nouveau_svm.c revision 1.2 1 /* $NetBSD: nouveau_svm.c,v 1.2 2021/12/18 23:45:32 riastradh Exp $ */
2
3 /*
4 * Copyright 2018 Red Hat Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: nouveau_svm.c,v 1.2 2021/12/18 23:45:32 riastradh Exp $");
26
27 #include "nouveau_svm.h"
28 #include "nouveau_drv.h"
29 #include "nouveau_chan.h"
30 #include "nouveau_dmem.h"
31
32 #include <nvif/notify.h>
33 #include <nvif/object.h>
34 #include <nvif/vmm.h>
35
36 #include <nvif/class.h>
37 #include <nvif/clb069.h>
38 #include <nvif/ifc00d.h>
39
40 #include <linux/sched/mm.h>
41 #include <linux/sort.h>
42 #include <linux/hmm.h>
43
44 struct nouveau_svm {
45 struct nouveau_drm *drm;
46 struct mutex mutex;
47 struct list_head inst;
48
49 struct nouveau_svm_fault_buffer {
50 int id;
51 struct nvif_object object;
52 u32 entries;
53 u32 getaddr;
54 u32 putaddr;
55 u32 get;
56 u32 put;
57 struct nvif_notify notify;
58
59 struct nouveau_svm_fault {
60 u64 inst;
61 u64 addr;
62 u64 time;
63 u32 engine;
64 u8 gpc;
65 u8 hub;
66 u8 access;
67 u8 client;
68 u8 fault;
69 struct nouveau_svmm *svmm;
70 } **fault;
71 int fault_nr;
72 } buffer[1];
73 };
74
75 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
76 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
77
78 struct nouveau_ivmm {
79 struct nouveau_svmm *svmm;
80 u64 inst;
81 struct list_head head;
82 };
83
84 static struct nouveau_ivmm *
85 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
86 {
87 struct nouveau_ivmm *ivmm;
88 list_for_each_entry(ivmm, &svm->inst, head) {
89 if (ivmm->inst == inst)
90 return ivmm;
91 }
92 return NULL;
93 }
94
95 struct nouveau_svmm {
96 struct mmu_notifier notifier;
97 struct nouveau_vmm *vmm;
98 struct {
99 unsigned long start;
100 unsigned long limit;
101 } unmanaged;
102
103 struct mutex mutex;
104 };
105
106 #define SVMM_DBG(s,f,a...) \
107 NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
108 #define SVMM_ERR(s,f,a...) \
109 NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
110
111 int
112 nouveau_svmm_bind(struct drm_device *dev, void *data,
113 struct drm_file *file_priv)
114 {
115 struct nouveau_cli *cli = nouveau_cli(file_priv);
116 struct drm_nouveau_svm_bind *args = data;
117 unsigned target, cmd, priority;
118 unsigned long addr, end, size;
119 struct mm_struct *mm;
120
121 args->va_start &= PAGE_MASK;
122 args->va_end &= PAGE_MASK;
123
124 /* Sanity check arguments */
125 if (args->reserved0 || args->reserved1)
126 return -EINVAL;
127 if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
128 return -EINVAL;
129 if (args->va_start >= args->va_end)
130 return -EINVAL;
131 if (!args->npages)
132 return -EINVAL;
133
134 cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
135 cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
136 switch (cmd) {
137 case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
138 break;
139 default:
140 return -EINVAL;
141 }
142
143 priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
144 priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
145
146 /* FIXME support CPU target ie all target value < GPU_VRAM */
147 target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
148 target &= NOUVEAU_SVM_BIND_TARGET_MASK;
149 switch (target) {
150 case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
151 break;
152 default:
153 return -EINVAL;
154 }
155
156 /*
157 * FIXME: For now refuse non 0 stride, we need to change the migrate
158 * kernel function to handle stride to avoid to create a mess within
159 * each device driver.
160 */
161 if (args->stride)
162 return -EINVAL;
163
164 size = ((unsigned long)args->npages) << PAGE_SHIFT;
165 if ((args->va_start + size) <= args->va_start)
166 return -EINVAL;
167 if ((args->va_start + size) > args->va_end)
168 return -EINVAL;
169
170 /*
171 * Ok we are ask to do something sane, for now we only support migrate
172 * commands but we will add things like memory policy (what to do on
173 * page fault) and maybe some other commands.
