radeon_fence.c revision 1.14 1 /* $NetBSD: radeon_fence.c,v 1.14 2018/08/27 14:20:26 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Dave Airlie
32 */
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.14 2018/08/27 14:20:26 riastradh Exp $");
35
36 #include <linux/seq_file.h>
37 #include <linux/atomic.h>
38 #include <linux/wait.h>
39 #include <linux/kref.h>
40 #include <linux/slab.h>
41 #include <linux/firmware.h>
42 #include <drm/drmP.h>
43 #include "radeon_reg.h"
44 #include "radeon.h"
45 #include "radeon_trace.h"
46
47 /*
48 * Fences
49 * Fences mark an event in the GPUs pipeline and are used
50 * for GPU/CPU synchronization. When the fence is written,
51 * it is expected that all buffers associated with that fence
52 * are no longer in use by the associated ring on the GPU and
53 * that the the relevant GPU caches have been flushed. Whether
54 * we use a scratch register or memory location depends on the asic
55 * and whether writeback is enabled.
56 */
57
58 /**
59 * radeon_fence_write - write a fence value
60 *
61 * @rdev: radeon_device pointer
62 * @seq: sequence number to write
63 * @ring: ring index the fence is associated with
64 *
65 * Writes a fence value to memory or a scratch register (all asics).
66 */
67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
68 {
69 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
70 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
71 if (drv->cpu_addr) {
72 *drv->cpu_addr = cpu_to_le32(seq);
73 }
74 } else {
75 WREG32(drv->scratch_reg, seq);
76 }
77 }
78
79 /**
80 * radeon_fence_read - read a fence value
81 *
82 * @rdev: radeon_device pointer
83 * @ring: ring index the fence is associated with
84 *
85 * Reads a fence value from memory or a scratch register (all asics).
86 * Returns the value of the fence read from memory or register.
87 */
88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
89 {
90 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
91 u32 seq = 0;
92
93 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
94 if (drv->cpu_addr) {
95 seq = le32_to_cpu(*drv->cpu_addr);
96 } else {
97 seq = lower_32_bits(atomic64_read(&drv->last_seq));
98 }
99 } else {
100 seq = RREG32(drv->scratch_reg);
101 }
102 return seq;
103 }
104
105 /**
106 * radeon_fence_schedule_check - schedule lockup check
107 *
108 * @rdev: radeon_device pointer
109 * @ring: ring index we should work with
110 *
111 * Queues a delayed work item to check for lockups.
112 */
113 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
114 {
115 /*
116 * Do not reset the timer here with mod_delayed_work,
117 * this can livelock in an interaction with TTM delayed destroy.
118 */
119 queue_delayed_work(system_power_efficient_wq,
120 &rdev->fence_drv[ring].lockup_work,
121 RADEON_FENCE_JIFFIES_TIMEOUT);
122 }
123
124 /**
125 * radeon_fence_emit - emit a fence on the requested ring
126 *
127 * @rdev: radeon_device pointer
128 * @fence: radeon fence object
129 * @ring: ring index the fence is associated with
130 *
131 * Emits a fence command on the requested ring (all asics).
132 * Returns 0 on success, -ENOMEM on failure.
133 */
134 int radeon_fence_emit(struct radeon_device *rdev,
135 struct radeon_fence **fence,
136 int ring)
137 {
138 u64 seq = ++rdev->fence_drv[ring].sync_seq[ring];
139
140 /* we are protected by the ring emission mutex */
141 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
142 if ((*fence) == NULL) {
143 return -ENOMEM;
144 }
145 (*fence)->rdev = rdev;
146 (*fence)->seq = seq;
147 (*fence)->ring = ring;
148 (*fence)->is_vm_update = false;
149 fence_init(&(*fence)->base, &radeon_fence_ops,
150 &rdev->fence_lock, rdev->fence_context + ring, seq);
151 radeon_fence_ring_emit(rdev, ring, *fence);
152 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
153 radeon_fence_schedule_check(rdev, ring);
154 return 0;
155 }
156
157 /**
158 * radeon_fence_check_signaled - callback from fence_queue
159 *
160 * this function is called with fence_queue lock held, which is also used
161 * for the fence locking itself, so unlocked variants are used for
162 * fence_signal, and remove_wait_queue.
