radeon_fence.c revision 1.1.1.3 1 /* $NetBSD: radeon_fence.c,v 1.1.1.3 2021/12/18 20:15:48 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Dave Airlie
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.1.1.3 2021/12/18 20:15:48 riastradh Exp $");
36
37 #include <linux/atomic.h>
38 #include <linux/firmware.h>
39 #include <linux/kref.h>
40 #include <linux/sched/signal.h>
41 #include <linux/seq_file.h>
42 #include <linux/slab.h>
43 #include <linux/wait.h>
44
45 #include <drm/drm_debugfs.h>
46 #include <drm/drm_device.h>
47 #include <drm/drm_file.h>
48
49 #include "radeon.h"
50 #include "radeon_reg.h"
51 #include "radeon_trace.h"
52
53 /*
54 * Fences
55 * Fences mark an event in the GPUs pipeline and are used
56 * for GPU/CPU synchronization. When the fence is written,
57 * it is expected that all buffers associated with that fence
58 * are no longer in use by the associated ring on the GPU and
59 * that the the relevant GPU caches have been flushed. Whether
60 * we use a scratch register or memory location depends on the asic
61 * and whether writeback is enabled.
62 */
63
64 /**
65 * radeon_fence_write - write a fence value
66 *
67 * @rdev: radeon_device pointer
68 * @seq: sequence number to write
69 * @ring: ring index the fence is associated with
70 *
71 * Writes a fence value to memory or a scratch register (all asics).
72 */
73 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
74 {
75 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
76 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
77 if (drv->cpu_addr) {
78 *drv->cpu_addr = cpu_to_le32(seq);
79 }
80 } else {
81 WREG32(drv->scratch_reg, seq);
82 }
83 }
84
85 /**
86 * radeon_fence_read - read a fence value
87 *
88 * @rdev: radeon_device pointer
89 * @ring: ring index the fence is associated with
90 *
91 * Reads a fence value from memory or a scratch register (all asics).
92 * Returns the value of the fence read from memory or register.
93 */
94 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
95 {
96 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
97 u32 seq = 0;
98
99 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
100 if (drv->cpu_addr) {
101 seq = le32_to_cpu(*drv->cpu_addr);
102 } else {
103 seq = lower_32_bits(atomic64_read(&drv->last_seq));
104 }
105 } else {
106 seq = RREG32(drv->scratch_reg);
107 }
108 return seq;
109 }
110
111 /**
112 * radeon_fence_schedule_check - schedule lockup check
113 *
114 * @rdev: radeon_device pointer
115 * @ring: ring index we should work with
116 *
117 * Queues a delayed work item to check for lockups.
118 */
119 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
120 {
121 /*
122 * Do not reset the timer here with mod_delayed_work,
123 * this can livelock in an interaction with TTM delayed destroy.
124 */
125 queue_delayed_work(system_power_efficient_wq,
126 &rdev->fence_drv[ring].lockup_work,
127 RADEON_FENCE_JIFFIES_TIMEOUT);
128 }
129
130 /**
131 * radeon_fence_emit - emit a fence on the requested ring
132 *
133 * @rdev: radeon_device pointer
134 * @fence: radeon fence object
135 * @ring: ring index the fence is associated with
136 *
137 * Emits a fence command on the requested ring (all asics).
138 * Returns 0 on success, -ENOMEM on failure.
139 */
140 int radeon_fence_emit(struct radeon_device *rdev,
141 struct radeon_fence **fence,
142 int ring)
143 {
144 u64 seq;
145
146 /* we are protected by the ring emission mutex */
147 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
148 if ((*fence) == NULL) {
149 return -ENOMEM;
150 }
151 (*fence)->rdev = rdev;
152 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
153 (*fence)->ring = ring;
154 (*fence)->is_vm_update = false;
155 dma_fence_init(&(*fence)->base, &radeon_fence_ops,
156 &rdev->fence_queue.lock,
157 rdev->fence_context + ring,
158 seq);
159 radeon_fence_ring_emit(rdev, ring, *fence);
160 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
161 radeon_fence_schedule_check(rdev, ring);
162 return 0;
163 }
164
165 /**
166 * radeon_fence_check_signaled - callback from fence_queue
167 *
168 * this function is called with fence_queue lock held, which is also used
169 * for the fence locking itself, so unlocked variants are used for
170 * fence_signal, and remove_wait_queue.
