radeon_fence.c revision 1.18 1 /* $NetBSD: radeon_fence.c,v 1.18 2021/12/19 01:50:00 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Dave Airlie
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.18 2021/12/19 01:50:00 riastradh Exp $");
36
37 #include <linux/atomic.h>
38 #include <linux/firmware.h>
39 #include <linux/kref.h>
40 #include <linux/sched/signal.h>
41 #include <linux/seq_file.h>
42 #include <linux/slab.h>
43 #include <linux/wait.h>
44
45 #include <drm/drm_debugfs.h>
46 #include <drm/drm_device.h>
47 #include <drm/drm_file.h>
48
49 #include "radeon.h"
50 #include "radeon_reg.h"
51 #include "radeon_trace.h"
52
53 #include <linux/nbsd-namespace.h>
54
55 /*
56 * Fences
57 * Fences mark an event in the GPUs pipeline and are used
58 * for GPU/CPU synchronization. When the fence is written,
59 * it is expected that all buffers associated with that fence
60 * are no longer in use by the associated ring on the GPU and
61 * that the the relevant GPU caches have been flushed. Whether
62 * we use a scratch register or memory location depends on the asic
63 * and whether writeback is enabled.
64 */
65
66 /**
67 * radeon_fence_write - write a fence value
68 *
69 * @rdev: radeon_device pointer
70 * @seq: sequence number to write
71 * @ring: ring index the fence is associated with
72 *
73 * Writes a fence value to memory or a scratch register (all asics).
74 */
75 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
76 {
77 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
78 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
79 if (drv->cpu_addr) {
80 *drv->cpu_addr = cpu_to_le32(seq);
81 }
82 } else {
83 WREG32(drv->scratch_reg, seq);
84 }
85 }
86
87 /**
88 * radeon_fence_read - read a fence value
89 *
90 * @rdev: radeon_device pointer
91 * @ring: ring index the fence is associated with
92 *
93 * Reads a fence value from memory or a scratch register (all asics).
94 * Returns the value of the fence read from memory or register.
95 */
96 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
97 {
98 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
99 u32 seq = 0;
100
101 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
102 if (drv->cpu_addr) {
103 seq = le32_to_cpu(*drv->cpu_addr);
104 } else {
105 seq = lower_32_bits(atomic64_read(&drv->last_seq));
106 }
107 } else {
108 seq = RREG32(drv->scratch_reg);
109 }
110 return seq;
111 }
112
113 /**
114 * radeon_fence_schedule_check - schedule lockup check
115 *
116 * @rdev: radeon_device pointer
117 * @ring: ring index we should work with
118 *
119 * Queues a delayed work item to check for lockups.
120 */
121 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
122 {
123 /*
124 * Do not reset the timer here with mod_delayed_work,
125 * this can livelock in an interaction with TTM delayed destroy.
126 */
127 queue_delayed_work(system_power_efficient_wq,
128 &rdev->fence_drv[ring].lockup_work,
129 RADEON_FENCE_JIFFIES_TIMEOUT);
130 }
131
132 /**
133 * radeon_fence_emit - emit a fence on the requested ring
134 *
135 * @rdev: radeon_device pointer
136 * @fence: radeon fence object
137 * @ring: ring index the fence is associated with
138 *
139 * Emits a fence command on the requested ring (all asics).
140 * Returns 0 on success, -ENOMEM on failure.
141 */
142 int radeon_fence_emit(struct radeon_device *rdev,
143 struct radeon_fence **fence,
144 int ring)
145 {
146 u64 seq;
147
148 /* we are protected by the ring emission mutex */
149 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
150 if ((*fence) == NULL) {
151 return -ENOMEM;
152 }
153 (*fence)->rdev = rdev;
154 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
155 (*fence)->ring = ring;
156 (*fence)->is_vm_update = false;
157 dma_fence_init(&(*fence)->base, &radeon_fence_ops,
158 &rdev->fence_queue.lock,
159 rdev->fence_context + ring,
160 seq);
161 radeon_fence_ring_emit(rdev, ring, *fence);
162 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
163 radeon_fence_schedule_check(rdev, ring);
164 return 0;
165 }
166
167 /**
168 * radeon_fence_check_signaled - callback from fence_queue
169 *
170 * this function is called with fence_queue lock held, which is also used
171 * for the fence locking itself, so unlocked variants are used for
172 * fence_signal, and remove_wait_queue.