163 */
164 #ifdef __NetBSD__
165 static int radeon_fence_check_signaled(struct radeon_fence *fence)
166 #else
167 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
168 #endif
169 {
170 #ifndef __NetBSD__
171 struct radeon_fence *fence;
172 #endif
173 u64 seq;
174
175 #ifndef __NetBSD__
176 fence = container_of(wait, struct radeon_fence, fence_wake);
177 #endif
178 BUG_ON(!spin_is_locked(&fence->rdev->fence_lock));
179
180 /*
181 * We cannot use radeon_fence_process here because we're already
182 * in the waitqueue, in a call from wake_up_all.
183 */
184 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
185 if (seq >= fence->seq) {
186 int ret = fence_signal_locked(&fence->base);
187
188 if (!ret)
189 FENCE_TRACE(&fence->base, "signaled from irq context\n");
190 else
191 FENCE_TRACE(&fence->base, "was already signaled\n");
192
193 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
194 #ifdef __NetBSD__
195 TAILQ_REMOVE(&fence->rdev->fence_check, fence, fence_check);
196 #else
197 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
198 #endif
199 fence_put(&fence->base);
200 } else
201 FENCE_TRACE(&fence->base, "pending\n");
202 return 0;
203 }
204
205 #ifdef __NetBSD__
206 void
207 radeon_fence_wakeup_locked(struct radeon_device *rdev)
208 {
209 struct radeon_fence *fence, *next;
210
211 BUG_ON(!spin_is_locked(&rdev->fence_lock));
212 DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
213 TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) {
214 radeon_fence_check_signaled(fence);
215 }
216 }
217 #endif
218
219 /**
220 * radeon_fence_activity - check for fence activity
221 *
222 * @rdev: radeon_device pointer
223 * @ring: ring index the fence is associated with
224 *
225 * Checks the current fence value and calculates the last
226 * signalled fence value. Returns true if activity occured
227 * on the ring, and the fence_queue should be waken up.
228 */
229 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
230 {
231 uint64_t seq, last_seq, last_emitted;
232 unsigned count_loop = 0;
233 bool wake = false;
234
235 BUG_ON(!spin_is_locked(&rdev->fence_lock));
236
237 /* Note there is a scenario here for an infinite loop but it's
238 * very unlikely to happen. For it to happen, the current polling
239 * process need to be interrupted by another process and another
240 * process needs to update the last_seq btw the atomic read and
241 * xchg of the current process.
242 *
243 * More over for this to go in infinite loop there need to be
244 * continuously new fence signaled ie radeon_fence_read needs
245 * to return a different value each time for both the currently
246 * polling process and the other process that xchg the last_seq
247 * btw atomic read and xchg of the current process. And the
248 * value the other process set as last seq must be higher than
249 * the seq value we just read. Which means that current process
250 * need to be interrupted after radeon_fence_read and before
251 * atomic xchg.
252 *
253 * To be even more safe we count the number of time we loop and
254 * we bail after 10 loop just accepting the fact that we might
255 * have temporarly set the last_seq not to the true real last
256 * seq but to an older one.
257 */
258 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
259 do {
260 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
261 seq = radeon_fence_read(rdev, ring);
262 seq |= last_seq & 0xffffffff00000000LL;
263 if (seq < last_seq) {
264 seq &= 0xffffffff;
265 seq |= last_emitted & 0xffffffff00000000LL;
266 }
267
268 if (seq <= last_seq || seq > last_emitted) {
269 break;
270 }
271 /* If we loop over we don't want to return without
272 * checking if a fence is signaled as it means that the
273 * seq we just read is different from the previous on.
274 */
275 wake = true;
276 last_seq = seq;
277 if ((count_loop++) > 10) {
278 /* We looped over too many time leave with the
279 * fact that we might have set an older fence
280 * seq then the current real last seq as signaled
281 * by the hw.
282 */
283 break;
284 }
285 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
286
287 if (seq < last_emitted)
288 radeon_fence_schedule_check(rdev, ring);
289
290 return wake;
291 }
292
293 /**
294 * radeon_fence_check_lockup - check for hardware lockup
295 *
296 * @work: delayed work item
297 *
298 * Checks for fence activity and if there is none probe
299 * the hardware if a lockup occured.
