radeon_device.c revision 1.10 1 /* $NetBSD: radeon_device.c,v 1.10 2020/02/14 14:34:59 maya Exp $ */
2
3 /*
4 * Copyright 2008 Advanced Micro Devices, Inc.
5 * Copyright 2008 Red Hat Inc.
6 * Copyright 2009 Jerome Glisse.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors: Dave Airlie
27 * Alex Deucher
28 * Jerome Glisse
29 */
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: radeon_device.c,v 1.10 2020/02/14 14:34:59 maya Exp $");
32
33 #include <linux/console.h>
34 #include <linux/slab.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/radeon_drm.h>
38 #include <linux/vgaarb.h>
39 #include <linux/vga_switcheroo.h>
40 #include <linux/efi.h>
41 #include "radeon_reg.h"
42 #include "radeon.h"
43 #include "atom.h"
44
45 #include <linux/nbsd-namespace.h>
46
47 static const char radeon_family_name[][16] = {
48 "R100",
49 "RV100",
50 "RS100",
51 "RV200",
52 "RS200",
53 "R200",
54 "RV250",
55 "RS300",
56 "RV280",
57 "R300",
58 "R350",
59 "RV350",
60 "RV380",
61 "R420",
62 "R423",
63 "RV410",
64 "RS400",
65 "RS480",
66 "RS600",
67 "RS690",
68 "RS740",
69 "RV515",
70 "R520",
71 "RV530",
72 "RV560",
73 "RV570",
74 "R580",
75 "R600",
76 "RV610",
77 "RV630",
78 "RV670",
79 "RV620",
80 "RV635",
81 "RS780",
82 "RS880",
83 "RV770",
84 "RV730",
85 "RV710",
86 "RV740",
87 "CEDAR",
88 "REDWOOD",
89 "JUNIPER",
90 "CYPRESS",
91 "HEMLOCK",
92 "PALM",
93 "SUMO",
94 "SUMO2",
95 "BARTS",
96 "TURKS",
97 "CAICOS",
98 "CAYMAN",
99 "ARUBA",
100 "TAHITI",
101 "PITCAIRN",
102 "VERDE",
103 "OLAND",
104 "HAINAN",
105 "BONAIRE",
106 "KAVERI",
107 "KABINI",
108 "HAWAII",
109 "MULLINS",
110 "LAST",
111 };
112
113 #define RADEON_PX_QUIRK_DISABLE_PX (1 << 0)
114 #define RADEON_PX_QUIRK_LONG_WAKEUP (1 << 1)
115
116 struct radeon_px_quirk {
117 u32 chip_vendor;
118 u32 chip_device;
119 u32 subsys_vendor;
120 u32 subsys_device;
121 u32 px_quirk_flags;
122 };
123
124 static struct radeon_px_quirk radeon_px_quirk_list[] = {
125 /* Acer aspire 5560g (CPU: AMD A4-3305M; GPU: AMD Radeon HD 6480g + 7470m)
126 * https://bugzilla.kernel.org/show_bug.cgi?id=74551
127 */
128 { PCI_VENDOR_ID_ATI, 0x6760, 0x1025, 0x0672, RADEON_PX_QUIRK_DISABLE_PX },
129 /* Asus K73TA laptop with AMD A6-3400M APU and Radeon 6550 GPU
130 * https://bugzilla.kernel.org/show_bug.cgi?id=51381
131 */
132 { PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x108c, RADEON_PX_QUIRK_DISABLE_PX },
133 /* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU
134 * https://bugzilla.kernel.org/show_bug.cgi?id=51381
135 */
136 { PCI_VENDOR_ID_ATI, 0x6840, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX },
137 /* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU
138 * https://bugs.freedesktop.org/show_bug.cgi?id=101491
139 */
140 { PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX },
141 /* macbook pro 8.2 */
142 { PCI_VENDOR_ID_ATI, 0x6741, PCI_VENDOR_ID_APPLE, 0x00e2, RADEON_PX_QUIRK_LONG_WAKEUP },
143 { 0, 0, 0, 0, 0 },
144 };
145
146 bool radeon_is_px(struct drm_device *dev)
147 {
148 struct radeon_device *rdev = dev->dev_private;
149
150 if (rdev->flags & RADEON_IS_PX)
151 return true;
152 return false;
153 }
154
155 static void radeon_device_handle_px_quirks(struct radeon_device *rdev)
156 {
157 struct radeon_px_quirk *p = radeon_px_quirk_list;
158
159 /* Apply PX quirks */
160 while (p && p->chip_device != 0) {
161 if (rdev->pdev->vendor == p->chip_vendor &&
162 rdev->pdev->device == p->chip_device &&
163 rdev->pdev->subsystem_vendor == p->subsys_vendor &&
164 rdev->pdev->subsystem_device == p->subsys_device) {
165 rdev->px_quirk_flags = p->px_quirk_flags;
166 break;
167 }
168 ++p;
169 }
170
171 if (rdev->px_quirk_flags & RADEON_PX_QUIRK_DISABLE_PX)
172 rdev->flags &= ~RADEON_IS_PX;
173 }
174
175 /**
176 * radeon_program_register_sequence - program an array of registers.
177 *
178 * @rdev: radeon_device pointer
179 * @registers: pointer to the register array
180 * @array_size: size of the register array
181 *
182 * Programs an array or registers with and and or masks.
183 * This is a helper for setting golden registers.
184 */
185 void radeon_program_register_sequence(struct radeon_device *rdev,
186 const u32 *registers,
187 const u32 array_size)
188 {
189 u32 tmp, reg, and_mask, or_mask;
190 int i;
191
192 if (array_size % 3)
193 return;
194
195 for (i = 0; i < array_size; i +=3) {
196 reg = registers[i + 0];
197 and_mask = registers[i + 1];
198 or_mask = registers[i + 2];
199
200 if (and_mask == 0xffffffff) {
201 tmp = or_mask;
202 } else {
203 tmp = RREG32(reg);
204 tmp &= ~and_mask;
205 tmp |= or_mask;
206 }
207 WREG32(reg, tmp);
208 }
209 }
210
211 void radeon_pci_config_reset(struct radeon_device *rdev)
212 {
213 pci_write_config_dword(rdev->pdev, 0x7c, RADEON_ASIC_RESET_DATA);
214 }
215
216 /**
217 * radeon_surface_init - Clear GPU surface registers.
218 *
219 * @rdev: radeon_device pointer
220 *
221 * Clear GPU surface registers (r1xx-r5xx).
222 */
223 void radeon_surface_init(struct radeon_device *rdev)
224 {
225 /* FIXME: check this out */
226 if (rdev->family < CHIP_R600) {
227 int i;
228
229 for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) {
230 if (rdev->surface_regs[i].bo)
231 radeon_bo_get_surface_reg(rdev->surface_regs[i].bo);
232 else
233 radeon_clear_surface_reg(rdev, i);
234 }
235 /* enable surfaces */
236 WREG32(RADEON_SURFACE_CNTL, 0);
237 }
238 }
239
240 /*
241 * GPU scratch registers helpers function.
242 */
243 /**
244 * radeon_scratch_init - Init scratch register driver information.
245 *
246 * @rdev: radeon_device pointer
247 *
248 * Init CP scratch register driver information (r1xx-r5xx)
249 */
250 void radeon_scratch_init(struct radeon_device *rdev)
251 {
252 int i;
253
254 /* FIXME: check this out */
255 if (rdev->family < CHIP_R300) {
256 rdev->scratch.num_reg = 5;
257 } else {
258 rdev->scratch.num_reg = 7;
259 }
260 rdev->scratch.reg_base = RADEON_SCRATCH_REG0;
261 for (i = 0; i < rdev->scratch.num_reg; i++) {
262 rdev->scratch.free[i] = true;
263 rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
264 }
265 }
266
267 /**
268 * radeon_scratch_get - Allocate a scratch register
269 *
270 * @rdev: radeon_device pointer
271 * @reg: scratch register mmio offset
272 *
273 * Allocate a CP scratch register for use by the driver (all asics).
274 * Returns 0 on success or -EINVAL on failure.
275 */
276 int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg)
277 {
278 int i;
279
280 for (i = 0; i < rdev->scratch.num_reg; i++) {
281 if (rdev->scratch.free[i]) {
282 rdev->scratch.free[i] = false;
283 *reg = rdev->scratch.reg[i];
284 return 0;
285 }
286 }
287 return -EINVAL;
288 }
289
290 /**
291 * radeon_scratch_free - Free a scratch register
292 *
293 * @rdev: radeon_device pointer
294 * @reg: scratch register mmio offset
295 *
296 * Free a CP scratch register allocated for use by the driver (all asics)
297 */
298 void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg)
299 {
300 int i;
301
302 for (i = 0; i < rdev->scratch.num_reg; i++) {
303 if (rdev->scratch.reg[i] == reg) {
304 rdev->scratch.free[i] = true;
305 return;
306 }
307 }
308 }
309
310 /*
311 * GPU doorbell aperture helpers function.
312 */
313 /**
314 * radeon_doorbell_init - Init doorbell driver information.
315 *
316 * @rdev: radeon_device pointer
317 *
318 * Init doorbell driver information (CIK)
319 * Returns 0 on success, error on failure.