174 */
175
176 mm = get_task_mm(current);
177 down_read(&mm->mmap_sem);
178
179 for (addr = args->va_start, end = args->va_start + size; addr < end;) {
180 struct vm_area_struct *vma;
181 unsigned long next;
182
183 vma = find_vma_intersection(mm, addr, end);
184 if (!vma)
185 break;
186
187 next = min(vma->vm_end, end);
188 /* This is a best effort so we ignore errors */
189 nouveau_dmem_migrate_vma(cli->drm, vma, addr, next);
190 addr = next;
191 }
192
193 /*
194 * FIXME Return the number of page we have migrated, again we need to
195 * update the migrate API to return that information so that we can
196 * report it to user space.
197 */
198 args->result = 0;
199
200 up_read(&mm->mmap_sem);
201 mmput(mm);
202
203 return 0;
204 }
205
206 /* Unlink channel instance from SVMM. */
207 void
208 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
209 {
210 struct nouveau_ivmm *ivmm;
211 if (svmm) {
212 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
213 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
214 if (ivmm) {
215 list_del(&ivmm->head);
216 kfree(ivmm);
217 }
218 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
219 }
220 }
221
222 /* Link channel instance to SVMM. */
223 int
224 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
225 {
226 struct nouveau_ivmm *ivmm;
227 if (svmm) {
228 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
229 return -ENOMEM;
230 ivmm->svmm = svmm;
231 ivmm->inst = inst;
232
233 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
234 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
235 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
236 }
237 return 0;
238 }
239
240 /* Invalidate SVMM address-range on GPU. */
241 static void
242 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
243 {
244 if (limit > start) {
245 bool super = svmm->vmm->vmm.object.client->super;
246 svmm->vmm->vmm.object.client->super = true;
247 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
248 &(struct nvif_vmm_pfnclr_v0) {
249 .addr = start,
250 .size = limit - start,
251 }, sizeof(struct nvif_vmm_pfnclr_v0));
252 svmm->vmm->vmm.object.client->super = super;
253 }
254 }
255
256 static int
257 nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
258 const struct mmu_notifier_range *update)
259 {
260 struct nouveau_svmm *svmm =
261 container_of(mn, struct nouveau_svmm, notifier);
262 unsigned long start = update->start;
263 unsigned long limit = update->end;
264
265 if (!mmu_notifier_range_blockable(update))
266 return -EAGAIN;
267
268 SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
269
270 mutex_lock(&svmm->mutex);
271 if (unlikely(!svmm->vmm))
272 goto out;
273
274 if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
275 if (start < svmm->unmanaged.start) {
276 nouveau_svmm_invalidate(svmm, start,
277 svmm->unmanaged.limit);
278 }
279 start = svmm->unmanaged.limit;
280 }
281
282 nouveau_svmm_invalidate(svmm, start, limit);
283
284 out:
285 mutex_unlock(&svmm->mutex);
286 return 0;
287 }
288
289 static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
290 {
291 kfree(container_of(mn, struct nouveau_svmm, notifier));
292 }
293
294 static const struct mmu_notifier_ops nouveau_mn_ops = {
295 .invalidate_range_start = nouveau_svmm_invalidate_range_start,
296 .free_notifier = nouveau_svmm_free_notifier,
297 };
298
299 void
300 nouveau_svmm_fini(struct nouveau_svmm **psvmm)
301 {
302 struct nouveau_svmm *svmm = *psvmm;
303 if (svmm) {
304 mutex_lock(&svmm->mutex);
305 svmm->vmm = NULL;
306 mutex_unlock(&svmm->mutex);
307 mmu_notifier_put(&svmm->notifier);
308 *psvmm = NULL;
309 }
310 }
311
312 int
313 nouveau_svmm_init(struct drm_device *dev, void *data,
314 struct drm_file *file_priv)
315 {
316 struct nouveau_cli *cli = nouveau_cli(file_priv);
317 struct nouveau_svmm *svmm;
318 struct drm_nouveau_svm_init *args = data;
319 int ret;
320
321 /* Allocate tracking for SVM-enabled VMM. */
322 if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
323 return -ENOMEM;
324 svmm->vmm = &cli->svm;
325 svmm->unmanaged.start = args->unmanaged_addr;
326 svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
327 mutex_init(&svmm->mutex);
328
329 /* Check that SVM isn't already enabled for the client. */
330 mutex_lock(&cli->mutex);
331 if (cli->svm.cli) {
332 ret = -EBUSY;
333 goto out_free;
334 }
335
336 /* Allocate a new GPU VMM that can support SVM (managed by the
337 * client, with replayable faults enabled).
