Home | History | Annotate | Line # | Download | only in vmwgfx
vmwgfx_resource.c revision 1.1.1.2.28.1
      1 /*	$NetBSD: vmwgfx_resource.c,v 1.1.1.2.28.1 2018/09/06 06:56:34 pgoyette Exp $	*/
      2 
      3 /**************************************************************************
      4  *
      5  * Copyright  2009-2015 VMware, Inc., Palo Alto, CA., USA
      6  * All Rights Reserved.
      7  *
      8  * Permission is hereby granted, free of charge, to any person obtaining a
      9  * copy of this software and associated documentation files (the
     10  * "Software"), to deal in the Software without restriction, including
     11  * without limitation the rights to use, copy, modify, merge, publish,
     12  * distribute, sub license, and/or sell copies of the Software, and to
     13  * permit persons to whom the Software is furnished to do so, subject to
     14  * the following conditions:
     15  *
     16  * The above copyright notice and this permission notice (including the
     17  * next paragraph) shall be included in all copies or substantial portions
     18  * of the Software.
     19  *
     20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     22  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     23  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
     24  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     25  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     26  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     27  *
     28  **************************************************************************/
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: vmwgfx_resource.c,v 1.1.1.2.28.1 2018/09/06 06:56:34 pgoyette Exp $");
     32 
     33 #include "vmwgfx_drv.h"
     34 #include <drm/vmwgfx_drm.h>
     35 #include <drm/ttm/ttm_object.h>
     36 #include <drm/ttm/ttm_placement.h>
     37 #include <drm/drmP.h>
     38 #include "vmwgfx_resource_priv.h"
     39 #include "vmwgfx_binding.h"
     40 
     41 #define VMW_RES_EVICT_ERR_COUNT 10
     42 
     43 struct vmw_user_dma_buffer {
     44 	struct ttm_prime_object prime;
     45 	struct vmw_dma_buffer dma;
     46 };
     47 
     48 struct vmw_bo_user_rep {
     49 	uint32_t handle;
     50 	uint64_t map_handle;
     51 };
     52 
     53 struct vmw_stream {
     54 	struct vmw_resource res;
     55 	uint32_t stream_id;
     56 };
     57 
     58 struct vmw_user_stream {
     59 	struct ttm_base_object base;
     60 	struct vmw_stream stream;
     61 };
     62 
     63 
     64 static uint64_t vmw_user_stream_size;
     65 
     66 static const struct vmw_res_func vmw_stream_func = {
     67 	.res_type = vmw_res_stream,
     68 	.needs_backup = false,
     69 	.may_evict = false,
     70 	.type_name = "video streams",
     71 	.backup_placement = NULL,
     72 	.create = NULL,
     73 	.destroy = NULL,
     74 	.bind = NULL,
     75 	.unbind = NULL
     76 };
     77 
     78 static inline struct vmw_dma_buffer *
     79 vmw_dma_buffer(struct ttm_buffer_object *bo)
     80 {
     81 	return container_of(bo, struct vmw_dma_buffer, base);
     82 }
     83 
     84 static inline struct vmw_user_dma_buffer *
     85 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
     86 {
     87 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
     88 	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
     89 }
     90 
     91 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
     92 {
     93 	kref_get(&res->kref);
     94 	return res;
     95 }
     96 
     97 struct vmw_resource *
     98 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
     99 {
    100 	return kref_get_unless_zero(&res->kref) ? res : NULL;
    101 }
    102 
    103 /**
    104  * vmw_resource_release_id - release a resource id to the id manager.
    105  *
    106  * @res: Pointer to the resource.
    107  *
    108  * Release the resource id to the resource id manager and set it to -1
    109  */
    110 void vmw_resource_release_id(struct vmw_resource *res)
    111 {
    112 	struct vmw_private *dev_priv = res->dev_priv;
    113 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
    114 
    115 	write_lock(&dev_priv->resource_lock);
    116 	if (res->id != -1)
    117 		idr_remove(idr, res->id);
    118 	res->id = -1;
    119 	write_unlock(&dev_priv->resource_lock);
    120 }
    121 
    122 static void vmw_resource_release(struct kref *kref)
    123 {
    124 	struct vmw_resource *res =
    125 	    container_of(kref, struct vmw_resource, kref);
    126 	struct vmw_private *dev_priv = res->dev_priv;
    127 	int id;
    128 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
    129 
    130 	write_lock(&dev_priv->resource_lock);
    131 	res->avail = false;
    132 	list_del_init(&res->lru_head);
    133 	write_unlock(&dev_priv->resource_lock);
    134 	if (res->backup) {
    135 		struct ttm_buffer_object *bo = &res->backup->base;
    136 
    137 		ttm_bo_reserve(bo, false, false, false, NULL);
    138 		if (!list_empty(&res->mob_head) &&
    139 		    res->func->unbind != NULL) {
    140 			struct ttm_validate_buffer val_buf;
    141 
    142 			val_buf.bo = bo;
    143 			val_buf.shared = false;
    144 			res->func->unbind(res, false, &val_buf);
    145 		}
    146 		res->backup_dirty = false;
    147 		list_del_init(&res->mob_head);
    148 		ttm_bo_unreserve(bo);
    149 		vmw_dmabuf_unreference(&res->backup);
    150 	}
    151 
    152 	if (likely(res->hw_destroy != NULL)) {
    153 		mutex_lock(&dev_priv->binding_mutex);
    154 		vmw_binding_res_list_kill(&res->binding_head);
    155 		mutex_unlock(&dev_priv->binding_mutex);
    156 		res->hw_destroy(res);
    157 	}
    158 
    159 	id = res->id;
    160 	if (res->res_free != NULL)
    161 		res->res_free(res);
    162 	else
    163 		kfree(res);
    164 
    165 	write_lock(&dev_priv->resource_lock);
    166 	if (id != -1)
    167 		idr_remove(idr, id);
    168 	write_unlock(&dev_priv->resource_lock);
    169 }
    170 
    171 void vmw_resource_unreference(struct vmw_resource **p_res)
    172 {
    173 	struct vmw_resource *res = *p_res;
    174 
    175 	*p_res = NULL;
    176 	kref_put(&res->kref, vmw_resource_release);
    177 }
    178 
    179 
    180 /**
    181  * vmw_resource_alloc_id - release a resource id to the id manager.
    182  *
    183  * @res: Pointer to the resource.
    184  *
    185  * Allocate the lowest free resource from the resource manager, and set
    186  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
    187  */
    188 int vmw_resource_alloc_id(struct vmw_resource *res)
    189 {
    190 	struct vmw_private *dev_priv = res->dev_priv;
    191 	int ret;
    192 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
    193 
    194 	BUG_ON(res->id != -1);
    195 
    196 	idr_preload(GFP_KERNEL);
    197 	write_lock(&dev_priv->resource_lock);
    198 
    199 	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
    200 	if (ret >= 0)
    201 		res->id = ret;
    202 
    203 	write_unlock(&dev_priv->resource_lock);
    204 	idr_preload_end();
    205 	return ret < 0 ? ret : 0;
    206 }
    207 
    208 /**
    209  * vmw_resource_init - initialize a struct vmw_resource
    210  *
    211  * @dev_priv:       Pointer to a device private struct.
    212  * @res:            The struct vmw_resource to initialize.
    213  * @obj_type:       Resource object type.
    214  * @delay_id:       Boolean whether to defer device id allocation until
    215  *                  the first validation.
    216  * @res_free:       Resource destructor.
    217  * @func:           Resource function table.
