drm_fourcc.h revision 1.1.1.1 1 /* $NetBSD: drm_fourcc.h,v 1.1.1.1 2021/12/18 20:15:57 riastradh Exp $ */
2
3 /*
4 * Copyright 2011 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23 * OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #ifndef DRM_FOURCC_H
27 #define DRM_FOURCC_H
28
29 #include "drm.h"
30
31 #if defined(__cplusplus)
32 extern "C" {
33 #endif
34
35 /**
36 * DOC: overview
37 *
38 * In the DRM subsystem, framebuffer pixel formats are described using the
39 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
40 * fourcc code, a Format Modifier may optionally be provided, in order to
41 * further describe the buffer's format - for example tiling or compression.
42 *
43 * Format Modifiers
44 * ----------------
45 *
46 * Format modifiers are used in conjunction with a fourcc code, forming a
47 * unique fourcc:modifier pair. This format:modifier pair must fully define the
48 * format and data layout of the buffer, and should be the only way to describe
49 * that particular buffer.
50 *
51 * Having multiple fourcc:modifier pairs which describe the same layout should
52 * be avoided, as such aliases run the risk of different drivers exposing
53 * different names for the same data format, forcing userspace to understand
54 * that they are aliases.
55 *
56 * Format modifiers may change any property of the buffer, including the number
57 * of planes and/or the required allocation size. Format modifiers are
58 * vendor-namespaced, and as such the relationship between a fourcc code and a
59 * modifier is specific to the modifer being used. For example, some modifiers
60 * may preserve meaning - such as number of planes - from the fourcc code,
61 * whereas others may not.
62 *
63 * Vendors should document their modifier usage in as much detail as
64 * possible, to ensure maximum compatibility across devices, drivers and
65 * applications.
66 *
67 * The authoritative list of format modifier codes is found in
68 * `include/uapi/drm/drm_fourcc.h`
69 */
70
71 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
72 ((__u32)(c) << 16) | ((__u32)(d) << 24))
73
74 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
75
76 /* Reserve 0 for the invalid format specifier */
77 #define DRM_FORMAT_INVALID 0
78
79 /* color index */
80 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
81
82 /* 8 bpp Red */
83 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
84
85 /* 16 bpp Red */
86 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
87
88 /* 16 bpp RG */
89 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
90 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
91
92 /* 32 bpp RG */
93 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
94 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
95
96 /* 8 bpp RGB */
97 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
98 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
99
100 /* 16 bpp RGB */
101 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
102 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
103 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
104 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
105
106 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
107 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
108 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
109 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
110
111 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
112 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
113 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
114 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
115
116 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
117 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
118 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
119 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
120
121 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
122 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
123
124 /* 24 bpp RGB */
125 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
126 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
127
128 /* 32 bpp RGB */
129 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
130 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
131 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
132 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
133
134 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
135 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
136 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
137 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
138
139 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
140 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
141 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
142 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
143
144 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
145 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
146 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
147 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
148
149 /*
150 * Floating point 64bpp RGB
151 * IEEE 754-2008 binary16 half-precision float
152 * [15:0] sign:exponent:mantissa 1:5:10
153 */
154 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
155 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
156
157 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
158 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
159
160 /* packed YCbCr */
161 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
162 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
163 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
164 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
165
166 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
167 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
168 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
169 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
170
171 /*
172 * packed Y2xx indicate for each component, xx valid data occupy msb
173 * 16-xx padding occupy lsb
174 */
175 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
176 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
177 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
178
179 /*
180 * packed Y4xx indicate for each component, xx valid data occupy msb
181 * 16-xx padding occupy lsb except Y410
182 */
183 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
184 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
185 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
186
187 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
188 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
189 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
190
191 /*
192 * packed YCbCr420 2x2 tiled formats
193 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
194 */
195 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
196 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
197 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
198 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
199
200 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
201 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
202 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
203 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
204
205 /*
206 * 1-plane YUV 4:2:0
207 * In these formats, the component ordering is specified (Y, followed by U
208 * then V), but the exact Linear layout is undefined.
