radeon_device.c revision 1.1.1.2 1 /* $NetBSD: radeon_device.c,v 1.1.1.2 2018/08/27 01:34:58 riastradh Exp $ */
2
3 /*
4 * Copyright 2008 Advanced Micro Devices, Inc.
5 * Copyright 2008 Red Hat Inc.
6 * Copyright 2009 Jerome Glisse.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors: Dave Airlie
27 * Alex Deucher
28 * Jerome Glisse
29 */
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: radeon_device.c,v 1.1.1.2 2018/08/27 01:34:58 riastradh Exp $");
32
33 #include <linux/console.h>
34 #include <linux/slab.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/radeon_drm.h>
38 #include <linux/vgaarb.h>
39 #include <linux/vga_switcheroo.h>
40 #include <linux/efi.h>
41 #include "radeon_reg.h"
42 #include "radeon.h"
43 #include "atom.h"
44
45 static const char radeon_family_name[][16] = {
46 "R100",
47 "RV100",
48 "RS100",
49 "RV200",
50 "RS200",
51 "R200",
52 "RV250",
53 "RS300",
54 "RV280",
55 "R300",
56 "R350",
57 "RV350",
58 "RV380",
59 "R420",
60 "R423",
61 "RV410",
62 "RS400",
63 "RS480",
64 "RS600",
65 "RS690",
66 "RS740",
67 "RV515",
68 "R520",
69 "RV530",
70 "RV560",
71 "RV570",
72 "R580",
73 "R600",
74 "RV610",
75 "RV630",
76 "RV670",
77 "RV620",
78 "RV635",
79 "RS780",
80 "RS880",
81 "RV770",
82 "RV730",
83 "RV710",
84 "RV740",
85 "CEDAR",
86 "REDWOOD",
87 "JUNIPER",
88 "CYPRESS",
89 "HEMLOCK",
90 "PALM",
91 "SUMO",
92 "SUMO2",
93 "BARTS",
94 "TURKS",
95 "CAICOS",
96 "CAYMAN",
97 "ARUBA",
98 "TAHITI",
99 "PITCAIRN",
100 "VERDE",
101 "OLAND",
102 "HAINAN",
103 "BONAIRE",
104 "KAVERI",
105 "KABINI",
106 "HAWAII",
107 "MULLINS",
108 "LAST",
109 };
110
111 #define RADEON_PX_QUIRK_DISABLE_PX (1 << 0)
112 #define RADEON_PX_QUIRK_LONG_WAKEUP (1 << 1)
113
114 struct radeon_px_quirk {
115 u32 chip_vendor;
116 u32 chip_device;
117 u32 subsys_vendor;
118 u32 subsys_device;
119 u32 px_quirk_flags;
120 };
121
122 static struct radeon_px_quirk radeon_px_quirk_list[] = {
123 /* Acer aspire 5560g (CPU: AMD A4-3305M; GPU: AMD Radeon HD 6480g + 7470m)
124 * https://bugzilla.kernel.org/show_bug.cgi?id=74551
125 */
126 { PCI_VENDOR_ID_ATI, 0x6760, 0x1025, 0x0672, RADEON_PX_QUIRK_DISABLE_PX },
127 /* Asus K73TA laptop with AMD A6-3400M APU and Radeon 6550 GPU
128 * https://bugzilla.kernel.org/show_bug.cgi?id=51381
129 */
130 { PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x108c, RADEON_PX_QUIRK_DISABLE_PX },
131 /* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU
132 * https://bugzilla.kernel.org/show_bug.cgi?id=51381
133 */
134 { PCI_VENDOR_ID_ATI, 0x6840, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX },
135 /* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU
136 * https://bugs.freedesktop.org/show_bug.cgi?id=101491
137 */
138 { PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX },
139 /* macbook pro 8.2 */
140 { PCI_VENDOR_ID_ATI, 0x6741, PCI_VENDOR_ID_APPLE, 0x00e2, RADEON_PX_QUIRK_LONG_WAKEUP },
141 { 0, 0, 0, 0, 0 },
142 };
143
144 bool radeon_is_px(struct drm_device *dev)
145 {
146 struct radeon_device *rdev = dev->dev_private;
147
148 if (rdev->flags & RADEON_IS_PX)
149 return true;
150 return false;
151 }
152
153 static void radeon_device_handle_px_quirks(struct radeon_device *rdev)
154 {
155 struct radeon_px_quirk *p = radeon_px_quirk_list;
156
157 /* Apply PX quirks */
158 while (p && p->chip_device != 0) {
159 if (rdev->pdev->vendor == p->chip_vendor &&
160 rdev->pdev->device == p->chip_device &&
161 rdev->pdev->subsystem_vendor == p->subsys_vendor &&
162 rdev->pdev->subsystem_device == p->subsys_device) {
163 rdev->px_quirk_flags = p->px_quirk_flags;
164 break;
165 }
166 ++p;
167 }
168
169 if (rdev->px_quirk_flags & RADEON_PX_QUIRK_DISABLE_PX)
170 rdev->flags &= ~RADEON_IS_PX;
171 }
172
173 /**
174 * radeon_program_register_sequence - program an array of registers.
175 *
176 * @rdev: radeon_device pointer
177 * @registers: pointer to the register array
178 * @array_size: size of the register array
179 *
180 * Programs an array or registers with and and or masks.
181 * This is a helper for setting golden registers.
182 */
183 void radeon_program_register_sequence(struct radeon_device *rdev,
184 const u32 *registers,
185 const u32 array_size)
186 {
187 u32 tmp, reg, and_mask, or_mask;
188 int i;
189
190 if (array_size % 3)
191 return;
192
193 for (i = 0; i < array_size; i +=3) {
194 reg = registers[i + 0];
195 and_mask = registers[i + 1];
196 or_mask = registers[i + 2];
197
198 if (and_mask == 0xffffffff) {
199 tmp = or_mask;
200 } else {
201 tmp = RREG32(reg);
202 tmp &= ~and_mask;
203 tmp |= or_mask;
204 }
205 WREG32(reg, tmp);
206 }
207 }
208
209 void radeon_pci_config_reset(struct radeon_device *rdev)
210 {
211 pci_write_config_dword(rdev->pdev, 0x7c, RADEON_ASIC_RESET_DATA);
212 }
213
214 /**
215 * radeon_surface_init - Clear GPU surface registers.
216 *
217 * @rdev: radeon_device pointer
218 *
219 * Clear GPU surface registers (r1xx-r5xx).
220 */
221 void radeon_surface_init(struct radeon_device *rdev)
222 {
223 /* FIXME: check this out */
224 if (rdev->family < CHIP_R600) {
225 int i;
226
227 for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) {
228 if (rdev->surface_regs[i].bo)
229 radeon_bo_get_surface_reg(rdev->surface_regs[i].bo);
230 else
231 radeon_clear_surface_reg(rdev, i);
232 }
233 /* enable surfaces */
234 WREG32(RADEON_SURFACE_CNTL, 0);
235 }
236 }
237
238 /*
239 * GPU scratch registers helpers function.
240 */
241 /**
242 * radeon_scratch_init - Init scratch register driver information.
243 *
244 * @rdev: radeon_device pointer
245 *
246 * Init CP scratch register driver information (r1xx-r5xx)
247 */
248 void radeon_scratch_init(struct radeon_device *rdev)
249 {
250 int i;
251
252 /* FIXME: check this out */
253 if (rdev->family < CHIP_R300) {
254 rdev->scratch.num_reg = 5;
255 } else {
256 rdev->scratch.num_reg = 7;
257 }
258 rdev->scratch.reg_base = RADEON_SCRATCH_REG0;
259 for (i = 0; i < rdev->scratch.num_reg; i++) {
260 rdev->scratch.free[i] = true;
261 rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
262 }
263 }
264
265 /**
266 * radeon_scratch_get - Allocate a scratch register
267 *
268 * @rdev: radeon_device pointer
269 * @reg: scratch register mmio offset
270 *
271 * Allocate a CP scratch register for use by the driver (all asics).
272 * Returns 0 on success or -EINVAL on failure.