320 */
321 static int radeon_doorbell_init(struct radeon_device *rdev)
322 {
323 #ifdef __NetBSD__
324 int r;
325 #endif
326
327 /* doorbell bar mapping */
328 rdev->doorbell.base = pci_resource_start(rdev->pdev, 2);
329 rdev->doorbell.size = pci_resource_len(rdev->pdev, 2);
330
331 rdev->doorbell.num_doorbells = min_t(u32, rdev->doorbell.size / sizeof(u32), RADEON_MAX_DOORBELLS);
332 if (rdev->doorbell.num_doorbells == 0)
333 return -EINVAL;
334
335 #ifdef __NetBSD__
336 /* XXX errno NetBSD->Linux */
337 rdev->doorbell.bst = rdev->pdev->pd_pa.pa_memt;
338 r = -bus_space_map(rdev->doorbell.bst, rdev->doorbell.base,
339 (rdev->doorbell.num_doorbells * sizeof(uint32_t)),
340 0, &rdev->doorbell.bsh);
341 if (r)
342 return r;
343 #else
344 rdev->doorbell.ptr = ioremap(rdev->doorbell.base, rdev->doorbell.num_doorbells * sizeof(u32));
345 if (rdev->doorbell.ptr == NULL) {
346 return -ENOMEM;
347 }
348 #endif
349 DRM_INFO("doorbell mmio base: 0x%08X\n", (uint32_t)rdev->doorbell.base);
350 DRM_INFO("doorbell mmio size: %u\n", (unsigned)rdev->doorbell.size);
351
352 memset(&rdev->doorbell.used, 0, sizeof(rdev->doorbell.used));
353
354 return 0;
355 }
356
357 /**
358 * radeon_doorbell_fini - Tear down doorbell driver information.
359 *
360 * @rdev: radeon_device pointer
361 *
362 * Tear down doorbell driver information (CIK)
363 */
364 static void radeon_doorbell_fini(struct radeon_device *rdev)
365 {
366 #ifdef __NetBSD__
367 bus_space_unmap(rdev->doorbell.bst, rdev->doorbell.bsh,
368 (rdev->doorbell.num_doorbells * sizeof(uint32_t)));
369 #else
370 iounmap(rdev->doorbell.ptr);
371 rdev->doorbell.ptr = NULL;
372 #endif
373 }
374
375 /**
376 * radeon_doorbell_get - Allocate a doorbell entry
377 *
378 * @rdev: radeon_device pointer
379 * @doorbell: doorbell index
380 *
381 * Allocate a doorbell for use by the driver (all asics).
382 * Returns 0 on success or -EINVAL on failure.
383 */
384 int radeon_doorbell_get(struct radeon_device *rdev, u32 *doorbell)
385 {
386 unsigned long offset = find_first_zero_bit(rdev->doorbell.used, rdev->doorbell.num_doorbells);
387 if (offset < rdev->doorbell.num_doorbells) {
388 __set_bit(offset, rdev->doorbell.used);
389 *doorbell = offset;
390 return 0;
391 } else {
392 return -EINVAL;
393 }
394 }
395
396 /**
397 * radeon_doorbell_free - Free a doorbell entry
398 *
399 * @rdev: radeon_device pointer
400 * @doorbell: doorbell index
401 *
402 * Free a doorbell allocated for use by the driver (all asics)
403 */
404 void radeon_doorbell_free(struct radeon_device *rdev, u32 doorbell)
405 {
406 if (doorbell < rdev->doorbell.num_doorbells)
407 __clear_bit(doorbell, rdev->doorbell.used);
408 }
409
410 /**
411 * radeon_doorbell_get_kfd_info - Report doorbell configuration required to
412 * setup KFD
413 *
414 * @rdev: radeon_device pointer
415 * @aperture_base: output returning doorbell aperture base physical address
416 * @aperture_size: output returning doorbell aperture size in bytes
417 * @start_offset: output returning # of doorbell bytes reserved for radeon.
418 *
419 * Radeon and the KFD share the doorbell aperture. Radeon sets it up,
420 * takes doorbells required for its own rings and reports the setup to KFD.
421 * Radeon reserved doorbells are at the start of the doorbell aperture.
422 */
423 void radeon_doorbell_get_kfd_info(struct radeon_device *rdev,
424 phys_addr_t *aperture_base,
425 size_t *aperture_size,
426 size_t *start_offset)
427 {
428 /* The first num_doorbells are used by radeon.
429 * KFD takes whatever's left in the aperture. */
430 if (rdev->doorbell.size > rdev->doorbell.num_doorbells * sizeof(u32)) {
431 *aperture_base = rdev->doorbell.base;
432 *aperture_size = rdev->doorbell.size;
433 *start_offset = rdev->doorbell.num_doorbells * sizeof(u32);
434 } else {
435 *aperture_base = 0;
436 *aperture_size = 0;
437 *start_offset = 0;
438 }
439 }
440
441 /*
442 * radeon_wb_*()
443 * Writeback is the the method by which the the GPU updates special pages
444 * in memory with the status of certain GPU events (fences, ring pointers,
445 * etc.).
446 */
447
448 /**
449 * radeon_wb_disable - Disable Writeback
450 *
451 * @rdev: radeon_device pointer
452 *
453 * Disables Writeback (all asics). Used for suspend.
454 */
455 void radeon_wb_disable(struct radeon_device *rdev)
456 {
457 rdev->wb.enabled = false;
458 }
459
460 /**
461 * radeon_wb_fini - Disable Writeback and free memory
462 *
463 * @rdev: radeon_device pointer
464 *
465 * Disables Writeback and frees the Writeback memory (all asics).
466 * Used at driver shutdown.
467 */
468 void radeon_wb_fini(struct radeon_device *rdev)
469 {
470 radeon_wb_disable(rdev);
471 if (rdev->wb.wb_obj) {
472 if (!radeon_bo_reserve(rdev->wb.wb_obj, false)) {
473 radeon_bo_kunmap(rdev->wb.wb_obj);
474 radeon_bo_unpin(rdev->wb.wb_obj);
475 radeon_bo_unreserve(rdev->wb.wb_obj);
476 }
477 radeon_bo_unref(&rdev->wb.wb_obj);
478 rdev->wb.wb = NULL;
479 rdev->wb.wb_obj = NULL;
480 }
481 }
482
483 /**
484 * radeon_wb_init- Init Writeback driver info and allocate memory
485 *
486 * @rdev: radeon_device pointer
487 *
488 * Disables Writeback and frees the Writeback memory (all asics).
489 * Used at driver startup.
490 * Returns 0 on success or an -error on failure.
491 */
492 int radeon_wb_init(struct radeon_device *rdev)
493 {
494 int r;
495
496 if (rdev->wb.wb_obj == NULL) {
497 r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true,
498 RADEON_GEM_DOMAIN_GTT, 0, NULL, NULL,
499 &rdev->wb.wb_obj);
500 if (r) {
501 dev_warn(rdev->dev, "(%d) create WB bo failed\n", r);
502 return r;
503 }
504 r = radeon_bo_reserve(rdev->wb.wb_obj, false);
505 if (unlikely(r != 0)) {
506 radeon_wb_fini(rdev);
507 return r;
508 }
509 r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT,
510 &rdev->wb.gpu_addr);
511 if (r) {
512 radeon_bo_unreserve(rdev->wb.wb_obj);
513 dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r);
514 radeon_wb_fini(rdev);
515 return r;
516 }
517 r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)__UNVOLATILE(&rdev->wb.wb));
518 radeon_bo_unreserve(rdev->wb.wb_obj);
519 if (r) {
520 dev_warn(rdev->dev, "(%d) map WB bo failed\n", r);
521 radeon_wb_fini(rdev);
522 return r;
523 }
524 }
525
526 /* clear wb memory */
527 memset(__UNVOLATILE(rdev->wb.wb), 0, RADEON_GPU_PAGE_SIZE);
528 /* disable event_write fences */
529 rdev->wb.use_event = false;
530 /* disabled via module param */
531 if (radeon_no_wb == 1) {
532 rdev->wb.enabled = false;
533 } else {
534 if (rdev->flags & RADEON_IS_AGP) {
535 /* often unreliable on AGP */
536 rdev->wb.enabled = false;
537 } else if (rdev->family < CHIP_R300) {
538 /* often unreliable on pre-r300 */
539 rdev->wb.enabled = false;
540 } else {
541 rdev->wb.enabled = true;
542 /* event_write fences are only available on r600+ */
543 if (rdev->family >= CHIP_R600) {
544 rdev->wb.use_event = true;
545 }
546 }
547 }
548 /* always use writeback/events on NI, APUs */
549 if (rdev->family >= CHIP_PALM) {
550 rdev->wb.enabled = true;
551 rdev->wb.use_event = true;
552 }
553
554 dev_info(rdev->dev, "WB %sabled\n", rdev->wb.enabled ? "en" : "dis");
555
556 return 0;
557 }
558
559 /**
560 * radeon_vram_location - try to find VRAM location
561 * @rdev: radeon device structure holding all necessary informations
562 * @mc: memory controller structure holding memory informations
563 * @base: base address at which to put VRAM
564 *
565 * Function will place try to place VRAM at base address provided
566 * as parameter (which is so far either PCI aperture address or
567 * for IGP TOM base address).
568 *
569 * If there is not enough space to fit the unvisible VRAM in the 32bits
570 * address space then we limit the VRAM size to the aperture.
571 *
572 * If we are using AGP and if the AGP aperture doesn't allow us to have
573 * room for all the VRAM than we restrict the VRAM to the PCI aperture
574 * size and print a warning.
575 *
576 * This function will never fails, worst case are limiting VRAM.
577 *
578 * Note: GTT start, end, size should be initialized before calling this
579 * function on AGP platform.
580 *
581 * Note: We don't explicitly enforce VRAM start to be aligned on VRAM size,
582 * this shouldn't be a problem as we are using the PCI aperture as a reference.
