Home | History | Annotate | Line # | Download | only in linux
linux_dma_fence.c revision 1.14
      1  1.14  riastrad /*	$NetBSD: linux_dma_fence.c,v 1.14 2021/12/19 11:09:09 riastradh Exp $	*/
      2   1.1  riastrad 
      3   1.1  riastrad /*-
      4   1.1  riastrad  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5   1.1  riastrad  * All rights reserved.
      6   1.1  riastrad  *
      7   1.1  riastrad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1  riastrad  * by Taylor R. Campbell.
      9   1.1  riastrad  *
     10   1.1  riastrad  * Redistribution and use in source and binary forms, with or without
     11   1.1  riastrad  * modification, are permitted provided that the following conditions
     12   1.1  riastrad  * are met:
     13   1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     14   1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     15   1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     18   1.1  riastrad  *
     19   1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1  riastrad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1  riastrad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1  riastrad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1  riastrad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1  riastrad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1  riastrad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  riastrad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1  riastrad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1  riastrad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1  riastrad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1  riastrad  */
     31   1.1  riastrad 
     32   1.1  riastrad #include <sys/cdefs.h>
     33  1.14  riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.14 2021/12/19 11:09:09 riastradh Exp $");
     34   1.1  riastrad 
     35   1.1  riastrad #include <sys/atomic.h>
     36   1.1  riastrad #include <sys/condvar.h>
     37   1.1  riastrad #include <sys/queue.h>
     38   1.1  riastrad 
     39   1.1  riastrad #include <linux/atomic.h>
     40   1.2  riastrad #include <linux/dma-fence.h>
     41   1.1  riastrad #include <linux/errno.h>
     42   1.1  riastrad #include <linux/kref.h>
     43   1.1  riastrad #include <linux/sched.h>
     44   1.1  riastrad #include <linux/spinlock.h>
     45   1.1  riastrad 
     46   1.1  riastrad /*
     47   1.2  riastrad  * linux_dma_fence_trace
     48   1.1  riastrad  *
     49   1.2  riastrad  *	True if we print DMA_FENCE_TRACE messages, false if not.  These
     50   1.2  riastrad  *	are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
     51   1.2  riastrad  *	in boothowto.
     52   1.1  riastrad  */
     53   1.2  riastrad int	linux_dma_fence_trace = 0;
     54   1.1  riastrad 
     55   1.1  riastrad /*
     56   1.2  riastrad  * dma_fence_referenced_p(fence)
     57   1.1  riastrad  *
     58   1.1  riastrad  *	True if fence has a positive reference count.  True after
     59   1.2  riastrad  *	dma_fence_init; after the last dma_fence_put, this becomes
     60   1.2  riastrad  *	false.
     61   1.1  riastrad  */
     62   1.1  riastrad static inline bool __diagused
     63   1.2  riastrad dma_fence_referenced_p(struct dma_fence *fence)
     64   1.1  riastrad {
     65   1.1  riastrad 
     66   1.1  riastrad 	return kref_referenced_p(&fence->refcount);
     67   1.1  riastrad }
     68   1.1  riastrad 
     69   1.1  riastrad /*
     70   1.2  riastrad  * dma_fence_init(fence, ops, lock, context, seqno)
     71   1.1  riastrad  *
     72   1.2  riastrad  *	Initialize fence.  Caller should call dma_fence_destroy when
     73   1.2  riastrad  *	done, after all references have been released.
     74   1.1  riastrad  */
     75   1.1  riastrad void
     76   1.2  riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
     77   1.2  riastrad     spinlock_t *lock, unsigned context, unsigned seqno)
     78   1.1  riastrad {
     79   1.1  riastrad 
     80   1.1  riastrad 	kref_init(&fence->refcount);
     81   1.1  riastrad 	fence->lock = lock;
     82   1.1  riastrad 	fence->flags = 0;
     83   1.1  riastrad 	fence->context = context;
     84   1.1  riastrad 	fence->seqno = seqno;
     85   1.1  riastrad 	fence->ops = ops;
     86   1.1  riastrad 	TAILQ_INIT(&fence->f_callbacks);
     87   1.2  riastrad 	cv_init(&fence->f_cv, "dmafence");
     88   1.1  riastrad }
     89   1.1  riastrad 
     90   1.1  riastrad /*
     91   1.2  riastrad  * dma_fence_destroy(fence)
     92   1.1  riastrad  *
     93   1.2  riastrad  *	Clean up memory initialized with dma_fence_init.  This is meant
     94   1.2  riastrad  *	to be used after a fence release callback.
     95   1.1  riastrad  */
     96   1.1  riastrad void
     97   1.2  riastrad dma_fence_destroy(struct dma_fence *fence)
     98   1.1  riastrad {
     99   1.1  riastrad 
    100   1.2  riastrad 	KASSERT(!dma_fence_referenced_p(fence));
    101   1.1  riastrad 
    102   1.1  riastrad 	KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
    103   1.1  riastrad 	cv_destroy(&fence->f_cv);
    104   1.1  riastrad }
    105   1.1  riastrad 
    106   1.1  riastrad static void
    107   1.2  riastrad dma_fence_free_cb(struct rcu_head *rcu)
    108   1.1  riastrad {
    109   1.2  riastrad 	struct dma_fence *fence = container_of(rcu, struct dma_fence, f_rcu);
    110   1.1  riastrad 
    111   1.2  riastrad 	KASSERT(!dma_fence_referenced_p(fence));
    112   1.1  riastrad 
    113   1.2  riastrad 	dma_fence_destroy(fence);
    114   1.1  riastrad 	kfree(fence);
    115   1.1  riastrad }
    116   1.1  riastrad 
    117   1.1  riastrad /*
    118   1.2  riastrad  * dma_fence_free(fence)
    119   1.1  riastrad  *
    120   1.1  riastrad  *	Schedule fence to be destroyed and then freed with kfree after
    121   1.1  riastrad  *	any pending RCU read sections on all CPUs have completed.
    122   1.1  riastrad  *	Caller must guarantee all references have been released.  This
    123   1.1  riastrad  *	is meant to be used after a fence release callback.