209 * These formats can only be used with a non-Linear modifier.
210 */
211 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
212 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
213
214 /*
215 * 2 plane RGB + A
216 * index 0 = RGB plane, same format as the corresponding non _A8 format has
217 * index 1 = A plane, [7:0] A
218 */
219 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
220 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
221 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
222 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
223 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
224 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
225 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
226 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
227
228 /*
229 * 2 plane YCbCr
230 * index 0 = Y plane, [7:0] Y
231 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
232 * or
233 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
234 */
235 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
236 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
237 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
238 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
239 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
240 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
241
242 /*
243 * 2 plane YCbCr MSB aligned
244 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
245 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
246 */
247 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
248
249 /*
250 * 2 plane YCbCr MSB aligned
251 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
252 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
253 */
254 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
255
256 /*
257 * 2 plane YCbCr MSB aligned
258 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
259 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
260 */
261 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
262
263 /*
264 * 2 plane YCbCr MSB aligned
265 * index 0 = Y plane, [15:0] Y little endian
266 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
267 */
268 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
269
270 /*
271 * 3 plane YCbCr
272 * index 0: Y plane, [7:0] Y
273 * index 1: Cb plane, [7:0] Cb
274 * index 2: Cr plane, [7:0] Cr
275 * or
276 * index 1: Cr plane, [7:0] Cr
277 * index 2: Cb plane, [7:0] Cb
278 */
279 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
280 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
281 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
282 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
283 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
284 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
285 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
286 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
287 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
288 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
289
290
291 /*
292 * Format Modifiers:
293 *
294 * Format modifiers describe, typically, a re-ordering or modification
295 * of the data in a plane of an FB. This can be used to express tiled/
296 * swizzled formats, or compression, or a combination of the two.
297 *
298 * The upper 8 bits of the format modifier are a vendor-id as assigned
299 * below. The lower 56 bits are assigned as vendor sees fit.
300 */
301
302 /* Vendor Ids: */
303 #define DRM_FORMAT_MOD_NONE 0
304 #define DRM_FORMAT_MOD_VENDOR_NONE 0
305 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
306 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02
307 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
308 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
309 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
310 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
311 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
312 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08
313 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
314
315 /* add more to the end as needed */
316
317 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
318
319 #define fourcc_mod_code(vendor, val) \
320 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
321
322 /*
323 * Format Modifier tokens:
324 *
325 * When adding a new token please document the layout with a code comment,
326 * similar to the fourcc codes above. drm_fourcc.h is considered the
327 * authoritative source for all of these.
328 */
329
330 /*
331 * Invalid Modifier
332 *
333 * This modifier can be used as a sentinel to terminate the format modifiers
334 * list, or to initialize a variable with an invalid modifier. It might also be
335 * used to report an error back to userspace for certain APIs.
336 */
337 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
338
339 /*
340 * Linear Layout
341 *
342 * Just plain linear layout. Note that this is different from no specifying any
343 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
344 * which tells the driver to also take driver-internal information into account
345 * and so might actually result in a tiled framebuffer.
346 */
347 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
348
349 /* Intel framebuffer modifiers */
350
351 /*
352 * Intel X-tiling layout
353 *
354 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
355 * in row-major layout. Within the tile bytes are laid out row-major, with
356 * a platform-dependent stride. On top of that the memory can apply
357 * platform-depending swizzling of some higher address bits into bit6.
358 *
359 * This format is highly platforms specific and not useful for cross-driver
360 * sharing. It exists since on a given platform it does uniquely identify the
361 * layout in a simple way for i915-specific userspace.
362 */
363 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
364
365 /*
366 * Intel Y-tiling layout
367 *
368 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
369 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
370 * chunks column-major, with a platform-dependent height. On top of that the
371 * memory can apply platform-depending swizzling of some higher address bits
372 * into bit6.
