Home | History | Annotate | Line # | Download | only in radeon
radeon_fence.c revision 1.9
      1 /*	$NetBSD: radeon_fence.c,v 1.9 2018/08/27 04:58:36 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2009 Jerome Glisse.
      5  * All Rights Reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the
      9  * "Software"), to deal in the Software without restriction, including
     10  * without limitation the rights to use, copy, modify, merge, publish,
     11  * distribute, sub license, and/or sell copies of the Software, and to
     12  * permit persons to whom the Software is furnished to do so, subject to
     13  * the following conditions:
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
     19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     22  *
     23  * The above copyright notice and this permission notice (including the
     24  * next paragraph) shall be included in all copies or substantial portions
     25  * of the Software.
     26  *
     27  */
     28 /*
     29  * Authors:
     30  *    Jerome Glisse <glisse (at) freedesktop.org>
     31  *    Dave Airlie
     32  */
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.9 2018/08/27 04:58:36 riastradh Exp $");
     35 
     36 #include <linux/seq_file.h>
     37 #include <linux/atomic.h>
     38 #include <linux/wait.h>
     39 #include <linux/kref.h>
     40 #include <linux/slab.h>
     41 #include <linux/firmware.h>
     42 #include <drm/drmP.h>
     43 #include "radeon_reg.h"
     44 #include "radeon.h"
     45 #include "radeon_trace.h"
     46 
     47 /*
     48  * Fences
     49  * Fences mark an event in the GPUs pipeline and are used
     50  * for GPU/CPU synchronization.  When the fence is written,
     51  * it is expected that all buffers associated with that fence
     52  * are no longer in use by the associated ring on the GPU and
     53  * that the the relevant GPU caches have been flushed.  Whether
     54  * we use a scratch register or memory location depends on the asic
     55  * and whether writeback is enabled.
     56  */
     57 
     58 /**
     59  * radeon_fence_write - write a fence value
     60  *
     61  * @rdev: radeon_device pointer
     62  * @seq: sequence number to write
     63  * @ring: ring index the fence is associated with
     64  *
     65  * Writes a fence value to memory or a scratch register (all asics).
     66  */
     67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
     68 {
     69 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
     70 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
     71 		if (drv->cpu_addr) {
     72 			*drv->cpu_addr = cpu_to_le32(seq);
     73 		}
     74 	} else {
     75 		WREG32(drv->scratch_reg, seq);
     76 	}
     77 }
     78 
     79 /**
     80  * radeon_fence_read - read a fence value
     81  *
     82  * @rdev: radeon_device pointer
     83  * @ring: ring index the fence is associated with
     84  *
     85  * Reads a fence value from memory or a scratch register (all asics).
     86  * Returns the value of the fence read from memory or register.
     87  */
     88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
     89 {
     90 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
     91 	u32 seq = 0;
     92 
     93 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
     94 		if (drv->cpu_addr) {
     95 			seq = le32_to_cpu(*drv->cpu_addr);
     96 		} else {
     97 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
     98 		}
     99 	} else {
    100 		seq = RREG32(drv->scratch_reg);
    101 	}
    102 	return seq;
    103 }
    104 
    105 /**
    106  * radeon_fence_schedule_check - schedule lockup check
    107  *
    108  * @rdev: radeon_device pointer
    109  * @ring: ring index we should work with
    110  *
    111  * Queues a delayed work item to check for lockups.
    112  */
    113 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
    114 {
    115 	/*
    116 	 * Do not reset the timer here with mod_delayed_work,
    117 	 * this can livelock in an interaction with TTM delayed destroy.
    118 	 */
    119 	queue_delayed_work(system_power_efficient_wq,
    120 			   &rdev->fence_drv[ring].lockup_work,
    121 			   RADEON_FENCE_JIFFIES_TIMEOUT);
    122 }
    123 
    124 /**
    125  * radeon_fence_emit - emit a fence on the requested ring
    126  *
    127  * @rdev: radeon_device pointer
    128  * @fence: radeon fence object
    129  * @ring: ring index the fence is associated with
    130  *
    131  * Emits a fence command on the requested ring (all asics).
    132  * Returns 0 on success, -ENOMEM on failure.
    133  */
    134 int radeon_fence_emit(struct radeon_device *rdev,
    135 		      struct radeon_fence **fence,
    136 		      int ring)
    137 {
    138 	u64 seq = ++rdev->fence_drv[ring].sync_seq[ring];
    139 
    140 	/* we are protected by the ring emission mutex */
    141 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
    142 	if ((*fence) == NULL) {
    143 		return -ENOMEM;
    144 	}
    145 	(*fence)->rdev = rdev;
    146 	(*fence)->seq = seq;
    147 	(*fence)->ring = ring;
    148 	(*fence)->is_vm_update = false;
    149 	fence_init(&(*fence)->base, &radeon_fence_ops,
    150 		   &rdev->fence_lock, rdev->fence_context + ring, seq);
    151 	radeon_fence_ring_emit(rdev, ring, *fence);
    152 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
    153 	radeon_fence_schedule_check(rdev, ring);
    154 	return 0;
    155 }
    156 
    157 /**
    158  * radeon_fence_check_signaled - callback from fence_queue
    159  *
    160  * this function is called with fence_queue lock held, which is also used
    161  * for the fence locking itself, so unlocked variants are used for
    162  * fence_signal, and remove_wait_queue.
