Home | History | Annotate | Line # | Download | only in radeon
radeon_fence.c revision 1.21
      1 /*	$NetBSD: radeon_fence.c,v 1.21 2021/12/19 11:08:25 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2009 Jerome Glisse.
      5  * All Rights Reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the
      9  * "Software"), to deal in the Software without restriction, including
     10  * without limitation the rights to use, copy, modify, merge, publish,
     11  * distribute, sub license, and/or sell copies of the Software, and to
     12  * permit persons to whom the Software is furnished to do so, subject to
     13  * the following conditions:
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
     19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     22  *
     23  * The above copyright notice and this permission notice (including the
     24  * next paragraph) shall be included in all copies or substantial portions
     25  * of the Software.
     26  *
     27  */
     28 /*
     29  * Authors:
     30  *    Jerome Glisse <glisse (at) freedesktop.org>
     31  *    Dave Airlie
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.21 2021/12/19 11:08:25 riastradh Exp $");
     36 
     37 #include <linux/atomic.h>
     38 #include <linux/firmware.h>
     39 #include <linux/kref.h>
     40 #include <linux/sched/signal.h>
     41 #include <linux/seq_file.h>
     42 #include <linux/slab.h>
     43 #include <linux/wait.h>
     44 
     45 #include <drm/drm_debugfs.h>
     46 #include <drm/drm_device.h>
     47 #include <drm/drm_file.h>
     48 
     49 #include "radeon.h"
     50 #include "radeon_reg.h"
     51 #include "radeon_trace.h"
     52 
     53 #include <linux/nbsd-namespace.h>
     54 
     55 /*
     56  * Fences
     57  * Fences mark an event in the GPUs pipeline and are used
     58  * for GPU/CPU synchronization.  When the fence is written,
     59  * it is expected that all buffers associated with that fence
     60  * are no longer in use by the associated ring on the GPU and
     61  * that the the relevant GPU caches have been flushed.  Whether
     62  * we use a scratch register or memory location depends on the asic
     63  * and whether writeback is enabled.
     64  */
     65 
     66 /**
     67  * radeon_fence_write - write a fence value
     68  *
     69  * @rdev: radeon_device pointer
     70  * @seq: sequence number to write
     71  * @ring: ring index the fence is associated with
     72  *
     73  * Writes a fence value to memory or a scratch register (all asics).
     74  */
     75 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
     76 {
     77 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
     78 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
     79 		if (drv->cpu_addr) {
     80 			*drv->cpu_addr = cpu_to_le32(seq);
     81 		}
     82 	} else {
     83 		WREG32(drv->scratch_reg, seq);
     84 	}
     85 }
     86 
     87 /**
     88  * radeon_fence_read - read a fence value
     89  *
     90  * @rdev: radeon_device pointer
     91  * @ring: ring index the fence is associated with
     92  *
     93  * Reads a fence value from memory or a scratch register (all asics).
     94  * Returns the value of the fence read from memory or register.
     95  */
     96 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
     97 {
     98 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
     99 	u32 seq = 0;
    100 
    101 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
    102 		if (drv->cpu_addr) {
    103 			seq = le32_to_cpu(*drv->cpu_addr);
    104 		} else {
    105 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
    106 		}
    107 	} else {
    108 		seq = RREG32(drv->scratch_reg);
    109 	}
    110 	return seq;
    111 }
    112 
    113 /**
    114  * radeon_fence_schedule_check - schedule lockup check
    115  *
    116  * @rdev: radeon_device pointer
    117  * @ring: ring index we should work with
    118  *
    119  * Queues a delayed work item to check for lockups.
    120  */
    121 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
    122 {
    123 	/*
    124 	 * Do not reset the timer here with mod_delayed_work,
    125 	 * this can livelock in an interaction with TTM delayed destroy.
    126 	 */
    127 	queue_delayed_work(system_power_efficient_wq,
    128 			   &rdev->fence_drv[ring].lockup_work,
    129 			   RADEON_FENCE_JIFFIES_TIMEOUT);
    130 }
    131 
    132 /**
    133  * radeon_fence_emit - emit a fence on the requested ring
    134  *
    135  * @rdev: radeon_device pointer
    136  * @fence: radeon fence object
    137  * @ring: ring index the fence is associated with
    138  *
    139  * Emits a fence command on the requested ring (all asics).
    140  * Returns 0 on success, -ENOMEM on failure.
    141  */
    142 int radeon_fence_emit(struct radeon_device *rdev,
    143 		      struct radeon_fence **fence,
    144 		      int ring)
    145 {
    146 	u64 seq;
    147 
    148 	/* we are protected by the ring emission mutex */
    149 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
    150 	if ((*fence) == NULL) {
    151 		return -ENOMEM;
    152 	}
    153 	(*fence)->rdev = rdev;
    154 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
    155 	(*fence)->ring = ring;
    156 	(*fence)->is_vm_update = false;
    157 	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
    158 		       &rdev->fence_lock,
    159 		       rdev->fence_context + ring,
    160 		       seq);
    161 	radeon_fence_ring_emit(rdev, ring, *fence);
    162 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
    163 	radeon_fence_schedule_check(rdev, ring);
    164 	return 0;
    165 }
    166 
    167 /**
    168  * radeon_fence_check_signaled - callback from fence_queue
    169  *
    170  * this function is called with fence_queue lock held, which is also used
    171  * for the fence locking itself, so unlocked variants are used for
    172  * fence_signal, and remove_wait_queue.