373 *
374 * This format is highly platforms specific and not useful for cross-driver
375 * sharing. It exists since on a given platform it does uniquely identify the
376 * layout in a simple way for i915-specific userspace.
377 */
378 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
379
380 /*
381 * Intel Yf-tiling layout
382 *
383 * This is a tiled layout using 4Kb tiles in row-major layout.
384 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
385 * are arranged in four groups (two wide, two high) with column-major layout.
386 * Each group therefore consits out of four 256 byte units, which are also laid
387 * out as 2x2 column-major.
388 * 256 byte units are made out of four 64 byte blocks of pixels, producing
389 * either a square block or a 2:1 unit.
390 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
391 * in pixel depends on the pixel depth.
392 */
393 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
394
395 /*
396 * Intel color control surface (CCS) for render compression
397 *
398 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
399 * The main surface will be plane index 0 and must be Y/Yf-tiled,
400 * the CCS will be plane index 1.
401 *
402 * Each CCS tile matches a 1024x512 pixel area of the main surface.
403 * To match certain aspects of the 3D hardware the CCS is
404 * considered to be made up of normal 128Bx32 Y tiles, Thus
405 * the CCS pitch must be specified in multiples of 128 bytes.
406 *
407 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
408 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
409 * But that fact is not relevant unless the memory is accessed
410 * directly.
411 */
412 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
413 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
414
415 /*
416 * Intel color control surfaces (CCS) for Gen-12 render compression.
417 *
418 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
419 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
420 * main surface. In other words, 4 bits in CCS map to a main surface cache
421 * line pair. The main surface pitch is required to be a multiple of four
422 * Y-tile widths.
423 */
424 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
425
426 /*
427 * Intel color control surfaces (CCS) for Gen-12 media compression
428 *
429 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
430 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
431 * main surface. In other words, 4 bits in CCS map to a main surface cache
432 * line pair. The main surface pitch is required to be a multiple of four
433 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
434 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
435 * planes 2 and 3 for the respective CCS.
436 */
437 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
438
439 /*
440 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
441 *
442 * Macroblocks are laid in a Z-shape, and each pixel data is following the
443 * standard NV12 style.
444 * As for NV12, an image is the result of two frame buffers: one for Y,
445 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
446 * Alignment requirements are (for each buffer):
447 * - multiple of 128 pixels for the width
448 * - multiple of 32 pixels for the height
449 *
450 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
451 */
452 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
453
454 /*
455 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
456 *
457 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
458 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
459 * they correspond to their 16x16 luma block.
460 */
461 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
462
463 /*
464 * Qualcomm Compressed Format
465 *
466 * Refers to a compressed variant of the base format that is compressed.
467 * Implementation may be platform and base-format specific.
468 *
469 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
470 * Pixel data pitch/stride is aligned with macrotile width.
471 * Pixel data height is aligned with macrotile height.
472 * Entire pixel data buffer is aligned with 4k(bytes).
473 */
474 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
475
476 /* Vivante framebuffer modifiers */
477
478 /*
479 * Vivante 4x4 tiling layout
480 *
481 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
482 * layout.
483 */
484 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
485
486 /*
487 * Vivante 64x64 super-tiling layout
488 *
489 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
490 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
491 * major layout.
492 *
493 * For more information: see
494 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
495 */
496 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
497
498 /*
499 * Vivante 4x4 tiling layout for dual-pipe
500 *
501 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
502 * different base address. Offsets from the base addresses are therefore halved
503 * compared to the non-split tiled layout.
504 */
505 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
506
507 /*
508 * Vivante 64x64 super-tiling layout for dual-pipe
509 *
510 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
511 * starts at a different base address. Offsets from the base addresses are
512 * therefore halved compared to the non-split super-tiled layout.
513 */
514 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
515
516 /* NVIDIA frame buffer modifiers */
517
518 /*
519 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
520 *
521 * Pixels are arranged in simple tiles of 16 x 16 bytes.