    124   1.1  riastrad  *
    125   1.1  riastrad  *	NOTE: Callers assume kfree will be used.  We don't even use
    126   1.1  riastrad  *	kmalloc to allocate these -- caller is expected to allocate
    127   1.2  riastrad  *	memory with kmalloc to be initialized with dma_fence_init.
    128   1.1  riastrad  */
    129   1.1  riastrad void
    130   1.2  riastrad dma_fence_free(struct dma_fence *fence)
    131   1.1  riastrad {
    132   1.1  riastrad 
    133   1.2  riastrad 	KASSERT(!dma_fence_referenced_p(fence));
    134   1.1  riastrad 
    135   1.2  riastrad 	call_rcu(&fence->f_rcu, &dma_fence_free_cb);
    136   1.1  riastrad }
    137   1.1  riastrad 
    138   1.1  riastrad /*
    139   1.2  riastrad  * dma_fence_context_alloc(n)
    140   1.1  riastrad  *
    141   1.1  riastrad  *	Return the first of a contiguous sequence of unique
    142   1.1  riastrad  *	identifiers, at least until the system wraps around.
    143   1.1  riastrad  */
    144   1.1  riastrad unsigned
    145   1.2  riastrad dma_fence_context_alloc(unsigned n)
    146   1.1  riastrad {
    147   1.1  riastrad 	static volatile unsigned next_context = 0;
    148   1.1  riastrad 
    149   1.1  riastrad 	return atomic_add_int_nv(&next_context, n) - n;
    150   1.1  riastrad }
    151   1.1  riastrad 
    152   1.1  riastrad /*
    153   1.2  riastrad  * dma_fence_is_later(a, b)
    154   1.1  riastrad  *
    155   1.1  riastrad  *	True if the sequence number of fence a is later than the
    156   1.1  riastrad  *	sequence number of fence b.  Since sequence numbers wrap
    157   1.1  riastrad  *	around, we define this to mean that the sequence number of
    158   1.1  riastrad  *	fence a is no more than INT_MAX past the sequence number of
    159   1.1  riastrad  *	fence b.
    160   1.1  riastrad  *
    161   1.1  riastrad  *	The two fences must have the same context.
    162   1.1  riastrad  */
    163   1.1  riastrad bool
    164   1.2  riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
    165   1.1  riastrad {
    166   1.1  riastrad 
    167   1.1  riastrad 	KASSERTMSG(a->context == b->context, "incommensurate fences"
    168   1.1  riastrad 	    ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
    169   1.1  riastrad 
    170   1.1  riastrad 	return a->seqno - b->seqno < INT_MAX;
    171   1.1  riastrad }
    172   1.1  riastrad 
    173   1.1  riastrad /*
    174   1.9  riastrad  * dma_fence_get_stub()
    175   1.9  riastrad  *
    176   1.9  riastrad  *	Return a dma fence that is always already signalled.
    177   1.9  riastrad  */
    178   1.9  riastrad struct dma_fence *
    179   1.9  riastrad dma_fence_get_stub(void)
    180   1.9  riastrad {
    181   1.9  riastrad 	/*
    182   1.9  riastrad 	 * XXX This probably isn't good enough -- caller may try
    183   1.9  riastrad 	 * operations on this that require the lock, which will
    184   1.9  riastrad 	 * require us to create and destroy the lock on module
    185   1.9  riastrad 	 * load/unload.
    186   1.9  riastrad 	 */
    187   1.9  riastrad 	static struct dma_fence fence = {
    188   1.9  riastrad 		.refcount = {1}, /* always referenced */
    189   1.9  riastrad 		.flags = 1u << DMA_FENCE_FLAG_SIGNALED_BIT,
    190   1.9  riastrad 	};
    191   1.9  riastrad 
    192   1.9  riastrad 	return dma_fence_get(&fence);
    193   1.9  riastrad }
    194   1.9  riastrad 
    195   1.9  riastrad /*
    196   1.2  riastrad  * dma_fence_get(fence)
    197   1.1  riastrad  *
    198   1.1  riastrad  *	Acquire a reference to fence.  The fence must not be being
    199   1.1  riastrad  *	destroyed.  Return the fence.
    200   1.1  riastrad  */
    201   1.2  riastrad struct dma_fence *
    202   1.2  riastrad dma_fence_get(struct dma_fence *fence)
    203   1.1  riastrad {
    204   1.1  riastrad 
    205   1.1  riastrad 	if (fence)
    206   1.1  riastrad 		kref_get(&fence->refcount);
    207   1.1  riastrad 	return fence;
    208   1.1  riastrad }
    209   1.1  riastrad 
    210   1.1  riastrad /*
    211   1.2  riastrad  * dma_fence_get_rcu(fence)
    212   1.1  riastrad  *
    213   1.1  riastrad  *	Attempt to acquire a reference to a fence that may be about to
    214   1.1  riastrad  *	be destroyed, during a read section.  Return the fence on
    215   1.1  riastrad  *	success, or NULL on failure.
    216   1.1  riastrad  */
    217   1.2  riastrad struct dma_fence *
    218   1.2  riastrad dma_fence_get_rcu(struct dma_fence *fence)
    219   1.1  riastrad {
    220   1.1  riastrad 
    221   1.8  riastrad 	__insn_barrier();
    222   1.1  riastrad 	if (!kref_get_unless_zero(&fence->refcount))
    223   1.1  riastrad 		return NULL;
    224   1.1  riastrad 	return fence;
    225   1.1  riastrad }
    226   1.1  riastrad 
    227   1.3  riastrad /*
    228   1.3  riastrad  * dma_fence_get_rcu_safe(fencep)
    229   1.3  riastrad  *
    230   1.3  riastrad  *	Attempt to acquire a reference to the fence *fencep, which may
    231   1.3  riastrad  *	be about to be destroyed, during a read section.  If the value
    232   1.3  riastrad  *	of *fencep changes after we read *fencep but before we
    233   1.3  riastrad  *	increment its reference count, retry.  Return *fencep on
    234   1.3  riastrad  *	success, or NULL on failure.