    173  */
    174 #ifdef __NetBSD__
    175 static int radeon_fence_check_signaled(struct radeon_fence *fence)
    176 #else
    177 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
    178 #endif
    179 {
    180 #ifndef __NetBSD__
    181 	struct radeon_fence *fence;
    182 #endif
    183 	u64 seq;
    184 
    185 #ifndef __NetBSD__
    186 	fence = container_of(wait, struct radeon_fence, fence_wake);
    187 #endif
    188 	BUG_ON(!spin_is_locked(&fence->rdev->fence_lock));
    189 
    190 	/*
    191 	 * We cannot use radeon_fence_process here because we're already
    192 	 * in the waitqueue, in a call from wake_up_all.
    193 	 */
    194 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
    195 	if (seq >= fence->seq) {
    196 		int ret = dma_fence_signal_locked(&fence->base);
    197 
    198 		if (!ret)
    199 			DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
    200 		else
    201 			DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
    202 
    203 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
    204 #ifdef __NetBSD__
    205 		TAILQ_REMOVE(&fence->rdev->fence_check, fence, fence_check);
    206 #else
    207 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
    208 #endif
    209 		dma_fence_put(&fence->base);
    210 	} else
    211 		DMA_FENCE_TRACE(&fence->base, "pending\n");
    212 	return 0;
    213 }
    214 
    215 #ifdef __NetBSD__
    216 void
    217 radeon_fence_wakeup_locked(struct radeon_device *rdev)
    218 {
    219 	struct radeon_fence *fence, *next;
    220 
    221 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    222 	DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
    223 	TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) {
    224 		radeon_fence_check_signaled(fence);
    225 	}
    226 }
    227 #endif
    228 
    229 /**
    230  * radeon_fence_activity - check for fence activity
    231  *
    232  * @rdev: radeon_device pointer
    233  * @ring: ring index the fence is associated with
    234  *
    235  * Checks the current fence value and calculates the last
    236  * signalled fence value. Returns true if activity occured
    237  * on the ring, and the fence_queue should be waken up.
    238  */
    239 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
    240 {
    241 	uint64_t seq, last_seq, last_emitted;
    242 	unsigned count_loop = 0;
    243 	bool wake = false;
    244 
    245 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    246 
    247 	/* Note there is a scenario here for an infinite loop but it's
    248 	 * very unlikely to happen. For it to happen, the current polling
    249 	 * process need to be interrupted by another process and another
    250 	 * process needs to update the last_seq btw the atomic read and
    251 	 * xchg of the current process.
    252 	 *
    253 	 * More over for this to go in infinite loop there need to be
    254 	 * continuously new fence signaled ie radeon_fence_read needs
    255 	 * to return a different value each time for both the currently
    256 	 * polling process and the other process that xchg the last_seq
    257 	 * btw atomic read and xchg of the current process. And the
    258 	 * value the other process set as last seq must be higher than
    259 	 * the seq value we just read. Which means that current process
    260 	 * need to be interrupted after radeon_fence_read and before
    261 	 * atomic xchg.
    262 	 *
    263 	 * To be even more safe we count the number of time we loop and
    264 	 * we bail after 10 loop just accepting the fact that we might
    265 	 * have temporarly set the last_seq not to the true real last
    266 	 * seq but to an older one.
    267 	 */
    268 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
    269 	do {
    270 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
    271 		seq = radeon_fence_read(rdev, ring);
    272 		seq |= last_seq & 0xffffffff00000000LL;
    273 		if (seq < last_seq) {
    274 			seq &= 0xffffffff;
    275 			seq |= last_emitted & 0xffffffff00000000LL;
    276 		}
    277 
    278 		if (seq <= last_seq || seq > last_emitted) {
    279 			break;
    280 		}
    281 		/* If we loop over we don't want to return without
    282 		 * checking if a fence is signaled as it means that the
    283 		 * seq we just read is different from the previous on.
    284 		 */
    285 		wake = true;
    286 		last_seq = seq;
    287 		if ((count_loop++) > 10) {
    288 			/* We looped over too many time leave with the
    289 			 * fact that we might have set an older fence
    290 			 * seq then the current real last seq as signaled
    291 			 * by the hw.
    292 			 */
    293 			break;
    294 		}
    295 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
    296 
    297 	if (seq < last_emitted)
    298 		radeon_fence_schedule_check(rdev, ring);
    299 
    300 	return wake;
    301 }
    302 
    303 /**
    304  * radeon_fence_check_lockup - check for hardware lockup
    305  *
    306  * @work: delayed work item
    307  *
    308  * Checks for fence activity and if there is none probe
    309  * the hardware if a lockup occured.
