radeon_device.c revision 1.3.32.1 1 /* $NetBSD: radeon_device.c,v 1.3.32.1 2019/06/10 22:08:26 christos Exp $ */
2
3 /*
4 * Copyright 2008 Advanced Micro Devices, Inc.
5 * Copyright 2008 Red Hat Inc.
6 * Copyright 2009 Jerome Glisse.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors: Dave Airlie
27 * Alex Deucher
28 * Jerome Glisse
29 */
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: radeon_device.c,v 1.3.32.1 2019/06/10 22:08:26 christos Exp $");
32
33 #include <linux/console.h>
34 #include <linux/slab.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/radeon_drm.h>
38 #include <linux/vgaarb.h>
39 #include <linux/vga_switcheroo.h>
40 #include <linux/efi.h>
41 #include <linux/bitops.h>
42 #include "radeon_reg.h"
43 #include "radeon.h"
44 #include "atom.h"
45
46 static const char radeon_family_name[][16] = {
47 "R100",
48 "RV100",
49 "RS100",
50 "RV200",
51 "RS200",
52 "R200",
53 "RV250",
54 "RS300",
55 "RV280",
56 "R300",
57 "R350",
58 "RV350",
59 "RV380",
60 "R420",
61 "R423",
62 "RV410",
63 "RS400",
64 "RS480",
65 "RS600",
66 "RS690",
67 "RS740",
68 "RV515",
69 "R520",
70 "RV530",
71 "RV560",
72 "RV570",
73 "R580",
74 "R600",
75 "RV610",
76 "RV630",
77 "RV670",
78 "RV620",
79 "RV635",
80 "RS780",
81 "RS880",
82 "RV770",
83 "RV730",
84 "RV710",
85 "RV740",
86 "CEDAR",
87 "REDWOOD",
88 "JUNIPER",
89 "CYPRESS",
90 "HEMLOCK",
91 "PALM",
92 "SUMO",
93 "SUMO2",
94 "BARTS",
95 "TURKS",
96 "CAICOS",
97 "CAYMAN",
98 "ARUBA",
99 "TAHITI",
100 "PITCAIRN",
101 "VERDE",
102 "OLAND",
103 "HAINAN",
104 "BONAIRE",
105 "KAVERI",
106 "KABINI",
107 "HAWAII",
108 "MULLINS",
109 "LAST",
110 };
111
112 #define RADEON_PX_QUIRK_DISABLE_PX (1 << 0)
113 #define RADEON_PX_QUIRK_LONG_WAKEUP (1 << 1)
114
115 struct radeon_px_quirk {
116 u32 chip_vendor;
117 u32 chip_device;
118 u32 subsys_vendor;
119 u32 subsys_device;
120 u32 px_quirk_flags;
121 };
122
123 static struct radeon_px_quirk radeon_px_quirk_list[] = {
124 /* Acer aspire 5560g (CPU: AMD A4-3305M; GPU: AMD Radeon HD 6480g + 7470m)
125 * https://bugzilla.kernel.org/show_bug.cgi?id=74551
126 */
127 { PCI_VENDOR_ID_ATI, 0x6760, 0x1025, 0x0672, RADEON_PX_QUIRK_DISABLE_PX },
128 /* Asus K73TA laptop with AMD A6-3400M APU and Radeon 6550 GPU
129 * https://bugzilla.kernel.org/show_bug.cgi?id=51381
130 */
131 { PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x108c, RADEON_PX_QUIRK_DISABLE_PX },
132 /* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU
133 * https://bugzilla.kernel.org/show_bug.cgi?id=51381
134 */
135 { PCI_VENDOR_ID_ATI, 0x6840, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX },
136 /* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU
137 * https://bugs.freedesktop.org/show_bug.cgi?id=101491
138 */
139 { PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX },
140 /* macbook pro 8.2 */
141 { PCI_VENDOR_ID_ATI, 0x6741, PCI_VENDOR_ID_APPLE, 0x00e2, RADEON_PX_QUIRK_LONG_WAKEUP },
142 { 0, 0, 0, 0, 0 },
143 };
144
145 bool radeon_is_px(struct drm_device *dev)
146 {
147 struct radeon_device *rdev = dev->dev_private;
148
149 if (rdev->flags & RADEON_IS_PX)
150 return true;
151 return false;
152 }
153
154 static void radeon_device_handle_px_quirks(struct radeon_device *rdev)
155 {
156 struct radeon_px_quirk *p = radeon_px_quirk_list;
157
158 /* Apply PX quirks */
159 while (p && p->chip_device != 0) {
160 if (rdev->pdev->vendor == p->chip_vendor &&
161 rdev->pdev->device == p->chip_device &&
162 rdev->pdev->subsystem_vendor == p->subsys_vendor &&
163 rdev->pdev->subsystem_device == p->subsys_device) {
164 rdev->px_quirk_flags = p->px_quirk_flags;
165 break;
166 }
167 ++p;
168 }
169
170 if (rdev->px_quirk_flags & RADEON_PX_QUIRK_DISABLE_PX)
171 rdev->flags &= ~RADEON_IS_PX;
172 }
173
174 /**
175 * radeon_program_register_sequence - program an array of registers.
176 *
177 * @rdev: radeon_device pointer
178 * @registers: pointer to the register array
179 * @array_size: size of the register array
180 *
181 * Programs an array or registers with and and or masks.
182 * This is a helper for setting golden registers.
183 */
184 void radeon_program_register_sequence(struct radeon_device *rdev,
185 const u32 *registers,
186 const u32 array_size)
187 {
188 u32 tmp, reg, and_mask, or_mask;
189 int i;
190
191 if (array_size % 3)
192 return;
193
194 for (i = 0; i < array_size; i +=3) {
195 reg = registers[i + 0];
196 and_mask = registers[i + 1];
197 or_mask = registers[i + 2];
198
199 if (and_mask == 0xffffffff) {
200 tmp = or_mask;
201 } else {
202 tmp = RREG32(reg);
203 tmp &= ~and_mask;
204 tmp |= or_mask;
205 }
206 WREG32(reg, tmp);
207 }
208 }
209
210 void radeon_pci_config_reset(struct radeon_device *rdev)
211 {
212 pci_write_config_dword(rdev->pdev, 0x7c, RADEON_ASIC_RESET_DATA);
213 }
214
215 /**
216 * radeon_surface_init - Clear GPU surface registers.
217 *
218 * @rdev: radeon_device pointer
219 *
220 * Clear GPU surface registers (r1xx-r5xx).
221 */
222 void radeon_surface_init(struct radeon_device *rdev)
223 {
224 /* FIXME: check this out */
225 if (rdev->family < CHIP_R600) {
226 int i;
227
228 for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) {
229 if (rdev->surface_regs[i].bo)
230 radeon_bo_get_surface_reg(rdev->surface_regs[i].bo);
231 else
232 radeon_clear_surface_reg(rdev, i);
233 }
234 /* enable surfaces */
235 WREG32(RADEON_SURFACE_CNTL, 0);
236 }
237 }
238
239 /*
240 * GPU scratch registers helpers function.
241 */
242 /**
243 * radeon_scratch_init - Init scratch register driver information.
244 *
245 * @rdev: radeon_device pointer
246 *
247 * Init CP scratch register driver information (r1xx-r5xx)
248 */
249 void radeon_scratch_init(struct radeon_device *rdev)
250 {
251 int i;
252
253 /* FIXME: check this out */
254 if (rdev->family < CHIP_R300) {
255 rdev->scratch.num_reg = 5;
256 } else {
257 rdev->scratch.num_reg = 7;
258 }
259 rdev->scratch.reg_base = RADEON_SCRATCH_REG0;
260 for (i = 0; i < rdev->scratch.num_reg; i++) {
261 rdev->scratch.free[i] = true;
262 rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
263 }
264 }
265
266 /**
267 * radeon_scratch_get - Allocate a scratch register
268 *
269 * @rdev: radeon_device pointer
270 * @reg: scratch register mmio offset
271 *
272 * Allocate a CP scratch register for use by the driver (all asics).
273 * Returns 0 on success or -EINVAL on failure.
274 */
275 int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg)
276 {
277 int i;
278
279 for (i = 0; i < rdev->scratch.num_reg; i++) {
280 if (rdev->scratch.free[i]) {
281 rdev->scratch.free[i] = false;
282 *reg = rdev->scratch.reg[i];
283 return 0;
284 }
285 }
286 return -EINVAL;
287 }
288
289 /**
290 * radeon_scratch_free - Free a scratch register
291 *
292 * @rdev: radeon_device pointer
293 * @reg: scratch register mmio offset
294 *
295 * Free a CP scratch register allocated for use by the driver (all asics)
296 */
297 void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg)
298 {
299 int i;
300
301 for (i = 0; i < rdev->scratch.num_reg; i++) {
302 if (rdev->scratch.reg[i] == reg) {
303 rdev->scratch.free[i] = true;
304 return;
305 }
306 }
307 }
308
309 /*
310 * GPU doorbell aperture helpers function.
311 */
312 /**
313 * radeon_doorbell_init - Init doorbell driver information.
314 *
315 * @rdev: radeon_device pointer
316 *
317 * Init doorbell driver information (CIK)
318 * Returns 0 on success, error on failure.