173 */
174 #ifdef __NetBSD__
175 static int radeon_fence_check_signaled(struct radeon_fence *fence)
176 #else
177 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
178 #endif
179 {
180 #ifndef __NetBSD__
181 struct radeon_fence *fence;
182 #endif
183 u64 seq;
184
185 #ifndef __NetBSD__
186 fence = container_of(wait, struct radeon_fence, fence_wake);
187 #endif
188 BUG_ON(!spin_is_locked(&fence->rdev->fence_lock));
189
190 /*
191 * We cannot use radeon_fence_process here because we're already
192 * in the waitqueue, in a call from wake_up_all.
193 */
194 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
195 if (seq >= fence->seq) {
196 int ret = dma_fence_signal_locked(&fence->base);
197
198 if (!ret)
199 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
200 else
201 DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
202
203 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
204 #ifdef __NetBSD__
205 TAILQ_REMOVE(&fence->rdev->fence_check, fence, fence_check);
206 #else
207 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
208 #endif
209 dma_fence_put(&fence->base);
210 } else
211 DMA_FENCE_TRACE(&fence->base, "pending\n");
212 return 0;
213 }
214
215 #ifdef __NetBSD__
216 void
217 radeon_fence_wakeup_locked(struct radeon_device *rdev)
218 {
219 struct radeon_fence *fence, *next;
220
221 BUG_ON(!spin_is_locked(&rdev->fence_lock));
222 DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
223 TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) {
224 radeon_fence_check_signaled(fence);
225 }
226 }
227 #endif
228
229 /**
230 * radeon_fence_activity - check for fence activity
231 *
232 * @rdev: radeon_device pointer
233 * @ring: ring index the fence is associated with
234 *
235 * Checks the current fence value and calculates the last
236 * signalled fence value. Returns true if activity occured
237 * on the ring, and the fence_queue should be waken up.
238 */
239 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
240 {
241 uint64_t seq, last_seq, last_emitted;
242 unsigned count_loop = 0;
243 bool wake = false;
244
245 BUG_ON(!spin_is_locked(&rdev->fence_lock));
246
247 /* Note there is a scenario here for an infinite loop but it's
248 * very unlikely to happen. For it to happen, the current polling
249 * process need to be interrupted by another process and another
250 * process needs to update the last_seq btw the atomic read and
251 * xchg of the current process.
252 *
253 * More over for this to go in infinite loop there need to be
254 * continuously new fence signaled ie radeon_fence_read needs
255 * to return a different value each time for both the currently
256 * polling process and the other process that xchg the last_seq
257 * btw atomic read and xchg of the current process. And the
258 * value the other process set as last seq must be higher than
259 * the seq value we just read. Which means that current process
260 * need to be interrupted after radeon_fence_read and before
261 * atomic xchg.
262 *
263 * To be even more safe we count the number of time we loop and
264 * we bail after 10 loop just accepting the fact that we might
265 * have temporarly set the last_seq not to the true real last
266 * seq but to an older one.
267 */
268 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
269 do {
270 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
271 seq = radeon_fence_read(rdev, ring);
272 seq |= last_seq & 0xffffffff00000000LL;
273 if (seq < last_seq) {
274 seq &= 0xffffffff;
275 seq |= last_emitted & 0xffffffff00000000LL;
276 }
277
278 if (seq <= last_seq || seq > last_emitted) {
279 break;
280 }
281 /* If we loop over we don't want to return without
282 * checking if a fence is signaled as it means that the
283 * seq we just read is different from the previous on.
284 */
285 wake = true;
286 last_seq = seq;
287 if ((count_loop++) > 10) {
288 /* We looped over too many time leave with the
289 * fact that we might have set an older fence
290 * seq then the current real last seq as signaled
291 * by the hw.
292 */
293 break;
294 }
295 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
296
297 if (seq < last_emitted)
298 radeon_fence_schedule_check(rdev, ring);
299
300 return wake;
301 }
302
303 /**
304 * radeon_fence_check_lockup - check for hardware lockup
305 *
306 * @work: delayed work item
307 *
308 * Checks for fence activity and if there is none probe
309 * the hardware if a lockup occured.