    310  */
    311 static void radeon_fence_check_lockup(struct work_struct *work)
    312 {
    313 	struct radeon_fence_driver *fence_drv;
    314 	struct radeon_device *rdev;
    315 	int ring;
    316 
    317 	fence_drv = container_of(work, struct radeon_fence_driver,
    318 				 lockup_work.work);
    319 	rdev = fence_drv->rdev;
    320 	ring = fence_drv - &rdev->fence_drv[0];
    321 
    322 #ifdef __NetBSD__
    323 	spin_lock(&rdev->fence_lock);
    324 #endif
    325 
    326 	if (!down_read_trylock(&rdev->exclusive_lock)) {
    327 		/* just reschedule the check if a reset is going on */
    328 		radeon_fence_schedule_check(rdev, ring);
    329 #ifdef __NetBSD__
    330 		spin_unlock(&rdev->fence_lock);
    331 #endif
    332 		return;
    333 	}
    334 
    335 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
    336 		unsigned long irqflags;
    337 
    338 		fence_drv->delayed_irq = false;
    339 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
    340 		radeon_irq_set(rdev);
    341 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
    342 	}
    343 
    344 	if (radeon_fence_activity(rdev, ring))
    345 #ifdef __NetBSD__
    346 		radeon_fence_wakeup_locked(rdev);
    347 #else
    348 		wake_up_all(&rdev->fence_queue);
    349 #endif
    350 
    351 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
    352 
    353 		/* good news we believe it's a lockup */
    354 		dev_warn(rdev->dev, "GPU lockup (current fence id "
    355 			 "0x%016"PRIx64" last fence id 0x%016"PRIx64" on ring %d)\n",
    356 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
    357 			 fence_drv->sync_seq[ring], ring);
    358 
    359 		/* remember that we need an reset */
    360 		rdev->needs_reset = true;
    361 #ifdef __NetBSD__
    362 		radeon_fence_wakeup_locked(rdev);
    363 #else
    364 		wake_up_all(&rdev->fence_queue);
    365 #endif
    366 	}
    367 	up_read(&rdev->exclusive_lock);
    368 #ifdef __NetBSD__
    369 	spin_unlock(&rdev->fence_lock);
    370 #endif
    371 }
    372 
    373 /**
    374  * radeon_fence_process - process a fence
    375  *
    376  * @rdev: radeon_device pointer
    377  * @ring: ring index the fence is associated with
    378  *
    379  * Checks the current fence value and wakes the fence queue
    380  * if the sequence number has increased (all asics).
    381  */
    382 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring)
    383 {
    384 	if (radeon_fence_activity(rdev, ring))
    385 #ifdef __NetBSD__
    386 		radeon_fence_wakeup_locked(rdev);
    387 #else
    388 		wake_up_all(&rdev->fence_queue);
    389 #endif
    390 }
    391 
    392 void radeon_fence_process(struct radeon_device *rdev, int ring)
    393 {
    394 
    395 	spin_lock(&rdev->fence_lock);
    396 	radeon_fence_process_locked(rdev, ring);
    397 	spin_unlock(&rdev->fence_lock);
    398 }
    399 
    400 /**
    401  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
    402  *
    403  * @rdev: radeon device pointer
    404  * @seq: sequence number
    405  * @ring: ring index the fence is associated with
    406  *
    407  * Check if the last signaled fence sequnce number is >= the requested
    408  * sequence number (all asics).
    409  * Returns true if the fence has signaled (current fence value
    410  * is >= requested value) or false if it has not (current fence
    411  * value is < the requested value.  Helper function for
    412  * radeon_fence_signaled().
    413  */
    414 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
    415 				      u64 seq, unsigned ring)
    416 {
    417 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    418 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
    419 		return true;
    420 	}
    421 	/* poll new last sequence at least once */
    422 	radeon_fence_process_locked(rdev, ring);
    423 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
    424 		return true;
    425 	}
    426 	return false;
    427 }
    428 
    429 static bool radeon_fence_is_signaled(struct dma_fence *f)
    430 {
    431 	struct radeon_fence *fence = to_radeon_fence(f);
    432 	struct radeon_device *rdev = fence->rdev;
    433 	unsigned ring = fence->ring;
    434 	u64 seq = fence->seq;
    435 
    436 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    437 
    438 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
    439 		return true;
    440 	}
    441 
    442 	if (down_read_trylock(&rdev->exclusive_lock)) {
    443 		radeon_fence_process_locked(rdev, ring);
    444 		up_read(&rdev->exclusive_lock);
    445 
    446 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
    447 			return true;
    448 		}
    449 	}
    450 	return false;
    451 }
    452 
    453 /**
    454  * radeon_fence_enable_signaling - enable signalling on fence
    455  * @fence: fence
    456  *
    457  * This function is called with fence_queue lock held, and adds a callback
    458  * to fence_queue that checks if this fence is signaled, and if so it
    459  * signals the fence and removes itself.