583 * Otherwise this would be needed for rv280, all r3xx, and all r4xx, but
584 * not IGP.
585 *
586 * Note: we use mc_vram_size as on some board we need to program the mc to
587 * cover the whole aperture even if VRAM size is inferior to aperture size
588 * Novell bug 204882 + along with lots of ubuntu ones
589 *
590 * Note: when limiting vram it's safe to overwritte real_vram_size because
591 * we are not in case where real_vram_size is inferior to mc_vram_size (ie
592 * note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu
593 * ones)
594 *
595 * Note: IGP TOM addr should be the same as the aperture addr, we don't
596 * explicitly check for that thought.
597 *
598 * FIXME: when reducing VRAM size align new size on power of 2.
599 */
600 void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base)
601 {
602 uint64_t limit = (uint64_t)radeon_vram_limit << 20;
603
604 mc->vram_start = base;
605 if (mc->mc_vram_size > (rdev->mc.mc_mask - base + 1)) {
606 dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
607 mc->real_vram_size = mc->aper_size;
608 mc->mc_vram_size = mc->aper_size;
609 }
610 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
611 if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_start <= mc->gtt_end) {
612 dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
613 mc->real_vram_size = mc->aper_size;
614 mc->mc_vram_size = mc->aper_size;
615 }
616 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
617 if (limit && limit < mc->real_vram_size)
618 mc->real_vram_size = limit;
619 dev_info(rdev->dev, "VRAM: %"PRIu64"M 0x%016"PRIX64" - 0x%016"PRIX64" (%"PRIu64"M used)\n",
620 mc->mc_vram_size >> 20, mc->vram_start,
621 mc->vram_end, mc->real_vram_size >> 20);
622 }
623
624 /**
625 * radeon_gtt_location - try to find GTT location
626 * @rdev: radeon device structure holding all necessary informations
627 * @mc: memory controller structure holding memory informations
628 *
629 * Function will place try to place GTT before or after VRAM.
630 *
631 * If GTT size is bigger than space left then we ajust GTT size.
632 * Thus function will never fails.
633 *
634 * FIXME: when reducing GTT size align new size on power of 2.
635 */
636 void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc)
637 {
638 u64 size_af, size_bf;
639
640 size_af = ((rdev->mc.mc_mask - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align;
641 size_bf = mc->vram_start & ~mc->gtt_base_align;
642 if (size_bf > size_af) {
643 if (mc->gtt_size > size_bf) {
644 dev_warn(rdev->dev, "limiting GTT\n");
645 mc->gtt_size = size_bf;
646 }
647 mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size;
648 } else {
649 if (mc->gtt_size > size_af) {
650 dev_warn(rdev->dev, "limiting GTT\n");
651 mc->gtt_size = size_af;
652 }
653 mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align;
654 }
655 mc->gtt_end = mc->gtt_start + mc->gtt_size - 1;
656 dev_info(rdev->dev, "GTT: %"PRIu64"M 0x%016"PRIX64" - 0x%016"PRIX64"\n",
657 mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end);
658 }
659
660 /*
661 * GPU helpers function.
662 */
663
664 /**
665 * radeon_device_is_virtual - check if we are running is a virtual environment
666 *
667 * Check if the asic has been passed through to a VM (all asics).
668 * Used at driver startup.
669 * Returns true if virtual or false if not.
670 */
671 static bool radeon_device_is_virtual(void)
672 {
673 #ifdef CONFIG_X86
674 #ifdef __NetBSD__ /* XXX virtualization */
675 return false;
676 #else
677 return boot_cpu_has(X86_FEATURE_HYPERVISOR);
678 #endif
679 #else
680 return false;
681 #endif
682 }
683
684 /**
685 * radeon_card_posted - check if the hw has already been initialized
686 *
687 * @rdev: radeon_device pointer
688 *
689 * Check if the asic has been initialized (all asics).
690 * Used at driver startup.
691 * Returns true if initialized or false if not.
692 */
693 bool radeon_card_posted(struct radeon_device *rdev)
694 {
695 uint32_t reg;
696
697 /* for pass through, always force asic_init for CI */
698 if (rdev->family >= CHIP_BONAIRE &&
699 radeon_device_is_virtual())
700 return false;
701
702 #ifndef __NetBSD__ /* XXX radeon efi */
703 /* required for EFI mode on macbook2,1 which uses an r5xx asic */
704 if (efi_enabled(EFI_BOOT) &&
705 (rdev->pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE) &&
706 (rdev->family < CHIP_R600))
707 return false;
708 #endif
709
710 if (ASIC_IS_NODCE(rdev))
711 goto check_memsize;
712
713 /* first check CRTCs */
714 if (ASIC_IS_DCE4(rdev)) {
715 reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) |
716 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET);
717 if (rdev->num_crtc >= 4) {
718 reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) |
719 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET);
720 }
721 if (rdev->num_crtc >= 6) {
722 reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) |
723 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET);
724 }
725 if (reg & EVERGREEN_CRTC_MASTER_EN)
726 return true;
727 } else if (ASIC_IS_AVIVO(rdev)) {
728 reg = RREG32(AVIVO_D1CRTC_CONTROL) |
729 RREG32(AVIVO_D2CRTC_CONTROL);
730 if (reg & AVIVO_CRTC_EN) {
731 return true;
732 }
733 } else {
734 reg = RREG32(RADEON_CRTC_GEN_CNTL) |
735 RREG32(RADEON_CRTC2_GEN_CNTL);
736 if (reg & RADEON_CRTC_EN) {
737 return true;
738 }
739 }
740
741 check_memsize:
742 /* then check MEM_SIZE, in case the crtcs are off */
743 if (rdev->family >= CHIP_R600)
744 reg = RREG32(R600_CONFIG_MEMSIZE);
745 else
746 reg = RREG32(RADEON_CONFIG_MEMSIZE);
747
748 if (reg)
749 return true;
750
751 return false;
752
753 }
754
755 /**
756 * radeon_update_bandwidth_info - update display bandwidth params
757 *
758 * @rdev: radeon_device pointer
759 *
760 * Used when sclk/mclk are switched or display modes are set.
761 * params are used to calculate display watermarks (all asics)
762 */
763 void radeon_update_bandwidth_info(struct radeon_device *rdev)
764 {
765 fixed20_12 a;
766 u32 sclk = rdev->pm.current_sclk;
767 u32 mclk = rdev->pm.current_mclk;
768
769 /* sclk/mclk in Mhz */
770 a.full = dfixed_const(100);
771 rdev->pm.sclk.full = dfixed_const(sclk);
772 rdev->pm.sclk.full = dfixed_div(rdev->pm.sclk, a);
773 rdev->pm.mclk.full = dfixed_const(mclk);
774 rdev->pm.mclk.full = dfixed_div(rdev->pm.mclk, a);
775
776 if (rdev->flags & RADEON_IS_IGP) {
777 a.full = dfixed_const(16);
778 /* core_bandwidth = sclk(Mhz) * 16 */
779 rdev->pm.core_bandwidth.full = dfixed_div(rdev->pm.sclk, a);
780 }
781 }
782
783 /**
784 * radeon_boot_test_post_card - check and possibly initialize the hw
785 *
786 * @rdev: radeon_device pointer
787 *
788 * Check if the asic is initialized and if not, attempt to initialize
789 * it (all asics).
790 * Returns true if initialized or false if not.
791 */
792 bool radeon_boot_test_post_card(struct radeon_device *rdev)
793 {
794 if (radeon_card_posted(rdev))
795 return true;
796
797 if (rdev->bios) {
798 DRM_INFO("GPU not posted. posting now...\n");
799 if (rdev->is_atom_bios)
800 atom_asic_init(rdev->mode_info.atom_context);
801 else
802 radeon_combios_asic_init(rdev->ddev);
803 return true;
804 } else {
805 dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
806 return false;
807 }
808 }
809
810 /**
811 * radeon_dummy_page_init - init dummy page used by the driver
812 *
813 * @rdev: radeon_device pointer
814 *
815 * Allocate the dummy page used by the driver (all asics).
816 * This dummy page is used by the driver as a filler for gart entries
817 * when pages are taken out of the GART
818 * Returns 0 on sucess, -ENOMEM on failure.