338 *
339 * All future channel/memory allocations will make use of this
340 * VMM instead of the standard one.
341 */
342 ret = nvif_vmm_init(&cli->mmu, cli->vmm.vmm.object.oclass, true,
343 args->unmanaged_addr, args->unmanaged_size,
344 &(struct gp100_vmm_v0) {
345 .fault_replay = true,
346 }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
347 if (ret)
348 goto out_free;
349
350 down_write(¤t->mm->mmap_sem);
351 svmm->notifier.ops = &nouveau_mn_ops;
352 ret = __mmu_notifier_register(&svmm->notifier, current->mm);
353 if (ret)
354 goto out_mm_unlock;
355 /* Note, ownership of svmm transfers to mmu_notifier */
356
357 cli->svm.svmm = svmm;
358 cli->svm.cli = cli;
359 up_write(¤t->mm->mmap_sem);
360 mutex_unlock(&cli->mutex);
361 return 0;
362
363 out_mm_unlock:
364 up_write(¤t->mm->mmap_sem);
365 out_free:
366 mutex_unlock(&cli->mutex);
367 kfree(svmm);
368 return ret;
369 }
370
371 static const u64
372 nouveau_svm_pfn_flags[HMM_PFN_FLAG_MAX] = {
373 [HMM_PFN_VALID ] = NVIF_VMM_PFNMAP_V0_V,
374 [HMM_PFN_WRITE ] = NVIF_VMM_PFNMAP_V0_W,
375 [HMM_PFN_DEVICE_PRIVATE] = NVIF_VMM_PFNMAP_V0_VRAM,
376 };
377
378 static const u64
379 nouveau_svm_pfn_values[HMM_PFN_VALUE_MAX] = {
380 [HMM_PFN_ERROR ] = ~NVIF_VMM_PFNMAP_V0_V,
381 [HMM_PFN_NONE ] = NVIF_VMM_PFNMAP_V0_NONE,
382 [HMM_PFN_SPECIAL] = ~NVIF_VMM_PFNMAP_V0_V,
383 };
384
385 /* Issue fault replay for GPU to retry accesses that faulted previously. */
386 static void
387 nouveau_svm_fault_replay(struct nouveau_svm *svm)
388 {
389 SVM_DBG(svm, "replay");
390 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
391 GP100_VMM_VN_FAULT_REPLAY,
392 &(struct gp100_vmm_fault_replay_vn) {},
393 sizeof(struct gp100_vmm_fault_replay_vn)));
394 }
395
396 /* Cancel a replayable fault that could not be handled.
397 *
398 * Cancelling the fault will trigger recovery to reset the engine
399 * and kill the offending channel (ie. GPU SIGSEGV).
