intel_runtime_pm.c revision 1.6.4.3 1 /* $NetBSD: intel_runtime_pm.c,v 1.6.4.3 2020/04/08 14:08:23 martin Exp $ */
2
3 /*
4 * Copyright 2012-2014 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eugeni Dodonov <eugeni.dodonov (at) intel.com>
27 * Daniel Vetter <daniel.vetter (at) ffwll.ch>
28 *
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: intel_runtime_pm.c,v 1.6.4.3 2020/04/08 14:08:23 martin Exp $");
33
34 #include <linux/pm_runtime.h>
35 #include <linux/vgaarb.h>
36
37 #include "i915_drv.h"
38 #include "intel_drv.h"
39
40 #include <linux/nbsd-namespace.h>
41
42 /**
43 * DOC: runtime pm
44 *
45 * The i915 driver supports dynamic enabling and disabling of entire hardware
46 * blocks at runtime. This is especially important on the display side where
47 * software is supposed to control many power gates manually on recent hardware,
48 * since on the GT side a lot of the power management is done by the hardware.
49 * But even there some manual control at the device level is required.
50 *
51 * Since i915 supports a diverse set of platforms with a unified codebase and
52 * hardware engineers just love to shuffle functionality around between power
53 * domains there's a sizeable amount of indirection required. This file provides
54 * generic functions to the driver for grabbing and releasing references for
55 * abstract power domains. It then maps those to the actual power wells
56 * present for a given platform.
57 */
58
59 #define GEN9_ENABLE_DC5(dev) 0
60 #define SKL_ENABLE_DC6(dev) (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
61
62 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
63 for (i = 0; \
64 i < (power_domains)->power_well_count && \
65 ((power_well) = &(power_domains)->power_wells[i]); \
66 i++) \
67 if ((power_well)->domains & (domain_mask))
68
69 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
70 for (i = (power_domains)->power_well_count - 1; \
71 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
72 i--) \
73 if ((power_well)->domains & (domain_mask))
74
75 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
76 int power_well_id);
77
78 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
79 struct i915_power_well *power_well)
80 {
81 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
82 power_well->ops->enable(dev_priv, power_well);
83 power_well->hw_enabled = true;
84 }
85
86 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
87 struct i915_power_well *power_well)
88 {
89 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
90 power_well->hw_enabled = false;
91 power_well->ops->disable(dev_priv, power_well);
92 }
93
94 /*
95 * We should only use the power well if we explicitly asked the hardware to
96 * enable it, so check if it's enabled and also check if we've requested it to
97 * be enabled.
98 */
99 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
100 struct i915_power_well *power_well)
101 {
102 return I915_READ(HSW_PWR_WELL_DRIVER) ==
103 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
104 }
105
106 /**
107 * __intel_display_power_is_enabled - unlocked check for a power domain
108 * @dev_priv: i915 device instance
109 * @domain: power domain to check
110 *
111 * This is the unlocked version of intel_display_power_is_enabled() and should
112 * only be used from error capture and recovery code where deadlocks are
113 * possible.
114 *
115 * Returns:
116 * True when the power domain is enabled, false otherwise.
117 */
118 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
119 enum intel_display_power_domain domain)
120 {
121 struct i915_power_domains *power_domains;
122 struct i915_power_well *power_well;
123 bool is_enabled;
124 int i;
125
126 if (dev_priv->pm.suspended)
127 return false;
128
129 power_domains = &dev_priv->power_domains;
130
131 is_enabled = true;
132
133 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
134 if (power_well->always_on)
135 continue;
136
137 if (!power_well->hw_enabled) {
138 is_enabled = false;
139 break;
140 }
141 }
142
143 return is_enabled;
144 }
145
146 /**
147 * intel_display_power_is_enabled - check for a power domain
148 * @dev_priv: i915 device instance
149 * @domain: power domain to check
150 *
151 * This function can be used to check the hw power domain state. It is mostly
152 * used in hardware state readout functions. Everywhere else code should rely
153 * upon explicit power domain reference counting to ensure that the hardware
154 * block is powered up before accessing it.
155 *
156 * Callers must hold the relevant modesetting locks to ensure that concurrent
157 * threads can't disable the power well while the caller tries to read a few
158 * registers.
159 *
160 * Returns:
161 * True when the power domain is enabled, false otherwise.
162 */
163 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
164 enum intel_display_power_domain domain)
165 {
166 struct i915_power_domains *power_domains;
167 bool ret;
168
169 power_domains = &dev_priv->power_domains;
170
171 mutex_lock(&power_domains->lock);
172 ret = __intel_display_power_is_enabled(dev_priv, domain);
173 mutex_unlock(&power_domains->lock);
174
175 return ret;
176 }
177
178 /**
179 * intel_display_set_init_power - set the initial power domain state
180 * @dev_priv: i915 device instance
181 * @enable: whether to enable or disable the initial power domain state
182 *
183 * For simplicity our driver load/unload and system suspend/resume code assumes
184 * that all power domains are always enabled. This functions controls the state
185 * of this little hack. While the initial power domain state is enabled runtime
186 * pm is effectively disabled.
187 */
188 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
189 bool enable)
190 {
191 if (dev_priv->power_domains.init_power_on == enable)
192 return;
193
194 if (enable)
195 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
196 else
197 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
198
199 dev_priv->power_domains.init_power_on = enable;
200 }
201
202 static inline void
203 touch_vga_msr(struct drm_device *dev)
204 {
205 #ifdef __NetBSD__
206 const bus_addr_t vgabase = 0x3c0;
207 const bus_space_tag_t iot = dev->pdev->pd_pa.pa_iot;
208 bus_space_handle_t ioh;
209 uint8_t msr;
210 int error;
211
212 error = bus_space_map(iot, vgabase, 0x10, 0, &ioh);
213 if (error) {
214 device_printf(dev->pdev->pd_dev,
215 "unable to map VGA registers: %d\n", error);
216 } else {
217 CTASSERT(vgabase <= VGA_MSR_READ);
218 msr = bus_space_read_1(iot, ioh, VGA_MSR_READ - vgabase);
219 bus_space_write_1(iot, ioh, VGA_MSR_READ - vgabase, msr);
220 bus_space_unmap(iot, ioh, 0x10);
221 }
222 #else
223 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
224 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
225 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
226 #endif
227 }
228
229 /*
230 * Starting with Haswell, we have a "Power Down Well" that can be turned off
231 * when not needed anymore. We have 4 registers that can request the power well
232 * to be enabled, and it will only be disabled if none of the registers is
233 * requesting it to be enabled.
234 */
235 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
236 {
237 struct drm_device *dev = dev_priv->dev;
238
239 /*
240 * After we re-enable the power well, if we touch VGA register 0x3d5
241 * we'll get unclaimed register interrupts. This stops after we write
242 * anything to the VGA MSR register. The vgacon module uses this
243 * register all the time, so if we unbind our driver and, as a
244 * consequence, bind vgacon, we'll get stuck in an infinite loop at
245 * console_unlock(). So make here we touch the VGA MSR register, making
246 * sure vgacon can keep working normally without triggering interrupts
247 * and error messages.
248 */
249 touch_vga_msr(dev);
250
251 if (IS_BROADWELL(dev))
252 gen8_irq_power_well_post_enable(dev_priv,
253 1 << PIPE_C | 1 << PIPE_B);
254 }
255
256 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
257 struct i915_power_well *power_well)
258 {
259 struct drm_device *dev = dev_priv->dev;
260
261 /*
262 * After we re-enable the power well, if we touch VGA register 0x3d5
263 * we'll get unclaimed register interrupts. This stops after we write
264 * anything to the VGA MSR register. The vgacon module uses this
265 * register all the time, so if we unbind our driver and, as a
266 * consequence, bind vgacon, we'll get stuck in an infinite loop at
267 * console_unlock(). So make here we touch the VGA MSR register, making
268 * sure vgacon can keep working normally without triggering interrupts
269 * and error messages.