    218  */
    219 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
    220 		      bool delay_id,
    221 		      void (*res_free) (struct vmw_resource *res),
    222 		      const struct vmw_res_func *func)
    223 {
    224 	kref_init(&res->kref);
    225 	res->hw_destroy = NULL;
    226 	res->res_free = res_free;
    227 	res->avail = false;
    228 	res->dev_priv = dev_priv;
    229 	res->func = func;
    230 	INIT_LIST_HEAD(&res->lru_head);
    231 	INIT_LIST_HEAD(&res->mob_head);
    232 	INIT_LIST_HEAD(&res->binding_head);
    233 	res->id = -1;
    234 	res->backup = NULL;
    235 	res->backup_offset = 0;
    236 	res->backup_dirty = false;
    237 	res->res_dirty = false;
    238 	if (delay_id)
    239 		return 0;
    240 	else
    241 		return vmw_resource_alloc_id(res);
    242 }
    243 
    244 /**
    245  * vmw_resource_activate
    246  *
    247  * @res:        Pointer to the newly created resource
    248  * @hw_destroy: Destroy function. NULL if none.
    249  *
    250  * Activate a resource after the hardware has been made aware of it.
    251  * Set tye destroy function to @destroy. Typically this frees the
    252  * resource and destroys the hardware resources associated with it.
    253  * Activate basically means that the function vmw_resource_lookup will
    254  * find it.
    255  */
    256 void vmw_resource_activate(struct vmw_resource *res,
    257 			   void (*hw_destroy) (struct vmw_resource *))
    258 {
    259 	struct vmw_private *dev_priv = res->dev_priv;
    260 
    261 	write_lock(&dev_priv->resource_lock);
    262 	res->avail = true;
    263 	res->hw_destroy = hw_destroy;
    264 	write_unlock(&dev_priv->resource_lock);
    265 }
    266 
    267 static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
    268 						struct idr *idr, int id)
    269 {
    270 	struct vmw_resource *res;
    271 
    272 	read_lock(&dev_priv->resource_lock);
    273 	res = idr_find(idr, id);
    274 	if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
    275 		res = NULL;
    276 
    277 	read_unlock(&dev_priv->resource_lock);
    278 
    279 	if (unlikely(res == NULL))
    280 		return NULL;
    281 
    282 	return res;
    283 }
    284 
    285 /**
    286  * vmw_user_resource_lookup_handle - lookup a struct resource from a
    287  * TTM user-space handle and perform basic type checks
    288  *
    289  * @dev_priv:     Pointer to a device private struct
    290  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
    291  * @handle:       The TTM user-space handle
    292  * @converter:    Pointer to an object describing the resource type
    293  * @p_res:        On successful return the location pointed to will contain
    294  *                a pointer to a refcounted struct vmw_resource.
    295  *
    296  * If the handle can't be found or is associated with an incorrect resource
    297  * type, -EINVAL will be returned.
    298  */
    299 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
    300 				    struct ttm_object_file *tfile,
    301 				    uint32_t handle,
    302 				    const struct vmw_user_resource_conv
    303 				    *converter,
    304 				    struct vmw_resource **p_res)
    305 {
    306 	struct ttm_base_object *base;
    307 	struct vmw_resource *res;
    308 	int ret = -EINVAL;
    309 
    310 	base = ttm_base_object_lookup(tfile, handle);
    311 	if (unlikely(base == NULL))
    312 		return -EINVAL;
    313 
    314 	if (unlikely(ttm_base_object_type(base) != converter->object_type))
    315 		goto out_bad_resource;
    316 
    317 	res = converter->base_obj_to_res(base);
    318 
    319 	read_lock(&dev_priv->resource_lock);
    320 	if (!res->avail || res->res_free != converter->res_free) {
    321 		read_unlock(&dev_priv->resource_lock);
    322 		goto out_bad_resource;
    323 	}
    324 
    325 	kref_get(&res->kref);
    326 	read_unlock(&dev_priv->resource_lock);
    327 
    328 	*p_res = res;
    329 	ret = 0;
    330 
    331 out_bad_resource:
    332 	ttm_base_object_unref(&base);
    333 
    334 	return ret;
    335 }
    336 
    337 /**
    338  * Helper function that looks either a surface or dmabuf.
    339  *
    340  * The pointer this pointed at by out_surf and out_buf needs to be null.
    341  */
    342 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
    343 			   struct ttm_object_file *tfile,
    344 			   uint32_t handle,
    345 			   struct vmw_surface **out_surf,
    346 			   struct vmw_dma_buffer **out_buf)
    347 {
    348 	struct vmw_resource *res;
    349 	int ret;
    350 
    351 	BUG_ON(*out_surf || *out_buf);
    352 
    353 	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
    354 					      user_surface_converter,
    355 					      &res);
    356 	if (!ret) {
    357 		*out_surf = vmw_res_to_srf(res);
    358 		return 0;
    359 	}
    360 
    361 	*out_surf = NULL;
    362 	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
    363 	return ret;
    364 }
    365 
    366 /**
    367  * Buffer management.
    368  */
    369 
    370 /**
    371  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
    372  *
    373  * @dev_priv: Pointer to a struct vmw_private identifying the device.
    374  * @size: The requested buffer size.
    375  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
    376  */
    377 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
    378 				  bool user)
    379 {
    380 	static size_t struct_size, user_struct_size;
    381 	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
    382 	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
    383 
    384 	if (unlikely(struct_size == 0)) {
    385 		size_t backend_size = ttm_round_pot(vmw_tt_size);
    386 
    387 		struct_size = backend_size +
    388 			ttm_round_pot(sizeof(struct vmw_dma_buffer));
    389 		user_struct_size = backend_size +
    390 			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
    391 	}
    392 
    393 	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
    394 		page_array_size +=
    395 			ttm_round_pot(num_pages * sizeof(dma_addr_t));
    396 
    397 	return ((user) ? user_struct_size : struct_size) +
    398 		page_array_size;
    399 }
    400 
    401 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
    402 {
    403 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
    404 
    405 	kfree(vmw_bo);
    406 }
    407 
    408 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
    409 {
    410 	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
    411 
    412 	ttm_prime_object_kfree(vmw_user_bo, prime);
    413 }
    414 
    415 int vmw_dmabuf_init(struct vmw_private *dev_priv,
    416 		    struct vmw_dma_buffer *vmw_bo,
    417 		    size_t size, struct ttm_placement *placement,
    418 		    bool interruptible,
    419 		    void (*bo_free) (struct ttm_buffer_object *bo))
    420 {
    421 	struct ttm_bo_device *bdev = &dev_priv->bdev;
    422 	size_t acc_size;
    423 	int ret;
    424 	bool user = (bo_free == &vmw_user_dmabuf_destroy);
    425 
    426 	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
    427 
    428 	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
    429 	memset(vmw_bo, 0, sizeof(*vmw_bo));
    430 
    431 	INIT_LIST_HEAD(&vmw_bo->res_list);
    432 
    433 	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
    434 			  ttm_bo_type_device, placement,
    435 			  0, interruptible,
    436 			  NULL, acc_size, NULL, NULL, bo_free);
    437 	return ret;
    438 }
    439 
    440 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
    441 {
    442 	struct vmw_user_dma_buffer *vmw_user_bo;
    443 	struct ttm_base_object *base = *p_base;
    444 	struct ttm_buffer_object *bo;
    445 
    446 	*p_base = NULL;
    447 
    448 	if (unlikely(base == NULL))
    449 		return;
    450 
    451 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
    452 				   prime.base);
    453 	bo = &vmw_user_bo->dma.base;
    454 	ttm_bo_unref(&bo);
    455 }
    456 
    457 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
    458 					    enum ttm_ref_type ref_type)
    459 {
    460 	struct vmw_user_dma_buffer *user_bo;
    461 	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
    462 
    463 	switch (ref_type) {
    464 	case TTM_REF_SYNCCPU_WRITE:
    465 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
    466 		break;
    467 	default:
    468 		BUG();
    469 	}
    470 }
    471 
    472 /**
    473  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
    474  *
    475  * @dev_priv: Pointer to a struct device private.