819 */
820 int radeon_dummy_page_init(struct radeon_device *rdev)
821 {
822 #ifdef __NetBSD__
823 int rsegs;
824 int error;
825
826 /* XXX Can this be called more than once?? */
827 if (rdev->dummy_page.rdp_map != NULL)
828 return 0;
829
830 error = bus_dmamem_alloc(rdev->ddev->dmat, PAGE_SIZE, PAGE_SIZE, 0,
831 &rdev->dummy_page.rdp_seg, 1, &rsegs, BUS_DMA_WAITOK);
832 if (error)
833 goto fail0;
834 KASSERT(rsegs == 1);
835 error = bus_dmamap_create(rdev->ddev->dmat, PAGE_SIZE, 1, PAGE_SIZE, 0,
836 BUS_DMA_WAITOK, &rdev->dummy_page.rdp_map);
837 if (error)
838 goto fail1;
839 error = bus_dmamem_map(rdev->ddev->dmat, &rdev->dummy_page.rdp_seg, 1,
840 PAGE_SIZE, &rdev->dummy_page.rdp_addr,
841 BUS_DMA_WAITOK|BUS_DMA_NOCACHE);
842 if (error)
843 goto fail2;
844 error = bus_dmamap_load(rdev->ddev->dmat, rdev->dummy_page.rdp_map,
845 rdev->dummy_page.rdp_addr, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
846 if (error)
847 goto fail3;
848
849 memset(rdev->dummy_page.rdp_addr, 0, PAGE_SIZE);
850
851 /* Success! */
852 rdev->dummy_page.addr = rdev->dummy_page.rdp_map->dm_segs[0].ds_addr;
853 rdev->dummy_page.entry = radeon_gart_get_page_entry(
854 rdev->dummy_page.addr, RADEON_GART_PAGE_DUMMY);
855 return 0;
856
857 fail4: __unused
858 bus_dmamap_unload(rdev->ddev->dmat, rdev->dummy_page.rdp_map);
859 fail3: bus_dmamem_unmap(rdev->ddev->dmat, rdev->dummy_page.rdp_addr,
860 PAGE_SIZE);
861 fail2: bus_dmamap_destroy(rdev->ddev->dmat, rdev->dummy_page.rdp_map);
862 fail1: bus_dmamem_free(rdev->ddev->dmat, &rdev->dummy_page.rdp_seg, 1);
863 fail0: KASSERT(error);
864 rdev->dummy_page.rdp_map = NULL;
865 /* XXX errno NetBSD->Linux */
866 return -error;
867 #else
868 if (rdev->dummy_page.page)
869 return 0;
870 rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO);
871 if (rdev->dummy_page.page == NULL)
872 return -ENOMEM;
873 rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page,
874 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
875 if (pci_dma_mapping_error(rdev->pdev, rdev->dummy_page.addr)) {
876 dev_err(&rdev->pdev->dev, "Failed to DMA MAP the dummy page\n");
877 __free_page(rdev->dummy_page.page);
878 rdev->dummy_page.page = NULL;
879 return -ENOMEM;
880 }
881 rdev->dummy_page.entry = radeon_gart_get_page_entry(rdev->dummy_page.addr,
882 RADEON_GART_PAGE_DUMMY);
883 return 0;
884 #endif
885 }
886
887 /**
888 * radeon_dummy_page_fini - free dummy page used by the driver
889 *
890 * @rdev: radeon_device pointer
891 *
892 * Frees the dummy page used by the driver (all asics).
893 */
894 void radeon_dummy_page_fini(struct radeon_device *rdev)
895 {
896 #ifdef __NetBSD__
897
898 if (rdev->dummy_page.rdp_map == NULL)
899 return;
900 bus_dmamap_unload(rdev->ddev->dmat, rdev->dummy_page.rdp_map);
901 bus_dmamem_unmap(rdev->ddev->dmat, rdev->dummy_page.rdp_addr,
902 PAGE_SIZE);
903 bus_dmamap_destroy(rdev->ddev->dmat, rdev->dummy_page.rdp_map);
904 bus_dmamem_free(rdev->ddev->dmat, &rdev->dummy_page.rdp_seg, 1);
905 rdev->dummy_page.rdp_map = NULL;
906 #else
907 if (rdev->dummy_page.page == NULL)
908 return;
909 pci_unmap_page(rdev->pdev, rdev->dummy_page.addr,
910 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
911 __free_page(rdev->dummy_page.page);
912 rdev->dummy_page.page = NULL;
913 #endif
914 }
915
916
917 /* ATOM accessor methods */
918 /*
919 * ATOM is an interpreted byte code stored in tables in the vbios. The
920 * driver registers callbacks to access registers and the interpreter
921 * in the driver parses the tables and executes then to program specific
922 * actions (set display modes, asic init, etc.). See radeon_atombios.c,
923 * atombios.h, and atom.c
924 */
925
926 /**
927 * cail_pll_read - read PLL register
928 *
929 * @info: atom card_info pointer
930 * @reg: PLL register offset
931 *
932 * Provides a PLL register accessor for the atom interpreter (r4xx+).
933 * Returns the value of the PLL register.
934 */
935 static uint32_t cail_pll_read(struct card_info *info, uint32_t reg)
936 {
937 struct radeon_device *rdev = info->dev->dev_private;
938 uint32_t r;
939
940 r = rdev->pll_rreg(rdev, reg);
941 return r;
942 }
943
944 /**
945 * cail_pll_write - write PLL register
946 *
947 * @info: atom card_info pointer
948 * @reg: PLL register offset
949 * @val: value to write to the pll register
950 *
951 * Provides a PLL register accessor for the atom interpreter (r4xx+).
952 */
953 static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val)
954 {
955 struct radeon_device *rdev = info->dev->dev_private;
956
957 rdev->pll_wreg(rdev, reg, val);
958 }
959
960 /**
961 * cail_mc_read - read MC (Memory Controller) register
962 *
963 * @info: atom card_info pointer
964 * @reg: MC register offset
965 *
966 * Provides an MC register accessor for the atom interpreter (r4xx+).
967 * Returns the value of the MC register.
968 */
969 static uint32_t cail_mc_read(struct card_info *info, uint32_t reg)
970 {
971 struct radeon_device *rdev = info->dev->dev_private;
972 uint32_t r;
973
974 r = rdev->mc_rreg(rdev, reg);
975 return r;
976 }
977
978 /**
979 * cail_mc_write - write MC (Memory Controller) register
980 *
981 * @info: atom card_info pointer
982 * @reg: MC register offset
983 * @val: value to write to the pll register
984 *
985 * Provides a MC register accessor for the atom interpreter (r4xx+).
986 */
987 static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val)
988 {
989 struct radeon_device *rdev = info->dev->dev_private;
990
991 rdev->mc_wreg(rdev, reg, val);
992 }
993
994 /**
995 * cail_reg_write - write MMIO register
996 *
997 * @info: atom card_info pointer
998 * @reg: MMIO register offset
999 * @val: value to write to the pll register
1000 *
1001 * Provides a MMIO register accessor for the atom interpreter (r4xx+).
1002 */
1003 static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val)
1004 {
1005 struct radeon_device *rdev = info->dev->dev_private;
1006
1007 WREG32(reg*4, val);
1008 }
1009
1010 /**
1011 * cail_reg_read - read MMIO register
1012 *
1013 * @info: atom card_info pointer
1014 * @reg: MMIO register offset
1015 *
1016 * Provides an MMIO register accessor for the atom interpreter (r4xx+).
1017 * Returns the value of the MMIO register.
1018 */
1019 static uint32_t cail_reg_read(struct card_info *info, uint32_t reg)
1020 {
1021 struct radeon_device *rdev = info->dev->dev_private;
1022 uint32_t r;
1023
1024 r = RREG32(reg*4);
1025 return r;
1026 }
1027
1028 /**
1029 * cail_ioreg_write - write IO register
1030 *
1031 * @info: atom card_info pointer
1032 * @reg: IO register offset
1033 * @val: value to write to the pll register
1034 *
1035 * Provides a IO register accessor for the atom interpreter (r4xx+).
1036 */
1037 static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val)
1038 {
1039 struct radeon_device *rdev = info->dev->dev_private;
1040
1041 WREG32_IO(reg*4, val);
1042 }
1043
1044 /**
1045 * cail_ioreg_read - read IO register
1046 *
1047 * @info: atom card_info pointer
1048 * @reg: IO register offset
1049 *
1050 * Provides an IO register accessor for the atom interpreter (r4xx+).
1051 * Returns the value of the IO register.
1052 */
1053 static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg)
1054 {
1055 struct radeon_device *rdev = info->dev->dev_private;
1056 uint32_t r;
1057
1058 r = RREG32_IO(reg*4);
1059 return r;
1060 }
1061
1062 /**
1063 * radeon_atombios_init - init the driver info and callbacks for atombios
1064 *
1065 * @rdev: radeon_device pointer
1066 *
1067 * Initializes the driver info and register access callbacks for the
1068 * ATOM interpreter (r4xx+).
1069 * Returns 0 on sucess, -ENOMEM on failure.
1070 * Called at driver startup.
1071 */
1072 int radeon_atombios_init(struct radeon_device *rdev)
1073 {
1074 struct card_info *atom_card_info =
1075 kzalloc(sizeof(struct card_info), GFP_KERNEL);
1076
1077 if (!atom_card_info)
1078 return -ENOMEM;
1079
1080 rdev->mode_info.atom_card_info = atom_card_info;
1081 atom_card_info->dev = rdev->ddev;
1082 atom_card_info->reg_read = cail_reg_read;
1083 atom_card_info->reg_write = cail_reg_write;
1084 /* needed for iio ops */
1085 #ifdef __NetBSD__
1086 if (rdev->rio_mem_size)
1087 #else
1088 if (rdev->rio_mem)
1089 #endif
1090 {
1091 atom_card_info->ioreg_read = cail_ioreg_read;
1092 atom_card_info->ioreg_write = cail_ioreg_write;
1093 } else {
1094 DRM_ERROR("Unable to find PCI I/O BAR; using MMIO for ATOM IIO\n");
1095 atom_card_info->ioreg_read = cail_reg_read;
1096 atom_card_info->ioreg_write = cail_reg_write;
1097 }
1098 atom_card_info->mc_read = cail_mc_read;
1099 atom_card_info->mc_write = cail_mc_write;
1100 atom_card_info->pll_read = cail_pll_read;
1101 atom_card_info->pll_write = cail_pll_write;
1102
1103 rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios);
1104 if (!rdev->mode_info.atom_context) {
1105 radeon_atombios_fini(rdev);
1106 return -ENOMEM;
1107 }
1108
1109 mutex_init(&rdev->mode_info.atom_context->mutex);
1110 mutex_init(&rdev->mode_info.atom_context->scratch_mutex);
1111 radeon_atom_initialize_bios_scratch_regs(rdev->ddev);
1112 atom_allocate_fb_scratch(rdev->mode_info.atom_context);
1113 return 0;
1114 }
1115
1116 /**
1117 * radeon_atombios_fini - free the driver info and callbacks for atombios
1118 *
1119 * @rdev: radeon_device pointer
1120 *
1121 * Frees the driver info and register access callbacks for the ATOM
1122 * interpreter (r4xx+).