    163  */
    164 #ifdef __NetBSD__
    165 static int radeon_fence_check_signaled(struct radeon_fence *fence)
    166 #else
    167 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
    168 #endif
    169 {
    170 #ifndef __NetBSD__
    171 	struct radeon_fence *fence;
    172 #endif
    173 	u64 seq;
    174 
    175 #ifndef __NetBSD__
    176 	fence = container_of(wait, struct radeon_fence, fence_wake);
    177 #endif
    178 	BUG_ON(!spin_is_locked(&fence->rdev->fence_lock));
    179 
    180 	/*
    181 	 * We cannot use radeon_fence_process here because we're already
    182 	 * in the waitqueue, in a call from wake_up_all.
    183 	 */
    184 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
    185 	if (seq >= fence->seq) {
    186 		int ret = fence_signal_locked(&fence->base);
    187 
    188 		if (!ret)
    189 			FENCE_TRACE(&fence->base, "signaled from irq context\n");
    190 		else
    191 			FENCE_TRACE(&fence->base, "was already signaled\n");
    192 
    193 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
    194 #ifdef __NetBSD__
    195 		TAILQ_REMOVE(fence, fence_check);
    196 #else
    197 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
    198 #endif
    199 		fence_put(&fence->base);
    200 	} else
    201 		FENCE_TRACE(&fence->base, "pending\n");
    202 	return 0;
    203 }
    204 
    205 #ifdef __NetBSD__
    206 static void
    207 radeon_wakeup(struct radeon_device *rdev)
    208 {
    209 	struct radeon_fence *fence, *next;
    210 
    211 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    212 	DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
    213 	TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) {
    214 		radeon_fence_check_signaled(fence);
    215 	}
    216 }
    217 #endif
    218 
    219 /**
    220  * radeon_fence_activity - check for fence activity
    221  *
    222  * @rdev: radeon_device pointer
    223  * @ring: ring index the fence is associated with
    224  *
    225  * Checks the current fence value and calculates the last
    226  * signalled fence value. Returns true if activity occured
    227  * on the ring, and the fence_queue should be waken up.
    228  */
    229 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
    230 {
    231 	uint64_t seq, last_seq, last_emitted;
    232 	unsigned count_loop = 0;
    233 	bool wake = false;
    234 
    235 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    236 
    237 	/* Note there is a scenario here for an infinite loop but it's
    238 	 * very unlikely to happen. For it to happen, the current polling
    239 	 * process need to be interrupted by another process and another
    240 	 * process needs to update the last_seq btw the atomic read and
    241 	 * xchg of the current process.
    242 	 *
    243 	 * More over for this to go in infinite loop there need to be
    244 	 * continuously new fence signaled ie radeon_fence_read needs
    245 	 * to return a different value each time for both the currently
    246 	 * polling process and the other process that xchg the last_seq
    247 	 * btw atomic read and xchg of the current process. And the
    248 	 * value the other process set as last seq must be higher than
    249 	 * the seq value we just read. Which means that current process
    250 	 * need to be interrupted after radeon_fence_read and before
    251 	 * atomic xchg.
    252 	 *
    253 	 * To be even more safe we count the number of time we loop and
    254 	 * we bail after 10 loop just accepting the fact that we might
    255 	 * have temporarly set the last_seq not to the true real last
    256 	 * seq but to an older one.
    257 	 */
    258 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
    259 	do {
    260 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
    261 		seq = radeon_fence_read(rdev, ring);
    262 		seq |= last_seq & 0xffffffff00000000LL;
    263 		if (seq < last_seq) {
    264 			seq &= 0xffffffff;
    265 			seq |= last_emitted & 0xffffffff00000000LL;
    266 		}
    267 
    268 		if (seq <= last_seq || seq > last_emitted) {
    269 			break;
    270 		}
    271 		/* If we loop over we don't want to return without
    272 		 * checking if a fence is signaled as it means that the
    273 		 * seq we just read is different from the previous on.
    274 		 */
    275 		wake = true;
    276 		last_seq = seq;
    277 		if ((count_loop++) > 10) {
    278 			/* We looped over too many time leave with the
    279 			 * fact that we might have set an older fence
    280 			 * seq then the current real last seq as signaled
    281 			 * by the hw.
    282 			 */
    283 			break;
    284 		}
    285 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
    286 
    287 	if (seq < last_emitted)
    288 		radeon_fence_schedule_check(rdev, ring);
    289 
    290 	return wake;
    291 }
    292 
    293 /**
    294  * radeon_fence_check_lockup - check for hardware lockup
    295  *
    296  * @work: delayed work item
    297  *
    298  * Checks for fence activity and if there is none probe
    299  * the hardware if a lockup occured.