300 */
301 static void radeon_fence_check_lockup(struct work_struct *work)
302 {
303 struct radeon_fence_driver *fence_drv;
304 struct radeon_device *rdev;
305 int ring;
306
307 fence_drv = container_of(work, struct radeon_fence_driver,
308 lockup_work.work);
309 rdev = fence_drv->rdev;
310 ring = fence_drv - &rdev->fence_drv[0];
311
312 #ifdef __NetBSD__
313 spin_lock(&rdev->fence_lock);
314 #endif
315
316 if (!down_read_trylock(&rdev->exclusive_lock)) {
317 /* just reschedule the check if a reset is going on */
318 radeon_fence_schedule_check(rdev, ring);
319 return;
320 }
321
322 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
323 unsigned long irqflags;
324
325 fence_drv->delayed_irq = false;
326 spin_lock_irqsave(&rdev->irq.lock, irqflags);
327 radeon_irq_set(rdev);
328 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
329 }
330
331 if (radeon_fence_activity(rdev, ring))
332 #ifdef __NetBSD__
333 radeon_fence_wakeup_locked(rdev);
334 #else
335 wake_up_all(&rdev->fence_queue);
336 #endif
337
338 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
339
340 /* good news we believe it's a lockup */
341 dev_warn(rdev->dev, "GPU lockup (current fence id "
342 "0x%016"PRIx64" last fence id 0x%016"PRIx64" on ring %d)\n",
343 (uint64_t)atomic64_read(&fence_drv->last_seq),
344 fence_drv->sync_seq[ring], ring);
345
346 /* remember that we need an reset */
347 rdev->needs_reset = true;
348 #ifdef __NetBSD__
349 radeon_fence_wakeup_locked(rdev);
350 #else
351 wake_up_all(&rdev->fence_queue);
352 #endif
353 }
354 up_read(&rdev->exclusive_lock);
355 #ifdef __NetBSD__
356 spin_unlock(&rdev->fence_lock);
357 #endif
358 }
359
360 /**
361 * radeon_fence_process - process a fence
362 *
363 * @rdev: radeon_device pointer
364 * @ring: ring index the fence is associated with
365 *
366 * Checks the current fence value and wakes the fence queue
367 * if the sequence number has increased (all asics).
368 */
369 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring)
370 {
371 if (radeon_fence_activity(rdev, ring))
372 #ifdef __NetBSD__
373 radeon_fence_wakeup_locked(rdev);
374 #else
375 wake_up_all(&rdev->fence_queue);
376 #endif
377 }
378
379 void radeon_fence_process(struct radeon_device *rdev, int ring)
380 {
381
382 spin_lock(&rdev->fence_lock);
383 radeon_fence_process_locked(rdev, ring);
384 spin_unlock(&rdev->fence_lock);
385 }
386
387 /**
388 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
389 *
390 * @rdev: radeon device pointer
391 * @seq: sequence number
392 * @ring: ring index the fence is associated with
393 *
394 * Check if the last signaled fence sequnce number is >= the requested
395 * sequence number (all asics).
396 * Returns true if the fence has signaled (current fence value
397 * is >= requested value) or false if it has not (current fence
398 * value is < the requested value. Helper function for
399 * radeon_fence_signaled().
400 */
401 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
402 u64 seq, unsigned ring)
403 {
404 BUG_ON(!spin_is_locked(&rdev->fence_lock));
405 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
406 return true;
407 }
408 /* poll new last sequence at least once */
409 radeon_fence_process_locked(rdev, ring);
410 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
411 return true;
412 }
413 return false;
414 }
415
416 static bool radeon_fence_is_signaled(struct fence *f)
417 {
418 struct radeon_fence *fence = to_radeon_fence(f);
419 struct radeon_device *rdev = fence->rdev;
420 unsigned ring = fence->ring;
421 u64 seq = fence->seq;
422
423 BUG_ON(!spin_is_locked(&rdev->fence_lock));
424
425 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
426 return true;
427 }
428
429 if (down_read_trylock(&rdev->exclusive_lock)) {
430 radeon_fence_process_locked(rdev, ring);
431 up_read(&rdev->exclusive_lock);
432
433 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
434 return true;
435 }
436 }
437 return false;
438 }
439
440 /**
441 * radeon_fence_enable_signaling - enable signalling on fence
442 * @fence: fence
443 *
444 * This function is called with fence_queue lock held, and adds a callback
445 * to fence_queue that checks if this fence is signaled, and if so it
446 * signals the fence and removes itself.
