ttm_bo.c revision 1.28 1 /* $NetBSD: ttm_bo.c,v 1.28 2021/12/19 11:21:12 riastradh Exp $ */
2
3 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
4 /**************************************************************************
5 *
6 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
7 * All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the
11 * "Software"), to deal in the Software without restriction, including
12 * without limitation the rights to use, copy, modify, merge, publish,
13 * distribute, sub license, and/or sell copies of the Software, and to
14 * permit persons to whom the Software is furnished to do so, subject to
15 * the following conditions:
16 *
17 * The above copyright notice and this permission notice (including the
18 * next paragraph) shall be included in all copies or substantial portions
19 * of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
24 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
25 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
26 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
27 * USE OR OTHER DEALINGS IN THE SOFTWARE.
28 *
29 **************************************************************************/
30 /*
31 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: ttm_bo.c,v 1.28 2021/12/19 11:21:12 riastradh Exp $");
36
37 #define pr_fmt(fmt) "[TTM] " fmt
38
39 #ifdef __NetBSD__
40 #include <sys/types.h>
41 #include <uvm/uvm_extern.h>
42 #include <uvm/uvm_object.h>
43 #endif
44
45 #include <drm/drm_prime.h>
46 #include <drm/ttm/ttm_module.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <linux/jiffies.h>
50 #include <linux/slab.h>
51 #include <linux/sched.h>
52 #include <linux/mm.h>
53 #include <linux/file.h>
54 #include <linux/module.h>
55 #include <linux/atomic.h>
56 #include <linux/dma-resv.h>
57
58 #include <linux/nbsd-namespace.h>
59
60 #ifndef __NetBSD__
61 static void ttm_bo_global_kobj_release(struct kobject *kobj);
62 #endif
63
64 #ifdef __linux__ /* XXX sysfs */
65 /**
66 * ttm_global_mutex - protecting the global BO state
67 */
68 DEFINE_MUTEX(ttm_global_mutex);
69 unsigned ttm_bo_glob_use_count;
70 struct ttm_bo_global ttm_bo_glob;
71 EXPORT_SYMBOL(ttm_bo_glob);
72
73 static struct attribute ttm_bo_count = {
74 .name = "bo_count",
75 .mode = S_IRUGO
76 };
77 #else
78 static struct mutex ttm_global_mutex;
79 unsigned ttm_bo_glob_use_count;
80 struct ttm_bo_global ttm_bo_glob;
81 #endif
82
83 /* default destructor */
84 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
85 {
86 kfree(bo);
87 }
88
89 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
90 uint32_t *mem_type)
91 {
92 int pos;
93
94 pos = ffs(place->flags & TTM_PL_MASK_MEM);
95 if (unlikely(!pos))
96 return -EINVAL;
97
98 *mem_type = pos - 1;
99 return 0;
100 }
101
102 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
103 int mem_type)
104 {
105 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
106
107 drm_printf(p, " has_type: %d\n", man->has_type);
108 drm_printf(p, " use_type: %d\n", man->use_type);
109 drm_printf(p, " flags: 0x%08X\n", man->flags);
110 drm_printf(p, " gpu_offset: 0x%08"PRIX64"\n", man->gpu_offset);
111 drm_printf(p, " size: %"PRIu64"\n", man->size);
112 drm_printf(p, " available_caching: 0x%08X\n", man->available_caching);
113 drm_printf(p, " default_caching: 0x%08X\n", man->default_caching);
114 if (mem_type != TTM_PL_SYSTEM)
115 (*man->func->debug)(man, p);
116 }
117
118 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
119 struct ttm_placement *placement)
120 {
121 struct drm_printer p = drm_debug_printer(TTM_PFX);
122 int i, ret, mem_type;
123
124 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
125 bo, bo->mem.num_pages, bo->mem.size >> 10,
126 bo->mem.size >> 20);
127 for (i = 0; i < placement->num_placement; i++) {
128 ret = ttm_mem_type_from_place(&placement->placement[i],
129 &mem_type);
130 if (ret)
131 return;
132 drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
133 i, placement->placement[i].flags, mem_type);
134 ttm_mem_type_debug(bo->bdev, &p, mem_type);
135 }
136 }
137
138 #ifndef __NetBSD__ /* XXX sysfs */
139 static ssize_t ttm_bo_global_show(struct kobject *kobj,
140 struct attribute *attr,
141 char *buffer)
142 {
143 struct ttm_bo_global *glob =
144 container_of(kobj, struct ttm_bo_global, kobj);
145
146 return snprintf(buffer, PAGE_SIZE, "%d\n",
147 atomic_read(&glob->bo_count));
148 }
149
150 static struct attribute *ttm_bo_global_attrs[] = {
151 &ttm_bo_count,
152 NULL
153 };
154
155 static const struct sysfs_ops ttm_bo_global_ops = {
156 .show = &ttm_bo_global_show
157 };
158
159 static struct kobj_type ttm_bo_glob_kobj_type = {
160 .release = &ttm_bo_global_kobj_release,
161 .sysfs_ops = &ttm_bo_global_ops,
162 .default_attrs = ttm_bo_global_attrs
163 };
164 #endif /* __NetBSD__ */
165
166
167 static inline uint32_t ttm_bo_type_flags(unsigned type)
168 {
169 return 1 << (type);
170 }
171
172 static void ttm_bo_release_list(struct kref *list_kref)
173 {
174 struct ttm_buffer_object *bo =
175 container_of(list_kref, struct ttm_buffer_object, list_kref);
176 size_t acc_size = bo->acc_size;
177
178 BUG_ON(kref_read(&bo->list_kref));
179 BUG_ON(kref_read(&bo->kref));
180 BUG_ON(bo->mem.mm_node != NULL);
181 BUG_ON(!list_empty(&bo->lru));
182 BUG_ON(!list_empty(&bo->ddestroy));
183 ttm_tt_destroy(bo->ttm);
184 atomic_dec(&ttm_bo_glob.bo_count);
185 dma_fence_put(bo->moving);
186 if (!ttm_bo_uses_embedded_gem_object(bo))
187 dma_resv_fini(&bo->base._resv);
188 bo->destroy(bo);
189 ttm_mem_global_free(&ttm_mem_glob, acc_size);
190 }
191
192 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
193 struct ttm_mem_reg *mem)
194 {
195 struct ttm_bo_device *bdev = bo->bdev;
196 struct ttm_mem_type_manager *man;
197
198 dma_resv_assert_held(bo->base.resv);
199
200 if (!list_empty(&bo->lru))
201 return;
202
203 if (mem->placement & TTM_PL_FLAG_NO_EVICT)
204 return;
205
206 man = &bdev->man[mem->mem_type];
207 list_add_tail(&bo->lru, &man->lru[bo->priority]);
208 kref_get(&bo->list_kref);
209
210 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
211 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
212 TTM_PAGE_FLAG_SWAPPED))) {
213 list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]);
214 kref_get(&bo->list_kref);
215 }
216 }
217
218 static void ttm_bo_ref_bug(struct kref *list_kref)
219 {
220 BUG();
221 }
222
223 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
224 {
225 struct ttm_bo_device *bdev = bo->bdev;
226 bool notify = false;
227
228 if (!list_empty(&bo->swap)) {
229 list_del_init(&bo->swap);
230 kref_put(&bo->list_kref, ttm_bo_ref_bug);
231 notify = true;
232 }
233 if (!list_empty(&bo->lru)) {
234 list_del_init(&bo->lru);
235 kref_put(&bo->list_kref, ttm_bo_ref_bug);
236 notify = true;
237 }
238
239 if (notify && bdev->driver->del_from_lru_notify)
240 bdev->driver->del_from_lru_notify(bo);
241 }
242
243 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
244 struct ttm_buffer_object *bo)
245 {
246 if (!pos->first)
247 pos->first = bo;
248 pos->last = bo;
249 }
250
251 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