171 */
172 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
173 {
174 struct radeon_fence *fence;
175 u64 seq;
176
177 fence = container_of(wait, struct radeon_fence, fence_wake);
178
179 /*
180 * We cannot use radeon_fence_process here because we're already
181 * in the waitqueue, in a call from wake_up_all.
182 */
183 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
184 if (seq >= fence->seq) {
185 int ret = dma_fence_signal_locked(&fence->base);
186
187 if (!ret)
188 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
189 else
190 DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
191
192 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
193 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
194 dma_fence_put(&fence->base);
195 } else
196 DMA_FENCE_TRACE(&fence->base, "pending\n");
197 return 0;
198 }
199
200 /**
201 * radeon_fence_activity - check for fence activity
202 *
203 * @rdev: radeon_device pointer
204 * @ring: ring index the fence is associated with
205 *
206 * Checks the current fence value and calculates the last
207 * signalled fence value. Returns true if activity occured
208 * on the ring, and the fence_queue should be waken up.
209 */
210 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
211 {
212 uint64_t seq, last_seq, last_emitted;
213 unsigned count_loop = 0;
214 bool wake = false;
215
216 /* Note there is a scenario here for an infinite loop but it's
217 * very unlikely to happen. For it to happen, the current polling
218 * process need to be interrupted by another process and another
219 * process needs to update the last_seq btw the atomic read and
220 * xchg of the current process.
221 *
222 * More over for this to go in infinite loop there need to be
223 * continuously new fence signaled ie radeon_fence_read needs
224 * to return a different value each time for both the currently
225 * polling process and the other process that xchg the last_seq
226 * btw atomic read and xchg of the current process. And the
227 * value the other process set as last seq must be higher than
228 * the seq value we just read. Which means that current process
229 * need to be interrupted after radeon_fence_read and before
230 * atomic xchg.
231 *
232 * To be even more safe we count the number of time we loop and
233 * we bail after 10 loop just accepting the fact that we might
234 * have temporarly set the last_seq not to the true real last
235 * seq but to an older one.
236 */
237 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
238 do {
239 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
240 seq = radeon_fence_read(rdev, ring);
241 seq |= last_seq & 0xffffffff00000000LL;
242 if (seq < last_seq) {
243 seq &= 0xffffffff;
244 seq |= last_emitted & 0xffffffff00000000LL;
245 }
246
247 if (seq <= last_seq || seq > last_emitted) {
248 break;
249 }
250 /* If we loop over we don't want to return without
251 * checking if a fence is signaled as it means that the
252 * seq we just read is different from the previous on.
253 */
254 wake = true;
255 last_seq = seq;
256 if ((count_loop++) > 10) {
257 /* We looped over too many time leave with the
258 * fact that we might have set an older fence
259 * seq then the current real last seq as signaled
260 * by the hw.
261 */
262 break;
263 }
264 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
265
266 if (seq < last_emitted)
267 radeon_fence_schedule_check(rdev, ring);
268
269 return wake;
270 }
271
272 /**
273 * radeon_fence_check_lockup - check for hardware lockup
274 *
275 * @work: delayed work item
276 *
277 * Checks for fence activity and if there is none probe
278 * the hardware if a lockup occured.
