linux_dma_fence.c revision 1.1 1 1.1 riastrad /* $NetBSD: linux_dma_fence.c,v 1.1 2021/12/19 00:27:01 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.1 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.1 2021/12/19 00:27:01 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/atomic.h>
36 1.1 riastrad #include <sys/condvar.h>
37 1.1 riastrad #include <sys/queue.h>
38 1.1 riastrad
39 1.1 riastrad #include <linux/atomic.h>
40 1.1 riastrad #include <linux/errno.h>
41 1.1 riastrad #include <linux/kref.h>
42 1.1 riastrad #include <linux/fence.h>
43 1.1 riastrad #include <linux/sched.h>
44 1.1 riastrad #include <linux/spinlock.h>
45 1.1 riastrad
46 1.1 riastrad /*
47 1.1 riastrad * linux_fence_trace
48 1.1 riastrad *
49 1.1 riastrad * True if we print FENCE_TRACE messages, false if not. These are
50 1.1 riastrad * extremely noisy, too much even for AB_VERBOSE and AB_DEBUG in
51 1.1 riastrad * boothowto.
52 1.1 riastrad */
53 1.1 riastrad int linux_fence_trace = 0;
54 1.1 riastrad
55 1.1 riastrad /*
56 1.1 riastrad * fence_referenced_p(fence)
57 1.1 riastrad *
58 1.1 riastrad * True if fence has a positive reference count. True after
59 1.1 riastrad * fence_init; after the last fence_put, this becomes false.
60 1.1 riastrad */
61 1.1 riastrad static inline bool __diagused
62 1.1 riastrad fence_referenced_p(struct fence *fence)
63 1.1 riastrad {
64 1.1 riastrad
65 1.1 riastrad return kref_referenced_p(&fence->refcount);
66 1.1 riastrad }
67 1.1 riastrad
68 1.1 riastrad /*
69 1.1 riastrad * fence_init(fence, ops, lock, context, seqno)
70 1.1 riastrad *
71 1.1 riastrad * Initialize fence. Caller should call fence_destroy when done,
72 1.1 riastrad * after all references have been released.
73 1.1 riastrad */
74 1.1 riastrad void
75 1.1 riastrad fence_init(struct fence *fence, const struct fence_ops *ops, spinlock_t *lock,
76 1.1 riastrad unsigned context, unsigned seqno)
77 1.1 riastrad {
78 1.1 riastrad
79 1.1 riastrad kref_init(&fence->refcount);
80 1.1 riastrad fence->lock = lock;
81 1.1 riastrad fence->flags = 0;
82 1.1 riastrad fence->context = context;
83 1.1 riastrad fence->seqno = seqno;
84 1.1 riastrad fence->ops = ops;
85 1.1 riastrad TAILQ_INIT(&fence->f_callbacks);
86 1.1 riastrad cv_init(&fence->f_cv, "fence");
87 1.1 riastrad }
88 1.1 riastrad
89 1.1 riastrad /*
90 1.1 riastrad * fence_destroy(fence)
91 1.1 riastrad *
92 1.1 riastrad * Clean up memory initialized with fence_init. This is meant to
93 1.1 riastrad * be used after a fence release callback.
94 1.1 riastrad */
95 1.1 riastrad void
96 1.1 riastrad fence_destroy(struct fence *fence)
97 1.1 riastrad {
98 1.1 riastrad
99 1.1 riastrad KASSERT(!fence_referenced_p(fence));
100 1.1 riastrad
101 1.1 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
102 1.1 riastrad cv_destroy(&fence->f_cv);
103 1.1 riastrad }
104 1.1 riastrad
105 1.1 riastrad static void
106 1.1 riastrad fence_free_cb(struct rcu_head *rcu)
107 1.1 riastrad {
108 1.1 riastrad struct fence *fence = container_of(rcu, struct fence, f_rcu);
109 1.1 riastrad
110 1.1 riastrad KASSERT(!fence_referenced_p(fence));
111 1.1 riastrad
112 1.1 riastrad fence_destroy(fence);
113 1.1 riastrad kfree(fence);
114 1.1 riastrad }
115 1.1 riastrad
116 1.1 riastrad /*
117 1.1 riastrad * fence_free(fence)
118 1.1 riastrad *
119 1.1 riastrad * Schedule fence to be destroyed and then freed with kfree after
120 1.1 riastrad * any pending RCU read sections on all CPUs have completed.