252 struct ttm_lru_bulk_move *bulk)
253 {
254 dma_resv_assert_held(bo->base.resv);
255
256 ttm_bo_del_from_lru(bo);
257 ttm_bo_add_mem_to_lru(bo, &bo->mem);
258
259 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
260 switch (bo->mem.mem_type) {
261 case TTM_PL_TT:
262 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
263 break;
264
265 case TTM_PL_VRAM:
266 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
267 break;
268 }
269 if (bo->ttm && !(bo->ttm->page_flags &
270 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
271 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
272 }
273 }
274 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
275
276 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
277 {
278 unsigned i;
279
280 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
281 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
282 struct ttm_mem_type_manager *man;
283
284 if (!pos->first)
285 continue;
286
287 dma_resv_assert_held(pos->first->base.resv);
288 dma_resv_assert_held(pos->last->base.resv);
289
290 man = &pos->first->bdev->man[TTM_PL_TT];
291 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
292 &pos->last->lru);
293 }
294
295 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
296 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
297 struct ttm_mem_type_manager *man;
298
299 if (!pos->first)
300 continue;
301
302 dma_resv_assert_held(pos->first->base.resv);
303 dma_resv_assert_held(pos->last->base.resv);
304
305 man = &pos->first->bdev->man[TTM_PL_VRAM];
306 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
307 &pos->last->lru);
308 }
309
310 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
311 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
312 struct list_head *lru;
313
314 if (!pos->first)
315 continue;
316
317 dma_resv_assert_held(pos->first->base.resv);
318 dma_resv_assert_held(pos->last->base.resv);
319
320 lru = &ttm_bo_glob.swap_lru[i];
321 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
322 }
323 }
324 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
325
326 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
327 struct ttm_mem_reg *mem, bool evict,
328 struct ttm_operation_ctx *ctx)
329 {
330 struct ttm_bo_device *bdev = bo->bdev;
331 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
332 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
333 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
334 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
335 int ret = 0;
336
337 if (old_is_pci || new_is_pci ||
338 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
339 ret = ttm_mem_io_lock(old_man, true);
340 if (unlikely(ret != 0))
341 goto out_err;
342 ttm_bo_unmap_virtual_locked(bo);
343 ttm_mem_io_unlock(old_man);
344 }
345
346 /*
347 * Create and bind a ttm if required.
348 */
349
350 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
351 if (bo->ttm == NULL) {
352 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
353 ret = ttm_tt_create(bo, zero);
354 if (ret)
355 goto out_err;
356 }
357
358 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
359 if (ret)
360 goto out_err;
361
362 if (mem->mem_type != TTM_PL_SYSTEM) {
363 ret = ttm_tt_bind(bo->ttm, mem, ctx);
364 if (ret)
365 goto out_err;
366 }
367
368 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
369 if (bdev->driver->move_notify)
370 bdev->driver->move_notify(bo, evict, mem);
371 bo->mem = *mem;
372 mem->mm_node = NULL;
373 goto moved;
374 }
375 }
376
377 if (bdev->driver->move_notify)
378 bdev->driver->move_notify(bo, evict, mem);
379
380 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
381 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
382 ret = ttm_bo_move_ttm(bo, ctx, mem);
383 else if (bdev->driver->move)
384 ret = bdev->driver->move(bo, evict, ctx, mem);
385 else
386 ret = ttm_bo_move_memcpy(bo, ctx, mem);
387
388 if (ret) {
389 if (bdev->driver->move_notify) {
390 swap(*mem, bo->mem);
391 bdev->driver->move_notify(bo, false, mem);
392 swap(*mem, bo->mem);
393 }
394
395 goto out_err;
396 }
397
398 moved:
399 if (bo->evicted) {
400 if (bdev->driver->invalidate_caches) {
401 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
402 if (ret)
403 pr_err("Can not flush read caches\n");
404 }
405 bo->evicted = false;
406 }
407
408 if (bo->mem.mm_node)
409 bo->offset = (bo->mem.start << PAGE_SHIFT) +
410 bdev->man[bo->mem.mem_type].gpu_offset;
411 else
412 bo->offset = 0;
413
414 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
415 return 0;
416
417 out_err:
418 new_man = &bdev->man[bo->mem.mem_type];
419 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
420 ttm_tt_destroy(bo->ttm);
421 bo->ttm = NULL;
422 }
423
424 return ret;
425 }
426
427 /**
428 * Call bo::reserved.
429 * Will release GPU memory type usage on destruction.
430 * This is the place to put in driver specific hooks to release
431 * driver private resources.
432 * Will release the bo::reserved lock.
433 */
434
435 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
436 {
437 if (bo->bdev->driver->move_notify)
438 bo->bdev->driver->move_notify(bo, false, NULL);
439
440 ttm_tt_destroy(bo->ttm);
441 bo->ttm = NULL;
442 ttm_bo_mem_put(bo, &bo->mem);
443 }
444
445 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
446 {
447 int r;
448
449 if (bo->base.resv == &bo->base._resv)
450 return 0;
451
452 BUG_ON(!dma_resv_trylock(&bo->base._resv));
453
454 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
455 if (r)
456 dma_resv_unlock(&bo->base._resv);
457
458 return r;
459 }
460
461 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
462 {
463 struct dma_resv_list *fobj;
464 struct dma_fence *fence;
465 int i;
466
467 fobj = dma_resv_get_list(&bo->base._resv);
468 fence = dma_resv_get_excl(&bo->base._resv);
469 if (fence && !fence->ops->signaled)
470 dma_fence_enable_sw_signaling(fence);
471
472 for (i = 0; fobj && i < fobj->shared_count; ++i) {
473 fence = rcu_dereference_protected(fobj->shared[i],
474 dma_resv_held(bo->base.resv));
475
476 if (!fence->ops->signaled)
477 dma_fence_enable_sw_signaling(fence);
478 }
479 }
480
481 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
482 {
483 struct ttm_bo_device *bdev = bo->bdev;
484 int ret;
485
486 ret = ttm_bo_individualize_resv(bo);
487 if (ret) {
488 /* Last resort, if we fail to allocate memory for the
489 * fences block for the BO to become idle
490 */
491 dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
492 30 * HZ);
493 spin_lock(&ttm_bo_glob.lru_lock);
494 goto error;
495 }
496
497 spin_lock(&ttm_bo_glob.lru_lock);
498 ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
499 if (!ret) {
500 if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
501 ttm_bo_del_from_lru(bo);
502 spin_unlock(&ttm_bo_glob.lru_lock);
503 if (bo->base.resv != &bo->base._resv)
504 dma_resv_unlock(&bo->base._resv);
505
506 ttm_bo_cleanup_memtype_use(bo);
507 dma_resv_unlock(bo->base.resv);
508 return;
509 }
510
511 ttm_bo_flush_all_fences(bo);
512
513 /*
514 * Make NO_EVICT bos immediately available to
515 * shrinkers, now that they are queued for
516 * destruction.