    460  */
    461 static bool radeon_fence_enable_signaling(struct dma_fence *f)
    462 {
    463 	struct radeon_fence *fence = to_radeon_fence(f);
    464 	struct radeon_device *rdev = fence->rdev;
    465 
    466 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    467 
    468 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
    469 		return false;
    470 
    471 	if (down_read_trylock(&rdev->exclusive_lock)) {
    472 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
    473 
    474 		if (radeon_fence_activity(rdev, fence->ring))
    475 #ifdef __NetBSD__
    476 			radeon_fence_wakeup_locked(rdev);
    477 #else
    478 			wake_up_all_locked(&rdev->fence_queue);
    479 #endif
    480 
    481 		/* did fence get signaled after we enabled the sw irq? */
    482 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
    483 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
    484 			up_read(&rdev->exclusive_lock);
    485 			return false;
    486 		}
    487 
    488 		up_read(&rdev->exclusive_lock);
    489 	} else {
    490 		/* we're probably in a lockup, lets not fiddle too much */
    491 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
    492 			rdev->fence_drv[fence->ring].delayed_irq = true;
    493 		radeon_fence_schedule_check(rdev, fence->ring);
    494 	}
    495 
    496 #ifdef __NetBSD__
    497 	TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check);
    498 #else
    499 	fence->fence_wake.flags = 0;
    500 	fence->fence_wake.private = NULL;
    501 	fence->fence_wake.func = radeon_fence_check_signaled;
    502 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
    503 #endif
    504 	dma_fence_get(f);
    505 
    506 	DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
    507 	return true;
    508 }
    509 
    510 /**
    511  * radeon_fence_signaled - check if a fence has signaled
    512  *
    513  * @fence: radeon fence object
    514  *
    515  * Check if the requested fence has signaled (all asics).
    516  * Returns true if the fence has signaled or false if it has not.
    517  */
    518 bool radeon_fence_signaled(struct radeon_fence *fence)
    519 {
    520 	if (!fence)
    521 		return true;
    522 
    523 	spin_lock(&fence->rdev->fence_lock);
    524 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
    525 		int ret;
    526 
    527 		ret = dma_fence_signal_locked(&fence->base);
    528 		if (!ret)
    529 			DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
    530 		spin_unlock(&fence->rdev->fence_lock);
    531 		return true;
    532 	}
    533 	spin_unlock(&fence->rdev->fence_lock);
    534 	return false;
    535 }
    536 
    537 /**
    538  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
    539  *
    540  * @rdev: radeon device pointer
    541  * @seq: sequence numbers
    542  *
    543  * Check if the last signaled fence sequnce number is >= the requested
    544  * sequence number (all asics).
    545  * Returns true if any has signaled (current value is >= requested value)
    546  * or false if it has not. Helper function for radeon_fence_wait_seq.
    547  */
    548 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
    549 {
    550 	unsigned i;
    551 
    552 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    553 
    554 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    555 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
    556 			return true;
    557 	}
    558 	return false;
    559 }
    560 
    561 /**
    562  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
    563  *
    564  * @rdev: radeon device pointer
    565  * @target_seq: sequence number(s) we want to wait for
    566  * @intr: use interruptable sleep
    567  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
    568  *
    569  * Wait for the requested sequence number(s) to be written by any ring
    570  * (all asics).  Sequnce number array is indexed by ring id.
    571  * @intr selects whether to use interruptable (true) or non-interruptable
    572  * (false) sleep when waiting for the sequence number.  Helper function
    573  * for radeon_fence_wait_*().
    574  * Returns remaining time if the sequence number has passed, 0 when
    575  * the wait timeout, or an error for all other cases.
    576  * -EDEADLK is returned when a GPU lockup has been detected.
    577  */
    578 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev,
    579 					  u64 *target_seq, bool intr,
    580 					  long timeout)
    581 {
    582 	long r;
    583 	int i;
    584 
    585 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
    586 		return timeout;
    587 
    588 	/* enable IRQs and tracing */
    589 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    590 		if (!target_seq[i])
    591 			continue;
    592 
    593 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
    594 		radeon_irq_kms_sw_irq_get(rdev, i);
    595 	}
    596 
    597 #ifdef __NetBSD__
    598 	if (intr)
    599 		DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
    600 		    &rdev->fence_lock, timeout,
    601 		    (radeon_fence_any_seq_signaled(rdev, target_seq)
    602 			|| rdev->needs_reset));
    603 	else
    604 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
    605 		    &rdev->fence_lock, timeout,
    606 		    (radeon_fence_any_seq_signaled(rdev, target_seq)
    607 			|| rdev->needs_reset));
    608 #else
    609 	if (intr) {
    610 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
    611 			radeon_fence_any_seq_signaled(rdev, target_seq)
    612 			 || rdev->needs_reset), timeout);
    613 	} else {
    614 		r = wait_event_timeout(rdev->fence_queue, (
    615 			radeon_fence_any_seq_signaled(rdev, target_seq)
    616 			 || rdev->needs_reset), timeout);
    617 	}
    618 #endif
    619 
    620 	if (rdev->needs_reset)
    621 		r = -EDEADLK;
    622 
    623 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    624 		if (!target_seq[i])
    625 			continue;
    626 
    627 		radeon_irq_kms_sw_irq_put(rdev, i);
    628 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
    629 	}
    630 
    631 	return r;
    632 }
    633 
    634 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
    635     u64 *target_seq, bool intr, long timo)
    636 {
    637 	long r;
    638 
    639 	spin_lock(&rdev->fence_lock);
    640 	r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo);
    641 	spin_unlock(&rdev->fence_lock);
    642 
    643 	return r;
    644 }
    645 
    646 /**
    647  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
    648  *
    649  * @fence: radeon fence object
    650  * @intr: use interruptible sleep
    651  *
    652  * Wait for the requested fence to signal (all asics).