270 */
271 if (power_well->data == SKL_DISP_PW_2) {
272 touch_vga_msr(dev);
273
274 gen8_irq_power_well_post_enable(dev_priv,
275 1 << PIPE_C | 1 << PIPE_B);
276 }
277
278 if (power_well->data == SKL_DISP_PW_1) {
279 if (!dev_priv->power_domains.initializing)
280 intel_prepare_ddi(dev);
281 gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_A);
282 }
283 }
284
285 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
286 struct i915_power_well *power_well, bool enable)
287 {
288 bool is_enabled, enable_requested;
289 uint32_t tmp;
290
291 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
292 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
293 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
294
295 if (enable) {
296 if (!enable_requested)
297 I915_WRITE(HSW_PWR_WELL_DRIVER,
298 HSW_PWR_WELL_ENABLE_REQUEST);
299
300 if (!is_enabled) {
301 DRM_DEBUG_KMS("Enabling power well\n");
302 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
303 HSW_PWR_WELL_STATE_ENABLED), 20))
304 DRM_ERROR("Timeout enabling power well\n");
305 hsw_power_well_post_enable(dev_priv);
306 }
307
308 } else {
309 if (enable_requested) {
310 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
311 POSTING_READ(HSW_PWR_WELL_DRIVER);
312 DRM_DEBUG_KMS("Requesting to disable the power well\n");
313 }
314 }
315 }
316
317 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
318 BIT(POWER_DOMAIN_TRANSCODER_A) | \
319 BIT(POWER_DOMAIN_PIPE_B) | \
320 BIT(POWER_DOMAIN_TRANSCODER_B) | \
321 BIT(POWER_DOMAIN_PIPE_C) | \
322 BIT(POWER_DOMAIN_TRANSCODER_C) | \
323 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
324 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
325 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
326 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
327 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
328 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
329 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
330 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
331 BIT(POWER_DOMAIN_PORT_DDI_E_2_LANES) | \
332 BIT(POWER_DOMAIN_AUX_B) | \
333 BIT(POWER_DOMAIN_AUX_C) | \
334 BIT(POWER_DOMAIN_AUX_D) | \
335 BIT(POWER_DOMAIN_AUDIO) | \
336 BIT(POWER_DOMAIN_VGA) | \
337 BIT(POWER_DOMAIN_INIT))
338 #define SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
339 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
340 BIT(POWER_DOMAIN_PLLS) | \
341 BIT(POWER_DOMAIN_PIPE_A) | \
342 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
343 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
344 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
345 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
346 BIT(POWER_DOMAIN_AUX_A) | \
347 BIT(POWER_DOMAIN_INIT))
348 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
349 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
350 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
351 BIT(POWER_DOMAIN_PORT_DDI_E_2_LANES) | \
352 BIT(POWER_DOMAIN_INIT))
353 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
354 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
355 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
356 BIT(POWER_DOMAIN_INIT))
357 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
358 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
359 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
360 BIT(POWER_DOMAIN_INIT))
361 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
362 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
363 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
364 BIT(POWER_DOMAIN_INIT))
365 #define SKL_DISPLAY_MISC_IO_POWER_DOMAINS ( \
366 SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
367 BIT(POWER_DOMAIN_PLLS) | \
368 BIT(POWER_DOMAIN_INIT))
369 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
370 (POWER_DOMAIN_MASK & ~(SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
371 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
372 SKL_DISPLAY_DDI_A_E_POWER_DOMAINS | \
373 SKL_DISPLAY_DDI_B_POWER_DOMAINS | \
374 SKL_DISPLAY_DDI_C_POWER_DOMAINS | \
375 SKL_DISPLAY_DDI_D_POWER_DOMAINS | \
376 SKL_DISPLAY_MISC_IO_POWER_DOMAINS)) | \
377 BIT(POWER_DOMAIN_INIT))
378
379 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
380 BIT(POWER_DOMAIN_TRANSCODER_A) | \
381 BIT(POWER_DOMAIN_PIPE_B) | \
382 BIT(POWER_DOMAIN_TRANSCODER_B) | \
383 BIT(POWER_DOMAIN_PIPE_C) | \
384 BIT(POWER_DOMAIN_TRANSCODER_C) | \
385 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
386 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
387 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
388 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
389 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
390 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
391 BIT(POWER_DOMAIN_AUX_B) | \
392 BIT(POWER_DOMAIN_AUX_C) | \
393 BIT(POWER_DOMAIN_AUDIO) | \
394 BIT(POWER_DOMAIN_VGA) | \
395 BIT(POWER_DOMAIN_GMBUS) | \
396 BIT(POWER_DOMAIN_INIT))
397 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
398 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
399 BIT(POWER_DOMAIN_PIPE_A) | \
400 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
401 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
402 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
403 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
404 BIT(POWER_DOMAIN_AUX_A) | \
405 BIT(POWER_DOMAIN_PLLS) | \
406 BIT(POWER_DOMAIN_INIT))
407 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
408 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
409 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
410 BIT(POWER_DOMAIN_INIT))
411
412 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
413 {
414 struct drm_device *dev = dev_priv->dev;
415
416 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
417 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
418 "DC9 already programmed to be enabled.\n");
419 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
420 "DC5 still not disabled to enable DC9.\n");
421 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
422 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
423
424 /*
425 * TODO: check for the following to verify the conditions to enter DC9
426 * state are satisfied:
427 * 1] Check relevant display engine registers to verify if mode set
428 * disable sequence was followed.
429 * 2] Check if display uninitialize sequence is initialized.
430 */
431 }
432
433 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
434 {
435 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
436 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
437 "DC9 already programmed to be disabled.\n");
438 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
439 "DC5 still not disabled.\n");
440
441 /*
442 * TODO: check for the following to verify DC9 state was indeed
443 * entered before programming to disable it:
444 * 1] Check relevant display engine registers to verify if mode
445 * set disable sequence was followed.
446 * 2] Check if display uninitialize sequence is initialized.
447 */
448 }
449
450 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
451 {
452 uint32_t val;
453
454 assert_can_enable_dc9(dev_priv);
455
456 DRM_DEBUG_KMS("Enabling DC9\n");
457
458 val = I915_READ(DC_STATE_EN);
459 val |= DC_STATE_EN_DC9;
460 I915_WRITE(DC_STATE_EN, val);
461 POSTING_READ(DC_STATE_EN);
462 }
463
464 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
465 {
466 uint32_t val;
467
468 assert_can_disable_dc9(dev_priv);
469
470 DRM_DEBUG_KMS("Disabling DC9\n");
471
472 val = I915_READ(DC_STATE_EN);
473 val &= ~DC_STATE_EN_DC9;
474 I915_WRITE(DC_STATE_EN, val);
475 POSTING_READ(DC_STATE_EN);
476 }
477
478 static void gen9_set_dc_state_debugmask_memory_up(
479 struct drm_i915_private *dev_priv)
480 {
481 uint32_t val;
482
483 /* The below bit doesn't need to be cleared ever afterwards */
484 val = I915_READ(DC_STATE_DEBUG);
485 if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
486 val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
487 I915_WRITE(DC_STATE_DEBUG, val);
488 POSTING_READ(DC_STATE_DEBUG);
489 }
490 }
491
492 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
493 {
494 struct drm_device *dev = dev_priv->dev;
495 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
496 SKL_DISP_PW_2);
497
498 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
499 "Platform doesn't support DC5.\n");
500 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
501 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
502
503 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
504 "DC5 already programmed to be enabled.\n");
505 WARN_ONCE(dev_priv->pm.suspended,
506 "DC5 cannot be enabled, if platform is runtime-suspended.\n");
507
508 assert_csr_loaded(dev_priv);
509 }
510
511 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
512 {
513 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
514 SKL_DISP_PW_2);
515 /*
516 * During initialization, the firmware may not be loaded yet.