310 */
311 static void radeon_fence_check_lockup(struct work_struct *work)
312 {
313 struct radeon_fence_driver *fence_drv;
314 struct radeon_device *rdev;
315 int ring;
316
317 fence_drv = container_of(work, struct radeon_fence_driver,
318 lockup_work.work);
319 rdev = fence_drv->rdev;
320 ring = fence_drv - &rdev->fence_drv[0];
321
322 #ifdef __NetBSD__
323 spin_lock(&rdev->fence_lock);
324 #endif
325
326 if (!down_read_trylock(&rdev->exclusive_lock)) {
327 /* just reschedule the check if a reset is going on */
328 radeon_fence_schedule_check(rdev, ring);
329 return;
330 }
331
332 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
333 unsigned long irqflags;
334
335 fence_drv->delayed_irq = false;
336 spin_lock_irqsave(&rdev->irq.lock, irqflags);
337 radeon_irq_set(rdev);
338 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
339 }
340
341 if (radeon_fence_activity(rdev, ring))
342 #ifdef __NetBSD__
343 radeon_fence_wakeup_locked(rdev);
344 #else
345 wake_up_all(&rdev->fence_queue);
346 #endif
347
348 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
349
350 /* good news we believe it's a lockup */
351 dev_warn(rdev->dev, "GPU lockup (current fence id "
352 "0x%016"PRIx64" last fence id 0x%016"PRIx64" on ring %d)\n",
353 (uint64_t)atomic64_read(&fence_drv->last_seq),
354 fence_drv->sync_seq[ring], ring);
355
356 /* remember that we need an reset */
357 rdev->needs_reset = true;
358 #ifdef __NetBSD__
359 radeon_fence_wakeup_locked(rdev);
360 #else
361 wake_up_all(&rdev->fence_queue);
362 #endif
363 }
364 up_read(&rdev->exclusive_lock);
365 #ifdef __NetBSD__
366 spin_unlock(&rdev->fence_lock);
367 #endif
368 }
369
370 /**
371 * radeon_fence_process - process a fence
372 *
373 * @rdev: radeon_device pointer
374 * @ring: ring index the fence is associated with
375 *
376 * Checks the current fence value and wakes the fence queue
377 * if the sequence number has increased (all asics).
378 */
379 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring)
380 {
381 if (radeon_fence_activity(rdev, ring))
382 #ifdef __NetBSD__
383 radeon_fence_wakeup_locked(rdev);
384 #else
385 wake_up_all(&rdev->fence_queue);
386 #endif
387 }
388
389 void radeon_fence_process(struct radeon_device *rdev, int ring)
390 {
391
392 spin_lock(&rdev->fence_lock);
393 radeon_fence_process_locked(rdev, ring);
394 spin_unlock(&rdev->fence_lock);
395 }
396
397 /**
398 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
399 *
400 * @rdev: radeon device pointer
401 * @seq: sequence number
402 * @ring: ring index the fence is associated with
403 *
404 * Check if the last signaled fence sequnce number is >= the requested
405 * sequence number (all asics).
406 * Returns true if the fence has signaled (current fence value
407 * is >= requested value) or false if it has not (current fence
408 * value is < the requested value. Helper function for
409 * radeon_fence_signaled().
410 */
411 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
412 u64 seq, unsigned ring)
413 {
414 BUG_ON(!spin_is_locked(&rdev->fence_lock));
415 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
416 return true;
417 }
418 /* poll new last sequence at least once */
419 radeon_fence_process_locked(rdev, ring);
420 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
421 return true;
422 }
423 return false;
424 }
425
426 static bool radeon_fence_is_signaled(struct dma_fence *f)
427 {
428 struct radeon_fence *fence = to_radeon_fence(f);
429 struct radeon_device *rdev = fence->rdev;
430 unsigned ring = fence->ring;
431 u64 seq = fence->seq;
432
433 BUG_ON(!spin_is_locked(&rdev->fence_lock));
434
435 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
436 return true;
437 }
438
439 if (down_read_trylock(&rdev->exclusive_lock)) {
440 radeon_fence_process_locked(rdev, ring);
441 up_read(&rdev->exclusive_lock);
442
443 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
444 return true;
445 }
446 }
447 return false;
448 }
449
450 /**
451 * radeon_fence_enable_signaling - enable signalling on fence
452 * @fence: fence
453 *
454 * This function is called with fence_queue lock held, and adds a callback
455 * to fence_queue that checks if this fence is signaled, and if so it
456 * signals the fence and removes itself.