319 */
320 static int radeon_doorbell_init(struct radeon_device *rdev)
321 {
322 #ifdef __NetBSD__
323 int r;
324 #endif
325
326 /* doorbell bar mapping */
327 rdev->doorbell.base = pci_resource_start(rdev->pdev, 2);
328 rdev->doorbell.size = pci_resource_len(rdev->pdev, 2);
329
330 rdev->doorbell.num_doorbells = min_t(u32, rdev->doorbell.size / sizeof(u32), RADEON_MAX_DOORBELLS);
331 if (rdev->doorbell.num_doorbells == 0)
332 return -EINVAL;
333
334 #ifdef __NetBSD__
335 /* XXX errno NetBSD->Linux */
336 rdev->doorbell.bst = rdev->pdev->pd_pa.pa_memt;
337 r = -bus_space_map(rdev->doorbell.bst, rdev->doorbell.base,
338 (rdev->doorbell.num_doorbells * sizeof(uint32_t)),
339 0, &rdev->doorbell.bsh);
340 if (r)
341 return r;
342 #else
343 rdev->doorbell.ptr = ioremap(rdev->doorbell.base, rdev->doorbell.num_doorbells * sizeof(u32));
344 if (rdev->doorbell.ptr == NULL) {
345 return -ENOMEM;
346 }
347 #endif
348 DRM_INFO("doorbell mmio base: 0x%08X\n", (uint32_t)rdev->doorbell.base);
349 DRM_INFO("doorbell mmio size: %u\n", (unsigned)rdev->doorbell.size);
350
351 memset(&rdev->doorbell.used, 0, sizeof(rdev->doorbell.used));
352
353 return 0;
354 }
355
356 /**
357 * radeon_doorbell_fini - Tear down doorbell driver information.
358 *
359 * @rdev: radeon_device pointer
360 *
361 * Tear down doorbell driver information (CIK)
362 */
363 static void radeon_doorbell_fini(struct radeon_device *rdev)
364 {
365 #ifdef __NetBSD__
366 bus_space_unmap(rdev->doorbell.bst, rdev->doorbell.bsh,
367 (rdev->doorbell.num_doorbells * sizeof(uint32_t)));
368 #else
369 iounmap(rdev->doorbell.ptr);
370 rdev->doorbell.ptr = NULL;
371 #endif
372 }
373
374 /**
375 * radeon_doorbell_get - Allocate a doorbell entry
376 *
377 * @rdev: radeon_device pointer
378 * @doorbell: doorbell index
379 *
380 * Allocate a doorbell for use by the driver (all asics).
381 * Returns 0 on success or -EINVAL on failure.
382 */
383 int radeon_doorbell_get(struct radeon_device *rdev, u32 *doorbell)
384 {
385 unsigned long offset = find_first_zero_bit(rdev->doorbell.used, rdev->doorbell.num_doorbells);
386 if (offset < rdev->doorbell.num_doorbells) {
387 __set_bit(offset, rdev->doorbell.used);
388 *doorbell = offset;
389 return 0;
390 } else {
391 return -EINVAL;
392 }
393 }
394
395 /**
396 * radeon_doorbell_free - Free a doorbell entry
397 *
398 * @rdev: radeon_device pointer
399 * @doorbell: doorbell index
400 *
401 * Free a doorbell allocated for use by the driver (all asics)
402 */
403 void radeon_doorbell_free(struct radeon_device *rdev, u32 doorbell)
404 {
405 if (doorbell < rdev->doorbell.num_doorbells)
406 __clear_bit(doorbell, rdev->doorbell.used);
407 }
408
409 /**
410 * radeon_doorbell_get_kfd_info - Report doorbell configuration required to
411 * setup KFD
412 *
413 * @rdev: radeon_device pointer
414 * @aperture_base: output returning doorbell aperture base physical address
415 * @aperture_size: output returning doorbell aperture size in bytes
416 * @start_offset: output returning # of doorbell bytes reserved for radeon.
417 *
418 * Radeon and the KFD share the doorbell aperture. Radeon sets it up,
419 * takes doorbells required for its own rings and reports the setup to KFD.
420 * Radeon reserved doorbells are at the start of the doorbell aperture.
421 */
422 void radeon_doorbell_get_kfd_info(struct radeon_device *rdev,
423 phys_addr_t *aperture_base,
424 size_t *aperture_size,
425 size_t *start_offset)
426 {
427 /* The first num_doorbells are used by radeon.
428 * KFD takes whatever's left in the aperture. */
429 if (rdev->doorbell.size > rdev->doorbell.num_doorbells * sizeof(u32)) {
430 *aperture_base = rdev->doorbell.base;
431 *aperture_size = rdev->doorbell.size;
432 *start_offset = rdev->doorbell.num_doorbells * sizeof(u32);
433 } else {
434 *aperture_base = 0;
435 *aperture_size = 0;
436 *start_offset = 0;
437 }
438 }
439
440 /*
441 * radeon_wb_*()
442 * Writeback is the the method by which the the GPU updates special pages
443 * in memory with the status of certain GPU events (fences, ring pointers,
444 * etc.).
445 */
446
447 /**
448 * radeon_wb_disable - Disable Writeback
449 *
450 * @rdev: radeon_device pointer
451 *
452 * Disables Writeback (all asics). Used for suspend.
453 */
454 void radeon_wb_disable(struct radeon_device *rdev)
455 {
456 rdev->wb.enabled = false;
457 }
458
459 /**
460 * radeon_wb_fini - Disable Writeback and free memory
461 *
462 * @rdev: radeon_device pointer
463 *
464 * Disables Writeback and frees the Writeback memory (all asics).
465 * Used at driver shutdown.
466 */
467 void radeon_wb_fini(struct radeon_device *rdev)
468 {
469 radeon_wb_disable(rdev);
470 if (rdev->wb.wb_obj) {
471 if (!radeon_bo_reserve(rdev->wb.wb_obj, false)) {
472 radeon_bo_kunmap(rdev->wb.wb_obj);
473 radeon_bo_unpin(rdev->wb.wb_obj);
474 radeon_bo_unreserve(rdev->wb.wb_obj);
475 }
476 radeon_bo_unref(&rdev->wb.wb_obj);
477 rdev->wb.wb = NULL;
478 rdev->wb.wb_obj = NULL;
479 }
480 }
481
482 /**
483 * radeon_wb_init- Init Writeback driver info and allocate memory
484 *
485 * @rdev: radeon_device pointer
486 *
487 * Disables Writeback and frees the Writeback memory (all asics).
488 * Used at driver startup.
489 * Returns 0 on success or an -error on failure.
490 */
491 int radeon_wb_init(struct radeon_device *rdev)
492 {
493 int r;
494
495 if (rdev->wb.wb_obj == NULL) {
496 r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true,
497 RADEON_GEM_DOMAIN_GTT, 0, NULL, NULL,
498 &rdev->wb.wb_obj);
499 if (r) {
500 dev_warn(rdev->dev, "(%d) create WB bo failed\n", r);
501 return r;
502 }
503 r = radeon_bo_reserve(rdev->wb.wb_obj, false);
504 if (unlikely(r != 0)) {
505 radeon_wb_fini(rdev);
506 return r;
507 }
508 r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT,
509 &rdev->wb.gpu_addr);
510 if (r) {
511 radeon_bo_unreserve(rdev->wb.wb_obj);
512 dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r);
513 radeon_wb_fini(rdev);
514 return r;
515 }
516 r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)__UNVOLATILE(&rdev->wb.wb));
517 radeon_bo_unreserve(rdev->wb.wb_obj);
518 if (r) {
519 dev_warn(rdev->dev, "(%d) map WB bo failed\n", r);
520 radeon_wb_fini(rdev);
521 return r;
522 }
523 }
524
525 /* clear wb memory */
526 memset(__UNVOLATILE(rdev->wb.wb), 0, RADEON_GPU_PAGE_SIZE);
527 /* disable event_write fences */
528 rdev->wb.use_event = false;
529 /* disabled via module param */
530 if (radeon_no_wb == 1) {
531 rdev->wb.enabled = false;
532 } else {
533 if (rdev->flags & RADEON_IS_AGP) {
534 /* often unreliable on AGP */
535 rdev->wb.enabled = false;
536 } else if (rdev->family < CHIP_R300) {
537 /* often unreliable on pre-r300 */
538 rdev->wb.enabled = false;
539 } else {
540 rdev->wb.enabled = true;
541 /* event_write fences are only available on r600+ */
542 if (rdev->family >= CHIP_R600) {
543 rdev->wb.use_event = true;
544 }
545 }
546 }
547 /* always use writeback/events on NI, APUs */
548 if (rdev->family >= CHIP_PALM) {
549 rdev->wb.enabled = true;
550 rdev->wb.use_event = true;
551 }
552
553 dev_info(rdev->dev, "WB %sabled\n", rdev->wb.enabled ? "en" : "dis");
554
555 return 0;
556 }
557
558 /**
559 * radeon_vram_location - try to find VRAM location
560 * @rdev: radeon device structure holding all necessary informations
561 * @mc: memory controller structure holding memory informations
562 * @base: base address at which to put VRAM
563 *
564 * Function will place try to place VRAM at base address provided
565 * as parameter (which is so far either PCI aperture address or
566 * for IGP TOM base address).
567 *
568 * If there is not enough space to fit the unvisible VRAM in the 32bits
569 * address space then we limit the VRAM size to the aperture.
570 *
571 * If we are using AGP and if the AGP aperture doesn't allow us to have
572 * room for all the VRAM than we restrict the VRAM to the PCI aperture
573 * size and print a warning.
574 *
575 * This function will never fails, worst case are limiting VRAM.
576 *
577 * Note: GTT start, end, size should be initialized before calling this
578 * function on AGP platform.
579 *
580 * Note: We don't explicitly enforce VRAM start to be aligned on VRAM size,
581 * this shouldn't be a problem as we are using the PCI aperture as a reference.
582 * Otherwise this would be needed for rv280, all r3xx, and all r4xx, but
583 * not IGP.
