radeon_fence.c revision 1.21 1 /* $NetBSD: radeon_fence.c,v 1.21 2021/12/19 11:08:25 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Dave Airlie
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.21 2021/12/19 11:08:25 riastradh Exp $");
36
37 #include <linux/atomic.h>
38 #include <linux/firmware.h>
39 #include <linux/kref.h>
40 #include <linux/sched/signal.h>
41 #include <linux/seq_file.h>
42 #include <linux/slab.h>
43 #include <linux/wait.h>
44
45 #include <drm/drm_debugfs.h>
46 #include <drm/drm_device.h>
47 #include <drm/drm_file.h>
48
49 #include "radeon.h"
50 #include "radeon_reg.h"
51 #include "radeon_trace.h"
52
53 #include <linux/nbsd-namespace.h>
54
55 /*
56 * Fences
57 * Fences mark an event in the GPUs pipeline and are used
58 * for GPU/CPU synchronization. When the fence is written,
59 * it is expected that all buffers associated with that fence
60 * are no longer in use by the associated ring on the GPU and
61 * that the the relevant GPU caches have been flushed. Whether
62 * we use a scratch register or memory location depends on the asic
63 * and whether writeback is enabled.
64 */
65
66 /**
67 * radeon_fence_write - write a fence value
68 *
69 * @rdev: radeon_device pointer
70 * @seq: sequence number to write
71 * @ring: ring index the fence is associated with
72 *
73 * Writes a fence value to memory or a scratch register (all asics).
74 */
75 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
76 {
77 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
78 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
79 if (drv->cpu_addr) {
80 *drv->cpu_addr = cpu_to_le32(seq);
81 }
82 } else {
83 WREG32(drv->scratch_reg, seq);
84 }
85 }
86
87 /**
88 * radeon_fence_read - read a fence value
89 *
90 * @rdev: radeon_device pointer
91 * @ring: ring index the fence is associated with
92 *
93 * Reads a fence value from memory or a scratch register (all asics).
94 * Returns the value of the fence read from memory or register.
95 */
96 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
97 {
98 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
99 u32 seq = 0;
100
101 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
102 if (drv->cpu_addr) {
103 seq = le32_to_cpu(*drv->cpu_addr);
104 } else {
105 seq = lower_32_bits(atomic64_read(&drv->last_seq));
106 }
107 } else {
108 seq = RREG32(drv->scratch_reg);
109 }
110 return seq;
111 }
112
113 /**
114 * radeon_fence_schedule_check - schedule lockup check
115 *
116 * @rdev: radeon_device pointer
117 * @ring: ring index we should work with
118 *
119 * Queues a delayed work item to check for lockups.
120 */
121 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
122 {
123 /*
124 * Do not reset the timer here with mod_delayed_work,
125 * this can livelock in an interaction with TTM delayed destroy.
126 */
127 queue_delayed_work(system_power_efficient_wq,
128 &rdev->fence_drv[ring].lockup_work,
129 RADEON_FENCE_JIFFIES_TIMEOUT);
130 }
131
132 /**
133 * radeon_fence_emit - emit a fence on the requested ring
134 *
135 * @rdev: radeon_device pointer
136 * @fence: radeon fence object
137 * @ring: ring index the fence is associated with
138 *
139 * Emits a fence command on the requested ring (all asics).
140 * Returns 0 on success, -ENOMEM on failure.
141 */
142 int radeon_fence_emit(struct radeon_device *rdev,
143 struct radeon_fence **fence,
144 int ring)
145 {
146 u64 seq;
147
148 /* we are protected by the ring emission mutex */
149 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
150 if ((*fence) == NULL) {
151 return -ENOMEM;
152 }
153 (*fence)->rdev = rdev;
154 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
155 (*fence)->ring = ring;
156 (*fence)->is_vm_update = false;
157 dma_fence_init(&(*fence)->base, &radeon_fence_ops,
158 &rdev->fence_lock,
159 rdev->fence_context + ring,
160 seq);
161 radeon_fence_ring_emit(rdev, ring, *fence);
162 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
163 radeon_fence_schedule_check(rdev, ring);
164 return 0;
165 }
166
167 /**
168 * radeon_fence_check_signaled - callback from fence_queue
169 *
170 * this function is called with fence_queue lock held, which is also used
171 * for the fence locking itself, so unlocked variants are used for
172 * fence_signal, and remove_wait_queue.