121 1.1 riastrad * Caller must guarantee all references have been released. This
122 1.1 riastrad * is meant to be used after a fence release callback.
123 1.1 riastrad *
124 1.1 riastrad * NOTE: Callers assume kfree will be used. We don't even use
125 1.1 riastrad * kmalloc to allocate these -- caller is expected to allocate
126 1.1 riastrad * memory with kmalloc to be initialized with fence_init.
127 1.1 riastrad */
128 1.1 riastrad void
129 1.1 riastrad fence_free(struct fence *fence)
130 1.1 riastrad {
131 1.1 riastrad
132 1.1 riastrad KASSERT(!fence_referenced_p(fence));
133 1.1 riastrad
134 1.1 riastrad call_rcu(&fence->f_rcu, &fence_free_cb);
135 1.1 riastrad }
136 1.1 riastrad
137 1.1 riastrad /*
138 1.1 riastrad * fence_context_alloc(n)
139 1.1 riastrad *
140 1.1 riastrad * Return the first of a contiguous sequence of unique
141 1.1 riastrad * identifiers, at least until the system wraps around.
142 1.1 riastrad */
143 1.1 riastrad unsigned
144 1.1 riastrad fence_context_alloc(unsigned n)
145 1.1 riastrad {
146 1.1 riastrad static volatile unsigned next_context = 0;
147 1.1 riastrad
148 1.1 riastrad return atomic_add_int_nv(&next_context, n) - n;
149 1.1 riastrad }
150 1.1 riastrad
151 1.1 riastrad /*
152 1.1 riastrad * fence_is_later(a, b)
153 1.1 riastrad *
154 1.1 riastrad * True if the sequence number of fence a is later than the
155 1.1 riastrad * sequence number of fence b. Since sequence numbers wrap
156 1.1 riastrad * around, we define this to mean that the sequence number of
157 1.1 riastrad * fence a is no more than INT_MAX past the sequence number of
158 1.1 riastrad * fence b.
159 1.1 riastrad *
160 1.1 riastrad * The two fences must have the same context.
161 1.1 riastrad */
162 1.1 riastrad bool
163 1.1 riastrad fence_is_later(struct fence *a, struct fence *b)
164 1.1 riastrad {
165 1.1 riastrad
166 1.1 riastrad KASSERTMSG(a->context == b->context, "incommensurate fences"
167 1.1 riastrad ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
168 1.1 riastrad
169 1.1 riastrad return a->seqno - b->seqno < INT_MAX;
170 1.1 riastrad }
171 1.1 riastrad
172 1.1 riastrad /*
173 1.1 riastrad * fence_get(fence)
174 1.1 riastrad *
175 1.1 riastrad * Acquire a reference to fence. The fence must not be being
176 1.1 riastrad * destroyed. Return the fence.
177 1.1 riastrad */
178 1.1 riastrad struct fence *
179 1.1 riastrad fence_get(struct fence *fence)
180 1.1 riastrad {
181 1.1 riastrad
182 1.1 riastrad if (fence)
183 1.1 riastrad kref_get(&fence->refcount);
184 1.1 riastrad return fence;
185 1.1 riastrad }
186 1.1 riastrad
187 1.1 riastrad /*
188 1.1 riastrad * fence_get_rcu(fence)
189 1.1 riastrad *
190 1.1 riastrad * Attempt to acquire a reference to a fence that may be about to
191 1.1 riastrad * be destroyed, during a read section. Return the fence on
192 1.1 riastrad * success, or NULL on failure.
193 1.1 riastrad */
194 1.1 riastrad struct fence *
195 1.1 riastrad fence_get_rcu(struct fence *fence)
196 1.1 riastrad {
197 1.1 riastrad
198 1.1 riastrad if (!kref_get_unless_zero(&fence->refcount))
199 1.1 riastrad return NULL;
200 1.1 riastrad return fence;
201 1.1 riastrad }
202 1.1 riastrad
203 1.1 riastrad static void
204 1.1 riastrad fence_release(struct kref *refcount)
205 1.1 riastrad {
206 1.1 riastrad struct fence *fence = container_of(refcount, struct fence, refcount);
207 1.1 riastrad
208 1.1 riastrad KASSERT(!fence_referenced_p(fence));
209 1.1 riastrad
210 1.1 riastrad if (fence->ops->release)
211 1.1 riastrad (*fence->ops->release)(fence);
212 1.1 riastrad else
213 1.1 riastrad fence_free(fence);
214 1.1 riastrad }
215 1.1 riastrad
216 1.1 riastrad /*
217 1.1 riastrad * fence_put(fence)
218 1.1 riastrad *
219 1.1 riastrad * Release a reference to fence. If this was the last one, call
220 1.1 riastrad * the fence's release callback.