279 */
280 static void radeon_fence_check_lockup(struct work_struct *work)
281 {
282 struct radeon_fence_driver *fence_drv;
283 struct radeon_device *rdev;
284 int ring;
285
286 fence_drv = container_of(work, struct radeon_fence_driver,
287 lockup_work.work);
288 rdev = fence_drv->rdev;
289 ring = fence_drv - &rdev->fence_drv[0];
290
291 if (!down_read_trylock(&rdev->exclusive_lock)) {
292 /* just reschedule the check if a reset is going on */
293 radeon_fence_schedule_check(rdev, ring);
294 return;
295 }
296
297 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
298 unsigned long irqflags;
299
300 fence_drv->delayed_irq = false;
301 spin_lock_irqsave(&rdev->irq.lock, irqflags);
302 radeon_irq_set(rdev);
303 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
304 }
305
306 if (radeon_fence_activity(rdev, ring))
307 wake_up_all(&rdev->fence_queue);
308
309 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
310
311 /* good news we believe it's a lockup */
312 dev_warn(rdev->dev, "GPU lockup (current fence id "
313 "0x%016llx last fence id 0x%016llx on ring %d)\n",
314 (uint64_t)atomic64_read(&fence_drv->last_seq),
315 fence_drv->sync_seq[ring], ring);
316
317 /* remember that we need an reset */
318 rdev->needs_reset = true;
319 wake_up_all(&rdev->fence_queue);
320 }
321 up_read(&rdev->exclusive_lock);
322 }
323
324 /**
325 * radeon_fence_process - process a fence
326 *
327 * @rdev: radeon_device pointer
328 * @ring: ring index the fence is associated with
329 *
330 * Checks the current fence value and wakes the fence queue
331 * if the sequence number has increased (all asics).
332 */
333 void radeon_fence_process(struct radeon_device *rdev, int ring)
334 {
335 if (radeon_fence_activity(rdev, ring))
336 wake_up_all(&rdev->fence_queue);
337 }
338
339 /**
340 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
341 *
342 * @rdev: radeon device pointer
343 * @seq: sequence number
344 * @ring: ring index the fence is associated with
345 *
346 * Check if the last signaled fence sequnce number is >= the requested
347 * sequence number (all asics).
348 * Returns true if the fence has signaled (current fence value
349 * is >= requested value) or false if it has not (current fence
350 * value is < the requested value. Helper function for
351 * radeon_fence_signaled().
352 */
353 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
354 u64 seq, unsigned ring)
355 {
356 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
357 return true;
358 }
359 /* poll new last sequence at least once */
360 radeon_fence_process(rdev, ring);
361 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
362 return true;
363 }
364 return false;
365 }
366
367 static bool radeon_fence_is_signaled(struct dma_fence *f)
368 {
369 struct radeon_fence *fence = to_radeon_fence(f);
370 struct radeon_device *rdev = fence->rdev;
371 unsigned ring = fence->ring;
372 u64 seq = fence->seq;
373
374 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
375 return true;
376 }
377
378 if (down_read_trylock(&rdev->exclusive_lock)) {
379 radeon_fence_process(rdev, ring);
380 up_read(&rdev->exclusive_lock);
381
382 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
383 return true;
384 }
385 }
386 return false;
387 }
388
389 /**
390 * radeon_fence_enable_signaling - enable signalling on fence
391 * @fence: fence
392 *
393 * This function is called with fence_queue lock held, and adds a callback
394 * to fence_queue that checks if this fence is signaled, and if so it
395 * signals the fence and removes itself.