173 */
174 #ifdef __NetBSD__
175 static int radeon_fence_check_signaled(struct radeon_fence *fence)
176 #else
177 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
178 #endif
179 {
180 #ifndef __NetBSD__
181 struct radeon_fence *fence;
182 #endif
183 u64 seq;
184
185 #ifndef __NetBSD__
186 fence = container_of(wait, struct radeon_fence, fence_wake);
187 #endif
188 BUG_ON(!spin_is_locked(&fence->rdev->fence_lock));
189
190 /*
191 * We cannot use radeon_fence_process here because we're already
192 * in the waitqueue, in a call from wake_up_all.
193 */
194 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
195 if (seq >= fence->seq) {
196 int ret = dma_fence_signal_locked(&fence->base);
197
198 if (!ret)
199 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
200 else
201 DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
202
203 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
204 #ifdef __NetBSD__
205 TAILQ_REMOVE(&fence->rdev->fence_check, fence, fence_check);
206 #else
207 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
208 #endif
209 dma_fence_put(&fence->base);
210 } else
211 DMA_FENCE_TRACE(&fence->base, "pending\n");
212 return 0;
213 }
214
215 #ifdef __NetBSD__
216 void
217 radeon_fence_wakeup_locked(struct radeon_device *rdev)
218 {
219 struct radeon_fence *fence, *next;
220
221 BUG_ON(!spin_is_locked(&rdev->fence_lock));
222 DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
223 TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) {
224 radeon_fence_check_signaled(fence);
225 }
226 }
227 #endif
228
229 /**
230 * radeon_fence_activity - check for fence activity
231 *
232 * @rdev: radeon_device pointer
233 * @ring: ring index the fence is associated with
234 *
235 * Checks the current fence value and calculates the last
236 * signalled fence value. Returns true if activity occured
237 * on the ring, and the fence_queue should be waken up.
238 */
239 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
240 {
241 uint64_t seq, last_seq, last_emitted;
242 unsigned count_loop = 0;
243 bool wake = false;
244
245 BUG_ON(!spin_is_locked(&rdev->fence_lock));
246
247 /* Note there is a scenario here for an infinite loop but it's
248 * very unlikely to happen. For it to happen, the current polling
249 * process need to be interrupted by another process and another
250 * process needs to update the last_seq btw the atomic read and
251 * xchg of the current process.
252 *
253 * More over for this to go in infinite loop there need to be
254 * continuously new fence signaled ie radeon_fence_read needs
255 * to return a different value each time for both the currently
256 * polling process and the other process that xchg the last_seq
257 * btw atomic read and xchg of the current process. And the
258 * value the other process set as last seq must be higher than
259 * the seq value we just read. Which means that current process
260 * need to be interrupted after radeon_fence_read and before
261 * atomic xchg.
262 *
263 * To be even more safe we count the number of time we loop and
264 * we bail after 10 loop just accepting the fact that we might
265 * have temporarly set the last_seq not to the true real last
266 * seq but to an older one.
267 */
268 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
269 do {
270 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
271 seq = radeon_fence_read(rdev, ring);
272 seq |= last_seq & 0xffffffff00000000LL;
273 if (seq < last_seq) {
274 seq &= 0xffffffff;
275 seq |= last_emitted & 0xffffffff00000000LL;
276 }
277
278 if (seq <= last_seq || seq > last_emitted) {
279 break;
280 }
281 /* If we loop over we don't want to return without
282 * checking if a fence is signaled as it means that the
283 * seq we just read is different from the previous on.
284 */
285 wake = true;
286 last_seq = seq;
287 if ((count_loop++) > 10) {
288 /* We looped over too many time leave with the
289 * fact that we might have set an older fence
290 * seq then the current real last seq as signaled
291 * by the hw.
292 */
293 break;
294 }
295 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
296
297 if (seq < last_emitted)
298 radeon_fence_schedule_check(rdev, ring);
299
300 return wake;
301 }
302
303 /**
304 * radeon_fence_check_lockup - check for hardware lockup
305 *
306 * @work: delayed work item
307 *
308 * Checks for fence activity and if there is none probe
309 * the hardware if a lockup occured.