221 1.1 riastrad */
222 1.1 riastrad void
223 1.1 riastrad fence_put(struct fence *fence)
224 1.1 riastrad {
225 1.1 riastrad
226 1.1 riastrad if (fence == NULL)
227 1.1 riastrad return;
228 1.1 riastrad KASSERT(fence_referenced_p(fence));
229 1.1 riastrad kref_put(&fence->refcount, &fence_release);
230 1.1 riastrad }
231 1.1 riastrad
232 1.1 riastrad /*
233 1.1 riastrad * fence_ensure_signal_enabled(fence)
234 1.1 riastrad *
235 1.1 riastrad * Internal subroutine. If the fence was already signalled,
236 1.1 riastrad * return -ENOENT. Otherwise, if the enable signalling callback
237 1.1 riastrad * has not been called yet, call it. If fails, signal the fence
238 1.1 riastrad * and return -ENOENT. If it succeeds, or if it had already been
239 1.1 riastrad * called, return zero to indicate success.
240 1.1 riastrad *
241 1.1 riastrad * Caller must hold the fence's lock.
242 1.1 riastrad */
243 1.1 riastrad static int
244 1.1 riastrad fence_ensure_signal_enabled(struct fence *fence)
245 1.1 riastrad {
246 1.1 riastrad
247 1.1 riastrad KASSERT(fence_referenced_p(fence));
248 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
249 1.1 riastrad
250 1.1 riastrad /* If the fence was already signalled, fail with -ENOENT. */
251 1.1 riastrad if (fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT))
252 1.1 riastrad return -ENOENT;
253 1.1 riastrad
254 1.1 riastrad /*
255 1.1 riastrad * If the enable signaling callback has been called, success.
256 1.1 riastrad * Otherwise, set the bit indicating it.
257 1.1 riastrad */
258 1.1 riastrad if (test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags))
259 1.1 riastrad return 0;
260 1.1 riastrad
261 1.1 riastrad /* Otherwise, note that we've called it and call it. */
262 1.1 riastrad if (!(*fence->ops->enable_signaling)(fence)) {
263 1.1 riastrad /* If it failed, signal and return -ENOENT. */
264 1.1 riastrad fence_signal_locked(fence);
265 1.1 riastrad return -ENOENT;
266 1.1 riastrad }
267 1.1 riastrad
268 1.1 riastrad /* Success! */
269 1.1 riastrad return 0;
270 1.1 riastrad }
271 1.1 riastrad
272 1.1 riastrad /*
273 1.1 riastrad * fence_add_callback(fence, fcb, fn)
274 1.1 riastrad *
275 1.1 riastrad * If fence has been signalled, return -ENOENT. If the enable
276 1.1 riastrad * signalling callback hasn't been called yet, call it; if it
277 1.1 riastrad * fails, return -ENOENT. Otherwise, arrange to call fn(fence,
278 1.1 riastrad * fcb) when it is signalled, and return 0.
279 1.1 riastrad *
280 1.1 riastrad * The fence uses memory allocated by the caller in fcb from the
281 1.1 riastrad * time of fence_add_callback either to the time of
282 1.1 riastrad * fence_remove_callback, or just before calling fn.