396 */
397 static bool radeon_fence_enable_signaling(struct dma_fence *f)
398 {
399 struct radeon_fence *fence = to_radeon_fence(f);
400 struct radeon_device *rdev = fence->rdev;
401
402 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
403 return false;
404
405 if (down_read_trylock(&rdev->exclusive_lock)) {
406 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
407
408 if (radeon_fence_activity(rdev, fence->ring))
409 wake_up_all_locked(&rdev->fence_queue);
410
411 /* did fence get signaled after we enabled the sw irq? */
412 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
413 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
414 up_read(&rdev->exclusive_lock);
415 return false;
416 }
417
418 up_read(&rdev->exclusive_lock);
419 } else {
420 /* we're probably in a lockup, lets not fiddle too much */
421 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
422 rdev->fence_drv[fence->ring].delayed_irq = true;
423 radeon_fence_schedule_check(rdev, fence->ring);
424 }
425
426 fence->fence_wake.flags = 0;
427 fence->fence_wake.private = NULL;
428 fence->fence_wake.func = radeon_fence_check_signaled;
429 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
430 dma_fence_get(f);
431
432 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
433 return true;
434 }
435
436 /**
437 * radeon_fence_signaled - check if a fence has signaled
438 *
439 * @fence: radeon fence object
440 *
441 * Check if the requested fence has signaled (all asics).
442 * Returns true if the fence has signaled or false if it has not.
443 */
444 bool radeon_fence_signaled(struct radeon_fence *fence)
445 {
446 if (!fence)
447 return true;
448
449 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
450 int ret;
451
452 ret = dma_fence_signal(&fence->base);
453 if (!ret)
454 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
455 return true;
456 }
457 return false;
458 }
459
460 /**
461 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
462 *
463 * @rdev: radeon device pointer
464 * @seq: sequence numbers
465 *
466 * Check if the last signaled fence sequnce number is >= the requested
467 * sequence number (all asics).
468 * Returns true if any has signaled (current value is >= requested value)
469 * or false if it has not. Helper function for radeon_fence_wait_seq.
470 */
471 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
472 {
473 unsigned i;
474
475 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
476 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
477 return true;
478 }
479 return false;
480 }
481
482 /**
483 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
484 *
485 * @rdev: radeon device pointer
486 * @target_seq: sequence number(s) we want to wait for
487 * @intr: use interruptable sleep
488 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
489 *
490 * Wait for the requested sequence number(s) to be written by any ring
491 * (all asics). Sequnce number array is indexed by ring id.
492 * @intr selects whether to use interruptable (true) or non-interruptable
493 * (false) sleep when waiting for the sequence number. Helper function
494 * for radeon_fence_wait_*().
495 * Returns remaining time if the sequence number has passed, 0 when
496 * the wait timeout, or an error for all other cases.
497 * -EDEADLK is returned when a GPU lockup has been detected.
498 */
499 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
500 u64 *target_seq, bool intr,
501 long timeout)
502 {
503 long r;
504 int i;
505
506 if (radeon_fence_any_seq_signaled(rdev, target_seq))
507 return timeout;
508
509 /* enable IRQs and tracing */
510 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
511 if (!target_seq[i])
512 continue;
513
514 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
515 radeon_irq_kms_sw_irq_get(rdev, i);
516 }
517
518 if (intr) {
519 r = wait_event_interruptible_timeout(rdev->fence_queue, (
520 radeon_fence_any_seq_signaled(rdev, target_seq)
521 || rdev->needs_reset), timeout);
522 } else {
523 r = wait_event_timeout(rdev->fence_queue, (
524 radeon_fence_any_seq_signaled(rdev, target_seq)
525 || rdev->needs_reset), timeout);
526 }
527
528 if (rdev->needs_reset)
529 r = -EDEADLK;
530
531 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
532 if (!target_seq[i])
533 continue;
534
535 radeon_irq_kms_sw_irq_put(rdev, i);
536 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
537 }
538
539 return r;
540 }
541
542 /**
543 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
544 *
545 * @fence: radeon fence object
546 * @intr: use interruptible sleep
547 *
548 * Wait for the requested fence to signal (all asics).
549 * @intr selects whether to use interruptable (true) or non-interruptable
550 * (false) sleep when waiting for the fence.
551 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
552 * Returns remaining time if the sequence number has passed, 0 when
553 * the wait timeout, or an error for all other cases.
554 */
555 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
556 {
557 uint64_t seq[RADEON_NUM_RINGS] = {};
558 long r;
559 int r_sig;
560
561 /*
562 * This function should not be called on !radeon fences.