517 */
518 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
519 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
520 ttm_bo_move_to_lru_tail(bo, NULL);
521 }
522
523 dma_resv_unlock(bo->base.resv);
524 }
525 if (bo->base.resv != &bo->base._resv)
526 dma_resv_unlock(&bo->base._resv);
527
528 error:
529 kref_get(&bo->list_kref);
530 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
531 spin_unlock(&ttm_bo_glob.lru_lock);
532
533 schedule_delayed_work(&bdev->wq,
534 ((HZ / 100) < 1) ? 1 : HZ / 100);
535 }
536
537 /**
538 * function ttm_bo_cleanup_refs
539 * If bo idle, remove from delayed- and lru lists, and unref.
540 * If not idle, do nothing.
541 *
542 * Must be called with lru_lock and reservation held, this function
543 * will drop the lru lock and optionally the reservation lock before returning.
544 *
545 * @interruptible Any sleeps should occur interruptibly.
546 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
547 * @unlock_resv Unlock the reservation lock as well.
548 */
549
550 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
551 bool interruptible, bool no_wait_gpu,
552 bool unlock_resv)
553 {
554 struct dma_resv *resv;
555 int ret;
556
557 if (unlikely(list_empty(&bo->ddestroy)))
558 resv = bo->base.resv;
559 else
560 resv = &bo->base._resv;
561
562 if (dma_resv_test_signaled_rcu(resv, true))
563 ret = 0;
564 else
565 ret = -EBUSY;
566
567 if (ret && !no_wait_gpu) {
568 long lret;
569
570 if (unlock_resv)
571 dma_resv_unlock(bo->base.resv);
572 spin_unlock(&ttm_bo_glob.lru_lock);
573
574 lret = dma_resv_wait_timeout_rcu(resv, true,
575 interruptible,
576 30 * HZ);
577
578 if (lret < 0)
579 return lret;
580 else if (lret == 0)
581 return -EBUSY;
582
583 spin_lock(&ttm_bo_glob.lru_lock);
584 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
585 /*
586 * We raced, and lost, someone else holds the reservation now,
587 * and is probably busy in ttm_bo_cleanup_memtype_use.
588 *
589 * Even if it's not the case, because we finished waiting any
590 * delayed destruction would succeed, so just return success
591 * here.
592 */
593 spin_unlock(&ttm_bo_glob.lru_lock);
594 return 0;
595 }
596 ret = 0;
597 }
598
599 if (ret || unlikely(list_empty(&bo->ddestroy))) {
600 if (unlock_resv)
601 dma_resv_unlock(bo->base.resv);
602 spin_unlock(&ttm_bo_glob.lru_lock);
603 return ret;
604 }
605
606 ttm_bo_del_from_lru(bo);
607 list_del_init(&bo->ddestroy);
608 kref_put(&bo->list_kref, ttm_bo_ref_bug);
609
610 spin_unlock(&ttm_bo_glob.lru_lock);
611 ttm_bo_cleanup_memtype_use(bo);
612
613 if (unlock_resv)
614 dma_resv_unlock(bo->base.resv);
615
616 return 0;
617 }
618
619 /**
620 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
621 * encountered buffers.
622 */
623 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
624 {
625 struct ttm_bo_global *glob = &ttm_bo_glob;
626 struct list_head removed;
627 bool empty;
628
629 INIT_LIST_HEAD(&removed);
630
631 spin_lock(&glob->lru_lock);
632 while (!list_empty(&bdev->ddestroy)) {
633 struct ttm_buffer_object *bo;
634
635 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
636 ddestroy);
637 kref_get(&bo->list_kref);
638 list_move_tail(&bo->ddestroy, &removed);
639
640 if (remove_all || bo->base.resv != &bo->base._resv) {
641 spin_unlock(&glob->lru_lock);
642 dma_resv_lock(bo->base.resv, NULL);
643
644 spin_lock(&glob->lru_lock);
645 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
646
647 } else if (dma_resv_trylock(bo->base.resv)) {
648 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
649 } else {
650 spin_unlock(&glob->lru_lock);
651 }
652
653 kref_put(&bo->list_kref, ttm_bo_release_list);
654 spin_lock(&glob->lru_lock);
655 }
656 list_splice_tail(&removed, &bdev->ddestroy);
657 empty = list_empty(&bdev->ddestroy);
658 spin_unlock(&glob->lru_lock);
659
660 return empty;
661 }
662
663 static void ttm_bo_delayed_workqueue(struct work_struct *work)
664 {
665 struct ttm_bo_device *bdev =
666 container_of(work, struct ttm_bo_device, wq.work);
667
668 if (!ttm_bo_delayed_delete(bdev, false))
669 schedule_delayed_work(&bdev->wq,
670 ((HZ / 100) < 1) ? 1 : HZ / 100);
671 }
672
673 static void ttm_bo_release(struct kref *kref)
674 {
675 struct ttm_buffer_object *bo =
676 container_of(kref, struct ttm_buffer_object, kref);
677 struct ttm_bo_device *bdev = bo->bdev;
678 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
679
680 if (bo->bdev->driver->release_notify)
681 bo->bdev->driver->release_notify(bo);
682
683 #ifdef __NetBSD__
684 uvm_obj_destroy(&bo->uvmobj, true);
685 #endif
686 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
687 #ifdef __NetBSD__
688 if (!ttm_bo_uses_embedded_gem_object(bo))
689 drm_vma_node_destroy(&bo->base.vma_node);
690 #endif
691 ttm_mem_io_lock(man, false);
692 ttm_mem_io_free_vm(bo);
693 ttm_mem_io_unlock(man);
694 ttm_bo_cleanup_refs_or_queue(bo);
695 kref_put(&bo->list_kref, ttm_bo_release_list);
696 }
697
698 void ttm_bo_put(struct ttm_buffer_object *bo)
699 {
700 kref_put(&bo->kref, ttm_bo_release);
701 }
702 EXPORT_SYMBOL(ttm_bo_put);
703
704 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
705 {
706 return cancel_delayed_work_sync(&bdev->wq);
707 }
708 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
709
710 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
711 {
712 if (resched)
713 schedule_delayed_work(&bdev->wq,
714 ((HZ / 100) < 1) ? 1 : HZ / 100);
715 }
716 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
717
718 static int ttm_bo_evict(struct ttm_buffer_object *bo,
719 struct ttm_operation_ctx *ctx)
720 {
721 struct ttm_bo_device *bdev = bo->bdev;
722 struct ttm_mem_reg evict_mem;
723 struct ttm_placement placement;
724 int ret = 0;
725
726 dma_resv_assert_held(bo->base.resv);
727
728 placement.num_placement = 0;
729 placement.num_busy_placement = 0;
730 bdev->driver->evict_flags(bo, &placement);
731
732 if (!placement.num_placement && !placement.num_busy_placement) {
733 ret = ttm_bo_pipeline_gutting(bo);
734 if (ret)
735 return ret;
736
737 return ttm_tt_create(bo, false);
738 }
739
740 evict_mem = bo->mem;
741 evict_mem.mm_node = NULL;
742 evict_mem.bus.io_reserved_vm = false;
743 evict_mem.bus.io_reserved_count = 0;
744
745 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
746 if (ret) {
747 if (ret != -ERESTARTSYS) {
748 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
749 bo);
750 ttm_bo_mem_space_debug(bo, &placement);
751 }
752 goto out;
753 }
754
755 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
756 if (unlikely(ret)) {
757 if (ret != -ERESTARTSYS)
758 pr_err("Buffer eviction failed\n");
759 ttm_bo_mem_put(bo, &evict_mem);
760 goto out;
761 }
762 bo->evicted = true;
763 out:
764 return ret;
765 }
766
767 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
768 const struct ttm_place *place)
769 {
770 /* Don't evict this BO if it's outside of the
771 * requested placement range
772 */
773 if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
774 (place->lpfn && place->lpfn <= bo->mem.start))
775 return false;
776
777 return true;
778 }
779 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
780
781 /**
782 * Check the target bo is allowable to be evicted or swapout, including cases:
783 *
784 * a. if share same reservation object with ctx->resv, have assumption
785 * reservation objects should already be locked, so not lock again and
786 * return true directly when either the opreation allow_reserved_eviction
787 * or the target bo already is in delayed free list;
788 *
789 * b. Otherwise, trylock it.