457 */
458 static bool radeon_fence_enable_signaling(struct dma_fence *f)
459 {
460 struct radeon_fence *fence = to_radeon_fence(f);
461 struct radeon_device *rdev = fence->rdev;
462
463 BUG_ON(!spin_is_locked(&rdev->fence_lock));
464
465 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
466 return false;
467
468 if (down_read_trylock(&rdev->exclusive_lock)) {
469 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
470
471 if (radeon_fence_activity(rdev, fence->ring))
472 #ifdef __NetBSD__
473 radeon_fence_wakeup_locked(rdev);
474 #else
475 wake_up_all_locked(&rdev->fence_queue);
476 #endif
477
478 /* did fence get signaled after we enabled the sw irq? */
479 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
480 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
481 up_read(&rdev->exclusive_lock);
482 return false;
483 }
484
485 up_read(&rdev->exclusive_lock);
486 } else {
487 /* we're probably in a lockup, lets not fiddle too much */
488 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
489 rdev->fence_drv[fence->ring].delayed_irq = true;
490 radeon_fence_schedule_check(rdev, fence->ring);
491 }
492
493 #ifdef __NetBSD__
494 TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check);
495 #else
496 fence->fence_wake.flags = 0;
497 fence->fence_wake.private = NULL;
498 fence->fence_wake.func = radeon_fence_check_signaled;
499 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
500 #endif
501 dma_fence_get(f);
502
503 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
504 return true;
505 }
506
507 /**
508 * radeon_fence_signaled - check if a fence has signaled
509 *
510 * @fence: radeon fence object
511 *
512 * Check if the requested fence has signaled (all asics).
513 * Returns true if the fence has signaled or false if it has not.
514 */
515 bool radeon_fence_signaled(struct radeon_fence *fence)
516 {
517 if (!fence)
518 return true;
519
520 spin_lock(&fence->rdev->fence_lock);
521 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
522 int ret;
523
524 ret = dma_fence_signal(&fence->base);
525 if (!ret)
526 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
527 return true;
528 }
529 spin_unlock(&fence->rdev->fence_lock);
530 return false;
531 }
532
533 /**
534 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
535 *
536 * @rdev: radeon device pointer
537 * @seq: sequence numbers
538 *
539 * Check if the last signaled fence sequnce number is >= the requested
540 * sequence number (all asics).
541 * Returns true if any has signaled (current value is >= requested value)
542 * or false if it has not. Helper function for radeon_fence_wait_seq.
543 */
544 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
545 {
546 unsigned i;
547
548 BUG_ON(!spin_is_locked(&rdev->fence_lock));
549
550 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
551 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
552 return true;
553 }
554 return false;
555 }
556
557 /**
558 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
559 *
560 * @rdev: radeon device pointer
561 * @target_seq: sequence number(s) we want to wait for
562 * @intr: use interruptable sleep
563 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
564 *
565 * Wait for the requested sequence number(s) to be written by any ring
566 * (all asics). Sequnce number array is indexed by ring id.
567 * @intr selects whether to use interruptable (true) or non-interruptable
568 * (false) sleep when waiting for the sequence number. Helper function
569 * for radeon_fence_wait_*().
570 * Returns remaining time if the sequence number has passed, 0 when
571 * the wait timeout, or an error for all other cases.
572 * -EDEADLK is returned when a GPU lockup has been detected.
573 */
574 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev,
575 u64 *target_seq, bool intr,
576 long timeout)
577 {
578 long r;
579 int i;
580
581 if (radeon_fence_any_seq_signaled(rdev, target_seq))
582 return timeout;
583
584 /* enable IRQs and tracing */
585 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
586 if (!target_seq[i])
587 continue;
588
589 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
590 radeon_irq_kms_sw_irq_get(rdev, i);
591 }
592
593 #ifdef __NetBSD__
594 if (intr)
595 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
596 &rdev->fence_lock, timeout,
597 (radeon_fence_any_seq_signaled(rdev, target_seq)
598 || rdev->needs_reset));
599 else
600 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
601 &rdev->fence_lock, timeout,
602 (radeon_fence_any_seq_signaled(rdev, target_seq)
603 || rdev->needs_reset));
604 #else
605 if (intr) {
606 r = wait_event_interruptible_timeout(rdev->fence_queue, (
607 radeon_fence_any_seq_signaled(rdev, target_seq)
608 || rdev->needs_reset), timeout);
609 } else {
610 r = wait_event_timeout(rdev->fence_queue, (
611 radeon_fence_any_seq_signaled(rdev, target_seq)
612 || rdev->needs_reset), timeout);
613 }
614 #endif
615
616 if (rdev->needs_reset)
617 r = -EDEADLK;
618
619 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
620 if (!target_seq[i])
621 continue;
622
623 radeon_irq_kms_sw_irq_put(rdev, i);
624 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
625 }
626
627 return r;
628 }
629
630 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
631 u64 *target_seq, bool intr, long timo)
632 {
633 long r;
634
635 spin_lock(&rdev->fence_lock);
636 r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo);
637 spin_unlock(&rdev->fence_lock);
638
639 return r;
640 }
641
642 /**
643 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
644 *
645 * @fence: radeon fence object
646 * @intr: use interruptible sleep
647 *
648 * Wait for the requested fence to signal (all asics).