584 *
585 * Note: we use mc_vram_size as on some board we need to program the mc to
586 * cover the whole aperture even if VRAM size is inferior to aperture size
587 * Novell bug 204882 + along with lots of ubuntu ones
588 *
589 * Note: when limiting vram it's safe to overwritte real_vram_size because
590 * we are not in case where real_vram_size is inferior to mc_vram_size (ie
591 * note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu
592 * ones)
593 *
594 * Note: IGP TOM addr should be the same as the aperture addr, we don't
595 * explicitly check for that thought.
596 *
597 * FIXME: when reducing VRAM size align new size on power of 2.
598 */
599 void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base)
600 {
601 uint64_t limit = (uint64_t)radeon_vram_limit << 20;
602
603 mc->vram_start = base;
604 if (mc->mc_vram_size > (rdev->mc.mc_mask - base + 1)) {
605 dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
606 mc->real_vram_size = mc->aper_size;
607 mc->mc_vram_size = mc->aper_size;
608 }
609 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
610 if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_start <= mc->gtt_end) {
611 dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
612 mc->real_vram_size = mc->aper_size;
613 mc->mc_vram_size = mc->aper_size;
614 }
615 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
616 if (limit && limit < mc->real_vram_size)
617 mc->real_vram_size = limit;
618 dev_info(rdev->dev, "VRAM: %"PRIu64"M 0x%016"PRIX64" - 0x%016"PRIX64" (%"PRIu64"M used)\n",
619 mc->mc_vram_size >> 20, mc->vram_start,
620 mc->vram_end, mc->real_vram_size >> 20);
621 }
622
623 /**
624 * radeon_gtt_location - try to find GTT location
625 * @rdev: radeon device structure holding all necessary informations
626 * @mc: memory controller structure holding memory informations
627 *
628 * Function will place try to place GTT before or after VRAM.
629 *
630 * If GTT size is bigger than space left then we ajust GTT size.
631 * Thus function will never fails.
632 *
633 * FIXME: when reducing GTT size align new size on power of 2.
634 */
635 void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc)
636 {
637 u64 size_af, size_bf;
638
639 size_af = ((rdev->mc.mc_mask - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align;
640 size_bf = mc->vram_start & ~mc->gtt_base_align;
641 if (size_bf > size_af) {
642 if (mc->gtt_size > size_bf) {
643 dev_warn(rdev->dev, "limiting GTT\n");
644 mc->gtt_size = size_bf;
645 }
646 mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size;
647 } else {
648 if (mc->gtt_size > size_af) {
649 dev_warn(rdev->dev, "limiting GTT\n");
650 mc->gtt_size = size_af;
651 }
652 mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align;
653 }
654 mc->gtt_end = mc->gtt_start + mc->gtt_size - 1;
655 dev_info(rdev->dev, "GTT: %"PRIu64"M 0x%016"PRIX64" - 0x%016"PRIX64"\n",
656 mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end);
657 }
658
659 /*
660 * GPU helpers function.
661 */
662
663 /**
664 * radeon_device_is_virtual - check if we are running is a virtual environment
665 *
666 * Check if the asic has been passed through to a VM (all asics).
667 * Used at driver startup.
668 * Returns true if virtual or false if not.
669 */
670 static bool radeon_device_is_virtual(void)
671 {
672 #ifdef CONFIG_X86
673 #ifdef __NetBSD__ /* XXX virtualization */
674 return false;
675 #else
676 return boot_cpu_has(X86_FEATURE_HYPERVISOR);
677 #endif
678 #else
679 return false;
680 #endif
681 }
682
683 /**
684 * radeon_card_posted - check if the hw has already been initialized
685 *
686 * @rdev: radeon_device pointer
687 *
688 * Check if the asic has been initialized (all asics).
689 * Used at driver startup.
690 * Returns true if initialized or false if not.
691 */
692 bool radeon_card_posted(struct radeon_device *rdev)
693 {
694 uint32_t reg;
695
696 /* for pass through, always force asic_init for CI */
697 if (rdev->family >= CHIP_BONAIRE &&
698 radeon_device_is_virtual())
699 return false;
700
701 #ifndef __NetBSD__ /* XXX radeon efi */
702 /* required for EFI mode on macbook2,1 which uses an r5xx asic */
703 if (efi_enabled(EFI_BOOT) &&
704 (rdev->pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE) &&
705 (rdev->family < CHIP_R600))
706 return false;
707 #endif
708
709 if (ASIC_IS_NODCE(rdev))
710 goto check_memsize;
711
712 /* first check CRTCs */
713 if (ASIC_IS_DCE4(rdev)) {
714 reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) |
715 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET);
716 if (rdev->num_crtc >= 4) {
717 reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) |
718 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET);
719 }
720 if (rdev->num_crtc >= 6) {
721 reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) |
722 RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET);
723 }
724 if (reg & EVERGREEN_CRTC_MASTER_EN)
725 return true;
726 } else if (ASIC_IS_AVIVO(rdev)) {
727 reg = RREG32(AVIVO_D1CRTC_CONTROL) |
728 RREG32(AVIVO_D2CRTC_CONTROL);
729 if (reg & AVIVO_CRTC_EN) {
730 return true;
731 }
732 } else {
733 reg = RREG32(RADEON_CRTC_GEN_CNTL) |
734 RREG32(RADEON_CRTC2_GEN_CNTL);
735 if (reg & RADEON_CRTC_EN) {
736 return true;
737 }
738 }
739
740 check_memsize:
741 /* then check MEM_SIZE, in case the crtcs are off */
742 if (rdev->family >= CHIP_R600)
743 reg = RREG32(R600_CONFIG_MEMSIZE);
744 else
745 reg = RREG32(RADEON_CONFIG_MEMSIZE);
746
747 if (reg)
748 return true;
749
750 return false;
751
752 }
753
754 /**
755 * radeon_update_bandwidth_info - update display bandwidth params
756 *
757 * @rdev: radeon_device pointer
758 *
759 * Used when sclk/mclk are switched or display modes are set.
760 * params are used to calculate display watermarks (all asics)
761 */
762 void radeon_update_bandwidth_info(struct radeon_device *rdev)
763 {
764 fixed20_12 a;
765 u32 sclk = rdev->pm.current_sclk;
766 u32 mclk = rdev->pm.current_mclk;
767
768 /* sclk/mclk in Mhz */
769 a.full = dfixed_const(100);
770 rdev->pm.sclk.full = dfixed_const(sclk);
771 rdev->pm.sclk.full = dfixed_div(rdev->pm.sclk, a);
772 rdev->pm.mclk.full = dfixed_const(mclk);
773 rdev->pm.mclk.full = dfixed_div(rdev->pm.mclk, a);
774
775 if (rdev->flags & RADEON_IS_IGP) {
776 a.full = dfixed_const(16);
777 /* core_bandwidth = sclk(Mhz) * 16 */
778 rdev->pm.core_bandwidth.full = dfixed_div(rdev->pm.sclk, a);
779 }
780 }
781
782 /**
783 * radeon_boot_test_post_card - check and possibly initialize the hw
784 *
785 * @rdev: radeon_device pointer
786 *
787 * Check if the asic is initialized and if not, attempt to initialize
788 * it (all asics).
789 * Returns true if initialized or false if not.
790 */
791 bool radeon_boot_test_post_card(struct radeon_device *rdev)
792 {
793 if (radeon_card_posted(rdev))
794 return true;
795
796 if (rdev->bios) {
797 DRM_INFO("GPU not posted. posting now...\n");
798 if (rdev->is_atom_bios)
799 atom_asic_init(rdev->mode_info.atom_context);
800 else
801 radeon_combios_asic_init(rdev->ddev);
802 return true;
803 } else {
804 dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
805 return false;
806 }
807 }
808
809 /**
810 * radeon_dummy_page_init - init dummy page used by the driver
811 *
812 * @rdev: radeon_device pointer
813 *
814 * Allocate the dummy page used by the driver (all asics).
815 * This dummy page is used by the driver as a filler for gart entries
816 * when pages are taken out of the GART
817 * Returns 0 on sucess, -ENOMEM on failure.
818 */
819 int radeon_dummy_page_init(struct radeon_device *rdev)
820 {
821 #ifdef __NetBSD__
822 int rsegs;
823 int error;
824
825 /* XXX Can this be called more than once?? */
826 if (rdev->dummy_page.rdp_map != NULL)
827 return 0;
828
829 error = bus_dmamem_alloc(rdev->ddev->dmat, PAGE_SIZE, PAGE_SIZE, 0,
830 &rdev->dummy_page.rdp_seg, 1, &rsegs, BUS_DMA_WAITOK);
831 if (error)
832 goto fail0;
833 KASSERT(rsegs == 1);
834 error = bus_dmamap_create(rdev->ddev->dmat, PAGE_SIZE, 1, PAGE_SIZE, 0,
835 BUS_DMA_WAITOK, &rdev->dummy_page.rdp_map);
836 if (error)
837 goto fail1;
838 error = bus_dmamap_load_raw(rdev->ddev->dmat, rdev->dummy_page.rdp_map,
839 &rdev->dummy_page.rdp_seg, 1, PAGE_SIZE, BUS_DMA_WAITOK);
840 if (error)
841 goto fail2;
842
843 /* Success! */
844 rdev->dummy_page.addr = rdev->dummy_page.rdp_map->dm_segs[0].ds_addr;
845 rdev->dummy_page.entry = radeon_gart_get_page_entry(
846 rdev->dummy_page.addr, RADEON_GART_PAGE_DUMMY);
847 return 0;
848
849 fail3: __unused
850 bus_dmamap_unload(rdev->ddev->dmat, rdev->dummy_page.rdp_map);
851 fail2: bus_dmamap_destroy(rdev->ddev->dmat, rdev->dummy_page.rdp_map);
852 fail1: bus_dmamem_free(rdev->ddev->dmat, &rdev->dummy_page.rdp_seg, 1);
853 fail0: KASSERT(error);
854 rdev->dummy_page.rdp_map = NULL;
855 /* XXX errno NetBSD->Linux */
856 return -error;
857 #else
858 if (rdev->dummy_page.page)
859 return 0;
860 rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO);
861 if (rdev->dummy_page.page == NULL)
862 return -ENOMEM;
863 rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page,
864 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
865 if (pci_dma_mapping_error(rdev->pdev, rdev->dummy_page.addr)) {
866 dev_err(&rdev->pdev->dev, "Failed to DMA MAP the dummy page\n");
867 __free_page(rdev->dummy_page.page);
868 rdev->dummy_page.page = NULL;
869 return -ENOMEM;
870 }
871 rdev->dummy_page.entry = radeon_gart_get_page_entry(rdev->dummy_page.addr,
872 RADEON_GART_PAGE_DUMMY);
873 return 0;
874 #endif
875 }
876
877 /**
878 * radeon_dummy_page_fini - free dummy page used by the driver
879 *
880 * @rdev: radeon_device pointer
881 *
882 * Frees the dummy page used by the driver (all asics).