    300  */
    301 static void radeon_fence_check_lockup(struct work_struct *work)
    302 {
    303 	struct radeon_fence_driver *fence_drv;
    304 	struct radeon_device *rdev;
    305 	int ring;
    306 
    307 	fence_drv = container_of(work, struct radeon_fence_driver,
    308 				 lockup_work.work);
    309 	rdev = fence_drv->rdev;
    310 	ring = fence_drv - &rdev->fence_drv[0];
    311 
    312 #ifdef __NetBSD__
    313 	spin_lock(&rdev->fence_lock);
    314 #endif
    315 
    316 	if (!down_read_trylock(&rdev->exclusive_lock)) {
    317 		/* just reschedule the check if a reset is going on */
    318 		radeon_fence_schedule_check(rdev, ring);
    319 		return;
    320 	}
    321 
    322 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
    323 		unsigned long irqflags;
    324 
    325 		fence_drv->delayed_irq = false;
    326 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
    327 		radeon_irq_set(rdev);
    328 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
    329 	}
    330 
    331 	if (radeon_fence_activity(rdev, ring))
    332 #ifdef __NetBSD__
    333 		radeon_wakeup(rdev);
    334 #else
    335 		wake_up_all(&rdev->fence_queue);
    336 #endif
    337 
    338 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
    339 
    340 		/* good news we believe it's a lockup */
    341 		dev_warn(rdev->dev, "GPU lockup (current fence id "
    342 			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
    343 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
    344 			 fence_drv->sync_seq[ring], ring);
    345 
    346 		/* remember that we need an reset */
    347 		rdev->needs_reset = true;
    348 #ifdef __NetBSD__
    349 		radeon_wakeup(rdev);
    350 #else
    351 		wake_up_all(&rdev->fence_queue);
    352 #endif
    353 	}
    354 	up_read(&rdev->exclusive_lock);
    355 #ifdef __NetBSD__
    356 	spin_unlock(&rdev->fence_lock);
    357 #endif
    358 }
    359 
    360 /**
    361  * radeon_fence_process - process a fence
    362  *
    363  * @rdev: radeon_device pointer
    364  * @ring: ring index the fence is associated with
    365  *
    366  * Checks the current fence value and wakes the fence queue
    367  * if the sequence number has increased (all asics).
    368  */
    369 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring)
    370 {
    371 	if (radeon_fence_activity(rdev, ring))
    372 #ifdef __NetBSD__
    373 		radeon_wakeup(&rdev);
    374 #else
    375 		wake_up_all(&rdev->fence_queue);
    376 #endif
    377 }
    378 
    379 void radeon_fence_process(struct radeon_device *rdev, int ring)
    380 {
    381 
    382 	spin_lock(&rdev->fence_lock);
    383 	radeon_fence_process_locked(rdev, ring);
    384 	spin_unlock(&rdev->fence_lock);
    385 }
    386 
    387 /**
    388  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
    389  *
    390  * @rdev: radeon device pointer
    391  * @seq: sequence number
    392  * @ring: ring index the fence is associated with
    393  *
    394  * Check if the last signaled fence sequnce number is >= the requested
    395  * sequence number (all asics).
    396  * Returns true if the fence has signaled (current fence value
    397  * is >= requested value) or false if it has not (current fence
    398  * value is < the requested value.  Helper function for
    399  * radeon_fence_signaled().
    400  */
    401 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
    402 				      u64 seq, unsigned ring)
    403 {
    404 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    405 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
    406 		return true;
    407 	}
    408 	/* poll new last sequence at least once */
    409 	radeon_fence_process_locked(rdev, ring);
    410 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
    411 		return true;
    412 	}
    413 	return false;
    414 }
    415 
    416 static bool radeon_fence_is_signaled(struct fence *f)
    417 {
    418 	struct radeon_fence *fence = to_radeon_fence(f);
    419 	struct radeon_device *rdev = fence->rdev;
    420 	unsigned ring = fence->ring;
    421 	u64 seq = fence->seq;
    422 
    423 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    424 
    425 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
    426 		return true;
    427 	}
    428 
    429 	if (down_read_trylock(&rdev->exclusive_lock)) {
    430 		radeon_fence_process_locked(rdev, ring);
    431 		up_read(&rdev->exclusive_lock);
    432 
    433 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
    434 			return true;
    435 		}
    436 	}
    437 	return false;
    438 }
    439 
    440 /**
    441  * radeon_fence_enable_signaling - enable signalling on fence
    442  * @fence: fence
    443  *
    444  * This function is called with fence_queue lock held, and adds a callback
    445  * to fence_queue that checks if this fence is signaled, and if so it
    446  * signals the fence and removes itself.