    235   1.3  riastrad  */
    236   1.3  riastrad struct dma_fence *
    237   1.7  riastrad dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
    238   1.3  riastrad {
    239   1.3  riastrad 	struct dma_fence *fence, *fence0;
    240   1.3  riastrad 
    241   1.3  riastrad retry:
    242   1.3  riastrad 	fence = *fencep;
    243   1.3  riastrad 
    244   1.3  riastrad 	/* Load fence only once.  */
    245   1.3  riastrad 	__insn_barrier();
    246   1.3  riastrad 
    247   1.3  riastrad 	/* If there's nothing there, give up.  */
    248   1.3  riastrad 	if (fence == NULL)
    249   1.3  riastrad 		return NULL;
    250   1.3  riastrad 
    251   1.3  riastrad 	/* Make sure we don't load stale fence guts.  */
    252   1.3  riastrad 	membar_datadep_consumer();
    253   1.3  riastrad 
    254   1.3  riastrad 	/* Try to acquire a reference.  If we can't, try again.  */
    255   1.3  riastrad 	if (!dma_fence_get_rcu(fence))
    256   1.3  riastrad 		goto retry;
    257   1.3  riastrad 
    258   1.3  riastrad 	/*
    259   1.3  riastrad 	 * Confirm that it's still the same fence.  If not, release it
    260   1.3  riastrad 	 * and retry.
    261   1.3  riastrad 	 */
    262   1.3  riastrad 	fence0 = *fencep;
    263   1.3  riastrad 	__insn_barrier();
    264   1.3  riastrad 	if (fence != fence0) {
    265   1.3  riastrad 		dma_fence_put(fence);
    266   1.3  riastrad 		goto retry;
    267   1.3  riastrad 	}
    268   1.3  riastrad 
    269   1.3  riastrad 	/* Success!  */
    270   1.3  riastrad 	return fence;
    271   1.3  riastrad }
    272   1.3  riastrad 
    273   1.1  riastrad static void
    274   1.2  riastrad dma_fence_release(struct kref *refcount)
    275   1.1  riastrad {
    276   1.2  riastrad 	struct dma_fence *fence = container_of(refcount, struct dma_fence,
    277   1.2  riastrad 	    refcount);
    278   1.1  riastrad 
    279   1.2  riastrad 	KASSERT(!dma_fence_referenced_p(fence));
    280   1.1  riastrad 
    281   1.1  riastrad 	if (fence->ops->release)
    282   1.1  riastrad 		(*fence->ops->release)(fence);
    283   1.1  riastrad 	else
    284   1.2  riastrad 		dma_fence_free(fence);
    285   1.1  riastrad }
    286   1.1  riastrad 
    287   1.1  riastrad /*
    288   1.2  riastrad  * dma_fence_put(fence)
    289   1.1  riastrad  *
    290   1.1  riastrad  *	Release a reference to fence.  If this was the last one, call
    291   1.1  riastrad  *	the fence's release callback.
    292   1.1  riastrad  */
    293   1.1  riastrad void
    294   1.2  riastrad dma_fence_put(struct dma_fence *fence)
    295   1.1  riastrad {
    296   1.1  riastrad 
    297   1.1  riastrad 	if (fence == NULL)
    298   1.1  riastrad 		return;
    299   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    300   1.2  riastrad 	kref_put(&fence->refcount, &dma_fence_release);
    301   1.1  riastrad }
    302   1.1  riastrad 
    303   1.1  riastrad /*
    304   1.2  riastrad  * dma_fence_ensure_signal_enabled(fence)
    305   1.1  riastrad  *
    306   1.1  riastrad  *	Internal subroutine.  If the fence was already signalled,
    307   1.1  riastrad  *	return -ENOENT.  Otherwise, if the enable signalling callback
    308   1.1  riastrad  *	has not been called yet, call it.  If fails, signal the fence
    309   1.1  riastrad  *	and return -ENOENT.  If it succeeds, or if it had already been
    310   1.1  riastrad  *	called, return zero to indicate success.
    311   1.1  riastrad  *
    312   1.1  riastrad  *	Caller must hold the fence's lock.
    313   1.1  riastrad  */
    314   1.1  riastrad static int
    315   1.2  riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
    316   1.1  riastrad {
    317   1.1  riastrad 
    318   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    319   1.1  riastrad 	KASSERT(spin_is_locked(fence->lock));
    320   1.1  riastrad 
    321   1.1  riastrad 	/* If the fence was already signalled, fail with -ENOENT.  */
    322   1.2  riastrad 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    323   1.1  riastrad 		return -ENOENT;
    324   1.1  riastrad 
    325   1.1  riastrad 	/*
    326   1.1  riastrad 	 * If the enable signaling callback has been called, success.
    327   1.1  riastrad 	 * Otherwise, set the bit indicating it.
    328   1.1  riastrad 	 */
    329   1.2  riastrad 	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags))
    330   1.1  riastrad 		return 0;
    331   1.1  riastrad 
    332   1.1  riastrad 	/* Otherwise, note that we've called it and call it.  */
    333   1.1  riastrad 	if (!(*fence->ops->enable_signaling)(fence)) {
    334   1.1  riastrad 		/* If it failed, signal and return -ENOENT.  */
    335   1.2  riastrad 		dma_fence_signal_locked(fence);
    336   1.1  riastrad 		return -ENOENT;
    337   1.1  riastrad 	}
    338   1.1  riastrad 
    339   1.1  riastrad 	/* Success!  */
    340   1.1  riastrad 	return 0;
    341   1.1  riastrad }
    342   1.1  riastrad 
    343   1.1  riastrad /*
    344   1.2  riastrad  * dma_fence_add_callback(fence, fcb, fn)
    345   1.1  riastrad  *
    346   1.1  riastrad  *	If fence has been signalled, return -ENOENT.  If the enable
    347   1.1  riastrad  *	signalling callback hasn't been called yet, call it; if it
    348   1.1  riastrad  *	fails, return -ENOENT.  Otherwise, arrange to call fn(fence,
    349   1.1  riastrad  *	fcb) when it is signalled, and return 0.
    350   1.1  riastrad  *
    351   1.1  riastrad  *	The fence uses memory allocated by the caller in fcb from the
    352   1.2  riastrad  *	time of dma_fence_add_callback either to the time of
    353   1.2  riastrad  *	dma_fence_remove_callback, or just before calling fn.