883 */
884 void radeon_dummy_page_fini(struct radeon_device *rdev)
885 {
886 #ifdef __NetBSD__
887
888 if (rdev->dummy_page.rdp_map == NULL)
889 return;
890 bus_dmamap_unload(rdev->ddev->dmat, rdev->dummy_page.rdp_map);
891 bus_dmamap_destroy(rdev->ddev->dmat, rdev->dummy_page.rdp_map);
892 bus_dmamem_free(rdev->ddev->dmat, &rdev->dummy_page.rdp_seg, 1);
893 rdev->dummy_page.rdp_map = NULL;
894 #else
895 if (rdev->dummy_page.page == NULL)
896 return;
897 pci_unmap_page(rdev->pdev, rdev->dummy_page.addr,
898 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
899 __free_page(rdev->dummy_page.page);
900 rdev->dummy_page.page = NULL;
901 #endif
902 }
903
904
905 /* ATOM accessor methods */
906 /*
907 * ATOM is an interpreted byte code stored in tables in the vbios. The
908 * driver registers callbacks to access registers and the interpreter
909 * in the driver parses the tables and executes then to program specific
910 * actions (set display modes, asic init, etc.). See radeon_atombios.c,
911 * atombios.h, and atom.c
912 */
913
914 /**
915 * cail_pll_read - read PLL register
916 *
917 * @info: atom card_info pointer
918 * @reg: PLL register offset
919 *
920 * Provides a PLL register accessor for the atom interpreter (r4xx+).
921 * Returns the value of the PLL register.
922 */
923 static uint32_t cail_pll_read(struct card_info *info, uint32_t reg)
924 {
925 struct radeon_device *rdev = info->dev->dev_private;
926 uint32_t r;
927
928 r = rdev->pll_rreg(rdev, reg);
929 return r;
930 }
931
932 /**
933 * cail_pll_write - write PLL register
934 *
935 * @info: atom card_info pointer
936 * @reg: PLL register offset
937 * @val: value to write to the pll register
938 *
939 * Provides a PLL register accessor for the atom interpreter (r4xx+).
940 */
941 static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val)
942 {
943 struct radeon_device *rdev = info->dev->dev_private;
944
945 rdev->pll_wreg(rdev, reg, val);
946 }
947
948 /**
949 * cail_mc_read - read MC (Memory Controller) register
950 *
951 * @info: atom card_info pointer
952 * @reg: MC register offset
953 *
954 * Provides an MC register accessor for the atom interpreter (r4xx+).
955 * Returns the value of the MC register.
956 */
957 static uint32_t cail_mc_read(struct card_info *info, uint32_t reg)
958 {
959 struct radeon_device *rdev = info->dev->dev_private;
960 uint32_t r;
961
962 r = rdev->mc_rreg(rdev, reg);
963 return r;
964 }
965
966 /**
967 * cail_mc_write - write MC (Memory Controller) register
968 *
969 * @info: atom card_info pointer
970 * @reg: MC register offset
971 * @val: value to write to the pll register
972 *
973 * Provides a MC register accessor for the atom interpreter (r4xx+).
974 */
975 static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val)
976 {
977 struct radeon_device *rdev = info->dev->dev_private;
978
979 rdev->mc_wreg(rdev, reg, val);
980 }
981
982 /**
983 * cail_reg_write - write MMIO register
984 *
985 * @info: atom card_info pointer
986 * @reg: MMIO register offset
987 * @val: value to write to the pll register
988 *
989 * Provides a MMIO register accessor for the atom interpreter (r4xx+).
990 */
991 static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val)
992 {
993 struct radeon_device *rdev = info->dev->dev_private;
994
995 WREG32(reg*4, val);
996 }
997
998 /**
999 * cail_reg_read - read MMIO register
1000 *
1001 * @info: atom card_info pointer
1002 * @reg: MMIO register offset
1003 *
1004 * Provides an MMIO register accessor for the atom interpreter (r4xx+).
1005 * Returns the value of the MMIO register.
1006 */
1007 static uint32_t cail_reg_read(struct card_info *info, uint32_t reg)
1008 {
1009 struct radeon_device *rdev = info->dev->dev_private;
1010 uint32_t r;
1011
1012 r = RREG32(reg*4);
1013 return r;
1014 }
1015
1016 /**
1017 * cail_ioreg_write - write IO register
1018 *
1019 * @info: atom card_info pointer
1020 * @reg: IO register offset
1021 * @val: value to write to the pll register
1022 *
1023 * Provides a IO register accessor for the atom interpreter (r4xx+).
1024 */
1025 static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val)
1026 {
1027 struct radeon_device *rdev = info->dev->dev_private;
1028
1029 WREG32_IO(reg*4, val);
1030 }
1031
1032 /**
1033 * cail_ioreg_read - read IO register
1034 *
1035 * @info: atom card_info pointer
1036 * @reg: IO register offset
1037 *
1038 * Provides an IO register accessor for the atom interpreter (r4xx+).
1039 * Returns the value of the IO register.
1040 */
1041 static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg)
1042 {
1043 struct radeon_device *rdev = info->dev->dev_private;
1044 uint32_t r;
1045
1046 r = RREG32_IO(reg*4);
1047 return r;
1048 }
1049
1050 /**
1051 * radeon_atombios_init - init the driver info and callbacks for atombios
1052 *
1053 * @rdev: radeon_device pointer
1054 *
1055 * Initializes the driver info and register access callbacks for the
1056 * ATOM interpreter (r4xx+).
1057 * Returns 0 on sucess, -ENOMEM on failure.
1058 * Called at driver startup.
1059 */
1060 int radeon_atombios_init(struct radeon_device *rdev)
1061 {
1062 struct card_info *atom_card_info =
1063 kzalloc(sizeof(struct card_info), GFP_KERNEL);
1064
1065 if (!atom_card_info)
1066 return -ENOMEM;
1067
1068 rdev->mode_info.atom_card_info = atom_card_info;
1069 atom_card_info->dev = rdev->ddev;
1070 atom_card_info->reg_read = cail_reg_read;
1071 atom_card_info->reg_write = cail_reg_write;
1072 /* needed for iio ops */
1073 #ifdef __NetBSD__
1074 if (rdev->rio_mem_size)
1075 #else
1076 if (rdev->rio_mem)
1077 #endif
1078 {
1079 atom_card_info->ioreg_read = cail_ioreg_read;
1080 atom_card_info->ioreg_write = cail_ioreg_write;
1081 } else {
1082 DRM_ERROR("Unable to find PCI I/O BAR; using MMIO for ATOM IIO\n");
1083 atom_card_info->ioreg_read = cail_reg_read;
1084 atom_card_info->ioreg_write = cail_reg_write;
1085 }
1086 atom_card_info->mc_read = cail_mc_read;
1087 atom_card_info->mc_write = cail_mc_write;
1088 atom_card_info->pll_read = cail_pll_read;
1089 atom_card_info->pll_write = cail_pll_write;
1090
1091 rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios);
1092 if (!rdev->mode_info.atom_context) {
1093 radeon_atombios_fini(rdev);
1094 return -ENOMEM;
1095 }
1096
1097 #ifdef __NetBSD__
1098 linux_mutex_init(&rdev->mode_info.atom_context->mutex);
1099 linux_mutex_init(&rdev->mode_info.atom_context->scratch_mutex);
1100 #else
1101 mutex_init(&rdev->mode_info.atom_context->mutex);
1102 mutex_init(&rdev->mode_info.atom_context->scratch_mutex);
1103 #endif
1104 radeon_atom_initialize_bios_scratch_regs(rdev->ddev);
1105 atom_allocate_fb_scratch(rdev->mode_info.atom_context);
1106 return 0;
1107 }
1108
1109 /**
1110 * radeon_atombios_fini - free the driver info and callbacks for atombios
1111 *
1112 * @rdev: radeon_device pointer
1113 *
1114 * Frees the driver info and register access callbacks for the ATOM
1115 * interpreter (r4xx+).
1116 * Called at driver shutdown.
1117 */
1118 void radeon_atombios_fini(struct radeon_device *rdev)
1119 {
1120 if (rdev->mode_info.atom_context) {
1121 #ifdef __NetBSD__
1122 linux_mutex_destroy(&rdev->mode_info.atom_context->scratch_mutex);
1123 linux_mutex_destroy(&rdev->mode_info.atom_context->mutex);
1124 #else
1125 mutex_destroy(&rdev->mode_info.atom_context->scratch_mutex);
1126 mutex_destroy(&rdev->mode_info.atom_context->mutex);
1127 #endif
1128 kfree(rdev->mode_info.atom_context->scratch);
1129 }
1130 kfree(rdev->mode_info.atom_context);
1131 rdev->mode_info.atom_context = NULL;
1132 kfree(rdev->mode_info.atom_card_info);
1133 rdev->mode_info.atom_card_info = NULL;
1134 }
1135
1136 /* COMBIOS */
1137 /*
1138 * COMBIOS is the bios format prior to ATOM. It provides
1139 * command tables similar to ATOM, but doesn't have a unified
1140 * parser. See radeon_combios.c
1141 */
1142
1143 /**
1144 * radeon_combios_init - init the driver info for combios
1145 *
1146 * @rdev: radeon_device pointer
1147 *
1148 * Initializes the driver info for combios (r1xx-r3xx).