    447  */
    448 static bool radeon_fence_enable_signaling(struct fence *f)
    449 {
    450 	struct radeon_fence *fence = to_radeon_fence(f);
    451 	struct radeon_device *rdev = fence->rdev;
    452 
    453 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    454 
    455 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
    456 		return false;
    457 
    458 	if (down_read_trylock(&rdev->exclusive_lock)) {
    459 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
    460 
    461 		if (radeon_fence_activity(rdev, fence->ring))
    462 #ifdef __NetBSD__
    463 			radeon_wakeup(rdev);
    464 #else
    465 			wake_up_all_locked(&rdev->fence_queue);
    466 #endif
    467 
    468 		/* did fence get signaled after we enabled the sw irq? */
    469 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
    470 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
    471 			up_read(&rdev->exclusive_lock);
    472 			return false;
    473 		}
    474 
    475 		up_read(&rdev->exclusive_lock);
    476 	} else {
    477 		/* we're probably in a lockup, lets not fiddle too much */
    478 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
    479 			rdev->fence_drv[fence->ring].delayed_irq = true;
    480 		radeon_fence_schedule_check(rdev, fence->ring);
    481 	}
    482 
    483 #ifdef __NetBSD__
    484 	TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check);
    485 #else
    486 	fence->fence_wake.flags = 0;
    487 	fence->fence_wake.private = NULL;
    488 	fence->fence_wake.func = radeon_fence_check_signaled;
    489 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
    490 #endif
    491 	fence_get(f);
    492 
    493 	FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
    494 	return true;
    495 }
    496 
    497 /**
    498  * radeon_fence_signaled - check if a fence has signaled
    499  *
    500  * @fence: radeon fence object
    501  *
    502  * Check if the requested fence has signaled (all asics).
    503  * Returns true if the fence has signaled or false if it has not.
    504  */
    505 bool radeon_fence_signaled(struct radeon_fence *fence)
    506 {
    507 	if (!fence)
    508 		return true;
    509 
    510 	spin_lock(&fence->rdev->fence_lock);
    511 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
    512 		int ret;
    513 
    514 		ret = fence_signal_locked(&fence->base);
    515 		if (!ret)
    516 			FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
    517 		spin_unlock(&fence->rdev->fence_lock);
    518 		return true;
    519 	}
    520 	spin_unlock(&fence->rdev->fence_lock);
    521 	return false;
    522 }
    523 
    524 /**
    525  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
    526  *
    527  * @rdev: radeon device pointer
    528  * @seq: sequence numbers
    529  *
    530  * Check if the last signaled fence sequnce number is >= the requested
    531  * sequence number (all asics).
    532  * Returns true if any has signaled (current value is >= requested value)
    533  * or false if it has not. Helper function for radeon_fence_wait_seq.
    534  */
    535 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
    536 {
    537 	unsigned i;
    538 
    539 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
    540 
    541 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    542 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
    543 			return true;
    544 	}
    545 	return false;
    546 }
    547 
    548 /**
    549  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
    550  *
    551  * @rdev: radeon device pointer
    552  * @target_seq: sequence number(s) we want to wait for
    553  * @intr: use interruptable sleep
    554  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
    555  *
    556  * Wait for the requested sequence number(s) to be written by any ring
    557  * (all asics).  Sequnce number array is indexed by ring id.
    558  * @intr selects whether to use interruptable (true) or non-interruptable
    559  * (false) sleep when waiting for the sequence number.  Helper function
    560  * for radeon_fence_wait_*().
    561  * Returns remaining time if the sequence number has passed, 0 when
    562  * the wait timeout, or an error for all other cases.
    563  * -EDEADLK is returned when a GPU lockup has been detected.
    564  */
    565 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev,
    566 					  u64 *target_seq, bool intr,
    567 					  long timeout)
    568 {
    569 	long r;
    570 	int i;
    571 
    572 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
    573 		return timeout;
    574 
    575 	/* enable IRQs and tracing */
    576 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    577 		if (!target_seq[i])
    578 			continue;
    579 
    580 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
    581 		radeon_irq_kms_sw_irq_get(rdev, i);
    582 	}
    583 
    584 #ifdef __NetBSD__
    585 	if (intr)
    586 		DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
    587 		    &rdev->fence_lock, timeout,
    588 		    ((signaled = radeon_fence_any_seq_signaled(rdev,
    589 			    target_seq))
    590 			|| rdev->needs_reset));
    591 	else
    592 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
    593 		    &rdev->fence_lock, timeout,
    594 		    ((signaled = radeon_fence_any_seq_signaled(rdev,
    595 			    target_seq))
    596 			|| rdev->needs_reset));
    597 #else
    598 	if (intr) {
    599 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
    600 			radeon_fence_any_seq_signaled(rdev, target_seq)
    601 			 || rdev->needs_reset), timeout);
    602 	} else {
    603 		r = wait_event_timeout(rdev->fence_queue, (
    604 			radeon_fence_any_seq_signaled(rdev, target_seq)
    605 			 || rdev->needs_reset), timeout);
    606 	}
    607 #endif
    608 
    609 	if (rdev->needs_reset)
    610 		r = -EDEADLK;
    611 
    612 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    613 		if (!target_seq[i])
    614 			continue;
    615 
    616 		radeon_irq_kms_sw_irq_put(rdev, i);
    617 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
    618 	}
    619 
    620 	return r;
    621 }
    622 
    623 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
    624     u64 *target_seq, bool intr, long timo)
    625 {
    626 	long r;
    627 
    628 	spin_lock(&rdev->fence_lock);
    629 	r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo);
    630 	spin_unlock(&rdev->fence_lock);
    631 
    632 	return r;
    633 }
    634 
    635 /**
    636  * radeon_fence_wait - wait for a fence to signal
    637  *
    638  * @fence: radeon fence object
    639  * @intr: use interruptible sleep
    640  *
    641  * Wait for the requested fence to signal (all asics).