310 */
311 static void radeon_fence_check_lockup(struct work_struct *work)
312 {
313 struct radeon_fence_driver *fence_drv;
314 struct radeon_device *rdev;
315 int ring;
316
317 fence_drv = container_of(work, struct radeon_fence_driver,
318 lockup_work.work);
319 rdev = fence_drv->rdev;
320 ring = fence_drv - &rdev->fence_drv[0];
321
322 #ifdef __NetBSD__
323 spin_lock(&rdev->fence_lock);
324 #endif
325
326 if (!down_read_trylock(&rdev->exclusive_lock)) {
327 /* just reschedule the check if a reset is going on */
328 radeon_fence_schedule_check(rdev, ring);
329 #ifdef __NetBSD__
330 spin_unlock(&rdev->fence_lock);
331 #endif
332 return;
333 }
334
335 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
336 unsigned long irqflags;
337
338 fence_drv->delayed_irq = false;
339 spin_lock_irqsave(&rdev->irq.lock, irqflags);
340 radeon_irq_set(rdev);
341 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
342 }
343
344 if (radeon_fence_activity(rdev, ring))
345 #ifdef __NetBSD__
346 radeon_fence_wakeup_locked(rdev);
347 #else
348 wake_up_all(&rdev->fence_queue);
349 #endif
350
351 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
352
353 /* good news we believe it's a lockup */
354 dev_warn(rdev->dev, "GPU lockup (current fence id "
355 "0x%016"PRIx64" last fence id 0x%016"PRIx64" on ring %d)\n",
356 (uint64_t)atomic64_read(&fence_drv->last_seq),
357 fence_drv->sync_seq[ring], ring);
358
359 /* remember that we need an reset */
360 rdev->needs_reset = true;
361 #ifdef __NetBSD__
362 radeon_fence_wakeup_locked(rdev);
363 #else
364 wake_up_all(&rdev->fence_queue);
365 #endif
366 }
367 up_read(&rdev->exclusive_lock);
368 #ifdef __NetBSD__
369 spin_unlock(&rdev->fence_lock);
370 #endif
371 }
372
373 /**
374 * radeon_fence_process - process a fence
375 *
376 * @rdev: radeon_device pointer
377 * @ring: ring index the fence is associated with
378 *
379 * Checks the current fence value and wakes the fence queue
380 * if the sequence number has increased (all asics).
381 */
382 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring)
383 {
384 if (radeon_fence_activity(rdev, ring))
385 #ifdef __NetBSD__
386 radeon_fence_wakeup_locked(rdev);
387 #else
388 wake_up_all(&rdev->fence_queue);
389 #endif
390 }
391
392 void radeon_fence_process(struct radeon_device *rdev, int ring)
393 {
394
395 spin_lock(&rdev->fence_lock);
396 radeon_fence_process_locked(rdev, ring);
397 spin_unlock(&rdev->fence_lock);
398 }
399
400 /**
401 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
402 *
403 * @rdev: radeon device pointer
404 * @seq: sequence number
405 * @ring: ring index the fence is associated with
406 *
407 * Check if the last signaled fence sequnce number is >= the requested
408 * sequence number (all asics).
409 * Returns true if the fence has signaled (current fence value
410 * is >= requested value) or false if it has not (current fence
411 * value is < the requested value. Helper function for
412 * radeon_fence_signaled().
413 */
414 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
415 u64 seq, unsigned ring)
416 {
417 BUG_ON(!spin_is_locked(&rdev->fence_lock));
418 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
419 return true;
420 }
421 /* poll new last sequence at least once */
422 radeon_fence_process_locked(rdev, ring);
423 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
424 return true;
425 }
426 return false;
427 }
428
429 static bool radeon_fence_is_signaled(struct dma_fence *f)
430 {
431 struct radeon_fence *fence = to_radeon_fence(f);
432 struct radeon_device *rdev = fence->rdev;
433 unsigned ring = fence->ring;
434 u64 seq = fence->seq;
435
436 BUG_ON(!spin_is_locked(&rdev->fence_lock));
437
438 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
439 return true;
440 }
441
442 if (down_read_trylock(&rdev->exclusive_lock)) {
443 radeon_fence_process_locked(rdev, ring);
444 up_read(&rdev->exclusive_lock);
445
446 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
447 return true;
448 }
449 }
450 return false;
451 }
452
453 /**
454 * radeon_fence_enable_signaling - enable signalling on fence
455 * @fence: fence
456 *
457 * This function is called with fence_queue lock held, and adds a callback
458 * to fence_queue that checks if this fence is signaled, and if so it
459 * signals the fence and removes itself.
