linux_dma_fence.c revision 1.19 1 1.19 riastrad /* $NetBSD: linux_dma_fence.c,v 1.19 2021/12/19 12:02:40 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.19 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.19 2021/12/19 12:02:40 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/atomic.h>
36 1.1 riastrad #include <sys/condvar.h>
37 1.1 riastrad #include <sys/queue.h>
38 1.1 riastrad
39 1.1 riastrad #include <linux/atomic.h>
40 1.2 riastrad #include <linux/dma-fence.h>
41 1.1 riastrad #include <linux/errno.h>
42 1.1 riastrad #include <linux/kref.h>
43 1.1 riastrad #include <linux/sched.h>
44 1.1 riastrad #include <linux/spinlock.h>
45 1.1 riastrad
46 1.1 riastrad /*
47 1.2 riastrad * linux_dma_fence_trace
48 1.1 riastrad *
49 1.2 riastrad * True if we print DMA_FENCE_TRACE messages, false if not. These
50 1.2 riastrad * are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
51 1.2 riastrad * in boothowto.
52 1.1 riastrad */
53 1.2 riastrad int linux_dma_fence_trace = 0;
54 1.1 riastrad
55 1.1 riastrad /*
56 1.2 riastrad * dma_fence_referenced_p(fence)
57 1.1 riastrad *
58 1.1 riastrad * True if fence has a positive reference count. True after
59 1.2 riastrad * dma_fence_init; after the last dma_fence_put, this becomes
60 1.2 riastrad * false.
61 1.1 riastrad */
62 1.1 riastrad static inline bool __diagused
63 1.2 riastrad dma_fence_referenced_p(struct dma_fence *fence)
64 1.1 riastrad {
65 1.1 riastrad
66 1.1 riastrad return kref_referenced_p(&fence->refcount);
67 1.1 riastrad }
68 1.1 riastrad
69 1.1 riastrad /*
70 1.2 riastrad * dma_fence_init(fence, ops, lock, context, seqno)
71 1.1 riastrad *
72 1.2 riastrad * Initialize fence. Caller should call dma_fence_destroy when
73 1.2 riastrad * done, after all references have been released.
74 1.1 riastrad */
75 1.1 riastrad void
76 1.2 riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
77 1.2 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
78 1.1 riastrad {
79 1.1 riastrad
80 1.1 riastrad kref_init(&fence->refcount);
81 1.1 riastrad fence->lock = lock;
82 1.1 riastrad fence->flags = 0;
83 1.1 riastrad fence->context = context;
84 1.1 riastrad fence->seqno = seqno;
85 1.1 riastrad fence->ops = ops;
86 1.18 riastrad fence->error = 0;
87 1.1 riastrad TAILQ_INIT(&fence->f_callbacks);
88 1.2 riastrad cv_init(&fence->f_cv, "dmafence");
89 1.1 riastrad }
90 1.1 riastrad
91 1.1 riastrad /*
92 1.18 riastrad * dma_fence_reset(fence)
93 1.18 riastrad *
94 1.18 riastrad * Ensure fence is in a quiescent state. Allowed either for newly
95 1.18 riastrad * initialized or freed fences, but not fences with more than one
96 1.18 riastrad * reference.
97 1.18 riastrad *
98 1.18 riastrad * XXX extension to Linux API
99 1.18 riastrad */
100 1.18 riastrad void
101 1.18 riastrad dma_fence_reset(struct dma_fence *fence, const struct dma_fence_ops *ops,
102 1.18 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
103 1.18 riastrad {
104 1.18 riastrad
105 1.18 riastrad KASSERT(kref_read(&fence->refcount) == 0 ||
106 1.18 riastrad kref_read(&fence->refcount) == 1);
107 1.18 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
108 1.18 riastrad KASSERT(fence->lock == lock);
109 1.18 riastrad KASSERT(fence->ops == ops);
110 1.18 riastrad
111 1.18 riastrad kref_init(&fence->refcount);
112 1.18 riastrad fence->flags = 0;
113 1.18 riastrad fence->context = context;
114 1.18 riastrad fence->seqno = seqno;
115 1.18 riastrad fence->error = 0;
116 1.18 riastrad }
117 1.18 riastrad
118 1.18 riastrad /*
119 1.2 riastrad * dma_fence_destroy(fence)
120 1.1 riastrad *
121 1.2 riastrad * Clean up memory initialized with dma_fence_init. This is meant
122 1.2 riastrad * to be used after a fence release callback.