517 * We still want to make sure that the DC enabling flag is cleared.
518 */
519 if (dev_priv->power_domains.initializing)
520 return;
521
522 WARN_ONCE(!pg2_enabled, "PG2 not enabled to disable DC5.\n");
523 WARN_ONCE(dev_priv->pm.suspended,
524 "Disabling of DC5 while platform is runtime-suspended should never happen.\n");
525 }
526
527 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
528 {
529 uint32_t val;
530
531 assert_can_enable_dc5(dev_priv);
532
533 DRM_DEBUG_KMS("Enabling DC5\n");
534
535 gen9_set_dc_state_debugmask_memory_up(dev_priv);
536
537 val = I915_READ(DC_STATE_EN);
538 val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK;
539 val |= DC_STATE_EN_UPTO_DC5;
540 I915_WRITE(DC_STATE_EN, val);
541 POSTING_READ(DC_STATE_EN);
542 }
543
544 static void gen9_disable_dc5(struct drm_i915_private *dev_priv)
545 {
546 uint32_t val;
547
548 assert_can_disable_dc5(dev_priv);
549
550 DRM_DEBUG_KMS("Disabling DC5\n");
551
552 val = I915_READ(DC_STATE_EN);
553 val &= ~DC_STATE_EN_UPTO_DC5;
554 I915_WRITE(DC_STATE_EN, val);
555 POSTING_READ(DC_STATE_EN);
556 }
557
558 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
559 {
560 struct drm_device *dev = dev_priv->dev;
561
562 WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
563 "Platform doesn't support DC6.\n");
564 WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
565 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
566 "Backlight is not disabled.\n");
567 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
568 "DC6 already programmed to be enabled.\n");
569
570 assert_csr_loaded(dev_priv);
571 }
572
573 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
574 {
575 /*
576 * During initialization, the firmware may not be loaded yet.
577 * We still want to make sure that the DC enabling flag is cleared.
578 */
579 if (dev_priv->power_domains.initializing)
580 return;
581
582 assert_csr_loaded(dev_priv);
583 WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
584 "DC6 already programmed to be disabled.\n");
585 }
586
587 static void skl_enable_dc6(struct drm_i915_private *dev_priv)
588 {
589 uint32_t val;
590
591 assert_can_enable_dc6(dev_priv);
592
593 DRM_DEBUG_KMS("Enabling DC6\n");
594
595 gen9_set_dc_state_debugmask_memory_up(dev_priv);
596
597 val = I915_READ(DC_STATE_EN);
598 val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK;
599 val |= DC_STATE_EN_UPTO_DC6;
600 I915_WRITE(DC_STATE_EN, val);
601 POSTING_READ(DC_STATE_EN);
602 }
603
604 static void skl_disable_dc6(struct drm_i915_private *dev_priv)
605 {
606 uint32_t val;
607
608 assert_can_disable_dc6(dev_priv);
609
610 DRM_DEBUG_KMS("Disabling DC6\n");
611
612 val = I915_READ(DC_STATE_EN);
613 val &= ~DC_STATE_EN_UPTO_DC6;
614 I915_WRITE(DC_STATE_EN, val);
615 POSTING_READ(DC_STATE_EN);
616 }
617
618 static void skl_set_power_well(struct drm_i915_private *dev_priv,
619 struct i915_power_well *power_well, bool enable)
620 {
621 struct drm_device *dev = dev_priv->dev;
622 uint32_t tmp, fuse_status;
623 uint32_t req_mask, state_mask;
624 bool is_enabled, enable_requested, check_fuse_status = false;
625
626 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
627 fuse_status = I915_READ(SKL_FUSE_STATUS);
628
629 switch (power_well->data) {
630 case SKL_DISP_PW_1:
631 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
632 SKL_FUSE_PG0_DIST_STATUS), 1)) {
633 DRM_ERROR("PG0 not enabled\n");
634 return;
635 }
636 break;
637 case SKL_DISP_PW_2:
638 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
639 DRM_ERROR("PG1 in disabled state\n");
640 return;
641 }
642 break;
643 case SKL_DISP_PW_DDI_A_E:
644 case SKL_DISP_PW_DDI_B:
645 case SKL_DISP_PW_DDI_C:
646 case SKL_DISP_PW_DDI_D:
647 case SKL_DISP_PW_MISC_IO:
648 break;
649 default:
650 WARN(1, "Unknown power well %lu\n", power_well->data);
651 return;
652 }
653
654 req_mask = SKL_POWER_WELL_REQ(power_well->data);
655 enable_requested = tmp & req_mask;
656 state_mask = SKL_POWER_WELL_STATE(power_well->data);
657 is_enabled = tmp & state_mask;
658
659 if (enable) {
660 if (!enable_requested) {
661 WARN((tmp & state_mask) &&
662 !I915_READ(HSW_PWR_WELL_BIOS),
663 "Invalid for power well status to be enabled, unless done by the BIOS, \
664 when request is to disable!\n");
665 if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) &&
666 power_well->data == SKL_DISP_PW_2) {
667 if (SKL_ENABLE_DC6(dev)) {
668 skl_disable_dc6(dev_priv);
669 /*
670 * DDI buffer programming unnecessary during driver-load/resume
671 * as it's already done during modeset initialization then.
672 * It's also invalid here as encoder list is still uninitialized.
673 */
674 if (!dev_priv->power_domains.initializing)
675 intel_prepare_ddi(dev);
676 } else {
677 gen9_disable_dc5(dev_priv);
678 }
679 }
680 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
681 }
682
683 if (!is_enabled) {
684 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
685 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
686 state_mask), 1))
687 DRM_ERROR("%s enable timeout\n",
688 power_well->name);
689 check_fuse_status = true;
690 }
691 } else {
692 if (enable_requested) {
693 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
694 (power_well->data == SKL_DISP_PW_1) &&
695 (intel_csr_load_status_get(dev_priv) == FW_LOADED))
696 DRM_DEBUG_KMS("Not Disabling PW1, dmc will handle\n");
697 else {
698 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
699 POSTING_READ(HSW_PWR_WELL_DRIVER);
700 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
701 }
702
703 if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) &&
704 power_well->data == SKL_DISP_PW_2) {
705 enum csr_state state;
706 /* TODO: wait for a completion event or
707 * similar here instead of busy
708 * waiting using wait_for function.
709 */
710 wait_for((state = intel_csr_load_status_get(dev_priv)) !=
711 FW_UNINITIALIZED, 1000);
712 if (state != FW_LOADED)
713 DRM_DEBUG("CSR firmware not ready (%d)\n",
714 state);
715 else
716 if (SKL_ENABLE_DC6(dev))
717 skl_enable_dc6(dev_priv);
718 else
719 gen9_enable_dc5(dev_priv);
720 }
721 }
722 }
723
724 if (check_fuse_status) {
725 if (power_well->data == SKL_DISP_PW_1) {
726 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
727 SKL_FUSE_PG1_DIST_STATUS), 1))
728 DRM_ERROR("PG1 distributing status timeout\n");
729 } else if (power_well->data == SKL_DISP_PW_2) {
730 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
731 SKL_FUSE_PG2_DIST_STATUS), 1))
732 DRM_ERROR("PG2 distributing status timeout\n");
733 }
734 }
735
736 if (enable && !is_enabled)
737 skl_power_well_post_enable(dev_priv, power_well);
738 }
739
740 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
741 struct i915_power_well *power_well)
742 {
743 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
744
745 /*
746 * We're taking over the BIOS, so clear any requests made by it since
747 * the driver is in charge now.