    653  * @intr selects whether to use interruptable (true) or non-interruptable
    654  * (false) sleep when waiting for the fence.
    655  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
    656  * Returns remaining time if the sequence number has passed, 0 when
    657  * the wait timeout, or an error for all other cases.
    658  */
    659 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
    660 {
    661 	uint64_t seq[RADEON_NUM_RINGS] = {};
    662 	long r;
    663 	int r_sig;
    664 
    665 	/*
    666 	 * This function should not be called on !radeon fences.
    667 	 * If this is the case, it would mean this function can
    668 	 * also be called on radeon fences belonging to another card.
    669 	 * exclusive_lock is not held in that case.
    670 	 */
    671 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
    672 		return dma_fence_wait(&fence->base, intr);
    673 
    674 	seq[fence->ring] = fence->seq;
    675 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
    676 	if (r <= 0) {
    677 		return r;
    678 	}
    679 
    680 	r_sig = dma_fence_signal(&fence->base);
    681 	if (!r_sig)
    682 		DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
    683 	return r;
    684 }
    685 
    686 /**
    687  * radeon_fence_wait - wait for a fence to signal
    688  *
    689  * @fence: radeon fence object
    690  * @intr: use interruptible sleep
    691  *
    692  * Wait for the requested fence to signal (all asics).
    693  * @intr selects whether to use interruptable (true) or non-interruptable
    694  * (false) sleep when waiting for the fence.
    695  * Returns 0 if the fence has passed, error for all other cases.
    696  */
    697 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
    698 {
    699 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
    700 	if (r > 0) {
    701 		return 0;
    702 	} else {
    703 		return r;
    704 	}
    705 }
    706 
    707 /**
    708  * radeon_fence_wait_any - wait for a fence to signal on any ring
    709  *
    710  * @rdev: radeon device pointer
    711  * @fences: radeon fence object(s)
    712  * @intr: use interruptable sleep
    713  *
    714  * Wait for any requested fence to signal (all asics).  Fence
    715  * array is indexed by ring id.  @intr selects whether to use
    716  * interruptable (true) or non-interruptable (false) sleep when
    717  * waiting for the fences. Used by the suballocator.
    718  * Returns 0 if any fence has passed, error for all other cases.
    719  */
    720 int radeon_fence_wait_any(struct radeon_device *rdev,
    721 			  struct radeon_fence **fences,
    722 			  bool intr)
    723 {
    724 	uint64_t seq[RADEON_NUM_RINGS];
    725 	unsigned i, num_rings = 0;
    726 	long r;
    727 
    728 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    729 		seq[i] = 0;
    730 
    731 		if (!fences[i]) {
    732 			continue;
    733 		}
    734 
    735 		seq[i] = fences[i]->seq;
    736 		++num_rings;
    737 	}
    738 
    739 	/* nothing to wait for ? */
    740 	if (num_rings == 0)
    741 		return -ENOENT;
    742 
    743 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
    744 	if (r < 0) {
    745 		return r;
    746 	}
    747 	return 0;
    748 }
    749 
    750 /**
    751  * radeon_fence_wait_next - wait for the next fence to signal
    752  *
    753  * @rdev: radeon device pointer
    754  * @ring: ring index the fence is associated with
    755  *
    756  * Wait for the next fence on the requested ring to signal (all asics).
    757  * Returns 0 if the next fence has passed, error for all other cases.
    758  * Caller must hold ring lock.
    759  */
    760 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
    761 {
    762 	uint64_t seq[RADEON_NUM_RINGS] = {};
    763 	long r;
    764 
    765 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
    766 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
    767 		/* nothing to wait for, last_seq is
    768 		   already the last emited fence */
    769 		return -ENOENT;
    770 	}
    771 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
    772 	if (r < 0)
    773 		return r;
    774 	return 0;
    775 }
    776 
    777 /**
    778  * radeon_fence_wait_empty - wait for all fences to signal
    779  *
    780  * @rdev: radeon device pointer
    781  * @ring: ring index the fence is associated with
    782  *
    783  * Wait for all fences on the requested ring to signal (all asics).
    784  * Returns 0 if the fences have passed, error for all other cases.
    785  * Caller must hold ring lock.
    786  */
    787 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
    788 {
    789 	uint64_t seq[RADEON_NUM_RINGS] = {};
    790 	long r;
    791 
    792 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
    793 	if (!seq[ring])
    794 		return 0;
    795 
    796 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
    797 	if (r < 0) {
    798 		if (r == -EDEADLK)
    799 			return -EDEADLK;
    800 
    801 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
    802 			ring, r);
    803 	}
    804 	return 0;
    805 }
    806 
    807 /**
    808  * radeon_fence_ref - take a ref on a fence
    809  *
    810  * @fence: radeon fence object
    811  *
    812  * Take a reference on a fence (all asics).
    813  * Returns the fence.
    814  */
    815 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
    816 {
    817 	dma_fence_get(&fence->base);
    818 	return fence;
    819 }
    820 
    821 /**
    822  * radeon_fence_unref - remove a ref on a fence
    823  *
    824  * @fence: radeon fence object
    825  *
    826  * Remove a reference on a fence (all asics).