123 1.19 riastrad *
124 1.19 riastrad * XXX extension to Linux API
125 1.1 riastrad */
126 1.1 riastrad void
127 1.2 riastrad dma_fence_destroy(struct dma_fence *fence)
128 1.1 riastrad {
129 1.1 riastrad
130 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
131 1.1 riastrad
132 1.1 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
133 1.1 riastrad cv_destroy(&fence->f_cv);
134 1.1 riastrad }
135 1.1 riastrad
136 1.1 riastrad static void
137 1.2 riastrad dma_fence_free_cb(struct rcu_head *rcu)
138 1.1 riastrad {
139 1.19 riastrad struct dma_fence *fence = container_of(rcu, struct dma_fence, rcu);
140 1.1 riastrad
141 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
142 1.1 riastrad
143 1.2 riastrad dma_fence_destroy(fence);
144 1.1 riastrad kfree(fence);
145 1.1 riastrad }
146 1.1 riastrad
147 1.1 riastrad /*
148 1.2 riastrad * dma_fence_free(fence)
149 1.1 riastrad *
150 1.1 riastrad * Schedule fence to be destroyed and then freed with kfree after
151 1.1 riastrad * any pending RCU read sections on all CPUs have completed.
152 1.1 riastrad * Caller must guarantee all references have been released. This
153 1.1 riastrad * is meant to be used after a fence release callback.
154 1.1 riastrad *
155 1.1 riastrad * NOTE: Callers assume kfree will be used. We don't even use
156 1.1 riastrad * kmalloc to allocate these -- caller is expected to allocate
157 1.2 riastrad * memory with kmalloc to be initialized with dma_fence_init.
158 1.1 riastrad */
159 1.1 riastrad void
160 1.2 riastrad dma_fence_free(struct dma_fence *fence)
161 1.1 riastrad {
162 1.1 riastrad
163 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
164 1.1 riastrad
165 1.19 riastrad call_rcu(&fence->rcu, &dma_fence_free_cb);
166 1.1 riastrad }
167 1.1 riastrad
168 1.1 riastrad /*
169 1.2 riastrad * dma_fence_context_alloc(n)
170 1.1 riastrad *
171 1.1 riastrad * Return the first of a contiguous sequence of unique
172 1.1 riastrad * identifiers, at least until the system wraps around.
173 1.1 riastrad */
174 1.1 riastrad unsigned
175 1.2 riastrad dma_fence_context_alloc(unsigned n)
176 1.1 riastrad {
177 1.1 riastrad static volatile unsigned next_context = 0;
178 1.1 riastrad
179 1.1 riastrad return atomic_add_int_nv(&next_context, n) - n;
180 1.1 riastrad }
181 1.1 riastrad
182 1.1 riastrad /*
183 1.2 riastrad * dma_fence_is_later(a, b)
184 1.1 riastrad *
185 1.1 riastrad * True if the sequence number of fence a is later than the
186 1.1 riastrad * sequence number of fence b. Since sequence numbers wrap
187 1.1 riastrad * around, we define this to mean that the sequence number of
188 1.1 riastrad * fence a is no more than INT_MAX past the sequence number of
189 1.1 riastrad * fence b.
190 1.1 riastrad *
191 1.1 riastrad * The two fences must have the same context.
192 1.1 riastrad */
193 1.1 riastrad bool
194 1.2 riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
195 1.1 riastrad {
196 1.1 riastrad
197 1.1 riastrad KASSERTMSG(a->context == b->context, "incommensurate fences"
198 1.1 riastrad ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
199 1.1 riastrad
200 1.1 riastrad return a->seqno - b->seqno < INT_MAX;
201 1.1 riastrad }
202 1.1 riastrad
203 1.1 riastrad /*
204 1.9 riastrad * dma_fence_get_stub()
205 1.9 riastrad *
206 1.9 riastrad * Return a dma fence that is always already signalled.
207 1.9 riastrad */
208 1.9 riastrad struct dma_fence *
209 1.9 riastrad dma_fence_get_stub(void)
210 1.9 riastrad {
211 1.9 riastrad /*
212 1.9 riastrad * XXX This probably isn't good enough -- caller may try
213 1.9 riastrad * operations on this that require the lock, which will
214 1.9 riastrad * require us to create and destroy the lock on module
215 1.9 riastrad * load/unload.
216 1.9 riastrad */
217 1.9 riastrad static struct dma_fence fence = {
218 1.9 riastrad .refcount = {1}, /* always referenced */
219 1.9 riastrad .flags = 1u << DMA_FENCE_FLAG_SIGNALED_BIT,
220 1.9 riastrad };
221 1.9 riastrad
222 1.9 riastrad return dma_fence_get(&fence);
223 1.9 riastrad }
224 1.9 riastrad
225 1.9 riastrad /*
226 1.2 riastrad * dma_fence_get(fence)
227 1.1 riastrad *
228 1.1 riastrad * Acquire a reference to fence. The fence must not be being
229 1.1 riastrad * destroyed. Return the fence.