273 */
274 int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg)
275 {
276 int i;
277
278 for (i = 0; i < rdev->scratch.num_reg; i++) {
279 if (rdev->scratch.free[i]) {
280 rdev->scratch.free[i] = false;
281 *reg = rdev->scratch.reg[i];
282 return 0;
283 }
284 }
285 return -EINVAL;
286 }
287
288 /**
289 * radeon_scratch_free - Free a scratch register
290 *
291 * @rdev: radeon_device pointer
292 * @reg: scratch register mmio offset
293 *
294 * Free a CP scratch register allocated for use by the driver (all asics)
295 */
296 void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg)
297 {
298 int i;
299
300 for (i = 0; i < rdev->scratch.num_reg; i++) {
301 if (rdev->scratch.reg[i] == reg) {
302 rdev->scratch.free[i] = true;
303 return;
304 }
305 }
306 }
307
308 /*
309 * GPU doorbell aperture helpers function.
310 */
311 /**
312 * radeon_doorbell_init - Init doorbell driver information.
313 *
314 * @rdev: radeon_device pointer
315 *
316 * Init doorbell driver information (CIK)
317 * Returns 0 on success, error on failure.
318 */
319 static int radeon_doorbell_init(struct radeon_device *rdev)
320 {
321 /* doorbell bar mapping */
322 rdev->doorbell.base = pci_resource_start(rdev->pdev, 2);
323 rdev->doorbell.size = pci_resource_len(rdev->pdev, 2);
324
325 rdev->doorbell.num_doorbells = min_t(u32, rdev->doorbell.size / sizeof(u32), RADEON_MAX_DOORBELLS);
326 if (rdev->doorbell.num_doorbells == 0)
327 return -EINVAL;
328
329 rdev->doorbell.ptr = ioremap(rdev->doorbell.base, rdev->doorbell.num_doorbells * sizeof(u32));
330 if (rdev->doorbell.ptr == NULL) {
331 return -ENOMEM;
332 }
333 DRM_INFO("doorbell mmio base: 0x%08X\n", (uint32_t)rdev->doorbell.base);
334 DRM_INFO("doorbell mmio size: %u\n", (unsigned)rdev->doorbell.size);
335
336 memset(&rdev->doorbell.used, 0, sizeof(rdev->doorbell.used));
337
338 return 0;
339 }
340
341 /**
342 * radeon_doorbell_fini - Tear down doorbell driver information.
343 *
344 * @rdev: radeon_device pointer
345 *
346 * Tear down doorbell driver information (CIK)
347 */
348 static void radeon_doorbell_fini(struct radeon_device *rdev)
349 {
350 iounmap(rdev->doorbell.ptr);
351 rdev->doorbell.ptr = NULL;
352 }
353
354 /**
355 * radeon_doorbell_get - Allocate a doorbell entry
356 *
357 * @rdev: radeon_device pointer
358 * @doorbell: doorbell index
359 *
360 * Allocate a doorbell for use by the driver (all asics).
361 * Returns 0 on success or -EINVAL on failure.
362 */
363 int radeon_doorbell_get(struct radeon_device *rdev, u32 *doorbell)
364 {
365 unsigned long offset = find_first_zero_bit(rdev->doorbell.used, rdev->doorbell.num_doorbells);
366 if (offset < rdev->doorbell.num_doorbells) {
367 __set_bit(offset, rdev->doorbell.used);
368 *doorbell = offset;
369 return 0;
370 } else {
371 return -EINVAL;
372 }
373 }
374
375 /**
376 * radeon_doorbell_free - Free a doorbell entry
377 *
378 * @rdev: radeon_device pointer
379 * @doorbell: doorbell index
380 *
381 * Free a doorbell allocated for use by the driver (all asics)
382 */
383 void radeon_doorbell_free(struct radeon_device *rdev, u32 doorbell)
384 {
385 if (doorbell < rdev->doorbell.num_doorbells)
386 __clear_bit(doorbell, rdev->doorbell.used);
387 }
388
389 /**
390 * radeon_doorbell_get_kfd_info - Report doorbell configuration required to
391 * setup KFD
392 *
393 * @rdev: radeon_device pointer
394 * @aperture_base: output returning doorbell aperture base physical address
395 * @aperture_size: output returning doorbell aperture size in bytes
396 * @start_offset: output returning # of doorbell bytes reserved for radeon.
397 *
398 * Radeon and the KFD share the doorbell aperture. Radeon sets it up,
399 * takes doorbells required for its own rings and reports the setup to KFD.
400 * Radeon reserved doorbells are at the start of the doorbell aperture.
401 */
402 void radeon_doorbell_get_kfd_info(struct radeon_device *rdev,
403 phys_addr_t *aperture_base,
404 size_t *aperture_size,
405 size_t *start_offset)
406 {
407 /* The first num_doorbells are used by radeon.
408 * KFD takes whatever's left in the aperture. */
409 if (rdev->doorbell.size > rdev->doorbell.num_doorbells * sizeof(u32)) {
410 *aperture_base = rdev->doorbell.base;
411 *aperture_size = rdev->doorbell.size;
412 *start_offset = rdev->doorbell.num_doorbells * sizeof(u32);
413 } else {
414 *aperture_base = 0;
415 *aperture_size = 0;
416 *start_offset = 0;
417 }
418 }
419
420 /*
421 * radeon_wb_*()
422 * Writeback is the the method by which the the GPU updates special pages
423 * in memory with the status of certain GPU events (fences, ring pointers,
424 * etc.).
425 */
426
427 /**
428 * radeon_wb_disable - Disable Writeback
429 *
430 * @rdev: radeon_device pointer
431 *
432 * Disables Writeback (all asics). Used for suspend.
433 */
434 void radeon_wb_disable(struct radeon_device *rdev)
435 {
436 rdev->wb.enabled = false;
437 }
438
439 /**
440 * radeon_wb_fini - Disable Writeback and free memory
441 *
442 * @rdev: radeon_device pointer
443 *
444 * Disables Writeback and frees the Writeback memory (all asics).
445 * Used at driver shutdown.
446 */
447 void radeon_wb_fini(struct radeon_device *rdev)
448 {
449 radeon_wb_disable(rdev);
450 if (rdev->wb.wb_obj) {
451 if (!radeon_bo_reserve(rdev->wb.wb_obj, false)) {
452 radeon_bo_kunmap(rdev->wb.wb_obj);
453 radeon_bo_unpin(rdev->wb.wb_obj);
454 radeon_bo_unreserve(rdev->wb.wb_obj);
455 }
456 radeon_bo_unref(&rdev->wb.wb_obj);
457 rdev->wb.wb = NULL;
458 rdev->wb.wb_obj = NULL;
459 }
460 }
461
462 /**
463 * radeon_wb_init- Init Writeback driver info and allocate memory
464 *
465 * @rdev: radeon_device pointer
466 *
467 * Disables Writeback and frees the Writeback memory (all asics).
468 * Used at driver startup.
469 * Returns 0 on success or an -error on failure.
470 */
471 int radeon_wb_init(struct radeon_device *rdev)
472 {
473 int r;
474
475 if (rdev->wb.wb_obj == NULL) {
476 r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true,
477 RADEON_GEM_DOMAIN_GTT, 0, NULL, NULL,
478 &rdev->wb.wb_obj);
479 if (r) {
480 dev_warn(rdev->dev, "(%d) create WB bo failed\n", r);
481 return r;
482 }
483 r = radeon_bo_reserve(rdev->wb.wb_obj, false);
484 if (unlikely(r != 0)) {
485 radeon_wb_fini(rdev);
486 return r;
487 }
488 r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT,
489 &rdev->wb.gpu_addr);
490 if (r) {
491 radeon_bo_unreserve(rdev->wb.wb_obj);
492 dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r);
493 radeon_wb_fini(rdev);
494 return r;
495 }
496 r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb);
497 radeon_bo_unreserve(rdev->wb.wb_obj);
498 if (r) {
499 dev_warn(rdev->dev, "(%d) map WB bo failed\n", r);
500 radeon_wb_fini(rdev);
501 return r;
502 }
503 }
504
505 /* clear wb memory */
506 memset((char *)rdev->wb.wb, 0, RADEON_GPU_PAGE_SIZE);
507 /* disable event_write fences */
508 rdev->wb.use_event = false;
509 /* disabled via module param */
510 if (radeon_no_wb == 1) {
511 rdev->wb.enabled = false;
512 } else {
513 if (rdev->flags & RADEON_IS_AGP) {
514 /* often unreliable on AGP */
515 rdev->wb.enabled = false;
516 } else if (rdev->family < CHIP_R300) {
517 /* often unreliable on pre-r300 */
518 rdev->wb.enabled = false;
519 } else {
520 rdev->wb.enabled = true;
521 /* event_write fences are only available on r600+ */
522 if (rdev->family >= CHIP_R600) {
523 rdev->wb.use_event = true;
524 }
525 }
526 }
527 /* always use writeback/events on NI, APUs */
528 if (rdev->family >= CHIP_PALM) {
529 rdev->wb.enabled = true;
530 rdev->wb.use_event = true;
531 }
532
533 dev_info(rdev->dev, "WB %sabled\n", rdev->wb.enabled ? "en" : "dis");
534
535 return 0;
536 }
537
538 /**
539 * radeon_vram_location - try to find VRAM location
540 * @rdev: radeon device structure holding all necessary informations
541 * @mc: memory controller structure holding memory informations
542 * @base: base address at which to put VRAM
543 *
544 * Function will place try to place VRAM at base address provided
545 * as parameter (which is so far either PCI aperture address or
546 * for IGP TOM base address).