283 1.1 riastrad */
284 1.1 riastrad int
285 1.1 riastrad fence_add_callback(struct fence *fence, struct fence_cb *fcb, fence_func_t fn)
286 1.1 riastrad {
287 1.1 riastrad int ret;
288 1.1 riastrad
289 1.1 riastrad KASSERT(fence_referenced_p(fence));
290 1.1 riastrad
291 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
292 1.1 riastrad if (fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT)) {
293 1.1 riastrad ret = -ENOENT;
294 1.1 riastrad goto out0;
295 1.1 riastrad }
296 1.1 riastrad
297 1.1 riastrad /* Acquire the lock. */
298 1.1 riastrad spin_lock(fence->lock);
299 1.1 riastrad
300 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
301 1.1 riastrad ret = fence_ensure_signal_enabled(fence);
302 1.1 riastrad if (ret)
303 1.1 riastrad goto out1;
304 1.1 riastrad
305 1.1 riastrad /* Insert the callback. */
306 1.1 riastrad fcb->fcb_func = fn;
307 1.1 riastrad TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
308 1.1 riastrad fcb->fcb_onqueue = true;
309 1.1 riastrad
310 1.1 riastrad /* Release the lock and we're done. */
311 1.1 riastrad out1: spin_unlock(fence->lock);
312 1.1 riastrad out0: return ret;
313 1.1 riastrad }
314 1.1 riastrad
315 1.1 riastrad /*
316 1.1 riastrad * fence_remove_callback(fence, fcb)
317 1.1 riastrad *
318 1.1 riastrad * Remove the callback fcb from fence. Return true if it was
319 1.1 riastrad * removed from the list, or false if it had already run and so
320 1.1 riastrad * was no longer queued anyway. Caller must have already called
321 1.1 riastrad * fence_add_callback(fence, fcb).
322 1.1 riastrad */
323 1.1 riastrad bool
324 1.1 riastrad fence_remove_callback(struct fence *fence, struct fence_cb *fcb)
325 1.1 riastrad {
326 1.1 riastrad bool onqueue;
327 1.1 riastrad
328 1.1 riastrad KASSERT(fence_referenced_p(fence));
329 1.1 riastrad
330 1.1 riastrad spin_lock(fence->lock);
331 1.1 riastrad onqueue = fcb->fcb_onqueue;
332 1.1 riastrad if (onqueue) {
333 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
334 1.1 riastrad fcb->fcb_onqueue = false;
335 1.1 riastrad }
336 1.1 riastrad spin_unlock(fence->lock);
337 1.1 riastrad
338 1.1 riastrad return onqueue;
339 1.1 riastrad }
340 1.1 riastrad
341 1.1 riastrad /*
342 1.1 riastrad * fence_enable_sw_signaling(fence)
343 1.1 riastrad *
344 1.1 riastrad * If it hasn't been called yet and the fence hasn't been
345 1.1 riastrad * signalled yet, call the fence's enable_sw_signaling callback.
346 1.1 riastrad * If when that happens, the callback indicates failure by
347 1.1 riastrad * returning false, signal the fence.
348 1.1 riastrad */
349 1.1 riastrad void
350 1.1 riastrad fence_enable_sw_signaling(struct fence *fence)
351 1.1 riastrad {
352 1.1 riastrad
353 1.1 riastrad KASSERT(fence_referenced_p(fence));
354 1.1 riastrad
355 1.1 riastrad spin_lock(fence->lock);
356 1.1 riastrad (void)fence_ensure_signal_enabled(fence);
357 1.1 riastrad spin_unlock(fence->lock);
358 1.1 riastrad }
359 1.1 riastrad
360 1.1 riastrad /*
361 1.1 riastrad * fence_is_signaled(fence)
362 1.1 riastrad *
363 1.1 riastrad * Test whether the fence has been signalled. If it has been
364 1.1 riastrad * signalled by fence_signal(_locked), return true. If the
365 1.1 riastrad * signalled callback returns true indicating that some implicit
366 1.1 riastrad * external condition has changed, call the callbacks as if with
367 1.1 riastrad * fence_signal.
368 1.1 riastrad */
369 1.1 riastrad bool
370 1.1 riastrad fence_is_signaled(struct fence *fence)
371 1.1 riastrad {
372 1.1 riastrad bool signaled;
373 1.1 riastrad
374 1.1 riastrad KASSERT(fence_referenced_p(fence));
375 1.1 riastrad
376 1.1 riastrad spin_lock(fence->lock);
377 1.1 riastrad signaled = fence_is_signaled_locked(fence);
378 1.1 riastrad spin_unlock(fence->lock);
379 1.1 riastrad
380 1.1 riastrad return signaled;
381 1.1 riastrad }
382 1.1 riastrad
383 1.1 riastrad /*
384 1.1 riastrad * fence_is_signaled_locked(fence)
385 1.1 riastrad *
386 1.1 riastrad * Test whether the fence has been signalled. Like
387 1.1 riastrad * fence_is_signaleed, but caller already holds the fence's lock.