447 */
448 static bool radeon_fence_enable_signaling(struct fence *f)
449 {
450 struct radeon_fence *fence = to_radeon_fence(f);
451 struct radeon_device *rdev = fence->rdev;
452
453 BUG_ON(!spin_is_locked(&rdev->fence_lock));
454
455 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
456 return false;
457
458 if (down_read_trylock(&rdev->exclusive_lock)) {
459 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
460
461 if (radeon_fence_activity(rdev, fence->ring))
462 #ifdef __NetBSD__
463 radeon_fence_wakeup_locked(rdev);
464 #else
465 wake_up_all_locked(&rdev->fence_queue);
466 #endif
467
468 /* did fence get signaled after we enabled the sw irq? */
469 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
470 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
471 up_read(&rdev->exclusive_lock);
472 return false;
473 }
474
475 up_read(&rdev->exclusive_lock);
476 } else {
477 /* we're probably in a lockup, lets not fiddle too much */
478 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
479 rdev->fence_drv[fence->ring].delayed_irq = true;
480 radeon_fence_schedule_check(rdev, fence->ring);
481 }
482
483 #ifdef __NetBSD__
484 TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check);
485 #else
486 fence->fence_wake.flags = 0;
487 fence->fence_wake.private = NULL;
488 fence->fence_wake.func = radeon_fence_check_signaled;
489 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
490 #endif
491 fence_get(f);
492
493 FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
494 return true;
495 }
496
497 /**
498 * radeon_fence_signaled - check if a fence has signaled
499 *
500 * @fence: radeon fence object
501 *
502 * Check if the requested fence has signaled (all asics).
503 * Returns true if the fence has signaled or false if it has not.
504 */
505 bool radeon_fence_signaled(struct radeon_fence *fence)
506 {
507 if (!fence)
508 return true;
509
510 spin_lock(&fence->rdev->fence_lock);
511 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
512 int ret;
513
514 ret = fence_signal_locked(&fence->base);
515 if (!ret)
516 FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
517 spin_unlock(&fence->rdev->fence_lock);
518 return true;
519 }
520 spin_unlock(&fence->rdev->fence_lock);
521 return false;
522 }
523
524 /**
525 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
526 *
527 * @rdev: radeon device pointer
528 * @seq: sequence numbers
529 *
530 * Check if the last signaled fence sequnce number is >= the requested
531 * sequence number (all asics).
532 * Returns true if any has signaled (current value is >= requested value)
533 * or false if it has not. Helper function for radeon_fence_wait_seq.
534 */
535 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
536 {
537 unsigned i;
538
539 BUG_ON(!spin_is_locked(&rdev->fence_lock));
540
541 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
542 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
543 return true;
544 }
545 return false;
546 }
547
548 /**
549 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
550 *
551 * @rdev: radeon device pointer
552 * @target_seq: sequence number(s) we want to wait for
553 * @intr: use interruptable sleep
554 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
555 *
556 * Wait for the requested sequence number(s) to be written by any ring
557 * (all asics). Sequnce number array is indexed by ring id.
558 * @intr selects whether to use interruptable (true) or non-interruptable
559 * (false) sleep when waiting for the sequence number. Helper function
560 * for radeon_fence_wait_*().
561 * Returns remaining time if the sequence number has passed, 0 when
562 * the wait timeout, or an error for all other cases.
563 * -EDEADLK is returned when a GPU lockup has been detected.
564 */
565 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev,
566 u64 *target_seq, bool intr,
567 long timeout)
568 {
569 long r;
570 int i;
571
572 if (radeon_fence_any_seq_signaled(rdev, target_seq))
573 return timeout;
574
575 /* enable IRQs and tracing */
576 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
577 if (!target_seq[i])
578 continue;
579
580 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
581 radeon_irq_kms_sw_irq_get(rdev, i);
582 }
583
584 #ifdef __NetBSD__
585 if (intr)
586 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
587 &rdev->fence_lock, timeout,
588 (radeon_fence_any_seq_signaled(rdev, target_seq)
589 || rdev->needs_reset));
590 else
591 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
592 &rdev->fence_lock, timeout,
593 (radeon_fence_any_seq_signaled(rdev, target_seq)
594 || rdev->needs_reset));
595 #else
596 if (intr) {
597 r = wait_event_interruptible_timeout(rdev->fence_queue, (
598 radeon_fence_any_seq_signaled(rdev, target_seq)
599 || rdev->needs_reset), timeout);
600 } else {
601 r = wait_event_timeout(rdev->fence_queue, (
602 radeon_fence_any_seq_signaled(rdev, target_seq)
603 || rdev->needs_reset), timeout);
604 }
605 #endif
606
607 if (rdev->needs_reset)
608 r = -EDEADLK;
609
610 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
611 if (!target_seq[i])
612 continue;
613
614 radeon_irq_kms_sw_irq_put(rdev, i);
615 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
616 }
617
618 return r;
619 }
620
621 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
622 u64 *target_seq, bool intr, long timo)
623 {
624 long r;
625
626 spin_lock(&rdev->fence_lock);
627 r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo);
628 spin_unlock(&rdev->fence_lock);
629
630 return r;
631 }
632
633 /**
634 * radeon_fence_wait - wait for a fence to signal
635 *
636 * @fence: radeon fence object
637 * @intr: use interruptible sleep
638 *
639 * Wait for the requested fence to signal (all asics).
