radeon_fence.c revision 1.9 1 /* $NetBSD: radeon_fence.c,v 1.9 2018/08/27 04:58:36 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Dave Airlie
32 */
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.9 2018/08/27 04:58:36 riastradh Exp $");
35
36 #include <linux/seq_file.h>
37 #include <linux/atomic.h>
38 #include <linux/wait.h>
39 #include <linux/kref.h>
40 #include <linux/slab.h>
41 #include <linux/firmware.h>
42 #include <drm/drmP.h>
43 #include "radeon_reg.h"
44 #include "radeon.h"
45 #include "radeon_trace.h"
46
47 /*
48 * Fences
49 * Fences mark an event in the GPUs pipeline and are used
50 * for GPU/CPU synchronization. When the fence is written,
51 * it is expected that all buffers associated with that fence
52 * are no longer in use by the associated ring on the GPU and
53 * that the the relevant GPU caches have been flushed. Whether
54 * we use a scratch register or memory location depends on the asic
55 * and whether writeback is enabled.
56 */
57
58 /**
59 * radeon_fence_write - write a fence value
60 *
61 * @rdev: radeon_device pointer
62 * @seq: sequence number to write
63 * @ring: ring index the fence is associated with
64 *
65 * Writes a fence value to memory or a scratch register (all asics).
66 */
67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
68 {
69 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
70 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
71 if (drv->cpu_addr) {
72 *drv->cpu_addr = cpu_to_le32(seq);
73 }
74 } else {
75 WREG32(drv->scratch_reg, seq);
76 }
77 }
78
79 /**
80 * radeon_fence_read - read a fence value
81 *
82 * @rdev: radeon_device pointer
83 * @ring: ring index the fence is associated with
84 *
85 * Reads a fence value from memory or a scratch register (all asics).
86 * Returns the value of the fence read from memory or register.
87 */
88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
89 {
90 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
91 u32 seq = 0;
92
93 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
94 if (drv->cpu_addr) {
95 seq = le32_to_cpu(*drv->cpu_addr);
96 } else {
97 seq = lower_32_bits(atomic64_read(&drv->last_seq));
98 }
99 } else {
100 seq = RREG32(drv->scratch_reg);
101 }
102 return seq;
103 }
104
105 /**
106 * radeon_fence_schedule_check - schedule lockup check
107 *
108 * @rdev: radeon_device pointer
109 * @ring: ring index we should work with
110 *
111 * Queues a delayed work item to check for lockups.
112 */
113 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
114 {
115 /*
116 * Do not reset the timer here with mod_delayed_work,
117 * this can livelock in an interaction with TTM delayed destroy.
118 */
119 queue_delayed_work(system_power_efficient_wq,
120 &rdev->fence_drv[ring].lockup_work,
121 RADEON_FENCE_JIFFIES_TIMEOUT);
122 }
123
124 /**
125 * radeon_fence_emit - emit a fence on the requested ring
126 *
127 * @rdev: radeon_device pointer
128 * @fence: radeon fence object
129 * @ring: ring index the fence is associated with
130 *
131 * Emits a fence command on the requested ring (all asics).
132 * Returns 0 on success, -ENOMEM on failure.
133 */
134 int radeon_fence_emit(struct radeon_device *rdev,
135 struct radeon_fence **fence,
136 int ring)
137 {
138 u64 seq = ++rdev->fence_drv[ring].sync_seq[ring];
139
140 /* we are protected by the ring emission mutex */
141 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
142 if ((*fence) == NULL) {
143 return -ENOMEM;
144 }
145 (*fence)->rdev = rdev;
146 (*fence)->seq = seq;
147 (*fence)->ring = ring;
148 (*fence)->is_vm_update = false;
149 fence_init(&(*fence)->base, &radeon_fence_ops,
150 &rdev->fence_lock, rdev->fence_context + ring, seq);
151 radeon_fence_ring_emit(rdev, ring, *fence);
152 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
153 radeon_fence_schedule_check(rdev, ring);
154 return 0;
155 }
156
157 /**
158 * radeon_fence_check_signaled - callback from fence_queue
159 *
160 * this function is called with fence_queue lock held, which is also used
161 * for the fence locking itself, so unlocked variants are used for
162 * fence_signal, and remove_wait_queue.