748 */
749 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
750 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
751 }
752
753 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
754 struct i915_power_well *power_well)
755 {
756 hsw_set_power_well(dev_priv, power_well, true);
757 }
758
759 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
760 struct i915_power_well *power_well)
761 {
762 hsw_set_power_well(dev_priv, power_well, false);
763 }
764
765 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
766 struct i915_power_well *power_well)
767 {
768 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
769 SKL_POWER_WELL_STATE(power_well->data);
770
771 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
772 }
773
774 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
775 struct i915_power_well *power_well)
776 {
777 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
778
779 /* Clear any request made by BIOS as driver is taking over */
780 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
781 }
782
783 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
784 struct i915_power_well *power_well)
785 {
786 skl_set_power_well(dev_priv, power_well, true);
787 }
788
789 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
790 struct i915_power_well *power_well)
791 {
792 skl_set_power_well(dev_priv, power_well, false);
793 }
794
795 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
796 struct i915_power_well *power_well)
797 {
798 }
799
800 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
801 struct i915_power_well *power_well)
802 {
803 return true;
804 }
805
806 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
807 struct i915_power_well *power_well, bool enable)
808 {
809 enum punit_power_well power_well_id = power_well->data;
810 u32 mask;
811 u32 state;
812 u32 ctrl;
813
814 mask = PUNIT_PWRGT_MASK(power_well_id);
815 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
816 PUNIT_PWRGT_PWR_GATE(power_well_id);
817
818 mutex_lock(&dev_priv->rps.hw_lock);
819
820 #define COND \
821 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
822
823 if (COND)
824 goto out;
825
826 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
827 ctrl &= ~mask;
828 ctrl |= state;
829 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
830
831 if (wait_for(COND, 100))
832 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
833 state,
834 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
835
836 #undef COND
837
838 out:
839 mutex_unlock(&dev_priv->rps.hw_lock);
840 }
841
842 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
843 struct i915_power_well *power_well)
844 {
845 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
846 }
847
848 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
849 struct i915_power_well *power_well)
850 {
851 vlv_set_power_well(dev_priv, power_well, true);
852 }
853
854 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
855 struct i915_power_well *power_well)
856 {
857 vlv_set_power_well(dev_priv, power_well, false);
858 }
859
860 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
861 struct i915_power_well *power_well)
862 {
863 int power_well_id = power_well->data;
864 bool enabled = false;
865 u32 mask;
866 u32 state;
867 u32 ctrl;
868
869 mask = PUNIT_PWRGT_MASK(power_well_id);
870 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
871
872 mutex_lock(&dev_priv->rps.hw_lock);
873
874 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
875 /*
876 * We only ever set the power-on and power-gate states, anything
877 * else is unexpected.
878 */
879 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
880 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
881 if (state == ctrl)
882 enabled = true;
883
884 /*
885 * A transient state at this point would mean some unexpected party
886 * is poking at the power controls too.
887 */
888 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
889 WARN_ON(ctrl != state);
890
891 mutex_unlock(&dev_priv->rps.hw_lock);
892
893 return enabled;
894 }
895
896 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
897 {
898 enum pipe pipe;
899
900 /*
901 * Enable the CRI clock source so we can get at the
902 * display and the reference clock for VGA
903 * hotplug / manual detection. Supposedly DSI also
904 * needs the ref clock up and running.
905 *
906 * CHV DPLL B/C have some issues if VGA mode is enabled.
907 */
908 for_each_pipe(dev_priv->dev, pipe) {
909 u32 val = I915_READ(DPLL(pipe));
910
911 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
912 if (pipe != PIPE_A)
913 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
914
915 I915_WRITE(DPLL(pipe), val);
916 }
917
918 spin_lock_irq(&dev_priv->irq_lock);
919 valleyview_enable_display_irqs(dev_priv);
920 spin_unlock_irq(&dev_priv->irq_lock);
921
922 /*
923 * During driver initialization/resume we can avoid restoring the
924 * part of the HW/SW state that will be inited anyway explicitly.
925 */
926 if (dev_priv->power_domains.initializing)
927 return;
928
929 intel_hpd_init(dev_priv);
930
931 i915_redisable_vga_power_on(dev_priv->dev);
932 }
933
934 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
935 {
936 spin_lock_irq(&dev_priv->irq_lock);
937 valleyview_disable_display_irqs(dev_priv);
938 spin_unlock_irq(&dev_priv->irq_lock);
939
940 vlv_power_sequencer_reset(dev_priv);
941 }
942
943 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
944 struct i915_power_well *power_well)
945 {
946 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
947
948 vlv_set_power_well(dev_priv, power_well, true);
949
950 vlv_display_power_well_init(dev_priv);
951 }
952
953 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
954 struct i915_power_well *power_well)
955 {
956 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
957
958 vlv_display_power_well_deinit(dev_priv);
959
960 vlv_set_power_well(dev_priv, power_well, false);
961 }
962
963 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
964 struct i915_power_well *power_well)
965 {
966 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
967
968 /* since ref/cri clock was enabled */
969 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
970
971 vlv_set_power_well(dev_priv, power_well, true);
972
973 /*
974 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
975 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
976 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
977 * b. The other bits such as sfr settings / modesel may all
978 * be set to 0.
979 *
980 * This should only be done on init and resume from S3 with
981 * both PLLs disabled, or we risk losing DPIO and PLL
982 * synchronization.
983 */
984 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
985 }
986
987 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
988 struct i915_power_well *power_well)
989 {
990 enum pipe pipe;
991
992 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
993
994 for_each_pipe(dev_priv, pipe)
995 assert_pll_disabled(dev_priv, pipe);
996
997 /* Assert common reset */
998 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
999
1000 vlv_set_power_well(dev_priv, power_well, false);
1001 }
1002
1003 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1004
1005 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1006 int power_well_id)
1007 {
1008 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1009 struct i915_power_well *power_well;
1010 int i;
1011
1012 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
1013 if (power_well->data == power_well_id)
1014 return power_well;
1015 }
1016
1017 return NULL;
1018 }
1019
1020 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1021
1022 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1023 {
1024 struct i915_power_well *cmn_bc =
1025 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1026 struct i915_power_well *cmn_d =
1027 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1028 u32 phy_control = dev_priv->chv_phy_control;
1029 u32 phy_status = 0;
1030 u32 phy_status_mask = 0xffffffff;
1031 u32 tmp;
1032
1033 /*
1034 * The BIOS can leave the PHY is some weird state
1035 * where it doesn't fully power down some parts.
1036 * Disable the asserts until the PHY has been fully
1037 * reset (ie. the power well has been disabled at
1038 * least once).
1039 */
1040 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1041 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1042 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1043 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1044 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1045 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1046 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1047
1048 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1049 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1050 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1051 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1052
1053 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1054 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1055
1056 /* this assumes override is only used to enable lanes */
1057 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1058 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1059
1060 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1061 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1062
1063 /* CL1 is on whenever anything is on in either channel */
1064 if (BITS_SET(phy_control,
1065 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1066 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1067 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1068
1069 /*
1070 * The DPLLB check accounts for the pipe B + port A usage
1071 * with CL2 powered up but all the lanes in the second channel
1072 * powered down.
1073 */
1074 if (BITS_SET(phy_control,
1075 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1076 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1077 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1078
1079 if (BITS_SET(phy_control,
1080 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1081 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1082 if (BITS_SET(phy_control,
1083 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1084 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1085
1086 if (BITS_SET(phy_control,
1087 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1088 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1089 if (BITS_SET(phy_control,
1090 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1091 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1092 }
1093
1094 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1095 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1096
1097 /* this assumes override is only used to enable lanes */
1098 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1099 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1100
1101 if (BITS_SET(phy_control,
1102 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1103 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1104
1105 if (BITS_SET(phy_control,
1106 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1107 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1108 if (BITS_SET(phy_control,
1109 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1110 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1111 }
1112
1113 phy_status &= phy_status_mask;
1114
1115 /*
1116 * The PHY may be busy with some initial calibration and whatnot,
1117 * so the power state can take a while to actually change.