790 */
791 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
792 struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
793 {
794 bool ret = false;
795
796 if (bo->base.resv == ctx->resv) {
797 dma_resv_assert_held(bo->base.resv);
798 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
799 || !list_empty(&bo->ddestroy))
800 ret = true;
801 *locked = false;
802 if (busy)
803 *busy = false;
804 } else {
805 ret = dma_resv_trylock(bo->base.resv);
806 *locked = ret;
807 if (busy)
808 *busy = !ret;
809 }
810
811 return ret;
812 }
813
814 /**
815 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
816 *
817 * @busy_bo: BO which couldn't be locked with trylock
818 * @ctx: operation context
819 * @ticket: acquire ticket
820 *
821 * Try to lock a busy buffer object to avoid failing eviction.
822 */
823 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
824 struct ttm_operation_ctx *ctx,
825 struct ww_acquire_ctx *ticket)
826 {
827 int r;
828
829 if (!busy_bo || !ticket)
830 return -EBUSY;
831
832 if (ctx->interruptible)
833 r = dma_resv_lock_interruptible(busy_bo->base.resv,
834 ticket);
835 else
836 r = dma_resv_lock(busy_bo->base.resv, ticket);
837
838 /*
839 * TODO: It would be better to keep the BO locked until allocation is at
840 * least tried one more time, but that would mean a much larger rework
841 * of TTM.
842 */
843 if (!r)
844 dma_resv_unlock(busy_bo->base.resv);
845
846 return r == -EDEADLK ? -EBUSY : r;
847 }
848
849 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
850 uint32_t mem_type,
851 const struct ttm_place *place,
852 struct ttm_operation_ctx *ctx,
853 struct ww_acquire_ctx *ticket)
854 {
855 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
856 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
857 bool locked = false;
858 unsigned i;
859 int ret;
860
861 spin_lock(&ttm_bo_glob.lru_lock);
862 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
863 list_for_each_entry(bo, &man->lru[i], lru) {
864 bool busy;
865
866 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
867 &busy)) {
868 if (busy && !busy_bo && ticket !=
869 dma_resv_locking_ctx(bo->base.resv))
870 busy_bo = bo;
871 continue;
872 }
873
874 if (place && !bdev->driver->eviction_valuable(bo,
875 place)) {
876 if (locked)
877 dma_resv_unlock(bo->base.resv);
878 continue;
879 }
880 break;
881 }
882
883 /* If the inner loop terminated early, we have our candidate */
884 if (&bo->lru != &man->lru[i])
885 break;
886
887 bo = NULL;
888 }
889
890 if (!bo) {
891 if (busy_bo)
892 kref_get(&busy_bo->list_kref);
893 spin_unlock(&ttm_bo_glob.lru_lock);
894 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
895 if (busy_bo)
896 kref_put(&busy_bo->list_kref, ttm_bo_release_list);
897 return ret;
898 }
899
900 kref_get(&bo->list_kref);
901
902 if (!list_empty(&bo->ddestroy)) {
903 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
904 ctx->no_wait_gpu, locked);
905 kref_put(&bo->list_kref, ttm_bo_release_list);
906 return ret;
907 }
908
909 spin_unlock(&ttm_bo_glob.lru_lock);
910
911 ret = ttm_bo_evict(bo, ctx);
912 if (locked)
913 ttm_bo_unreserve(bo);
914
915 kref_put(&bo->list_kref, ttm_bo_release_list);
916 return ret;
917 }
918
919 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
920 {
921 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
922
923 if (mem->mm_node)
924 (*man->func->put_node)(man, mem);
925 }
926 EXPORT_SYMBOL(ttm_bo_mem_put);
927
928 /**
929 * Add the last move fence to the BO and reserve a new shared slot.
930 */
931 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
932 struct ttm_mem_type_manager *man,
933 struct ttm_mem_reg *mem,
934 bool no_wait_gpu)
935 {
936 struct dma_fence *fence;
937 int ret;
938
939 spin_lock(&man->move_lock);
940 fence = dma_fence_get(man->move);
941 spin_unlock(&man->move_lock);
942
943 if (!fence)
944 return 0;
945
946 if (no_wait_gpu)
947 return -EBUSY;
948
949 dma_resv_add_shared_fence(bo->base.resv, fence);
950
951 ret = dma_resv_reserve_shared(bo->base.resv, 1);
952 if (unlikely(ret)) {
953 dma_fence_put(fence);
954 return ret;
955 }
956
957 dma_fence_put(bo->moving);
958 bo->moving = fence;
959 return 0;
960 }
961
962 /**
963 * Repeatedly evict memory from the LRU for @mem_type until we create enough
964 * space, or we've evicted everything and there isn't enough space.
965 */
966 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
967 const struct ttm_place *place,
968 struct ttm_mem_reg *mem,
969 struct ttm_operation_ctx *ctx)
970 {
971 struct ttm_bo_device *bdev = bo->bdev;
972 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
973 struct ww_acquire_ctx *ticket;
974 int ret;
975
976 ticket = dma_resv_locking_ctx(bo->base.resv);
977 do {
978 ret = (*man->func->get_node)(man, bo, place, mem);
979 if (unlikely(ret != 0))
980 return ret;
981 if (mem->mm_node)
982 break;
983 ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
984 ticket);
985 if (unlikely(ret != 0))
986 return ret;
987 } while (1);
988
989 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
990 }
991
992 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
993 uint32_t cur_placement,
994 uint32_t proposed_placement)
995 {
996 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
997 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
998
999 /**
1000 * Keep current caching if possible.
1001 */
1002
1003 if ((cur_placement & caching) != 0)
1004 result |= (cur_placement & caching);
1005 else if ((man->default_caching & caching) != 0)
1006 result |= man->default_caching;
1007 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
1008 result |= TTM_PL_FLAG_CACHED;
1009 else if ((TTM_PL_FLAG_WC & caching) != 0)
1010 result |= TTM_PL_FLAG_WC;
1011 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
1012 result |= TTM_PL_FLAG_UNCACHED;
1013
1014 return result;
1015 }
1016
1017 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
1018 uint32_t mem_type,
1019 const struct ttm_place *place,
1020 uint32_t *masked_placement)
1021 {
1022 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
1023
1024 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
1025 return false;
1026
1027 if ((place->flags & man->available_caching) == 0)
1028 return false;
1029
1030 cur_flags |= (place->flags & man->available_caching);
1031
1032 *masked_placement = cur_flags;
1033 return true;
1034 }
1035
1036 /**
1037 * ttm_bo_mem_placement - check if placement is compatible
1038 * @bo: BO to find memory for
1039 * @place: where to search
1040 * @mem: the memory object to fill in
1041 * @ctx: operation context
1042 *
1043 * Check if placement is compatible and fill in mem structure.