163 */
164 #ifdef __NetBSD__
165 static int radeon_fence_check_signaled(struct radeon_fence *fence)
166 #else
167 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
168 #endif
169 {
170 #ifndef __NetBSD__
171 struct radeon_fence *fence;
172 #endif
173 u64 seq;
174
175 #ifndef __NetBSD__
176 fence = container_of(wait, struct radeon_fence, fence_wake);
177 #endif
178 BUG_ON(!spin_is_locked(&fence->rdev->fence_lock));
179
180 /*
181 * We cannot use radeon_fence_process here because we're already
182 * in the waitqueue, in a call from wake_up_all.
183 */
184 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
185 if (seq >= fence->seq) {
186 int ret = fence_signal_locked(&fence->base);
187
188 if (!ret)
189 FENCE_TRACE(&fence->base, "signaled from irq context\n");
190 else
191 FENCE_TRACE(&fence->base, "was already signaled\n");
192
193 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
194 #ifdef __NetBSD__
195 TAILQ_REMOVE(fence, fence_check);
196 #else
197 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
198 #endif
199 fence_put(&fence->base);
200 } else
201 FENCE_TRACE(&fence->base, "pending\n");
202 return 0;
203 }
204
205 #ifdef __NetBSD__
206 static void
207 radeon_wakeup(struct radeon_device *rdev)
208 {
209 struct radeon_fence *fence, *next;
210
211 BUG_ON(!spin_is_locked(&rdev->fence_lock));
212 DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
213 TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) {
214 radeon_fence_check_signaled(fence);
215 }
216 }
217 #endif
218
219 /**
220 * radeon_fence_activity - check for fence activity
221 *
222 * @rdev: radeon_device pointer
223 * @ring: ring index the fence is associated with
224 *
225 * Checks the current fence value and calculates the last
226 * signalled fence value. Returns true if activity occured
227 * on the ring, and the fence_queue should be waken up.
228 */
229 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
230 {
231 uint64_t seq, last_seq, last_emitted;
232 unsigned count_loop = 0;
233 bool wake = false;
234
235 BUG_ON(!spin_is_locked(&rdev->fence_lock));
236
237 /* Note there is a scenario here for an infinite loop but it's
238 * very unlikely to happen. For it to happen, the current polling
239 * process need to be interrupted by another process and another
240 * process needs to update the last_seq btw the atomic read and
241 * xchg of the current process.
242 *
243 * More over for this to go in infinite loop there need to be
244 * continuously new fence signaled ie radeon_fence_read needs
245 * to return a different value each time for both the currently
246 * polling process and the other process that xchg the last_seq
247 * btw atomic read and xchg of the current process. And the
248 * value the other process set as last seq must be higher than
249 * the seq value we just read. Which means that current process
250 * need to be interrupted after radeon_fence_read and before
251 * atomic xchg.
252 *
253 * To be even more safe we count the number of time we loop and
254 * we bail after 10 loop just accepting the fact that we might
255 * have temporarly set the last_seq not to the true real last
256 * seq but to an older one.
257 */
258 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
259 do {
260 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
261 seq = radeon_fence_read(rdev, ring);
262 seq |= last_seq & 0xffffffff00000000LL;
263 if (seq < last_seq) {
264 seq &= 0xffffffff;
265 seq |= last_emitted & 0xffffffff00000000LL;
266 }
267
268 if (seq <= last_seq || seq > last_emitted) {
269 break;
270 }
271 /* If we loop over we don't want to return without
272 * checking if a fence is signaled as it means that the
273 * seq we just read is different from the previous on.
274 */
275 wake = true;
276 last_seq = seq;
277 if ((count_loop++) > 10) {
278 /* We looped over too many time leave with the
279 * fact that we might have set an older fence
280 * seq then the current real last seq as signaled
281 * by the hw.
282 */
283 break;
284 }
285 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
286
287 if (seq < last_emitted)
288 radeon_fence_schedule_check(rdev, ring);
289
290 return wake;
291 }
292
293 /**
294 * radeon_fence_check_lockup - check for hardware lockup
295 *
296 * @work: delayed work item
297 *
298 * Checks for fence activity and if there is none probe
299 * the hardware if a lockup occured.