1118 */
1119 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1120 WARN(phy_status != tmp,
1121 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1122 tmp, phy_status, dev_priv->chv_phy_control);
1123 }
1124
1125 #undef BITS_SET
1126
1127 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1128 struct i915_power_well *power_well)
1129 {
1130 enum dpio_phy phy;
1131 enum pipe pipe;
1132 uint32_t tmp;
1133
1134 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1135 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1136
1137 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1138 pipe = PIPE_A;
1139 phy = DPIO_PHY0;
1140 } else {
1141 pipe = PIPE_C;
1142 phy = DPIO_PHY1;
1143 }
1144
1145 /* since ref/cri clock was enabled */
1146 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1147 vlv_set_power_well(dev_priv, power_well, true);
1148
1149 /* Poll for phypwrgood signal */
1150 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1151 DRM_ERROR("Display PHY %d is not power up\n", phy);
1152
1153 mutex_lock(&dev_priv->sb_lock);
1154
1155 /* Enable dynamic power down */
1156 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1157 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1158 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1159 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1160
1161 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1162 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1163 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1164 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1165 } else {
1166 /*
1167 * Force the non-existing CL2 off. BXT does this
1168 * too, so maybe it saves some power even though
1169 * CL2 doesn't exist?
1170 */
1171 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1172 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1173 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1174 }
1175
1176 mutex_unlock(&dev_priv->sb_lock);
1177
1178 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1179 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1180
1181 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1182 phy, dev_priv->chv_phy_control);
1183
1184 assert_chv_phy_status(dev_priv);
1185 }
1186
1187 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1188 struct i915_power_well *power_well)
1189 {
1190 enum dpio_phy phy;
1191
1192 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1193 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1194
1195 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1196 phy = DPIO_PHY0;
1197 assert_pll_disabled(dev_priv, PIPE_A);
1198 assert_pll_disabled(dev_priv, PIPE_B);
1199 } else {
1200 phy = DPIO_PHY1;
1201 assert_pll_disabled(dev_priv, PIPE_C);
1202 }
1203
1204 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1205 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1206
1207 vlv_set_power_well(dev_priv, power_well, false);
1208
1209 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1210 phy, dev_priv->chv_phy_control);
1211
1212 /* PHY is fully reset now, so we can enable the PHY state asserts */
1213 dev_priv->chv_phy_assert[phy] = true;
1214
1215 assert_chv_phy_status(dev_priv);
1216 }
1217
1218 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1219 enum dpio_channel ch, bool override, unsigned int mask)
1220 {
1221 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1222 u32 reg, val, expected, actual;
1223
1224 /*
1225 * The BIOS can leave the PHY is some weird state
1226 * where it doesn't fully power down some parts.
1227 * Disable the asserts until the PHY has been fully
1228 * reset (ie. the power well has been disabled at
1229 * least once).
1230 */
1231 if (!dev_priv->chv_phy_assert[phy])
1232 return;
1233
1234 if (ch == DPIO_CH0)
1235 reg = _CHV_CMN_DW0_CH0;
1236 else
1237 reg = _CHV_CMN_DW6_CH1;
1238
1239 mutex_lock(&dev_priv->sb_lock);
1240 val = vlv_dpio_read(dev_priv, pipe, reg);
1241 mutex_unlock(&dev_priv->sb_lock);
1242
1243 /*
1244 * This assumes !override is only used when the port is disabled.
1245 * All lanes should power down even without the override when
1246 * the port is disabled.
1247 */
1248 if (!override || mask == 0xf) {
1249 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1250 /*
1251 * If CH1 common lane is not active anymore
1252 * (eg. for pipe B DPLL) the entire channel will
1253 * shut down, which causes the common lane registers
1254 * to read as 0. That means we can't actually check
1255 * the lane power down status bits, but as the entire
1256 * register reads as 0 it's a good indication that the
1257 * channel is indeed entirely powered down.
1258 */
1259 if (ch == DPIO_CH1 && val == 0)
1260 expected = 0;
1261 } else if (mask != 0x0) {
1262 expected = DPIO_ANYDL_POWERDOWN;
1263 } else {
1264 expected = 0;
1265 }
1266
1267 if (ch == DPIO_CH0)
1268 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1269 else
1270 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1271 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1272
1273 WARN(actual != expected,
1274 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1275 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1276 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1277 reg, val);
1278 }
1279
1280 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1281 enum dpio_channel ch, bool override)
1282 {
1283 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1284 bool was_override;
1285
1286 mutex_lock(&power_domains->lock);
1287
1288 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1289
1290 if (override == was_override)
1291 goto out;
1292
1293 if (override)
1294 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1295 else
1296 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1297
1298 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1299
1300 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1301 phy, ch, dev_priv->chv_phy_control);
1302
1303 assert_chv_phy_status(dev_priv);
1304
1305 out:
1306 mutex_unlock(&power_domains->lock);
1307
1308 return was_override;
1309 }
1310
1311 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1312 bool override, unsigned int mask)
1313 {
1314 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1315 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1316 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1317 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1318
1319 mutex_lock(&power_domains->lock);
1320
1321 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1322 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1323
1324 if (override)
1325 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1326 else
1327 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1328
1329 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1330
1331 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1332 phy, ch, mask, dev_priv->chv_phy_control);
1333
1334 assert_chv_phy_status(dev_priv);
1335
1336 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1337
1338 mutex_unlock(&power_domains->lock);
1339 }
1340
1341 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1342 struct i915_power_well *power_well)
1343 {
1344 enum pipe pipe = power_well->data;
1345 bool enabled;
1346 u32 state, ctrl;
1347
1348 mutex_lock(&dev_priv->rps.hw_lock);
1349
1350 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1351 /*
1352 * We only ever set the power-on and power-gate states, anything
1353 * else is unexpected.
1354 */
1355 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1356 enabled = state == DP_SSS_PWR_ON(pipe);
1357
1358 /*
1359 * A transient state at this point would mean some unexpected party
1360 * is poking at the power controls too.
1361 */
1362 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1363 WARN_ON(ctrl << 16 != state);
1364
1365 mutex_unlock(&dev_priv->rps.hw_lock);
1366
1367 return enabled;
1368 }
1369
1370 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1371 struct i915_power_well *power_well,
1372 bool enable)
1373 {
1374 enum pipe pipe = power_well->data;
1375 u32 state;
1376 u32 ctrl;
1377
1378 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1379
1380 mutex_lock(&dev_priv->rps.hw_lock);
1381
1382 #define COND \
1383 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1384
1385 if (COND)
1386 goto out;
1387
1388 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1389 ctrl &= ~DP_SSC_MASK(pipe);
1390 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1391 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1392
1393 if (wait_for(COND, 100))
1394 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1395 state,
1396 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1397
1398 #undef COND
1399
1400 out:
1401 mutex_unlock(&dev_priv->rps.hw_lock);
1402 }
1403
1404 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1405 struct i915_power_well *power_well)
1406 {
1407 WARN_ON_ONCE(power_well->data != PIPE_A);
1408
1409 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1410 }
1411
1412 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1413 struct i915_power_well *power_well)
1414 {
1415 WARN_ON_ONCE(power_well->data != PIPE_A);
1416
1417 chv_set_pipe_power_well(dev_priv, power_well, true);
1418
1419 vlv_display_power_well_init(dev_priv);
1420 }
1421
1422 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1423 struct i915_power_well *power_well)
1424 {
1425 WARN_ON_ONCE(power_well->data != PIPE_A);
1426
1427 vlv_display_power_well_deinit(dev_priv);
1428
1429 chv_set_pipe_power_well(dev_priv, power_well, false);
1430 }
1431
1432 /**
1433 * intel_display_power_get - grab a power domain reference
1434 * @dev_priv: i915 device instance
1435 * @domain: power domain to reference
1436 *
1437 * This function grabs a power domain reference for @domain and ensures that the
1438 * power domain and all its parents are powered up. Therefore users should only
1439 * grab a reference to the innermost power domain they need.
