ttm_tt.c revision 1.2 1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <linux/swap.h>
39 #include <linux/slab.h>
40 #include <linux/export.h>
41 #include <linux/printk.h>
42 #include <drm/drm_cache.h>
43 #include <drm/drm_mem_util.h>
44 #include <drm/ttm/ttm_module.h>
45 #include <drm/ttm/ttm_bo_driver.h>
46 #include <drm/ttm/ttm_placement.h>
47 #include <drm/ttm/ttm_page_alloc.h>
48 #include <drm/bus_dma_hacks.h>
49
50 /**
51 * Allocates storage for pointers to the pages that back the ttm.
52 */
53 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
54 {
55 ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(void*));
56 }
57
58 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
59 {
60 ttm->ttm.pages = drm_calloc_large(ttm->ttm.num_pages, sizeof(void*));
61 #ifndef __NetBSD__
62 ttm->dma_address = drm_calloc_large(ttm->ttm.num_pages,
63 sizeof(*ttm->dma_address));
64 #endif
65 }
66
67 #ifdef CONFIG_X86
68 static inline int ttm_tt_set_page_caching(struct page *p,
69 enum ttm_caching_state c_old,
70 enum ttm_caching_state c_new)
71 {
72 #ifdef __NetBSD__
73 return 0;
74 #else
75 int ret = 0;
76
77 if (PageHighMem(p))
78 return 0;
79
80 if (c_old != tt_cached) {
81 /* p isn't in the default caching state, set it to
82 * writeback first to free its current memtype. */
83
84 ret = set_pages_wb(p, 1);
85 if (ret)
86 return ret;
87 }
88
89 if (c_new == tt_wc)
90 ret = set_memory_wc((unsigned long) page_address(p), 1);
91 else if (c_new == tt_uncached)
92 ret = set_pages_uc(p, 1);
93
94 return ret;
95 #endif
96 }
97 #else /* CONFIG_X86 */
98 static inline int ttm_tt_set_page_caching(struct page *p,
99 enum ttm_caching_state c_old,
100 enum ttm_caching_state c_new)
101 {
102 return 0;
103 }
104 #endif /* CONFIG_X86 */
105
106 /*
107 * Change caching policy for the linear kernel map
108 * for range of pages in a ttm.
109 */
110
111 static int ttm_tt_set_caching(struct ttm_tt *ttm,
112 enum ttm_caching_state c_state)
113 {
114 int i, j;
115 struct page *cur_page;
116 int ret;
117
118 if (ttm->caching_state == c_state)
119 return 0;
120
121 if (ttm->state == tt_unpopulated) {
122 /* Change caching but don't populate */
123 ttm->caching_state = c_state;
124 return 0;
125 }
126
127 if (ttm->caching_state == tt_cached)
128 drm_clflush_pages(ttm->pages, ttm->num_pages);
129
130 for (i = 0; i < ttm->num_pages; ++i) {
131 cur_page = ttm->pages[i];
132 if (likely(cur_page != NULL)) {
133 ret = ttm_tt_set_page_caching(cur_page,
134 ttm->caching_state,
135 c_state);
136 if (unlikely(ret != 0))
137 goto out_err;
138 }
139 }
140
141 ttm->caching_state = c_state;
142
143 return 0;
144
145 out_err:
146 for (j = 0; j < i; ++j) {
147 cur_page = ttm->pages[j];
148 if (likely(cur_page != NULL)) {
149 (void)ttm_tt_set_page_caching(cur_page, c_state,
150 ttm->caching_state);
151 }
152 }
153
154 return ret;
155 }
156
157 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
158 {
159 enum ttm_caching_state state;
160
161 if (placement & TTM_PL_FLAG_WC)
162 state = tt_wc;
163 else if (placement & TTM_PL_FLAG_UNCACHED)
164 state = tt_uncached;
165 else
166 state = tt_cached;
167
168 return ttm_tt_set_caching(ttm, state);
169 }
170 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
171
172 void ttm_tt_destroy(struct ttm_tt *ttm)
173 {
174 if (unlikely(ttm == NULL))
175 return;
176
177 if (ttm->state == tt_bound) {
178 ttm_tt_unbind(ttm);
179 }
180
181 if (ttm->state == tt_unbound)
182 ttm_tt_unpopulate(ttm);
183
184 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
185 ttm->swap_storage)
186 #ifdef __NetBSD__
187 uao_detach(ttm->swap_storage);
188 #else
189 fput(ttm->swap_storage);
190 #endif
191
192 ttm->swap_storage = NULL;
193 ttm->func->destroy(ttm);
194 }
195
196 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
197 unsigned long size, uint32_t page_flags,
198 struct page *dummy_read_page)
199 {
200 ttm->bdev = bdev;
201 ttm->glob = bdev->glob;
202 ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