    354   1.1  riastrad  */
    355   1.1  riastrad int
    356   1.2  riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
    357   1.2  riastrad     dma_fence_func_t fn)
    358   1.1  riastrad {
    359   1.1  riastrad 	int ret;
    360   1.1  riastrad 
    361   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    362   1.1  riastrad 
    363   1.1  riastrad 	/* Optimistically try to skip the lock if it's already signalled.  */
    364   1.2  riastrad 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
    365   1.1  riastrad 		ret = -ENOENT;
    366   1.1  riastrad 		goto out0;
    367   1.1  riastrad 	}
    368   1.1  riastrad 
    369   1.1  riastrad 	/* Acquire the lock.  */
    370   1.1  riastrad 	spin_lock(fence->lock);
    371   1.1  riastrad 
    372   1.1  riastrad 	/* Ensure signalling is enabled, or fail if we can't.  */
    373   1.2  riastrad 	ret = dma_fence_ensure_signal_enabled(fence);
    374   1.1  riastrad 	if (ret)
    375   1.1  riastrad 		goto out1;
    376   1.1  riastrad 
    377   1.1  riastrad 	/* Insert the callback.  */
    378   1.4  riastrad 	fcb->func = fn;
    379   1.1  riastrad 	TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
    380   1.1  riastrad 	fcb->fcb_onqueue = true;
    381   1.1  riastrad 
    382   1.1  riastrad 	/* Release the lock and we're done.  */
    383   1.1  riastrad out1:	spin_unlock(fence->lock);
    384   1.1  riastrad out0:	return ret;
    385   1.1  riastrad }
    386   1.1  riastrad 
    387   1.1  riastrad /*
    388   1.2  riastrad  * dma_fence_remove_callback(fence, fcb)
    389   1.1  riastrad  *
    390   1.1  riastrad  *	Remove the callback fcb from fence.  Return true if it was
    391   1.1  riastrad  *	removed from the list, or false if it had already run and so
    392   1.1  riastrad  *	was no longer queued anyway.  Caller must have already called
    393   1.2  riastrad  *	dma_fence_add_callback(fence, fcb).
    394   1.1  riastrad  */
    395   1.1  riastrad bool
    396   1.2  riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
    397   1.1  riastrad {
    398   1.1  riastrad 	bool onqueue;
    399   1.1  riastrad 
    400   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    401   1.1  riastrad 
    402   1.1  riastrad 	spin_lock(fence->lock);
    403   1.1  riastrad 	onqueue = fcb->fcb_onqueue;
    404   1.1  riastrad 	if (onqueue) {
    405   1.1  riastrad 		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
    406   1.1  riastrad 		fcb->fcb_onqueue = false;
    407   1.1  riastrad 	}
    408   1.1  riastrad 	spin_unlock(fence->lock);
    409   1.1  riastrad 
    410   1.1  riastrad 	return onqueue;
    411   1.1  riastrad }
    412   1.1  riastrad 
    413   1.1  riastrad /*
    414   1.2  riastrad  * dma_fence_enable_sw_signaling(fence)
    415   1.1  riastrad  *
    416   1.1  riastrad  *	If it hasn't been called yet and the fence hasn't been
    417   1.1  riastrad  *	signalled yet, call the fence's enable_sw_signaling callback.
    418   1.1  riastrad  *	If when that happens, the callback indicates failure by
    419   1.1  riastrad  *	returning false, signal the fence.
    420   1.1  riastrad  */
    421   1.1  riastrad void
    422   1.2  riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
    423   1.1  riastrad {
    424   1.1  riastrad 
    425   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    426   1.1  riastrad 
    427   1.1  riastrad 	spin_lock(fence->lock);
    428   1.2  riastrad 	(void)dma_fence_ensure_signal_enabled(fence);
    429   1.1  riastrad 	spin_unlock(fence->lock);
    430   1.1  riastrad }
    431   1.1  riastrad 
    432   1.1  riastrad /*
    433   1.2  riastrad  * dma_fence_is_signaled(fence)
    434   1.1  riastrad  *
    435   1.1  riastrad  *	Test whether the fence has been signalled.  If it has been
    436   1.2  riastrad  *	signalled by dma_fence_signal(_locked), return true.  If the
    437   1.1  riastrad  *	signalled callback returns true indicating that some implicit
    438   1.1  riastrad  *	external condition has changed, call the callbacks as if with
    439   1.2  riastrad  *	dma_fence_signal.
    440   1.1  riastrad  */
    441   1.1  riastrad bool
    442   1.2  riastrad dma_fence_is_signaled(struct dma_fence *fence)
    443   1.1  riastrad {
    444   1.1  riastrad 	bool signaled;
    445   1.1  riastrad 
    446   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    447   1.1  riastrad 
    448   1.1  riastrad 	spin_lock(fence->lock);
    449   1.2  riastrad 	signaled = dma_fence_is_signaled_locked(fence);
    450   1.1  riastrad 	spin_unlock(fence->lock);
    451   1.1  riastrad 
    452   1.1  riastrad 	return signaled;
    453   1.1  riastrad }
    454   1.1  riastrad 
    455   1.1  riastrad /*
    456   1.2  riastrad  * dma_fence_is_signaled_locked(fence)
    457   1.1  riastrad  *
    458   1.1  riastrad  *	Test whether the fence has been signalled.  Like
    459   1.2  riastrad  *	dma_fence_is_signaleed, but caller already holds the fence's lock.
    460   1.1  riastrad  */
    461   1.1  riastrad bool
    462   1.2  riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
    463   1.1  riastrad {
    464   1.1  riastrad 
    465   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    466   1.1  riastrad 	KASSERT(spin_is_locked(fence->lock));
    467   1.1  riastrad 
    468   1.1  riastrad 	/* Check whether we already set the signalled bit.  */
    469   1.2  riastrad 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    470   1.1  riastrad 		return true;
    471   1.1  riastrad 
    472   1.1  riastrad 	/* If there's a signalled callback, test it.  */
    473   1.1  riastrad 	if (fence->ops->signaled) {
    474   1.1  riastrad 		if ((*fence->ops->signaled)(fence)) {
    475   1.1  riastrad 			/*
    476   1.1  riastrad 			 * It's been signalled implicitly by some
    477   1.1  riastrad 			 * external phenomonen.  Act as though someone
    478   1.2  riastrad 			 * has called dma_fence_signal.