    476  * @tfile: Pointer to a struct ttm_object_file on which to register the user
    477  * object.
    478  * @size: Size of the dma buffer.
    479  * @shareable: Boolean whether the buffer is shareable with other open files.
    480  * @handle: Pointer to where the handle value should be assigned.
    481  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
    482  * should be assigned.
    483  */
    484 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
    485 			  struct ttm_object_file *tfile,
    486 			  uint32_t size,
    487 			  bool shareable,
    488 			  uint32_t *handle,
    489 			  struct vmw_dma_buffer **p_dma_buf,
    490 			  struct ttm_base_object **p_base)
    491 {
    492 	struct vmw_user_dma_buffer *user_bo;
    493 	struct ttm_buffer_object *tmp;
    494 	int ret;
    495 
    496 	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
    497 	if (unlikely(user_bo == NULL)) {
    498 		DRM_ERROR("Failed to allocate a buffer.\n");
    499 		return -ENOMEM;
    500 	}
    501 
    502 	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
    503 			      (dev_priv->has_mob) ?
    504 			      &vmw_sys_placement :
    505 			      &vmw_vram_sys_placement, true,
    506 			      &vmw_user_dmabuf_destroy);
    507 	if (unlikely(ret != 0))
    508 		return ret;
    509 
    510 	tmp = ttm_bo_reference(&user_bo->dma.base);
    511 	ret = ttm_prime_object_init(tfile,
    512 				    size,
    513 				    &user_bo->prime,
    514 				    shareable,
    515 				    ttm_buffer_type,
    516 				    &vmw_user_dmabuf_release,
    517 				    &vmw_user_dmabuf_ref_obj_release);
    518 	if (unlikely(ret != 0)) {
    519 		ttm_bo_unref(&tmp);
    520 		goto out_no_base_object;
    521 	}
    522 
    523 	*p_dma_buf = &user_bo->dma;
    524 	if (p_base) {
    525 		*p_base = &user_bo->prime.base;
    526 		kref_get(&(*p_base)->refcount);
    527 	}
    528 	*handle = user_bo->prime.base.hash.key;
    529 
    530 out_no_base_object:
    531 	return ret;
    532 }
    533 
    534 /**
    535  * vmw_user_dmabuf_verify_access - verify access permissions on this
    536  * buffer object.
    537  *
    538  * @bo: Pointer to the buffer object being accessed
    539  * @tfile: Identifying the caller.
    540  */
    541 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
    542 				  struct ttm_object_file *tfile)
    543 {
    544 	struct vmw_user_dma_buffer *vmw_user_bo;
    545 
    546 	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
    547 		return -EPERM;
    548 
    549 	vmw_user_bo = vmw_user_dma_buffer(bo);
    550 
    551 	/* Check that the caller has opened the object. */
    552 	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
    553 		return 0;
    554 
    555 	DRM_ERROR("Could not grant buffer access.\n");
    556 	return -EPERM;
    557 }
    558 
    559 /**
    560  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
    561  * access, idling previous GPU operations on the buffer and optionally
    562  * blocking it for further command submissions.
    563  *
    564  * @user_bo: Pointer to the buffer object being grabbed for CPU access
    565  * @tfile: Identifying the caller.
    566  * @flags: Flags indicating how the grab should be performed.
    567  *
    568  * A blocking grab will be automatically released when @tfile is closed.
    569  */
    570 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
    571 					struct ttm_object_file *tfile,
    572 					uint32_t flags)
    573 {
    574 	struct ttm_buffer_object *bo = &user_bo->dma.base;
    575 	bool existed;
    576 	int ret;
    577 
    578 	if (flags & drm_vmw_synccpu_allow_cs) {
    579 		bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
    580 		long lret;
    581 
    582 		if (nonblock)
    583 			return reservation_object_test_signaled_rcu(bo->resv, true) ? 0 : -EBUSY;
    584 
    585 		lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, MAX_SCHEDULE_TIMEOUT);
    586 		if (!lret)
    587 			return -EBUSY;
    588 		else if (lret < 0)
    589 			return lret;
    590 		return 0;
    591 	}
    592 
    593 	ret = ttm_bo_synccpu_write_grab
    594 		(bo, !!(flags & drm_vmw_synccpu_dontblock));
    595 	if (unlikely(ret != 0))
    596 		return ret;
    597 
    598 	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
    599 				 TTM_REF_SYNCCPU_WRITE, &existed, false);
    600 	if (ret != 0 || existed)
    601 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
    602 
    603 	return ret;
    604 }
    605 
    606 /**
    607  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
    608  * and unblock command submission on the buffer if blocked.
    609  *
    610  * @handle: Handle identifying the buffer object.
    611  * @tfile: Identifying the caller.
    612  * @flags: Flags indicating the type of release.
    613  */
    614 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
    615 					   struct ttm_object_file *tfile,
    616 					   uint32_t flags)
    617 {
    618 	if (!(flags & drm_vmw_synccpu_allow_cs))
    619 		return ttm_ref_object_base_unref(tfile, handle,
    620 						 TTM_REF_SYNCCPU_WRITE);
    621 
    622 	return 0;
    623 }
    624 
    625 /**
    626  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
    627  * functionality.
    628  *
    629  * @dev: Identifies the drm device.
    630  * @data: Pointer to the ioctl argument.
    631  * @file_priv: Identifies the caller.
    632  *
    633  * This function checks the ioctl arguments for validity and calls the
    634  * relevant synccpu functions.
    635  */
    636 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
    637 				  struct drm_file *file_priv)
    638 {
    639 	struct drm_vmw_synccpu_arg *arg =
    640 		(struct drm_vmw_synccpu_arg *) data;
    641 	struct vmw_dma_buffer *dma_buf;
    642 	struct vmw_user_dma_buffer *user_bo;
    643 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
    644 	struct ttm_base_object *buffer_base;
    645 	int ret;
    646 
    647 	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
    648 	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
    649 			       drm_vmw_synccpu_dontblock |
    650 			       drm_vmw_synccpu_allow_cs)) != 0) {
    651 		DRM_ERROR("Illegal synccpu flags.\n");
    652 		return -EINVAL;
    653 	}
    654 
    655 	switch (arg->op) {
    656 	case drm_vmw_synccpu_grab:
    657 		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
    658 					     &buffer_base);
    659 		if (unlikely(ret != 0))
    660 			return ret;
    661 
    662 		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
    663 				       dma);
    664 		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
    665 		vmw_dmabuf_unreference(&dma_buf);
    666 		ttm_base_object_unref(&buffer_base);
    667 		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
    668 			     ret != -EBUSY)) {
    669 			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
    670 				  (unsigned int) arg->handle);
    671 			return ret;
    672 		}
    673 		break;
    674 	case drm_vmw_synccpu_release:
    675 		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
    676 						      arg->flags);
    677 		if (unlikely(ret != 0)) {
    678 			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
    679 				  (unsigned int) arg->handle);
    680 			return ret;
    681 		}
    682 		break;
    683 	default:
    684 		DRM_ERROR("Invalid synccpu operation.\n");
    685 		return -EINVAL;
    686 	}
    687 
    688 	return 0;
    689 }
    690 
    691 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
    692 			   struct drm_file *file_priv)
    693 {
    694 	struct vmw_private *dev_priv = vmw_priv(dev);
    695 	union drm_vmw_alloc_dmabuf_arg *arg =
    696 	    (union drm_vmw_alloc_dmabuf_arg *)data;
    697 	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
    698 	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