203 ttm->caching_state = tt_cached;
204 ttm->page_flags = page_flags;
205 ttm->dummy_read_page = dummy_read_page;
206 ttm->state = tt_unpopulated;
207 #ifdef __NetBSD__
208 ttm->swap_storage = uao_create(roundup2(size, PAGE_SIZE), 0);
209 uao_set_pgfl(ttm->swap_storage, bus_dmamem_pgfl(bdev->dmat));
210 #else
211 ttm->swap_storage = NULL;
212 #endif
213 TAILQ_INIT(&ttm->pglist);
214
215 ttm_tt_alloc_page_directory(ttm);
216 if (!ttm->pages) {
217 ttm_tt_destroy(ttm);
218 pr_err("Failed allocating page table\n");
219 return -ENOMEM;
220 }
221 return 0;
222 }
223 EXPORT_SYMBOL(ttm_tt_init);
224
225 void ttm_tt_fini(struct ttm_tt *ttm)
226 {
227 uao_detach(ttm->swap_storage);
228 ttm->swap_storage = NULL;
229 drm_free_large(ttm->pages);
230 ttm->pages = NULL;
231 }
232 EXPORT_SYMBOL(ttm_tt_fini);
233
234 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
235 unsigned long size, uint32_t page_flags,
236 struct page *dummy_read_page)
237 {
238 struct ttm_tt *ttm = &ttm_dma->ttm;
239
240 ttm->bdev = bdev;
241 ttm->glob = bdev->glob;
242 ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
243 ttm->caching_state = tt_cached;
244 ttm->page_flags = page_flags;
245 ttm->dummy_read_page = dummy_read_page;
246 ttm->state = tt_unpopulated;
247 #ifdef __NetBSD__
248 ttm->swap_storage = uao_create(roundup2(size, PAGE_SIZE), 0);
249 uao_set_pgfl(ttm->swap_storage, bus_dmamem_pgfl(bdev->dmat));
250 #else
251 ttm->swap_storage = NULL;
252 #endif
253 TAILQ_INIT(&ttm->pglist);
254
255 INIT_LIST_HEAD(&ttm_dma->pages_list);
256 ttm_dma_tt_alloc_page_directory(ttm_dma);
257 #ifdef __NetBSD__
258 {
259 int error;
260
261 if (ttm->num_pages > (SIZE_MAX /
262 MIN(sizeof(ttm_dma->dma_segs[0]), PAGE_SIZE))) {
263 error = ENOMEM;
264 goto fail0;
265 }
266 ttm_dma->dma_segs = kmem_alloc((ttm->num_pages *
267 sizeof(ttm_dma->dma_segs[0])), KM_SLEEP);
268 error = bus_dmamap_create(ttm->bdev->dmat,
269 (ttm->num_pages * PAGE_SIZE), ttm->num_pages, PAGE_SIZE, 0,
270 BUS_DMA_WAITOK, &ttm_dma->dma_address);
271 if (error)
272 goto fail1;
273
274 return 0;
275
276 fail2: __unused
277 bus_dmamap_destroy(ttm->bdev->dmat, ttm_dma->dma_address);
278 fail1: kmem_free(ttm_dma->dma_segs, (ttm->num_pages *
279 sizeof(ttm_dma->dma_segs[0])));
280 fail0: KASSERT(error);
281 ttm_tt_destroy(ttm);
282 /* XXX errno NetBSD->Linux */
283 return -error;
284 }
285 #else
286 if (!ttm->pages || !ttm_dma->dma_address) {
287 ttm_tt_destroy(ttm);
288 pr_err("Failed allocating page table\n");
289 return -ENOMEM;
290 }
291 return 0;
292 #endif
293 }
294 EXPORT_SYMBOL(ttm_dma_tt_init);
295
296 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
297 {
298 struct ttm_tt *ttm = &ttm_dma->ttm;
299
300 uao_detach(ttm->swap_storage);
301 drm_free_large(ttm->pages);
302 ttm->pages = NULL;
303 #ifdef __NetBSD__
304 bus_dmamap_destroy(ttm->bdev->dmat, ttm_dma->dma_address);
305 kmem_free(ttm_dma->dma_segs, (ttm->num_pages *
306 sizeof(ttm_dma->dma_segs[0])));
307 #else
308 drm_free_large(ttm_dma->dma_address);
309 ttm_dma->dma_address = NULL;
310 #endif
311 }
312 EXPORT_SYMBOL(ttm_dma_tt_fini);
313
314 void ttm_tt_unbind(struct ttm_tt *ttm)
315 {
316 int ret;
317
318 if (ttm->state == tt_bound) {
319 ret = ttm->func->unbind(ttm);
320 BUG_ON(ret);
321 ttm->state = tt_unbound;
322 }
323 }
324
325 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
326 {
327 int ret = 0;
328
329 if (!ttm)
330 return -EINVAL;
331
332 if (ttm->state == tt_bound)
333 return 0;
334
335 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
336 if (ret)
337 return ret;
338
339 ret = ttm->func->bind(ttm, bo_mem);
340 if (unlikely(ret != 0))
341 return ret;
342
343 ttm->state = tt_bound;
344
345 return 0;
346 }
347 EXPORT_SYMBOL(ttm_tt_bind);
348
349 int ttm_tt_swapin(struct ttm_tt *ttm)
350 {
351 #ifdef __NetBSD__
352 struct uvm_object *uobj = ttm->swap_storage;
353 struct vm_page *page;
354 unsigned i;
355 int error;
356
357 KASSERT(uobj != NULL);
358 error = uvm_obj_wirepages(uobj, 0, (ttm->num_pages << PAGE_SHIFT),