460 */
461 static bool radeon_fence_enable_signaling(struct dma_fence *f)
462 {
463 struct radeon_fence *fence = to_radeon_fence(f);
464 struct radeon_device *rdev = fence->rdev;
465
466 BUG_ON(!spin_is_locked(&rdev->fence_lock));
467
468 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
469 return false;
470
471 if (down_read_trylock(&rdev->exclusive_lock)) {
472 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
473
474 if (radeon_fence_activity(rdev, fence->ring))
475 #ifdef __NetBSD__
476 radeon_fence_wakeup_locked(rdev);
477 #else
478 wake_up_all_locked(&rdev->fence_queue);
479 #endif
480
481 /* did fence get signaled after we enabled the sw irq? */
482 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
483 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
484 up_read(&rdev->exclusive_lock);
485 return false;
486 }
487
488 up_read(&rdev->exclusive_lock);
489 } else {
490 /* we're probably in a lockup, lets not fiddle too much */
491 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
492 rdev->fence_drv[fence->ring].delayed_irq = true;
493 radeon_fence_schedule_check(rdev, fence->ring);
494 }
495
496 #ifdef __NetBSD__
497 TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check);
498 #else
499 fence->fence_wake.flags = 0;
500 fence->fence_wake.private = NULL;
501 fence->fence_wake.func = radeon_fence_check_signaled;
502 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
503 #endif
504 dma_fence_get(f);
505
506 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
507 return true;
508 }
509
510 /**
511 * radeon_fence_signaled - check if a fence has signaled
512 *
513 * @fence: radeon fence object
514 *
515 * Check if the requested fence has signaled (all asics).
516 * Returns true if the fence has signaled or false if it has not.
517 */
518 bool radeon_fence_signaled(struct radeon_fence *fence)
519 {
520 if (!fence)
521 return true;
522
523 spin_lock(&fence->rdev->fence_lock);
524 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
525 int ret;
526
527 ret = dma_fence_signal_locked(&fence->base);
528 if (!ret)
529 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
530 spin_unlock(&fence->rdev->fence_lock);
531 return true;
532 }
533 spin_unlock(&fence->rdev->fence_lock);
534 return false;
535 }
536
537 /**
538 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
539 *
540 * @rdev: radeon device pointer
541 * @seq: sequence numbers
542 *
543 * Check if the last signaled fence sequnce number is >= the requested
544 * sequence number (all asics).
545 * Returns true if any has signaled (current value is >= requested value)
546 * or false if it has not. Helper function for radeon_fence_wait_seq.
547 */
548 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
549 {
550 unsigned i;
551
552 BUG_ON(!spin_is_locked(&rdev->fence_lock));
553
554 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
555 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
556 return true;
557 }
558 return false;
559 }
560
561 /**
562 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
563 *
564 * @rdev: radeon device pointer
565 * @target_seq: sequence number(s) we want to wait for
566 * @intr: use interruptable sleep
567 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
568 *
569 * Wait for the requested sequence number(s) to be written by any ring
570 * (all asics). Sequnce number array is indexed by ring id.
571 * @intr selects whether to use interruptable (true) or non-interruptable
572 * (false) sleep when waiting for the sequence number. Helper function
573 * for radeon_fence_wait_*().
574 * Returns remaining time if the sequence number has passed, 0 when
575 * the wait timeout, or an error for all other cases.
576 * -EDEADLK is returned when a GPU lockup has been detected.
577 */
578 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev,
579 u64 *target_seq, bool intr,
580 long timeout)
581 {
582 long r;
583 int i;
584
585 if (radeon_fence_any_seq_signaled(rdev, target_seq))
586 return timeout;
587
588 /* enable IRQs and tracing */
589 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
590 if (!target_seq[i])
591 continue;
592
593 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
594 radeon_irq_kms_sw_irq_get(rdev, i);
595 }
596
597 #ifdef __NetBSD__
598 if (intr)
599 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
600 &rdev->fence_lock, timeout,
601 (radeon_fence_any_seq_signaled(rdev, target_seq)
602 || rdev->needs_reset));
603 else
604 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
605 &rdev->fence_lock, timeout,
606 (radeon_fence_any_seq_signaled(rdev, target_seq)
607 || rdev->needs_reset));
608 #else
609 if (intr) {
610 r = wait_event_interruptible_timeout(rdev->fence_queue, (
611 radeon_fence_any_seq_signaled(rdev, target_seq)
612 || rdev->needs_reset), timeout);
613 } else {
614 r = wait_event_timeout(rdev->fence_queue, (
615 radeon_fence_any_seq_signaled(rdev, target_seq)
616 || rdev->needs_reset), timeout);
617 }
618 #endif
619
620 if (rdev->needs_reset)
621 r = -EDEADLK;
622
623 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
624 if (!target_seq[i])
625 continue;
626
627 radeon_irq_kms_sw_irq_put(rdev, i);
628 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
629 }
630
631 return r;
632 }
633
634 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
635 u64 *target_seq, bool intr, long timo)
636 {
637 long r;
638
639 spin_lock(&rdev->fence_lock);
640 r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo);
641 spin_unlock(&rdev->fence_lock);
642
643 return r;
644 }
645
646 /**
647 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
648 *
649 * @fence: radeon fence object
650 * @intr: use interruptible sleep
651 *
652 * Wait for the requested fence to signal (all asics).