400 */
401 static void
402 nouveau_svm_fault_cancel(struct nouveau_svm *svm,
403 u64 inst, u8 hub, u8 gpc, u8 client)
404 {
405 SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
406 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
407 GP100_VMM_VN_FAULT_CANCEL,
408 &(struct gp100_vmm_fault_cancel_v0) {
409 .hub = hub,
410 .gpc = gpc,
411 .client = client,
412 .inst = inst,
413 }, sizeof(struct gp100_vmm_fault_cancel_v0)));
414 }
415
416 static void
417 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
418 struct nouveau_svm_fault *fault)
419 {
420 nouveau_svm_fault_cancel(svm, fault->inst,
421 fault->hub,
422 fault->gpc,
423 fault->client);
424 }
425
426 static int
427 nouveau_svm_fault_cmp(const void *a, const void *b)
428 {
429 const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
430 const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
431 int ret;
432 if ((ret = (s64)fa->inst - fb->inst))
433 return ret;
434 if ((ret = (s64)fa->addr - fb->addr))
435 return ret;
436 /*XXX: atomic? */
437 return (fa->access == 0 || fa->access == 3) -
438 (fb->access == 0 || fb->access == 3);
439 }
440
441 static void
442 nouveau_svm_fault_cache(struct nouveau_svm *svm,
443 struct nouveau_svm_fault_buffer *buffer, u32 offset)
444 {
445 struct nvif_object *memory = &buffer->object;
446 const u32 instlo = nvif_rd32(memory, offset + 0x00);
447 const u32 insthi = nvif_rd32(memory, offset + 0x04);
448 const u32 addrlo = nvif_rd32(memory, offset + 0x08);
449 const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
450 const u32 timelo = nvif_rd32(memory, offset + 0x10);
451 const u32 timehi = nvif_rd32(memory, offset + 0x14);
452 const u32 engine = nvif_rd32(memory, offset + 0x18);
453 const u32 info = nvif_rd32(memory, offset + 0x1c);
454 const u64 inst = (u64)insthi << 32 | instlo;
455 const u8 gpc = (info & 0x1f000000) >> 24;
456 const u8 hub = (info & 0x00100000) >> 20;
457 const u8 client = (info & 0x00007f00) >> 8;
458 struct nouveau_svm_fault *fault;
459
460 //XXX: i think we're supposed to spin waiting */
461 if (WARN_ON(!(info & 0x80000000)))
462 return;
463
464 nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
465
466 if (!buffer->fault[buffer->fault_nr]) {
467 fault = kmalloc(sizeof(*fault), GFP_KERNEL);
468 if (WARN_ON(!fault)) {
469 nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
470 return;
471 }
472 buffer->fault[buffer->fault_nr] = fault;
473 }
474
475 fault = buffer->fault[buffer->fault_nr++];
476 fault->inst = inst;
477 fault->addr = (u64)addrhi << 32 | addrlo;
478 fault->time = (u64)timehi << 32 | timelo;
479 fault->engine = engine;
480 fault->gpc = gpc;
481 fault->hub = hub;
482 fault->access = (info & 0x000f0000) >> 16;
483 fault->client = client;
484 fault->fault = (info & 0x0000001f);
485
486 SVM_DBG(svm, "fault %016llx %016llx %02x",
487 fault->inst, fault->addr, fault->access);
488 }
489
490 struct svm_notifier {
491 struct mmu_interval_notifier notifier;
492 struct nouveau_svmm *svmm;
493 };
494
495 static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
496 const struct mmu_notifier_range *range,
497 unsigned long cur_seq)
498 {
499 struct svm_notifier *sn =
500 container_of(mni, struct svm_notifier, notifier);
501
502 /*
503 * serializes the update to mni->invalidate_seq done by caller and
504 * prevents invalidation of the PTE from progressing while HW is being
505 * programmed. This is very hacky and only works because the normal
506 * notifier that does invalidation is always called after the range
507 * notifier.
508 */
509 if (mmu_notifier_range_blockable(range))
510 mutex_lock(&sn->svmm->mutex);
511 else if (!mutex_trylock(&sn->svmm->mutex))
512 return false;
513 mmu_interval_set_seq(mni, cur_seq);
514 mutex_unlock(&sn->svmm->mutex);
515 return true;
516 }
517
518 static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
519 .invalidate = nouveau_svm_range_invalidate,
520 };
521
522 static int nouveau_range_fault(struct nouveau_svmm *svmm,
523 struct nouveau_drm *drm, void *data, u32 size,
524 u64 *pfns, struct svm_notifier *notifier)
525 {
526 unsigned long timeout =
527 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
528 /* Have HMM fault pages within the fault window to the GPU. */
529 struct hmm_range range = {
530 .notifier = ¬ifier->notifier,
531 .start = notifier->notifier.interval_tree.start,
532 .end = notifier->notifier.interval_tree.last + 1,
533 .pfns = pfns,
534 .flags = nouveau_svm_pfn_flags,