547 *
548 * If there is not enough space to fit the unvisible VRAM in the 32bits
549 * address space then we limit the VRAM size to the aperture.
550 *
551 * If we are using AGP and if the AGP aperture doesn't allow us to have
552 * room for all the VRAM than we restrict the VRAM to the PCI aperture
553 * size and print a warning.
554 *
555 * This function will never fails, worst case are limiting VRAM.
556 *
557 * Note: GTT start, end, size should be initialized before calling this
558 * function on AGP platform.
559 *
560 * Note: We don't explicitly enforce VRAM start to be aligned on VRAM size,
561 * this shouldn't be a problem as we are using the PCI aperture as a reference.
562 * Otherwise this would be needed for rv280, all r3xx, and all r4xx, but
563 * not IGP.
564 *
565 * Note: we use mc_vram_size as on some board we need to program the mc to
566 * cover the whole aperture even if VRAM size is inferior to aperture size
567 * Novell bug 204882 + along with lots of ubuntu ones
568 *
569 * Note: when limiting vram it's safe to overwritte real_vram_size because
570 * we are not in case where real_vram_size is inferior to mc_vram_size (ie
571 * note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu
572 * ones)
573 *
574 * Note: IGP TOM addr should be the same as the aperture addr, we don't
575 * explicitly check for that thought.
576 *
577 * FIXME: when reducing VRAM size align new size on power of 2.
578 */
579 void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base)
580 {
581 uint64_t limit = (uint64_t)radeon_vram_limit << 20;
582
583 mc->vram_start = base;
584 if (mc->mc_vram_size > (rdev->mc.mc_mask - base + 1)) {
585 dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
586 mc->real_vram_size = mc->aper_size;
587 mc->mc_vram_size = mc->aper_size;
588 }
589 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
590 if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_start <= mc->gtt_end) {
591 dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
592 mc->real_vram_size = mc->aper_size;
593 mc->mc_vram_size = mc->aper_size;
594 }
595 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
596 if (limit && limit < mc->real_vram_size)
597 mc->real_vram_size = limit;
598 dev_info(rdev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
599 mc->mc_vram_size >> 20, mc->vram_start,
600 mc->vram_end, mc->real_vram_size >> 20);
601 }
602
603 /**
604 * radeon_gtt_location - try to find GTT location
605 * @rdev: radeon device structure holding all necessary informations
606 * @mc: memory controller structure holding memory informations
607 *
608 * Function will place try to place GTT before or after VRAM.
609 *
610 * If GTT size is bigger than space left then we ajust GTT size.
611 * Thus function will never fails.
612 *
613 * FIXME: when reducing GTT size align new size on power of 2.
614 */
615 void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc)
616 {
617 u64 size_af, size_bf;
618
619 size_af = ((rdev->mc.mc_mask - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align;
620 size_bf = mc->vram_start & ~mc->gtt_base_align;
621 if (size_bf > size_af) {
622 if (mc->gtt_size > size_bf) {
623 dev_warn(rdev->dev, "limiting GTT\n");
624 mc->gtt_size = size_bf;
625 }
626 mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size;
627 } else {
628 if (mc->gtt_size > size_af) {
629 dev_warn(rdev->dev, "limiting GTT\n");
630 mc->gtt_size = size_af;
631 }
632 mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align;
633 }
634 mc->gtt_end = mc->gtt_start + mc->gtt_size - 1;
635 dev_info(rdev->dev, "GTT: %lluM 0x%016llX - 0x%016llX\n",
636 mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end);
637 }
638
639 /*
640 * GPU helpers function.
641 */
642
643 /**
644 * radeon_device_is_virtual - check if we are running is a virtual environment
645 *
646 * Check if the asic has been passed through to a VM (all asics).
647 * Used at driver startup.
648 * Returns true if virtual or false if not.
649 */
650 static bool radeon_device_is_virtual(void)
651 {
652 #ifdef CONFIG_X86
653 return boot_cpu_has(X86_FEATURE_HYPERVISOR);
654 #else
655 return false;
656 #endif
657 }
658
659 /**
660 * radeon_card_posted - check if the hw has already been initialized
661 *
662 * @rdev: radeon_device pointer
663 *
664 * Check if the asic has been initialized (all asics).
665 * Used at driver startup.
666 * Returns true if initialized or false if not.
667 */
668 bool radeon_card_posted(struct radeon_device *rdev)
669 {
670 uint32_t reg;
671
672 /* for pass through, always force asic_init for CI */
673 if (rdev->family >= CHIP_BONAIRE &&
674 radeon_device_is_virtual())
675 return false;
676
677 /* required for EFI mode on macbook2,1 which uses an r5xx asic */
678 if (efi_enabled(EFI_BOOT) &&
679 (rdev->pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE) &&
680 (rdev->family < CHIP_R600))
681 return false;
682
683 if (ASIC_IS_NODCE(rdev))
684 goto check_memsize;
685
686 /* first check CRTCs */
687 if (ASIC_IS_DCE4(rdev)) {
688 reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) |
689 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET);
690 if (rdev->num_crtc >= 4) {
691 reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) |
692 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET);
693 }
694 if (rdev->num_crtc >= 6) {
695 reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) |
696 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET);
697 }
698 if (reg & EVERGREEN_CRTC_MASTER_EN)
699 return true;
700 } else if (ASIC_IS_AVIVO(rdev)) {
701 reg = RREG32(AVIVO_D1CRTC_CONTROL) |
702 RREG32(AVIVO_D2CRTC_CONTROL);
703 if (reg & AVIVO_CRTC_EN) {
704 return true;
705 }
706 } else {
707 reg = RREG32(RADEON_CRTC_GEN_CNTL) |
708 RREG32(RADEON_CRTC2_GEN_CNTL);
709 if (reg & RADEON_CRTC_EN) {
710 return true;
711 }
712 }
713
714 check_memsize:
715 /* then check MEM_SIZE, in case the crtcs are off */
716 if (rdev->family >= CHIP_R600)
717 reg = RREG32(R600_CONFIG_MEMSIZE);
718 else
719 reg = RREG32(RADEON_CONFIG_MEMSIZE);
720
721 if (reg)
722 return true;
723
724 return false;
725
726 }
727
728 /**
729 * radeon_update_bandwidth_info - update display bandwidth params
730 *
731 * @rdev: radeon_device pointer
732 *
733 * Used when sclk/mclk are switched or display modes are set.
734 * params are used to calculate display watermarks (all asics)
735 */
736 void radeon_update_bandwidth_info(struct radeon_device *rdev)
737 {
738 fixed20_12 a;
739 u32 sclk = rdev->pm.current_sclk;
740 u32 mclk = rdev->pm.current_mclk;
741
742 /* sclk/mclk in Mhz */
743 a.full = dfixed_const(100);
744 rdev->pm.sclk.full = dfixed_const(sclk);
745 rdev->pm.sclk.full = dfixed_div(rdev->pm.sclk, a);
746 rdev->pm.mclk.full = dfixed_const(mclk);
747 rdev->pm.mclk.full = dfixed_div(rdev->pm.mclk, a);
748
749 if (rdev->flags & RADEON_IS_IGP) {
750 a.full = dfixed_const(16);
751 /* core_bandwidth = sclk(Mhz) * 16 */
752 rdev->pm.core_bandwidth.full = dfixed_div(rdev->pm.sclk, a);
753 }
754 }
755
756 /**
757 * radeon_boot_test_post_card - check and possibly initialize the hw
758 *
759 * @rdev: radeon_device pointer
760 *
761 * Check if the asic is initialized and if not, attempt to initialize
762 * it (all asics).
763 * Returns true if initialized or false if not.