    479   1.1  riastrad 			 */
    480   1.2  riastrad 			dma_fence_signal_locked(fence);
    481   1.1  riastrad 			return true;
    482   1.1  riastrad 		}
    483   1.1  riastrad 	}
    484   1.1  riastrad 
    485   1.1  riastrad 	return false;
    486   1.1  riastrad }
    487   1.1  riastrad 
    488   1.1  riastrad /*
    489   1.5  riastrad  * dma_fence_set_error(fence, error)
    490   1.5  riastrad  *
    491   1.5  riastrad  *	Set an error code prior to dma_fence_signal for use by a
    492   1.5  riastrad  *	waiter to learn about success or failure of the fence.
    493   1.5  riastrad  */
    494   1.5  riastrad void
    495   1.5  riastrad dma_fence_set_error(struct dma_fence *fence, int error)
    496   1.5  riastrad {
    497   1.5  riastrad 
    498   1.5  riastrad 	KASSERT(!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)));
    499   1.6  riastrad 	KASSERTMSG(error >= -ELAST, "%d", error);
    500   1.5  riastrad 	KASSERTMSG(error < 0, "%d", error);
    501   1.5  riastrad 
    502   1.5  riastrad 	fence->error = error;
    503   1.5  riastrad }
    504   1.5  riastrad 
    505   1.5  riastrad /*
    506  1.10  riastrad  * dma_fence_get_status(fence)
    507  1.10  riastrad  *
    508  1.10  riastrad  *	Return 0 if fence has yet to be signalled, 1 if it has been
    509  1.10  riastrad  *	signalled without error, or negative error code if
    510  1.10  riastrad  *	dma_fence_set_error was used.
    511  1.10  riastrad  */
    512  1.10  riastrad int
    513  1.10  riastrad dma_fence_get_status(struct dma_fence *fence)
    514  1.10  riastrad {
    515  1.10  riastrad 	int ret;
    516  1.10  riastrad 
    517  1.10  riastrad 	spin_lock(fence->lock);
    518  1.10  riastrad 	if (!dma_fence_is_signaled_locked(fence)) {
    519  1.10  riastrad 		ret = 0;
    520  1.10  riastrad 	} else if (fence->error) {
    521  1.10  riastrad 		ret = fence->error;
    522  1.10  riastrad 		KASSERTMSG(ret < 0, "%d", ret);
    523  1.10  riastrad 	} else {
    524  1.10  riastrad 		ret = 1;
    525  1.10  riastrad 	}
    526  1.10  riastrad 	spin_unlock(fence->lock);
    527  1.10  riastrad 
    528  1.10  riastrad 	return ret;
    529  1.10  riastrad }
    530  1.10  riastrad 
    531  1.10  riastrad /*
    532   1.2  riastrad  * dma_fence_signal(fence)
    533   1.1  riastrad  *
    534   1.1  riastrad  *	Signal the fence.  If it has already been signalled, return
    535   1.1  riastrad  *	-EINVAL.  If it has not been signalled, call the enable
    536   1.1  riastrad  *	signalling callback if it hasn't been called yet, and remove
    537   1.1  riastrad  *	each registered callback from the queue and call it; then
    538   1.1  riastrad  *	return 0.
    539   1.1  riastrad  */
    540   1.1  riastrad int
    541   1.2  riastrad dma_fence_signal(struct dma_fence *fence)
    542   1.1  riastrad {
    543   1.1  riastrad 	int ret;
    544   1.1  riastrad 
    545   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    546   1.1  riastrad 
    547   1.1  riastrad 	spin_lock(fence->lock);
    548   1.2  riastrad 	ret = dma_fence_signal_locked(fence);
    549   1.1  riastrad 	spin_unlock(fence->lock);
    550   1.1  riastrad 
    551   1.1  riastrad 	return ret;
    552   1.1  riastrad }
    553   1.1  riastrad 
    554   1.1  riastrad /*
    555   1.2  riastrad  * dma_fence_signal_locked(fence)
    556   1.1  riastrad  *
    557   1.2  riastrad  *	Signal the fence.  Like dma_fence_signal, but caller already
    558   1.2  riastrad  *	holds the fence's lock.
    559   1.1  riastrad  */
    560   1.1  riastrad int
    561   1.2  riastrad dma_fence_signal_locked(struct dma_fence *fence)
    562   1.1  riastrad {
    563   1.2  riastrad 	struct dma_fence_cb *fcb, *next;
    564   1.1  riastrad 
    565   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    566   1.1  riastrad 	KASSERT(spin_is_locked(fence->lock));
    567   1.1  riastrad 
    568   1.1  riastrad 	/* If it's been signalled, fail; otherwise set the signalled bit.  */
    569   1.2  riastrad 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
    570   1.1  riastrad 		return -EINVAL;
    571   1.1  riastrad 
    572   1.1  riastrad 	/* Wake waiters.  */
    573   1.1  riastrad 	cv_broadcast(&fence->f_cv);
    574   1.1  riastrad 
    575   1.1  riastrad 	/* Remove and call the callbacks.  */
    576   1.1  riastrad 	TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
    577   1.1  riastrad 		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
    578   1.1  riastrad 		fcb->fcb_onqueue = false;
    579   1.4  riastrad 		(*fcb->func)(fence, fcb);
    580   1.1  riastrad 	}
    581   1.1  riastrad 
    582   1.1  riastrad 	/* Success! */
    583   1.1  riastrad 	return 0;
    584   1.1  riastrad }
    585   1.1  riastrad 
    586   1.1  riastrad struct wait_any {
    587   1.2  riastrad 	struct dma_fence_cb	fcb;
    588   1.1  riastrad 	struct wait_any1 {
    589   1.1  riastrad 		kmutex_t	lock;
    590   1.1  riastrad 		kcondvar_t	cv;
    591   1.1  riastrad 		bool		done;
    592  1.11  riastrad 		uint32_t	*ip;
    593  1.11  riastrad 		struct wait_any	*cb;
    594   1.1  riastrad 	}		*common;
    595   1.1  riastrad };
    596   1.1  riastrad 
    597   1.1  riastrad static void
    598   1.2  riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
    599   1.1  riastrad {
    600   1.1  riastrad 	struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
    601   1.1  riastrad 
    602   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    603   1.1  riastrad 
    604   1.1  riastrad 	mutex_enter(&cb->common->lock);
    605   1.1  riastrad 	cb->common->done = true;
    606  1.11  riastrad 	if (cb->common->ip)
    607  1.11  riastrad 		*cb->common->ip = cb - cb->common->cb;
    608   1.1  riastrad 	cv_broadcast(&cb->common->cv);
    609   1.1  riastrad 	mutex_exit(&cb->common->lock);
    610   1.1  riastrad }
    611   1.1  riastrad 
    612   1.1  riastrad /*
    613  1.11  riastrad  * dma_fence_wait_any_timeout(fence, nfences, intr, timeout, ip)
    614   1.1  riastrad  *
    615   1.1  riastrad  *	Wait for any of fences[0], fences[1], fences[2], ...,
    616  1.13  riastrad  *	fences[nfences-1] to be signalled.  If ip is nonnull, set *ip
    617  1.13  riastrad  *	to the index of the first one.