1149 * Returns 0 on sucess.
1150 * Called at driver startup.
1151 */
1152 int radeon_combios_init(struct radeon_device *rdev)
1153 {
1154 radeon_combios_initialize_bios_scratch_regs(rdev->ddev);
1155 return 0;
1156 }
1157
1158 /**
1159 * radeon_combios_fini - free the driver info for combios
1160 *
1161 * @rdev: radeon_device pointer
1162 *
1163 * Frees the driver info for combios (r1xx-r3xx).
1164 * Called at driver shutdown.
1165 */
1166 void radeon_combios_fini(struct radeon_device *rdev)
1167 {
1168 }
1169
1170 #ifndef __NetBSD__ /* XXX radeon vga */
1171 /* if we get transitioned to only one device, take VGA back */
1172 /**
1173 * radeon_vga_set_decode - enable/disable vga decode
1174 *
1175 * @cookie: radeon_device pointer
1176 * @state: enable/disable vga decode
1177 *
1178 * Enable/disable vga decode (all asics).
1179 * Returns VGA resource flags.
1180 */
1181 static unsigned int radeon_vga_set_decode(void *cookie, bool state)
1182 {
1183 struct radeon_device *rdev = cookie;
1184 radeon_vga_set_state(rdev, state);
1185 if (state)
1186 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
1187 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
1188 else
1189 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
1190 }
1191 #endif
1192
1193 /**
1194 * radeon_check_pot_argument - check that argument is a power of two
1195 *
1196 * @arg: value to check
1197 *
1198 * Validates that a certain argument is a power of two (all asics).
1199 * Returns true if argument is valid.
1200 */
1201 static bool radeon_check_pot_argument(int arg)
1202 {
1203 return (arg & (arg - 1)) == 0;
1204 }
1205
1206 /**
1207 * Determine a sensible default GART size according to ASIC family.
1208 *
1209 * @family ASIC family name
1210 */
1211 static int radeon_gart_size_auto(enum radeon_family family)
1212 {
1213 /* default to a larger gart size on newer asics */
1214 if (family >= CHIP_TAHITI)
1215 return 2048;
1216 else if (family >= CHIP_RV770)
1217 return 1024;
1218 else
1219 return 512;
1220 }
1221
1222 /**
1223 * radeon_check_arguments - validate module params
1224 *
1225 * @rdev: radeon_device pointer
1226 *
1227 * Validates certain module parameters and updates
1228 * the associated values used by the driver (all asics).
1229 */
1230 static void radeon_check_arguments(struct radeon_device *rdev)
1231 {
1232 /* vramlimit must be a power of two */
1233 if (!radeon_check_pot_argument(radeon_vram_limit)) {
1234 dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n",
1235 radeon_vram_limit);
1236 radeon_vram_limit = 0;
1237 }
1238
1239 if (radeon_gart_size == -1) {
1240 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1241 }
1242 /* gtt size must be power of two and greater or equal to 32M */
1243 if (radeon_gart_size < 32) {
1244 dev_warn(rdev->dev, "gart size (%d) too small\n",
1245 radeon_gart_size);
1246 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1247 } else if (!radeon_check_pot_argument(radeon_gart_size)) {
1248 dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n",
1249 radeon_gart_size);
1250 radeon_gart_size = radeon_gart_size_auto(rdev->family);
1251 }
1252 rdev->mc.gtt_size = (uint64_t)radeon_gart_size << 20;
1253
1254 /* AGP mode can only be -1, 1, 2, 4, 8 */
1255 switch (radeon_agpmode) {
1256 case -1:
1257 case 0:
1258 case 1:
1259 case 2:
1260 case 4:
1261 case 8:
1262 break;
1263 default:
1264 dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: "
1265 "-1, 0, 1, 2, 4, 8)\n", radeon_agpmode);
1266 radeon_agpmode = 0;
1267 break;
1268 }
1269
1270 if (!radeon_check_pot_argument(radeon_vm_size)) {
1271 dev_warn(rdev->dev, "VM size (%d) must be a power of 2\n",
1272 radeon_vm_size);
1273 radeon_vm_size = 4;
1274 }
1275
1276 if (radeon_vm_size < 1) {
1277 dev_warn(rdev->dev, "VM size (%d) to small, min is 1GB\n",
1278 radeon_vm_size);
1279 radeon_vm_size = 4;
1280 }
1281
1282 /*
1283 * Max GPUVM size for Cayman, SI and CI are 40 bits.
1284 */
1285 if (radeon_vm_size > 1024) {
1286 dev_warn(rdev->dev, "VM size (%d) too large, max is 1TB\n",
1287 radeon_vm_size);
1288 radeon_vm_size = 4;
1289 }
1290
1291 /* defines number of bits in page table versus page directory,
1292 * a page is 4KB so we have 12 bits offset, minimum 9 bits in the
1293 * page table and the remaining bits are in the page directory */
1294 if (radeon_vm_block_size == -1) {
1295
1296 /* Total bits covered by PD + PTs */
1297 unsigned bits = ilog2(radeon_vm_size) + 18;
1298
1299 /* Make sure the PD is 4K in size up to 8GB address space.
1300 Above that split equal between PD and PTs */
1301 if (radeon_vm_size <= 8)
1302 radeon_vm_block_size = bits - 9;
1303 else
1304 radeon_vm_block_size = (bits + 3) / 2;
1305
1306 } else if (radeon_vm_block_size < 9) {
1307 dev_warn(rdev->dev, "VM page table size (%d) too small\n",
1308 radeon_vm_block_size);
1309 radeon_vm_block_size = 9;
1310 }
1311
1312 if (radeon_vm_block_size > 24 ||
1313 (radeon_vm_size * 1024) < (1ull << radeon_vm_block_size)) {
1314 dev_warn(rdev->dev, "VM page table size (%d) too large\n",
1315 radeon_vm_block_size);
1316 radeon_vm_block_size = 9;
1317 }
1318 }
1319
1320 #ifndef __NetBSD__ /* XXX radeon vga */
1321 /**
1322 * radeon_switcheroo_set_state - set switcheroo state
1323 *
1324 * @pdev: pci dev pointer
1325 * @state: vga_switcheroo state
1326 *
1327 * Callback for the switcheroo driver. Suspends or resumes the
1328 * the asics before or after it is powered up using ACPI methods.
1329 */
1330 static void radeon_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
1331 {
1332 struct drm_device *dev = pci_get_drvdata(pdev);
1333 struct radeon_device *rdev = dev->dev_private;
1334
1335 if (radeon_is_px(dev) && state == VGA_SWITCHEROO_OFF)
1336 return;
1337
1338 if (state == VGA_SWITCHEROO_ON) {
1339 unsigned d3_delay = dev->pdev->d3_delay;
1340
1341 printk(KERN_INFO "radeon: switched on\n");
1342 /* don't suspend or resume card normally */
1343 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
1344
1345 if (d3_delay < 20 && (rdev->px_quirk_flags & RADEON_PX_QUIRK_LONG_WAKEUP))
1346 dev->pdev->d3_delay = 20;
1347
1348 radeon_resume_kms(dev, true, true);
1349
1350 dev->pdev->d3_delay = d3_delay;
1351
1352 dev->switch_power_state = DRM_SWITCH_POWER_ON;
1353 drm_kms_helper_poll_enable(dev);
1354 } else {
1355 printk(KERN_INFO "radeon: switched off\n");
1356 drm_kms_helper_poll_disable(dev);
1357 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
1358 radeon_suspend_kms(dev, true, true);
1359 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
1360 }
1361 }
1362
1363 /**
1364 * radeon_switcheroo_can_switch - see if switcheroo state can change
1365 *
1366 * @pdev: pci dev pointer
1367 *
1368 * Callback for the switcheroo driver. Check of the switcheroo
1369 * state can be changed.
1370 * Returns true if the state can be changed, false if not.
1371 */
1372 static bool radeon_switcheroo_can_switch(struct pci_dev *pdev)
1373 {
1374 struct drm_device *dev = pci_get_drvdata(pdev);
1375
1376 /*
1377 * FIXME: open_count is protected by drm_global_mutex but that would lead to
1378 * locking inversion with the driver load path. And the access here is
1379 * completely racy anyway. So don't bother with locking for now.
1380 */
1381 return dev->open_count == 0;
1382 }
1383
1384 static const struct vga_switcheroo_client_ops radeon_switcheroo_ops = {
1385 .set_gpu_state = radeon_switcheroo_set_state,
1386 .reprobe = NULL,
1387 .can_switch = radeon_switcheroo_can_switch,
1388 };
1389 #endif
1390
1391 /**
1392 * radeon_device_init - initialize the driver
1393 *
1394 * @rdev: radeon_device pointer
1395 * @pdev: drm dev pointer
1396 * @pdev: pci dev pointer
1397 * @flags: driver flags
1398 *
1399 * Initializes the driver info and hw (all asics).
1400 * Returns 0 for success or an error on failure.
1401 * Called at driver startup.