    699 	struct vmw_dma_buffer *dma_buf;
    700 	uint32_t handle;
    701 	int ret;
    702 
    703 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
    704 	if (unlikely(ret != 0))
    705 		return ret;
    706 
    707 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
    708 				    req->size, false, &handle, &dma_buf,
    709 				    NULL);
    710 	if (unlikely(ret != 0))
    711 		goto out_no_dmabuf;
    712 
    713 	rep->handle = handle;
    714 	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
    715 	rep->cur_gmr_id = handle;
    716 	rep->cur_gmr_offset = 0;
    717 
    718 	vmw_dmabuf_unreference(&dma_buf);
    719 
    720 out_no_dmabuf:
    721 	ttm_read_unlock(&dev_priv->reservation_sem);
    722 
    723 	return ret;
    724 }
    725 
    726 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
    727 			   struct drm_file *file_priv)
    728 {
    729 	struct drm_vmw_unref_dmabuf_arg *arg =
    730 	    (struct drm_vmw_unref_dmabuf_arg *)data;
    731 
    732 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
    733 					 arg->handle,
    734 					 TTM_REF_USAGE);
    735 }
    736 
    737 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
    738 			   uint32_t handle, struct vmw_dma_buffer **out,
    739 			   struct ttm_base_object **p_base)
    740 {
    741 	struct vmw_user_dma_buffer *vmw_user_bo;
    742 	struct ttm_base_object *base;
    743 
    744 	base = ttm_base_object_lookup(tfile, handle);
    745 	if (unlikely(base == NULL)) {
    746 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
    747 		       (unsigned long)handle);
    748 		return -ESRCH;
    749 	}
    750 
    751 	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
    752 		ttm_base_object_unref(&base);
    753 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
    754 		       (unsigned long)handle);
    755 		return -EINVAL;
    756 	}
    757 
    758 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
    759 				   prime.base);
    760 	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
    761 	if (p_base)
    762 		*p_base = base;
    763 	else
    764 		ttm_base_object_unref(&base);
    765 	*out = &vmw_user_bo->dma;
    766 
    767 	return 0;
    768 }
    769 
    770 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
    771 			      struct vmw_dma_buffer *dma_buf,
    772 			      uint32_t *handle)
    773 {
    774 	struct vmw_user_dma_buffer *user_bo;
    775 
    776 	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
    777 		return -EINVAL;
    778 
    779 	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
    780 
    781 	*handle = user_bo->prime.base.hash.key;
    782 	return ttm_ref_object_add(tfile, &user_bo->prime.base,
    783 				  TTM_REF_USAGE, NULL, false);
    784 }
    785 
    786 /*
    787  * Stream management
    788  */
    789 
    790 static void vmw_stream_destroy(struct vmw_resource *res)
    791 {
    792 	struct vmw_private *dev_priv = res->dev_priv;
    793 	struct vmw_stream *stream;
    794 	int ret;
    795 
    796 	DRM_INFO("%s: unref\n", __func__);
    797 	stream = container_of(res, struct vmw_stream, res);
    798 
    799 	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
    800 	WARN_ON(ret != 0);
    801 }
    802 
    803 static int vmw_stream_init(struct vmw_private *dev_priv,
    804 			   struct vmw_stream *stream,
    805 			   void (*res_free) (struct vmw_resource *res))
    806 {
    807 	struct vmw_resource *res = &stream->res;
    808 	int ret;
    809 
    810 	ret = vmw_resource_init(dev_priv, res, false, res_free,
    811 				&vmw_stream_func);
    812 
    813 	if (unlikely(ret != 0)) {
    814 		if (res_free == NULL)
    815 			kfree(stream);
    816 		else
    817 			res_free(&stream->res);
    818 		return ret;
    819 	}
    820 
    821 	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
    822 	if (ret) {
    823 		vmw_resource_unreference(&res);
    824 		return ret;
    825 	}
    826 
    827 	DRM_INFO("%s: claimed\n", __func__);
    828 
    829 	vmw_resource_activate(&stream->res, vmw_stream_destroy);
    830 	return 0;
    831 }
    832 
    833 static void vmw_user_stream_free(struct vmw_resource *res)
    834 {
    835 	struct vmw_user_stream *stream =
    836 	    container_of(res, struct vmw_user_stream, stream.res);
    837 	struct vmw_private *dev_priv = res->dev_priv;
    838 
    839 	ttm_base_object_kfree(stream, base);
    840 	ttm_mem_global_free(vmw_mem_glob(dev_priv),
    841 			    vmw_user_stream_size);
    842 }
    843 
    844 /**
    845  * This function is called when user space has no more references on the
    846  * base object. It releases the base-object's reference on the resource object.
    847  */
    848 
    849 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
    850 {
    851 	struct ttm_base_object *base = *p_base;
    852 	struct vmw_user_stream *stream =
    853 	    container_of(base, struct vmw_user_stream, base);
    854 	struct vmw_resource *res = &stream->stream.res;
    855 
    856 	*p_base = NULL;
    857 	vmw_resource_unreference(&res);
    858 }
    859 
    860 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
    861 			   struct drm_file *file_priv)
    862 {
    863 	struct vmw_private *dev_priv = vmw_priv(dev);
    864 	struct vmw_resource *res;
    865 	struct vmw_user_stream *stream;
    866 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
    867 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
    868 	struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
    869 	int ret = 0;
    870 
    871 
    872 	res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
    873 	if (unlikely(res == NULL))
    874 		return -EINVAL;
    875 
    876 	if (res->res_free != &vmw_user_stream_free) {
    877 		ret = -EINVAL;
    878 		goto out;
    879 	}
    880 
    881 	stream = container_of(res, struct vmw_user_stream, stream.res);
    882 	if (stream->base.tfile != tfile) {
    883 		ret = -EINVAL;
    884 		goto out;
    885 	}
    886 
    887 	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
    888 out:
    889 	vmw_resource_unreference(&res);
    890 	return ret;
    891 }
    892 
    893 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
    894 			   struct drm_file *file_priv)
    895 {
    896 	struct vmw_private *dev_priv = vmw_priv(dev);
    897 	struct vmw_user_stream *stream;
    898 	struct vmw_resource *res;
    899 	struct vmw_resource *tmp;
    900 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
    901 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
    902 	int ret;
    903 
    904 	/*
    905 	 * Approximate idr memory usage with 128 bytes. It will be limited
    906 	 * by maximum number_of streams anyway?
    907 	 */
    908 
    909 	if (unlikely(vmw_user_stream_size == 0))
    910 		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
    911 
    912 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
    913 	if (unlikely(ret != 0))
    914 		return ret;
    915 
    916 	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
    917 				   vmw_user_stream_size,
    918 				   false, true);
    919 	ttm_read_unlock(&dev_priv->reservation_sem);
    920 	if (unlikely(ret != 0)) {
    921 		if (ret != -ERESTARTSYS)
    922 			DRM_ERROR("Out of graphics memory for stream"
    923 				  " creation.\n");
    924 
    925 		goto out_ret;
    926 	}
    927 
    928 	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
    929 	if (unlikely(stream == NULL)) {
    930 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
    931 				    vmw_user_stream_size);
    932 		ret = -ENOMEM;
    933 		goto out_ret;
    934 	}
    935 
    936 	res = &stream->stream.res;
    937 	stream->base.shareable = false;
    938 	stream->base.tfile = NULL;
    939 
    940 	/*
    941 	 * From here on, the destructor takes over resource freeing.