1440 *
1441 * Any power domain reference obtained by this function must have a symmetric
1442 * call to intel_display_power_put() to release the reference again.
1443 */
1444 void intel_display_power_get(struct drm_i915_private *dev_priv,
1445 enum intel_display_power_domain domain)
1446 {
1447 struct i915_power_domains *power_domains;
1448 struct i915_power_well *power_well;
1449 int i;
1450
1451 intel_runtime_pm_get(dev_priv);
1452
1453 power_domains = &dev_priv->power_domains;
1454
1455 mutex_lock(&power_domains->lock);
1456
1457 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1458 if (!power_well->count++)
1459 intel_power_well_enable(dev_priv, power_well);
1460 }
1461
1462 power_domains->domain_use_count[domain]++;
1463
1464 mutex_unlock(&power_domains->lock);
1465 }
1466
1467 /**
1468 * intel_display_power_put - release a power domain reference
1469 * @dev_priv: i915 device instance
1470 * @domain: power domain to reference
1471 *
1472 * This function drops the power domain reference obtained by
1473 * intel_display_power_get() and might power down the corresponding hardware
1474 * block right away if this is the last reference.
1475 */
1476 void intel_display_power_put(struct drm_i915_private *dev_priv,
1477 enum intel_display_power_domain domain)
1478 {
1479 struct i915_power_domains *power_domains;
1480 struct i915_power_well *power_well;
1481 int i;
1482
1483 power_domains = &dev_priv->power_domains;
1484
1485 mutex_lock(&power_domains->lock);
1486
1487 WARN_ON(!power_domains->domain_use_count[domain]);
1488 power_domains->domain_use_count[domain]--;
1489
1490 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1491 WARN_ON(!power_well->count);
1492
1493 if (!--power_well->count && i915.disable_power_well)
1494 intel_power_well_disable(dev_priv, power_well);
1495 }
1496
1497 mutex_unlock(&power_domains->lock);
1498
1499 intel_runtime_pm_put(dev_priv);
1500 }
1501
1502 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
1503 BIT(POWER_DOMAIN_PIPE_A) | \
1504 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
1505 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
1506 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
1507 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
1508 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1509 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
1510 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1511 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
1512 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
1513 BIT(POWER_DOMAIN_PORT_CRT) | \
1514 BIT(POWER_DOMAIN_PLLS) | \
1515 BIT(POWER_DOMAIN_AUX_A) | \
1516 BIT(POWER_DOMAIN_AUX_B) | \
1517 BIT(POWER_DOMAIN_AUX_C) | \
1518 BIT(POWER_DOMAIN_AUX_D) | \
1519 BIT(POWER_DOMAIN_GMBUS) | \
1520 BIT(POWER_DOMAIN_INIT))
1521 #define HSW_DISPLAY_POWER_DOMAINS ( \
1522 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
1523 BIT(POWER_DOMAIN_INIT))
1524
1525 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
1526 HSW_ALWAYS_ON_POWER_DOMAINS | \
1527 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1528 #define BDW_DISPLAY_POWER_DOMAINS ( \
1529 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
1530 BIT(POWER_DOMAIN_INIT))
1531
1532 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
1533 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
1534
1535 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1536 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
1537 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1538 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
1539 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1540 BIT(POWER_DOMAIN_PORT_CRT) | \
1541 BIT(POWER_DOMAIN_AUX_B) | \
1542 BIT(POWER_DOMAIN_AUX_C) | \
1543 BIT(POWER_DOMAIN_INIT))
1544
1545 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1546 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
1547 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1548 BIT(POWER_DOMAIN_AUX_B) | \
1549 BIT(POWER_DOMAIN_INIT))
1550
1551 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1552 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1553 BIT(POWER_DOMAIN_AUX_B) | \
1554 BIT(POWER_DOMAIN_INIT))
1555
1556 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1557 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
1558 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1559 BIT(POWER_DOMAIN_AUX_C) | \
1560 BIT(POWER_DOMAIN_INIT))
1561
1562 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1563 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1564 BIT(POWER_DOMAIN_AUX_C) | \
1565 BIT(POWER_DOMAIN_INIT))
1566
1567 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1568 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
1569 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
1570 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
1571 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
1572 BIT(POWER_DOMAIN_AUX_B) | \
1573 BIT(POWER_DOMAIN_AUX_C) | \
1574 BIT(POWER_DOMAIN_INIT))
1575
1576 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1577 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
1578 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
1579 BIT(POWER_DOMAIN_AUX_D) | \
1580 BIT(POWER_DOMAIN_INIT))
1581
1582 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1583 .sync_hw = i9xx_always_on_power_well_noop,
1584 .enable = i9xx_always_on_power_well_noop,
1585 .disable = i9xx_always_on_power_well_noop,
1586 .is_enabled = i9xx_always_on_power_well_enabled,
1587 };
1588
1589 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1590 .sync_hw = chv_pipe_power_well_sync_hw,
1591 .enable = chv_pipe_power_well_enable,
1592 .disable = chv_pipe_power_well_disable,
1593 .is_enabled = chv_pipe_power_well_enabled,
1594 };
1595
1596 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1597 .sync_hw = vlv_power_well_sync_hw,
1598 .enable = chv_dpio_cmn_power_well_enable,
1599 .disable = chv_dpio_cmn_power_well_disable,
1600 .is_enabled = vlv_power_well_enabled,
1601 };
1602
1603 static struct i915_power_well i9xx_always_on_power_well[] = {
1604 {
1605 .name = "always-on",
1606 .always_on = 1,
1607 .domains = POWER_DOMAIN_MASK,
1608 .ops = &i9xx_always_on_power_well_ops,
1609 },
1610 };
1611
1612 static const struct i915_power_well_ops hsw_power_well_ops = {
1613 .sync_hw = hsw_power_well_sync_hw,
1614 .enable = hsw_power_well_enable,
1615 .disable = hsw_power_well_disable,
1616 .is_enabled = hsw_power_well_enabled,
1617 };
1618
1619 static const struct i915_power_well_ops skl_power_well_ops = {
1620 .sync_hw = skl_power_well_sync_hw,
1621 .enable = skl_power_well_enable,
1622 .disable = skl_power_well_disable,
1623 .is_enabled = skl_power_well_enabled,
1624 };
1625
1626 static struct i915_power_well hsw_power_wells[] = {
1627 {
1628 .name = "always-on",
1629 .always_on = 1,
1630 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1631 .ops = &i9xx_always_on_power_well_ops,
1632 },
1633 {
1634 .name = "display",
1635 .domains = HSW_DISPLAY_POWER_DOMAINS,
1636 .ops = &hsw_power_well_ops,
1637 },
1638 };
1639
1640 static struct i915_power_well bdw_power_wells[] = {
1641 {
1642 .name = "always-on",
1643 .always_on = 1,
1644 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1645 .ops = &i9xx_always_on_power_well_ops,
1646 },
1647 {
1648 .name = "display",
1649 .domains = BDW_DISPLAY_POWER_DOMAINS,
1650 .ops = &hsw_power_well_ops,
1651 },
1652 };
1653
1654 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1655 .sync_hw = vlv_power_well_sync_hw,
1656 .enable = vlv_display_power_well_enable,
1657 .disable = vlv_display_power_well_disable,
1658 .is_enabled = vlv_power_well_enabled,
1659 };
1660
1661 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1662 .sync_hw = vlv_power_well_sync_hw,
1663 .enable = vlv_dpio_cmn_power_well_enable,
1664 .disable = vlv_dpio_cmn_power_well_disable,
1665 .is_enabled = vlv_power_well_enabled,
1666 };
1667
1668 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1669 .sync_hw = vlv_power_well_sync_hw,
1670 .enable = vlv_power_well_enable,
1671 .disable = vlv_power_well_disable,
1672 .is_enabled = vlv_power_well_enabled,
1673 };
1674
1675 static struct i915_power_well vlv_power_wells[] = {
1676 {
1677 .name = "always-on",
1678 .always_on = 1,
1679 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1680 .ops = &i9xx_always_on_power_well_ops,
1681 },
1682 {
1683 .name = "display",
1684 .domains = VLV_DISPLAY_POWER_DOMAINS,
1685 .data = PUNIT_POWER_WELL_DISP2D,
1686 .ops = &vlv_display_power_well_ops,
1687 },
1688 {
1689 .name = "dpio-tx-b-01",
1690 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1691 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1692 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1693 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1694 .ops = &vlv_dpio_power_well_ops,
1695 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1696 },
1697 {
1698 .name = "dpio-tx-b-23",
1699 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1700 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1701 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1702 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1703 .ops = &vlv_dpio_power_well_ops,
1704 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1705 },
1706 {
1707 .name = "dpio-tx-c-01",
1708 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1709 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1710 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1711 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1712 .ops = &vlv_dpio_power_well_ops,
1713 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1714 },
1715 {
1716 .name = "dpio-tx-c-23",
1717 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1718 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1719 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1720 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1721 .ops = &vlv_dpio_power_well_ops,
1722 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1723 },
1724 {
1725 .name = "dpio-common",
1726 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1727 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1728 .ops = &vlv_dpio_cmn_power_well_ops,
1729 },
1730 };
1731
1732 static struct i915_power_well chv_power_wells[] = {
1733 {
1734 .name = "always-on",
1735 .always_on = 1,
1736 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1737 .ops = &i9xx_always_on_power_well_ops,
1738 },
1739 {
1740 .name = "display",
1741 /*
1742 * Pipe A power well is the new disp2d well. Pipe B and C
1743 * power wells don't actually exist. Pipe A power well is
1744 * required for any pipe to work.