764 */
765 bool radeon_boot_test_post_card(struct radeon_device *rdev)
766 {
767 if (radeon_card_posted(rdev))
768 return true;
769
770 if (rdev->bios) {
771 DRM_INFO("GPU not posted. posting now...\n");
772 if (rdev->is_atom_bios)
773 atom_asic_init(rdev->mode_info.atom_context);
774 else
775 radeon_combios_asic_init(rdev->ddev);
776 return true;
777 } else {
778 dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
779 return false;
780 }
781 }
782
783 /**
784 * radeon_dummy_page_init - init dummy page used by the driver
785 *
786 * @rdev: radeon_device pointer
787 *
788 * Allocate the dummy page used by the driver (all asics).
789 * This dummy page is used by the driver as a filler for gart entries
790 * when pages are taken out of the GART
791 * Returns 0 on sucess, -ENOMEM on failure.
792 */
793 int radeon_dummy_page_init(struct radeon_device *rdev)
794 {
795 if (rdev->dummy_page.page)
796 return 0;
797 rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO);
798 if (rdev->dummy_page.page == NULL)
799 return -ENOMEM;
800 rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page,
801 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
802 if (pci_dma_mapping_error(rdev->pdev, rdev->dummy_page.addr)) {
803 dev_err(&rdev->pdev->dev, "Failed to DMA MAP the dummy page\n");
804 __free_page(rdev->dummy_page.page);
805 rdev->dummy_page.page = NULL;
806 return -ENOMEM;
807 }
808 rdev->dummy_page.entry = radeon_gart_get_page_entry(rdev->dummy_page.addr,
809 RADEON_GART_PAGE_DUMMY);
810 return 0;
811 }
812
813 /**
814 * radeon_dummy_page_fini - free dummy page used by the driver
815 *
816 * @rdev: radeon_device pointer
817 *
818 * Frees the dummy page used by the driver (all asics).
819 */
820 void radeon_dummy_page_fini(struct radeon_device *rdev)
821 {
822 if (rdev->dummy_page.page == NULL)
823 return;
824 pci_unmap_page(rdev->pdev, rdev->dummy_page.addr,
825 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
826 __free_page(rdev->dummy_page.page);
827 rdev->dummy_page.page = NULL;
828 }
829
830
831 /* ATOM accessor methods */
832 /*
833 * ATOM is an interpreted byte code stored in tables in the vbios. The
834 * driver registers callbacks to access registers and the interpreter
835 * in the driver parses the tables and executes then to program specific
836 * actions (set display modes, asic init, etc.). See radeon_atombios.c,
837 * atombios.h, and atom.c
838 */
839
840 /**
841 * cail_pll_read - read PLL register
842 *
843 * @info: atom card_info pointer
844 * @reg: PLL register offset
845 *
846 * Provides a PLL register accessor for the atom interpreter (r4xx+).
847 * Returns the value of the PLL register.
848 */
849 static uint32_t cail_pll_read(struct card_info *info, uint32_t reg)
850 {
851 struct radeon_device *rdev = info->dev->dev_private;
852 uint32_t r;
853
854 r = rdev->pll_rreg(rdev, reg);
855 return r;
856 }
857
858 /**
859 * cail_pll_write - write PLL register
860 *
861 * @info: atom card_info pointer
862 * @reg: PLL register offset
863 * @val: value to write to the pll register
864 *
865 * Provides a PLL register accessor for the atom interpreter (r4xx+).
866 */
867 static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val)
868 {
869 struct radeon_device *rdev = info->dev->dev_private;
870
871 rdev->pll_wreg(rdev, reg, val);
872 }
873
874 /**
875 * cail_mc_read - read MC (Memory Controller) register
876 *
877 * @info: atom card_info pointer
878 * @reg: MC register offset
879 *
880 * Provides an MC register accessor for the atom interpreter (r4xx+).
881 * Returns the value of the MC register.
882 */
883 static uint32_t cail_mc_read(struct card_info *info, uint32_t reg)
884 {
885 struct radeon_device *rdev = info->dev->dev_private;
886 uint32_t r;
887
888 r = rdev->mc_rreg(rdev, reg);
889 return r;
890 }
891
892 /**
893 * cail_mc_write - write MC (Memory Controller) register
894 *
895 * @info: atom card_info pointer
896 * @reg: MC register offset
897 * @val: value to write to the pll register
898 *
899 * Provides a MC register accessor for the atom interpreter (r4xx+).
900 */
901 static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val)
902 {
903 struct radeon_device *rdev = info->dev->dev_private;
904
905 rdev->mc_wreg(rdev, reg, val);
906 }
907
908 /**
909 * cail_reg_write - write MMIO register
910 *
911 * @info: atom card_info pointer
912 * @reg: MMIO register offset
913 * @val: value to write to the pll register
914 *
915 * Provides a MMIO register accessor for the atom interpreter (r4xx+).
916 */
917 static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val)
918 {
919 struct radeon_device *rdev = info->dev->dev_private;
920
921 WREG32(reg*4, val);
922 }
923
924 /**
925 * cail_reg_read - read MMIO register
926 *
927 * @info: atom card_info pointer
928 * @reg: MMIO register offset
929 *
930 * Provides an MMIO register accessor for the atom interpreter (r4xx+).
931 * Returns the value of the MMIO register.
932 */
933 static uint32_t cail_reg_read(struct card_info *info, uint32_t reg)
934 {
935 struct radeon_device *rdev = info->dev->dev_private;
936 uint32_t r;
937
938 r = RREG32(reg*4);
939 return r;
940 }
941
942 /**
943 * cail_ioreg_write - write IO register
944 *
945 * @info: atom card_info pointer
946 * @reg: IO register offset
947 * @val: value to write to the pll register
948 *
949 * Provides a IO register accessor for the atom interpreter (r4xx+).
950 */
951 static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val)
952 {
953 struct radeon_device *rdev = info->dev->dev_private;
954
955 WREG32_IO(reg*4, val);
956 }
957
958 /**
959 * cail_ioreg_read - read IO register
960 *
961 * @info: atom card_info pointer
962 * @reg: IO register offset
963 *
964 * Provides an IO register accessor for the atom interpreter (r4xx+).
965 * Returns the value of the IO register.
966 */
967 static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg)
968 {
969 struct radeon_device *rdev = info->dev->dev_private;
970 uint32_t r;
971
972 r = RREG32_IO(reg*4);
973 return r;
974 }
975
976 /**
977 * radeon_atombios_init - init the driver info and callbacks for atombios
978 *
979 * @rdev: radeon_device pointer
980 *
981 * Initializes the driver info and register access callbacks for the
982 * ATOM interpreter (r4xx+).
983 * Returns 0 on sucess, -ENOMEM on failure.
984 * Called at driver startup.
985 */
986 int radeon_atombios_init(struct radeon_device *rdev)
987 {
988 struct card_info *atom_card_info =
989 kzalloc(sizeof(struct card_info), GFP_KERNEL);
990
991 if (!atom_card_info)
992 return -ENOMEM;
993
994 rdev->mode_info.atom_card_info = atom_card_info;
995 atom_card_info->dev = rdev->ddev;
996 atom_card_info->reg_read = cail_reg_read;
997 atom_card_info->reg_write = cail_reg_write;
998 /* needed for iio ops */
999 if (rdev->rio_mem) {
1000 atom_card_info->ioreg_read = cail_ioreg_read;
1001 atom_card_info->ioreg_write = cail_ioreg_write;
1002 } else {
1003 DRM_ERROR("Unable to find PCI I/O BAR; using MMIO for ATOM IIO\n");
1004 atom_card_info->ioreg_read = cail_reg_read;
1005 atom_card_info->ioreg_write = cail_reg_write;
1006 }
1007 atom_card_info->mc_read = cail_mc_read;
1008 atom_card_info->mc_write = cail_mc_write;
1009 atom_card_info->pll_read = cail_pll_read;
1010 atom_card_info->pll_write = cail_pll_write;
1011
1012 rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios);
1013 if (!rdev->mode_info.atom_context) {
1014 radeon_atombios_fini(rdev);
1015 return -ENOMEM;
1016 }
1017
1018 mutex_init(&rdev->mode_info.atom_context->mutex);
1019 mutex_init(&rdev->mode_info.atom_context->scratch_mutex);
1020 radeon_atom_initialize_bios_scratch_regs(rdev->ddev);
1021 atom_allocate_fb_scratch(rdev->mode_info.atom_context);
1022 return 0;
1023 }
1024
1025 /**
1026 * radeon_atombios_fini - free the driver info and callbacks for atombios
1027 *
1028 * @rdev: radeon_device pointer
1029 *
1030 * Frees the driver info and register access callbacks for the ATOM
1031 * interpreter (r4xx+).