649 * @intr selects whether to use interruptable (true) or non-interruptable
650 * (false) sleep when waiting for the fence.
651 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
652 * Returns remaining time if the sequence number has passed, 0 when
653 * the wait timeout, or an error for all other cases.
654 */
655 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
656 {
657 uint64_t seq[RADEON_NUM_RINGS] = {};
658 long r;
659 int r_sig;
660
661 /*
662 * This function should not be called on !radeon fences.
663 * If this is the case, it would mean this function can
664 * also be called on radeon fences belonging to another card.
665 * exclusive_lock is not held in that case.
666 */
667 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
668 return dma_fence_wait(&fence->base, intr);
669
670 seq[fence->ring] = fence->seq;
671 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
672 if (r <= 0) {
673 return r;
674 }
675
676 r_sig = dma_fence_signal(&fence->base);
677 if (!r_sig)
678 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
679 return r;
680 }
681
682 /**
683 * radeon_fence_wait - wait for a fence to signal
684 *
685 * @fence: radeon fence object
686 * @intr: use interruptible sleep
687 *
688 * Wait for the requested fence to signal (all asics).
689 * @intr selects whether to use interruptable (true) or non-interruptable
690 * (false) sleep when waiting for the fence.
691 * Returns 0 if the fence has passed, error for all other cases.
692 */
693 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
694 {
695 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
696 if (r > 0) {
697 return 0;
698 } else {
699 return r;
700 }
701 }
702
703 /**
704 * radeon_fence_wait_any - wait for a fence to signal on any ring
705 *
706 * @rdev: radeon device pointer
707 * @fences: radeon fence object(s)
708 * @intr: use interruptable sleep
709 *
710 * Wait for any requested fence to signal (all asics). Fence
711 * array is indexed by ring id. @intr selects whether to use
712 * interruptable (true) or non-interruptable (false) sleep when
713 * waiting for the fences. Used by the suballocator.
714 * Returns 0 if any fence has passed, error for all other cases.
715 */
716 int radeon_fence_wait_any(struct radeon_device *rdev,
717 struct radeon_fence **fences,
718 bool intr)
719 {
720 uint64_t seq[RADEON_NUM_RINGS];
721 unsigned i, num_rings = 0;
722 long r;
723
724 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
725 seq[i] = 0;
726
727 if (!fences[i]) {
728 continue;
729 }
730
731 seq[i] = fences[i]->seq;
732 ++num_rings;
733 }
734
735 /* nothing to wait for ? */
736 if (num_rings == 0)
737 return -ENOENT;
738
739 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
740 if (r < 0) {
741 return r;
742 }
743 return 0;
744 }
745
746 /**
747 * radeon_fence_wait_next - wait for the next fence to signal
748 *
749 * @rdev: radeon device pointer
750 * @ring: ring index the fence is associated with
751 *
752 * Wait for the next fence on the requested ring to signal (all asics).
753 * Returns 0 if the next fence has passed, error for all other cases.
754 * Caller must hold ring lock.
755 */
756 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
757 {
758 uint64_t seq[RADEON_NUM_RINGS] = {};
759 long r;
760
761 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
762 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
763 /* nothing to wait for, last_seq is
764 already the last emited fence */
765 return -ENOENT;
766 }
767 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
768 if (r < 0)
769 return r;
770 return 0;
771 }
772
773 /**
774 * radeon_fence_wait_empty - wait for all fences to signal
775 *
776 * @rdev: radeon device pointer
777 * @ring: ring index the fence is associated with
778 *
779 * Wait for all fences on the requested ring to signal (all asics).
780 * Returns 0 if the fences have passed, error for all other cases.
781 * Caller must hold ring lock.
782 */
783 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
784 {
785 uint64_t seq[RADEON_NUM_RINGS] = {};
786 long r;
787
788 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
789 if (!seq[ring])
790 return 0;
791
792 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
793 if (r < 0) {
794 if (r == -EDEADLK)
795 return -EDEADLK;
796
797 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
798 ring, r);
799 }
800 return 0;
801 }
802
803 /**
804 * radeon_fence_ref - take a ref on a fence
805 *
806 * @fence: radeon fence object
807 *
808 * Take a reference on a fence (all asics).
809 * Returns the fence.
810 */
811 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
812 {
813 dma_fence_get(&fence->base);
814 return fence;
815 }
816
817 /**
818 * radeon_fence_unref - remove a ref on a fence
819 *
820 * @fence: radeon fence object
821 *
822 * Remove a reference on a fence (all asics).