    642  * @intr selects whether to use interruptable (true) or non-interruptable
    643  * (false) sleep when waiting for the fence.
    644  * Returns 0 if the fence has passed, error for all other cases.
    645  */
    646 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
    647 {
    648 	uint64_t seq[RADEON_NUM_RINGS] = {};
    649 	long r;
    650 
    651 	/*
    652 	 * This function should not be called on !radeon fences.
    653 	 * If this is the case, it would mean this function can
    654 	 * also be called on radeon fences belonging to another card.
    655 	 * exclusive_lock is not held in that case.
    656 	 */
    657 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
    658 		return fence_wait(&fence->base, intr);
    659 
    660 	seq[fence->ring] = fence->seq;
    661 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
    662 	if (r < 0) {
    663 		return r;
    664 	}
    665 
    666 	r = fence_signal(&fence->base);
    667 	if (!r)
    668 		FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
    669 	return 0;
    670 }
    671 
    672 /**
    673  * radeon_fence_wait_any - wait for a fence to signal on any ring
    674  *
    675  * @rdev: radeon device pointer
    676  * @fences: radeon fence object(s)
    677  * @intr: use interruptable sleep
    678  *
    679  * Wait for any requested fence to signal (all asics).  Fence
    680  * array is indexed by ring id.  @intr selects whether to use
    681  * interruptable (true) or non-interruptable (false) sleep when
    682  * waiting for the fences. Used by the suballocator.
    683  * Returns 0 if any fence has passed, error for all other cases.
    684  */
    685 int radeon_fence_wait_any(struct radeon_device *rdev,
    686 			  struct radeon_fence **fences,
    687 			  bool intr)
    688 {
    689 	uint64_t seq[RADEON_NUM_RINGS];
    690 	unsigned i, num_rings = 0;
    691 	long r;
    692 
    693 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    694 		seq[i] = 0;
    695 
    696 		if (!fences[i]) {
    697 			continue;
    698 		}
    699 
    700 		seq[i] = fences[i]->seq;
    701 		++num_rings;
    702 	}
    703 
    704 	/* nothing to wait for ? */
    705 	if (num_rings == 0)
    706 		return -ENOENT;
    707 
    708 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
    709 	if (r < 0) {
    710 		return r;
    711 	}
    712 	return 0;
    713 }
    714 
    715 /**
    716  * radeon_fence_wait_next - wait for the next fence to signal
    717  *
    718  * @rdev: radeon device pointer
    719  * @ring: ring index the fence is associated with
    720  *
    721  * Wait for the next fence on the requested ring to signal (all asics).
    722  * Returns 0 if the next fence has passed, error for all other cases.
    723  * Caller must hold ring lock.
    724  */
    725 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
    726 {
    727 	uint64_t seq[RADEON_NUM_RINGS] = {};
    728 	long r;
    729 
    730 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
    731 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
    732 		/* nothing to wait for, last_seq is
    733 		   already the last emited fence */
    734 		return -ENOENT;
    735 	}
    736 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
    737 	if (r < 0)
    738 		return r;
    739 	return 0;
    740 }
    741 
    742 /**
    743  * radeon_fence_wait_empty - wait for all fences to signal
    744  *
    745  * @rdev: radeon device pointer
    746  * @ring: ring index the fence is associated with
    747  *
    748  * Wait for all fences on the requested ring to signal (all asics).
    749  * Returns 0 if the fences have passed, error for all other cases.
    750  * Caller must hold ring lock.
    751  */
    752 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
    753 {
    754 	uint64_t seq[RADEON_NUM_RINGS] = {};
    755 	long r;
    756 
    757 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
    758 	if (!seq[ring])
    759 		return 0;
    760 
    761 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
    762 	if (r < 0) {
    763 		if (r == -EDEADLK)
    764 			return -EDEADLK;
    765 
    766 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
    767 			ring, r);
    768 	}
    769 	return 0;
    770 }
    771 
    772 /**
    773  * radeon_fence_ref - take a ref on a fence
    774  *
    775  * @fence: radeon fence object
    776  *
    777  * Take a reference on a fence (all asics).
    778  * Returns the fence.
    779  */
    780 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
    781 {
    782 	fence_get(&fence->base);
    783 	return fence;
    784 }
    785 
    786 /**
    787  * radeon_fence_unref - remove a ref on a fence
    788  *
    789  * @fence: radeon fence object
    790  *
    791  * Remove a reference on a fence (all asics).