    827  */
    828 void radeon_fence_unref(struct radeon_fence **fence)
    829 {
    830 	struct radeon_fence *tmp = *fence;
    831 
    832 	*fence = NULL;
    833 	if (tmp) {
    834 		dma_fence_put(&tmp->base);
    835 	}
    836 }
    837 
    838 /**
    839  * radeon_fence_count_emitted - get the count of emitted fences
    840  *
    841  * @rdev: radeon device pointer
    842  * @ring: ring index the fence is associated with
    843  *
    844  * Get the number of fences emitted on the requested ring (all asics).
    845  * Returns the number of emitted fences on the ring.  Used by the
    846  * dynpm code to ring track activity.
    847  */
    848 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
    849 {
    850 	uint64_t emitted;
    851 
    852 	/* We are not protected by ring lock when reading the last sequence
    853 	 * but it's ok to report slightly wrong fence count here.
    854 	 */
    855 	radeon_fence_process(rdev, ring);
    856 	emitted = rdev->fence_drv[ring].sync_seq[ring]
    857 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
    858 	/* to avoid 32bits warp around */
    859 	if (emitted > 0x10000000) {
    860 		emitted = 0x10000000;
    861 	}
    862 	return (unsigned)emitted;
    863 }
    864 
    865 /**
    866  * radeon_fence_need_sync - do we need a semaphore
    867  *
    868  * @fence: radeon fence object
    869  * @dst_ring: which ring to check against
    870  *
    871  * Check if the fence needs to be synced against another ring
    872  * (all asics).  If so, we need to emit a semaphore.
    873  * Returns true if we need to sync with another ring, false if
    874  * not.
    875  */
    876 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
    877 {
    878 	struct radeon_fence_driver *fdrv;
    879 
    880 	if (!fence) {
    881 		return false;
    882 	}
    883 
    884 	if (fence->ring == dst_ring) {
    885 		return false;
    886 	}
    887 
    888 	/* we are protected by the ring mutex */
    889 	fdrv = &fence->rdev->fence_drv[dst_ring];
    890 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
    891 		return false;
    892 	}
    893 
    894 	return true;
    895 }
    896 
    897 /**
    898  * radeon_fence_note_sync - record the sync point
    899  *
    900  * @fence: radeon fence object
    901  * @dst_ring: which ring to check against
    902  *
    903  * Note the sequence number at which point the fence will
    904  * be synced with the requested ring (all asics).
    905  */
    906 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
    907 {
    908 	struct radeon_fence_driver *dst, *src;
    909 	unsigned i;
    910 
    911 	if (!fence) {
    912 		return;
    913 	}
    914 
    915 	if (fence->ring == dst_ring) {
    916 		return;
    917 	}
    918 
    919 	/* we are protected by the ring mutex */
    920 	src = &fence->rdev->fence_drv[fence->ring];
    921 	dst = &fence->rdev->fence_drv[dst_ring];
    922 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    923 		if (i == dst_ring) {
    924 			continue;
    925 		}
    926 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
    927 	}
    928 }
    929 
    930 /**
    931  * radeon_fence_driver_start_ring - make the fence driver
    932  * ready for use on the requested ring.
    933  *
    934  * @rdev: radeon device pointer
    935  * @ring: ring index to start the fence driver on
    936  *
    937  * Make the fence driver ready for processing (all asics).
    938  * Not all asics have all rings, so each asic will only
    939  * start the fence driver on the rings it has.
    940  * Returns 0 for success, errors for failure.
    941  */
    942 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
    943 {
    944 	uint64_t index;
    945 	int r;
    946 
    947 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
    948 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
    949 		rdev->fence_drv[ring].scratch_reg = 0;
    950 		if (ring != R600_RING_TYPE_UVD_INDEX) {
    951 			index = R600_WB_EVENT_OFFSET + ring * 4;
    952 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
    953 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
    954 							 index;
    955 
    956 		} else {
    957 			/* put fence directly behind firmware */
    958 			index = ALIGN(rdev->uvd_fw->size, 8);
    959 			rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index);
    960 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
    961 		}
    962 
    963 	} else {
    964 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
    965 		if (r) {
    966 			dev_err(rdev->dev, "fence failed to get scratch register\n");
    967 			return r;
    968 		}
    969 		index = RADEON_WB_SCRATCH_OFFSET +
    970 			rdev->fence_drv[ring].scratch_reg -
    971 			rdev->scratch.reg_base;
    972 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
    973 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
    974 	}
    975 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
    976 	rdev->fence_drv[ring].initialized = true;
    977 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n",
    978 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
    979 	return 0;
    980 }
    981 
    982 /**
    983  * radeon_fence_driver_init_ring - init the fence driver
    984  * for the requested ring.
    985  *
    986  * @rdev: radeon device pointer
    987  * @ring: ring index to start the fence driver on
    988  *
    989  * Init the fence driver for the requested ring (all asics).
    990  * Helper function for radeon_fence_driver_init().