1044 * Returns -EBUSY if placement won't work or negative error code.
1045 * 0 when placement can be used.
1046 */
1047 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
1048 const struct ttm_place *place,
1049 struct ttm_mem_reg *mem,
1050 struct ttm_operation_ctx *ctx)
1051 {
1052 struct ttm_bo_device *bdev = bo->bdev;
1053 uint32_t mem_type = TTM_PL_SYSTEM;
1054 struct ttm_mem_type_manager *man;
1055 uint32_t cur_flags = 0;
1056 int ret;
1057
1058 ret = ttm_mem_type_from_place(place, &mem_type);
1059 if (ret)
1060 return ret;
1061
1062 man = &bdev->man[mem_type];
1063 if (!man->has_type || !man->use_type)
1064 return -EBUSY;
1065
1066 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1067 return -EBUSY;
1068
1069 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1070 /*
1071 * Use the access and other non-mapping-related flag bits from
1072 * the memory placement flags to the current flags
1073 */
1074 ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1075
1076 mem->mem_type = mem_type;
1077 mem->placement = cur_flags;
1078
1079 spin_lock(&ttm_bo_glob.lru_lock);
1080 ttm_bo_del_from_lru(bo);
1081 ttm_bo_add_mem_to_lru(bo, mem);
1082 spin_unlock(&ttm_bo_glob.lru_lock);
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * Creates space for memory region @mem according to its type.
1089 *
1090 * This function first searches for free space in compatible memory types in
1091 * the priority order defined by the driver. If free space isn't found, then
1092 * ttm_bo_mem_force_space is attempted in priority order to evict and find
1093 * space.
1094 */
1095 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1096 struct ttm_placement *placement,
1097 struct ttm_mem_reg *mem,
1098 struct ttm_operation_ctx *ctx)
1099 {
1100 struct ttm_bo_device *bdev = bo->bdev;
1101 bool type_found = false;
1102 int i, ret;
1103
1104 ret = dma_resv_reserve_shared(bo->base.resv, 1);
1105 if (unlikely(ret))
1106 return ret;
1107
1108 mem->mm_node = NULL;
1109 for (i = 0; i < placement->num_placement; ++i) {
1110 const struct ttm_place *place = &placement->placement[i];
1111 struct ttm_mem_type_manager *man;
1112
1113 ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1114 if (ret == -EBUSY)
1115 continue;
1116 if (ret)
1117 goto error;
1118
1119 type_found = true;
1120 mem->mm_node = NULL;
1121 if (mem->mem_type == TTM_PL_SYSTEM)
1122 return 0;
1123
1124 man = &bdev->man[mem->mem_type];
1125 ret = (*man->func->get_node)(man, bo, place, mem);
1126 if (unlikely(ret))
1127 goto error;
1128
1129 if (!mem->mm_node)
1130 continue;
1131
1132 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
1133 if (unlikely(ret)) {
1134 (*man->func->put_node)(man, mem);
1135 if (ret == -EBUSY)
1136 continue;
1137
1138 goto error;
1139 }
1140 return 0;
1141 }
1142
1143 for (i = 0; i < placement->num_busy_placement; ++i) {
1144 const struct ttm_place *place = &placement->busy_placement[i];
1145
1146 ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1147 if (ret == -EBUSY)
1148 continue;
1149 if (ret)
1150 goto error;
1151
1152 type_found = true;
1153 mem->mm_node = NULL;
1154 if (mem->mem_type == TTM_PL_SYSTEM)
1155 return 0;
1156
1157 ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1158 if (ret == 0 && mem->mm_node)
1159 return 0;
1160
1161 if (ret && ret != -EBUSY)
1162 goto error;
1163 }
1164
1165 ret = -ENOMEM;
1166 if (!type_found) {
1167 pr_err(TTM_PFX "No compatible memory type found\n");
1168 ret = -EINVAL;
1169 }
1170
1171 error:
1172 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1173 spin_lock(&ttm_bo_glob.lru_lock);
1174 ttm_bo_move_to_lru_tail(bo, NULL);
1175 spin_unlock(&ttm_bo_glob.lru_lock);
1176 }
1177
1178 return ret;
1179 }
1180 EXPORT_SYMBOL(ttm_bo_mem_space);
1181
1182 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1183 struct ttm_placement *placement,
1184 struct ttm_operation_ctx *ctx)
1185 {
1186 int ret = 0;
1187 struct ttm_mem_reg mem;
1188
1189 dma_resv_assert_held(bo->base.resv);
1190
1191 mem.num_pages = bo->num_pages;
1192 mem.size = mem.num_pages << PAGE_SHIFT;
1193 mem.page_alignment = bo->mem.page_alignment;
1194 mem.bus.is_iomem = false;
1195 mem.bus.io_reserved_vm = false;
1196 mem.bus.io_reserved_count = 0;
1197 /*
1198 * Determine where to move the buffer.
1199 */
1200 ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1201 if (ret)
1202 goto out_unlock;
1203 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1204 out_unlock:
1205 if (ret && mem.mm_node)
1206 ttm_bo_mem_put(bo, &mem);
1207 return ret;
1208 }
1209
1210 static bool ttm_bo_places_compat(const struct ttm_place *places,
1211 unsigned num_placement,
1212 struct ttm_mem_reg *mem,
1213 uint32_t *new_flags)
1214 {
1215 unsigned i;
1216
1217 for (i = 0; i < num_placement; i++) {
1218 const struct ttm_place *heap = &places[i];
1219
1220 if (mem->mm_node && (mem->start < heap->fpfn ||
1221 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1222 continue;
1223
1224 *new_flags = heap->flags;
1225 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1226 (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1227 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1228 (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1235 struct ttm_mem_reg *mem,
1236 uint32_t *new_flags)
1237 {
1238 if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1239 mem, new_flags))
1240 return true;
1241
1242 if ((placement->busy_placement != placement->placement ||
1243 placement->num_busy_placement > placement->num_placement) &&
1244 ttm_bo_places_compat(placement->busy_placement,
1245 placement->num_busy_placement,
1246 mem, new_flags))
1247 return true;
1248
1249 return false;
1250 }
1251 EXPORT_SYMBOL(ttm_bo_mem_compat);
1252
1253 int ttm_bo_validate(struct ttm_buffer_object *bo,
1254 struct ttm_placement *placement,
1255 struct ttm_operation_ctx *ctx)
1256 {
1257 int ret;
1258 uint32_t new_flags;
1259
1260 dma_resv_assert_held(bo->base.resv);
1261 /*
1262 * Check whether we need to move buffer.
1263 */
1264 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1265 ret = ttm_bo_move_buffer(bo, placement, ctx);
1266 if (ret)
1267 return ret;
1268 } else {
1269 /*
1270 * Use the access and other non-mapping-related flag bits from
1271 * the compatible memory placement flags to the active flags
1272 */
1273 ttm_flag_masked(&bo->mem.placement, new_flags,
1274 ~TTM_PL_MASK_MEMTYPE);
1275 }
1276 /*
1277 * We might need to add a TTM.