535 .values = nouveau_svm_pfn_values,
536 .pfn_shift = NVIF_VMM_PFNMAP_V0_ADDR_SHIFT,
537 };
538 struct mm_struct *mm = notifier->notifier.mm;
539 long ret;
540
541 while (true) {
542 if (time_after(jiffies, timeout))
543 return -EBUSY;
544
545 range.notifier_seq = mmu_interval_read_begin(range.notifier);
546 range.default_flags = 0;
547 range.pfn_flags_mask = -1UL;
548 down_read(&mm->mmap_sem);
549 ret = hmm_range_fault(&range, 0);
550 up_read(&mm->mmap_sem);
551 if (ret <= 0) {
552 if (ret == 0 || ret == -EBUSY)
553 continue;
554 return ret;
555 }
556
557 mutex_lock(&svmm->mutex);
558 if (mmu_interval_read_retry(range.notifier,
559 range.notifier_seq)) {
560 mutex_unlock(&svmm->mutex);
561 continue;
562 }
563 break;
564 }
565
566 nouveau_dmem_convert_pfn(drm, &range);
567
568 svmm->vmm->vmm.object.client->super = true;
569 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, data, size, NULL);
570 svmm->vmm->vmm.object.client->super = false;
571 mutex_unlock(&svmm->mutex);
572
573 return ret;
574 }
575
576 static int
577 nouveau_svm_fault(struct nvif_notify *notify)
578 {
579 struct nouveau_svm_fault_buffer *buffer =
580 container_of(notify, typeof(*buffer), notify);
581 struct nouveau_svm *svm =
582 container_of(buffer, typeof(*svm), buffer[buffer->id]);
583 struct nvif_object *device = &svm->drm->client.device.object;
584 struct nouveau_svmm *svmm;
585 struct {
586 struct {
587 struct nvif_ioctl_v0 i;
588 struct nvif_ioctl_mthd_v0 m;
589 struct nvif_vmm_pfnmap_v0 p;
590 } i;
591 u64 phys[16];
592 } args;
593 struct vm_area_struct *vma;
594 u64 inst, start, limit;
595 int fi, fn, pi, fill;
596 int replay = 0, ret;
597
598 /* Parse available fault buffer entries into a cache, and update
599 * the GET pointer so HW can reuse the entries.
600 */
601 SVM_DBG(svm, "fault handler");
602 if (buffer->get == buffer->put) {
603 buffer->put = nvif_rd32(device, buffer->putaddr);
604 buffer->get = nvif_rd32(device, buffer->getaddr);
605 if (buffer->get == buffer->put)
606 return NVIF_NOTIFY_KEEP;
607 }
608 buffer->fault_nr = 0;
609
610 SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
611 while (buffer->get != buffer->put) {
612 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
613 if (++buffer->get == buffer->entries)
614 buffer->get = 0;
615 }
616 nvif_wr32(device, buffer->getaddr, buffer->get);
617 SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
618
619 /* Sort parsed faults by instance pointer to prevent unnecessary
620 * instance to SVMM translations, followed by address and access
621 * type to reduce the amount of work when handling the faults.
622 */
623 sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
624 nouveau_svm_fault_cmp, NULL);
625
626 /* Lookup SVMM structure for each unique instance pointer. */
627 mutex_lock(&svm->mutex);
628 for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
629 if (!svmm || buffer->fault[fi]->inst != inst) {
630 struct nouveau_ivmm *ivmm =
631 nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
632 svmm = ivmm ? ivmm->svmm : NULL;
633 inst = buffer->fault[fi]->inst;
634 SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
635 }
636 buffer->fault[fi]->svmm = svmm;
637 }
638 mutex_unlock(&svm->mutex);
639
640 /* Process list of faults. */
641 args.i.i.version = 0;
642 args.i.i.type = NVIF_IOCTL_V0_MTHD;
643 args.i.m.version = 0;
644 args.i.m.method = NVIF_VMM_V0_PFNMAP;
645 args.i.p.version = 0;
646
647 for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
648 struct svm_notifier notifier;
649 struct mm_struct *mm;
650
651 /* Cancel any faults from non-SVM channels. */
652 if (!(svmm = buffer->fault[fi]->svmm)) {
653 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
654 continue;
655 }
656 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
657
658 /* We try and group handling of faults within a small
659 * window into a single update.
660 */
661 start = buffer->fault[fi]->addr;
662 limit = start + (ARRAY_SIZE(args.phys) << PAGE_SHIFT);
663 if (start < svmm->unmanaged.limit)
664 limit = min_t(u64, limit, svmm->unmanaged.start);
665 else
666 if (limit > svmm->unmanaged.start)
667 start = max_t(u64, start, svmm->unmanaged.limit);
668 SVMM_DBG(svmm, "wndw %016llx-%016llx", start, limit);
669
670 mm = svmm->notifier.mm;
671 if (!mmget_not_zero(mm)) {
672 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
673 continue;
674 }
675
676 /* Intersect fault window with the CPU VMA, cancelling
677 * the fault if the address is invalid.