1745 */
1746 .domains = VLV_DISPLAY_POWER_DOMAINS,
1747 .data = PIPE_A,
1748 .ops = &chv_pipe_power_well_ops,
1749 },
1750 {
1751 .name = "dpio-common-bc",
1752 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1753 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1754 .ops = &chv_dpio_cmn_power_well_ops,
1755 },
1756 {
1757 .name = "dpio-common-d",
1758 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1759 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1760 .ops = &chv_dpio_cmn_power_well_ops,
1761 },
1762 };
1763
1764 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1765 int power_well_id)
1766 {
1767 struct i915_power_well *power_well;
1768 bool ret;
1769
1770 power_well = lookup_power_well(dev_priv, power_well_id);
1771 ret = power_well->ops->is_enabled(dev_priv, power_well);
1772
1773 return ret;
1774 }
1775
1776 static struct i915_power_well skl_power_wells[] = {
1777 {
1778 .name = "always-on",
1779 .always_on = 1,
1780 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1781 .ops = &i9xx_always_on_power_well_ops,
1782 },
1783 {
1784 .name = "power well 1",
1785 .domains = SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1786 .ops = &skl_power_well_ops,
1787 .data = SKL_DISP_PW_1,
1788 },
1789 {
1790 .name = "MISC IO power well",
1791 .domains = SKL_DISPLAY_MISC_IO_POWER_DOMAINS,
1792 .ops = &skl_power_well_ops,
1793 .data = SKL_DISP_PW_MISC_IO,
1794 },
1795 {
1796 .name = "power well 2",
1797 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1798 .ops = &skl_power_well_ops,
1799 .data = SKL_DISP_PW_2,
1800 },
1801 {
1802 .name = "DDI A/E power well",
1803 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1804 .ops = &skl_power_well_ops,
1805 .data = SKL_DISP_PW_DDI_A_E,
1806 },
1807 {
1808 .name = "DDI B power well",
1809 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1810 .ops = &skl_power_well_ops,
1811 .data = SKL_DISP_PW_DDI_B,
1812 },
1813 {
1814 .name = "DDI C power well",
1815 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1816 .ops = &skl_power_well_ops,
1817 .data = SKL_DISP_PW_DDI_C,
1818 },
1819 {
1820 .name = "DDI D power well",
1821 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1822 .ops = &skl_power_well_ops,
1823 .data = SKL_DISP_PW_DDI_D,
1824 },
1825 };
1826
1827 static struct i915_power_well bxt_power_wells[] = {
1828 {
1829 .name = "always-on",
1830 .always_on = 1,
1831 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1832 .ops = &i9xx_always_on_power_well_ops,
1833 },
1834 {
1835 .name = "power well 1",
1836 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1837 .ops = &skl_power_well_ops,
1838 .data = SKL_DISP_PW_1,
1839 },
1840 {
1841 .name = "power well 2",
1842 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1843 .ops = &skl_power_well_ops,
1844 .data = SKL_DISP_PW_2,
1845 }
1846 };
1847
1848 static int
1849 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
1850 int disable_power_well)
1851 {
1852 if (disable_power_well >= 0)
1853 return !!disable_power_well;
1854
1855 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1856 DRM_DEBUG_KMS("Disabling display power well support\n");
1857 return 0;
1858 }
1859
1860 return 1;
1861 }
1862
1863 #define set_power_wells(power_domains, __power_wells) ({ \
1864 (power_domains)->power_wells = (__power_wells); \
1865 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
1866 })
1867
1868 /**
1869 * intel_power_domains_init - initializes the power domain structures
1870 * @dev_priv: i915 device instance
1871 *
1872 * Initializes the power domain structures for @dev_priv depending upon the
1873 * supported platform.
1874 */
1875 int intel_power_domains_init(struct drm_i915_private *dev_priv)
1876 {
1877 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1878
1879 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
1880 i915.disable_power_well);
1881
1882 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
1883
1884 mutex_init(&power_domains->lock);
1885
1886 /*
1887 * The enabling order will be from lower to higher indexed wells,
1888 * the disabling order is reversed.
1889 */
1890 if (IS_HASWELL(dev_priv->dev)) {
1891 set_power_wells(power_domains, hsw_power_wells);
1892 } else if (IS_BROADWELL(dev_priv->dev)) {
1893 set_power_wells(power_domains, bdw_power_wells);
1894 } else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
1895 set_power_wells(power_domains, skl_power_wells);
1896 } else if (IS_BROXTON(dev_priv->dev)) {
1897 set_power_wells(power_domains, bxt_power_wells);
1898 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1899 set_power_wells(power_domains, chv_power_wells);
1900 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
1901 set_power_wells(power_domains, vlv_power_wells);
1902 } else {
1903 set_power_wells(power_domains, i9xx_always_on_power_well);
1904 }
1905
1906 return 0;
1907 }
1908
1909 static void intel_runtime_pm_disable(struct drm_i915_private *dev_priv)
1910 {
1911 struct drm_device *dev = dev_priv->dev;
1912 struct device *device = dev->dev;
1913
1914 if (!HAS_RUNTIME_PM(dev))
1915 return;
1916
1917 if (!intel_enable_rc6(dev))
1918 return;
1919
1920 /* Make sure we're not suspended first. */
1921 pm_runtime_get_sync(device);
1922 }
1923
1924 /**
1925 * intel_power_domains_fini - finalizes the power domain structures
1926 * @dev_priv: i915 device instance
1927 *
1928 * Finalizes the power domain structures for @dev_priv depending upon the
1929 * supported platform. This function also disables runtime pm and ensures that
1930 * the device stays powered up so that the driver can be reloaded.