1278 */
1279 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1280 ret = ttm_tt_create(bo, true);
1281 if (ret)
1282 return ret;
1283 }
1284 return 0;
1285 }
1286 EXPORT_SYMBOL(ttm_bo_validate);
1287
1288 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1289 struct ttm_buffer_object *bo,
1290 unsigned long size,
1291 enum ttm_bo_type type,
1292 struct ttm_placement *placement,
1293 uint32_t page_alignment,
1294 struct ttm_operation_ctx *ctx,
1295 size_t acc_size,
1296 struct sg_table *sg,
1297 struct dma_resv *resv,
1298 void (*destroy) (struct ttm_buffer_object *))
1299 {
1300 struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1301 int ret = 0;
1302 unsigned long num_pages;
1303 bool locked;
1304
1305 if (sg && !drm_prime_sg_importable(bdev->dmat, sg)) {
1306 pr_err("DRM prime buffer violates DMA constraints\n");
1307 return -EIO;
1308 }
1309
1310 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1311 if (ret) {
1312 pr_err("Out of kernel memory\n");
1313 if (destroy)
1314 (*destroy)(bo);
1315 else
1316 kfree(bo);
1317 return -ENOMEM;
1318 }
1319
1320 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1321 if (num_pages == 0) {
1322 pr_err("Illegal buffer object size\n");
1323 if (destroy)
1324 (*destroy)(bo);
1325 else
1326 kfree(bo);
1327 ttm_mem_global_free(mem_glob, acc_size);
1328 return -EINVAL;
1329 }
1330 bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1331
1332 kref_init(&bo->kref);
1333 kref_init(&bo->list_kref);
1334 INIT_LIST_HEAD(&bo->lru);
1335 INIT_LIST_HEAD(&bo->ddestroy);
1336 INIT_LIST_HEAD(&bo->swap);
1337 INIT_LIST_HEAD(&bo->io_reserve_lru);
1338 bo->bdev = bdev;
1339 bo->type = type;
1340 bo->num_pages = num_pages;
1341 bo->mem.size = num_pages << PAGE_SHIFT;
1342 bo->mem.mem_type = TTM_PL_SYSTEM;
1343 bo->mem.num_pages = bo->num_pages;
1344 bo->mem.mm_node = NULL;
1345 bo->mem.page_alignment = page_alignment;
1346 bo->mem.bus.io_reserved_vm = false;
1347 bo->mem.bus.io_reserved_count = 0;
1348 bo->moving = NULL;
1349 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1350 bo->acc_size = acc_size;
1351 bo->sg = sg;
1352 if (resv) {
1353 bo->base.resv = resv;
1354 dma_resv_assert_held(bo->base.resv);
1355 } else {
1356 bo->base.resv = &bo->base._resv;
1357 }
1358 if (!ttm_bo_uses_embedded_gem_object(bo)) {
1359 /*
1360 * bo.gem is not initialized, so we have to setup the
1361 * struct elements we want use regardless.
1362 */
1363 dma_resv_init(&bo->base._resv);
1364 #ifdef __NetBSD__
1365 drm_vma_node_init(&bo->base.vma_node);
1366 #else
1367 drm_vma_node_reset(&bo->base.vma_node);
1368 #endif
1369 }
1370 #ifdef __NetBSD__
1371 uvm_obj_init(&bo->uvmobj, bdev->driver->ttm_uvm_ops, true, 1);
1372 #endif
1373 atomic_inc(&ttm_bo_glob.bo_count);
1374
1375 /*
1376 * For ttm_bo_type_device buffers, allocate
1377 * address space from the device.
1378 */
1379 if (bo->type == ttm_bo_type_device ||
1380 bo->type == ttm_bo_type_sg)
1381 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1382 bo->mem.num_pages);
1383
1384 /* passed reservation objects should already be locked,
1385 * since otherwise lockdep will be angered in radeon.
1386 */
1387 if (!resv) {
1388 locked = dma_resv_trylock(bo->base.resv);
1389 WARN_ON(!locked);
1390 }
1391
1392 if (likely(!ret))
1393 ret = ttm_bo_validate(bo, placement, ctx);
1394
1395 if (unlikely(ret)) {
1396 if (!resv)
1397 ttm_bo_unreserve(bo);
1398
1399 ttm_bo_put(bo);
1400 return ret;
1401 }
1402
1403 spin_lock(&ttm_bo_glob.lru_lock);
1404 ttm_bo_move_to_lru_tail(bo, NULL);
1405 spin_unlock(&ttm_bo_glob.lru_lock);
1406
1407 return ret;
1408 }
1409 EXPORT_SYMBOL(ttm_bo_init_reserved);
1410
1411 int ttm_bo_init(struct ttm_bo_device *bdev,
1412 struct ttm_buffer_object *bo,
1413 unsigned long size,
1414 enum ttm_bo_type type,
1415 struct ttm_placement *placement,
1416 uint32_t page_alignment,
1417 bool interruptible,
1418 size_t acc_size,
1419 struct sg_table *sg,
1420 struct dma_resv *resv,
1421 void (*destroy) (struct ttm_buffer_object *))
1422 {
1423 struct ttm_operation_ctx ctx = { interruptible, false };
1424 int ret;
1425
1426 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1427 page_alignment, &ctx, acc_size,
1428 sg, resv, destroy);
1429 if (ret)
1430 return ret;
1431
1432 if (!resv)
1433 ttm_bo_unreserve(bo);
1434
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(ttm_bo_init);
1438
1439 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1440 unsigned long bo_size,
1441 unsigned struct_size)
1442 {
1443 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1444 size_t size = 0;
1445
1446 size += ttm_round_pot(struct_size);
1447 size += ttm_round_pot(npages * sizeof(void *));
1448 size += ttm_round_pot(sizeof(struct ttm_tt));
1449 return size;
1450 }
1451 EXPORT_SYMBOL(ttm_bo_acc_size);
1452
1453 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1454 unsigned long bo_size,
1455 unsigned struct_size)
1456 {
1457 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1458 size_t size = 0;
1459
1460 size += ttm_round_pot(struct_size);
1461 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1462 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1463 return size;
1464 }
1465 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1466
1467 int ttm_bo_create(struct ttm_bo_device *bdev,
1468 unsigned long size,
1469 enum ttm_bo_type type,
1470 struct ttm_placement *placement,
1471 uint32_t page_alignment,
1472 bool interruptible,
1473 struct ttm_buffer_object **p_bo)
1474 {
1475 struct ttm_buffer_object *bo;
1476 size_t acc_size;
1477 int ret;
1478
1479 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1480 if (unlikely(bo == NULL))
1481 return -ENOMEM;
1482
1483 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1484 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1485 interruptible, acc_size,
1486 NULL, NULL, NULL);
1487 if (likely(ret == 0))
1488 *p_bo = bo;
1489
1490 return ret;
1491 }
1492 EXPORT_SYMBOL(ttm_bo_create);
1493
1494 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1495 unsigned mem_type)
1496 {
1497 struct ttm_operation_ctx ctx = {
1498 .interruptible = false,
1499 .no_wait_gpu = false,
1500 .flags = TTM_OPT_FLAG_FORCE_ALLOC
1501 };
1502 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1503 struct ttm_bo_global *glob = &ttm_bo_glob;
1504 struct dma_fence *fence;
1505 int ret;
1506 unsigned i;
1507
1508 /*
1509 * Can't use standard list traversal since we're unlocking.