563 * If this is the case, it would mean this function can
564 * also be called on radeon fences belonging to another card.
565 * exclusive_lock is not held in that case.
566 */
567 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
568 return dma_fence_wait(&fence->base, intr);
569
570 seq[fence->ring] = fence->seq;
571 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
572 if (r <= 0) {
573 return r;
574 }
575
576 r_sig = dma_fence_signal(&fence->base);
577 if (!r_sig)
578 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
579 return r;
580 }
581
582 /**
583 * radeon_fence_wait - wait for a fence to signal
584 *
585 * @fence: radeon fence object
586 * @intr: use interruptible sleep
587 *
588 * Wait for the requested fence to signal (all asics).
589 * @intr selects whether to use interruptable (true) or non-interruptable
590 * (false) sleep when waiting for the fence.
591 * Returns 0 if the fence has passed, error for all other cases.
592 */
593 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
594 {
595 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
596 if (r > 0) {
597 return 0;
598 } else {
599 return r;
600 }
601 }
602
603 /**
604 * radeon_fence_wait_any - wait for a fence to signal on any ring
605 *
606 * @rdev: radeon device pointer
607 * @fences: radeon fence object(s)
608 * @intr: use interruptable sleep
609 *
610 * Wait for any requested fence to signal (all asics). Fence
611 * array is indexed by ring id. @intr selects whether to use
612 * interruptable (true) or non-interruptable (false) sleep when
613 * waiting for the fences. Used by the suballocator.
614 * Returns 0 if any fence has passed, error for all other cases.
615 */
616 int radeon_fence_wait_any(struct radeon_device *rdev,
617 struct radeon_fence **fences,
618 bool intr)
619 {
620 uint64_t seq[RADEON_NUM_RINGS];
621 unsigned i, num_rings = 0;
622 long r;
623
624 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
625 seq[i] = 0;
626
627 if (!fences[i]) {
628 continue;
629 }
630
631 seq[i] = fences[i]->seq;
632 ++num_rings;
633 }
634
635 /* nothing to wait for ? */
636 if (num_rings == 0)
637 return -ENOENT;
638
639 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
640 if (r < 0) {
641 return r;
642 }
643 return 0;
644 }
645
646 /**
647 * radeon_fence_wait_next - wait for the next fence to signal
648 *
649 * @rdev: radeon device pointer
650 * @ring: ring index the fence is associated with
651 *
652 * Wait for the next fence on the requested ring to signal (all asics).
653 * Returns 0 if the next fence has passed, error for all other cases.
654 * Caller must hold ring lock.
655 */
656 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
657 {
658 uint64_t seq[RADEON_NUM_RINGS] = {};
659 long r;
660
661 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
662 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
663 /* nothing to wait for, last_seq is
664 already the last emited fence */
665 return -ENOENT;
666 }
667 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
668 if (r < 0)
669 return r;
670 return 0;
671 }
672
673 /**
674 * radeon_fence_wait_empty - wait for all fences to signal
675 *
676 * @rdev: radeon device pointer
677 * @ring: ring index the fence is associated with
678 *
679 * Wait for all fences on the requested ring to signal (all asics).
680 * Returns 0 if the fences have passed, error for all other cases.
681 * Caller must hold ring lock.
682 */
683 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
684 {
685 uint64_t seq[RADEON_NUM_RINGS] = {};
686 long r;
687
688 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
689 if (!seq[ring])
690 return 0;
691
692 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
693 if (r < 0) {
694 if (r == -EDEADLK)
695 return -EDEADLK;
696
697 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
698 ring, r);
699 }
700 return 0;
701 }
702
703 /**
704 * radeon_fence_ref - take a ref on a fence
705 *
706 * @fence: radeon fence object
707 *
708 * Take a reference on a fence (all asics).
709 * Returns the fence.