    618   1.1  riastrad  */
    619   1.1  riastrad long
    620   1.2  riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
    621  1.11  riastrad     bool intr, long timeout, uint32_t *ip)
    622   1.1  riastrad {
    623   1.1  riastrad 	struct wait_any1 common;
    624   1.1  riastrad 	struct wait_any *cb;
    625   1.1  riastrad 	uint32_t i, j;
    626   1.1  riastrad 	int start, end;
    627   1.1  riastrad 	long ret = 0;
    628   1.1  riastrad 
    629   1.1  riastrad 	/* Allocate an array of callback records.  */
    630   1.1  riastrad 	cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
    631   1.1  riastrad 	if (cb == NULL) {
    632   1.1  riastrad 		ret = -ENOMEM;
    633   1.1  riastrad 		goto out0;
    634   1.1  riastrad 	}
    635   1.1  riastrad 
    636   1.1  riastrad 	/* Initialize a mutex and condvar for the common wait.  */
    637   1.1  riastrad 	mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
    638   1.1  riastrad 	cv_init(&common.cv, "fence");
    639   1.1  riastrad 	common.done = false;
    640  1.11  riastrad 	common.ip = ip;
    641  1.11  riastrad 	common.cb = cb;
    642   1.1  riastrad 
    643   1.1  riastrad 	/* Add a callback to each of the fences, or stop here if we can't.  */
    644   1.1  riastrad 	for (i = 0; i < nfences; i++) {
    645   1.1  riastrad 		cb[i].common = &common;
    646   1.2  riastrad 		KASSERT(dma_fence_referenced_p(fences[i]));
    647   1.2  riastrad 		ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
    648   1.2  riastrad 		    &wait_any_cb);
    649   1.1  riastrad 		if (ret)
    650   1.1  riastrad 			goto out1;
    651   1.1  riastrad 	}
    652   1.1  riastrad 
    653   1.1  riastrad 	/*
    654   1.1  riastrad 	 * Test whether any of the fences has been signalled.  If they
    655   1.1  riastrad 	 * have, stop here.  If the haven't, we are guaranteed to be
    656   1.1  riastrad 	 * notified by one of the callbacks when they have.
    657   1.1  riastrad 	 */
    658   1.1  riastrad 	for (j = 0; j < nfences; j++) {
    659  1.11  riastrad 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags)) {
    660  1.11  riastrad 			if (ip)
    661  1.11  riastrad 				*ip = j;
    662  1.11  riastrad 			ret = 0;
    663   1.1  riastrad 			goto out1;
    664  1.11  riastrad 		}
    665   1.1  riastrad 	}
    666   1.1  riastrad 
    667   1.1  riastrad 	/*
    668   1.1  riastrad 	 * None of them was ready immediately.  Wait for one of the
    669   1.1  riastrad 	 * callbacks to notify us when it is done.
    670   1.1  riastrad 	 */
    671   1.1  riastrad 	mutex_enter(&common.lock);
    672   1.1  riastrad 	while (timeout > 0 && !common.done) {
    673   1.1  riastrad 		start = getticks();
    674   1.1  riastrad 		__insn_barrier();
    675   1.1  riastrad 		if (intr) {
    676   1.1  riastrad 			if (timeout != MAX_SCHEDULE_TIMEOUT) {
    677   1.1  riastrad 				ret = -cv_timedwait_sig(&common.cv,
    678   1.1  riastrad 				    &common.lock, MIN(timeout, /* paranoia */
    679   1.1  riastrad 					MAX_SCHEDULE_TIMEOUT));
    680   1.1  riastrad 			} else {
    681   1.1  riastrad 				ret = -cv_wait_sig(&common.cv, &common.lock);
    682   1.1  riastrad 			}
    683   1.1  riastrad 		} else {
    684   1.1  riastrad 			if (timeout != MAX_SCHEDULE_TIMEOUT) {
    685   1.1  riastrad 				ret = -cv_timedwait(&common.cv,
    686   1.1  riastrad 				    &common.lock, MIN(timeout, /* paranoia */
    687   1.1  riastrad 					MAX_SCHEDULE_TIMEOUT));
    688   1.1  riastrad 			} else {
    689   1.1  riastrad 				cv_wait(&common.cv, &common.lock);
    690   1.1  riastrad 				ret = 0;
    691   1.1  riastrad 			}
    692   1.1  riastrad 		}
    693   1.1  riastrad 		end = getticks();
    694   1.1  riastrad 		__insn_barrier();
    695   1.1  riastrad 		if (ret) {
    696   1.1  riastrad 			if (ret == -ERESTART)
    697   1.1  riastrad 				ret = -ERESTARTSYS;
    698   1.1  riastrad 			break;
    699   1.1  riastrad 		}
    700   1.1  riastrad 		timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
    701   1.1  riastrad 	}
    702   1.1  riastrad 	mutex_exit(&common.lock);
    703   1.1  riastrad 
    704   1.1  riastrad 	/*
    705   1.1  riastrad 	 * Massage the return code: if we were interrupted, return
    706   1.1  riastrad 	 * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
    707   1.1  riastrad 	 * return the remaining time.