823 */
824 void radeon_fence_unref(struct radeon_fence **fence)
825 {
826 struct radeon_fence *tmp = *fence;
827
828 *fence = NULL;
829 if (tmp) {
830 dma_fence_put(&tmp->base);
831 }
832 }
833
834 /**
835 * radeon_fence_count_emitted - get the count of emitted fences
836 *
837 * @rdev: radeon device pointer
838 * @ring: ring index the fence is associated with
839 *
840 * Get the number of fences emitted on the requested ring (all asics).
841 * Returns the number of emitted fences on the ring. Used by the
842 * dynpm code to ring track activity.
843 */
844 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
845 {
846 uint64_t emitted;
847
848 /* We are not protected by ring lock when reading the last sequence
849 * but it's ok to report slightly wrong fence count here.
850 */
851 radeon_fence_process(rdev, ring);
852 emitted = rdev->fence_drv[ring].sync_seq[ring]
853 - atomic64_read(&rdev->fence_drv[ring].last_seq);
854 /* to avoid 32bits warp around */
855 if (emitted > 0x10000000) {
856 emitted = 0x10000000;
857 }
858 return (unsigned)emitted;
859 }
860
861 /**
862 * radeon_fence_need_sync - do we need a semaphore
863 *
864 * @fence: radeon fence object
865 * @dst_ring: which ring to check against
866 *
867 * Check if the fence needs to be synced against another ring
868 * (all asics). If so, we need to emit a semaphore.
869 * Returns true if we need to sync with another ring, false if
870 * not.
871 */
872 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
873 {
874 struct radeon_fence_driver *fdrv;
875
876 if (!fence) {
877 return false;
878 }
879
880 if (fence->ring == dst_ring) {
881 return false;
882 }
883
884 /* we are protected by the ring mutex */
885 fdrv = &fence->rdev->fence_drv[dst_ring];
886 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
887 return false;
888 }
889
890 return true;
891 }
892
893 /**
894 * radeon_fence_note_sync - record the sync point
895 *
896 * @fence: radeon fence object
897 * @dst_ring: which ring to check against
898 *
899 * Note the sequence number at which point the fence will
900 * be synced with the requested ring (all asics).
901 */
902 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
903 {
904 struct radeon_fence_driver *dst, *src;
905 unsigned i;
906
907 if (!fence) {
908 return;
909 }
910
911 if (fence->ring == dst_ring) {
912 return;
913 }
914
915 /* we are protected by the ring mutex */
916 src = &fence->rdev->fence_drv[fence->ring];
917 dst = &fence->rdev->fence_drv[dst_ring];
918 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
919 if (i == dst_ring) {
920 continue;
921 }
922 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
923 }
924 }
925
926 /**
927 * radeon_fence_driver_start_ring - make the fence driver
928 * ready for use on the requested ring.
929 *
930 * @rdev: radeon device pointer
931 * @ring: ring index to start the fence driver on
932 *
933 * Make the fence driver ready for processing (all asics).
934 * Not all asics have all rings, so each asic will only
935 * start the fence driver on the rings it has.
936 * Returns 0 for success, errors for failure.
937 */
938 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
939 {
940 uint64_t index;
941 int r;
942
943 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
944 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
945 rdev->fence_drv[ring].scratch_reg = 0;
946 if (ring != R600_RING_TYPE_UVD_INDEX) {
947 index = R600_WB_EVENT_OFFSET + ring * 4;
948 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
949 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
950 index;
951
952 } else {
953 /* put fence directly behind firmware */
954 index = ALIGN(rdev->uvd_fw->size, 8);
955 rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index);
956 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
957 }
958
959 } else {
960 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
961 if (r) {
962 dev_err(rdev->dev, "fence failed to get scratch register\n");
963 return r;
964 }
965 index = RADEON_WB_SCRATCH_OFFSET +
966 rdev->fence_drv[ring].scratch_reg -
967 rdev->scratch.reg_base;
968 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
969 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
970 }
971 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
972 rdev->fence_drv[ring].initialized = true;
973 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n",
974 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
975 return 0;
976 }
977
978 /**
979 * radeon_fence_driver_init_ring - init the fence driver
980 * for the requested ring.
981 *
982 * @rdev: radeon device pointer
983 * @ring: ring index to start the fence driver on
984 *
985 * Init the fence driver for the requested ring (all asics).
986 * Helper function for radeon_fence_driver_init().