1123 * Called at driver shutdown.
1124 */
1125 void radeon_atombios_fini(struct radeon_device *rdev)
1126 {
1127 if (rdev->mode_info.atom_context) {
1128 mutex_destroy(&rdev->mode_info.atom_context->scratch_mutex);
1129 mutex_destroy(&rdev->mode_info.atom_context->mutex);
1130 kfree(rdev->mode_info.atom_context->scratch);
1131 }
1132 kfree(rdev->mode_info.atom_context);
1133 rdev->mode_info.atom_context = NULL;
1134 kfree(rdev->mode_info.atom_card_info);
1135 rdev->mode_info.atom_card_info = NULL;
1136 }
1137
1138 /* COMBIOS */
1139 /*
1140 * COMBIOS is the bios format prior to ATOM. It provides
1141 * command tables similar to ATOM, but doesn't have a unified
1142 * parser. See radeon_combios.c
1143 */
1144
1145 /**
1146 * radeon_combios_init - init the driver info for combios
1147 *
1148 * @rdev: radeon_device pointer
1149 *
1150 * Initializes the driver info for combios (r1xx-r3xx).
1151 * Returns 0 on sucess.
1152 * Called at driver startup.
1153 */
1154 int radeon_combios_init(struct radeon_device *rdev)
1155 {
1156 radeon_combios_initialize_bios_scratch_regs(rdev->ddev);
1157 return 0;
1158 }
1159
1160 /**
1161 * radeon_combios_fini - free the driver info for combios
1162 *
1163 * @rdev: radeon_device pointer
1164 *
1165 * Frees the driver info for combios (r1xx-r3xx).
1166 * Called at driver shutdown.
1167 */
1168 void radeon_combios_fini(struct radeon_device *rdev)
1169 {
1170 }
1171
1172 #ifndef __NetBSD__ /* XXX radeon vga */
1173 /* if we get transitioned to only one device, take VGA back */
1174 /**
1175 * radeon_vga_set_decode - enable/disable vga decode
1176 *
1177 * @cookie: radeon_device pointer
1178 * @state: enable/disable vga decode
1179 *
1180 * Enable/disable vga decode (all asics).
1181 * Returns VGA resource flags.
1182 */
1183 static unsigned int radeon_vga_set_decode(void *cookie, bool state)
1184 {
1185 struct radeon_device *rdev = cookie;
1186 radeon_vga_set_state(rdev, state);
1187 if (state)
1188 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
1189 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
1190 else
1191 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
1192 }
1193 #endif
1194
1195 /**
1196 * radeon_check_pot_argument - check that argument is a power of two
1197 *
1198 * @arg: value to check
1199 *
1200 * Validates that a certain argument is a power of two (all asics).
1201 * Returns true if argument is valid.
1202 */
1203 static bool radeon_check_pot_argument(int arg)
1204 {
1205 return (arg & (arg - 1)) == 0;
1206 }
1207
1208 /**
1209 * Determine a sensible default GART size according to ASIC family.
1210 *
1211 * @family ASIC family name
1212 */
1213 static int radeon_gart_size_auto(enum radeon_family family)
1214 {
1215 /* default to a larger gart size on newer asics */
1216 if (family >= CHIP_TAHITI)
1217 return 2048;
1218 else if (family >= CHIP_RV770)
1219 return 1024;
1220 else
1221 return 512;
1222 }
1223
1224 /**
1225 * radeon_check_arguments - validate module params
1226 *
1227 * @rdev: radeon_device pointer
1228 *
1229 * Validates certain module parameters and updates
1230 * the associated values used by the driver (all asics).
1231 */
1232 static void radeon_check_arguments(struct radeon_device *rdev)
1233 {
1234 /* vramlimit must be a power of two */
1235 if (!radeon_check_pot_argument(radeon_vram_limit)) {
1236 dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n",
1237 radeon_vram_limit);
1238 radeon_vram_limit = 0;
1239 }
1240
1241 if (radeon_gart_size == -1) {
1242 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1243 }
1244 /* gtt size must be power of two and greater or equal to 32M */
1245 if (radeon_gart_size < 32) {
1246 dev_warn(rdev->dev, "gart size (%d) too small\n",
1247 radeon_gart_size);
1248 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1249 } else if (!radeon_check_pot_argument(radeon_gart_size)) {
1250 dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n",
1251 radeon_gart_size);
1252 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1253 }
1254 rdev->mc.gtt_size = (uint64_t)radeon_gart_size << 20;
1255
1256 /* AGP mode can only be -1, 1, 2, 4, 8 */
1257 switch (radeon_agpmode) {
1258 case -1:
1259 case 0:
1260 case 1:
1261 case 2:
1262 case 4:
1263 case 8:
1264 break;
1265 default:
1266 dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: "
1267 "-1, 0, 1, 2, 4, 8)\n", radeon_agpmode);
1268 radeon_agpmode = 0;
1269 break;
1270 }
1271
1272 if (!radeon_check_pot_argument(radeon_vm_size)) {
1273 dev_warn(rdev->dev, "VM size (%d) must be a power of 2\n",
1274 radeon_vm_size);
1275 radeon_vm_size = 4;
1276 }
1277
1278 if (radeon_vm_size < 1) {
1279 dev_warn(rdev->dev, "VM size (%d) to small, min is 1GB\n",
1280 radeon_vm_size);
1281 radeon_vm_size = 4;
1282 }
1283
1284 /*
1285 * Max GPUVM size for Cayman, SI and CI are 40 bits.
1286 */
1287 if (radeon_vm_size > 1024) {
1288 dev_warn(rdev->dev, "VM size (%d) too large, max is 1TB\n",
1289 radeon_vm_size);
1290 radeon_vm_size = 4;
1291 }
1292
1293 /* defines number of bits in page table versus page directory,
1294 * a page is 4KB so we have 12 bits offset, minimum 9 bits in the
1295 * page table and the remaining bits are in the page directory */
1296 if (radeon_vm_block_size == -1) {
1297
1298 /* Total bits covered by PD + PTs */
1299 unsigned bits = ilog2(radeon_vm_size) + 18;
1300
1301 /* Make sure the PD is 4K in size up to 8GB address space.
1302 Above that split equal between PD and PTs */
1303 if (radeon_vm_size <= 8)
1304 radeon_vm_block_size = bits - 9;
1305 else
1306 radeon_vm_block_size = (bits + 3) / 2;
1307
1308 } else if (radeon_vm_block_size < 9) {
1309 dev_warn(rdev->dev, "VM page table size (%d) too small\n",
1310 radeon_vm_block_size);
1311 radeon_vm_block_size = 9;
1312 }
1313
1314 if (radeon_vm_block_size > 24 ||
1315 (radeon_vm_size * 1024) < (1ull << radeon_vm_block_size)) {
1316 dev_warn(rdev->dev, "VM page table size (%d) too large\n",
1317 radeon_vm_block_size);
1318 radeon_vm_block_size = 9;
1319 }
1320 }
1321
1322 #ifndef __NetBSD__ /* XXX radeon vga */
1323 /**
1324 * radeon_switcheroo_set_state - set switcheroo state
1325 *
1326 * @pdev: pci dev pointer
1327 * @state: vga_switcheroo state
1328 *
1329 * Callback for the switcheroo driver. Suspends or resumes the
1330 * the asics before or after it is powered up using ACPI methods.
1331 */
1332 static void radeon_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
1333 {
1334 struct drm_device *dev = pci_get_drvdata(pdev);
1335 struct radeon_device *rdev = dev->dev_private;
1336
1337 if (radeon_is_px(dev) && state == VGA_SWITCHEROO_OFF)
1338 return;
1339
1340 if (state == VGA_SWITCHEROO_ON) {
1341 unsigned d3_delay = dev->pdev->d3_delay;
1342
1343 printk(KERN_INFO "radeon: switched on\n");
1344 /* don't suspend or resume card normally */
1345 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
1346
1347 if (d3_delay < 20 && (rdev->px_quirk_flags & RADEON_PX_QUIRK_LONG_WAKEUP))
1348 dev->pdev->d3_delay = 20;
1349
1350 radeon_resume_kms(dev, true, true);
1351
1352 dev->pdev->d3_delay = d3_delay;
1353
1354 dev->switch_power_state = DRM_SWITCH_POWER_ON;
1355 drm_kms_helper_poll_enable(dev);
1356 } else {
1357 printk(KERN_INFO "radeon: switched off\n");
1358 drm_kms_helper_poll_disable(dev);
1359 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
1360 radeon_suspend_kms(dev, true, true);
1361 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
1362 }
1363 }
1364
1365 /**
1366 * radeon_switcheroo_can_switch - see if switcheroo state can change
1367 *
1368 * @pdev: pci dev pointer
1369 *
1370 * Callback for the switcheroo driver. Check of the switcheroo
1371 * state can be changed.
1372 * Returns true if the state can be changed, false if not.
1373 */
1374 static bool radeon_switcheroo_can_switch(struct pci_dev *pdev)
1375 {
1376 struct drm_device *dev = pci_get_drvdata(pdev);
1377
1378 /*
1379 * FIXME: open_count is protected by drm_global_mutex but that would lead to
1380 * locking inversion with the driver load path. And the access here is
1381 * completely racy anyway. So don't bother with locking for now.