640 * @intr selects whether to use interruptable (true) or non-interruptable
641 * (false) sleep when waiting for the fence.
642 * Returns 0 if the fence has passed, error for all other cases.
643 */
644 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
645 {
646 uint64_t seq[RADEON_NUM_RINGS] = {};
647 long r;
648
649 /*
650 * This function should not be called on !radeon fences.
651 * If this is the case, it would mean this function can
652 * also be called on radeon fences belonging to another card.
653 * exclusive_lock is not held in that case.
654 */
655 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
656 return fence_wait(&fence->base, intr);
657
658 seq[fence->ring] = fence->seq;
659 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
660 if (r < 0) {
661 return r;
662 }
663
664 r = fence_signal(&fence->base);
665 if (!r)
666 FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
667 return 0;
668 }
669
670 /**
671 * radeon_fence_wait_any - wait for a fence to signal on any ring
672 *
673 * @rdev: radeon device pointer
674 * @fences: radeon fence object(s)
675 * @intr: use interruptable sleep
676 *
677 * Wait for any requested fence to signal (all asics). Fence
678 * array is indexed by ring id. @intr selects whether to use
679 * interruptable (true) or non-interruptable (false) sleep when
680 * waiting for the fences. Used by the suballocator.
681 * Returns 0 if any fence has passed, error for all other cases.
682 */
683 int radeon_fence_wait_any(struct radeon_device *rdev,
684 struct radeon_fence **fences,
685 bool intr)
686 {
687 uint64_t seq[RADEON_NUM_RINGS];
688 unsigned i, num_rings = 0;
689 long r;
690
691 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
692 seq[i] = 0;
693
694 if (!fences[i]) {
695 continue;
696 }
697
698 seq[i] = fences[i]->seq;
699 ++num_rings;
700 }
701
702 /* nothing to wait for ? */
703 if (num_rings == 0)
704 return -ENOENT;
705
706 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
707 if (r < 0) {
708 return r;
709 }
710 return 0;
711 }
712
713 /**
714 * radeon_fence_wait_next - wait for the next fence to signal
715 *
716 * @rdev: radeon device pointer
717 * @ring: ring index the fence is associated with
718 *
719 * Wait for the next fence on the requested ring to signal (all asics).
720 * Returns 0 if the next fence has passed, error for all other cases.
721 * Caller must hold ring lock.
722 */
723 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
724 {
725 uint64_t seq[RADEON_NUM_RINGS] = {};
726 long r;
727
728 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
729 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
730 /* nothing to wait for, last_seq is
731 already the last emited fence */
732 return -ENOENT;
733 }
734 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
735 if (r < 0)
736 return r;
737 return 0;
738 }
739
740 /**
741 * radeon_fence_wait_empty - wait for all fences to signal
742 *
743 * @rdev: radeon device pointer
744 * @ring: ring index the fence is associated with
745 *
746 * Wait for all fences on the requested ring to signal (all asics).
747 * Returns 0 if the fences have passed, error for all other cases.
748 * Caller must hold ring lock.
749 */
750 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
751 {
752 uint64_t seq[RADEON_NUM_RINGS] = {};
753 long r;
754
755 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
756 if (!seq[ring])
757 return 0;
758
759 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
760 if (r < 0) {
761 if (r == -EDEADLK)
762 return -EDEADLK;
763
764 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
765 ring, r);
766 }
767 return 0;
768 }
769
770 /**
771 * radeon_fence_ref - take a ref on a fence
772 *
773 * @fence: radeon fence object
774 *
775 * Take a reference on a fence (all asics).
776 * Returns the fence.
777 */
778 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
779 {
780 fence_get(&fence->base);
781 return fence;
782 }
783
784 /**
785 * radeon_fence_unref - remove a ref on a fence
786 *
787 * @fence: radeon fence object
788 *
789 * Remove a reference on a fence (all asics).
790 */
791 void radeon_fence_unref(struct radeon_fence **fence)
792 {
793 struct radeon_fence *tmp = *fence;
794
795 *fence = NULL;
796 if (tmp) {
797 fence_put(&tmp->base);
798 }
799 }
800
801 /**
802 * radeon_fence_count_emitted - get the count of emitted fences
803 *
804 * @rdev: radeon device pointer
805 * @ring: ring index the fence is associated with
806 *
807 * Get the number of fences emitted on the requested ring (all asics).