300 */
301 static void radeon_fence_check_lockup(struct work_struct *work)
302 {
303 struct radeon_fence_driver *fence_drv;
304 struct radeon_device *rdev;
305 int ring;
306
307 fence_drv = container_of(work, struct radeon_fence_driver,
308 lockup_work.work);
309 rdev = fence_drv->rdev;
310 ring = fence_drv - &rdev->fence_drv[0];
311
312 #ifdef __NetBSD__
313 spin_lock(&rdev->fence_lock);
314 #endif
315
316 if (!down_read_trylock(&rdev->exclusive_lock)) {
317 /* just reschedule the check if a reset is going on */
318 radeon_fence_schedule_check(rdev, ring);
319 return;
320 }
321
322 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
323 unsigned long irqflags;
324
325 fence_drv->delayed_irq = false;
326 spin_lock_irqsave(&rdev->irq.lock, irqflags);
327 radeon_irq_set(rdev);
328 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
329 }
330
331 if (radeon_fence_activity(rdev, ring))
332 #ifdef __NetBSD__
333 radeon_wakeup(rdev);
334 #else
335 wake_up_all(&rdev->fence_queue);
336 #endif
337
338 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
339
340 /* good news we believe it's a lockup */
341 dev_warn(rdev->dev, "GPU lockup (current fence id "
342 "0x%016llx last fence id 0x%016llx on ring %d)\n",
343 (uint64_t)atomic64_read(&fence_drv->last_seq),
344 fence_drv->sync_seq[ring], ring);
345
346 /* remember that we need an reset */
347 rdev->needs_reset = true;
348 #ifdef __NetBSD__
349 radeon_wakeup(rdev);
350 #else
351 wake_up_all(&rdev->fence_queue);
352 #endif
353 }
354 up_read(&rdev->exclusive_lock);
355 #ifdef __NetBSD__
356 spin_unlock(&rdev->fence_lock);
357 #endif
358 }
359
360 /**
361 * radeon_fence_process - process a fence
362 *
363 * @rdev: radeon_device pointer
364 * @ring: ring index the fence is associated with
365 *
366 * Checks the current fence value and wakes the fence queue
367 * if the sequence number has increased (all asics).
368 */
369 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring)
370 {
371 if (radeon_fence_activity(rdev, ring))
372 #ifdef __NetBSD__
373 radeon_wakeup(&rdev);
374 #else
375 wake_up_all(&rdev->fence_queue);
376 #endif
377 }
378
379 void radeon_fence_process(struct radeon_device *rdev, int ring)
380 {
381
382 spin_lock(&rdev->fence_lock);
383 radeon_fence_process_locked(rdev, ring);
384 spin_unlock(&rdev->fence_lock);
385 }
386
387 /**
388 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
389 *
390 * @rdev: radeon device pointer
391 * @seq: sequence number
392 * @ring: ring index the fence is associated with
393 *
394 * Check if the last signaled fence sequnce number is >= the requested
395 * sequence number (all asics).
396 * Returns true if the fence has signaled (current fence value
397 * is >= requested value) or false if it has not (current fence
398 * value is < the requested value. Helper function for
399 * radeon_fence_signaled().
400 */
401 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
402 u64 seq, unsigned ring)
403 {
404 BUG_ON(!spin_is_locked(&rdev->fence_lock));
405 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
406 return true;
407 }
408 /* poll new last sequence at least once */
409 radeon_fence_process_locked(rdev, ring);
410 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
411 return true;
412 }
413 return false;
414 }
415
416 static bool radeon_fence_is_signaled(struct fence *f)
417 {
418 struct radeon_fence *fence = to_radeon_fence(f);
419 struct radeon_device *rdev = fence->rdev;
420 unsigned ring = fence->ring;
421 u64 seq = fence->seq;
422
423 BUG_ON(!spin_is_locked(&rdev->fence_lock));
424
425 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
426 return true;
427 }
428
429 if (down_read_trylock(&rdev->exclusive_lock)) {
430 radeon_fence_process_locked(rdev, ring);
431 up_read(&rdev->exclusive_lock);
432
433 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
434 return true;
435 }
436 }
437 return false;
438 }
439
440 /**
441 * radeon_fence_enable_signaling - enable signalling on fence
442 * @fence: fence
443 *
444 * This function is called with fence_queue lock held, and adds a callback
445 * to fence_queue that checks if this fence is signaled, and if so it
446 * signals the fence and removes itself.