    792  */
    793 void radeon_fence_unref(struct radeon_fence **fence)
    794 {
    795 	struct radeon_fence *tmp = *fence;
    796 
    797 	*fence = NULL;
    798 	if (tmp) {
    799 		fence_put(&tmp->base);
    800 	}
    801 }
    802 
    803 /**
    804  * radeon_fence_count_emitted - get the count of emitted fences
    805  *
    806  * @rdev: radeon device pointer
    807  * @ring: ring index the fence is associated with
    808  *
    809  * Get the number of fences emitted on the requested ring (all asics).
    810  * Returns the number of emitted fences on the ring.  Used by the
    811  * dynpm code to ring track activity.
    812  */
    813 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
    814 {
    815 	uint64_t emitted;
    816 
    817 	/* We are not protected by ring lock when reading the last sequence
    818 	 * but it's ok to report slightly wrong fence count here.
    819 	 */
    820 	radeon_fence_process(rdev, ring);
    821 	emitted = rdev->fence_drv[ring].sync_seq[ring]
    822 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
    823 	/* to avoid 32bits warp around */
    824 	if (emitted > 0x10000000) {
    825 		emitted = 0x10000000;
    826 	}
    827 	return (unsigned)emitted;
    828 }
    829 
    830 /**
    831  * radeon_fence_need_sync - do we need a semaphore
    832  *
    833  * @fence: radeon fence object
    834  * @dst_ring: which ring to check against
    835  *
    836  * Check if the fence needs to be synced against another ring
    837  * (all asics).  If so, we need to emit a semaphore.
    838  * Returns true if we need to sync with another ring, false if
    839  * not.
    840  */
    841 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
    842 {
    843 	struct radeon_fence_driver *fdrv;
    844 
    845 	if (!fence) {
    846 		return false;
    847 	}
    848 
    849 	if (fence->ring == dst_ring) {
    850 		return false;
    851 	}
    852 
    853 	/* we are protected by the ring mutex */
    854 	fdrv = &fence->rdev->fence_drv[dst_ring];
    855 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
    856 		return false;
    857 	}
    858 
    859 	return true;
    860 }
    861 
    862 /**
    863  * radeon_fence_note_sync - record the sync point
    864  *
    865  * @fence: radeon fence object
    866  * @dst_ring: which ring to check against
    867  *
    868  * Note the sequence number at which point the fence will
    869  * be synced with the requested ring (all asics).
    870  */
    871 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
    872 {
    873 	struct radeon_fence_driver *dst, *src;
    874 	unsigned i;
    875 
    876 	if (!fence) {
    877 		return;
    878 	}
    879 
    880 	if (fence->ring == dst_ring) {
    881 		return;
    882 	}
    883 
    884 	/* we are protected by the ring mutex */
    885 	src = &fence->rdev->fence_drv[fence->ring];
    886 	dst = &fence->rdev->fence_drv[dst_ring];
    887 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
    888 		if (i == dst_ring) {
    889 			continue;
    890 		}
    891 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
    892 	}
    893 }
    894 
    895 /**
    896  * radeon_fence_driver_start_ring - make the fence driver
    897  * ready for use on the requested ring.
    898  *
    899  * @rdev: radeon device pointer
    900  * @ring: ring index to start the fence driver on
    901  *
    902  * Make the fence driver ready for processing (all asics).
    903  * Not all asics have all rings, so each asic will only
    904  * start the fence driver on the rings it has.
    905  * Returns 0 for success, errors for failure.
    906  */
    907 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
    908 {
    909 	uint64_t index;
    910 	int r;
    911 
    912 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
    913 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
    914 		rdev->fence_drv[ring].scratch_reg = 0;
    915 		if (ring != R600_RING_TYPE_UVD_INDEX) {
    916 			index = R600_WB_EVENT_OFFSET + ring * 4;
    917 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
    918 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
    919 							 index;
    920 
    921 		} else {
    922 			/* put fence directly behind firmware */
    923 #ifdef __NetBSD__		/* XXX ALIGN means something else.  */
    924 			index = round_up(rdev->uvd_fw->size, 8);
    925 #else
    926 			index = ALIGN(rdev->uvd_fw->size, 8);
    927 #endif
    928 			rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index);
    929 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
    930 		}
    931 
    932 	} else {
    933 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
    934 		if (r) {
    935 			dev_err(rdev->dev, "fence failed to get scratch register\n");
    936 			return r;
    937 		}
    938 		index = RADEON_WB_SCRATCH_OFFSET +
    939 			rdev->fence_drv[ring].scratch_reg -
    940 			rdev->scratch.reg_base;
    941 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
    942 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
    943 	}
    944 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
    945 	rdev->fence_drv[ring].initialized = true;
    946 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n",
    947 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
    948 	return 0;
    949 }
    950 
    951 /**
    952  * radeon_fence_driver_init_ring - init the fence driver
    953  * for the requested ring.
    954  *
    955  * @rdev: radeon device pointer
    956  * @ring: ring index to start the fence driver on
    957  *
    958  * Init the fence driver for the requested ring (all asics).