1510 */
1511
1512 spin_lock(&glob->lru_lock);
1513 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1514 while (!list_empty(&man->lru[i])) {
1515 spin_unlock(&glob->lru_lock);
1516 ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1517 NULL);
1518 if (ret)
1519 return ret;
1520 spin_lock(&glob->lru_lock);
1521 }
1522 }
1523 spin_unlock(&glob->lru_lock);
1524
1525 spin_lock(&man->move_lock);
1526 fence = dma_fence_get(man->move);
1527 spin_unlock(&man->move_lock);
1528
1529 if (fence) {
1530 ret = dma_fence_wait(fence, false);
1531 dma_fence_put(fence);
1532 if (ret)
1533 return ret;
1534 }
1535
1536 return 0;
1537 }
1538
1539 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1540 {
1541 struct ttm_mem_type_manager *man;
1542 int ret = -EINVAL;
1543
1544 if (mem_type >= TTM_NUM_MEM_TYPES) {
1545 pr_err("Illegal memory type %d\n", mem_type);
1546 return ret;
1547 }
1548 man = &bdev->man[mem_type];
1549
1550 if (!man->has_type) {
1551 pr_err("Trying to take down uninitialized memory manager type %u\n",
1552 mem_type);
1553 return ret;
1554 }
1555
1556 man->use_type = false;
1557 man->has_type = false;
1558
1559 ret = 0;
1560 if (mem_type > 0) {
1561 ret = ttm_bo_force_list_clean(bdev, mem_type);
1562 if (ret) {
1563 pr_err("Cleanup eviction failed\n");
1564 return ret;
1565 }
1566
1567 ret = (*man->func->takedown)(man);
1568 }
1569
1570 dma_fence_put(man->move);
1571 man->move = NULL;
1572
1573 return ret;
1574 }
1575 EXPORT_SYMBOL(ttm_bo_clean_mm);
1576
1577 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1578 {
1579 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1580
1581 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1582 pr_err("Illegal memory manager memory type %u\n", mem_type);
1583 return -EINVAL;
1584 }
1585
1586 if (!man->has_type) {
1587 pr_err("Memory type %u has not been initialized\n", mem_type);
1588 return 0;
1589 }
1590
1591 return ttm_bo_force_list_clean(bdev, mem_type);
1592 }
1593 EXPORT_SYMBOL(ttm_bo_evict_mm);
1594
1595 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1596 unsigned long p_size)
1597 {
1598 int ret;
1599 struct ttm_mem_type_manager *man;
1600 unsigned i;
1601
1602 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1603 man = &bdev->man[type];
1604 BUG_ON(man->has_type);
1605 man->io_reserve_fastpath = true;
1606 man->use_io_reserve_lru = false;
1607 mutex_init(&man->io_reserve_mutex);
1608 spin_lock_init(&man->move_lock);
1609 INIT_LIST_HEAD(&man->io_reserve_lru);
1610
1611 ret = bdev->driver->init_mem_type(bdev, type, man);
1612 if (ret)
1613 return ret;
1614 man->bdev = bdev;
1615
1616 if (type != TTM_PL_SYSTEM) {
1617 ret = (*man->func->init)(man, p_size);
1618 if (ret)
1619 return ret;
1620 }
1621 man->has_type = true;
1622 man->use_type = true;
1623 man->size = p_size;
1624
1625 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1626 INIT_LIST_HEAD(&man->lru[i]);
1627 man->move = NULL;
1628
1629 return 0;
1630 }
1631 EXPORT_SYMBOL(ttm_bo_init_mm);
1632
1633 #ifndef __NetBSD__
1634 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1635 {
1636 struct ttm_bo_global *glob =
1637 container_of(kobj, struct ttm_bo_global, kobj);
1638
1639 __free_page(glob->dummy_read_page);
1640 }
1641 #endif
1642
1643 static void ttm_bo_global_release(void)
1644 {
1645 struct ttm_bo_global *glob = &ttm_bo_glob;
1646
1647 mutex_lock(&ttm_global_mutex);
1648 if (--ttm_bo_glob_use_count > 0)
1649 goto out;
1650
1651 #ifndef __NetBSD__
1652 kobject_del(&glob->kobj);
1653 kobject_put(&glob->kobj);
1654 #endif
1655 ttm_mem_global_release(&ttm_mem_glob);
1656 memset(glob, 0, sizeof(*glob));
1657 #ifdef __NetBSD__
1658 BUG_ON(glob->dummy_read_page != NULL);
1659 spin_lock_destroy(&glob->lru_lock);
1660 mutex_unlock(&ttm_global_mutex);
1661 mutex_destroy(&ttm_global_mutex);
1662 return;
1663 #endif
1664 out:
1665 mutex_unlock(&ttm_global_mutex);
1666 }
1667
1668 static int ttm_bo_global_init(void)
1669 {
1670 struct ttm_bo_global *glob = &ttm_bo_glob;
1671 int ret = 0;
1672 unsigned i;
1673
1674 mutex_init(&ttm_global_mutex);
1675 mutex_lock(&ttm_global_mutex);
1676 if (++ttm_bo_glob_use_count > 1)
1677 goto out;
1678
1679 ret = ttm_mem_global_init(&ttm_mem_glob);
1680 if (ret)
1681 goto out;
1682
1683 spin_lock_init(&glob->lru_lock);
1684 #ifdef __NetBSD__
1685 /* Only used by agp back end, will fix there. */
1686 /* XXX Fix agp back end to DTRT. */
1687 glob->dummy_read_page = NULL;
1688 #else
1689 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1690
1691 if (unlikely(glob->dummy_read_page == NULL)) {
1692 ret = -ENOMEM;
1693 goto out;
1694 }
1695 #endif
1696
1697 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1698 INIT_LIST_HEAD(&glob->swap_lru[i]);
1699 INIT_LIST_HEAD(&glob->device_list);
1700 atomic_set(&glob->bo_count, 0);
1701
1702 #ifdef __NetBSD__
1703 ret = 0;
1704 #else
1705 ret = kobject_init_and_add(
1706 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1707 if (unlikely(ret != 0))
1708 kobject_put(&glob->kobj);
1709 #endif
1710 out:
1711 mutex_unlock(&ttm_global_mutex);
1712 return ret;
1713 }
1714
1715 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1716 {
1717 struct ttm_bo_global *glob = &ttm_bo_glob;
1718 int ret = 0;
1719 unsigned i = TTM_NUM_MEM_TYPES;
1720 struct ttm_mem_type_manager *man;
1721
1722 while (i--) {
1723 man = &bdev->man[i];
1724 if (man->has_type) {
1725 man->use_type = false;
1726 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1727 ret = -EBUSY;
1728 pr_err("DRM memory manager type %d is not clean\n",
1729 i);
1730 }
1731 man->has_type = false;
1732 }
1733 }
1734
1735 mutex_lock(&ttm_global_mutex);
1736 list_del(&bdev->device_list);
1737 mutex_unlock(&ttm_global_mutex);
1738
1739 cancel_delayed_work_sync(&bdev->wq);
1740
1741 if (ttm_bo_delayed_delete(bdev, true))
1742 pr_debug("Delayed destroy list was clean\n");
1743
1744 spin_lock(&glob->lru_lock);
1745 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1746 if (list_empty(&bdev->man[0].lru[0]))
1747 pr_debug("Swap list %d was clean\n", i);
1748 spin_unlock(&glob->lru_lock);
1749
1750 if (!ret)
1751 ttm_bo_global_release();
1752
1753 return ret;
1754 }
1755 EXPORT_SYMBOL(ttm_bo_device_release);
1756
1757 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1758 struct ttm_bo_driver *driver,
1759 #ifdef __NetBSD__
1760 bus_space_tag_t memt,
1761 bus_dma_tag_t dmat,
1762 #else
1763 struct address_space *mapping,
1764 #endif
1765 struct drm_vma_offset_manager *vma_manager,
1766 bool need_dma32)
1767 {
1768 struct ttm_bo_global *glob = &ttm_bo_glob;
1769 int ret;
1770
1771 if (WARN_ON(vma_manager == NULL))
1772 return -EINVAL;
1773
1774 ret = ttm_bo_global_init();
1775 if (ret)
1776 return ret;
1777
1778 bdev->driver = driver;
1779
1780 memset(bdev->man, 0, sizeof(bdev->man));
1781
1782 /*
1783 * Initialize the system memory buffer type.