1402 */
1403 int radeon_device_init(struct radeon_device *rdev,
1404 struct drm_device *ddev,
1405 struct pci_dev *pdev,
1406 uint32_t flags)
1407 {
1408 int r, i;
1409 int dma_bits;
1410 #ifndef __NetBSD__
1411 bool runtime = false;
1412 #endif
1413
1414 rdev->shutdown = false;
1415 rdev->dev = ddev->dev;
1416 rdev->ddev = ddev;
1417 rdev->pdev = pdev;
1418 rdev->flags = flags;
1419 rdev->family = flags & RADEON_FAMILY_MASK;
1420 rdev->is_atom_bios = false;
1421 rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT;
1422 rdev->mc.gtt_size = 512 * 1024 * 1024;
1423 rdev->accel_working = false;
1424 /* set up ring ids */
1425 for (i = 0; i < RADEON_NUM_RINGS; i++) {
1426 rdev->ring[i].idx = i;
1427 }
1428 rdev->fence_context = fence_context_alloc(RADEON_NUM_RINGS);
1429
1430 DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X).\n",
1431 radeon_family_name[rdev->family], pdev->vendor, pdev->device,
1432 pdev->subsystem_vendor, pdev->subsystem_device);
1433
1434 /* mutex initialization are all done here so we
1435 * can recall function without having locking issues */
1436 #ifdef __NetBSD__
1437 linux_mutex_init(&rdev->ring_lock);
1438 linux_mutex_init(&rdev->dc_hw_i2c_mutex);
1439 #else
1440 mutex_init(&rdev->ring_lock);
1441 mutex_init(&rdev->dc_hw_i2c_mutex);
1442 #endif
1443 atomic_set(&rdev->ih.lock, 0);
1444 #ifdef __NetBSD__
1445 linux_mutex_init(&rdev->gem.mutex);
1446 linux_mutex_init(&rdev->pm.mutex);
1447 linux_mutex_init(&rdev->gpu_clock_mutex);
1448 linux_mutex_init(&rdev->srbm_mutex);
1449 linux_mutex_init(&rdev->grbm_idx_mutex);
1450 #else
1451 mutex_init(&rdev->gem.mutex);
1452 mutex_init(&rdev->pm.mutex);
1453 mutex_init(&rdev->gpu_clock_mutex);
1454 mutex_init(&rdev->srbm_mutex);
1455 mutex_init(&rdev->grbm_idx_mutex);
1456 #endif
1457 init_rwsem(&rdev->pm.mclk_lock);
1458 init_rwsem(&rdev->exclusive_lock);
1459 #ifdef __NetBSD__
1460 spin_lock_init(&rdev->irq.vblank_lock);
1461 DRM_INIT_WAITQUEUE(&rdev->irq.vblank_queue, "radvblnk");
1462 linux_mutex_init(&rdev->mn_lock);
1463 #else
1464 init_waitqueue_head(&rdev->irq.vblank_queue);
1465 mutex_init(&rdev->mn_lock);
1466 #endif
1467 hash_init(rdev->mn_hash);
1468 r = radeon_gem_init(rdev);
1469 if (r)
1470 return r;
1471
1472 radeon_check_arguments(rdev);
1473 /* Adjust VM size here.
1474 * Max GPUVM size for cayman+ is 40 bits.
1475 */
1476 rdev->vm_manager.max_pfn = radeon_vm_size << 18;
1477
1478 /* Set asic functions */
1479 r = radeon_asic_init(rdev);
1480 if (r)
1481 return r;
1482
1483 /* all of the newer IGP chips have an internal gart
1484 * However some rs4xx report as AGP, so remove that here.
1485 */
1486 if ((rdev->family >= CHIP_RS400) &&
1487 (rdev->flags & RADEON_IS_IGP)) {
1488 rdev->flags &= ~RADEON_IS_AGP;
1489 }
1490
1491 if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) {
1492 radeon_agp_disable(rdev);
1493 }
1494
1495 /* Set the internal MC address mask
1496 * This is the max address of the GPU's
1497 * internal address space.
1498 */
1499 if (rdev->family >= CHIP_CAYMAN)
1500 rdev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
1501 else if (rdev->family >= CHIP_CEDAR)
1502 rdev->mc.mc_mask = 0xfffffffffULL; /* 36 bit MC */
1503 else
1504 rdev->mc.mc_mask = 0xffffffffULL; /* 32 bit MC */
1505
1506 /* set DMA mask + need_dma32 flags.
1507 * PCIE - can handle 40-bits.
1508 * IGP - can handle 40-bits
1509 * AGP - generally dma32 is safest
1510 * PCI - dma32 for legacy pci gart, 40 bits on newer asics
1511 */
1512 rdev->need_dma32 = false;
1513 if (rdev->flags & RADEON_IS_AGP)
1514 rdev->need_dma32 = true;
1515 if ((rdev->flags & RADEON_IS_PCI) &&
1516 (rdev->family <= CHIP_RS740))
1517 rdev->need_dma32 = true;
1518
1519 dma_bits = rdev->need_dma32 ? 32 : 40;
1520 #ifdef __NetBSD__
1521 r = drm_limit_dma_space(rdev->ddev, 0, __BITS(dma_bits - 1, 0));
1522 if (r)
1523 DRM_ERROR("No suitable DMA available.\n");
1524 #else
1525 r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
1526 if (r) {
1527 rdev->need_dma32 = true;
1528 dma_bits = 32;
1529 printk(KERN_WARNING "radeon: No suitable DMA available.\n");
1530 }
1531 r = pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
1532 if (r) {
1533 pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(32));
1534 printk(KERN_WARNING "radeon: No coherent DMA available.\n");
1535 }
1536 #endif
1537
1538 /* Registers mapping */
1539 /* TODO: block userspace mapping of io register */
1540 /* XXX Destroy these locks on detach... */
1541 spin_lock_init(&rdev->mmio_idx_lock);
1542 spin_lock_init(&rdev->smc_idx_lock);
1543 spin_lock_init(&rdev->pll_idx_lock);
1544 spin_lock_init(&rdev->mc_idx_lock);
1545 spin_lock_init(&rdev->pcie_idx_lock);
1546 spin_lock_init(&rdev->pciep_idx_lock);
1547 spin_lock_init(&rdev->pif_idx_lock);
1548 spin_lock_init(&rdev->cg_idx_lock);
1549 spin_lock_init(&rdev->uvd_idx_lock);
1550 spin_lock_init(&rdev->rcu_idx_lock);
1551 spin_lock_init(&rdev->didt_idx_lock);
1552 spin_lock_init(&rdev->end_idx_lock);
1553 #ifdef __NetBSD__
1554 {
1555 pcireg_t bar;
1556
1557 if (rdev->family >= CHIP_BONAIRE)
1558 bar = 5;
1559 else
1560 bar = 2;
1561 if (pci_mapreg_map(&rdev->pdev->pd_pa, PCI_BAR(bar),
1562 pci_mapreg_type(rdev->pdev->pd_pa.pa_pc,
1563 rdev->pdev->pd_pa.pa_tag, PCI_BAR(bar)),
1564 0,
1565 &rdev->rmmio_bst, &rdev->rmmio_bsh,
1566 &rdev->rmmio_addr, &rdev->rmmio_size))
1567 return -EIO;
1568 }
1569 DRM_INFO("register mmio base: 0x%"PRIxMAX"\n",
1570 (uintmax_t)rdev->rmmio_addr);
1571 DRM_INFO("register mmio size: %"PRIuMAX"\n",
1572 (uintmax_t)rdev->rmmio_size);
1573 #else
1574 if (rdev->family >= CHIP_BONAIRE) {
1575 rdev->rmmio_base = pci_resource_start(rdev->pdev, 5);
1576 rdev->rmmio_size = pci_resource_len(rdev->pdev, 5);
1577 } else {
1578 rdev->rmmio_base = pci_resource_start(rdev->pdev, 2);
1579 rdev->rmmio_size = pci_resource_len(rdev->pdev, 2);
1580 }
1581 rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size);
1582 if (rdev->rmmio == NULL) {
1583 return -ENOMEM;
1584 }
1585 DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base);
1586 DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size);
1587 #endif
1588
1589 /* doorbell bar mapping */
1590 if (rdev->family >= CHIP_BONAIRE)
1591 radeon_doorbell_init(rdev);
1592
1593 /* io port mapping */
1594 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1595 #ifdef __NetBSD__
1596 if (pci_mapreg_map(&rdev->pdev->pd_pa, PCI_BAR(i),
1597 PCI_MAPREG_TYPE_IO, 0,
1598 &rdev->rio_mem_bst, &rdev->rio_mem_bsh,
1599 NULL, &rdev->rio_mem_size))
1600 continue;
1601 break;
1602 #else
1603 if (pci_resource_flags(rdev->pdev, i) & IORESOURCE_IO) {
1604 rdev->rio_mem_size = pci_resource_len(rdev->pdev, i);
1605 rdev->rio_mem = pci_iomap(rdev->pdev, i, rdev->rio_mem_size);
1606 break;
1607 }
1608 #endif
1609 }
1610 #ifdef __NetBSD__
1611 if (i == DEVICE_COUNT_RESOURCE)
1612 DRM_ERROR("Unable to find PCI I/O BAR\n");
1613 #else
1614 if (rdev->rio_mem == NULL)
1615 DRM_ERROR("Unable to find PCI I/O BAR\n");
1616 #endif
1617
1618 if (rdev->flags & RADEON_IS_PX)
1619 radeon_device_handle_px_quirks(rdev);
1620
1621 #ifndef __NetBSD__ /* XXX radeon vga */
1622 /* if we have > 1 VGA cards, then disable the radeon VGA resources */
1623 /* this will fail for cards that aren't VGA class devices, just
1624 * ignore it */
1625 vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode);
1626
1627 if (rdev->flags & RADEON_IS_PX)
1628 runtime = true;
1629 vga_switcheroo_register_client(rdev->pdev, &radeon_switcheroo_ops, runtime);
1630 if (runtime)
1631 vga_switcheroo_init_domain_pm_ops(rdev->dev, &rdev->vga_pm_domain);
1632 #endif
1633
1634 r = radeon_init(rdev);
1635 if (r)
1636 goto failed;
1637
1638 r = radeon_gem_debugfs_init(rdev);
1639 if (r) {
1640 DRM_ERROR("registering gem debugfs failed (%d).\n", r);
1641 }
1642
1643 r = radeon_mst_debugfs_init(rdev);
1644 if (r) {
1645 DRM_ERROR("registering mst debugfs failed (%d).\n", r);
1646 }
1647
1648 if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) {
1649 /* Acceleration not working on AGP card try again
1650 * with fallback to PCI or PCIE GART
1651 */
1652 radeon_asic_reset(rdev);
1653 radeon_fini(rdev);
1654 radeon_agp_disable(rdev);
1655 r = radeon_init(rdev);
1656 if (r)
1657 goto failed;
1658 }
1659
1660 r = radeon_ib_ring_tests(rdev);
1661 if (r)
1662 DRM_ERROR("ib ring test failed (%d).\n", r);
1663
1664 /*
1665 * Turks/Thames GPU will freeze whole laptop if DPM is not restarted
1666 * after the CP ring have chew one packet at least. Hence here we stop
1667 * and restart DPM after the radeon_ib_ring_tests().