447 */
448 static bool radeon_fence_enable_signaling(struct fence *f)
449 {
450 struct radeon_fence *fence = to_radeon_fence(f);
451 struct radeon_device *rdev = fence->rdev;
452
453 BUG_ON(!spin_is_locked(&rdev->fence_lock));
454
455 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
456 return false;
457
458 if (down_read_trylock(&rdev->exclusive_lock)) {
459 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
460
461 if (radeon_fence_activity(rdev, fence->ring))
462 #ifdef __NetBSD__
463 radeon_wakeup(rdev);
464 #else
465 wake_up_all_locked(&rdev->fence_queue);
466 #endif
467
468 /* did fence get signaled after we enabled the sw irq? */
469 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
470 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
471 up_read(&rdev->exclusive_lock);
472 return false;
473 }
474
475 up_read(&rdev->exclusive_lock);
476 } else {
477 /* we're probably in a lockup, lets not fiddle too much */
478 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
479 rdev->fence_drv[fence->ring].delayed_irq = true;
480 radeon_fence_schedule_check(rdev, fence->ring);
481 }
482
483 #ifdef __NetBSD__
484 TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check);
485 #else
486 fence->fence_wake.flags = 0;
487 fence->fence_wake.private = NULL;
488 fence->fence_wake.func = radeon_fence_check_signaled;
489 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
490 #endif
491 fence_get(f);
492
493 FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
494 return true;
495 }
496
497 /**
498 * radeon_fence_signaled - check if a fence has signaled
499 *
500 * @fence: radeon fence object
501 *
502 * Check if the requested fence has signaled (all asics).
503 * Returns true if the fence has signaled or false if it has not.
504 */
505 bool radeon_fence_signaled(struct radeon_fence *fence)
506 {
507 if (!fence)
508 return true;
509
510 spin_lock(&fence->rdev->fence_lock);
511 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
512 int ret;
513
514 ret = fence_signal_locked(&fence->base);
515 if (!ret)
516 FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
517 spin_unlock(&fence->rdev->fence_lock);
518 return true;
519 }
520 spin_unlock(&fence->rdev->fence_lock);
521 return false;
522 }
523
524 /**
525 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
526 *
527 * @rdev: radeon device pointer
528 * @seq: sequence numbers
529 *
530 * Check if the last signaled fence sequnce number is >= the requested
531 * sequence number (all asics).
532 * Returns true if any has signaled (current value is >= requested value)
533 * or false if it has not. Helper function for radeon_fence_wait_seq.
534 */
535 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
536 {
537 unsigned i;
538
539 BUG_ON(!spin_is_locked(&rdev->fence_lock));
540
541 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
542 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
543 return true;
544 }
545 return false;
546 }
547
548 /**
549 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
550 *
551 * @rdev: radeon device pointer
552 * @target_seq: sequence number(s) we want to wait for
553 * @intr: use interruptable sleep
554 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
555 *
556 * Wait for the requested sequence number(s) to be written by any ring
557 * (all asics). Sequnce number array is indexed by ring id.
558 * @intr selects whether to use interruptable (true) or non-interruptable
559 * (false) sleep when waiting for the sequence number. Helper function
560 * for radeon_fence_wait_*().
561 * Returns remaining time if the sequence number has passed, 0 when
562 * the wait timeout, or an error for all other cases.
563 * -EDEADLK is returned when a GPU lockup has been detected.
564 */
565 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev,
566 u64 *target_seq, bool intr,
567 long timeout)
568 {
569 long r;
570 int i;
571
572 if (radeon_fence_any_seq_signaled(rdev, target_seq))
573 return timeout;
574
575 /* enable IRQs and tracing */
576 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
577 if (!target_seq[i])
578 continue;
579
580 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
581 radeon_irq_kms_sw_irq_get(rdev, i);
582 }
583
584 #ifdef __NetBSD__
585 if (intr)
586 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
587 &rdev->fence_lock, timeout,
588 ((signaled = radeon_fence_any_seq_signaled(rdev,
589 target_seq))
590 || rdev->needs_reset));
591 else
592 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
593 &rdev->fence_lock, timeout,
594 ((signaled = radeon_fence_any_seq_signaled(rdev,
595 target_seq))
596 || rdev->needs_reset));
597 #else
598 if (intr) {
599 r = wait_event_interruptible_timeout(rdev->fence_queue, (
600 radeon_fence_any_seq_signaled(rdev, target_seq)
601 || rdev->needs_reset), timeout);
602 } else {
603 r = wait_event_timeout(rdev->fence_queue, (
604 radeon_fence_any_seq_signaled(rdev, target_seq)
605 || rdev->needs_reset), timeout);
606 }
607 #endif
608
609 if (rdev->needs_reset)
610 r = -EDEADLK;
611
612 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
613 if (!target_seq[i])
614 continue;
615
616 radeon_irq_kms_sw_irq_put(rdev, i);
617 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
618 }
619
620 return r;
621 }
622
623 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
624 u64 *target_seq, bool intr, long timo)
625 {
626 long r;
627
628 spin_lock(&rdev->fence_lock);
629 r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo);
630 spin_unlock(&rdev->fence_lock);
631
632 return r;
633 }
634
635 /**
636 * radeon_fence_wait - wait for a fence to signal
637 *
638 * @fence: radeon fence object
639 * @intr: use interruptible sleep
640 *
641 * Wait for the requested fence to signal (all asics).