    942 	 */
    943 
    944 	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
    945 	if (unlikely(ret != 0))
    946 		goto out_ret;
    947 
    948 	tmp = vmw_resource_reference(res);
    949 	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
    950 				   &vmw_user_stream_base_release, NULL);
    951 
    952 	if (unlikely(ret != 0)) {
    953 		vmw_resource_unreference(&tmp);
    954 		goto out_err;
    955 	}
    956 
    957 	arg->stream_id = res->id;
    958 out_err:
    959 	vmw_resource_unreference(&res);
    960 out_ret:
    961 	return ret;
    962 }
    963 
    964 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
    965 			   struct ttm_object_file *tfile,
    966 			   uint32_t *inout_id, struct vmw_resource **out)
    967 {
    968 	struct vmw_user_stream *stream;
    969 	struct vmw_resource *res;
    970 	int ret;
    971 
    972 	res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
    973 				  *inout_id);
    974 	if (unlikely(res == NULL))
    975 		return -EINVAL;
    976 
    977 	if (res->res_free != &vmw_user_stream_free) {
    978 		ret = -EINVAL;
    979 		goto err_ref;
    980 	}
    981 
    982 	stream = container_of(res, struct vmw_user_stream, stream.res);
    983 	if (stream->base.tfile != tfile) {
    984 		ret = -EPERM;
    985 		goto err_ref;
    986 	}
    987 
    988 	*inout_id = stream->stream.stream_id;
    989 	*out = res;
    990 	return 0;
    991 err_ref:
    992 	vmw_resource_unreference(&res);
    993 	return ret;
    994 }
    995 
    996 
    997 /**
    998  * vmw_dumb_create - Create a dumb kms buffer
    999  *
   1000  * @file_priv: Pointer to a struct drm_file identifying the caller.
   1001  * @dev: Pointer to the drm device.
   1002  * @args: Pointer to a struct drm_mode_create_dumb structure
   1003  *
   1004  * This is a driver callback for the core drm create_dumb functionality.
   1005  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
   1006  * that the arguments have a different format.
   1007  */
   1008 int vmw_dumb_create(struct drm_file *file_priv,
   1009 		    struct drm_device *dev,
   1010 		    struct drm_mode_create_dumb *args)
   1011 {
   1012 	struct vmw_private *dev_priv = vmw_priv(dev);
   1013 	struct vmw_dma_buffer *dma_buf;
   1014 	int ret;
   1015 
   1016 	args->pitch = args->width * ((args->bpp + 7) / 8);
   1017 	args->size = args->pitch * args->height;
   1018 
   1019 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
   1020 	if (unlikely(ret != 0))
   1021 		return ret;
   1022 
   1023 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
   1024 				    args->size, false, &args->handle,
   1025 				    &dma_buf, NULL);
   1026 	if (unlikely(ret != 0))
   1027 		goto out_no_dmabuf;
   1028 
   1029 	vmw_dmabuf_unreference(&dma_buf);
   1030 out_no_dmabuf:
   1031 	ttm_read_unlock(&dev_priv->reservation_sem);
   1032 	return ret;
   1033 }
   1034 
   1035 /**
   1036  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
   1037  *
   1038  * @file_priv: Pointer to a struct drm_file identifying the caller.
   1039  * @dev: Pointer to the drm device.
   1040  * @handle: Handle identifying the dumb buffer.
   1041  * @offset: The address space offset returned.
   1042  *
   1043  * This is a driver callback for the core drm dumb_map_offset functionality.
   1044  */
   1045 int vmw_dumb_map_offset(struct drm_file *file_priv,
   1046 			struct drm_device *dev, uint32_t handle,
   1047 			uint64_t *offset)
   1048 {
   1049 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
   1050 	struct vmw_dma_buffer *out_buf;
   1051 	int ret;
   1052 
   1053 	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
   1054 	if (ret != 0)
   1055 		return -EINVAL;
   1056 
   1057 	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
   1058 	vmw_dmabuf_unreference(&out_buf);
   1059 	return 0;
   1060 }
   1061 
   1062 /**
   1063  * vmw_dumb_destroy - Destroy a dumb boffer
   1064  *
   1065  * @file_priv: Pointer to a struct drm_file identifying the caller.
   1066  * @dev: Pointer to the drm device.
   1067  * @handle: Handle identifying the dumb buffer.
   1068  *
   1069  * This is a driver callback for the core drm dumb_destroy functionality.
   1070  */
   1071 int vmw_dumb_destroy(struct drm_file *file_priv,
   1072 		     struct drm_device *dev,
   1073 		     uint32_t handle)
   1074 {
   1075 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
   1076 					 handle, TTM_REF_USAGE);
   1077 }
   1078 
   1079 /**
   1080  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
   1081  *
   1082  * @res:            The resource for which to allocate a backup buffer.
   1083  * @interruptible:  Whether any sleeps during allocation should be
   1084  *                  performed while interruptible.
   1085  */
   1086 static int vmw_resource_buf_alloc(struct vmw_resource *res,
   1087 				  bool interruptible)
   1088 {
   1089 	unsigned long size =
   1090 		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
   1091 	struct vmw_dma_buffer *backup;
   1092 	int ret;
   1093 
   1094 	if (likely(res->backup)) {
   1095 		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
   1096 		return 0;
   1097 	}
   1098 
   1099 	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
   1100 	if (unlikely(backup == NULL))
   1101 		return -ENOMEM;
   1102 
   1103 	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
   1104 			      res->func->backup_placement,
   1105 			      interruptible,
   1106 			      &vmw_dmabuf_bo_free);
   1107 	if (unlikely(ret != 0))
   1108 		goto out_no_dmabuf;
   1109 
   1110 	res->backup = backup;
   1111 
   1112 out_no_dmabuf:
   1113 	return ret;
   1114 }
   1115 
   1116 /**
   1117  * vmw_resource_do_validate - Make a resource up-to-date and visible
   1118  *                            to the device.
   1119  *
   1120  * @res:            The resource to make visible to the device.
   1121  * @val_buf:        Information about a buffer possibly
   1122  *                  containing backup data if a bind operation is needed.
   1123  *
   1124  * On hardware resource shortage, this function returns -EBUSY and
   1125  * should be retried once resources have been freed up.
   1126  */
   1127 static int vmw_resource_do_validate(struct vmw_resource *res,
   1128 				    struct ttm_validate_buffer *val_buf)
   1129 {
   1130 	int ret = 0;
   1131 	const struct vmw_res_func *func = res->func;
   1132 
   1133 	if (unlikely(res->id == -1)) {
   1134 		ret = func->create(res);
   1135 		if (unlikely(ret != 0))
   1136 			return ret;
   1137 	}
   1138 
   1139 	if (func->bind &&
   1140 	    ((func->needs_backup && list_empty(&res->mob_head) &&
   1141 	      val_buf->bo != NULL) ||
   1142 	     (!func->needs_backup && val_buf->bo != NULL))) {
   1143 		ret = func->bind(res, val_buf);
   1144 		if (unlikely(ret != 0))
   1145 			goto out_bind_failed;
   1146 		if (func->needs_backup)
   1147 			list_add_tail(&res->mob_head, &res->backup->res_list);
   1148 	}
   1149 
   1150 	/*
   1151 	 * Only do this on write operations, and move to
   1152 	 * vmw_resource_unreserve if it can be called after
   1153 	 * backup buffers have been unreserved. Otherwise
   1154 	 * sort out locking.
   1155 	 */
   1156 	res->res_dirty = true;
   1157 
   1158 	return 0;
   1159 
   1160 out_bind_failed:
   1161 	func->destroy(res);
   1162 
   1163 	return ret;
   1164 }
   1165 
   1166 /**
   1167  * vmw_resource_unreserve - Unreserve a resource previously reserved for
   1168  * command submission.
   1169  *
   1170  * @res:               Pointer to the struct vmw_resource to unreserve.
   1171  * @switch_backup:     Backup buffer has been switched.
   1172  * @new_backup:        Pointer to new backup buffer if command submission
   1173  *                     switched. May be NULL.
   1174  * @new_backup_offset: New backup offset if @switch_backup is true.
   1175  *
   1176  * Currently unreserving a resource means putting it back on the device's
   1177  * resource lru list, so that it can be evicted if necessary.