1784 * Other types need to be driver / IOCTL initialized.
1785 */
1786 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1787 if (unlikely(ret != 0))
1788 goto out_no_sys;
1789
1790 bdev->vma_manager = vma_manager;
1791 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1792 INIT_LIST_HEAD(&bdev->ddestroy);
1793 #ifdef __NetBSD__
1794 bdev->memt = memt;
1795 bdev->dmat = dmat;
1796 #else
1797 bdev->dev_mapping = mapping;
1798 #endif
1799 bdev->need_dma32 = need_dma32;
1800 mutex_lock(&ttm_global_mutex);
1801 list_add_tail(&bdev->device_list, &glob->device_list);
1802 mutex_unlock(&ttm_global_mutex);
1803
1804 return 0;
1805 out_no_sys:
1806 ttm_bo_global_release();
1807 return ret;
1808 }
1809 EXPORT_SYMBOL(ttm_bo_device_init);
1810
1811 /*
1812 * buffer object vm functions.
1813 */
1814
1815 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1816 {
1817 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1818
1819 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1820 if (mem->mem_type == TTM_PL_SYSTEM)
1821 return false;
1822
1823 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1824 return false;
1825
1826 if (mem->placement & TTM_PL_FLAG_CACHED)
1827 return false;
1828 }
1829 return true;
1830 }
1831
1832 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1833 {
1834 #ifdef __NetBSD__
1835 if (bo->mem.bus.is_iomem) {
1836 paddr_t start, end, pa;
1837
1838 KASSERTMSG((bo->mem.bus.base & (PAGE_SIZE - 1)) == 0,
1839 "bo bus base addr not page-aligned: %lx",
1840 bo->mem.bus.base);
1841 KASSERTMSG((bo->mem.bus.offset & (PAGE_SIZE - 1)) == 0,
1842 "bo bus offset not page-aligned: %lx",
1843 bo->mem.bus.offset);
1844 start = bo->mem.bus.base + bo->mem.bus.offset;
1845 KASSERT((bo->mem.bus.size & (PAGE_SIZE - 1)) == 0);
1846 end = start + bo->mem.bus.size;
1847
1848 for (pa = start; pa < end; pa += PAGE_SIZE)
1849 pmap_pv_protect(pa, VM_PROT_NONE);
1850 } else if (bo->ttm != NULL) {
1851 unsigned i;
1852
1853 rw_enter(bo->uvmobj.vmobjlock, RW_WRITER);
1854 for (i = 0; i < bo->ttm->num_pages; i++)
1855 pmap_page_protect(&bo->ttm->pages[i]->p_vmp,
1856 VM_PROT_NONE);
1857 rw_exit(bo->uvmobj.vmobjlock);
1858 }
1859 #else
1860 struct ttm_bo_device *bdev = bo->bdev;
1861
1862 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1863 #endif
1864 ttm_mem_io_free_vm(bo);
1865 }
1866
1867 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1868 {
1869 struct ttm_bo_device *bdev = bo->bdev;
1870 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1871
1872 ttm_mem_io_lock(man, false);
1873 ttm_bo_unmap_virtual_locked(bo);
1874 ttm_mem_io_unlock(man);
1875 }
1876
1877
1878 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1879
1880 int ttm_bo_wait(struct ttm_buffer_object *bo,
1881 bool interruptible, bool no_wait)
1882 {
1883 long timeout = 15 * HZ;
1884
1885 if (no_wait) {
1886 if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1887 return 0;
1888 else
1889 return -EBUSY;
1890 }
1891
1892 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1893 interruptible, timeout);
1894 if (timeout < 0)
1895 return timeout;
1896
1897 if (timeout == 0)
1898 return -EBUSY;
1899
1900 dma_resv_add_excl_fence(bo->base.resv, NULL);
1901 return 0;
1902 }
1903 EXPORT_SYMBOL(ttm_bo_wait);
1904
1905 /**
1906 * A buffer object shrink method that tries to swap out the first
1907 * buffer object on the bo_global::swap_lru list.
1908 */
1909 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1910 {
1911 struct ttm_buffer_object *bo;
1912 int ret = -EBUSY;
1913 bool locked;
1914 unsigned i;
1915
1916 spin_lock(&glob->lru_lock);
1917 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1918 list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1919 if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1920 NULL)) {
1921 ret = 0;
1922 break;
1923 }
1924 }
1925 if (!ret)
1926 break;
1927 }
1928
1929 if (ret) {
1930 spin_unlock(&glob->lru_lock);
1931 return ret;
1932 }
1933
1934 kref_get(&bo->list_kref);
1935
1936 if (!list_empty(&bo->ddestroy)) {
1937 ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1938 kref_put(&bo->list_kref, ttm_bo_release_list);
1939 return ret;
1940 }
1941
1942 ttm_bo_del_from_lru(bo);
1943 spin_unlock(&glob->lru_lock);
1944
1945 /**
1946 * Move to system cached
1947 */
1948
1949 if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1950 bo->ttm->caching_state != tt_cached) {
1951 struct ttm_operation_ctx ctx = { false, false };
1952 struct ttm_mem_reg evict_mem;
1953
1954 evict_mem = bo->mem;
1955 evict_mem.mm_node = NULL;
1956 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1957 evict_mem.mem_type = TTM_PL_SYSTEM;
1958
1959 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1960 if (unlikely(ret != 0))
1961 goto out;
1962 }
1963
1964 /**
1965 * Make sure BO is idle.
1966 */
1967
1968 ret = ttm_bo_wait(bo, false, false);
1969 if (unlikely(ret != 0))
1970 goto out;
1971
1972 ttm_bo_unmap_virtual(bo);
1973
1974 /**
1975 * Swap out. Buffer will be swapped in again as soon as
1976 * anyone tries to access a ttm page.
1977 */
1978
1979 if (bo->bdev->driver->swap_notify)
1980 bo->bdev->driver->swap_notify(bo);
1981
1982 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1983 out:
1984
1985 /**
1986 *
1987 * Unreserve without putting on LRU to avoid swapping out an
1988 * already swapped buffer.
1989 */
1990 if (locked)
1991 dma_resv_unlock(bo->base.resv);
1992 kref_put(&bo->list_kref, ttm_bo_release_list);
1993 return ret;
1994 }
1995 EXPORT_SYMBOL(ttm_bo_swapout);
1996
1997 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1998 {
1999 struct ttm_operation_ctx ctx = {
2000 .interruptible = false,
2001 .no_wait_gpu = false
2002 };
2003
2004 while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0);
2005 }
2006 EXPORT_SYMBOL(ttm_bo_swapout_all);
2007