    708   1.1  riastrad 	 */
    709   1.1  riastrad 	if (ret < 0) {
    710   1.1  riastrad 		if (ret == -EINTR || ret == -ERESTART)
    711   1.1  riastrad 			ret = -ERESTARTSYS;
    712   1.1  riastrad 		if (ret == -EWOULDBLOCK)
    713   1.1  riastrad 			ret = 0;
    714   1.1  riastrad 	} else {
    715   1.1  riastrad 		KASSERT(ret == 0);
    716   1.1  riastrad 		ret = timeout;
    717   1.1  riastrad 	}
    718   1.1  riastrad 
    719   1.1  riastrad out1:	while (i --> 0)
    720   1.2  riastrad 		(void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
    721   1.1  riastrad 	cv_destroy(&common.cv);
    722   1.1  riastrad 	mutex_destroy(&common.lock);
    723   1.1  riastrad 	kfree(cb);
    724   1.1  riastrad out0:	return ret;
    725   1.1  riastrad }
    726   1.1  riastrad 
    727   1.1  riastrad /*
    728   1.2  riastrad  * dma_fence_wait_timeout(fence, intr, timeout)
    729   1.1  riastrad  *
    730   1.1  riastrad  *	Wait until fence is signalled; or until interrupt, if intr is
    731   1.1  riastrad  *	true; or until timeout, if positive.  Return -ERESTARTSYS if
    732   1.1  riastrad  *	interrupted, negative error code on any other error, zero on
    733   1.1  riastrad  *	timeout, or positive number of ticks remaining if the fence is
    734   1.1  riastrad  *	signalled before the timeout.  Works by calling the fence wait
    735   1.1  riastrad  *	callback.
    736   1.1  riastrad  *
    737   1.1  riastrad  *	The timeout must be nonnegative and less than
    738   1.1  riastrad  *	MAX_SCHEDULE_TIMEOUT.
    739   1.1  riastrad  */
    740   1.1  riastrad long
    741   1.2  riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
    742   1.1  riastrad {
    743   1.1  riastrad 
    744   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    745   1.1  riastrad 	KASSERT(timeout >= 0);
    746   1.1  riastrad 	KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
    747   1.1  riastrad 
    748  1.14  riastrad 	if (fence->ops->wait)
    749  1.14  riastrad 		return (*fence->ops->wait)(fence, intr, timeout);
    750  1.14  riastrad 	else
    751  1.14  riastrad 		return dma_fence_default_wait(fence, intr, timeout);
    752   1.1  riastrad }
    753   1.1  riastrad 
    754   1.1  riastrad /*
    755   1.2  riastrad  * dma_fence_wait(fence, intr)
    756   1.1  riastrad  *
    757   1.1  riastrad  *	Wait until fence is signalled; or until interrupt, if intr is
    758   1.1  riastrad  *	true.  Return -ERESTARTSYS if interrupted, negative error code
    759   1.1  riastrad  *	on any other error, zero on sucess.  Works by calling the fence
    760   1.1  riastrad  *	wait callback with MAX_SCHEDULE_TIMEOUT.
    761   1.1  riastrad  */
    762   1.1  riastrad long
    763   1.2  riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
    764   1.1  riastrad {
    765   1.1  riastrad 	long ret;
    766   1.1  riastrad 
    767   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    768   1.1  riastrad 
    769   1.1  riastrad 	ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
    770   1.1  riastrad 	KASSERT(ret != 0);
    771   1.1  riastrad 
    772   1.1  riastrad 	return (ret < 0 ? ret : 0);
    773   1.1  riastrad }
    774   1.1  riastrad 
    775   1.1  riastrad /*
    776   1.2  riastrad  * dma_fence_default_wait(fence, intr, timeout)
    777   1.1  riastrad  *
    778   1.1  riastrad  *	Default implementation of fence wait callback using a condition
    779   1.1  riastrad  *	variable.  If the fence is already signalled, return timeout,
    780   1.1  riastrad  *	or 1 if no timeout.  If the enable signalling callback hasn't
    781   1.1  riastrad  *	been called, call it, and if it fails, act as if the fence had
    782   1.1  riastrad  *	been signalled.  Otherwise, wait on the internal condvar.  If
    783   1.1  riastrad  *	timeout is MAX_SCHEDULE_TIMEOUT, treat it as no timeout.
    784   1.1  riastrad  */
    785   1.1  riastrad long
    786   1.2  riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
    787   1.1  riastrad {
    788   1.1  riastrad 	int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
    789   1.1  riastrad 	kmutex_t *lock = &fence->lock->sl_lock;
    790   1.1  riastrad 	long ret = 0;
    791   1.1  riastrad 
    792   1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    793   1.1  riastrad 	KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
    794   1.1  riastrad 	KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
    795   1.1  riastrad 
    796   1.1  riastrad 	/* Optimistically try to skip the lock if it's already signalled.  */
    797   1.2  riastrad 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    798   1.1  riastrad 		return (timeout < MAX_SCHEDULE_TIMEOUT ? timeout : 1);
    799   1.1  riastrad 
    800   1.1  riastrad 	/* Acquire the lock.  */
    801   1.1  riastrad 	spin_lock(fence->lock);
    802   1.1  riastrad 
    803   1.1  riastrad 	/* Ensure signalling is enabled, or fail if we can't.  */
    804   1.2  riastrad 	ret = dma_fence_ensure_signal_enabled(fence);
    805   1.1  riastrad 	if (ret)
    806   1.1  riastrad 		goto out;
    807   1.1  riastrad 
    808   1.1  riastrad 	/* Find out what our deadline is so we can handle spurious wakeup.  */
    809   1.1  riastrad 	if (timeout < MAX_SCHEDULE_TIMEOUT) {
    810   1.1  riastrad 		now = getticks();
    811   1.1  riastrad 		__insn_barrier();
    812   1.1  riastrad 		starttime = now;
    813   1.1  riastrad 		deadline = starttime + timeout;
    814   1.1  riastrad 	}
    815   1.1  riastrad 
    816   1.1  riastrad 	/* Wait until the signalled bit is set.  */
    817   1.2  riastrad 	while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
    818   1.1  riastrad 		/*
    819   1.1  riastrad 		 * If there's a timeout and we've passed the deadline,
    820   1.1  riastrad 		 * give up.