522 */
523 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
524
525 /*
526 * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
527 *
528 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
529 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
530 *
531 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
532 *
533 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
534 * Valid values are:
535 *
536 * 0 == ONE_GOB
537 * 1 == TWO_GOBS
538 * 2 == FOUR_GOBS
539 * 3 == EIGHT_GOBS
540 * 4 == SIXTEEN_GOBS
541 * 5 == THIRTYTWO_GOBS
542 *
543 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
544 * in full detail.
545 */
546 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
547 fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
548
549 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
550 fourcc_mod_code(NVIDIA, 0x10)
551 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
552 fourcc_mod_code(NVIDIA, 0x11)
553 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
554 fourcc_mod_code(NVIDIA, 0x12)
555 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
556 fourcc_mod_code(NVIDIA, 0x13)
557 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
558 fourcc_mod_code(NVIDIA, 0x14)
559 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
560 fourcc_mod_code(NVIDIA, 0x15)
561
562 /*
563 * Some Broadcom modifiers take parameters, for example the number of
564 * vertical lines in the image. Reserve the lower 32 bits for modifier
565 * type, and the next 24 bits for parameters. Top 8 bits are the
566 * vendor code.
567 */
568 #define __fourcc_mod_broadcom_param_shift 8
569 #define __fourcc_mod_broadcom_param_bits 48
570 #define fourcc_mod_broadcom_code(val, params) \
571 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
572 #define fourcc_mod_broadcom_param(m) \
573 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
574 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
575 #define fourcc_mod_broadcom_mod(m) \
576 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
577 __fourcc_mod_broadcom_param_shift))
578
579 /*
580 * Broadcom VC4 "T" format
581 *
582 * This is the primary layout that the V3D GPU can texture from (it
583 * can't do linear). The T format has:
584 *
585 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
586 * pixels at 32 bit depth.
587 *
588 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
589 * 16x16 pixels).
590 *
591 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
592 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
593 * they're (TR, BR, BL, TL), where bottom left is start of memory.
594 *
595 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
596 * tiles) or right-to-left (odd rows of 4k tiles).
597 */
598 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
599
600 /*
601 * Broadcom SAND format
602 *
603 * This is the native format that the H.264 codec block uses. For VC4
604 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
605 *
606 * The image can be considered to be split into columns, and the
607 * columns are placed consecutively into memory. The width of those
608 * columns can be either 32, 64, 128, or 256 pixels, but in practice
609 * only 128 pixel columns are used.
610 *
611 * The pitch between the start of each column is set to optimally
612 * switch between SDRAM banks. This is passed as the number of lines
613 * of column width in the modifier (we can't use the stride value due
614 * to various core checks that look at it , so you should set the
615 * stride to width*cpp).
616 *
617 * Note that the column height for this format modifier is the same
618 * for all of the planes, assuming that each column contains both Y
619 * and UV. Some SAND-using hardware stores UV in a separate tiled
620 * image from Y to reduce the column height, which is not supported
621 * with these modifiers.
622 */
623
624 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
625 fourcc_mod_broadcom_code(2, v)
626 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
627 fourcc_mod_broadcom_code(3, v)
628 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
629 fourcc_mod_broadcom_code(4, v)
630 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
631 fourcc_mod_broadcom_code(5, v)
632
633 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
634 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
635 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
636 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
637 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
638 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
639 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
640 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
641
642 /* Broadcom UIF format
643 *
644 * This is the common format for the current Broadcom multimedia
645 * blocks, including V3D 3.x and newer, newer video codecs, and
646 * displays.
647 *
648 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
649 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
650 * stored in columns, with padding between the columns to ensure that
651 * moving from one column to the next doesn't hit the same SDRAM page
652 * bank.