808 * Returns the number of emitted fences on the ring. Used by the
809 * dynpm code to ring track activity.
810 */
811 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
812 {
813 uint64_t emitted;
814
815 /* We are not protected by ring lock when reading the last sequence
816 * but it's ok to report slightly wrong fence count here.
817 */
818 radeon_fence_process(rdev, ring);
819 emitted = rdev->fence_drv[ring].sync_seq[ring]
820 - atomic64_read(&rdev->fence_drv[ring].last_seq);
821 /* to avoid 32bits warp around */
822 if (emitted > 0x10000000) {
823 emitted = 0x10000000;
824 }
825 return (unsigned)emitted;
826 }
827
828 /**
829 * radeon_fence_need_sync - do we need a semaphore
830 *
831 * @fence: radeon fence object
832 * @dst_ring: which ring to check against
833 *
834 * Check if the fence needs to be synced against another ring
835 * (all asics). If so, we need to emit a semaphore.
836 * Returns true if we need to sync with another ring, false if
837 * not.
838 */
839 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
840 {
841 struct radeon_fence_driver *fdrv;
842
843 if (!fence) {
844 return false;
845 }
846
847 if (fence->ring == dst_ring) {
848 return false;
849 }
850
851 /* we are protected by the ring mutex */
852 fdrv = &fence->rdev->fence_drv[dst_ring];
853 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
854 return false;
855 }
856
857 return true;
858 }
859
860 /**
861 * radeon_fence_note_sync - record the sync point
862 *
863 * @fence: radeon fence object
864 * @dst_ring: which ring to check against
865 *
866 * Note the sequence number at which point the fence will
867 * be synced with the requested ring (all asics).
868 */
869 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
870 {
871 struct radeon_fence_driver *dst, *src;
872 unsigned i;
873
874 if (!fence) {
875 return;
876 }
877
878 if (fence->ring == dst_ring) {
879 return;
880 }
881
882 /* we are protected by the ring mutex */
883 src = &fence->rdev->fence_drv[fence->ring];
884 dst = &fence->rdev->fence_drv[dst_ring];
885 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
886 if (i == dst_ring) {
887 continue;
888 }
889 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
890 }
891 }
892
893 /**
894 * radeon_fence_driver_start_ring - make the fence driver
895 * ready for use on the requested ring.
896 *
897 * @rdev: radeon device pointer
898 * @ring: ring index to start the fence driver on
899 *
900 * Make the fence driver ready for processing (all asics).
901 * Not all asics have all rings, so each asic will only
902 * start the fence driver on the rings it has.
903 * Returns 0 for success, errors for failure.
904 */
905 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
906 {
907 uint64_t index;
908 int r;
909
910 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
911 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
912 rdev->fence_drv[ring].scratch_reg = 0;
913 if (ring != R600_RING_TYPE_UVD_INDEX) {
914 index = R600_WB_EVENT_OFFSET + ring * 4;
915 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
916 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
917 index;
918
919 } else {
920 /* put fence directly behind firmware */
921 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
922 index = round_up(rdev->uvd_fw->size, 8);
923 #else
924 index = ALIGN(rdev->uvd_fw->size, 8);
925 #endif
926 rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index);
927 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
928 }
929
930 } else {
931 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
932 if (r) {
933 dev_err(rdev->dev, "fence failed to get scratch register\n");
934 return r;
935 }
936 index = RADEON_WB_SCRATCH_OFFSET +
937 rdev->fence_drv[ring].scratch_reg -
938 rdev->scratch.reg_base;
939 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
940 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
941 }
942 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
943 rdev->fence_drv[ring].initialized = true;
944 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n",
945 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
946 return 0;
947 }
948
949 /**
950 * radeon_fence_driver_init_ring - init the fence driver
951 * for the requested ring.
952 *
953 * @rdev: radeon device pointer
954 * @ring: ring index to start the fence driver on
955 *
956 * Init the fence driver for the requested ring (all asics).
957 * Helper function for radeon_fence_driver_init().
958 */
959 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
960 {
961 int i;
962
963 rdev->fence_drv[ring].scratch_reg = -1;
964 rdev->fence_drv[ring].cpu_addr = NULL;
965 rdev->fence_drv[ring].gpu_addr = 0;
966 for (i = 0; i < RADEON_NUM_RINGS; ++i)
967 rdev->fence_drv[ring].sync_seq[i] = 0;
968 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
969 rdev->fence_drv[ring].initialized = false;
970 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
971 radeon_fence_check_lockup);
972 rdev->fence_drv[ring].rdev = rdev;
973 }
974
975 /**
976 * radeon_fence_driver_init - init the fence driver
977 * for all possible rings.