653 * @intr selects whether to use interruptable (true) or non-interruptable
654 * (false) sleep when waiting for the fence.
655 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
656 * Returns remaining time if the sequence number has passed, 0 when
657 * the wait timeout, or an error for all other cases.
658 */
659 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
660 {
661 uint64_t seq[RADEON_NUM_RINGS] = {};
662 long r;
663 int r_sig;
664
665 /*
666 * This function should not be called on !radeon fences.
667 * If this is the case, it would mean this function can
668 * also be called on radeon fences belonging to another card.
669 * exclusive_lock is not held in that case.
670 */
671 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
672 return dma_fence_wait(&fence->base, intr);
673
674 seq[fence->ring] = fence->seq;
675 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
676 if (r <= 0) {
677 return r;
678 }
679
680 r_sig = dma_fence_signal(&fence->base);
681 if (!r_sig)
682 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
683 return r;
684 }
685
686 /**
687 * radeon_fence_wait - wait for a fence to signal
688 *
689 * @fence: radeon fence object
690 * @intr: use interruptible sleep
691 *
692 * Wait for the requested fence to signal (all asics).
693 * @intr selects whether to use interruptable (true) or non-interruptable
694 * (false) sleep when waiting for the fence.
695 * Returns 0 if the fence has passed, error for all other cases.
696 */
697 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
698 {
699 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
700 if (r > 0) {
701 return 0;
702 } else {
703 return r;
704 }
705 }
706
707 /**
708 * radeon_fence_wait_any - wait for a fence to signal on any ring
709 *
710 * @rdev: radeon device pointer
711 * @fences: radeon fence object(s)
712 * @intr: use interruptable sleep
713 *
714 * Wait for any requested fence to signal (all asics). Fence
715 * array is indexed by ring id. @intr selects whether to use
716 * interruptable (true) or non-interruptable (false) sleep when
717 * waiting for the fences. Used by the suballocator.
718 * Returns 0 if any fence has passed, error for all other cases.
719 */
720 int radeon_fence_wait_any(struct radeon_device *rdev,
721 struct radeon_fence **fences,
722 bool intr)
723 {
724 uint64_t seq[RADEON_NUM_RINGS];
725 unsigned i, num_rings = 0;
726 long r;
727
728 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
729 seq[i] = 0;
730
731 if (!fences[i]) {
732 continue;
733 }
734
735 seq[i] = fences[i]->seq;
736 ++num_rings;
737 }
738
739 /* nothing to wait for ? */
740 if (num_rings == 0)
741 return -ENOENT;
742
743 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
744 if (r < 0) {
745 return r;
746 }
747 return 0;
748 }
749
750 /**
751 * radeon_fence_wait_next - wait for the next fence to signal
752 *
753 * @rdev: radeon device pointer
754 * @ring: ring index the fence is associated with
755 *
756 * Wait for the next fence on the requested ring to signal (all asics).
757 * Returns 0 if the next fence has passed, error for all other cases.
758 * Caller must hold ring lock.
759 */
760 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
761 {
762 uint64_t seq[RADEON_NUM_RINGS] = {};
763 long r;
764
765 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
766 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
767 /* nothing to wait for, last_seq is
768 already the last emited fence */
769 return -ENOENT;
770 }
771 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
772 if (r < 0)
773 return r;
774 return 0;
775 }
776
777 /**
778 * radeon_fence_wait_empty - wait for all fences to signal
779 *
780 * @rdev: radeon device pointer
781 * @ring: ring index the fence is associated with
782 *
783 * Wait for all fences on the requested ring to signal (all asics).
784 * Returns 0 if the fences have passed, error for all other cases.
785 * Caller must hold ring lock.
786 */
787 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
788 {
789 uint64_t seq[RADEON_NUM_RINGS] = {};
790 long r;
791
792 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
793 if (!seq[ring])
794 return 0;
795
796 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
797 if (r < 0) {
798 if (r == -EDEADLK)
799 return -EDEADLK;
800
801 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
802 ring, r);
803 }
804 return 0;
805 }
806
807 /**
808 * radeon_fence_ref - take a ref on a fence
809 *
810 * @fence: radeon fence object
811 *
812 * Take a reference on a fence (all asics).
813 * Returns the fence.
814 */
815 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
816 {
817 dma_fence_get(&fence->base);
818 return fence;
819 }
820
821 /**
822 * radeon_fence_unref - remove a ref on a fence
823 *
824 * @fence: radeon fence object
825 *
826 * Remove a reference on a fence (all asics).