642 * @intr selects whether to use interruptable (true) or non-interruptable
643 * (false) sleep when waiting for the fence.
644 * Returns 0 if the fence has passed, error for all other cases.
645 */
646 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
647 {
648 uint64_t seq[RADEON_NUM_RINGS] = {};
649 long r;
650
651 /*
652 * This function should not be called on !radeon fences.
653 * If this is the case, it would mean this function can
654 * also be called on radeon fences belonging to another card.
655 * exclusive_lock is not held in that case.
656 */
657 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
658 return fence_wait(&fence->base, intr);
659
660 seq[fence->ring] = fence->seq;
661 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
662 if (r < 0) {
663 return r;
664 }
665
666 r = fence_signal(&fence->base);
667 if (!r)
668 FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
669 return 0;
670 }
671
672 /**
673 * radeon_fence_wait_any - wait for a fence to signal on any ring
674 *
675 * @rdev: radeon device pointer
676 * @fences: radeon fence object(s)
677 * @intr: use interruptable sleep
678 *
679 * Wait for any requested fence to signal (all asics). Fence
680 * array is indexed by ring id. @intr selects whether to use
681 * interruptable (true) or non-interruptable (false) sleep when
682 * waiting for the fences. Used by the suballocator.
683 * Returns 0 if any fence has passed, error for all other cases.
684 */
685 int radeon_fence_wait_any(struct radeon_device *rdev,
686 struct radeon_fence **fences,
687 bool intr)
688 {
689 uint64_t seq[RADEON_NUM_RINGS];
690 unsigned i, num_rings = 0;
691 long r;
692
693 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
694 seq[i] = 0;
695
696 if (!fences[i]) {
697 continue;
698 }
699
700 seq[i] = fences[i]->seq;
701 ++num_rings;
702 }
703
704 /* nothing to wait for ? */
705 if (num_rings == 0)
706 return -ENOENT;
707
708 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
709 if (r < 0) {
710 return r;
711 }
712 return 0;
713 }
714
715 /**
716 * radeon_fence_wait_next - wait for the next fence to signal
717 *
718 * @rdev: radeon device pointer
719 * @ring: ring index the fence is associated with
720 *
721 * Wait for the next fence on the requested ring to signal (all asics).
722 * Returns 0 if the next fence has passed, error for all other cases.
723 * Caller must hold ring lock.
724 */
725 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
726 {
727 uint64_t seq[RADEON_NUM_RINGS] = {};
728 long r;
729
730 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
731 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
732 /* nothing to wait for, last_seq is
733 already the last emited fence */
734 return -ENOENT;
735 }
736 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
737 if (r < 0)
738 return r;
739 return 0;
740 }
741
742 /**
743 * radeon_fence_wait_empty - wait for all fences to signal
744 *
745 * @rdev: radeon device pointer
746 * @ring: ring index the fence is associated with
747 *
748 * Wait for all fences on the requested ring to signal (all asics).
749 * Returns 0 if the fences have passed, error for all other cases.
750 * Caller must hold ring lock.
751 */
752 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
753 {
754 uint64_t seq[RADEON_NUM_RINGS] = {};
755 long r;
756
757 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
758 if (!seq[ring])
759 return 0;
760
761 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
762 if (r < 0) {
763 if (r == -EDEADLK)
764 return -EDEADLK;
765
766 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
767 ring, r);
768 }
769 return 0;
770 }
771
772 /**
773 * radeon_fence_ref - take a ref on a fence
774 *
775 * @fence: radeon fence object
776 *
777 * Take a reference on a fence (all asics).
778 * Returns the fence.
779 */
780 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
781 {
782 fence_get(&fence->base);
783 return fence;
784 }
785
786 /**
787 * radeon_fence_unref - remove a ref on a fence
788 *
789 * @fence: radeon fence object
790 *
791 * Remove a reference on a fence (all asics).