1032 * Called at driver shutdown.
1033 */
1034 void radeon_atombios_fini(struct radeon_device *rdev)
1035 {
1036 if (rdev->mode_info.atom_context) {
1037 kfree(rdev->mode_info.atom_context->scratch);
1038 }
1039 kfree(rdev->mode_info.atom_context);
1040 rdev->mode_info.atom_context = NULL;
1041 kfree(rdev->mode_info.atom_card_info);
1042 rdev->mode_info.atom_card_info = NULL;
1043 }
1044
1045 /* COMBIOS */
1046 /*
1047 * COMBIOS is the bios format prior to ATOM. It provides
1048 * command tables similar to ATOM, but doesn't have a unified
1049 * parser. See radeon_combios.c
1050 */
1051
1052 /**
1053 * radeon_combios_init - init the driver info for combios
1054 *
1055 * @rdev: radeon_device pointer
1056 *
1057 * Initializes the driver info for combios (r1xx-r3xx).
1058 * Returns 0 on sucess.
1059 * Called at driver startup.
1060 */
1061 int radeon_combios_init(struct radeon_device *rdev)
1062 {
1063 radeon_combios_initialize_bios_scratch_regs(rdev->ddev);
1064 return 0;
1065 }
1066
1067 /**
1068 * radeon_combios_fini - free the driver info for combios
1069 *
1070 * @rdev: radeon_device pointer
1071 *
1072 * Frees the driver info for combios (r1xx-r3xx).
1073 * Called at driver shutdown.
1074 */
1075 void radeon_combios_fini(struct radeon_device *rdev)
1076 {
1077 }
1078
1079 /* if we get transitioned to only one device, take VGA back */
1080 /**
1081 * radeon_vga_set_decode - enable/disable vga decode
1082 *
1083 * @cookie: radeon_device pointer
1084 * @state: enable/disable vga decode
1085 *
1086 * Enable/disable vga decode (all asics).
1087 * Returns VGA resource flags.
1088 */
1089 static unsigned int radeon_vga_set_decode(void *cookie, bool state)
1090 {
1091 struct radeon_device *rdev = cookie;
1092 radeon_vga_set_state(rdev, state);
1093 if (state)
1094 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
1095 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
1096 else
1097 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
1098 }
1099
1100 /**
1101 * radeon_check_pot_argument - check that argument is a power of two
1102 *
1103 * @arg: value to check
1104 *
1105 * Validates that a certain argument is a power of two (all asics).
1106 * Returns true if argument is valid.
1107 */
1108 static bool radeon_check_pot_argument(int arg)
1109 {
1110 return (arg & (arg - 1)) == 0;
1111 }
1112
1113 /**
1114 * Determine a sensible default GART size according to ASIC family.
1115 *
1116 * @family ASIC family name
1117 */
1118 static int radeon_gart_size_auto(enum radeon_family family)
1119 {
1120 /* default to a larger gart size on newer asics */
1121 if (family >= CHIP_TAHITI)
1122 return 2048;
1123 else if (family >= CHIP_RV770)
1124 return 1024;
1125 else
1126 return 512;
1127 }
1128
1129 /**
1130 * radeon_check_arguments - validate module params
1131 *
1132 * @rdev: radeon_device pointer
1133 *
1134 * Validates certain module parameters and updates
1135 * the associated values used by the driver (all asics).
1136 */
1137 static void radeon_check_arguments(struct radeon_device *rdev)
1138 {
1139 /* vramlimit must be a power of two */
1140 if (!radeon_check_pot_argument(radeon_vram_limit)) {
1141 dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n",
1142 radeon_vram_limit);
1143 radeon_vram_limit = 0;
1144 }
1145
1146 if (radeon_gart_size == -1) {
1147 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1148 }
1149 /* gtt size must be power of two and greater or equal to 32M */
1150 if (radeon_gart_size < 32) {
1151 dev_warn(rdev->dev, "gart size (%d) too small\n",
1152 radeon_gart_size);
1153 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1154 } else if (!radeon_check_pot_argument(radeon_gart_size)) {
1155 dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n",
1156 radeon_gart_size);
1157 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1158 }
1159 rdev->mc.gtt_size = (uint64_t)radeon_gart_size << 20;
1160
1161 /* AGP mode can only be -1, 1, 2, 4, 8 */
1162 switch (radeon_agpmode) {
1163 case -1:
1164 case 0:
1165 case 1:
1166 case 2:
1167 case 4:
1168 case 8:
1169 break;
1170 default:
1171 dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: "
1172 "-1, 0, 1, 2, 4, 8)\n", radeon_agpmode);
1173 radeon_agpmode = 0;
1174 break;
1175 }
1176
1177 if (!radeon_check_pot_argument(radeon_vm_size)) {
1178 dev_warn(rdev->dev, "VM size (%d) must be a power of 2\n",
1179 radeon_vm_size);
1180 radeon_vm_size = 4;
1181 }
1182
1183 if (radeon_vm_size < 1) {
1184 dev_warn(rdev->dev, "VM size (%d) to small, min is 1GB\n",
1185 radeon_vm_size);
1186 radeon_vm_size = 4;
1187 }
1188
1189 /*
1190 * Max GPUVM size for Cayman, SI and CI are 40 bits.
1191 */
1192 if (radeon_vm_size > 1024) {
1193 dev_warn(rdev->dev, "VM size (%d) too large, max is 1TB\n",
1194 radeon_vm_size);
1195 radeon_vm_size = 4;
1196 }
1197
1198 /* defines number of bits in page table versus page directory,
1199 * a page is 4KB so we have 12 bits offset, minimum 9 bits in the
1200 * page table and the remaining bits are in the page directory */
1201 if (radeon_vm_block_size == -1) {
1202
1203 /* Total bits covered by PD + PTs */
1204 unsigned bits = ilog2(radeon_vm_size) + 18;
1205
1206 /* Make sure the PD is 4K in size up to 8GB address space.
1207 Above that split equal between PD and PTs */
1208 if (radeon_vm_size <= 8)
1209 radeon_vm_block_size = bits - 9;
1210 else
1211 radeon_vm_block_size = (bits + 3) / 2;
1212
1213 } else if (radeon_vm_block_size < 9) {
1214 dev_warn(rdev->dev, "VM page table size (%d) too small\n",
1215 radeon_vm_block_size);
1216 radeon_vm_block_size = 9;
1217 }
1218
1219 if (radeon_vm_block_size > 24 ||
1220 (radeon_vm_size * 1024) < (1ull << radeon_vm_block_size)) {
1221 dev_warn(rdev->dev, "VM page table size (%d) too large\n",
1222 radeon_vm_block_size);
1223 radeon_vm_block_size = 9;
1224 }
1225 }
1226
1227 /**
1228 * radeon_switcheroo_set_state - set switcheroo state
1229 *
1230 * @pdev: pci dev pointer
1231 * @state: vga_switcheroo state
1232 *
1233 * Callback for the switcheroo driver. Suspends or resumes the
1234 * the asics before or after it is powered up using ACPI methods.
1235 */
1236 static void radeon_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
1237 {
1238 struct drm_device *dev = pci_get_drvdata(pdev);
1239 struct radeon_device *rdev = dev->dev_private;
1240
1241 if (radeon_is_px(dev) && state == VGA_SWITCHEROO_OFF)
1242 return;
1243
1244 if (state == VGA_SWITCHEROO_ON) {
1245 unsigned d3_delay = dev->pdev->d3_delay;
1246
1247 printk(KERN_INFO "radeon: switched on\n");
1248 /* don't suspend or resume card normally */
1249 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
1250
1251 if (d3_delay < 20 && (rdev->px_quirk_flags & RADEON_PX_QUIRK_LONG_WAKEUP))
1252 dev->pdev->d3_delay = 20;
1253
1254 radeon_resume_kms(dev, true, true);
1255
1256 dev->pdev->d3_delay = d3_delay;
1257
1258 dev->switch_power_state = DRM_SWITCH_POWER_ON;
1259 drm_kms_helper_poll_enable(dev);
1260 } else {
1261 printk(KERN_INFO "radeon: switched off\n");
1262 drm_kms_helper_poll_disable(dev);
1263 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
1264 radeon_suspend_kms(dev, true, true);
1265 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
1266 }
1267 }
1268
1269 /**
1270 * radeon_switcheroo_can_switch - see if switcheroo state can change
1271 *
1272 * @pdev: pci dev pointer
1273 *
1274 * Callback for the switcheroo driver. Check of the switcheroo
1275 * state can be changed.