827 */
828 void radeon_fence_unref(struct radeon_fence **fence)
829 {
830 struct radeon_fence *tmp = *fence;
831
832 *fence = NULL;
833 if (tmp) {
834 dma_fence_put(&tmp->base);
835 }
836 }
837
838 /**
839 * radeon_fence_count_emitted - get the count of emitted fences
840 *
841 * @rdev: radeon device pointer
842 * @ring: ring index the fence is associated with
843 *
844 * Get the number of fences emitted on the requested ring (all asics).
845 * Returns the number of emitted fences on the ring. Used by the
846 * dynpm code to ring track activity.
847 */
848 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
849 {
850 uint64_t emitted;
851
852 /* We are not protected by ring lock when reading the last sequence
853 * but it's ok to report slightly wrong fence count here.
854 */
855 radeon_fence_process(rdev, ring);
856 emitted = rdev->fence_drv[ring].sync_seq[ring]
857 - atomic64_read(&rdev->fence_drv[ring].last_seq);
858 /* to avoid 32bits warp around */
859 if (emitted > 0x10000000) {
860 emitted = 0x10000000;
861 }
862 return (unsigned)emitted;
863 }
864
865 /**
866 * radeon_fence_need_sync - do we need a semaphore
867 *
868 * @fence: radeon fence object
869 * @dst_ring: which ring to check against
870 *
871 * Check if the fence needs to be synced against another ring
872 * (all asics). If so, we need to emit a semaphore.
873 * Returns true if we need to sync with another ring, false if
874 * not.
875 */
876 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
877 {
878 struct radeon_fence_driver *fdrv;
879
880 if (!fence) {
881 return false;
882 }
883
884 if (fence->ring == dst_ring) {
885 return false;
886 }
887
888 /* we are protected by the ring mutex */
889 fdrv = &fence->rdev->fence_drv[dst_ring];
890 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
891 return false;
892 }
893
894 return true;
895 }
896
897 /**
898 * radeon_fence_note_sync - record the sync point
899 *
900 * @fence: radeon fence object
901 * @dst_ring: which ring to check against
902 *
903 * Note the sequence number at which point the fence will
904 * be synced with the requested ring (all asics).
905 */
906 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
907 {
908 struct radeon_fence_driver *dst, *src;
909 unsigned i;
910
911 if (!fence) {
912 return;
913 }
914
915 if (fence->ring == dst_ring) {
916 return;
917 }
918
919 /* we are protected by the ring mutex */
920 src = &fence->rdev->fence_drv[fence->ring];
921 dst = &fence->rdev->fence_drv[dst_ring];
922 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
923 if (i == dst_ring) {
924 continue;
925 }
926 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
927 }
928 }
929
930 /**
931 * radeon_fence_driver_start_ring - make the fence driver
932 * ready for use on the requested ring.
933 *
934 * @rdev: radeon device pointer
935 * @ring: ring index to start the fence driver on
936 *
937 * Make the fence driver ready for processing (all asics).
938 * Not all asics have all rings, so each asic will only
939 * start the fence driver on the rings it has.
940 * Returns 0 for success, errors for failure.
941 */
942 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
943 {
944 uint64_t index;
945 int r;
946
947 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
948 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
949 rdev->fence_drv[ring].scratch_reg = 0;
950 if (ring != R600_RING_TYPE_UVD_INDEX) {
951 index = R600_WB_EVENT_OFFSET + ring * 4;
952 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
953 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
954 index;
955
956 } else {
957 /* put fence directly behind firmware */
958 index = ALIGN(rdev->uvd_fw->size, 8);
959 rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index);
960 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
961 }
962
963 } else {
964 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
965 if (r) {
966 dev_err(rdev->dev, "fence failed to get scratch register\n");
967 return r;
968 }
969 index = RADEON_WB_SCRATCH_OFFSET +
970 rdev->fence_drv[ring].scratch_reg -
971 rdev->scratch.reg_base;
972 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
973 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
974 }
975 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
976 rdev->fence_drv[ring].initialized = true;
977 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n",
978 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
979 return 0;
980 }
981
982 /**
983 * radeon_fence_driver_init_ring - init the fence driver
984 * for the requested ring.
985 *
986 * @rdev: radeon device pointer
987 * @ring: ring index to start the fence driver on
988 *
989 * Init the fence driver for the requested ring (all asics).
990 * Helper function for radeon_fence_driver_init().