792 */
793 void radeon_fence_unref(struct radeon_fence **fence)
794 {
795 struct radeon_fence *tmp = *fence;
796
797 *fence = NULL;
798 if (tmp) {
799 fence_put(&tmp->base);
800 }
801 }
802
803 /**
804 * radeon_fence_count_emitted - get the count of emitted fences
805 *
806 * @rdev: radeon device pointer
807 * @ring: ring index the fence is associated with
808 *
809 * Get the number of fences emitted on the requested ring (all asics).
810 * Returns the number of emitted fences on the ring. Used by the
811 * dynpm code to ring track activity.
812 */
813 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
814 {
815 uint64_t emitted;
816
817 /* We are not protected by ring lock when reading the last sequence
818 * but it's ok to report slightly wrong fence count here.
819 */
820 radeon_fence_process(rdev, ring);
821 emitted = rdev->fence_drv[ring].sync_seq[ring]
822 - atomic64_read(&rdev->fence_drv[ring].last_seq);
823 /* to avoid 32bits warp around */
824 if (emitted > 0x10000000) {
825 emitted = 0x10000000;
826 }
827 return (unsigned)emitted;
828 }
829
830 /**
831 * radeon_fence_need_sync - do we need a semaphore
832 *
833 * @fence: radeon fence object
834 * @dst_ring: which ring to check against
835 *
836 * Check if the fence needs to be synced against another ring
837 * (all asics). If so, we need to emit a semaphore.
838 * Returns true if we need to sync with another ring, false if
839 * not.
840 */
841 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
842 {
843 struct radeon_fence_driver *fdrv;
844
845 if (!fence) {
846 return false;
847 }
848
849 if (fence->ring == dst_ring) {
850 return false;
851 }
852
853 /* we are protected by the ring mutex */
854 fdrv = &fence->rdev->fence_drv[dst_ring];
855 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
856 return false;
857 }
858
859 return true;
860 }
861
862 /**
863 * radeon_fence_note_sync - record the sync point
864 *
865 * @fence: radeon fence object
866 * @dst_ring: which ring to check against
867 *
868 * Note the sequence number at which point the fence will
869 * be synced with the requested ring (all asics).
870 */
871 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
872 {
873 struct radeon_fence_driver *dst, *src;
874 unsigned i;
875
876 if (!fence) {
877 return;
878 }
879
880 if (fence->ring == dst_ring) {
881 return;
882 }
883
884 /* we are protected by the ring mutex */
885 src = &fence->rdev->fence_drv[fence->ring];
886 dst = &fence->rdev->fence_drv[dst_ring];
887 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
888 if (i == dst_ring) {
889 continue;
890 }
891 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
892 }
893 }
894
895 /**
896 * radeon_fence_driver_start_ring - make the fence driver
897 * ready for use on the requested ring.
898 *
899 * @rdev: radeon device pointer
900 * @ring: ring index to start the fence driver on
901 *
902 * Make the fence driver ready for processing (all asics).
903 * Not all asics have all rings, so each asic will only
904 * start the fence driver on the rings it has.
905 * Returns 0 for success, errors for failure.
906 */
907 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
908 {
909 uint64_t index;
910 int r;
911
912 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
913 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
914 rdev->fence_drv[ring].scratch_reg = 0;
915 if (ring != R600_RING_TYPE_UVD_INDEX) {
916 index = R600_WB_EVENT_OFFSET + ring * 4;
917 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
918 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
919 index;
920
921 } else {
922 /* put fence directly behind firmware */
923 #ifdef __NetBSD__ /* XXX ALIGN means something else. */
924 index = round_up(rdev->uvd_fw->size, 8);
925 #else
926 index = ALIGN(rdev->uvd_fw->size, 8);
927 #endif
928 rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index);
929 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
930 }
931
932 } else {
933 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
934 if (r) {
935 dev_err(rdev->dev, "fence failed to get scratch register\n");
936 return r;
937 }
938 index = RADEON_WB_SCRATCH_OFFSET +
939 rdev->fence_drv[ring].scratch_reg -
940 rdev->scratch.reg_base;
941 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
942 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
943 }
944 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
945 rdev->fence_drv[ring].initialized = true;
946 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n",
947 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
948 return 0;
949 }
950
951 /**
952 * radeon_fence_driver_init_ring - init the fence driver
953 * for the requested ring.
954 *
955 * @rdev: radeon device pointer
956 * @ring: ring index to start the fence driver on
957 *
958 * Init the fence driver for the requested ring (all asics).