1276 * Returns true if the state can be changed, false if not.
1277 */
1278 static bool radeon_switcheroo_can_switch(struct pci_dev *pdev)
1279 {
1280 struct drm_device *dev = pci_get_drvdata(pdev);
1281
1282 /*
1283 * FIXME: open_count is protected by drm_global_mutex but that would lead to
1284 * locking inversion with the driver load path. And the access here is
1285 * completely racy anyway. So don't bother with locking for now.
1286 */
1287 return dev->open_count == 0;
1288 }
1289
1290 static const struct vga_switcheroo_client_ops radeon_switcheroo_ops = {
1291 .set_gpu_state = radeon_switcheroo_set_state,
1292 .reprobe = NULL,
1293 .can_switch = radeon_switcheroo_can_switch,
1294 };
1295
1296 /**
1297 * radeon_device_init - initialize the driver
1298 *
1299 * @rdev: radeon_device pointer
1300 * @pdev: drm dev pointer
1301 * @pdev: pci dev pointer
1302 * @flags: driver flags
1303 *
1304 * Initializes the driver info and hw (all asics).
1305 * Returns 0 for success or an error on failure.
1306 * Called at driver startup.
1307 */
1308 int radeon_device_init(struct radeon_device *rdev,
1309 struct drm_device *ddev,
1310 struct pci_dev *pdev,
1311 uint32_t flags)
1312 {
1313 int r, i;
1314 int dma_bits;
1315 bool runtime = false;
1316
1317 rdev->shutdown = false;
1318 rdev->dev = &pdev->dev;
1319 rdev->ddev = ddev;
1320 rdev->pdev = pdev;
1321 rdev->flags = flags;
1322 rdev->family = flags & RADEON_FAMILY_MASK;
1323 rdev->is_atom_bios = false;
1324 rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT;
1325 rdev->mc.gtt_size = 512 * 1024 * 1024;
1326 rdev->accel_working = false;
1327 /* set up ring ids */
1328 for (i = 0; i < RADEON_NUM_RINGS; i++) {
1329 rdev->ring[i].idx = i;
1330 }
1331 rdev->fence_context = fence_context_alloc(RADEON_NUM_RINGS);
1332
1333 DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X).\n",
1334 radeon_family_name[rdev->family], pdev->vendor, pdev->device,
1335 pdev->subsystem_vendor, pdev->subsystem_device);
1336
1337 /* mutex initialization are all done here so we
1338 * can recall function without having locking issues */
1339 mutex_init(&rdev->ring_lock);
1340 mutex_init(&rdev->dc_hw_i2c_mutex);
1341 atomic_set(&rdev->ih.lock, 0);
1342 mutex_init(&rdev->gem.mutex);
1343 mutex_init(&rdev->pm.mutex);
1344 mutex_init(&rdev->gpu_clock_mutex);
1345 mutex_init(&rdev->srbm_mutex);
1346 mutex_init(&rdev->grbm_idx_mutex);
1347 init_rwsem(&rdev->pm.mclk_lock);
1348 init_rwsem(&rdev->exclusive_lock);
1349 init_waitqueue_head(&rdev->irq.vblank_queue);
1350 mutex_init(&rdev->mn_lock);
1351 hash_init(rdev->mn_hash);
1352 r = radeon_gem_init(rdev);
1353 if (r)
1354 return r;
1355
1356 radeon_check_arguments(rdev);
1357 /* Adjust VM size here.
1358 * Max GPUVM size for cayman+ is 40 bits.
1359 */
1360 rdev->vm_manager.max_pfn = radeon_vm_size << 18;
1361
1362 /* Set asic functions */
1363 r = radeon_asic_init(rdev);
1364 if (r)
1365 return r;
1366
1367 /* all of the newer IGP chips have an internal gart
1368 * However some rs4xx report as AGP, so remove that here.
1369 */
1370 if ((rdev->family >= CHIP_RS400) &&
1371 (rdev->flags & RADEON_IS_IGP)) {
1372 rdev->flags &= ~RADEON_IS_AGP;
1373 }
1374
1375 if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) {
1376 radeon_agp_disable(rdev);
1377 }
1378
1379 /* Set the internal MC address mask
1380 * This is the max address of the GPU's
1381 * internal address space.
1382 */
1383 if (rdev->family >= CHIP_CAYMAN)
1384 rdev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
1385 else if (rdev->family >= CHIP_CEDAR)
1386 rdev->mc.mc_mask = 0xfffffffffULL; /* 36 bit MC */
1387 else
1388 rdev->mc.mc_mask = 0xffffffffULL; /* 32 bit MC */
1389
1390 /* set DMA mask + need_dma32 flags.
1391 * PCIE - can handle 40-bits.
1392 * IGP - can handle 40-bits
1393 * AGP - generally dma32 is safest
1394 * PCI - dma32 for legacy pci gart, 40 bits on newer asics
1395 */
1396 rdev->need_dma32 = false;
1397 if (rdev->flags & RADEON_IS_AGP)
1398 rdev->need_dma32 = true;
1399 if ((rdev->flags & RADEON_IS_PCI) &&
1400 (rdev->family <= CHIP_RS740))
1401 rdev->need_dma32 = true;
1402
1403 dma_bits = rdev->need_dma32 ? 32 : 40;
1404 r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
1405 if (r) {
1406 rdev->need_dma32 = true;
1407 dma_bits = 32;
1408 printk(KERN_WARNING "radeon: No suitable DMA available.\n");
1409 }
1410 r = pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
1411 if (r) {
1412 pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(32));
1413 printk(KERN_WARNING "radeon: No coherent DMA available.\n");
1414 }
1415
1416 /* Registers mapping */
1417 /* TODO: block userspace mapping of io register */
1418 spin_lock_init(&rdev->mmio_idx_lock);
1419 spin_lock_init(&rdev->smc_idx_lock);
1420 spin_lock_init(&rdev->pll_idx_lock);
1421 spin_lock_init(&rdev->mc_idx_lock);
1422 spin_lock_init(&rdev->pcie_idx_lock);
1423 spin_lock_init(&rdev->pciep_idx_lock);
1424 spin_lock_init(&rdev->pif_idx_lock);
1425 spin_lock_init(&rdev->cg_idx_lock);
1426 spin_lock_init(&rdev->uvd_idx_lock);
1427 spin_lock_init(&rdev->rcu_idx_lock);
1428 spin_lock_init(&rdev->didt_idx_lock);
1429 spin_lock_init(&rdev->end_idx_lock);
1430 if (rdev->family >= CHIP_BONAIRE) {
1431 rdev->rmmio_base = pci_resource_start(rdev->pdev, 5);
1432 rdev->rmmio_size = pci_resource_len(rdev->pdev, 5);
1433 } else {
1434 rdev->rmmio_base = pci_resource_start(rdev->pdev, 2);
1435 rdev->rmmio_size = pci_resource_len(rdev->pdev, 2);
1436 }
1437 rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size);
1438 if (rdev->rmmio == NULL) {
1439 return -ENOMEM;
1440 }
1441 DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base);
1442 DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size);
1443
1444 /* doorbell bar mapping */
1445 if (rdev->family >= CHIP_BONAIRE)
1446 radeon_doorbell_init(rdev);
1447
1448 /* io port mapping */
1449 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1450 if (pci_resource_flags(rdev->pdev, i) & IORESOURCE_IO) {
1451 rdev->rio_mem_size = pci_resource_len(rdev->pdev, i);
1452 rdev->rio_mem = pci_iomap(rdev->pdev, i, rdev->rio_mem_size);
1453 break;
1454 }
1455 }
1456 if (rdev->rio_mem == NULL)
1457 DRM_ERROR("Unable to find PCI I/O BAR\n");
1458
1459 if (rdev->flags & RADEON_IS_PX)
1460 radeon_device_handle_px_quirks(rdev);
1461
1462 /* if we have > 1 VGA cards, then disable the radeon VGA resources */
1463 /* this will fail for cards that aren't VGA class devices, just
1464 * ignore it */
1465 vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode);
1466
1467 if (rdev->flags & RADEON_IS_PX)
1468 runtime = true;
1469 vga_switcheroo_register_client(rdev->pdev, &radeon_switcheroo_ops, runtime);
1470 if (runtime)
1471 vga_switcheroo_init_domain_pm_ops(rdev->dev, &rdev->vga_pm_domain);
1472
1473 r = radeon_init(rdev);
1474 if (r)
1475 goto failed;
1476
1477 r = radeon_gem_debugfs_init(rdev);
1478 if (r) {
1479 DRM_ERROR("registering gem debugfs failed (%d).\n", r);
1480 }
1481
1482 r = radeon_mst_debugfs_init(rdev);
1483 if (r) {
1484 DRM_ERROR("registering mst debugfs failed (%d).\n", r);
1485 }
1486
1487 if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) {
1488 /* Acceleration not working on AGP card try again
1489 * with fallback to PCI or PCIE GART
1490 */
1491 radeon_asic_reset(rdev);
1492 radeon_fini(rdev);
1493 radeon_agp_disable(rdev);
1494 r = radeon_init(rdev);
1495 if (r)
1496 goto failed;
1497 }
1498
1499 r = radeon_ib_ring_tests(rdev);
1500 if (r)
1501 DRM_ERROR("ib ring test failed (%d).\n", r);
1502
1503 /*
1504 * Turks/Thames GPU will freeze whole laptop if DPM is not restarted
1505 * after the CP ring have chew one packet at least. Hence here we stop
1506 * and restart DPM after the radeon_ib_ring_tests().