   1178  */
   1179 void vmw_resource_unreserve(struct vmw_resource *res,
   1180 			    bool switch_backup,
   1181 			    struct vmw_dma_buffer *new_backup,
   1182 			    unsigned long new_backup_offset)
   1183 {
   1184 	struct vmw_private *dev_priv = res->dev_priv;
   1185 
   1186 	if (!list_empty(&res->lru_head))
   1187 		return;
   1188 
   1189 	if (switch_backup && new_backup != res->backup) {
   1190 		if (res->backup) {
   1191 			lockdep_assert_held(&res->backup->base.resv->lock.base);
   1192 			list_del_init(&res->mob_head);
   1193 			vmw_dmabuf_unreference(&res->backup);
   1194 		}
   1195 
   1196 		if (new_backup) {
   1197 			res->backup = vmw_dmabuf_reference(new_backup);
   1198 			lockdep_assert_held(&new_backup->base.resv->lock.base);
   1199 			list_add_tail(&res->mob_head, &new_backup->res_list);
   1200 		} else {
   1201 			res->backup = NULL;
   1202 		}
   1203 	}
   1204 	if (switch_backup)
   1205 		res->backup_offset = new_backup_offset;
   1206 
   1207 	if (!res->func->may_evict || res->id == -1 || res->pin_count)
   1208 		return;
   1209 
   1210 	write_lock(&dev_priv->resource_lock);
   1211 	list_add_tail(&res->lru_head,
   1212 		      &res->dev_priv->res_lru[res->func->res_type]);
   1213 	write_unlock(&dev_priv->resource_lock);
   1214 }
   1215 
   1216 /**
   1217  * vmw_resource_check_buffer - Check whether a backup buffer is needed
   1218  *                             for a resource and in that case, allocate
   1219  *                             one, reserve and validate it.
   1220  *
   1221  * @res:            The resource for which to allocate a backup buffer.
   1222  * @interruptible:  Whether any sleeps during allocation should be
   1223  *                  performed while interruptible.
   1224  * @val_buf:        On successful return contains data about the
   1225  *                  reserved and validated backup buffer.
   1226  */
   1227 static int
   1228 vmw_resource_check_buffer(struct vmw_resource *res,
   1229 			  bool interruptible,
   1230 			  struct ttm_validate_buffer *val_buf)
   1231 {
   1232 	struct list_head val_list;
   1233 	bool backup_dirty = false;
   1234 	int ret;
   1235 
   1236 	if (unlikely(res->backup == NULL)) {
   1237 		ret = vmw_resource_buf_alloc(res, interruptible);
   1238 		if (unlikely(ret != 0))
   1239 			return ret;
   1240 	}
   1241 
   1242 	INIT_LIST_HEAD(&val_list);
   1243 	val_buf->bo = ttm_bo_reference(&res->backup->base);
   1244 	val_buf->shared = false;
   1245 	list_add_tail(&val_buf->head, &val_list);
   1246 	ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
   1247 	if (unlikely(ret != 0))
   1248 		goto out_no_reserve;
   1249 
   1250 	if (res->func->needs_backup && list_empty(&res->mob_head))
   1251 		return 0;
   1252 
   1253 	backup_dirty = res->backup_dirty;
   1254 	ret = ttm_bo_validate(&res->backup->base,
   1255 			      res->func->backup_placement,
   1256 			      true, false);
   1257 
   1258 	if (unlikely(ret != 0))
   1259 		goto out_no_validate;
   1260 
   1261 	return 0;
   1262 
   1263 out_no_validate:
   1264 	ttm_eu_backoff_reservation(NULL, &val_list);
   1265 out_no_reserve:
   1266 	ttm_bo_unref(&val_buf->bo);
   1267 	if (backup_dirty)
   1268 		vmw_dmabuf_unreference(&res->backup);
   1269 
   1270 	return ret;
   1271 }
   1272 
   1273 /**
   1274  * vmw_resource_reserve - Reserve a resource for command submission
   1275  *
   1276  * @res:            The resource to reserve.
   1277  *
   1278  * This function takes the resource off the LRU list and make sure
   1279  * a backup buffer is present for guest-backed resources. However,
   1280  * the buffer may not be bound to the resource at this point.
   1281  *
   1282  */
   1283 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
   1284 			 bool no_backup)
   1285 {
   1286 	struct vmw_private *dev_priv = res->dev_priv;
   1287 	int ret;
   1288 
   1289 	write_lock(&dev_priv->resource_lock);
   1290 	list_del_init(&res->lru_head);
   1291 	write_unlock(&dev_priv->resource_lock);
   1292 
   1293 	if (res->func->needs_backup && res->backup == NULL &&
   1294 	    !no_backup) {
   1295 		ret = vmw_resource_buf_alloc(res, interruptible);
   1296 		if (unlikely(ret != 0)) {
   1297 			DRM_ERROR("Failed to allocate a backup buffer "
   1298 				  "of size %lu. bytes\n",
   1299 				  (unsigned long) res->backup_size);
   1300 			return ret;
   1301 		}
   1302 	}
   1303 
   1304 	return 0;
   1305 }
   1306 
   1307 /**
   1308  * vmw_resource_backoff_reservation - Unreserve and unreference a
   1309  *                                    backup buffer
   1310  *.
   1311  * @val_buf:        Backup buffer information.
   1312  */
   1313 static void
   1314 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
   1315 {
   1316 	struct list_head val_list;
   1317 
   1318 	if (likely(val_buf->bo == NULL))
   1319 		return;
   1320 
   1321 	INIT_LIST_HEAD(&val_list);
   1322 	list_add_tail(&val_buf->head, &val_list);
   1323 	ttm_eu_backoff_reservation(NULL, &val_list);
   1324 	ttm_bo_unref(&val_buf->bo);
   1325 }
   1326 
   1327 /**
   1328  * vmw_resource_do_evict - Evict a resource, and transfer its data
   1329  *                         to a backup buffer.
   1330  *
   1331  * @res:            The resource to evict.
   1332  * @interruptible:  Whether to wait interruptible.
   1333  */
   1334 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
   1335 {
   1336 	struct ttm_validate_buffer val_buf;
   1337 	const struct vmw_res_func *func = res->func;
   1338 	int ret;
   1339 
   1340 	BUG_ON(!func->may_evict);
   1341 
   1342 	val_buf.bo = NULL;
   1343 	val_buf.shared = false;
   1344 	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
   1345 	if (unlikely(ret != 0))
   1346 		return ret;
   1347 
   1348 	if (unlikely(func->unbind != NULL &&
   1349 		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
   1350 		ret = func->unbind(res, res->res_dirty, &val_buf);
   1351 		if (unlikely(ret != 0))
   1352 			goto out_no_unbind;
   1353 		list_del_init(&res->mob_head);
   1354 	}
   1355 	ret = func->destroy(res);
   1356 	res->backup_dirty = true;
   1357 	res->res_dirty = false;
   1358 out_no_unbind:
   1359 	vmw_resource_backoff_reservation(&val_buf);
   1360 
   1361 	return ret;
   1362 }
   1363 
   1364 
   1365 /**
   1366  * vmw_resource_validate - Make a resource up-to-date and visible
   1367  *                         to the device.
   1368  *
   1369  * @res:            The resource to make visible to the device.
   1370  *
   1371  * On succesful return, any backup DMA buffer pointed to by @res->backup will
   1372  * be reserved and validated.
   1373  * On hardware resource shortage, this function will repeatedly evict
   1374  * resources of the same type until the validation succeeds.