388 1.1 riastrad */
389 1.1 riastrad bool
390 1.1 riastrad fence_is_signaled_locked(struct fence *fence)
391 1.1 riastrad {
392 1.1 riastrad
393 1.1 riastrad KASSERT(fence_referenced_p(fence));
394 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
395 1.1 riastrad
396 1.1 riastrad /* Check whether we already set the signalled bit. */
397 1.1 riastrad if (fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT))
398 1.1 riastrad return true;
399 1.1 riastrad
400 1.1 riastrad /* If there's a signalled callback, test it. */
401 1.1 riastrad if (fence->ops->signaled) {
402 1.1 riastrad if ((*fence->ops->signaled)(fence)) {
403 1.1 riastrad /*
404 1.1 riastrad * It's been signalled implicitly by some
405 1.1 riastrad * external phenomonen. Act as though someone
406 1.1 riastrad * has called fence_signal.
407 1.1 riastrad */
408 1.1 riastrad fence_signal_locked(fence);
409 1.1 riastrad return true;
410 1.1 riastrad }
411 1.1 riastrad }
412 1.1 riastrad
413 1.1 riastrad return false;
414 1.1 riastrad }
415 1.1 riastrad
416 1.1 riastrad /*
417 1.1 riastrad * fence_signal(fence)
418 1.1 riastrad *
419 1.1 riastrad * Signal the fence. If it has already been signalled, return
420 1.1 riastrad * -EINVAL. If it has not been signalled, call the enable
421 1.1 riastrad * signalling callback if it hasn't been called yet, and remove
422 1.1 riastrad * each registered callback from the queue and call it; then
423 1.1 riastrad * return 0.
424 1.1 riastrad */
425 1.1 riastrad int
426 1.1 riastrad fence_signal(struct fence *fence)
427 1.1 riastrad {
428 1.1 riastrad int ret;
429 1.1 riastrad
430 1.1 riastrad KASSERT(fence_referenced_p(fence));
431 1.1 riastrad
432 1.1 riastrad spin_lock(fence->lock);
433 1.1 riastrad ret = fence_signal_locked(fence);
434 1.1 riastrad spin_unlock(fence->lock);
435 1.1 riastrad
436 1.1 riastrad return ret;
437 1.1 riastrad }
438 1.1 riastrad
439 1.1 riastrad /*
440 1.1 riastrad * fence_signal_locked(fence)
441 1.1 riastrad *
442 1.1 riastrad * Signal the fence. Like fence_signal, but caller already holds
443 1.1 riastrad * the fence's lock.
444 1.1 riastrad */
445 1.1 riastrad int
446 1.1 riastrad fence_signal_locked(struct fence *fence)
447 1.1 riastrad {
448 1.1 riastrad struct fence_cb *fcb, *next;
449 1.1 riastrad
450 1.1 riastrad KASSERT(fence_referenced_p(fence));
451 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
452 1.1 riastrad
453 1.1 riastrad /* If it's been signalled, fail; otherwise set the signalled bit. */
454 1.1 riastrad if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
455 1.1 riastrad return -EINVAL;
456 1.1 riastrad
457 1.1 riastrad /* Wake waiters. */
458 1.1 riastrad cv_broadcast(&fence->f_cv);
459 1.1 riastrad
460 1.1 riastrad /* Remove and call the callbacks. */
461 1.1 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
462 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
463 1.1 riastrad fcb->fcb_onqueue = false;
464 1.1 riastrad (*fcb->fcb_func)(fence, fcb);
465 1.1 riastrad }
466 1.1 riastrad
467 1.1 riastrad /* Success! */
468 1.1 riastrad return 0;
469 1.1 riastrad }
470 1.1 riastrad
471 1.1 riastrad struct wait_any {
472 1.1 riastrad struct fence_cb fcb;
473 1.1 riastrad struct wait_any1 {
474 1.1 riastrad kmutex_t lock;
475 1.1 riastrad kcondvar_t cv;
476 1.1 riastrad bool done;
477 1.1 riastrad } *common;
478 1.1 riastrad };
479 1.1 riastrad
480 1.1 riastrad static void
481 1.1 riastrad wait_any_cb(struct fence *fence, struct fence_cb *fcb)
482 1.1 riastrad {
483 1.1 riastrad struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
484 1.1 riastrad
485 1.1 riastrad KASSERT(fence_referenced_p(fence));
486 1.1 riastrad
487 1.1 riastrad mutex_enter(&cb->common->lock);
488 1.1 riastrad cb->common->done = true;
489 1.1 riastrad cv_broadcast(&cb->common->cv);
490 1.1 riastrad mutex_exit(&cb->common->lock);
491 1.1 riastrad }
492 1.1 riastrad
493 1.1 riastrad /*
494 1.1 riastrad * fence_wait_any_timeout(fence, nfences, intr, timeout)
495 1.1 riastrad *
496 1.1 riastrad * Wait for any of fences[0], fences[1], fences[2], ...,
497 1.1 riastrad * fences[nfences-1] to be signaled.