678 */
679 down_read(&mm->mmap_sem);
680 vma = find_vma_intersection(mm, start, limit);
681 if (!vma) {
682 SVMM_ERR(svmm, "wndw %016llx-%016llx", start, limit);
683 up_read(&mm->mmap_sem);
684 mmput(mm);
685 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
686 continue;
687 }
688 start = max_t(u64, start, vma->vm_start);
689 limit = min_t(u64, limit, vma->vm_end);
690 up_read(&mm->mmap_sem);
691 SVMM_DBG(svmm, "wndw %016llx-%016llx", start, limit);
692
693 if (buffer->fault[fi]->addr != start) {
694 SVMM_ERR(svmm, "addr %016llx", buffer->fault[fi]->addr);
695 mmput(mm);
696 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
697 continue;
698 }
699
700 /* Prepare the GPU-side update of all pages within the
701 * fault window, determining required pages and access
702 * permissions based on pending faults.
703 */
704 args.i.p.page = PAGE_SHIFT;
705 args.i.p.addr = start;
706 for (fn = fi, pi = 0;;) {
707 /* Determine required permissions based on GPU fault
708 * access flags.
709 *XXX: atomic?
710 */
711 if (buffer->fault[fn]->access != 0 /* READ. */ &&
712 buffer->fault[fn]->access != 3 /* PREFETCH. */) {
713 args.phys[pi++] = NVIF_VMM_PFNMAP_V0_V |
714 NVIF_VMM_PFNMAP_V0_W;
715 } else {
716 args.phys[pi++] = NVIF_VMM_PFNMAP_V0_V;
717 }
718 args.i.p.size = pi << PAGE_SHIFT;
719
720 /* It's okay to skip over duplicate addresses from the
721 * same SVMM as faults are ordered by access type such
722 * that only the first one needs to be handled.
723 *
724 * ie. WRITE faults appear first, thus any handling of
725 * pending READ faults will already be satisfied.
726 */
727 while (++fn < buffer->fault_nr &&
728 buffer->fault[fn]->svmm == svmm &&
729 buffer->fault[fn ]->addr ==
730 buffer->fault[fn - 1]->addr);
731
732 /* If the next fault is outside the window, or all GPU
733 * faults have been dealt with, we're done here.
734 */
735 if (fn >= buffer->fault_nr ||
736 buffer->fault[fn]->svmm != svmm ||
737 buffer->fault[fn]->addr >= limit)
738 break;
739
740 /* Fill in the gap between this fault and the next. */
741 fill = (buffer->fault[fn ]->addr -
742 buffer->fault[fn - 1]->addr) >> PAGE_SHIFT;
743 while (--fill)
744 args.phys[pi++] = NVIF_VMM_PFNMAP_V0_NONE;
745 }
746
747 SVMM_DBG(svmm, "wndw %016llx-%016llx covering %d fault(s)",
748 args.i.p.addr,
749 args.i.p.addr + args.i.p.size, fn - fi);
750
751 notifier.svmm = svmm;
752 ret = mmu_interval_notifier_insert(¬ifier.notifier,
753 svmm->notifier.mm,
754 args.i.p.addr, args.i.p.size,
755 &nouveau_svm_mni_ops);
756 if (!ret) {
757 ret = nouveau_range_fault(
758 svmm, svm->drm, &args,
759 sizeof(args.i) + pi * sizeof(args.phys[0]),
760 args.phys, ¬ifier);
761 mmu_interval_notifier_remove(¬ifier.notifier);
762 }
763 mmput(mm);
764
765 /* Cancel any faults in the window whose pages didn't manage
766 * to keep their valid bit, or stay writeable when required.
767 *
768 * If handling failed completely, cancel all faults.