1668 */
1669 if (rdev->pm.dpm_enabled &&
1670 (rdev->pm.pm_method == PM_METHOD_DPM) &&
1671 (rdev->family == CHIP_TURKS) &&
1672 (rdev->flags & RADEON_IS_MOBILITY)) {
1673 mutex_lock(&rdev->pm.mutex);
1674 radeon_dpm_disable(rdev);
1675 radeon_dpm_enable(rdev);
1676 mutex_unlock(&rdev->pm.mutex);
1677 }
1678
1679 if ((radeon_testing & 1)) {
1680 if (rdev->accel_working)
1681 radeon_test_moves(rdev);
1682 else
1683 DRM_INFO("radeon: acceleration disabled, skipping move tests\n");
1684 }
1685 if ((radeon_testing & 2)) {
1686 if (rdev->accel_working)
1687 radeon_test_syncing(rdev);
1688 else
1689 DRM_INFO("radeon: acceleration disabled, skipping sync tests\n");
1690 }
1691 if (radeon_benchmarking) {
1692 if (rdev->accel_working)
1693 radeon_benchmark(rdev, radeon_benchmarking);
1694 else
1695 DRM_INFO("radeon: acceleration disabled, skipping benchmarks\n");
1696 }
1697 return 0;
1698
1699 failed:
1700 #ifndef __NetBSD__ /* XXX radeon vga */
1701 if (runtime)
1702 vga_switcheroo_fini_domain_pm_ops(rdev->dev);
1703 #endif
1704 return r;
1705 }
1706
1707 static void radeon_debugfs_remove_files(struct radeon_device *rdev);
1708
1709 /**
1710 * radeon_device_fini - tear down the driver
1711 *
1712 * @rdev: radeon_device pointer
1713 *
1714 * Tear down the driver info (all asics).
1715 * Called at driver shutdown.
1716 */
1717 void radeon_device_fini(struct radeon_device *rdev)
1718 {
1719 DRM_INFO("radeon: finishing device.\n");
1720 rdev->shutdown = true;
1721 /* evict vram memory */
1722 radeon_bo_evict_vram(rdev);
1723 radeon_fini(rdev);
1724 #ifndef __NetBSD__
1725 vga_switcheroo_unregister_client(rdev->pdev);
1726 if (rdev->flags & RADEON_IS_PX)
1727 vga_switcheroo_fini_domain_pm_ops(rdev->dev);
1728 vga_client_register(rdev->pdev, NULL, NULL, NULL);
1729 #endif
1730 #ifdef __NetBSD__
1731 if (rdev->rio_mem_size)
1732 bus_space_unmap(rdev->rio_mem_bst, rdev->rio_mem_bsh,
1733 rdev->rio_mem_size);
1734 rdev->rio_mem_size = 0;
1735 bus_space_unmap(rdev->rmmio_bst, rdev->rmmio_bsh, rdev->rmmio_size);
1736 #else
1737 if (rdev->rio_mem)
1738 pci_iounmap(rdev->pdev, rdev->rio_mem);
1739 rdev->rio_mem = NULL;
1740 iounmap(rdev->rmmio);
1741 rdev->rmmio = NULL;
1742 #endif
1743 if (rdev->family >= CHIP_BONAIRE)
1744 radeon_doorbell_fini(rdev);
1745 radeon_debugfs_remove_files(rdev);
1746
1747 #ifdef __NetBSD__
1748 DRM_DESTROY_WAITQUEUE(&rdev->irq.vblank_queue);
1749 spin_lock_destroy(&rdev->irq.vblank_lock);
1750 destroy_rwsem(&rdev->exclusive_lock);
1751 destroy_rwsem(&rdev->pm.mclk_lock);
1752 linux_mutex_destroy(&rdev->srbm_mutex);
1753 linux_mutex_destroy(&rdev->gpu_clock_mutex);
1754 linux_mutex_destroy(&rdev->pm.mutex);
1755 linux_mutex_destroy(&rdev->gem.mutex);
1756 linux_mutex_destroy(&rdev->dc_hw_i2c_mutex);
1757 linux_mutex_destroy(&rdev->ring_lock);
1758 #else
1759 mutex_destroy(&rdev->srbm_mutex);
1760 mutex_destroy(&rdev->gpu_clock_mutex);
1761 mutex_destroy(&rdev->pm.mutex);
1762 mutex_destroy(&rdev->gem.mutex);
1763 mutex_destroy(&rdev->dc_hw_i2c_mutex);
1764 mutex_destroy(&rdev->ring_lock);
1765 #endif
1766 }
1767
1768
1769 /*
1770 * Suspend & resume.
1771 */
1772 /**
1773 * radeon_suspend_kms - initiate device suspend
1774 *
1775 * @pdev: drm dev pointer
1776 * @state: suspend state
1777 *
1778 * Puts the hw in the suspend state (all asics).
1779 * Returns 0 for success or an error on failure.
1780 * Called at driver suspend.
1781 */
1782 int radeon_suspend_kms(struct drm_device *dev, bool suspend, bool fbcon)
1783 {
1784 struct radeon_device *rdev;
1785 struct drm_crtc *crtc;
1786 struct drm_connector *connector;
1787 int i, r;
1788
1789 if (dev == NULL || dev->dev_private == NULL) {
1790 return -ENODEV;
1791 }
1792
1793 rdev = dev->dev_private;
1794
1795 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1796 return 0;
1797
1798 drm_kms_helper_poll_disable(dev);
1799
1800 drm_modeset_lock_all(dev);
1801 /* turn off display hw */
1802 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1803 drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
1804 }
1805 drm_modeset_unlock_all(dev);
1806
1807 /* unpin the front buffers and cursors */
1808 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1809 struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
1810 struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->primary->fb);
1811 struct radeon_bo *robj;
1812
1813 if (radeon_crtc->cursor_bo) {
1814 struct radeon_bo *robj = gem_to_radeon_bo(radeon_crtc->cursor_bo);
1815 r = radeon_bo_reserve(robj, false);
1816 if (r == 0) {
1817 radeon_bo_unpin(robj);
1818 radeon_bo_unreserve(robj);
1819 }
1820 }
1821
1822 if (rfb == NULL || rfb->obj == NULL) {
1823 continue;
1824 }
1825 robj = gem_to_radeon_bo(rfb->obj);
1826 /* don't unpin kernel fb objects */
1827 if (!radeon_fbdev_robj_is_fb(rdev, robj)) {
1828 r = radeon_bo_reserve(robj, false);
1829 if (r == 0) {
1830 radeon_bo_unpin(robj);
1831 radeon_bo_unreserve(robj);
1832 }
1833 }
1834 }
1835 /* evict vram memory */
1836 radeon_bo_evict_vram(rdev);
1837
1838 /* wait for gpu to finish processing current batch */
1839 for (i = 0; i < RADEON_NUM_RINGS; i++) {
1840 r = radeon_fence_wait_empty(rdev, i);
1841 if (r) {
1842 /* delay GPU reset to resume */
1843 radeon_fence_driver_force_completion(rdev, i);
1844 }
1845 }
1846
1847 radeon_save_bios_scratch_regs(rdev);
1848
1849 radeon_suspend(rdev);
1850 radeon_hpd_fini(rdev);
1851 /* evict remaining vram memory */
1852 radeon_bo_evict_vram(rdev);
1853
1854 radeon_agp_suspend(rdev);
1855
1856 #ifndef __NetBSD__ /* pmf handles this for us. */
1857 pci_save_state(dev->pdev);
1858 if (suspend) {
1859 /* Shut down the device */
1860 pci_disable_device(dev->pdev);
1861 pci_set_power_state(dev->pdev, PCI_D3hot);
1862 }
1863 #endif
1864
1865 #ifndef __NetBSD__ /* XXX radeon fb */
1866 if (fbcon) {
1867 console_lock();
1868 radeon_fbdev_set_suspend(rdev, 1);
1869 console_unlock();
1870 }
1871 #endif
1872 return 0;
1873 }
1874
1875 /**
1876 * radeon_resume_kms - initiate device resume
1877 *
1878 * @pdev: drm dev pointer
1879 *
1880 * Bring the hw back to operating state (all asics).
1881 * Returns 0 for success or an error on failure.
1882 * Called at driver resume.