991 */
992 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
993 {
994 int i;
995
996 rdev->fence_drv[ring].scratch_reg = -1;
997 rdev->fence_drv[ring].cpu_addr = NULL;
998 rdev->fence_drv[ring].gpu_addr = 0;
999 for (i = 0; i < RADEON_NUM_RINGS; ++i)
1000 rdev->fence_drv[ring].sync_seq[i] = 0;
1001 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
1002 rdev->fence_drv[ring].initialized = false;
1003 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
1004 radeon_fence_check_lockup);
1005 rdev->fence_drv[ring].rdev = rdev;
1006 }
1007
1008 /**
1009 * radeon_fence_driver_init - init the fence driver
1010 * for all possible rings.
1011 *
1012 * @rdev: radeon device pointer
1013 *
1014 * Init the fence driver for all possible rings (all asics).
1015 * Not all asics have all rings, so each asic will only
1016 * start the fence driver on the rings it has using
1017 * radeon_fence_driver_start_ring().
1018 * Returns 0 for success.
1019 */
1020 int radeon_fence_driver_init(struct radeon_device *rdev)
1021 {
1022 int ring;
1023
1024 #ifdef __NetBSD__
1025 spin_lock_init(&rdev->fence_lock);
1026 DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence");
1027 TAILQ_INIT(&rdev->fence_check);
1028 #else
1029 init_waitqueue_head(&rdev->fence_queue);
1030 #endif
1031 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
1032 radeon_fence_driver_init_ring(rdev, ring);
1033 }
1034 if (radeon_debugfs_fence_init(rdev)) {
1035 dev_err(rdev->dev, "fence debugfs file creation failed\n");
1036 }
1037 return 0;
1038 }
1039
1040 /**
1041 * radeon_fence_driver_fini - tear down the fence driver
1042 * for all possible rings.
1043 *
1044 * @rdev: radeon device pointer
1045 *
1046 * Tear down the fence driver for all possible rings (all asics).
1047 */
1048 void radeon_fence_driver_fini(struct radeon_device *rdev)
1049 {
1050 int ring, r;
1051
1052 mutex_lock(&rdev->ring_lock);
1053 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
1054 if (!rdev->fence_drv[ring].initialized)
1055 continue;
1056 r = radeon_fence_wait_empty(rdev, ring);
1057 if (r) {
1058 /* no need to trigger GPU reset as we are unloading */
1059 radeon_fence_driver_force_completion(rdev, ring);
1060 }
1061 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1062 #ifdef __NetBSD__
1063 spin_lock(&rdev->fence_lock);
1064 radeon_fence_wakeup_locked(rdev);
1065 spin_unlock(&rdev->fence_lock);
1066 #else
1067 wake_up_all(&rdev->fence_queue);
1068 #endif
1069 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
1070 rdev->fence_drv[ring].initialized = false;
1071 }
1072 mutex_unlock(&rdev->ring_lock);
1073
1074 #ifdef __NetBSD__
1075 BUG_ON(!TAILQ_EMPTY(&rdev->fence_check));
1076 DRM_DESTROY_WAITQUEUE(&rdev->fence_queue);
1077 spin_lock_destroy(&rdev->fence_lock);
1078 #endif
1079 }
1080
1081 /**
1082 * radeon_fence_driver_force_completion - force all fence waiter to complete
1083 *
1084 * @rdev: radeon device pointer
1085 * @ring: the ring to complete
1086 *
1087 * In case of GPU reset failure make sure no process keep waiting on fence
1088 * that will never complete.
1089 */
1090 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
1091 {
1092 if (rdev->fence_drv[ring].initialized) {
1093 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
1094 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1095 }
1096 }
1097
1098
1099 /*
1100 * Fence debugfs
1101 */
1102 #if defined(CONFIG_DEBUG_FS)
1103 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
1104 {
1105 struct drm_info_node *node = (struct drm_info_node *)m->private;
1106 struct drm_device *dev = node->minor->dev;
1107 struct radeon_device *rdev = dev->dev_private;
1108 int i, j;
1109
1110 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1111 if (!rdev->fence_drv[i].initialized)
1112 continue;
1113
1114 radeon_fence_process(rdev, i);
1115
1116 seq_printf(m, "--- ring %d ---\n", i);
1117 seq_printf(m, "Last signaled fence 0x%016llx\n",
1118 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
1119 seq_printf(m, "Last emitted 0x%016"PRIx64"\n",
1120 rdev->fence_drv[i].sync_seq[i]);
1121
1122 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
1123 if (i != j && rdev->fence_drv[j].initialized)
1124 seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n",
1125 j, rdev->fence_drv[i].sync_seq[j]);
1126 }
1127 }
1128 return 0;
1129 }
1130
1131 /**
1132 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1133 *
1134 * Manually trigger a gpu reset at the next fence wait.