498 1.1 riastrad */
499 1.1 riastrad long
500 1.1 riastrad fence_wait_any_timeout(struct fence **fences, uint32_t nfences, bool intr,
501 1.1 riastrad long timeout)
502 1.1 riastrad {
503 1.1 riastrad struct wait_any1 common;
504 1.1 riastrad struct wait_any *cb;
505 1.1 riastrad uint32_t i, j;
506 1.1 riastrad int start, end;
507 1.1 riastrad long ret = 0;
508 1.1 riastrad
509 1.1 riastrad /* Allocate an array of callback records. */
510 1.1 riastrad cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
511 1.1 riastrad if (cb == NULL) {
512 1.1 riastrad ret = -ENOMEM;
513 1.1 riastrad goto out0;
514 1.1 riastrad }
515 1.1 riastrad
516 1.1 riastrad /* Initialize a mutex and condvar for the common wait. */
517 1.1 riastrad mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
518 1.1 riastrad cv_init(&common.cv, "fence");
519 1.1 riastrad common.done = false;
520 1.1 riastrad
521 1.1 riastrad /* Add a callback to each of the fences, or stop here if we can't. */
522 1.1 riastrad for (i = 0; i < nfences; i++) {
523 1.1 riastrad cb[i].common = &common;
524 1.1 riastrad KASSERT(fence_referenced_p(fences[i]));
525 1.1 riastrad ret = fence_add_callback(fences[i], &cb[i].fcb, &wait_any_cb);
526 1.1 riastrad if (ret)
527 1.1 riastrad goto out1;
528 1.1 riastrad }
529 1.1 riastrad
530 1.1 riastrad /*
531 1.1 riastrad * Test whether any of the fences has been signalled. If they
532 1.1 riastrad * have, stop here. If the haven't, we are guaranteed to be
533 1.1 riastrad * notified by one of the callbacks when they have.
534 1.1 riastrad */
535 1.1 riastrad for (j = 0; j < nfences; j++) {
536 1.1 riastrad if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags))
537 1.1 riastrad goto out1;
538 1.1 riastrad }
539 1.1 riastrad
540 1.1 riastrad /*
541 1.1 riastrad * None of them was ready immediately. Wait for one of the
542 1.1 riastrad * callbacks to notify us when it is done.
543 1.1 riastrad */
544 1.1 riastrad mutex_enter(&common.lock);
545 1.1 riastrad while (timeout > 0 && !common.done) {
546 1.1 riastrad start = getticks();
547 1.1 riastrad __insn_barrier();
548 1.1 riastrad if (intr) {
549 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
550 1.1 riastrad ret = -cv_timedwait_sig(&common.cv,
551 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
552 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
553 1.1 riastrad } else {
554 1.1 riastrad ret = -cv_wait_sig(&common.cv, &common.lock);
555 1.1 riastrad }
556 1.1 riastrad } else {
557 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
558 1.1 riastrad ret = -cv_timedwait(&common.cv,
559 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
560 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
561 1.1 riastrad } else {
562 1.1 riastrad cv_wait(&common.cv, &common.lock);
563 1.1 riastrad ret = 0;
564 1.1 riastrad }
565 1.1 riastrad }
566 1.1 riastrad end = getticks();
567 1.1 riastrad __insn_barrier();
568 1.1 riastrad if (ret) {
569 1.1 riastrad if (ret == -ERESTART)
570 1.1 riastrad ret = -ERESTARTSYS;
571 1.1 riastrad break;
572 1.1 riastrad }
573 1.1 riastrad timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
574 1.1 riastrad }
575 1.1 riastrad mutex_exit(&common.lock);
576 1.1 riastrad
577 1.1 riastrad /*
578 1.1 riastrad * Massage the return code: if we were interrupted, return
579 1.1 riastrad * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
580 1.1 riastrad * return the remaining time.