    991  */
    992 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
    993 {
    994 	int i;
    995 
    996 	rdev->fence_drv[ring].scratch_reg = -1;
    997 	rdev->fence_drv[ring].cpu_addr = NULL;
    998 	rdev->fence_drv[ring].gpu_addr = 0;
    999 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
   1000 		rdev->fence_drv[ring].sync_seq[i] = 0;
   1001 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
   1002 	rdev->fence_drv[ring].initialized = false;
   1003 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
   1004 			  radeon_fence_check_lockup);
   1005 	rdev->fence_drv[ring].rdev = rdev;
   1006 }
   1007 
   1008 /**
   1009  * radeon_fence_driver_init - init the fence driver
   1010  * for all possible rings.
   1011  *
   1012  * @rdev: radeon device pointer
   1013  *
   1014  * Init the fence driver for all possible rings (all asics).
   1015  * Not all asics have all rings, so each asic will only
   1016  * start the fence driver on the rings it has using
   1017  * radeon_fence_driver_start_ring().
   1018  * Returns 0 for success.
   1019  */
   1020 int radeon_fence_driver_init(struct radeon_device *rdev)
   1021 {
   1022 	int ring;
   1023 
   1024 #ifdef __NetBSD__
   1025 	spin_lock_init(&rdev->fence_lock);
   1026 	DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence");
   1027 	TAILQ_INIT(&rdev->fence_check);
   1028 #else
   1029 	init_waitqueue_head(&rdev->fence_queue);
   1030 #endif
   1031 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
   1032 		radeon_fence_driver_init_ring(rdev, ring);
   1033 	}
   1034 	if (radeon_debugfs_fence_init(rdev)) {
   1035 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
   1036 	}
   1037 	return 0;
   1038 }
   1039 
   1040 /**
   1041  * radeon_fence_driver_fini - tear down the fence driver
   1042  * for all possible rings.
   1043  *
   1044  * @rdev: radeon device pointer
   1045  *
   1046  * Tear down the fence driver for all possible rings (all asics).
   1047  */
   1048 void radeon_fence_driver_fini(struct radeon_device *rdev)
   1049 {
   1050 	int ring, r;
   1051 
   1052 	mutex_lock(&rdev->ring_lock);
   1053 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
   1054 		if (!rdev->fence_drv[ring].initialized)
   1055 			continue;
   1056 		r = radeon_fence_wait_empty(rdev, ring);
   1057 		if (r) {
   1058 			/* no need to trigger GPU reset as we are unloading */
   1059 			radeon_fence_driver_force_completion(rdev, ring);
   1060 		}
   1061 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
   1062 #ifdef __NetBSD__
   1063 		spin_lock(&rdev->fence_lock);
   1064 		radeon_fence_wakeup_locked(rdev);
   1065 		spin_unlock(&rdev->fence_lock);
   1066 #else
   1067 		wake_up_all(&rdev->fence_queue);
   1068 #endif
   1069 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
   1070 		rdev->fence_drv[ring].initialized = false;
   1071 	}
   1072 	mutex_unlock(&rdev->ring_lock);
   1073 
   1074 #ifdef __NetBSD__
   1075 	BUG_ON(!TAILQ_EMPTY(&rdev->fence_check));
   1076 	DRM_DESTROY_WAITQUEUE(&rdev->fence_queue);
   1077 	spin_lock_destroy(&rdev->fence_lock);
   1078 #endif
   1079 }
   1080 
   1081 /**
   1082  * radeon_fence_driver_force_completion - force all fence waiter to complete
   1083  *
   1084  * @rdev: radeon device pointer
   1085  * @ring: the ring to complete
   1086  *
   1087  * In case of GPU reset failure make sure no process keep waiting on fence
   1088  * that will never complete.
   1089  */
   1090 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
   1091 {
   1092 	if (rdev->fence_drv[ring].initialized) {
   1093 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
   1094 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
   1095 	}
   1096 }
   1097 
   1098 
   1099 /*
   1100  * Fence debugfs
   1101  */
   1102 #if defined(CONFIG_DEBUG_FS)
   1103 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
   1104 {
   1105 	struct drm_info_node *node = (struct drm_info_node *)m->private;
   1106 	struct drm_device *dev = node->minor->dev;
   1107 	struct radeon_device *rdev = dev->dev_private;
   1108 	int i, j;
   1109 
   1110 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
   1111 		if (!rdev->fence_drv[i].initialized)
   1112 			continue;
   1113 
   1114 		radeon_fence_process(rdev, i);
   1115 
   1116 		seq_printf(m, "--- ring %d ---\n", i);
   1117 		seq_printf(m, "Last signaled fence 0x%016llx\n",
   1118 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
   1119 		seq_printf(m, "Last emitted        0x%016"PRIx64"\n",
   1120 			   rdev->fence_drv[i].sync_seq[i]);
   1121 
   1122 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
   1123 			if (i != j && rdev->fence_drv[j].initialized)
   1124 				seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n",
   1125 					   j, rdev->fence_drv[i].sync_seq[j]);
   1126 		}
   1127 	}
   1128 	return 0;
   1129 }
   1130 
   1131 /**
   1132  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
   1133  *
   1134  * Manually trigger a gpu reset at the next fence wait.