1883 */
1884 int radeon_resume_kms(struct drm_device *dev, bool resume, bool fbcon)
1885 {
1886 struct drm_connector *connector;
1887 struct radeon_device *rdev = dev->dev_private;
1888 struct drm_crtc *crtc;
1889 int r;
1890
1891 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1892 return 0;
1893
1894 #ifndef __NetBSD__ /* XXX radeon fb */
1895 if (fbcon) {
1896 console_lock();
1897 }
1898 #endif
1899 #ifndef __NetBSD__ /* pmf handles this for us. */
1900 if (resume) {
1901 pci_set_power_state(dev->pdev, PCI_D0);
1902 pci_restore_state(dev->pdev);
1903 if (pci_enable_device(dev->pdev)) {
1904 if (fbcon)
1905 console_unlock();
1906 return -1;
1907 }
1908 }
1909 #endif
1910 /* resume AGP if in use */
1911 radeon_agp_resume(rdev);
1912 radeon_resume(rdev);
1913
1914 r = radeon_ib_ring_tests(rdev);
1915 if (r)
1916 DRM_ERROR("ib ring test failed (%d).\n", r);
1917
1918 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
1919 /* do dpm late init */
1920 r = radeon_pm_late_init(rdev);
1921 if (r) {
1922 rdev->pm.dpm_enabled = false;
1923 DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
1924 }
1925 } else {
1926 /* resume old pm late */
1927 radeon_pm_resume(rdev);
1928 }
1929
1930 radeon_restore_bios_scratch_regs(rdev);
1931
1932 /* pin cursors */
1933 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1934 struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
1935
1936 if (radeon_crtc->cursor_bo) {
1937 struct radeon_bo *robj = gem_to_radeon_bo(radeon_crtc->cursor_bo);
1938 r = radeon_bo_reserve(robj, false);
1939 if (r == 0) {
1940 /* Only 27 bit offset for legacy cursor */
1941 r = radeon_bo_pin_restricted(robj,
1942 RADEON_GEM_DOMAIN_VRAM,
1943 ASIC_IS_AVIVO(rdev) ?
1944 0 : 1 << 27,
1945 &radeon_crtc->cursor_addr);
1946 if (r != 0)
1947 DRM_ERROR("Failed to pin cursor BO (%d)\n", r);
1948 radeon_bo_unreserve(robj);
1949 }
1950 }
1951 }
1952
1953 /* init dig PHYs, disp eng pll */
1954 if (rdev->is_atom_bios) {
1955 radeon_atom_encoder_init(rdev);
1956 radeon_atom_disp_eng_pll_init(rdev);
1957 /* turn on the BL */
1958 if (rdev->mode_info.bl_encoder) {
1959 u8 bl_level = radeon_get_backlight_level(rdev,
1960 rdev->mode_info.bl_encoder);
1961 radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
1962 bl_level);
1963 }
1964 }
1965 /* reset hpd state */
1966 radeon_hpd_init(rdev);
1967 /* blat the mode back in */
1968 if (fbcon) {
1969 drm_helper_resume_force_mode(dev);
1970 /* turn on display hw */
1971 drm_modeset_lock_all(dev);
1972 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1973 drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
1974 }
1975 drm_modeset_unlock_all(dev);
1976 }
1977
1978 drm_kms_helper_poll_enable(dev);
1979
1980 /* set the power state here in case we are a PX system or headless */
1981 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
1982 radeon_pm_compute_clocks(rdev);
1983
1984 #ifndef __NetBSD__ /* XXX radeon fb */
1985 if (fbcon) {
1986 radeon_fbdev_set_suspend(rdev, 0);
1987 console_unlock();
1988 }
1989 #endif
1990
1991 return 0;
1992 }
1993
1994 /**
1995 * radeon_gpu_reset - reset the asic
1996 *
1997 * @rdev: radeon device pointer
1998 *
1999 * Attempt the reset the GPU if it has hung (all asics).
2000 * Returns 0 for success or an error on failure.
2001 */
2002 int radeon_gpu_reset(struct radeon_device *rdev)
2003 {
2004 unsigned ring_sizes[RADEON_NUM_RINGS];
2005 uint32_t *ring_data[RADEON_NUM_RINGS];
2006
2007 bool saved = false;
2008
2009 int i, r;
2010 int resched;
2011
2012 down_write(&rdev->exclusive_lock);
2013
2014 if (!rdev->needs_reset) {
2015 up_write(&rdev->exclusive_lock);
2016 return 0;
2017 }
2018
2019 atomic_inc(&rdev->gpu_reset_counter);
2020
2021 radeon_save_bios_scratch_regs(rdev);
2022 /* block TTM */
2023 resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev);
2024 radeon_suspend(rdev);
2025 radeon_hpd_fini(rdev);
2026
2027 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
2028 ring_sizes[i] = radeon_ring_backup(rdev, &rdev->ring[i],
2029 &ring_data[i]);
2030 if (ring_sizes[i]) {
2031 saved = true;
2032 dev_info(rdev->dev, "Saved %d dwords of commands "
2033 "on ring %d.\n", ring_sizes[i], i);
2034 }
2035 }
2036
2037 r = radeon_asic_reset(rdev);
2038 if (!r) {
2039 dev_info(rdev->dev, "GPU reset succeeded, trying to resume\n");
2040 radeon_resume(rdev);
2041 }
2042
2043 radeon_restore_bios_scratch_regs(rdev);
2044
2045 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
2046 if (!r && ring_data[i]) {
2047 radeon_ring_restore(rdev, &rdev->ring[i],
2048 ring_sizes[i], ring_data[i]);
2049 } else {
2050 radeon_fence_driver_force_completion(rdev, i);
2051 kfree(ring_data[i]);
2052 }
2053 }
2054
2055 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
2056 /* do dpm late init */
2057 r = radeon_pm_late_init(rdev);
2058 if (r) {
2059 rdev->pm.dpm_enabled = false;
2060 DRM_ERROR("radeon_pm_late_init failed, disabling dpm\n");
2061 }
2062 } else {
2063 /* resume old pm late */
2064 radeon_pm_resume(rdev);
2065 }
2066
2067 /* init dig PHYs, disp eng pll */
2068 if (rdev->is_atom_bios) {
2069 radeon_atom_encoder_init(rdev);
2070 radeon_atom_disp_eng_pll_init(rdev);
2071 /* turn on the BL */
2072 if (rdev->mode_info.bl_encoder) {
2073 u8 bl_level = radeon_get_backlight_level(rdev,
2074 rdev->mode_info.bl_encoder);
2075 radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder,
2076 bl_level);
2077 }
2078 }
2079 /* reset hpd state */
2080 radeon_hpd_init(rdev);
2081
2082 ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched);
2083
2084 rdev->in_reset = true;
2085 rdev->needs_reset = false;
2086
2087 downgrade_write(&rdev->exclusive_lock);
2088
2089 drm_helper_resume_force_mode(rdev->ddev);
2090
2091 /* set the power state here in case we are a PX system or headless */
2092 if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
2093 radeon_pm_compute_clocks(rdev);
2094
2095 if (!r) {
2096 r = radeon_ib_ring_tests(rdev);
2097 if (r && saved)
2098 r = -EAGAIN;
2099 } else {
2100 /* bad news, how to tell it to userspace ? */
2101 dev_info(rdev->dev, "GPU reset failed\n");
2102 }
2103
2104 rdev->needs_reset = r == -EAGAIN;
2105 rdev->in_reset = false;
2106
2107 up_read(&rdev->exclusive_lock);
2108 return r;
2109 }
2110
2111
2112 /*
2113 * Debugfs
2114 */
2115 int radeon_debugfs_add_files(struct radeon_device *rdev,
2116 struct drm_info_list *files,
2117 unsigned nfiles)
2118 {
2119 unsigned i;
2120
2121 for (i = 0; i < rdev->debugfs_count; i++) {
2122 if (rdev->debugfs[i].files == files) {
2123 /* Already registered */
2124 return 0;
2125 }
2126 }
2127
2128 i = rdev->debugfs_count + 1;
2129 if (i > RADEON_DEBUGFS_MAX_COMPONENTS) {
2130 DRM_ERROR("Reached maximum number of debugfs components.\n");
2131 DRM_ERROR("Report so we increase "
2132 "RADEON_DEBUGFS_MAX_COMPONENTS.\n");
2133 return -EINVAL;
2134 }
2135 rdev->debugfs[rdev->debugfs_count].files = files;
2136 rdev->debugfs[rdev->debugfs_count].num_files = nfiles;
2137 rdev->debugfs_count = i;
2138 #if defined(CONFIG_DEBUG_FS)
2139 drm_debugfs_create_files(files, nfiles,
2140 rdev->ddev->control->debugfs_root,
2141 rdev->ddev->control);
2142 drm_debugfs_create_files(files, nfiles,
2143 rdev->ddev->primary->debugfs_root,
2144 rdev->ddev->primary);
2145 #endif
2146 return 0;
2147 }
2148
2149 static void radeon_debugfs_remove_files(struct radeon_device *rdev)
2150 {
2151 #if defined(CONFIG_DEBUG_FS)
2152 unsigned i;
2153
2154 for (i = 0; i < rdev->debugfs_count; i++) {
2155 drm_debugfs_remove_files(rdev->debugfs[i].files,
2156 rdev->debugfs[i].num_files,
2157 rdev->ddev->control);
2158 drm_debugfs_remove_files(rdev->debugfs[i].files,
2159 rdev->debugfs[i].num_files,
2160 rdev->ddev->primary);
2161 }
2162 #endif
2163 }
2164
2165 #if defined(CONFIG_DEBUG_FS)
2166 int radeon_debugfs_init(struct drm_minor *minor)
2167 {
2168 return 0;
2169 }
2170
2171 void radeon_debugfs_cleanup(struct drm_minor *minor)
2172 {
2173 }
2174 #endif
2175