1507 */
1508 if (rdev->pm.dpm_enabled &&
1509 (rdev->pm.pm_method == PM_METHOD_DPM) &&
1510 (rdev->family == CHIP_TURKS) &&
1511 (rdev->flags & RADEON_IS_MOBILITY)) {
1512 mutex_lock(&rdev->pm.mutex);
1513 radeon_dpm_disable(rdev);
1514 radeon_dpm_enable(rdev);
1515 mutex_unlock(&rdev->pm.mutex);
1516 }
1517
1518 if ((radeon_testing & 1)) {
1519 if (rdev->accel_working)
1520 radeon_test_moves(rdev);
1521 else
1522 DRM_INFO("radeon: acceleration disabled, skipping move tests\n");
1523 }
1524 if ((radeon_testing & 2)) {
1525 if (rdev->accel_working)
1526 radeon_test_syncing(rdev);
1527 else
1528 DRM_INFO("radeon: acceleration disabled, skipping sync tests\n");
1529 }
1530 if (radeon_benchmarking) {
1531 if (rdev->accel_working)
1532 radeon_benchmark(rdev, radeon_benchmarking);
1533 else
1534 DRM_INFO("radeon: acceleration disabled, skipping benchmarks\n");
1535 }
1536 return 0;
1537
1538 failed:
1539 if (runtime)
1540 vga_switcheroo_fini_domain_pm_ops(rdev->dev);
1541 return r;
1542 }
1543
1544 static void radeon_debugfs_remove_files(struct radeon_device *rdev);
1545
1546 /**
1547 * radeon_device_fini - tear down the driver
1548 *
1549 * @rdev: radeon_device pointer
1550 *
1551 * Tear down the driver info (all asics).
1552 * Called at driver shutdown.
1553 */
1554 void radeon_device_fini(struct radeon_device *rdev)
1555 {
1556 DRM_INFO("radeon: finishing device.\n");
1557 rdev->shutdown = true;
1558 /* evict vram memory */
1559 radeon_bo_evict_vram(rdev);
1560 radeon_fini(rdev);
1561 vga_switcheroo_unregister_client(rdev->pdev);
1562 if (rdev->flags & RADEON_IS_PX)
1563 vga_switcheroo_fini_domain_pm_ops(rdev->dev);
1564 vga_client_register(rdev->pdev, NULL, NULL, NULL);
1565 if (rdev->rio_mem)
1566 pci_iounmap(rdev->pdev, rdev->rio_mem);
1567 rdev->rio_mem = NULL;
1568 iounmap(rdev->rmmio);
1569 rdev->rmmio = NULL;
1570 if (rdev->family >= CHIP_BONAIRE)
1571 radeon_doorbell_fini(rdev);
1572 radeon_debugfs_remove_files(rdev);
1573 }
1574
1575
1576 /*
1577 * Suspend & resume.
1578 */
1579 /**
1580 * radeon_suspend_kms - initiate device suspend
1581 *
1582 * @pdev: drm dev pointer
1583 * @state: suspend state
1584 *
1585 * Puts the hw in the suspend state (all asics).
1586 * Returns 0 for success or an error on failure.
1587 * Called at driver suspend.
1588 */
1589 int radeon_suspend_kms(struct drm_device *dev, bool suspend, bool fbcon)
1590 {
1591 struct radeon_device *rdev;
1592 struct drm_crtc *crtc;
1593 struct drm_connector *connector;
1594 int i, r;
1595
1596 if (dev == NULL || dev->dev_private == NULL) {
1597 return -ENODEV;
1598 }
1599
1600 rdev = dev->dev_private;
1601
1602 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1603 return 0;
1604
1605 drm_kms_helper_poll_disable(dev);
1606
1607 drm_modeset_lock_all(dev);
1608 /* turn off display hw */
1609 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1610 drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
1611 }
1612 drm_modeset_unlock_all(dev);
1613
1614 /* unpin the front buffers and cursors */
1615 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1616 struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
1617 struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->primary->fb);
1618 struct radeon_bo *robj;
1619
1620 if (radeon_crtc->cursor_bo) {
1621 struct radeon_bo *robj = gem_to_radeon_bo(radeon_crtc->cursor_bo);
1622 r = radeon_bo_reserve(robj, false);
1623 if (r == 0) {
1624 radeon_bo_unpin(robj);
1625 radeon_bo_unreserve(robj);
1626 }
1627 }
1628
1629 if (rfb == NULL || rfb->obj == NULL) {
1630 continue;
1631 }
1632 robj = gem_to_radeon_bo(rfb->obj);
1633 /* don't unpin kernel fb objects */
1634 if (!radeon_fbdev_robj_is_fb(rdev, robj)) {
1635 r = radeon_bo_reserve(robj, false);
1636 if (r == 0) {
1637 radeon_bo_unpin(robj);
1638 radeon_bo_unreserve(robj);
1639 }
1640 }
1641 }
1642 /* evict vram memory */
1643 radeon_bo_evict_vram(rdev);
1644
1645 /* wait for gpu to finish processing current batch */
1646 for (i = 0; i < RADEON_NUM_RINGS; i++) {
1647 r = radeon_fence_wait_empty(rdev, i);
1648 if (r) {
1649 /* delay GPU reset to resume */
1650 radeon_fence_driver_force_completion(rdev, i);
1651 }
1652 }
1653
1654 radeon_save_bios_scratch_regs(rdev);
1655
1656 radeon_suspend(rdev);
1657 radeon_hpd_fini(rdev);
1658 /* evict remaining vram memory */
1659 radeon_bo_evict_vram(rdev);
1660
1661 radeon_agp_suspend(rdev);
1662
1663 pci_save_state(dev->pdev);
1664 if (suspend) {
1665 /* Shut down the device */
1666 pci_disable_device(dev->pdev);
1667 pci_set_power_state(dev->pdev, PCI_D3hot);
1668 }
1669
1670 if (fbcon) {
1671 console_lock();
1672 radeon_fbdev_set_suspend(rdev, 1);
1673 console_unlock();
1674 }
1675 return 0;
1676 }
1677
1678 /**
1679 * radeon_resume_kms - initiate device resume
1680 *
1681 * @pdev: drm dev pointer
1682 *
1683 * Bring the hw back to operating state (all asics).
1684 * Returns 0 for success or an error on failure.
1685 * Called at driver resume.