581 1.1 riastrad */
582 1.1 riastrad if (ret < 0) {
583 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
584 1.1 riastrad ret = -ERESTARTSYS;
585 1.1 riastrad if (ret == -EWOULDBLOCK)
586 1.1 riastrad ret = 0;
587 1.1 riastrad } else {
588 1.1 riastrad KASSERT(ret == 0);
589 1.1 riastrad ret = timeout;
590 1.1 riastrad }
591 1.1 riastrad
592 1.1 riastrad out1: while (i --> 0)
593 1.1 riastrad (void)fence_remove_callback(fences[i], &cb[i].fcb);
594 1.1 riastrad cv_destroy(&common.cv);
595 1.1 riastrad mutex_destroy(&common.lock);
596 1.1 riastrad kfree(cb);
597 1.1 riastrad out0: return ret;
598 1.1 riastrad }
599 1.1 riastrad
600 1.1 riastrad /*
601 1.1 riastrad * fence_wait_timeout(fence, intr, timeout)
602 1.1 riastrad *
603 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
604 1.1 riastrad * true; or until timeout, if positive. Return -ERESTARTSYS if
605 1.1 riastrad * interrupted, negative error code on any other error, zero on
606 1.1 riastrad * timeout, or positive number of ticks remaining if the fence is
607 1.1 riastrad * signalled before the timeout. Works by calling the fence wait
608 1.1 riastrad * callback.
609 1.1 riastrad *
610 1.1 riastrad * The timeout must be nonnegative and less than
611 1.1 riastrad * MAX_SCHEDULE_TIMEOUT.
612 1.1 riastrad */
613 1.1 riastrad long
614 1.1 riastrad fence_wait_timeout(struct fence *fence, bool intr, long timeout)
615 1.1 riastrad {
616 1.1 riastrad
617 1.1 riastrad KASSERT(fence_referenced_p(fence));
618 1.1 riastrad KASSERT(timeout >= 0);
619 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
620 1.1 riastrad
621 1.1 riastrad return (*fence->ops->wait)(fence, intr, timeout);
622 1.1 riastrad }
623 1.1 riastrad
624 1.1 riastrad /*
625 1.1 riastrad * fence_wait(fence, intr)
626 1.1 riastrad *
627 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
628 1.1 riastrad * true. Return -ERESTARTSYS if interrupted, negative error code
629 1.1 riastrad * on any other error, zero on sucess. Works by calling the fence
630 1.1 riastrad * wait callback with MAX_SCHEDULE_TIMEOUT.
631 1.1 riastrad */
632 1.1 riastrad long
633 1.1 riastrad fence_wait(struct fence *fence, bool intr)
634 1.1 riastrad {
635 1.1 riastrad long ret;
636 1.1 riastrad
637 1.1 riastrad KASSERT(fence_referenced_p(fence));
638 1.1 riastrad
639 1.1 riastrad ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
640 1.1 riastrad KASSERT(ret != 0);
641 1.1 riastrad
642 1.1 riastrad return (ret < 0 ? ret : 0);
643 1.1 riastrad }
644 1.1 riastrad
645 1.1 riastrad /*
646 1.1 riastrad * fence_default_wait(fence, intr, timeout)
647 1.1 riastrad *
648 1.1 riastrad * Default implementation of fence wait callback using a condition
649 1.1 riastrad * variable. If the fence is already signalled, return timeout,
650 1.1 riastrad * or 1 if no timeout. If the enable signalling callback hasn't
651 1.1 riastrad * been called, call it, and if it fails, act as if the fence had
652 1.1 riastrad * been signalled. Otherwise, wait on the internal condvar. If
653 1.1 riastrad * timeout is MAX_SCHEDULE_TIMEOUT, treat it as no timeout.