1382 */
1383 return dev->open_count == 0;
1384 }
1385
1386 static const struct vga_switcheroo_client_ops radeon_switcheroo_ops = {
1387 .set_gpu_state = radeon_switcheroo_set_state,
1388 .reprobe = NULL,
1389 .can_switch = radeon_switcheroo_can_switch,
1390 };
1391 #endif
1392
1393 /**
1394 * radeon_device_init - initialize the driver
1395 *
1396 * @rdev: radeon_device pointer
1397 * @pdev: drm dev pointer
1398 * @pdev: pci dev pointer
1399 * @flags: driver flags
1400 *
1401 * Initializes the driver info and hw (all asics).
1402 * Returns 0 for success or an error on failure.
1403 * Called at driver startup.
1404 */
1405 int radeon_device_init(struct radeon_device *rdev,
1406 struct drm_device *ddev,
1407 struct pci_dev *pdev,
1408 uint32_t flags)
1409 {
1410 int r, i;
1411 int dma_bits;
1412 #ifndef __NetBSD__
1413 bool runtime = false;
1414 #endif
1415
1416 rdev->shutdown = false;
1417 rdev->dev = ddev->dev;
1418 rdev->ddev = ddev;
1419 rdev->pdev = pdev;
1420 rdev->flags = flags;
1421 rdev->family = flags & RADEON_FAMILY_MASK;
1422 rdev->is_atom_bios = false;
1423 rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT;
1424 rdev->mc.gtt_size = 512 * 1024 * 1024;
1425 rdev->accel_working = false;
1426 /* set up ring ids */
1427 for (i = 0; i < RADEON_NUM_RINGS; i++) {
1428 rdev->ring[i].idx = i;
1429 }
1430 rdev->fence_context = fence_context_alloc(RADEON_NUM_RINGS);
1431
1432 DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X).\n",
1433 radeon_family_name[rdev->family], pdev->vendor, pdev->device,
1434 pdev->subsystem_vendor, pdev->subsystem_device);
1435
1436 /* mutex initialization are all done here so we
1437 * can recall function without having locking issues */
1438 mutex_init(&rdev->ring_lock);
1439 mutex_init(&rdev->dc_hw_i2c_mutex);
1440 atomic_set(&rdev->ih.lock, 0);
1441 mutex_init(&rdev->gem.mutex);
1442 mutex_init(&rdev->pm.mutex);
1443 mutex_init(&rdev->gpu_clock_mutex);
1444 mutex_init(&rdev->srbm_mutex);
1445 mutex_init(&rdev->grbm_idx_mutex);
1446 init_rwsem(&rdev->pm.mclk_lock);
1447 init_rwsem(&rdev->exclusive_lock);
1448 #ifdef __NetBSD__
1449 spin_lock_init(&rdev->irq.vblank_lock);
1450 DRM_INIT_WAITQUEUE(&rdev->irq.vblank_queue, "radvblnk");
1451 #else
1452 init_waitqueue_head(&rdev->irq.vblank_queue);
1453 #endif
1454 mutex_init(&rdev->mn_lock);
1455 hash_init(rdev->mn_hash);
1456 r = radeon_gem_init(rdev);
1457 if (r)
1458 return r;
1459
1460 radeon_check_arguments(rdev);
1461 /* Adjust VM size here.
1462 * Max GPUVM size for cayman+ is 40 bits.
1463 */
1464 rdev->vm_manager.max_pfn = radeon_vm_size << 18;
1465
1466 /* Set asic functions */
1467 r = radeon_asic_init(rdev);
1468 if (r)
1469 return r;
1470
1471 /* all of the newer IGP chips have an internal gart
1472 * However some rs4xx report as AGP, so remove that here.
1473 */
1474 if ((rdev->family >= CHIP_RS400) &&
1475 (rdev->flags & RADEON_IS_IGP)) {
1476 rdev->flags &= ~RADEON_IS_AGP;
1477 }
1478
1479 if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) {
1480 radeon_agp_disable(rdev);
1481 }
1482
1483 /* Set the internal MC address mask
1484 * This is the max address of the GPU's
1485 * internal address space.
1486 */
1487 if (rdev->family >= CHIP_CAYMAN)
1488 rdev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
1489 else if (rdev->family >= CHIP_CEDAR)
1490 rdev->mc.mc_mask = 0xfffffffffULL; /* 36 bit MC */
1491 else
1492 rdev->mc.mc_mask = 0xffffffffULL; /* 32 bit MC */
1493
1494 /* set DMA mask + need_dma32 flags.
1495 * PCIE - can handle 40-bits.
1496 * IGP - can handle 40-bits
1497 * AGP - generally dma32 is safest
1498 * PCI - dma32 for legacy pci gart, 40 bits on newer asics
1499 */
1500 rdev->need_dma32 = false;
1501 if (rdev->flags & RADEON_IS_AGP)
1502 rdev->need_dma32 = true;
1503 if ((rdev->flags & RADEON_IS_PCI) &&
1504 (rdev->family <= CHIP_RS740))
1505 rdev->need_dma32 = true;
1506
1507 dma_bits = rdev->need_dma32 ? 32 : 40;
1508 #ifdef __NetBSD__
1509 r = drm_limit_dma_space(rdev->ddev, 0, __BITS(dma_bits - 1, 0));
1510 if (r)
1511 DRM_ERROR("No suitable DMA available.\n");
1512 #else
1513 r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
1514 if (r) {
1515 rdev->need_dma32 = true;
1516 dma_bits = 32;
1517 printk(KERN_WARNING "radeon: No suitable DMA available.\n");
1518 }
1519 r = pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
1520 if (r) {
1521 pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(32));
1522 printk(KERN_WARNING "radeon: No coherent DMA available.\n");
1523 }
1524 #endif
1525
1526 /* Registers mapping */
1527 /* TODO: block userspace mapping of io register */
1528 /* XXX Destroy these locks on detach... */
1529 spin_lock_init(&rdev->mmio_idx_lock);
1530 spin_lock_init(&rdev->smc_idx_lock);
1531 spin_lock_init(&rdev->pll_idx_lock);
1532 spin_lock_init(&rdev->mc_idx_lock);
1533 spin_lock_init(&rdev->pcie_idx_lock);
1534 spin_lock_init(&rdev->pciep_idx_lock);
1535 spin_lock_init(&rdev->pif_idx_lock);
1536 spin_lock_init(&rdev->cg_idx_lock);
1537 spin_lock_init(&rdev->uvd_idx_lock);
1538 spin_lock_init(&rdev->rcu_idx_lock);
1539 spin_lock_init(&rdev->didt_idx_lock);
1540 spin_lock_init(&rdev->end_idx_lock);
1541 #ifdef __NetBSD__
1542 {
1543 pcireg_t bar;
1544
1545 if (rdev->family >= CHIP_BONAIRE)
1546 bar = 5;
1547 else
1548 bar = 2;
1549 if (pci_mapreg_map(&rdev->pdev->pd_pa, PCI_BAR(bar),
1550 pci_mapreg_type(rdev->pdev->pd_pa.pa_pc,
1551 rdev->pdev->pd_pa.pa_tag, PCI_BAR(bar)),
1552 0,
1553 &rdev->rmmio_bst, &rdev->rmmio_bsh,
1554 &rdev->rmmio_addr, &rdev->rmmio_size))
1555 return -EIO;
1556 }
1557 DRM_INFO("register mmio base: 0x%"PRIxMAX"\n",
1558 (uintmax_t)rdev->rmmio_addr);
1559 DRM_INFO("register mmio size: %"PRIuMAX"\n",
1560 (uintmax_t)rdev->rmmio_size);
1561 #else
1562 if (rdev->family >= CHIP_BONAIRE) {
1563 rdev->rmmio_base = pci_resource_start(rdev->pdev, 5);
1564 rdev->rmmio_size = pci_resource_len(rdev->pdev, 5);
1565 } else {
1566 rdev->rmmio_base = pci_resource_start(rdev->pdev, 2);
1567 rdev->rmmio_size = pci_resource_len(rdev->pdev, 2);
1568 }
1569 rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size);
1570 if (rdev->rmmio == NULL) {
1571 return -ENOMEM;
1572 }
1573 DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base);
1574 DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size);
1575 #endif
1576
1577 /* doorbell bar mapping */
1578 if (rdev->family >= CHIP_BONAIRE)
1579 radeon_doorbell_init(rdev);
1580
1581 /* io port mapping */
1582 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1583 #ifdef __NetBSD__
1584 if (pci_mapreg_map(&rdev->pdev->pd_pa, PCI_BAR(i),
1585 PCI_MAPREG_TYPE_IO, 0,
1586 &rdev->rio_mem_bst, &rdev->rio_mem_bsh,
1587 NULL, &rdev->rio_mem_size))
1588 continue;
1589 break;
1590 #else
1591 if (pci_resource_flags(rdev->pdev, i) & IORESOURCE_IO) {
1592 rdev->rio_mem_size = pci_resource_len(rdev->pdev, i);
1593 rdev->rio_mem = pci_iomap(rdev->pdev, i, rdev->rio_mem_size);
1594 break;
1595 }
1596 #endif
1597 }
1598 #ifdef __NetBSD__
1599 if (i == DEVICE_COUNT_RESOURCE)
1600 DRM_ERROR("Unable to find PCI I/O BAR\n");
1601 #else
1602 if (rdev->rio_mem == NULL)
1603 DRM_ERROR("Unable to find PCI I/O BAR\n");
1604 #endif
1605
1606 if (rdev->flags & RADEON_IS_PX)
1607 radeon_device_handle_px_quirks(rdev);
1608
1609 #ifndef __NetBSD__ /* XXX radeon vga */
1610 /* if we have > 1 VGA cards, then disable the radeon VGA resources */
1611 /* this will fail for cards that aren't VGA class devices, just
1612 * ignore it */
1613 vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode);
1614
1615 if (rdev->flags & RADEON_IS_PX)
1616 runtime = true;
1617 vga_switcheroo_register_client(rdev->pdev, &radeon_switcheroo_ops, runtime);
1618 if (runtime)
1619 vga_switcheroo_init_domain_pm_ops(rdev->dev, &rdev->vga_pm_domain);
1620 #endif
1621
1622 r = radeon_init(rdev);
1623 if (r)
1624 goto failed;
1625
1626 r = radeon_gem_debugfs_init(rdev);
1627 if (r) {
1628 DRM_ERROR("registering gem debugfs failed (%d).\n", r);
1629 }
1630
1631 r = radeon_mst_debugfs_init(rdev);
1632 if (r) {
1633 DRM_ERROR("registering mst debugfs failed (%d).\n", r);
1634 }
1635
1636 if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) {
1637 /* Acceleration not working on AGP card try again
1638 * with fallback to PCI or PCIE GART
1639 */
1640 radeon_asic_reset(rdev);
1641 radeon_fini(rdev);
1642 radeon_agp_disable(rdev);
1643 r = radeon_init(rdev);
1644 if (r)
1645 goto failed;
1646 }
1647
1648 r = radeon_ib_ring_tests(rdev);
1649 if (r)
1650 DRM_ERROR("ib ring test failed (%d).\n", r);
1651
1652 /*
1653 * Turks/Thames GPU will freeze whole laptop if DPM is not restarted
1654 * after the CP ring have chew one packet at least. Hence here we stop
1655 * and restart DPM after the radeon_ib_ring_tests().