978 *
979 * @rdev: radeon device pointer
980 *
981 * Init the fence driver for all possible rings (all asics).
982 * Not all asics have all rings, so each asic will only
983 * start the fence driver on the rings it has using
984 * radeon_fence_driver_start_ring().
985 * Returns 0 for success.
986 */
987 int radeon_fence_driver_init(struct radeon_device *rdev)
988 {
989 int ring;
990
991 #ifdef __NetBSD__
992 spin_lock_init(&rdev->fence_lock);
993 DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence");
994 TAILQ_INIT(&rdev->fence_check);
995 #else
996 init_waitqueue_head(&rdev->fence_queue);
997 #endif
998 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
999 radeon_fence_driver_init_ring(rdev, ring);
1000 }
1001 if (radeon_debugfs_fence_init(rdev)) {
1002 dev_err(rdev->dev, "fence debugfs file creation failed\n");
1003 }
1004 return 0;
1005 }
1006
1007 /**
1008 * radeon_fence_driver_fini - tear down the fence driver
1009 * for all possible rings.
1010 *
1011 * @rdev: radeon device pointer
1012 *
1013 * Tear down the fence driver for all possible rings (all asics).
1014 */
1015 void radeon_fence_driver_fini(struct radeon_device *rdev)
1016 {
1017 int ring, r;
1018
1019 mutex_lock(&rdev->ring_lock);
1020 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
1021 if (!rdev->fence_drv[ring].initialized)
1022 continue;
1023 r = radeon_fence_wait_empty(rdev, ring);
1024 if (r) {
1025 /* no need to trigger GPU reset as we are unloading */
1026 radeon_fence_driver_force_completion(rdev, ring);
1027 }
1028 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1029 #ifdef __NetBSD__
1030 spin_lock(&rdev->fence_lock);
1031 radeon_fence_wakeup_locked(rdev);
1032 spin_unlock(&rdev->fence_lock);
1033 #else
1034 wake_up_all(&rdev->fence_queue);
1035 #endif
1036 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
1037 rdev->fence_drv[ring].initialized = false;
1038 }
1039 mutex_unlock(&rdev->ring_lock);
1040
1041 #ifdef __NetBSD__
1042 BUG_ON(!TAILQ_EMPTY(&rdev->fence_check));
1043 DRM_DESTROY_WAITQUEUE(&rdev->fence_queue);
1044 spin_lock_destroy(&rdev->fence_lock);
1045 #endif
1046 }
1047
1048 /**
1049 * radeon_fence_driver_force_completion - force all fence waiter to complete
1050 *
1051 * @rdev: radeon device pointer
1052 * @ring: the ring to complete
1053 *
1054 * In case of GPU reset failure make sure no process keep waiting on fence
1055 * that will never complete.
1056 */
1057 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
1058 {
1059 if (rdev->fence_drv[ring].initialized) {
1060 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
1061 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1062 }
1063 }
1064
1065
1066 /*
1067 * Fence debugfs
1068 */
1069 #if defined(CONFIG_DEBUG_FS)
1070 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
1071 {
1072 struct drm_info_node *node = (struct drm_info_node *)m->private;
1073 struct drm_device *dev = node->minor->dev;
1074 struct radeon_device *rdev = dev->dev_private;
1075 int i, j;
1076
1077 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1078 if (!rdev->fence_drv[i].initialized)
1079 continue;
1080
1081 radeon_fence_process(rdev, i);
1082
1083 seq_printf(m, "--- ring %d ---\n", i);
1084 seq_printf(m, "Last signaled fence 0x%016llx\n",
1085 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
1086 seq_printf(m, "Last emitted 0x%016"PRIx64"\n",
1087 rdev->fence_drv[i].sync_seq[i]);
1088
1089 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
1090 if (i != j && rdev->fence_drv[j].initialized)
1091 seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n",
1092 j, rdev->fence_drv[i].sync_seq[j]);
1093 }
1094 }
1095 return 0;
1096 }
1097
1098 /**
1099 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1100 *
1101 * Manually trigger a gpu reset at the next fence wait.