959 * Helper function for radeon_fence_driver_init().
960 */
961 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
962 {
963 int i;
964
965 rdev->fence_drv[ring].scratch_reg = -1;
966 rdev->fence_drv[ring].cpu_addr = NULL;
967 rdev->fence_drv[ring].gpu_addr = 0;
968 for (i = 0; i < RADEON_NUM_RINGS; ++i)
969 rdev->fence_drv[ring].sync_seq[i] = 0;
970 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
971 rdev->fence_drv[ring].initialized = false;
972 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
973 radeon_fence_check_lockup);
974 rdev->fence_drv[ring].rdev = rdev;
975 }
976
977 /**
978 * radeon_fence_driver_init - init the fence driver
979 * for all possible rings.
980 *
981 * @rdev: radeon device pointer
982 *
983 * Init the fence driver for all possible rings (all asics).
984 * Not all asics have all rings, so each asic will only
985 * start the fence driver on the rings it has using
986 * radeon_fence_driver_start_ring().
987 * Returns 0 for success.
988 */
989 int radeon_fence_driver_init(struct radeon_device *rdev)
990 {
991 int ring;
992
993 #ifdef __NetBSD__
994 spin_lock_init(&rdev->fence_lock);
995 DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence");
996 TALIQ_INIT(&rdev->fence_queue);
997 #else
998 init_waitqueue_head(&rdev->fence_queue);
999 #endif
1000 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
1001 radeon_fence_driver_init_ring(rdev, ring);
1002 }
1003 if (radeon_debugfs_fence_init(rdev)) {
1004 dev_err(rdev->dev, "fence debugfs file creation failed\n");
1005 }
1006 return 0;
1007 }
1008
1009 /**
1010 * radeon_fence_driver_fini - tear down the fence driver
1011 * for all possible rings.
1012 *
1013 * @rdev: radeon device pointer
1014 *
1015 * Tear down the fence driver for all possible rings (all asics).
1016 */
1017 void radeon_fence_driver_fini(struct radeon_device *rdev)
1018 {
1019 int ring, r;
1020
1021 mutex_lock(&rdev->ring_lock);
1022 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
1023 if (!rdev->fence_drv[ring].initialized)
1024 continue;
1025 r = radeon_fence_wait_empty(rdev, ring);
1026 if (r) {
1027 /* no need to trigger GPU reset as we are unloading */
1028 radeon_fence_driver_force_completion(rdev, ring);
1029 }
1030 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1031 #ifdef __NetBSD__
1032 spin_lock(&rdev->fence_lock);
1033 radeon_wakeup(rdev);
1034 spin_unlock(&rdev->fence_lock);
1035 #else
1036 wake_up_all(&rdev->fence_queue);
1037 #endif
1038 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
1039 rdev->fence_drv[ring].initialized = false;
1040 }
1041 mutex_unlock(&rdev->ring_lock);
1042
1043 #ifdef __NetBSD__
1044 BUG_ON(!TAILQ_EMPTY(&rdev->fence_check));
1045 DRM_DESTROY_WAITQUEUE(&rdev->fence_queue);
1046 spin_lock_destroy(&rdev->fence_lock);
1047 #endif
1048 }
1049
1050 /**
1051 * radeon_fence_driver_force_completion - force all fence waiter to complete
1052 *
1053 * @rdev: radeon device pointer
1054 * @ring: the ring to complete
1055 *
1056 * In case of GPU reset failure make sure no process keep waiting on fence
1057 * that will never complete.
1058 */
1059 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
1060 {
1061 if (rdev->fence_drv[ring].initialized) {
1062 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
1063 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1064 }
1065 }
1066
1067
1068 /*
1069 * Fence debugfs
1070 */
1071 #if defined(CONFIG_DEBUG_FS)
1072 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
1073 {
1074 struct drm_info_node *node = (struct drm_info_node *)m->private;
1075 struct drm_device *dev = node->minor->dev;
1076 struct radeon_device *rdev = dev->dev_private;
1077 int i, j;
1078
1079 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1080 if (!rdev->fence_drv[i].initialized)
1081 continue;
1082
1083 radeon_fence_process(rdev, i);
1084
1085 seq_printf(m, "--- ring %d ---\n", i);
1086 seq_printf(m, "Last signaled fence 0x%016llx\n",
1087 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
1088 seq_printf(m, "Last emitted 0x%016"PRIx64"\n",
1089 rdev->fence_drv[i].sync_seq[i]);
1090
1091 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
1092 if (i != j && rdev->fence_drv[j].initialized)
1093 seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n",
1094 j, rdev->fence_drv[i].sync_seq[j]);
1095 }
1096 }
1097 return 0;
1098 }
1099
1100 /**
1101 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1102 *
1103 * Manually trigger a gpu reset at the next fence wait.