710 */
711 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
712 {
713 dma_fence_get(&fence->base);
714 return fence;
715 }
716
717 /**
718 * radeon_fence_unref - remove a ref on a fence
719 *
720 * @fence: radeon fence object
721 *
722 * Remove a reference on a fence (all asics).
723 */
724 void radeon_fence_unref(struct radeon_fence **fence)
725 {
726 struct radeon_fence *tmp = *fence;
727
728 *fence = NULL;
729 if (tmp) {
730 dma_fence_put(&tmp->base);
731 }
732 }
733
734 /**
735 * radeon_fence_count_emitted - get the count of emitted fences
736 *
737 * @rdev: radeon device pointer
738 * @ring: ring index the fence is associated with
739 *
740 * Get the number of fences emitted on the requested ring (all asics).
741 * Returns the number of emitted fences on the ring. Used by the
742 * dynpm code to ring track activity.
743 */
744 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
745 {
746 uint64_t emitted;
747
748 /* We are not protected by ring lock when reading the last sequence
749 * but it's ok to report slightly wrong fence count here.
750 */
751 radeon_fence_process(rdev, ring);
752 emitted = rdev->fence_drv[ring].sync_seq[ring]
753 - atomic64_read(&rdev->fence_drv[ring].last_seq);
754 /* to avoid 32bits warp around */
755 if (emitted > 0x10000000) {
756 emitted = 0x10000000;
757 }
758 return (unsigned)emitted;
759 }
760
761 /**
762 * radeon_fence_need_sync - do we need a semaphore
763 *
764 * @fence: radeon fence object
765 * @dst_ring: which ring to check against
766 *
767 * Check if the fence needs to be synced against another ring
768 * (all asics). If so, we need to emit a semaphore.
769 * Returns true if we need to sync with another ring, false if
770 * not.
771 */
772 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
773 {
774 struct radeon_fence_driver *fdrv;
775
776 if (!fence) {
777 return false;
778 }
779
780 if (fence->ring == dst_ring) {
781 return false;
782 }
783
784 /* we are protected by the ring mutex */
785 fdrv = &fence->rdev->fence_drv[dst_ring];
786 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
787 return false;
788 }
789
790 return true;
791 }
792
793 /**
794 * radeon_fence_note_sync - record the sync point
795 *
796 * @fence: radeon fence object
797 * @dst_ring: which ring to check against
798 *
799 * Note the sequence number at which point the fence will
800 * be synced with the requested ring (all asics).
801 */
802 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
803 {
804 struct radeon_fence_driver *dst, *src;
805 unsigned i;
806
807 if (!fence) {
808 return;
809 }
810
811 if (fence->ring == dst_ring) {
812 return;
813 }
814
815 /* we are protected by the ring mutex */
816 src = &fence->rdev->fence_drv[fence->ring];
817 dst = &fence->rdev->fence_drv[dst_ring];
818 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
819 if (i == dst_ring) {
820 continue;
821 }
822 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
823 }
824 }
825
826 /**
827 * radeon_fence_driver_start_ring - make the fence driver
828 * ready for use on the requested ring.
829 *
830 * @rdev: radeon device pointer
831 * @ring: ring index to start the fence driver on
832 *
833 * Make the fence driver ready for processing (all asics).
834 * Not all asics have all rings, so each asic will only
835 * start the fence driver on the rings it has.
836 * Returns 0 for success, errors for failure.
837 */
838 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
839 {
840 uint64_t index;
841 int r;
842
843 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
844 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
845 rdev->fence_drv[ring].scratch_reg = 0;
846 if (ring != R600_RING_TYPE_UVD_INDEX) {
847 index = R600_WB_EVENT_OFFSET + ring * 4;
848 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
849 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
850 index;
851
852 } else {
853 /* put fence directly behind firmware */
854 index = ALIGN(rdev->uvd_fw->size, 8);
855 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
856 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
857 }
858
859 } else {
860 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
861 if (r) {
862 dev_err(rdev->dev, "fence failed to get scratch register\n");
863 return r;
864 }
865 index = RADEON_WB_SCRATCH_OFFSET +
866 rdev->fence_drv[ring].scratch_reg -
867 rdev->scratch.reg_base;
868 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
869 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
870 }
871 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
872 rdev->fence_drv[ring].initialized = true;
873 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
874 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
875 return 0;
876 }
877
878 /**
879 * radeon_fence_driver_init_ring - init the fence driver
880 * for the requested ring.