    959  * Helper function for radeon_fence_driver_init().
    960  */
    961 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
    962 {
    963 	int i;
    964 
    965 	rdev->fence_drv[ring].scratch_reg = -1;
    966 	rdev->fence_drv[ring].cpu_addr = NULL;
    967 	rdev->fence_drv[ring].gpu_addr = 0;
    968 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
    969 		rdev->fence_drv[ring].sync_seq[i] = 0;
    970 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
    971 	rdev->fence_drv[ring].initialized = false;
    972 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
    973 			  radeon_fence_check_lockup);
    974 	rdev->fence_drv[ring].rdev = rdev;
    975 }
    976 
    977 /**
    978  * radeon_fence_driver_init - init the fence driver
    979  * for all possible rings.
    980  *
    981  * @rdev: radeon device pointer
    982  *
    983  * Init the fence driver for all possible rings (all asics).
    984  * Not all asics have all rings, so each asic will only
    985  * start the fence driver on the rings it has using
    986  * radeon_fence_driver_start_ring().
    987  * Returns 0 for success.
    988  */
    989 int radeon_fence_driver_init(struct radeon_device *rdev)
    990 {
    991 	int ring;
    992 
    993 #ifdef __NetBSD__
    994 	spin_lock_init(&rdev->fence_lock);
    995 	DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence");
    996 	TALIQ_INIT(&rdev->fence_queue);
    997 #else
    998 	init_waitqueue_head(&rdev->fence_queue);
    999 #endif
   1000 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
   1001 		radeon_fence_driver_init_ring(rdev, ring);
   1002 	}
   1003 	if (radeon_debugfs_fence_init(rdev)) {
   1004 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
   1005 	}
   1006 	return 0;
   1007 }
   1008 
   1009 /**
   1010  * radeon_fence_driver_fini - tear down the fence driver
   1011  * for all possible rings.
   1012  *
   1013  * @rdev: radeon device pointer
   1014  *
   1015  * Tear down the fence driver for all possible rings (all asics).
   1016  */
   1017 void radeon_fence_driver_fini(struct radeon_device *rdev)
   1018 {
   1019 	int ring, r;
   1020 
   1021 	mutex_lock(&rdev->ring_lock);
   1022 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
   1023 		if (!rdev->fence_drv[ring].initialized)
   1024 			continue;
   1025 		r = radeon_fence_wait_empty(rdev, ring);
   1026 		if (r) {
   1027 			/* no need to trigger GPU reset as we are unloading */
   1028 			radeon_fence_driver_force_completion(rdev, ring);
   1029 		}
   1030 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
   1031 #ifdef __NetBSD__
   1032 		spin_lock(&rdev->fence_lock);
   1033 		radeon_wakeup(rdev);
   1034 		spin_unlock(&rdev->fence_lock);
   1035 #else
   1036 		wake_up_all(&rdev->fence_queue);
   1037 #endif
   1038 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
   1039 		rdev->fence_drv[ring].initialized = false;
   1040 	}
   1041 	mutex_unlock(&rdev->ring_lock);
   1042 
   1043 #ifdef __NetBSD__
   1044 	BUG_ON(!TAILQ_EMPTY(&rdev->fence_check));
   1045 	DRM_DESTROY_WAITQUEUE(&rdev->fence_queue);
   1046 	spin_lock_destroy(&rdev->fence_lock);
   1047 #endif
   1048 }
   1049 
   1050 /**
   1051  * radeon_fence_driver_force_completion - force all fence waiter to complete
   1052  *
   1053  * @rdev: radeon device pointer
   1054  * @ring: the ring to complete
   1055  *
   1056  * In case of GPU reset failure make sure no process keep waiting on fence
   1057  * that will never complete.
   1058  */
   1059 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
   1060 {
   1061 	if (rdev->fence_drv[ring].initialized) {
   1062 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
   1063 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
   1064 	}
   1065 }
   1066 
   1067 
   1068 /*
   1069  * Fence debugfs
   1070  */
   1071 #if defined(CONFIG_DEBUG_FS)
   1072 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
   1073 {
   1074 	struct drm_info_node *node = (struct drm_info_node *)m->private;
   1075 	struct drm_device *dev = node->minor->dev;
   1076 	struct radeon_device *rdev = dev->dev_private;
   1077 	int i, j;
   1078 
   1079 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
   1080 		if (!rdev->fence_drv[i].initialized)
   1081 			continue;
   1082 
   1083 		radeon_fence_process(rdev, i);
   1084 
   1085 		seq_printf(m, "--- ring %d ---\n", i);
   1086 		seq_printf(m, "Last signaled fence 0x%016llx\n",
   1087 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
   1088 		seq_printf(m, "Last emitted        0x%016"PRIx64"\n",
   1089 			   rdev->fence_drv[i].sync_seq[i]);
   1090 
   1091 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
   1092 			if (i != j && rdev->fence_drv[j].initialized)
   1093 				seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n",
   1094 					   j, rdev->fence_drv[i].sync_seq[j]);
   1095 		}
   1096 	}
   1097 	return 0;
   1098 }
   1099 
   1100 /**
   1101  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
   1102  *
   1103  * Manually trigger a gpu reset at the next fence wait.