   1375  */
   1376 int vmw_resource_validate(struct vmw_resource *res)
   1377 {
   1378 	int ret;
   1379 	struct vmw_resource *evict_res;
   1380 	struct vmw_private *dev_priv = res->dev_priv;
   1381 	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
   1382 	struct ttm_validate_buffer val_buf;
   1383 	unsigned err_count = 0;
   1384 
   1385 	if (!res->func->create)
   1386 		return 0;
   1387 
   1388 	val_buf.bo = NULL;
   1389 	val_buf.shared = false;
   1390 	if (res->backup)
   1391 		val_buf.bo = &res->backup->base;
   1392 	do {
   1393 		ret = vmw_resource_do_validate(res, &val_buf);
   1394 		if (likely(ret != -EBUSY))
   1395 			break;
   1396 
   1397 		write_lock(&dev_priv->resource_lock);
   1398 		if (list_empty(lru_list) || !res->func->may_evict) {
   1399 			DRM_ERROR("Out of device device resources "
   1400 				  "for %s.\n", res->func->type_name);
   1401 			ret = -EBUSY;
   1402 			write_unlock(&dev_priv->resource_lock);
   1403 			break;
   1404 		}
   1405 
   1406 		evict_res = vmw_resource_reference
   1407 			(list_first_entry(lru_list, struct vmw_resource,
   1408 					  lru_head));
   1409 		list_del_init(&evict_res->lru_head);
   1410 
   1411 		write_unlock(&dev_priv->resource_lock);
   1412 
   1413 		ret = vmw_resource_do_evict(evict_res, true);
   1414 		if (unlikely(ret != 0)) {
   1415 			write_lock(&dev_priv->resource_lock);
   1416 			list_add_tail(&evict_res->lru_head, lru_list);
   1417 			write_unlock(&dev_priv->resource_lock);
   1418 			if (ret == -ERESTARTSYS ||
   1419 			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
   1420 				vmw_resource_unreference(&evict_res);
   1421 				goto out_no_validate;
   1422 			}
   1423 		}
   1424 
   1425 		vmw_resource_unreference(&evict_res);
   1426 	} while (1);
   1427 
   1428 	if (unlikely(ret != 0))
   1429 		goto out_no_validate;
   1430 	else if (!res->func->needs_backup && res->backup) {
   1431 		list_del_init(&res->mob_head);
   1432 		vmw_dmabuf_unreference(&res->backup);
   1433 	}
   1434 
   1435 	return 0;
   1436 
   1437 out_no_validate:
   1438 	return ret;
   1439 }
   1440 
   1441 /**
   1442  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
   1443  *                       object without unreserving it.
   1444  *
   1445  * @bo:             Pointer to the struct ttm_buffer_object to fence.
   1446  * @fence:          Pointer to the fence. If NULL, this function will
   1447  *                  insert a fence into the command stream..
   1448  *
   1449  * Contrary to the ttm_eu version of this function, it takes only
   1450  * a single buffer object instead of a list, and it also doesn't
   1451  * unreserve the buffer object, which needs to be done separately.
   1452  */
   1453 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
   1454 			 struct vmw_fence_obj *fence)
   1455 {
   1456 	struct ttm_bo_device *bdev = bo->bdev;
   1457 
   1458 	struct vmw_private *dev_priv =
   1459 		container_of(bdev, struct vmw_private, bdev);
   1460 
   1461 	if (fence == NULL) {
   1462 		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
   1463 		reservation_object_add_excl_fence(bo->resv, &fence->base);
   1464 		fence_put(&fence->base);
   1465 	} else
   1466 		reservation_object_add_excl_fence(bo->resv, &fence->base);
   1467 }
   1468 
   1469 /**
   1470  * vmw_resource_move_notify - TTM move_notify_callback
   1471  *
   1472  * @bo: The TTM buffer object about to move.
   1473  * @mem: The struct ttm_mem_reg indicating to what memory
   1474  *       region the move is taking place.
   1475  *
   1476  * Evicts the Guest Backed hardware resource if the backup
   1477  * buffer is being moved out of MOB memory.
   1478  * Note that this function should not race with the resource
   1479  * validation code as long as it accesses only members of struct
   1480  * resource that remain static while bo::res is !NULL and
   1481  * while we have @bo reserved. struct resource::backup is *not* a
   1482  * static member. The resource validation code will take care
   1483  * to set @bo::res to NULL, while having @bo reserved when the
   1484  * buffer is no longer bound to the resource, so @bo:res can be
   1485  * used to determine whether there is a need to unbind and whether
   1486  * it is safe to unbind.
   1487  */
   1488 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
   1489 			      struct ttm_mem_reg *mem)
   1490 {
   1491 	struct vmw_dma_buffer *dma_buf;
   1492 
   1493 	if (mem == NULL)
   1494 		return;
   1495 
   1496 	if (bo->destroy != vmw_dmabuf_bo_free &&
   1497 	    bo->destroy != vmw_user_dmabuf_destroy)
   1498 		return;
   1499 
   1500 	dma_buf = container_of(bo, struct vmw_dma_buffer, base);
   1501 
   1502 	if (mem->mem_type != VMW_PL_MOB) {
   1503 		struct vmw_resource *res, *n;
   1504 		struct ttm_validate_buffer val_buf;
   1505 
   1506 		val_buf.bo = bo;
   1507 		val_buf.shared = false;
   1508 
   1509 		list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
   1510 
   1511 			if (unlikely(res->func->unbind == NULL))
   1512 				continue;
   1513 
   1514 			(void) res->func->unbind(res, true, &val_buf);
   1515 			res->backup_dirty = true;
   1516 			res->res_dirty = false;
   1517 			list_del_init(&res->mob_head);
   1518 		}
   1519 
   1520 		(void) ttm_bo_wait(bo, false, false, false);
   1521 	}
   1522 }
   1523 
   1524 
   1525 
   1526 /**
   1527  * vmw_query_readback_all - Read back cached query states
   1528  *
   1529  * @dx_query_mob: Buffer containing the DX query MOB
   1530  *
   1531  * Read back cached states from the device if they exist.  This function
   1532  * assumings binding_mutex is held.
   1533  */
   1534 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
   1535 {
   1536 	struct vmw_resource *dx_query_ctx;
   1537 	struct vmw_private *dev_priv;
   1538 	struct {
   1539 		SVGA3dCmdHeader header;
   1540 		SVGA3dCmdDXReadbackAllQuery body;
   1541 	} *cmd;
   1542 
   1543 
   1544 	/* No query bound, so do nothing */
   1545 	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
   1546 		return 0;
   1547 
   1548 	dx_query_ctx = dx_query_mob->dx_query_ctx;
   1549 	dev_priv     = dx_query_ctx->dev_priv;
   1550 
   1551 	cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
   1552 	if (unlikely(cmd == NULL)) {
   1553 		DRM_ERROR("Failed reserving FIFO space for "
   1554 			  "query MOB read back.\n");
   1555 		return -ENOMEM;
   1556 	}
   1557 
   1558 	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
   1559 	cmd->header.size = sizeof(cmd->body);
   1560 	cmd->body.cid    = dx_query_ctx->id;
   1561 
   1562 	vmw_fifo_commit(dev_priv, sizeof(*cmd));
   1563 
   1564 	/* Triggers a rebind the next time affected context is bound */
   1565 	dx_query_mob->dx_query_ctx = NULL;
   1566 
   1567 	return 0;
   1568 }
   1569 
   1570 
   1571 
   1572 /**
   1573  * vmw_query_move_notify - Read back cached query states
   1574  *
   1575  * @bo: The TTM buffer object about to move.
   1576  * @mem: The memory region @bo is moving to.
   1577  *
   1578  * Called before the query MOB is swapped out to read back cached query
   1579  * states from the device.