1104 */
1105 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1106 {
1107 struct drm_info_node *node = (struct drm_info_node *) m->private;
1108 struct drm_device *dev = node->minor->dev;
1109 struct radeon_device *rdev = dev->dev_private;
1110
1111 down_read(&rdev->exclusive_lock);
1112 seq_printf(m, "%d\n", rdev->needs_reset);
1113 rdev->needs_reset = true;
1114 wake_up_all(&rdev->fence_queue);
1115 up_read(&rdev->exclusive_lock);
1116
1117 return 0;
1118 }
1119
1120 static struct drm_info_list radeon_debugfs_fence_list[] = {
1121 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1122 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1123 };
1124 #endif
1125
1126 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1127 {
1128 #if defined(CONFIG_DEBUG_FS)
1129 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1130 #else
1131 return 0;
1132 #endif
1133 }
1134
1135 static const char *radeon_fence_get_driver_name(struct fence *fence)
1136 {
1137 return "radeon";
1138 }
1139
1140 static const char *radeon_fence_get_timeline_name(struct fence *f)
1141 {
1142 struct radeon_fence *fence = to_radeon_fence(f);
1143 switch (fence->ring) {
1144 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1145 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1146 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1147 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1148 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1149 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1150 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1151 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1152 default: WARN_ON_ONCE(1); return "radeon.unk";
1153 }
1154 }
1155
1156 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1157 {
1158 return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1159 }
1160
1161 #ifdef __NetBSD__
1162
1163 static signed long
1164 radeon_fence_default_wait(struct fence *f, bool intr, signed long timo)
1165 {
1166 struct radeon_fence *fence = to_radeon_fence(f);
1167 struct radeon_device *rdev = fence->rdev;
1168 int r;
1169
1170 BUG_ON(!spin_is_locked(&rdev->fence_lock));
1171 if (intr) {
1172 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
1173 &rdev->fence_lock, timo,
1174 radeon_test_signaled(fence));
1175 } else {
1176 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
1177 &rdev->fence_lock, timo,
1178 radeon_test_signaled(fence));
1179 }
1180
1181 return r;
1182 }
1183
1184 #else
1185
1186 struct radeon_wait_cb {
1187 struct fence_cb base;
1188 struct task_struct *task;
1189 };
1190
1191 static void
1192 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1193 {
1194 struct radeon_wait_cb *wait =
1195 container_of(cb, struct radeon_wait_cb, base);
1196
1197 wake_up_process(wait->task);
1198 }
1199
1200 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1201 signed long t)
1202 {
1203 struct radeon_fence *fence = to_radeon_fence(f);
1204 struct radeon_device *rdev = fence->rdev;
1205 struct radeon_wait_cb cb;
1206
1207 cb.task = current;
1208
1209 if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1210 return t;
1211
1212 while (t > 0) {
1213 if (intr)
1214 set_current_state(TASK_INTERRUPTIBLE);
1215 else
1216 set_current_state(TASK_UNINTERRUPTIBLE);
1217
1218 /*
1219 * radeon_test_signaled must be called after
1220 * set_current_state to prevent a race with wake_up_process
1221 */
1222 if (radeon_test_signaled(fence))
1223 break;
1224
1225 if (rdev->needs_reset) {
1226 t = -EDEADLK;
1227 break;
1228 }
1229
1230 t = schedule_timeout(t);
1231
1232 if (t > 0 && intr && signal_pending(current))
1233 t = -ERESTARTSYS;
1234 }
1235
1236 __set_current_state(TASK_RUNNING);
1237 fence_remove_callback(f, &cb.base);
1238
1239 return t;
1240 }
1241
1242 #endif
1243
1244 const struct fence_ops radeon_fence_ops = {
1245 .get_driver_name = radeon_fence_get_driver_name,
1246 .get_timeline_name = radeon_fence_get_timeline_name,
1247 .enable_signaling = radeon_fence_enable_signaling,
1248 .signaled = radeon_fence_is_signaled,
1249 .wait = radeon_fence_default_wait,
1250 .release = NULL,
1251 };
1252