   1104  */
   1105 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
   1106 {
   1107 	struct drm_info_node *node = (struct drm_info_node *) m->private;
   1108 	struct drm_device *dev = node->minor->dev;
   1109 	struct radeon_device *rdev = dev->dev_private;
   1110 
   1111 	down_read(&rdev->exclusive_lock);
   1112 	seq_printf(m, "%d\n", rdev->needs_reset);
   1113 	rdev->needs_reset = true;
   1114 	wake_up_all(&rdev->fence_queue);
   1115 	up_read(&rdev->exclusive_lock);
   1116 
   1117 	return 0;
   1118 }
   1119 
   1120 static struct drm_info_list radeon_debugfs_fence_list[] = {
   1121 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
   1122 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
   1123 };
   1124 #endif
   1125 
   1126 int radeon_debugfs_fence_init(struct radeon_device *rdev)
   1127 {
   1128 #if defined(CONFIG_DEBUG_FS)
   1129 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
   1130 #else
   1131 	return 0;
   1132 #endif
   1133 }
   1134 
   1135 static const char *radeon_fence_get_driver_name(struct fence *fence)
   1136 {
   1137 	return "radeon";
   1138 }
   1139 
   1140 static const char *radeon_fence_get_timeline_name(struct fence *f)
   1141 {
   1142 	struct radeon_fence *fence = to_radeon_fence(f);
   1143 	switch (fence->ring) {
   1144 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
   1145 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
   1146 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
   1147 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
   1148 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
   1149 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
   1150 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
   1151 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
   1152 	default: WARN_ON_ONCE(1); return "radeon.unk";
   1153 	}
   1154 }
   1155 
   1156 static inline bool radeon_test_signaled(struct radeon_fence *fence)
   1157 {
   1158 	return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
   1159 }
   1160 
   1161 #ifdef __NetBSD__
   1162 
   1163 static signed long
   1164 radeon_fence_default_wait(struct fence *f, bool intr, signed long timo)
   1165 {
   1166 	struct radeon_fence *fence = to_radeon_fence(f);
   1167 	struct radeon_device *rdev = fence->rdev;
   1168 	int r;
   1169 
   1170 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
   1171 	if (intr) {
   1172 		DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
   1173 		    &rdev->fence_lock, timo,
   1174 		    radeon_test_signaled(fence));
   1175 	} else {
   1176 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
   1177 		    &rdev->fence_lock, timo,
   1178 		    radeon_test_signaled(fence));
   1179 	}
   1180 
   1181 	return r;
   1182 }
   1183 
   1184 #else
   1185 
   1186 struct radeon_wait_cb {
   1187 	struct fence_cb base;
   1188 	struct task_struct *task;
   1189 };
   1190 
   1191 static void
   1192 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
   1193 {
   1194 	struct radeon_wait_cb *wait =
   1195 		container_of(cb, struct radeon_wait_cb, base);
   1196 
   1197 	wake_up_process(wait->task);
   1198 }
   1199 
   1200 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
   1201 					     signed long t)
   1202 {
   1203 	struct radeon_fence *fence = to_radeon_fence(f);
   1204 	struct radeon_device *rdev = fence->rdev;
   1205 	struct radeon_wait_cb cb;
   1206 
   1207 	cb.task = current;
   1208 
   1209 	if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
   1210 		return t;
   1211 
   1212 	while (t > 0) {
   1213 		if (intr)
   1214 			set_current_state(TASK_INTERRUPTIBLE);
   1215 		else
   1216 			set_current_state(TASK_UNINTERRUPTIBLE);
   1217 
   1218 		/*
   1219 		 * radeon_test_signaled must be called after
   1220 		 * set_current_state to prevent a race with wake_up_process
   1221 		 */
   1222 		if (radeon_test_signaled(fence))
   1223 			break;
   1224 
   1225 		if (rdev->needs_reset) {
   1226 			t = -EDEADLK;
   1227 			break;
   1228 		}
   1229 
   1230 		t = schedule_timeout(t);
   1231 
   1232 		if (t > 0 && intr && signal_pending(current))
   1233 			t = -ERESTARTSYS;
   1234 	}
   1235 
   1236 	__set_current_state(TASK_RUNNING);
   1237 	fence_remove_callback(f, &cb.base);
   1238 
   1239 	return t;
   1240 }
   1241 
   1242 #endif
   1243 
   1244 const struct fence_ops radeon_fence_ops = {
   1245 	.get_driver_name = radeon_fence_get_driver_name,
   1246 	.get_timeline_name = radeon_fence_get_timeline_name,
   1247 	.enable_signaling = radeon_fence_enable_signaling,
   1248 	.signaled = radeon_fence_is_signaled,
   1249 	.wait = radeon_fence_default_wait,
   1250 	.release = NULL,
   1251 };
   1252