1135 */
1136 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1137 {
1138 struct drm_info_node *node = (struct drm_info_node *) m->private;
1139 struct drm_device *dev = node->minor->dev;
1140 struct radeon_device *rdev = dev->dev_private;
1141
1142 down_read(&rdev->exclusive_lock);
1143 seq_printf(m, "%d\n", rdev->needs_reset);
1144 rdev->needs_reset = true;
1145 wake_up_all(&rdev->fence_queue);
1146 up_read(&rdev->exclusive_lock);
1147
1148 return 0;
1149 }
1150
1151 static struct drm_info_list radeon_debugfs_fence_list[] = {
1152 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1153 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1154 };
1155 #endif
1156
1157 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1158 {
1159 #if defined(CONFIG_DEBUG_FS)
1160 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1161 #else
1162 return 0;
1163 #endif
1164 }
1165
1166 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1167 {
1168 return "radeon";
1169 }
1170
1171 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1172 {
1173 struct radeon_fence *fence = to_radeon_fence(f);
1174 switch (fence->ring) {
1175 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1176 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1177 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1178 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1179 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1180 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1181 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1182 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1183 default: WARN_ON_ONCE(1); return "radeon.unk";
1184 }
1185 }
1186
1187 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1188 {
1189 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1190 }
1191
1192 #ifdef __NetBSD__
1193
1194 static void
1195 radeon_fence_wakeup_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1196 {
1197 struct radeon_fence *rfence = to_radeon_fence(fence);
1198 struct radeon_device *rdev = rfence->rdev;
1199
1200 BUG_ON(!spin_is_locked(&rdev->fence_lock));
1201 cv_broadcast(&rdev->fence_queue);
1202 }
1203
1204 static signed long
1205 radeon_fence_default_wait(struct dma_fence *f, bool intr, signed long timo)
1206 {
1207 struct dma_fence_cb fcb;
1208 struct radeon_fence *fence = to_radeon_fence(f);
1209 struct radeon_device *rdev = fence->rdev;
1210 int r;
1211
1212 r = dma_fence_add_callback(f, &fcb, radeon_fence_wakeup_cb);
1213 if (r) /* fence is done already */
1214 return timo;
1215
1216 spin_lock(&rdev->fence_lock);
1217 if (intr) {
1218 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
1219 &rdev->fence_lock, timo,
1220 radeon_test_signaled(fence));
1221 } else {
1222 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
1223 &rdev->fence_lock, timo,
1224 radeon_test_signaled(fence));
1225 }
1226 spin_unlock(&rdev->fence_lock);
1227
1228 (void)dma_fence_remove_callback(f, &fcb);
1229
1230 return r;
1231 }
1232
1233 #else
1234
1235 struct radeon_wait_cb {
1236 struct dma_fence_cb base;
1237 struct task_struct *task;
1238 };
1239
1240 static void
1241 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1242 {
1243 struct radeon_wait_cb *wait =
1244 container_of(cb, struct radeon_wait_cb, base);
1245
1246 wake_up_process(wait->task);
1247 }
1248
1249 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1250 signed long t)
1251 {
1252 struct radeon_fence *fence = to_radeon_fence(f);
1253 struct radeon_device *rdev = fence->rdev;
1254 struct radeon_wait_cb cb;
1255
1256 cb.task = current;
1257
1258 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1259 return t;
1260
1261 while (t > 0) {
1262 if (intr)
1263 set_current_state(TASK_INTERRUPTIBLE);
1264 else
1265 set_current_state(TASK_UNINTERRUPTIBLE);
1266
1267 /*
1268 * radeon_test_signaled must be called after
1269 * set_current_state to prevent a race with wake_up_process
1270 */
1271 if (radeon_test_signaled(fence))
1272 break;
1273
1274 if (rdev->needs_reset) {
1275 t = -EDEADLK;
1276 break;
1277 }
1278
1279 t = schedule_timeout(t);
1280
1281 if (t > 0 && intr && signal_pending(current))
1282 t = -ERESTARTSYS;
1283 }
1284
1285 __set_current_state(TASK_RUNNING);
1286 dma_fence_remove_callback(f, &cb.base);
1287
1288 return t;
1289 }
1290
1291 #endif
1292 const struct dma_fence_ops radeon_fence_ops = {
1293 .get_driver_name = radeon_fence_get_driver_name,
1294 .get_timeline_name = radeon_fence_get_timeline_name,
1295 .enable_signaling = radeon_fence_enable_signaling,
1296 .signaled = radeon_fence_is_signaled,
1297 .wait = radeon_fence_default_wait,
1298 .release = NULL,
1299 };
1300