1686 */
1687 int radeon_resume_kms(struct drm_device *dev, bool resume, bool fbcon)
1688 {
1689 struct drm_connector *connector;
1690 struct radeon_device *rdev = dev->dev_private;
1691 struct drm_crtc *crtc;
1692 int r;
1693
1694 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1695 return 0;
1696
1697 if (fbcon) {
1698 console_lock();
1699 }
1700 if (resume) {
1701 pci_set_power_state(dev->pdev, PCI_D0);
1702 pci_restore_state(dev->pdev);
1703 if (pci_enable_device(dev->pdev)) {
1704 if (fbcon)
1705 console_unlock();
1706 return -1;
1707 }
1708 }
1709 /* resume AGP if in use */
1710 radeon_agp_resume(rdev);
1711 radeon_resume(rdev);
1712
1713 r = radeon_ib_ring_tests(rdev);
1714 if (r)
1715 DRM_ERROR("ib ring test failed (%d).\n", r);
1716
1717 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
1718 /* do dpm late init */
1719 r = radeon_pm_late_init(rdev);
1720 if (r) {
1721 rdev->pm.dpm_enabled = false;
1722 DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
1723 }
1724 } else {
1725 /* resume old pm late */
1726 radeon_pm_resume(rdev);
1727 }
1728
1729 radeon_restore_bios_scratch_regs(rdev);
1730
1731 /* pin cursors */
1732 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1733 struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
1734
1735 if (radeon_crtc->cursor_bo) {
1736 struct radeon_bo *robj = gem_to_radeon_bo(radeon_crtc->cursor_bo);
1737 r = radeon_bo_reserve(robj, false);
1738 if (r == 0) {
1739 /* Only 27 bit offset for legacy cursor */
1740 r = radeon_bo_pin_restricted(robj,
1741 RADEON_GEM_DOMAIN_VRAM,
1742 ASIC_IS_AVIVO(rdev) ?
1743 0 : 1 << 27,
1744 &radeon_crtc->cursor_addr);
1745 if (r != 0)
1746 DRM_ERROR("Failed to pin cursor BO (%d)\n", r);
1747 radeon_bo_unreserve(robj);
1748 }
1749 }
1750 }
1751
1752 /* init dig PHYs, disp eng pll */
1753 if (rdev->is_atom_bios) {
1754 radeon_atom_encoder_init(rdev);
1755 radeon_atom_disp_eng_pll_init(rdev);
1756 /* turn on the BL */
1757 if (rdev->mode_info.bl_encoder) {
1758 u8 bl_level = radeon_get_backlight_level(rdev,
1759 rdev->mode_info.bl_encoder);
1760 radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
1761 bl_level);
1762 }
1763 }
1764 /* reset hpd state */
1765 radeon_hpd_init(rdev);
1766 /* blat the mode back in */
1767 if (fbcon) {
1768 drm_helper_resume_force_mode(dev);
1769 /* turn on display hw */
1770 drm_modeset_lock_all(dev);
1771 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1772 drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
1773 }
1774 drm_modeset_unlock_all(dev);
1775 }
1776
1777 drm_kms_helper_poll_enable(dev);
1778
1779 /* set the power state here in case we are a PX system or headless */
1780 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
1781 radeon_pm_compute_clocks(rdev);
1782
1783 if (fbcon) {
1784 radeon_fbdev_set_suspend(rdev, 0);
1785 console_unlock();
1786 }
1787
1788 return 0;
1789 }
1790
1791 /**
1792 * radeon_gpu_reset - reset the asic
1793 *
1794 * @rdev: radeon device pointer
1795 *
1796 * Attempt the reset the GPU if it has hung (all asics).
1797 * Returns 0 for success or an error on failure.
1798 */
1799 int radeon_gpu_reset(struct radeon_device *rdev)
1800 {
1801 unsigned ring_sizes[RADEON_NUM_RINGS];
1802 uint32_t *ring_data[RADEON_NUM_RINGS];
1803
1804 bool saved = false;
1805
1806 int i, r;
1807 int resched;
1808
1809 down_write(&rdev->exclusive_lock);
1810
1811 if (!rdev->needs_reset) {
1812 up_write(&rdev->exclusive_lock);
1813 return 0;
1814 }
1815
1816 atomic_inc(&rdev->gpu_reset_counter);
1817
1818 radeon_save_bios_scratch_regs(rdev);
1819 /* block TTM */
1820 resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev);
1821 radeon_suspend(rdev);
1822 radeon_hpd_fini(rdev);
1823
1824 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1825 ring_sizes[i] = radeon_ring_backup(rdev, &rdev->ring[i],
1826 &ring_data[i]);
1827 if (ring_sizes[i]) {
1828 saved = true;
1829 dev_info(rdev->dev, "Saved %d dwords of commands "
1830 "on ring %d.\n", ring_sizes[i], i);
1831 }
1832 }
1833
1834 r = radeon_asic_reset(rdev);
1835 if (!r) {
1836 dev_info(rdev->dev, "GPU reset succeeded, trying to resume\n");
1837 radeon_resume(rdev);
1838 }
1839
1840 radeon_restore_bios_scratch_regs(rdev);
1841
1842 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1843 if (!r && ring_data[i]) {
1844 radeon_ring_restore(rdev, &rdev->ring[i],
1845 ring_sizes[i], ring_data[i]);
1846 } else {
1847 radeon_fence_driver_force_completion(rdev, i);
1848 kfree(ring_data[i]);
1849 }
1850 }
1851
1852 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
1853 /* do dpm late init */
1854 r = radeon_pm_late_init(rdev);
1855 if (r) {
1856 rdev->pm.dpm_enabled = false;
1857 DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
1858 }
1859 } else {
1860 /* resume old pm late */
1861 radeon_pm_resume(rdev);
1862 }
1863
1864 /* init dig PHYs, disp eng pll */
1865 if (rdev->is_atom_bios) {
1866 radeon_atom_encoder_init(rdev);
1867 radeon_atom_disp_eng_pll_init(rdev);
1868 /* turn on the BL */
1869 if (rdev->mode_info.bl_encoder) {
1870 u8 bl_level = radeon_get_backlight_level(rdev,
1871 rdev->mode_info.bl_encoder);
1872 radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
1873 bl_level);
1874 }
1875 }
1876 /* reset hpd state */
1877 radeon_hpd_init(rdev);
1878
1879 ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched);
1880
1881 rdev->in_reset = true;
1882 rdev->needs_reset = false;
1883
1884 downgrade_write(&rdev->exclusive_lock);
1885
1886 drm_helper_resume_force_mode(rdev->ddev);
1887
1888 /* set the power state here in case we are a PX system or headless */
1889 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
1890 radeon_pm_compute_clocks(rdev);
1891
1892 if (!r) {
1893 r = radeon_ib_ring_tests(rdev);
1894 if (r && saved)
1895 r = -EAGAIN;
1896 } else {
1897 /* bad news, how to tell it to userspace ? */
1898 dev_info(rdev->dev, "GPU reset failed\n");
1899 }
1900
1901 rdev->needs_reset = r == -EAGAIN;
1902 rdev->in_reset = false;
1903
1904 up_read(&rdev->exclusive_lock);
1905 return r;
1906 }
1907
1908
1909 /*
1910 * Debugfs
1911 */
1912 int radeon_debugfs_add_files(struct radeon_device *rdev,
1913 struct drm_info_list *files,
1914 unsigned nfiles)
1915 {
1916 unsigned i;
1917
1918 for (i = 0; i < rdev->debugfs_count; i++) {
1919 if (rdev->debugfs[i].files == files) {
1920 /* Already registered */
1921 return 0;
1922 }
1923 }
1924
1925 i = rdev->debugfs_count + 1;
1926 if (i > RADEON_DEBUGFS_MAX_COMPONENTS) {
1927 DRM_ERROR("Reached maximum number of debugfs components.\n");
1928 DRM_ERROR("Report so we increase "
1929 "RADEON_DEBUGFS_MAX_COMPONENTS.\n");
1930 return -EINVAL;
1931 }
1932 rdev->debugfs[rdev->debugfs_count].files = files;
1933 rdev->debugfs[rdev->debugfs_count].num_files = nfiles;
1934 rdev->debugfs_count = i;
1935 #if defined(CONFIG_DEBUG_FS)
1936 drm_debugfs_create_files(files, nfiles,
1937 rdev->ddev->control->debugfs_root,
1938 rdev->ddev->control);
1939 drm_debugfs_create_files(files, nfiles,
1940 rdev->ddev->primary->debugfs_root,
1941 rdev->ddev->primary);
1942 #endif
1943 return 0;
1944 }
1945
1946 static void radeon_debugfs_remove_files(struct radeon_device *rdev)
1947 {
1948 #if defined(CONFIG_DEBUG_FS)
1949 unsigned i;
1950
1951 for (i = 0; i < rdev->debugfs_count; i++) {
1952 drm_debugfs_remove_files(rdev->debugfs[i].files,
1953 rdev->debugfs[i].num_files,
1954 rdev->ddev->control);
1955 drm_debugfs_remove_files(rdev->debugfs[i].files,
1956 rdev->debugfs[i].num_files,
1957 rdev->ddev->primary);
1958 }
1959 #endif
1960 }
1961
1962 #if defined(CONFIG_DEBUG_FS)
1963 int radeon_debugfs_init(struct drm_minor *minor)
1964 {
1965 return 0;
1966 }
1967
1968 void radeon_debugfs_cleanup(struct drm_minor *minor)
1969 {
1970 }
1971 #endif
1972