1931 */
1932 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
1933 {
1934 intel_runtime_pm_disable(dev_priv);
1935
1936 /* The i915.ko module is still not prepared to be loaded when
1937 * the power well is not enabled, so just enable it in case
1938 * we're going to unload/reload. */
1939 intel_display_set_init_power(dev_priv, true);
1940
1941 mutex_destroy(&dev_priv->power_domains.lock);
1942 }
1943
1944 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
1945 {
1946 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1947 struct i915_power_well *power_well;
1948 int i;
1949
1950 mutex_lock(&power_domains->lock);
1951 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
1952 power_well->ops->sync_hw(dev_priv, power_well);
1953 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
1954 power_well);
1955 }
1956 mutex_unlock(&power_domains->lock);
1957 }
1958
1959 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1960 {
1961 struct i915_power_well *cmn_bc =
1962 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1963 struct i915_power_well *cmn_d =
1964 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1965
1966 /*
1967 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1968 * workaround never ever read DISPLAY_PHY_CONTROL, and
1969 * instead maintain a shadow copy ourselves. Use the actual
1970 * power well state and lane status to reconstruct the
1971 * expected initial value.
1972 */
1973 dev_priv->chv_phy_control =
1974 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1975 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1976 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1977 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1978 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1979
1980 /*
1981 * If all lanes are disabled we leave the override disabled
1982 * with all power down bits cleared to match the state we
1983 * would use after disabling the port. Otherwise enable the
1984 * override and set the lane powerdown bits accding to the
1985 * current lane status.
1986 */
1987 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1988 uint32_t status = I915_READ(DPLL(PIPE_A));
1989 unsigned int mask;
1990
1991 mask = status & DPLL_PORTB_READY_MASK;
1992 if (mask == 0xf)
1993 mask = 0x0;
1994 else
1995 dev_priv->chv_phy_control |=
1996 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1997
1998 dev_priv->chv_phy_control |=
1999 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2000
2001 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2002 if (mask == 0xf)
2003 mask = 0x0;
2004 else
2005 dev_priv->chv_phy_control |=
2006 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2007
2008 dev_priv->chv_phy_control |=
2009 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2010
2011 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2012
2013 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2014 } else {
2015 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2016 }
2017
2018 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2019 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2020 unsigned int mask;
2021
2022 mask = status & DPLL_PORTD_READY_MASK;
2023
2024 if (mask == 0xf)
2025 mask = 0x0;
2026 else
2027 dev_priv->chv_phy_control |=
2028 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2029
2030 dev_priv->chv_phy_control |=
2031 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2032
2033 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2034
2035 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2036 } else {
2037 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2038 }
2039
2040 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2041
2042 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2043 dev_priv->chv_phy_control);
2044 }
2045
2046 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2047 {
2048 struct i915_power_well *cmn =
2049 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2050 struct i915_power_well *disp2d =
2051 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2052
2053 /* If the display might be already active skip this */
2054 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2055 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2056 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2057 return;
2058
2059 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2060
2061 /* cmnlane needs DPLL registers */
2062 disp2d->ops->enable(dev_priv, disp2d);
2063
2064 /*
2065 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2066 * Need to assert and de-assert PHY SB reset by gating the
2067 * common lane power, then un-gating it.
2068 * Simply ungating isn't enough to reset the PHY enough to get
2069 * ports and lanes running.
2070 */
2071 cmn->ops->disable(dev_priv, cmn);
2072 }
2073
2074 /**
2075 * intel_power_domains_init_hw - initialize hardware power domain state
2076 * @dev_priv: i915 device instance
2077 *
2078 * This function initializes the hardware power domain state and enables all
2079 * power domains using intel_display_set_init_power().
2080 */
2081 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
2082 {
2083 struct drm_device *dev = dev_priv->dev;
2084 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2085
2086 power_domains->initializing = true;
2087
2088 if (IS_CHERRYVIEW(dev)) {
2089 mutex_lock(&power_domains->lock);
2090 chv_phy_control_init(dev_priv);
2091 mutex_unlock(&power_domains->lock);
2092 } else if (IS_VALLEYVIEW(dev)) {
2093 mutex_lock(&power_domains->lock);
2094 vlv_cmnlane_wa(dev_priv);
2095 mutex_unlock(&power_domains->lock);
2096 }
2097
2098 /* For now, we need the power well to be always enabled. */
2099 intel_display_set_init_power(dev_priv, true);
2100 intel_power_domains_resume(dev_priv);
2101 power_domains->initializing = false;
2102 }
2103
2104 /**
2105 * intel_runtime_pm_get - grab a runtime pm reference
2106 * @dev_priv: i915 device instance
2107 *
2108 * This function grabs a device-level runtime pm reference (mostly used for GEM
2109 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2110 *
2111 * Any runtime pm reference obtained by this function must have a symmetric
2112 * call to intel_runtime_pm_put() to release the reference again.
2113 */
2114 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2115 {
2116 struct drm_device *dev = dev_priv->dev;
2117 struct device *device = dev->dev;
2118
2119 if (!HAS_RUNTIME_PM(dev))
2120 return;
2121
2122 pm_runtime_get_sync(device);
2123 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
2124 }
2125
2126 /**
2127 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2128 * @dev_priv: i915 device instance
2129 *
2130 * This function grabs a device-level runtime pm reference (mostly used for GEM
2131 * code to ensure the GTT or GT is on).
2132 *
2133 * It will _not_ power up the device but instead only check that it's powered
2134 * on. Therefore it is only valid to call this functions from contexts where
2135 * the device is known to be powered up and where trying to power it up would
2136 * result in hilarity and deadlocks. That pretty much means only the system
2137 * suspend/resume code where this is used to grab runtime pm references for
2138 * delayed setup down in work items.
2139 *
2140 * Any runtime pm reference obtained by this function must have a symmetric
2141 * call to intel_runtime_pm_put() to release the reference again.
2142 */
2143 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2144 {
2145 struct drm_device *dev = dev_priv->dev;
2146 struct device *device = dev->dev;
2147
2148 if (!HAS_RUNTIME_PM(dev))
2149 return;
2150
2151 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
2152 pm_runtime_get_noresume(device);
2153 }
2154
2155 /**
2156 * intel_runtime_pm_put - release a runtime pm reference
2157 * @dev_priv: i915 device instance
2158 *
2159 * This function drops the device-level runtime pm reference obtained by
2160 * intel_runtime_pm_get() and might power down the corresponding
2161 * hardware block right away if this is the last reference.
2162 */
2163 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2164 {
2165 struct drm_device *dev = dev_priv->dev;
2166 struct device *device = dev->dev;
2167
2168 if (!HAS_RUNTIME_PM(dev))
2169 return;
2170
2171 pm_runtime_mark_last_busy(device);
2172 pm_runtime_put_autosuspend(device);
2173 }
2174
2175 /**
2176 * intel_runtime_pm_enable - enable runtime pm
2177 * @dev_priv: i915 device instance
2178 *
2179 * This function enables runtime pm at the end of the driver load sequence.
2180 *
2181 * Note that this function does currently not enable runtime pm for the
2182 * subordinate display power domains. That is only done on the first modeset
2183 * using intel_display_set_init_power().
2184 */
2185 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2186 {
2187 struct drm_device *dev = dev_priv->dev;
2188 struct device *device = dev->dev;
2189
2190 if (!HAS_RUNTIME_PM(dev))
2191 return;
2192
2193 /*
2194 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
2195 * requirement.
2196 */
2197 if (!intel_enable_rc6(dev)) {
2198 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
2199 return;
2200 }
2201
2202 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2203 pm_runtime_mark_last_busy(device);
2204 pm_runtime_use_autosuspend(device);
2205
2206 pm_runtime_put_autosuspend(device);
2207 }
2208
2209