wa(dev_priv);
2101 mutex_unlock(&power_domains->lock);
2102 }
2103
2104 /* For now, we need the power well to be always enabled. */
2105 intel_display_set_init_power(dev_priv, true);
2106 intel_power_domains_resume(dev_priv);
2107 power_domains->initializing = false;
2108 }
2109
2110 /**
2111 * intel_runtime_pm_get - grab a runtime pm reference
2112 * @dev_priv: i915 device instance
2113 *
2114 * This function grabs a device-level runtime pm reference (mostly used for GEM
2115 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2116 *
2117 * Any runtime pm reference obtained by this function must have a symmetric
2118 * call to intel_runtime_pm_put() to release the reference again.
2119 */
2120 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2121 {
2122 struct drm_device *dev = dev_priv->dev;
2123 struct device *device = dev->dev;
2124
2125 if (!HAS_RUNTIME_PM(dev))
2126 return;
2127
2128 pm_runtime_get_sync(device);
2129 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
2130 }
2131
2132 /**
2133 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2134 * @dev_priv: i915 device instance
2135 *
2136 * This function grabs a device-level runtime pm reference (mostly used for GEM
2137 * code to ensure the GTT or GT is on).
2138 *
2139 * It will _not_ power up the device but instead only check that it's powered
2140 * on. Therefore it is only valid to call this functions from contexts where
2141 * the device is known to be powered up and where trying to power it up would
2142 * result in hilarity and deadlocks. That pretty much means only the system
2143 * suspend/resume code where this is used to grab runtime pm references for
2144 * delayed setup down in work items.
2145 *
2146 * Any runtime pm reference obtained by this function must have a symmetric
2147 * call to intel_runtime_pm_put() to release the reference again.
2148 */
2149 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2150 {
2151 struct drm_device *dev = dev_priv->dev;
2152 struct device *device = dev->dev;
2153
2154 if (!HAS_RUNTIME_PM(dev))
2155 return;
2156
2157 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
2158 pm_runtime_get_noresume(device);
2159 }
2160
2161 /**
2162 * intel_runtime_pm_put - release a runtime pm reference
2163 * @dev_priv: i915 device instance
2164 *
2165 * This function drops the device-level runtime pm reference obtained by
2166 * intel_runtime_pm_get() and might power down the corresponding
2167 * hardware block right away if this is the last reference.
2168 */
2169 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2170 {
2171 struct drm_device *dev = dev_priv->dev;
2172 struct device *device = dev->dev;
2173
2174 if (!HAS_RUNTIME_PM(dev))
2175 return;
2176
2177 pm_runtime_mark_last_busy(device);
2178 pm_runtime_put_autosuspend(device);
2179 }
2180
2181 /**
2182 * intel_runtime_pm_enable - enable runtime pm
2183 * @dev_priv: i915 device instance
2184 *
2185 * This function enables runtime pm at the end of the driver load sequence.
2186 *
2187 * Note that this function does currently not enable runtime pm for the
2188 * subordinate display power domains. That is only done on the first modeset
2189 * using intel_display_set_init_power().
2190 */
2191 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2192 {
2193 struct drm_device *dev = dev_priv->dev;
2194 struct device *device = dev->dev;
2195
2196 if (!HAS_RUNTIME_PM(dev))
2197 return;
2198
2199 /*
2200 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
2201 * requirement.
2202 */
2203 if (!intel_enable_rc6(dev)) {
2204 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
2205 return;
2206 }
2207
2208 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2209 pm_runtime_mark_last_busy(device);
2210 pm_runtime_use_autosuspend(device);
2211
2212 pm_runtime_put_autosuspend(device);
2213 }
2214
2215