881 *
882 * @rdev: radeon device pointer
883 * @ring: ring index to start the fence driver on
884 *
885 * Init the fence driver for the requested ring (all asics).
886 * Helper function for radeon_fence_driver_init().
887 */
888 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
889 {
890 int i;
891
892 rdev->fence_drv[ring].scratch_reg = -1;
893 rdev->fence_drv[ring].cpu_addr = NULL;
894 rdev->fence_drv[ring].gpu_addr = 0;
895 for (i = 0; i < RADEON_NUM_RINGS; ++i)
896 rdev->fence_drv[ring].sync_seq[i] = 0;
897 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
898 rdev->fence_drv[ring].initialized = false;
899 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
900 radeon_fence_check_lockup);
901 rdev->fence_drv[ring].rdev = rdev;
902 }
903
904 /**
905 * radeon_fence_driver_init - init the fence driver
906 * for all possible rings.
907 *
908 * @rdev: radeon device pointer
909 *
910 * Init the fence driver for all possible rings (all asics).
911 * Not all asics have all rings, so each asic will only
912 * start the fence driver on the rings it has using
913 * radeon_fence_driver_start_ring().
914 * Returns 0 for success.
915 */
916 int radeon_fence_driver_init(struct radeon_device *rdev)
917 {
918 int ring;
919
920 init_waitqueue_head(&rdev->fence_queue);
921 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
922 radeon_fence_driver_init_ring(rdev, ring);
923 }
924 if (radeon_debugfs_fence_init(rdev)) {
925 dev_err(rdev->dev, "fence debugfs file creation failed\n");
926 }
927 return 0;
928 }
929
930 /**
931 * radeon_fence_driver_fini - tear down the fence driver
932 * for all possible rings.
933 *
934 * @rdev: radeon device pointer
935 *
936 * Tear down the fence driver for all possible rings (all asics).
937 */
938 void radeon_fence_driver_fini(struct radeon_device *rdev)
939 {
940 int ring, r;
941
942 mutex_lock(&rdev->ring_lock);
943 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
944 if (!rdev->fence_drv[ring].initialized)
945 continue;
946 r = radeon_fence_wait_empty(rdev, ring);
947 if (r) {
948 /* no need to trigger GPU reset as we are unloading */
949 radeon_fence_driver_force_completion(rdev, ring);
950 }
951 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
952 wake_up_all(&rdev->fence_queue);
953 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
954 rdev->fence_drv[ring].initialized = false;
955 }
956 mutex_unlock(&rdev->ring_lock);
957 }
958
959 /**
960 * radeon_fence_driver_force_completion - force all fence waiter to complete
961 *
962 * @rdev: radeon device pointer
963 * @ring: the ring to complete
964 *
965 * In case of GPU reset failure make sure no process keep waiting on fence
966 * that will never complete.