1656 */
1657 if (rdev->pm.dpm_enabled &&
1658 (rdev->pm.pm_method == PM_METHOD_DPM) &&
1659 (rdev->family == CHIP_TURKS) &&
1660 (rdev->flags & RADEON_IS_MOBILITY)) {
1661 mutex_lock(&rdev->pm.mutex);
1662 radeon_dpm_disable(rdev);
1663 radeon_dpm_enable(rdev);
1664 mutex_unlock(&rdev->pm.mutex);
1665 }
1666
1667 if ((radeon_testing & 1)) {
1668 if (rdev->accel_working)
1669 radeon_test_moves(rdev);
1670 else
1671 DRM_INFO("radeon: acceleration disabled, skipping move tests\n");
1672 }
1673 if ((radeon_testing & 2)) {
1674 if (rdev->accel_working)
1675 radeon_test_syncing(rdev);
1676 else
1677 DRM_INFO("radeon: acceleration disabled, skipping sync tests\n");
1678 }
1679 if (radeon_benchmarking) {
1680 if (rdev->accel_working)
1681 radeon_benchmark(rdev, radeon_benchmarking);
1682 else
1683 DRM_INFO("radeon: acceleration disabled, skipping benchmarks\n");
1684 }
1685 return 0;
1686
1687 failed:
1688 #ifndef __NetBSD__ /* XXX radeon vga */
1689 if (runtime)
1690 vga_switcheroo_fini_domain_pm_ops(rdev->dev);
1691 #endif
1692 return r;
1693 }
1694
1695 static void radeon_debugfs_remove_files(struct radeon_device *rdev);
1696
1697 /**
1698 * radeon_device_fini - tear down the driver
1699 *
1700 * @rdev: radeon_device pointer
1701 *
1702 * Tear down the driver info (all asics).
1703 * Called at driver shutdown.
1704 */
1705 void radeon_device_fini(struct radeon_device *rdev)
1706 {
1707 DRM_INFO("radeon: finishing device.\n");
1708 rdev->shutdown = true;
1709 /* evict vram memory */
1710 radeon_bo_evict_vram(rdev);
1711 radeon_fini(rdev);
1712 #ifndef __NetBSD__
1713 vga_switcheroo_unregister_client(rdev->pdev);
1714 if (rdev->flags & RADEON_IS_PX)
1715 vga_switcheroo_fini_domain_pm_ops(rdev->dev);
1716 vga_client_register(rdev->pdev, NULL, NULL, NULL);
1717 #endif
1718 #ifdef __NetBSD__
1719 if (rdev->rio_mem_size)
1720 bus_space_unmap(rdev->rio_mem_bst, rdev->rio_mem_bsh,
1721 rdev->rio_mem_size);
1722 rdev->rio_mem_size = 0;
1723 bus_space_unmap(rdev->rmmio_bst, rdev->rmmio_bsh, rdev->rmmio_size);
1724 #else
1725 if (rdev->rio_mem)
1726 pci_iounmap(rdev->pdev, rdev->rio_mem);
1727 rdev->rio_mem = NULL;
1728 iounmap(rdev->rmmio);
1729 rdev->rmmio = NULL;
1730 #endif
1731 if (rdev->family >= CHIP_BONAIRE)
1732 radeon_doorbell_fini(rdev);
1733 radeon_debugfs_remove_files(rdev);
1734
1735 #ifdef __NetBSD__
1736 DRM_DESTROY_WAITQUEUE(&rdev->irq.vblank_queue);
1737 spin_lock_destroy(&rdev->irq.vblank_lock);
1738 destroy_rwsem(&rdev->exclusive_lock);
1739 destroy_rwsem(&rdev->pm.mclk_lock);
1740 #endif
1741 mutex_destroy(&rdev->srbm_mutex);
1742 mutex_destroy(&rdev->gpu_clock_mutex);
1743 mutex_destroy(&rdev->pm.mutex);
1744 mutex_destroy(&rdev->gem.mutex);
1745 mutex_destroy(&rdev->dc_hw_i2c_mutex);
1746 mutex_destroy(&rdev->ring_lock);
1747 }
1748
1749
1750 /*
1751 * Suspend & resume.
1752 */
1753 /**
1754 * radeon_suspend_kms - initiate device suspend
1755 *
1756 * @pdev: drm dev pointer
1757 * @state: suspend state
1758 *
1759 * Puts the hw in the suspend state (all asics).
1760 * Returns 0 for success or an error on failure.
1761 * Called at driver suspend.
1762 */
1763 int radeon_suspend_kms(struct drm_device *dev, bool suspend, bool fbcon)
1764 {
1765 struct radeon_device *rdev;
1766 struct drm_crtc *crtc;
1767 struct drm_connector *connector;
1768 int i, r;
1769
1770 if (dev == NULL || dev->dev_private == NULL) {
1771 return -ENODEV;
1772 }
1773
1774 rdev = dev->dev_private;
1775
1776 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1777 return 0;
1778
1779 drm_kms_helper_poll_disable(dev);
1780
1781 drm_modeset_lock_all(dev);
1782 /* turn off display hw */
1783 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1784 drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
1785 }
1786 drm_modeset_unlock_all(dev);
1787
1788 /* unpin the front buffers and cursors */
1789 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1790 struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
1791 struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->primary->fb);
1792 struct radeon_bo *robj;
1793
1794 if (radeon_crtc->cursor_bo) {
1795 struct radeon_bo *robj = gem_to_radeon_bo(radeon_crtc->cursor_bo);
1796 r = radeon_bo_reserve(robj, false);
1797 if (r == 0) {
1798 radeon_bo_unpin(robj);
1799 radeon_bo_unreserve(robj);
1800 }
1801 }
1802
1803 if (rfb == NULL || rfb->obj == NULL) {
1804 continue;
1805 }
1806 robj = gem_to_radeon_bo(rfb->obj);
1807 /* don't unpin kernel fb objects */
1808 if (!radeon_fbdev_robj_is_fb(rdev, robj)) {
1809 r = radeon_bo_reserve(robj, false);
1810 if (r == 0) {
1811 radeon_bo_unpin(robj);
1812 radeon_bo_unreserve(robj);
1813 }
1814 }
1815 }
1816 /* evict vram memory */
1817 radeon_bo_evict_vram(rdev);
1818
1819 /* wait for gpu to finish processing current batch */
1820 for (i = 0; i < RADEON_NUM_RINGS; i++) {
1821 r = radeon_fence_wait_empty(rdev, i);
1822 if (r) {
1823 /* delay GPU reset to resume */
1824 radeon_fence_driver_force_completion(rdev, i);
1825 }
1826 }
1827
1828 radeon_save_bios_scratch_regs(rdev);
1829
1830 radeon_suspend(rdev);
1831 radeon_hpd_fini(rdev);
1832 /* evict remaining vram memory */
1833 radeon_bo_evict_vram(rdev);
1834
1835 radeon_agp_suspend(rdev);
1836
1837 #ifndef __NetBSD__ /* pmf handles this for us. */
1838 pci_save_state(dev->pdev);
1839 if (suspend) {
1840 /* Shut down the device */
1841 pci_disable_device(dev->pdev);
1842 pci_set_power_state(dev->pdev, PCI_D3hot);
1843 }
1844 #endif
1845
1846 if (fbcon) {
1847 console_lock();
1848 radeon_fbdev_set_suspend(rdev, 1);
1849 console_unlock();
1850 }
1851 return 0;
1852 }
1853
1854 /**
1855 * radeon_resume_kms - initiate device resume
1856 *
1857 * @pdev: drm dev pointer
1858 *
1859 * Bring the hw back to operating state (all asics).
1860 * Returns 0 for success or an error on failure.
1861 * Called at driver resume.