359 &ttm->pglist);
360 if (error)
361 /* XXX errno NetBSD->Linux */
362 return -error;
363
364 i = 0;
365 TAILQ_FOREACH(page, &ttm->pglist, pageq.queue) {
366 KASSERT(i < ttm->num_pages);
367 KASSERT(ttm->pages[i] == NULL);
368 ttm->pages[i] = container_of(page, struct page, p_vmp);
369 }
370 KASSERT(i == ttm->num_pages);
371
372 /* Success! */
373 return 0;
374 #else
375 struct address_space *swap_space;
376 struct file *swap_storage;
377 struct page *from_page;
378 struct page *to_page;
379 int i;
380 int ret = -ENOMEM;
381
382 swap_storage = ttm->swap_storage;
383 BUG_ON(swap_storage == NULL);
384
385 swap_space = file_inode(swap_storage)->i_mapping;
386
387 for (i = 0; i < ttm->num_pages; ++i) {
388 from_page = shmem_read_mapping_page(swap_space, i);
389 if (IS_ERR(from_page)) {
390 ret = PTR_ERR(from_page);
391 goto out_err;
392 }
393 to_page = ttm->pages[i];
394 if (unlikely(to_page == NULL))
395 goto out_err;
396
397 copy_highpage(to_page, from_page);
398 page_cache_release(from_page);
399 }
400
401 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
402 fput(swap_storage);
403 ttm->swap_storage = NULL;
404 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
405
406 return 0;
407 out_err:
408 return ret;
409 #endif
410 }
411
412 #ifdef __NetBSD__
413 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistent_swap_storage)
414 {
415 struct uvm_object *uobj = ttm->swap_storage;
416 unsigned i;
417
418 KASSERT((ttm->state == tt_unbound) || (ttm->state == tt_unpopulated));
419 KASSERT(ttm->caching_state == tt_cached);
420 KASSERT(uobj != NULL);
421
422 /*
423 * XXX Dunno what this persistent swap storage business is all
424 * about, but I see nothing using it and it doesn't make sense.
425 */
426 KASSERT(persistent_swap_storage == NULL);
427
428 uvm_obj_unwirepages(uobj, 0, (ttm->num_pages << PAGE_SHIFT));
429 for (i = 0; i < ttm->num_pages; i++)
430 ttm->pages[i] = NULL;
431
432 /* Success! */
433 return 0;
434 }
435 #else
436 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistent_swap_storage)
437 {
438 struct address_space *swap_space;
439 struct file *swap_storage;
440 struct page *from_page;
441 struct page *to_page;
442 int i;
443 int ret = -ENOMEM;
444
445 BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
446 BUG_ON(ttm->caching_state != tt_cached);
447
448 if (!persistent_swap_storage) {
449 swap_storage = shmem_file_setup("ttm swap",
450 ttm->num_pages << PAGE_SHIFT,
451 0);
452 if (unlikely(IS_ERR(swap_storage))) {
453 pr_err("Failed allocating swap storage\n");
454 return PTR_ERR(swap_storage);
455 }
456 } else
457 swap_storage = persistent_swap_storage;
458
459 swap_space = file_inode(swap_storage)->i_mapping;
460
461 for (i = 0; i < ttm->num_pages; ++i) {
462 from_page = ttm->pages[i];
463 if (unlikely(from_page == NULL))
464 continue;
465 to_page = shmem_read_mapping_page(swap_space, i);
466 if (unlikely(IS_ERR(to_page))) {
467 ret = PTR_ERR(to_page);
468 goto out_err;
469 }
470 copy_highpage(to_page, from_page);
471 set_page_dirty(to_page);
472 mark_page_accessed(to_page);
473 page_cache_release(to_page);
474 }
475
476 ttm_tt_unpopulate(ttm);
477 ttm->swap_storage = swap_storage;
478 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
479 if (persistent_swap_storage)
480 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
481
482 return 0;
483 out_err:
484 if (!persistent_swap_storage)
485 fput(swap_storage);
486
487 return ret;
488 }
489 #endif
490
491 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
492 {
493 #ifndef __NetBSD__
494 pgoff_t i;
495 struct page **page = ttm->pages;
496
497 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
498 return;
499
500 for (i = 0; i < ttm->num_pages; ++i) {
501 (*page)->mapping = NULL;
502 (*page++)->index = 0;
503 }
504 #endif
505 }
506
507 void ttm_tt_unpopulate(struct ttm_tt *ttm)
508 {
509 if (ttm->state == tt_unpopulated)
510 return;
511
512 ttm_tt_clear_mapping(ttm);
513 ttm->bdev->driver->ttm_tt_unpopulate(ttm);
514 }
515