653 *
654 * To calculate the padding, it is assumed that each hardware block
655 * and the software driving it knows the platform's SDRAM page size,
656 * number of banks, and XOR address, and that it's identical between
657 * all blocks using the format. This tiling modifier will use XOR as
658 * necessary to reduce the padding. If a hardware block can't do XOR,
659 * the assumption is that a no-XOR tiling modifier will be created.
660 */
661 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
662
663 /*
664 * Arm Framebuffer Compression (AFBC) modifiers
665 *
666 * AFBC is a proprietary lossless image compression protocol and format.
667 * It provides fine-grained random access and minimizes the amount of data
668 * transferred between IP blocks.
669 *
670 * AFBC has several features which may be supported and/or used, which are
671 * represented using bits in the modifier. Not all combinations are valid,
672 * and different devices or use-cases may support different combinations.
673 *
674 * Further information on the use of AFBC modifiers can be found in
675 * Documentation/gpu/afbc.rst
676 */
677
678 /*
679 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
680 * modifiers) denote the category for modifiers. Currently we have only two
681 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
682 * different categories.
683 */
684 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
685 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
686
687 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
688 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
689
690 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
691 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
692
693 /*
694 * AFBC superblock size
695 *
696 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
697 * size (in pixels) must be aligned to a multiple of the superblock size.
698 * Four lowest significant bits(LSBs) are reserved for block size.
699 *
700 * Where one superblock size is specified, it applies to all planes of the
701 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
702 * the first applies to the Luma plane and the second applies to the Chroma
703 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
704 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
705 */
706 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
707 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
708 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
709 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
710 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
711
712 /*
713 * AFBC lossless colorspace transform
714 *
715 * Indicates that the buffer makes use of the AFBC lossless colorspace
716 * transform.
717 */
718 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
719
720 /*
721 * AFBC block-split
722 *
723 * Indicates that the payload of each superblock is split. The second
724 * half of the payload is positioned at a predefined offset from the start
725 * of the superblock payload.
726 */
727 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
728
729 /*
730 * AFBC sparse layout
731 *
732 * This flag indicates that the payload of each superblock must be stored at a
733 * predefined position relative to the other superblocks in the same AFBC
734 * buffer. This order is the same order used by the header buffer. In this mode
735 * each superblock is given the same amount of space as an uncompressed
736 * superblock of the particular format would require, rounding up to the next
737 * multiple of 128 bytes in size.
738 */
739 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
740
741 /*
742 * AFBC copy-block restrict
743 *
744 * Buffers with this flag must obey the copy-block restriction. The restriction
745 * is such that there are no copy-blocks referring across the border of 8x8
746 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
747 */
748 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
749
750 /*
751 * AFBC tiled layout
752 *
753 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
754 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
755 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
756 * larger bpp formats. The order between the tiles is scan line.
757 * When the tiled layout is used, the buffer size (in pixels) must be aligned
758 * to the tile size.
759 */
760 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
761
762 /*
763 * AFBC solid color blocks
764 *
765 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
766 * can be reduced if a whole superblock is a single color.
767 */
768 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
769
770 /*
771 * AFBC double-buffer
772 *
773 * Indicates that the buffer is allocated in a layout safe for front-buffer
774 * rendering.
775 */
776 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
777
778 /*
779 * AFBC buffer content hints
780 *
781 * Indicates that the buffer includes per-superblock content hints.
782 */
783 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
784
785 /*
786 * Arm 16x16 Block U-Interleaved modifier
787 *
788 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
789 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
790 * in the block are reordered.
791 */
792 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
793 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
794
795 /*
796 * Allwinner tiled modifier
797 *
798 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
799 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
800 * planes.
801 *
802 * With this tiling, the luminance samples are disposed in tiles representing
803 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
804 * The pixel order in each tile is linear and the tiles are disposed linearly,
805 * both in row-major order.
806 */
807 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
808
809 #if defined(__cplusplus)
810 }
811 #endif
812
813 #endif /* DRM_FOURCC_H */
814