    821   1.1  riastrad 		 */
    822   1.1  riastrad 		if (timeout < MAX_SCHEDULE_TIMEOUT) {
    823   1.1  riastrad 			now = getticks();
    824   1.1  riastrad 			__insn_barrier();
    825   1.1  riastrad 			if (deadline <= now)
    826   1.1  riastrad 				break;
    827   1.1  riastrad 		}
    828   1.1  riastrad 		if (intr) {
    829   1.1  riastrad 			if (timeout < MAX_SCHEDULE_TIMEOUT) {
    830   1.1  riastrad 				ret = -cv_timedwait_sig(&fence->f_cv, lock,
    831   1.1  riastrad 				    deadline - now);
    832   1.1  riastrad 			} else {
    833   1.1  riastrad 				ret = -cv_wait_sig(&fence->f_cv, lock);
    834   1.1  riastrad 			}
    835   1.1  riastrad 		} else {
    836   1.1  riastrad 			if (timeout < MAX_SCHEDULE_TIMEOUT) {
    837   1.1  riastrad 				ret = -cv_timedwait(&fence->f_cv, lock,
    838   1.1  riastrad 				    deadline - now);
    839   1.1  riastrad 			} else {
    840   1.1  riastrad 				cv_wait(&fence->f_cv, lock);
    841   1.1  riastrad 				ret = 0;
    842   1.1  riastrad 			}
    843   1.1  riastrad 		}
    844   1.1  riastrad 		/* If the wait failed, give up.  */
    845   1.1  riastrad 		if (ret) {
    846   1.1  riastrad 			if (ret == -ERESTART)
    847   1.1  riastrad 				ret = -ERESTARTSYS;
    848   1.1  riastrad 			break;
    849   1.1  riastrad 		}
    850   1.1  riastrad 	}
    851   1.1  riastrad 
    852   1.1  riastrad out:
    853   1.1  riastrad 	/* All done.  Release the lock.  */
    854   1.1  riastrad 	spin_unlock(fence->lock);
    855   1.1  riastrad 
    856   1.1  riastrad 	/* If cv_timedwait gave up, return 0 meaning timeout.  */
    857   1.1  riastrad 	if (ret == -EWOULDBLOCK) {
    858   1.1  riastrad 		/* Only cv_timedwait and cv_timedwait_sig can return this.  */
    859   1.1  riastrad 		KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
    860   1.1  riastrad 		return 0;
    861   1.1  riastrad 	}
    862   1.1  riastrad 
    863   1.1  riastrad 	/* If there was a timeout and the deadline passed, return 0.  */
    864   1.1  riastrad 	if (timeout < MAX_SCHEDULE_TIMEOUT) {
    865   1.1  riastrad 		if (deadline <= now)
    866   1.1  riastrad 			return 0;
    867   1.1  riastrad 	}
    868   1.1  riastrad 
    869   1.1  riastrad 	/* If we were interrupted, return -ERESTARTSYS.  */
    870   1.1  riastrad 	if (ret == -EINTR || ret == -ERESTART)
    871   1.1  riastrad 		return -ERESTARTSYS;
    872   1.1  riastrad 
    873   1.1  riastrad 	/* If there was any other kind of error, fail.  */
    874   1.1  riastrad 	if (ret)
    875   1.1  riastrad 		return ret;
    876   1.1  riastrad 
    877   1.1  riastrad 	/*
    878   1.1  riastrad 	 * Success!  Return the number of ticks left, at least 1, or 1
    879   1.1  riastrad 	 * if no timeout.
    880   1.1  riastrad 	 */
    881   1.1  riastrad 	return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
    882   1.1  riastrad }
    883  1.12  riastrad 
    884  1.12  riastrad /*
    885  1.12  riastrad  * __dma_fence_signal(fence)
    886  1.12  riastrad  *
    887  1.12  riastrad  *	Set fence's signalled bit, without waking waiters yet.  Return
    888  1.12  riastrad  *	true if it was newly set, false if it was already set.
    889  1.12  riastrad  */
    890  1.12  riastrad bool
    891  1.12  riastrad __dma_fence_signal(struct dma_fence *fence)
    892  1.12  riastrad {
    893  1.12  riastrad 
    894  1.12  riastrad 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
    895  1.12  riastrad 		return false;
    896  1.12  riastrad 
    897  1.12  riastrad 	return true;
    898  1.12  riastrad }
    899  1.12  riastrad 
    900  1.12  riastrad /*
    901  1.12  riastrad  * __dma_fence_signal_wake(fence)
    902  1.12  riastrad  *
    903  1.12  riastrad  *	Wake fence's waiters.  Caller must have previously called
    904  1.12  riastrad  *	__dma_fence_signal and it must have previously returned true.
    905  1.12  riastrad  */
    906  1.12  riastrad void
    907  1.12  riastrad __dma_fence_signal_wake(struct dma_fence *fence, ktime_t timestamp)
    908  1.12  riastrad {
    909  1.12  riastrad 	struct dma_fence_cb *fcb, *next;
    910  1.12  riastrad 
    911  1.12  riastrad 	spin_lock(fence->lock);
    912  1.12  riastrad 
    913  1.12  riastrad 	KASSERT(fence->flags & DMA_FENCE_FLAG_SIGNALED_BIT);
    914  1.12  riastrad 
    915  1.12  riastrad 	/* Wake waiters.  */
    916  1.12  riastrad 	cv_broadcast(&fence->f_cv);
    917  1.12  riastrad 
    918  1.12  riastrad 	/* Remove and call the callbacks.  */
    919  1.12  riastrad 	TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
    920  1.12  riastrad 		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
    921  1.12  riastrad 		fcb->fcb_onqueue = false;
    922  1.12  riastrad 		(*fcb->func)(fence, fcb);
    923  1.12  riastrad 	}
    924  1.12  riastrad 
    925  1.12  riastrad 	spin_unlock(fence->lock);
    926  1.12  riastrad }
    927