967 */
968 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
969 {
970 if (rdev->fence_drv[ring].initialized) {
971 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
972 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
973 }
974 }
975
976
977 /*
978 * Fence debugfs
979 */
980 #if defined(CONFIG_DEBUG_FS)
981 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
982 {
983 struct drm_info_node *node = (struct drm_info_node *)m->private;
984 struct drm_device *dev = node->minor->dev;
985 struct radeon_device *rdev = dev->dev_private;
986 int i, j;
987
988 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
989 if (!rdev->fence_drv[i].initialized)
990 continue;
991
992 radeon_fence_process(rdev, i);
993
994 seq_printf(m, "--- ring %d ---\n", i);
995 seq_printf(m, "Last signaled fence 0x%016llx\n",
996 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
997 seq_printf(m, "Last emitted 0x%016llx\n",
998 rdev->fence_drv[i].sync_seq[i]);
999
1000 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
1001 if (i != j && rdev->fence_drv[j].initialized)
1002 seq_printf(m, "Last sync to ring %d 0x%016llx\n",
1003 j, rdev->fence_drv[i].sync_seq[j]);
1004 }
1005 }
1006 return 0;
1007 }
1008
1009 /**
1010 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1011 *
1012 * Manually trigger a gpu reset at the next fence wait.
1013 */
1014 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1015 {
1016 struct drm_info_node *node = (struct drm_info_node *) m->private;
1017 struct drm_device *dev = node->minor->dev;
1018 struct radeon_device *rdev = dev->dev_private;
1019
1020 down_read(&rdev->exclusive_lock);
1021 seq_printf(m, "%d\n", rdev->needs_reset);
1022 rdev->needs_reset = true;
1023 wake_up_all(&rdev->fence_queue);
1024 up_read(&rdev->exclusive_lock);
1025
1026 return 0;
1027 }
1028
1029 static struct drm_info_list radeon_debugfs_fence_list[] = {
1030 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1031 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1032 };
1033 #endif
1034
1035 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1036 {
1037 #if defined(CONFIG_DEBUG_FS)
1038 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1039 #else
1040 return 0;
1041 #endif
1042 }
1043
1044 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1045 {
1046 return "radeon";
1047 }
1048
1049 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1050 {
1051 struct radeon_fence *fence = to_radeon_fence(f);
1052 switch (fence->ring) {
1053 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1054 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1055 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1056 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1057 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1058 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1059 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1060 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1061 default: WARN_ON_ONCE(1); return "radeon.unk";
1062 }
1063 }
1064
1065 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1066 {
1067 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1068 }
1069
1070 struct radeon_wait_cb {
1071 struct dma_fence_cb base;
1072 struct task_struct *task;
1073 };
1074
1075 static void
1076 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1077 {
1078 struct radeon_wait_cb *wait =
1079 container_of(cb, struct radeon_wait_cb, base);
1080
1081 wake_up_process(wait->task);
1082 }
1083
1084 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1085 signed long t)
1086 {
1087 struct radeon_fence *fence = to_radeon_fence(f);
1088 struct radeon_device *rdev = fence->rdev;
1089 struct radeon_wait_cb cb;
1090
1091 cb.task = current;
1092
1093 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1094 return t;
1095
1096 while (t > 0) {
1097 if (intr)
1098 set_current_state(TASK_INTERRUPTIBLE);
1099 else
1100 set_current_state(TASK_UNINTERRUPTIBLE);
1101
1102 /*
1103 * radeon_test_signaled must be called after
1104 * set_current_state to prevent a race with wake_up_process
1105 */
1106 if (radeon_test_signaled(fence))
1107 break;
1108
1109 if (rdev->needs_reset) {
1110 t = -EDEADLK;
1111 break;
1112 }
1113
1114 t = schedule_timeout(t);
1115
1116 if (t > 0 && intr && signal_pending(current))
1117 t = -ERESTARTSYS;
1118 }
1119
1120 __set_current_state(TASK_RUNNING);
1121 dma_fence_remove_callback(f, &cb.base);
1122
1123 return t;
1124 }
1125
1126 const struct dma_fence_ops radeon_fence_ops = {
1127 .get_driver_name = radeon_fence_get_driver_name,
1128 .get_timeline_name = radeon_fence_get_timeline_name,
1129 .enable_signaling = radeon_fence_enable_signaling,
1130 .signaled = radeon_fence_is_signaled,
1131 .wait = radeon_fence_default_wait,
1132 .release = NULL,
1133 };
1134