654 1.1 riastrad */
655 1.1 riastrad long
656 1.1 riastrad fence_default_wait(struct fence *fence, bool intr, long timeout)
657 1.1 riastrad {
658 1.1 riastrad int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
659 1.1 riastrad kmutex_t *lock = &fence->lock->sl_lock;
660 1.1 riastrad long ret = 0;
661 1.1 riastrad
662 1.1 riastrad KASSERT(fence_referenced_p(fence));
663 1.1 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
664 1.1 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
665 1.1 riastrad
666 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
667 1.1 riastrad if (fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT))
668 1.1 riastrad return (timeout < MAX_SCHEDULE_TIMEOUT ? timeout : 1);
669 1.1 riastrad
670 1.1 riastrad /* Acquire the lock. */
671 1.1 riastrad spin_lock(fence->lock);
672 1.1 riastrad
673 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
674 1.1 riastrad ret = fence_ensure_signal_enabled(fence);
675 1.1 riastrad if (ret)
676 1.1 riastrad goto out;
677 1.1 riastrad
678 1.1 riastrad /* Find out what our deadline is so we can handle spurious wakeup. */
679 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
680 1.1 riastrad now = getticks();
681 1.1 riastrad __insn_barrier();
682 1.1 riastrad starttime = now;
683 1.1 riastrad deadline = starttime + timeout;
684 1.1 riastrad }
685 1.1 riastrad
686 1.1 riastrad /* Wait until the signalled bit is set. */
687 1.1 riastrad while (!(fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT))) {
688 1.1 riastrad /*
689 1.1 riastrad * If there's a timeout and we've passed the deadline,
690 1.1 riastrad * give up.
691 1.1 riastrad */
692 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
693 1.1 riastrad now = getticks();
694 1.1 riastrad __insn_barrier();
695 1.1 riastrad if (deadline <= now)
696 1.1 riastrad break;
697 1.1 riastrad }
698 1.1 riastrad if (intr) {
699 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
700 1.1 riastrad ret = -cv_timedwait_sig(&fence->f_cv, lock,
701 1.1 riastrad deadline - now);
702 1.1 riastrad } else {
703 1.1 riastrad ret = -cv_wait_sig(&fence->f_cv, lock);
704 1.1 riastrad }
705 1.1 riastrad } else {
706 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
707 1.1 riastrad ret = -cv_timedwait(&fence->f_cv, lock,
708 1.1 riastrad deadline - now);
709 1.1 riastrad } else {
710 1.1 riastrad cv_wait(&fence->f_cv, lock);
711 1.1 riastrad ret = 0;
712 1.1 riastrad }
713 1.1 riastrad }
714 1.1 riastrad /* If the wait failed, give up. */
715 1.1 riastrad if (ret) {
716 1.1 riastrad if (ret == -ERESTART)
717 1.1 riastrad ret = -ERESTARTSYS;
718 1.1 riastrad break;
719 1.1 riastrad }
720 1.1 riastrad }
721 1.1 riastrad
722 1.1 riastrad out:
723 1.1 riastrad /* All done. Release the lock. */
724 1.1 riastrad spin_unlock(fence->lock);
725 1.1 riastrad
726 1.1 riastrad /* If cv_timedwait gave up, return 0 meaning timeout. */
727 1.1 riastrad if (ret == -EWOULDBLOCK) {
728 1.1 riastrad /* Only cv_timedwait and cv_timedwait_sig can return this. */
729 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
730 1.1 riastrad return 0;
731 1.1 riastrad }
732 1.1 riastrad
733 1.1 riastrad /* If there was a timeout and the deadline passed, return 0. */
734 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
735 1.1 riastrad if (deadline <= now)
736 1.1 riastrad return 0;
737 1.1 riastrad }
738 1.1 riastrad
739 1.1 riastrad /* If we were interrupted, return -ERESTARTSYS. */
740 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
741 1.1 riastrad return -ERESTARTSYS;
742 1.1 riastrad
743 1.1 riastrad /* If there was any other kind of error, fail. */
744 1.1 riastrad if (ret)
745 1.1 riastrad return ret;
746 1.1 riastrad
747 1.1 riastrad /*
748 1.1 riastrad * Success! Return the number of ticks left, at least 1, or 1
749 1.1 riastrad * if no timeout.
750 1.1 riastrad */
751 1.1 riastrad return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
752 1.1 riastrad }
753