769 */
770 while (fi < fn) {
771 struct nouveau_svm_fault *fault = buffer->fault[fi++];
772 pi = (fault->addr - args.i.p.addr) >> PAGE_SHIFT;
773 if (ret ||
774 !(args.phys[pi] & NVIF_VMM_PFNMAP_V0_V) ||
775 (!(args.phys[pi] & NVIF_VMM_PFNMAP_V0_W) &&
776 fault->access != 0 && fault->access != 3)) {
777 nouveau_svm_fault_cancel_fault(svm, fault);
778 continue;
779 }
780 replay++;
781 }
782 }
783
784 /* Issue fault replay to the GPU. */
785 if (replay)
786 nouveau_svm_fault_replay(svm);
787 return NVIF_NOTIFY_KEEP;
788 }
789
790 static void
791 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
792 {
793 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
794 nvif_notify_put(&buffer->notify);
795 }
796
797 static int
798 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
799 {
800 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
801 struct nvif_object *device = &svm->drm->client.device.object;
802 buffer->get = nvif_rd32(device, buffer->getaddr);
803 buffer->put = nvif_rd32(device, buffer->putaddr);
804 SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
805 return nvif_notify_get(&buffer->notify);
806 }
807
808 static void
809 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
810 {
811 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
812 int i;
813
814 if (buffer->fault) {
815 for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
816 kfree(buffer->fault[i]);
817 kvfree(buffer->fault);
818 }
819
820 nouveau_svm_fault_buffer_fini(svm, id);
821
822 nvif_notify_fini(&buffer->notify);
823 nvif_object_fini(&buffer->object);
824 }
825
826 static int
827 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
828 {
829 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
830 struct nouveau_drm *drm = svm->drm;
831 struct nvif_object *device = &drm->client.device.object;
832 struct nvif_clb069_v0 args = {};
833 int ret;
834
835 buffer->id = id;
836
837 ret = nvif_object_init(device, 0, oclass, &args, sizeof(args),
838 &buffer->object);
839 if (ret < 0) {
840 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
841 return ret;
842 }
843
844 nvif_object_map(&buffer->object, NULL, 0);
845 buffer->entries = args.entries;
846 buffer->getaddr = args.get;
847 buffer->putaddr = args.put;
848
849 ret = nvif_notify_init(&buffer->object, nouveau_svm_fault, true,
850 NVB069_V0_NTFY_FAULT, NULL, 0, 0,
851 &buffer->notify);
852 if (ret)
853 return ret;
854
855 buffer->fault = kvzalloc(sizeof(*buffer->fault) * buffer->entries, GFP_KERNEL);
856 if (!buffer->fault)
857 return -ENOMEM;
858
859 return nouveau_svm_fault_buffer_init(svm, id);
860 }
861
862 void
863 nouveau_svm_resume(struct nouveau_drm *drm)
864 {
865 struct nouveau_svm *svm = drm->svm;
866 if (svm)
867 nouveau_svm_fault_buffer_init(svm, 0);
868 }
869
870 void
871 nouveau_svm_suspend(struct nouveau_drm *drm)
872 {
873 struct nouveau_svm *svm = drm->svm;
874 if (svm)
875 nouveau_svm_fault_buffer_fini(svm, 0);
876 }
877
878 void
879 nouveau_svm_fini(struct nouveau_drm *drm)
880 {
881 struct nouveau_svm *svm = drm->svm;
882 if (svm) {
883 nouveau_svm_fault_buffer_dtor(svm, 0);
884 kfree(drm->svm);
885 drm->svm = NULL;
886 }
887 }
888
889 void
890 nouveau_svm_init(struct nouveau_drm *drm)
891 {
892 static const struct nvif_mclass buffers[] = {
893 { VOLTA_FAULT_BUFFER_A, 0 },
894 { MAXWELL_FAULT_BUFFER_A, 0 },
895 {}
896 };
897 struct nouveau_svm *svm;
898 int ret;
899
900 /* Disable on Volta and newer until channel recovery is fixed,
901 * otherwise clients will have a trivial way to trash the GPU
902 * for everyone.
903 */
904 if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
905 return;
906
907 if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
908 return;
909
910 drm->svm->drm = drm;
911 mutex_init(&drm->svm->mutex);
912 INIT_LIST_HEAD(&drm->svm->inst);
913
914 ret = nvif_mclass(&drm->client.device.object, buffers);
915 if (ret < 0) {
916 SVM_DBG(svm, "No supported fault buffer class");
917 nouveau_svm_fini(drm);
918 return;
919 }
920
921 ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
922 if (ret) {
923 nouveau_svm_fini(drm);
924 return;
925 }
926
927 SVM_DBG(svm, "Initialised");
928 }
929