1862 */
1863 int radeon_resume_kms(struct drm_device *dev, bool resume, bool fbcon)
1864 {
1865 struct drm_connector *connector;
1866 struct radeon_device *rdev = dev->dev_private;
1867 struct drm_crtc *crtc;
1868 int r;
1869
1870 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1871 return 0;
1872
1873 if (fbcon) {
1874 console_lock();
1875 }
1876 #ifndef __NetBSD__ /* pmf handles this for us. */
1877 if (resume) {
1878 pci_set_power_state(dev->pdev, PCI_D0);
1879 pci_restore_state(dev->pdev);
1880 if (pci_enable_device(dev->pdev)) {
1881 if (fbcon)
1882 console_unlock();
1883 return -1;
1884 }
1885 }
1886 #endif
1887 /* resume AGP if in use */
1888 radeon_agp_resume(rdev);
1889 radeon_resume(rdev);
1890
1891 r = radeon_ib_ring_tests(rdev);
1892 if (r)
1893 DRM_ERROR("ib ring test failed (%d).\n", r);
1894
1895 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
1896 /* do dpm late init */
1897 r = radeon_pm_late_init(rdev);
1898 if (r) {
1899 rdev->pm.dpm_enabled = false;
1900 DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
1901 }
1902 } else {
1903 /* resume old pm late */
1904 radeon_pm_resume(rdev);
1905 }
1906
1907 radeon_restore_bios_scratch_regs(rdev);
1908
1909 /* pin cursors */
1910 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1911 struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
1912
1913 if (radeon_crtc->cursor_bo) {
1914 struct radeon_bo *robj = gem_to_radeon_bo(radeon_crtc->cursor_bo);
1915 r = radeon_bo_reserve(robj, false);
1916 if (r == 0) {
1917 /* Only 27 bit offset for legacy cursor */
1918 r = radeon_bo_pin_restricted(robj,
1919 RADEON_GEM_DOMAIN_VRAM,
1920 ASIC_IS_AVIVO(rdev) ?
1921 0 : 1 << 27,
1922 &radeon_crtc->cursor_addr);
1923 if (r != 0)
1924 DRM_ERROR("Failed to pin cursor BO (%d)\n", r);
1925 radeon_bo_unreserve(robj);
1926 }
1927 }
1928 }
1929
1930 /* init dig PHYs, disp eng pll */
1931 if (rdev->is_atom_bios) {
1932 radeon_atom_encoder_init(rdev);
1933 radeon_atom_disp_eng_pll_init(rdev);
1934 /* turn on the BL */
1935 if (rdev->mode_info.bl_encoder) {
1936 u8 bl_level = radeon_get_backlight_level(rdev,
1937 rdev->mode_info.bl_encoder);
1938 radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
1939 bl_level);
1940 }
1941 }
1942 /* reset hpd state */
1943 radeon_hpd_init(rdev);
1944 /* blat the mode back in */
1945 if (fbcon) {
1946 drm_helper_resume_force_mode(dev);
1947 /* turn on display hw */
1948 drm_modeset_lock_all(dev);
1949 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1950 drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
1951 }
1952 drm_modeset_unlock_all(dev);
1953 }
1954
1955 drm_kms_helper_poll_enable(dev);
1956
1957 /* set the power state here in case we are a PX system or headless */
1958 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
1959 radeon_pm_compute_clocks(rdev);
1960
1961 if (fbcon) {
1962 radeon_fbdev_set_suspend(rdev, 0);
1963 console_unlock();
1964 }
1965
1966 return 0;
1967 }
1968
1969 /**
1970 * radeon_gpu_reset - reset the asic
1971 *
1972 * @rdev: radeon device pointer
1973 *
1974 * Attempt the reset the GPU if it has hung (all asics).
1975 * Returns 0 for success or an error on failure.
1976 */
1977 int radeon_gpu_reset(struct radeon_device *rdev)
1978 {
1979 unsigned ring_sizes[RADEON_NUM_RINGS];
1980 uint32_t *ring_data[RADEON_NUM_RINGS];
1981
1982 bool saved = false;
1983
1984 int i, r;
1985 int resched;
1986
1987 down_write(&rdev->exclusive_lock);
1988
1989 if (!rdev->needs_reset) {
1990 up_write(&rdev->exclusive_lock);
1991 return 0;
1992 }
1993
1994 atomic_inc(&rdev->gpu_reset_counter);
1995
1996 radeon_save_bios_scratch_regs(rdev);
1997 /* block TTM */
1998 resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev);
1999 radeon_suspend(rdev);
2000 radeon_hpd_fini(rdev);
2001
2002 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
2003 ring_sizes[i] = radeon_ring_backup(rdev, &rdev->ring[i],
2004 &ring_data[i]);
2005 if (ring_sizes[i]) {
2006 saved = true;
2007 dev_info(rdev->dev, "Saved %d dwords of commands "
2008 "on ring %d.\n", ring_sizes[i], i);
2009 }
2010 }
2011
2012 r = radeon_asic_reset(rdev);
2013 if (!r) {
2014 dev_info(rdev->dev, "GPU reset succeeded, trying to resume\n");
2015 radeon_resume(rdev);
2016 }
2017
2018 radeon_restore_bios_scratch_regs(rdev);
2019
2020 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
2021 if (!r && ring_data[i]) {
2022 radeon_ring_restore(rdev, &rdev->ring[i],
2023 ring_sizes[i], ring_data[i]);
2024 } else {
2025 radeon_fence_driver_force_completion(rdev, i);
2026 kfree(ring_data[i]);
2027 }
2028 }
2029
2030 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
2031 /* do dpm late init */
2032 r = radeon_pm_late_init(rdev);
2033 if (r) {
2034 rdev->pm.dpm_enabled = false;
2035 DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
2036 }
2037 } else {
2038 /* resume old pm late */
2039 radeon_pm_resume(rdev);
2040 }
2041
2042 /* init dig PHYs, disp eng pll */
2043 if (rdev->is_atom_bios) {
2044 radeon_atom_encoder_init(rdev);
2045 radeon_atom_disp_eng_pll_init(rdev);
2046 /* turn on the BL */
2047 if (rdev->mode_info.bl_encoder) {
2048 u8 bl_level = radeon_get_backlight_level(rdev,
2049 rdev->mode_info.bl_encoder);
2050 radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
2051 bl_level);
2052 }
2053 }
2054 /* reset hpd state */
2055 radeon_hpd_init(rdev);
2056
2057 ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched);
2058
2059 rdev->in_reset = true;
2060 rdev->needs_reset = false;
2061
2062 downgrade_write(&rdev->exclusive_lock);
2063
2064 drm_helper_resume_force_mode(rdev->ddev);
2065
2066 /* set the power state here in case we are a PX system or headless */
2067 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
2068 radeon_pm_compute_clocks(rdev);
2069
2070 if (!r) {
2071 r = radeon_ib_ring_tests(rdev);
2072 if (r && saved)
2073 r = -EAGAIN;
2074 } else {
2075 /* bad news, how to tell it to userspace ? */
2076 dev_info(rdev->dev, "GPU reset failed\n");
2077 }
2078
2079 rdev->needs_reset = r == -EAGAIN;
2080 rdev->in_reset = false;
2081
2082 up_read(&rdev->exclusive_lock);
2083 return r;
2084 }
2085
2086
2087 /*
2088 * Debugfs
2089 */
2090 int radeon_debugfs_add_files(struct radeon_device *rdev,
2091 struct drm_info_list *files,
2092 unsigned nfiles)
2093 {
2094 unsigned i;
2095
2096 for (i = 0; i < rdev->debugfs_count; i++) {
2097 if (rdev->debugfs[i].files == files) {
2098 /* Already registered */
2099 return 0;
2100 }
2101 }
2102
2103 i = rdev->debugfs_count + 1;
2104 if (i > RADEON_DEBUGFS_MAX_COMPONENTS) {
2105 DRM_ERROR("Reached maximum number of debugfs components.\n");
2106 DRM_ERROR("Report so we increase "
2107 "RADEON_DEBUGFS_MAX_COMPONENTS.\n");
2108 return -EINVAL;
2109 }
2110 rdev->debugfs[rdev->debugfs_count].files = files;
2111 rdev->debugfs[rdev->debugfs_count].num_files = nfiles;
2112 rdev->debugfs_count = i;
2113 #if defined(CONFIG_DEBUG_FS)
2114 drm_debugfs_create_files(files, nfiles,
2115 rdev->ddev->control->debugfs_root,
2116 rdev->ddev->control);
2117 drm_debugfs_create_files(files, nfiles,
2118 rdev->ddev->primary->debugfs_root,
2119 rdev->ddev->primary);
2120 #endif
2121 return 0;
2122 }
2123
2124 static void radeon_debugfs_remove_files(struct radeon_device *rdev)
2125 {
2126 #if defined(CONFIG_DEBUG_FS)
2127 unsigned i;
2128
2129 for (i = 0; i < rdev->debugfs_count; i++) {
2130 drm_debugfs_remove_files(rdev->debugfs[i].files,
2131 rdev->debugfs[i].num_files,
2132 rdev->ddev->control);
2133 drm_debugfs_remove_files(rdev->debugfs[i].files,
2134 rdev->debugfs[i].num_files,
2135 rdev->ddev->primary);
2136 }
2137 #endif
2138 }
2139
2140 #if defined(CONFIG_DEBUG_FS)
2141 int radeon_debugfs_init(struct drm_minor *minor)
2142 {
2143 return 0;
2144 }
2145
2146 void radeon_debugfs_cleanup(struct drm_minor *minor)
2147 {
2148 }
2149 #endif
2150