987 */
988 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
989 {
990 int i;
991
992 rdev->fence_drv[ring].scratch_reg = -1;
993 rdev->fence_drv[ring].cpu_addr = NULL;
994 rdev->fence_drv[ring].gpu_addr = 0;
995 for (i = 0; i < RADEON_NUM_RINGS; ++i)
996 rdev->fence_drv[ring].sync_seq[i] = 0;
997 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
998 rdev->fence_drv[ring].initialized = false;
999 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
1000 radeon_fence_check_lockup);
1001 rdev->fence_drv[ring].rdev = rdev;
1002 }
1003
1004 /**
1005 * radeon_fence_driver_init - init the fence driver
1006 * for all possible rings.
1007 *
1008 * @rdev: radeon device pointer
1009 *
1010 * Init the fence driver for all possible rings (all asics).
1011 * Not all asics have all rings, so each asic will only
1012 * start the fence driver on the rings it has using
1013 * radeon_fence_driver_start_ring().
1014 * Returns 0 for success.
1015 */
1016 int radeon_fence_driver_init(struct radeon_device *rdev)
1017 {
1018 int ring;
1019
1020 #ifdef __NetBSD__
1021 spin_lock_init(&rdev->fence_lock);
1022 DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence");
1023 TAILQ_INIT(&rdev->fence_check);
1024 #else
1025 init_waitqueue_head(&rdev->fence_queue);
1026 #endif
1027 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
1028 radeon_fence_driver_init_ring(rdev, ring);
1029 }
1030 if (radeon_debugfs_fence_init(rdev)) {
1031 dev_err(rdev->dev, "fence debugfs file creation failed\n");
1032 }
1033 return 0;
1034 }
1035
1036 /**
1037 * radeon_fence_driver_fini - tear down the fence driver
1038 * for all possible rings.
1039 *
1040 * @rdev: radeon device pointer
1041 *
1042 * Tear down the fence driver for all possible rings (all asics).
1043 */
1044 void radeon_fence_driver_fini(struct radeon_device *rdev)
1045 {
1046 int ring, r;
1047
1048 mutex_lock(&rdev->ring_lock);
1049 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
1050 if (!rdev->fence_drv[ring].initialized)
1051 continue;
1052 r = radeon_fence_wait_empty(rdev, ring);
1053 if (r) {
1054 /* no need to trigger GPU reset as we are unloading */
1055 radeon_fence_driver_force_completion(rdev, ring);
1056 }
1057 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1058 #ifdef __NetBSD__
1059 spin_lock(&rdev->fence_lock);
1060 radeon_fence_wakeup_locked(rdev);
1061 spin_unlock(&rdev->fence_lock);
1062 #else
1063 wake_up_all(&rdev->fence_queue);
1064 #endif
1065 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
1066 rdev->fence_drv[ring].initialized = false;
1067 }
1068 mutex_unlock(&rdev->ring_lock);
1069
1070 #ifdef __NetBSD__
1071 BUG_ON(!TAILQ_EMPTY(&rdev->fence_check));
1072 DRM_DESTROY_WAITQUEUE(&rdev->fence_queue);
1073 spin_lock_destroy(&rdev->fence_lock);
1074 #endif
1075 }
1076
1077 /**
1078 * radeon_fence_driver_force_completion - force all fence waiter to complete
1079 *
1080 * @rdev: radeon device pointer
1081 * @ring: the ring to complete
1082 *
1083 * In case of GPU reset failure make sure no process keep waiting on fence
1084 * that will never complete.
1085 */
1086 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
1087 {
1088 if (rdev->fence_drv[ring].initialized) {
1089 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
1090 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1091 }
1092 }
1093
1094
1095 /*
1096 * Fence debugfs
1097 */
1098 #if defined(CONFIG_DEBUG_FS)
1099 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
1100 {
1101 struct drm_info_node *node = (struct drm_info_node *)m->private;
1102 struct drm_device *dev = node->minor->dev;
1103 struct radeon_device *rdev = dev->dev_private;
1104 int i, j;
1105
1106 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1107 if (!rdev->fence_drv[i].initialized)
1108 continue;
1109
1110 radeon_fence_process(rdev, i);
1111
1112 seq_printf(m, "--- ring %d ---\n", i);
1113 seq_printf(m, "Last signaled fence 0x%016llx\n",
1114 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
1115 seq_printf(m, "Last emitted 0x%016"PRIx64"\n",
1116 rdev->fence_drv[i].sync_seq[i]);
1117
1118 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
1119 if (i != j && rdev->fence_drv[j].initialized)
1120 seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n",
1121 j, rdev->fence_drv[i].sync_seq[j]);
1122 }
1123 }
1124 return 0;
1125 }
1126
1127 /**
1128 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1129 *
1130 * Manually trigger a gpu reset at the next fence wait.