   1135  */
   1136 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
   1137 {
   1138 	struct drm_info_node *node = (struct drm_info_node *) m->private;
   1139 	struct drm_device *dev = node->minor->dev;
   1140 	struct radeon_device *rdev = dev->dev_private;
   1141 
   1142 	down_read(&rdev->exclusive_lock);
   1143 	seq_printf(m, "%d\n", rdev->needs_reset);
   1144 	rdev->needs_reset = true;
   1145 	wake_up_all(&rdev->fence_queue);
   1146 	up_read(&rdev->exclusive_lock);
   1147 
   1148 	return 0;
   1149 }
   1150 
   1151 static struct drm_info_list radeon_debugfs_fence_list[] = {
   1152 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
   1153 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
   1154 };
   1155 #endif
   1156 
   1157 int radeon_debugfs_fence_init(struct radeon_device *rdev)
   1158 {
   1159 #if defined(CONFIG_DEBUG_FS)
   1160 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
   1161 #else
   1162 	return 0;
   1163 #endif
   1164 }
   1165 
   1166 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
   1167 {
   1168 	return "radeon";
   1169 }
   1170 
   1171 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
   1172 {
   1173 	struct radeon_fence *fence = to_radeon_fence(f);
   1174 	switch (fence->ring) {
   1175 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
   1176 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
   1177 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
   1178 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
   1179 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
   1180 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
   1181 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
   1182 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
   1183 	default: WARN_ON_ONCE(1); return "radeon.unk";
   1184 	}
   1185 }
   1186 
   1187 static inline bool radeon_test_signaled(struct radeon_fence *fence)
   1188 {
   1189 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
   1190 }
   1191 
   1192 #ifdef __NetBSD__
   1193 
   1194 static void
   1195 radeon_fence_wakeup_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
   1196 {
   1197 	struct radeon_fence *rfence = to_radeon_fence(fence);
   1198 	struct radeon_device *rdev = rfence->rdev;
   1199 
   1200 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
   1201 	cv_broadcast(&rdev->fence_queue);
   1202 }
   1203 
   1204 static signed long
   1205 radeon_fence_default_wait(struct dma_fence *f, bool intr, signed long timo)
   1206 {
   1207 	struct dma_fence_cb fcb;
   1208 	struct radeon_fence *fence = to_radeon_fence(f);
   1209 	struct radeon_device *rdev = fence->rdev;
   1210 	int r;
   1211 
   1212 	r = dma_fence_add_callback(f, &fcb, radeon_fence_wakeup_cb);
   1213 	if (r)			/* fence is done already */
   1214 		return timo;
   1215 
   1216 	spin_lock(&rdev->fence_lock);
   1217 	if (intr) {
   1218 		DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
   1219 		    &rdev->fence_lock, timo,
   1220 		    radeon_test_signaled(fence));
   1221 	} else {
   1222 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
   1223 		    &rdev->fence_lock, timo,
   1224 		    radeon_test_signaled(fence));
   1225 	}
   1226 	spin_unlock(&rdev->fence_lock);
   1227 
   1228 	(void)dma_fence_remove_callback(f, &fcb);
   1229 
   1230 	return r;
   1231 }
   1232 
   1233 #else
   1234 
   1235 struct radeon_wait_cb {
   1236 	struct dma_fence_cb base;
   1237 	struct task_struct *task;
   1238 };
   1239 
   1240 static void
   1241 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
   1242 {
   1243 	struct radeon_wait_cb *wait =
   1244 		container_of(cb, struct radeon_wait_cb, base);
   1245 
   1246 	wake_up_process(wait->task);
   1247 }
   1248 
   1249 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
   1250 					     signed long t)
   1251 {
   1252 	struct radeon_fence *fence = to_radeon_fence(f);
   1253 	struct radeon_device *rdev = fence->rdev;
   1254 	struct radeon_wait_cb cb;
   1255 
   1256 	cb.task = current;
   1257 
   1258 	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
   1259 		return t;
   1260 
   1261 	while (t > 0) {
   1262 		if (intr)
   1263 			set_current_state(TASK_INTERRUPTIBLE);
   1264 		else
   1265 			set_current_state(TASK_UNINTERRUPTIBLE);
   1266 
   1267 		/*
   1268 		 * radeon_test_signaled must be called after
   1269 		 * set_current_state to prevent a race with wake_up_process
   1270 		 */
   1271 		if (radeon_test_signaled(fence))
   1272 			break;
   1273 
   1274 		if (rdev->needs_reset) {
   1275 			t = -EDEADLK;
   1276 			break;
   1277 		}
   1278 
   1279 		t = schedule_timeout(t);
   1280 
   1281 		if (t > 0 && intr && signal_pending(current))
   1282 			t = -ERESTARTSYS;
   1283 	}
   1284 
   1285 	__set_current_state(TASK_RUNNING);
   1286 	dma_fence_remove_callback(f, &cb.base);
   1287 
   1288 	return t;
   1289 }
   1290 
   1291 #endif
   1292 const struct dma_fence_ops radeon_fence_ops = {
   1293 	.get_driver_name = radeon_fence_get_driver_name,
   1294 	.get_timeline_name = radeon_fence_get_timeline_name,
   1295 	.enable_signaling = radeon_fence_enable_signaling,
   1296 	.signaled = radeon_fence_is_signaled,
   1297 	.wait = radeon_fence_default_wait,
   1298 	.release = NULL,
   1299 };
   1300