1102 */
1103 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1104 {
1105 struct drm_info_node *node = (struct drm_info_node *) m->private;
1106 struct drm_device *dev = node->minor->dev;
1107 struct radeon_device *rdev = dev->dev_private;
1108
1109 down_read(&rdev->exclusive_lock);
1110 seq_printf(m, "%d\n", rdev->needs_reset);
1111 rdev->needs_reset = true;
1112 wake_up_all(&rdev->fence_queue);
1113 up_read(&rdev->exclusive_lock);
1114
1115 return 0;
1116 }
1117
1118 static struct drm_info_list radeon_debugfs_fence_list[] = {
1119 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1120 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1121 };
1122 #endif
1123
1124 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1125 {
1126 #if defined(CONFIG_DEBUG_FS)
1127 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1128 #else
1129 return 0;
1130 #endif
1131 }
1132
1133 static const char *radeon_fence_get_driver_name(struct fence *fence)
1134 {
1135 return "radeon";
1136 }
1137
1138 static const char *radeon_fence_get_timeline_name(struct fence *f)
1139 {
1140 struct radeon_fence *fence = to_radeon_fence(f);
1141 switch (fence->ring) {
1142 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1143 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1144 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1145 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1146 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1147 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1148 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1149 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1150 default: WARN_ON_ONCE(1); return "radeon.unk";
1151 }
1152 }
1153
1154 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1155 {
1156 return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1157 }
1158
1159 #ifdef __NetBSD__
1160
1161 static void
1162 radeon_fence_wakeup_cb(struct fence *fence, struct fence_cb *cb)
1163 {
1164 struct radeon_fence *rfence = to_radeon_fence(fence);
1165 struct radeon_device *rdev = rfence->rdev;
1166
1167 BUG_ON(!spin_is_locked(&rdev->fence_lock));
1168 cv_broadcast(&rdev->fence_queue);
1169 }
1170
1171 static signed long
1172 radeon_fence_default_wait(struct fence *f, bool intr, signed long timo)
1173 {
1174 struct fence_cb fcb;
1175 struct radeon_fence *fence = to_radeon_fence(f);
1176 struct radeon_device *rdev = fence->rdev;
1177 int r;
1178
1179 r = fence_add_callback(f, &fcb, radeon_fence_wakeup_cb);
1180 if (r)
1181 return r;
1182
1183 spin_lock(&rdev->fence_lock);
1184 if (intr) {
1185 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
1186 &rdev->fence_lock, timo,
1187 radeon_test_signaled(fence));
1188 } else {
1189 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
1190 &rdev->fence_lock, timo,
1191 radeon_test_signaled(fence));
1192 }
1193 spin_unlock(&rdev->fence_lock);
1194
1195 (void)fence_remove_callback(f, &fcb);
1196
1197 return r;
1198 }
1199
1200 #else
1201
1202 struct radeon_wait_cb {
1203 struct fence_cb base;
1204 struct task_struct *task;
1205 };
1206
1207 static void
1208 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1209 {
1210 struct radeon_wait_cb *wait =
1211 container_of(cb, struct radeon_wait_cb, base);
1212
1213 wake_up_process(wait->task);
1214 }
1215
1216 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1217 signed long t)
1218 {
1219 struct radeon_fence *fence = to_radeon_fence(f);
1220 struct radeon_device *rdev = fence->rdev;
1221 struct radeon_wait_cb cb;
1222
1223 cb.task = current;
1224
1225 if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1226 return t;
1227
1228 while (t > 0) {
1229 if (intr)
1230 set_current_state(TASK_INTERRUPTIBLE);
1231 else
1232 set_current_state(TASK_UNINTERRUPTIBLE);
1233
1234 /*
1235 * radeon_test_signaled must be called after
1236 * set_current_state to prevent a race with wake_up_process
1237 */
1238 if (radeon_test_signaled(fence))
1239 break;
1240
1241 if (rdev->needs_reset) {
1242 t = -EDEADLK;
1243 break;
1244 }
1245
1246 t = schedule_timeout(t);
1247
1248 if (t > 0 && intr && signal_pending(current))
1249 t = -ERESTARTSYS;
1250 }
1251
1252 __set_current_state(TASK_RUNNING);
1253 fence_remove_callback(f, &cb.base);
1254
1255 return t;
1256 }
1257
1258 #endif
1259
1260 const struct fence_ops radeon_fence_ops = {
1261 .get_driver_name = radeon_fence_get_driver_name,
1262 .get_timeline_name = radeon_fence_get_timeline_name,
1263 .enable_signaling = radeon_fence_enable_signaling,
1264 .signaled = radeon_fence_is_signaled,
1265 .wait = radeon_fence_default_wait,
1266 .release = NULL,
1267 };
1268