   1580  */
   1581 void vmw_query_move_notify(struct ttm_buffer_object *bo,
   1582 			   struct ttm_mem_reg *mem)
   1583 {
   1584 	struct vmw_dma_buffer *dx_query_mob;
   1585 	struct ttm_bo_device *bdev = bo->bdev;
   1586 	struct vmw_private *dev_priv;
   1587 
   1588 
   1589 	dev_priv = container_of(bdev, struct vmw_private, bdev);
   1590 
   1591 	mutex_lock(&dev_priv->binding_mutex);
   1592 
   1593 	dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
   1594 	if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
   1595 		mutex_unlock(&dev_priv->binding_mutex);
   1596 		return;
   1597 	}
   1598 
   1599 	/* If BO is being moved from MOB to system memory */
   1600 	if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
   1601 		struct vmw_fence_obj *fence;
   1602 
   1603 		(void) vmw_query_readback_all(dx_query_mob);
   1604 		mutex_unlock(&dev_priv->binding_mutex);
   1605 
   1606 		/* Create a fence and attach the BO to it */
   1607 		(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
   1608 		vmw_fence_single_bo(bo, fence);
   1609 
   1610 		if (fence != NULL)
   1611 			vmw_fence_obj_unreference(&fence);
   1612 
   1613 		(void) ttm_bo_wait(bo, false, false, false);
   1614 	} else
   1615 		mutex_unlock(&dev_priv->binding_mutex);
   1616 
   1617 }
   1618 
   1619 /**
   1620  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
   1621  *
   1622  * @res:            The resource being queried.
   1623  */
   1624 bool vmw_resource_needs_backup(const struct vmw_resource *res)
   1625 {
   1626 	return res->func->needs_backup;
   1627 }
   1628 
   1629 /**
   1630  * vmw_resource_evict_type - Evict all resources of a specific type
   1631  *
   1632  * @dev_priv:       Pointer to a device private struct
   1633  * @type:           The resource type to evict
   1634  *
   1635  * To avoid thrashing starvation or as part of the hibernation sequence,
   1636  * try to evict all evictable resources of a specific type.
   1637  */
   1638 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
   1639 				    enum vmw_res_type type)
   1640 {
   1641 	struct list_head *lru_list = &dev_priv->res_lru[type];
   1642 	struct vmw_resource *evict_res;
   1643 	unsigned err_count = 0;
   1644 	int ret;
   1645 
   1646 	do {
   1647 		write_lock(&dev_priv->resource_lock);
   1648 
   1649 		if (list_empty(lru_list))
   1650 			goto out_unlock;
   1651 
   1652 		evict_res = vmw_resource_reference(
   1653 			list_first_entry(lru_list, struct vmw_resource,
   1654 					 lru_head));
   1655 		list_del_init(&evict_res->lru_head);
   1656 		write_unlock(&dev_priv->resource_lock);
   1657 
   1658 		ret = vmw_resource_do_evict(evict_res, false);
   1659 		if (unlikely(ret != 0)) {
   1660 			write_lock(&dev_priv->resource_lock);
   1661 			list_add_tail(&evict_res->lru_head, lru_list);
   1662 			write_unlock(&dev_priv->resource_lock);
   1663 			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
   1664 				vmw_resource_unreference(&evict_res);
   1665 				return;
   1666 			}
   1667 		}
   1668 
   1669 		vmw_resource_unreference(&evict_res);
   1670 	} while (1);
   1671 
   1672 out_unlock:
   1673 	write_unlock(&dev_priv->resource_lock);
   1674 }
   1675 
   1676 /**
   1677  * vmw_resource_evict_all - Evict all evictable resources
   1678  *
   1679  * @dev_priv:       Pointer to a device private struct
   1680  *
   1681  * To avoid thrashing starvation or as part of the hibernation sequence,
   1682  * evict all evictable resources. In particular this means that all
   1683  * guest-backed resources that are registered with the device are
   1684  * evicted and the OTable becomes clean.
   1685  */
   1686 void vmw_resource_evict_all(struct vmw_private *dev_priv)
   1687 {
   1688 	enum vmw_res_type type;
   1689 
   1690 	mutex_lock(&dev_priv->cmdbuf_mutex);
   1691 
   1692 	for (type = 0; type < vmw_res_max; ++type)
   1693 		vmw_resource_evict_type(dev_priv, type);
   1694 
   1695 	mutex_unlock(&dev_priv->cmdbuf_mutex);
   1696 }
   1697 
   1698 /**
   1699  * vmw_resource_pin - Add a pin reference on a resource
   1700  *
   1701  * @res: The resource to add a pin reference on
   1702  *
   1703  * This function adds a pin reference, and if needed validates the resource.
   1704  * Having a pin reference means that the resource can never be evicted, and
   1705  * its id will never change as long as there is a pin reference.
   1706  * This function returns 0 on success and a negative error code on failure.
   1707  */
   1708 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
   1709 {
   1710 	struct vmw_private *dev_priv = res->dev_priv;
   1711 	int ret;
   1712 
   1713 	ttm_write_lock(&dev_priv->reservation_sem, interruptible);
   1714 	mutex_lock(&dev_priv->cmdbuf_mutex);
   1715 	ret = vmw_resource_reserve(res, interruptible, false);
   1716 	if (ret)
   1717 		goto out_no_reserve;
   1718 
   1719 	if (res->pin_count == 0) {
   1720 		struct vmw_dma_buffer *vbo = NULL;
   1721 
   1722 		if (res->backup) {
   1723 			vbo = res->backup;
   1724 
   1725 			ttm_bo_reserve(&vbo->base, interruptible, false, false,
   1726 				       NULL);
   1727 			if (!vbo->pin_count) {
   1728 				ret = ttm_bo_validate
   1729 					(&vbo->base,
   1730 					 res->func->backup_placement,
   1731 					 interruptible, false);
   1732 				if (ret) {
   1733 					ttm_bo_unreserve(&vbo->base);
   1734 					goto out_no_validate;
   1735 				}
   1736 			}
   1737 
   1738 			/* Do we really need to pin the MOB as well? */
   1739 			vmw_bo_pin_reserved(vbo, true);
   1740 		}
   1741 		ret = vmw_resource_validate(res);
   1742 		if (vbo)
   1743 			ttm_bo_unreserve(&vbo->base);
   1744 		if (ret)
   1745 			goto out_no_validate;
   1746 	}
   1747 	res->pin_count++;
   1748 
   1749 out_no_validate:
   1750 	vmw_resource_unreserve(res, false, NULL, 0UL);
   1751 out_no_reserve:
   1752 	mutex_unlock(&dev_priv->cmdbuf_mutex);
   1753 	ttm_write_unlock(&dev_priv->reservation_sem);
   1754 
   1755 	return ret;
   1756 }
   1757 
   1758 /**
   1759  * vmw_resource_unpin - Remove a pin reference from a resource
   1760  *
   1761  * @res: The resource to remove a pin reference from
   1762  *
   1763  * Having a pin reference means that the resource can never be evicted, and
   1764  * its id will never change as long as there is a pin reference.
   1765  */
   1766 void vmw_resource_unpin(struct vmw_resource *res)
   1767 {
   1768 	struct vmw_private *dev_priv = res->dev_priv;
   1769 	int ret;
   1770 
   1771 	ttm_read_lock(&dev_priv->reservation_sem, false);
   1772 	mutex_lock(&dev_priv->cmdbuf_mutex);
   1773 
   1774 	ret = vmw_resource_reserve(res, false, true);
   1775 	WARN_ON(ret);
   1776 
   1777 	WARN_ON(res->pin_count == 0);
   1778 	if (--res->pin_count == 0 && res->backup) {
   1779 		struct vmw_dma_buffer *vbo = res->backup;
   1780 
   1781 		ttm_bo_reserve(&vbo->base, false, false, false, NULL);
   1782 		vmw_bo_pin_reserved(vbo, false);
   1783 		ttm_bo_unreserve(&vbo->base);
   1784 	}
   1785 
   1786 	vmw_resource_unreserve(res, false, NULL, 0UL);
   1787 
   1788 	mutex_unlock(&dev_priv->cmdbuf_mutex);
   1789 	ttm_read_unlock(&dev_priv->reservation_sem);
   1790 }
   1791 
   1792 /**
   1793  * vmw_res_type - Return the resource type
   1794  *
   1795  * @res: Pointer to the resource
   1796  */
   1797 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
   1798 {
   1799 	return res->func->res_type;
   1800 }
   1801