1131 */
1132 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1133 {
1134 struct drm_info_node *node = (struct drm_info_node *) m->private;
1135 struct drm_device *dev = node->minor->dev;
1136 struct radeon_device *rdev = dev->dev_private;
1137
1138 down_read(&rdev->exclusive_lock);
1139 seq_printf(m, "%d\n", rdev->needs_reset);
1140 rdev->needs_reset = true;
1141 wake_up_all(&rdev->fence_queue);
1142 up_read(&rdev->exclusive_lock);
1143
1144 return 0;
1145 }
1146
1147 static struct drm_info_list radeon_debugfs_fence_list[] = {
1148 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1149 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1150 };
1151 #endif
1152
1153 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1154 {
1155 #if defined(CONFIG_DEBUG_FS)
1156 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1157 #else
1158 return 0;
1159 #endif
1160 }
1161
1162 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1163 {
1164 return "radeon";
1165 }
1166
1167 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1168 {
1169 struct radeon_fence *fence = to_radeon_fence(f);
1170 switch (fence->ring) {
1171 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1172 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1173 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1174 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1175 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1176 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1177 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1178 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1179 default: WARN_ON_ONCE(1); return "radeon.unk";
1180 }
1181 }
1182
1183 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1184 {
1185 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1186 }
1187
1188 #ifdef __NetBSD__
1189
1190 static void
1191 radeon_fence_wakeup_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1192 {
1193 struct radeon_fence *rfence = to_radeon_fence(fence);
1194 struct radeon_device *rdev = rfence->rdev;
1195
1196 BUG_ON(!spin_is_locked(&rdev->fence_lock));
1197 cv_broadcast(&rdev->fence_queue);
1198 }
1199
1200 static signed long
1201 radeon_fence_default_wait(struct dma_fence *f, bool intr, signed long timo)
1202 {
1203 struct dma_fence_cb fcb;
1204 struct radeon_fence *fence = to_radeon_fence(f);
1205 struct radeon_device *rdev = fence->rdev;
1206 int r;
1207
1208 r = dma_fence_add_callback(f, &fcb, radeon_fence_wakeup_cb);
1209 if (r) /* fence is done already */
1210 return timo;
1211
1212 spin_lock(&rdev->fence_lock);
1213 if (intr) {
1214 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
1215 &rdev->fence_lock, timo,
1216 radeon_test_signaled(fence));
1217 } else {
1218 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
1219 &rdev->fence_lock, timo,
1220 radeon_test_signaled(fence));
1221 }
1222 spin_unlock(&rdev->fence_lock);
1223
1224 (void)dma_fence_remove_callback(f, &fcb);
1225
1226 return r;
1227 }
1228
1229 #else
1230
1231 struct radeon_wait_cb {
1232 struct dma_fence_cb base;
1233 struct task_struct *task;
1234 };
1235
1236 static void
1237 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1238 {
1239 struct radeon_wait_cb *wait =
1240 container_of(cb, struct radeon_wait_cb, base);
1241
1242 wake_up_process(wait->task);
1243 }
1244
1245 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1246 signed long t)
1247 {
1248 struct radeon_fence *fence = to_radeon_fence(f);
1249 struct radeon_device *rdev = fence->rdev;
1250 struct radeon_wait_cb cb;
1251
1252 cb.task = current;
1253
1254 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1255 return t;
1256
1257 while (t > 0) {
1258 if (intr)
1259 set_current_state(TASK_INTERRUPTIBLE);
1260 else
1261 set_current_state(TASK_UNINTERRUPTIBLE);
1262
1263 /*
1264 * radeon_test_signaled must be called after
1265 * set_current_state to prevent a race with wake_up_process
1266 */
1267 if (radeon_test_signaled(fence))
1268 break;
1269
1270 if (rdev->needs_reset) {
1271 t = -EDEADLK;
1272 break;
1273 }
1274
1275 t = schedule_timeout(t);
1276
1277 if (t > 0 && intr && signal_pending(current))
1278 t = -ERESTARTSYS;
1279 }
1280
1281 __set_current_state(TASK_RUNNING);
1282 dma_fence_remove_callback(f, &cb.base);
1283
1284 return t;
1285 }
1286
1287 #endif
1288 const struct dma_fence_ops radeon_fence_ops = {
1289 .get_driver_name = radeon_fence_get_driver_name,
1290 .get_timeline_name = radeon_fence_get_timeline_name,
1291 .enable_signaling = radeon_fence_enable_signaling,
1292 .signaled = radeon_fence_is_signaled,
1293 .wait = radeon_fence_default_wait,
1294 .release = NULL,
1295 };
1296