230 1.1 riastrad */
231 1.2 riastrad struct dma_fence *
232 1.2 riastrad dma_fence_get(struct dma_fence *fence)
233 1.1 riastrad {
234 1.1 riastrad
235 1.1 riastrad if (fence)
236 1.1 riastrad kref_get(&fence->refcount);
237 1.1 riastrad return fence;
238 1.1 riastrad }
239 1.1 riastrad
240 1.1 riastrad /*
241 1.2 riastrad * dma_fence_get_rcu(fence)
242 1.1 riastrad *
243 1.1 riastrad * Attempt to acquire a reference to a fence that may be about to
244 1.1 riastrad * be destroyed, during a read section. Return the fence on
245 1.1 riastrad * success, or NULL on failure.
246 1.1 riastrad */
247 1.2 riastrad struct dma_fence *
248 1.2 riastrad dma_fence_get_rcu(struct dma_fence *fence)
249 1.1 riastrad {
250 1.1 riastrad
251 1.8 riastrad __insn_barrier();
252 1.1 riastrad if (!kref_get_unless_zero(&fence->refcount))
253 1.1 riastrad return NULL;
254 1.1 riastrad return fence;
255 1.1 riastrad }
256 1.1 riastrad
257 1.3 riastrad /*
258 1.3 riastrad * dma_fence_get_rcu_safe(fencep)
259 1.3 riastrad *
260 1.3 riastrad * Attempt to acquire a reference to the fence *fencep, which may
261 1.3 riastrad * be about to be destroyed, during a read section. If the value
262 1.3 riastrad * of *fencep changes after we read *fencep but before we
263 1.3 riastrad * increment its reference count, retry. Return *fencep on
264 1.3 riastrad * success, or NULL on failure.
265 1.3 riastrad */
266 1.3 riastrad struct dma_fence *
267 1.7 riastrad dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
268 1.3 riastrad {
269 1.3 riastrad struct dma_fence *fence, *fence0;
270 1.3 riastrad
271 1.3 riastrad retry:
272 1.3 riastrad fence = *fencep;
273 1.3 riastrad
274 1.3 riastrad /* Load fence only once. */
275 1.3 riastrad __insn_barrier();
276 1.3 riastrad
277 1.3 riastrad /* If there's nothing there, give up. */
278 1.3 riastrad if (fence == NULL)
279 1.3 riastrad return NULL;
280 1.3 riastrad
281 1.3 riastrad /* Make sure we don't load stale fence guts. */
282 1.3 riastrad membar_datadep_consumer();
283 1.3 riastrad
284 1.3 riastrad /* Try to acquire a reference. If we can't, try again. */
285 1.3 riastrad if (!dma_fence_get_rcu(fence))
286 1.3 riastrad goto retry;
287 1.3 riastrad
288 1.3 riastrad /*
289 1.3 riastrad * Confirm that it's still the same fence. If not, release it
290 1.3 riastrad * and retry.
291 1.3 riastrad */
292 1.3 riastrad fence0 = *fencep;
293 1.3 riastrad __insn_barrier();
294 1.3 riastrad if (fence != fence0) {
295 1.3 riastrad dma_fence_put(fence);
296 1.3 riastrad goto retry;
297 1.3 riastrad }
298 1.3 riastrad
299 1.3 riastrad /* Success! */
300 1.3 riastrad return fence;
301 1.3 riastrad }
302 1.3 riastrad
303 1.1 riastrad static void
304 1.2 riastrad dma_fence_release(struct kref *refcount)
305 1.1 riastrad {
306 1.2 riastrad struct dma_fence *fence = container_of(refcount, struct dma_fence,
307 1.2 riastrad refcount);
308 1.1 riastrad
309 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
310 1.1 riastrad
311 1.1 riastrad if (fence->ops->release)
312 1.1 riastrad (*fence->ops->release)(fence);
313 1.1 riastrad else
314 1.2 riastrad dma_fence_free(fence);
315 1.1 riastrad }
316 1.1 riastrad
317 1.1 riastrad /*
318 1.2 riastrad * dma_fence_put(fence)
319 1.1 riastrad *
320 1.1 riastrad * Release a reference to fence. If this was the last one, call
321 1.1 riastrad * the fence's release callback.
322 1.1 riastrad */
323 1.1 riastrad void
324 1.2 riastrad dma_fence_put(struct dma_fence *fence)
325 1.1 riastrad {
326 1.1 riastrad
327 1.1 riastrad if (fence == NULL)
328 1.1 riastrad return;
329 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
330 1.2 riastrad kref_put(&fence->refcount, &dma_fence_release);
331 1.1 riastrad }
332 1.1 riastrad
333 1.1 riastrad /*
334 1.2 riastrad * dma_fence_ensure_signal_enabled(fence)
335 1.1 riastrad *
336 1.1 riastrad * Internal subroutine. If the fence was already signalled,
337 1.1 riastrad * return -ENOENT. Otherwise, if the enable signalling callback
338 1.1 riastrad * has not been called yet, call it. If fails, signal the fence
339 1.1 riastrad * and return -ENOENT. If it succeeds, or if it had already been
340 1.1 riastrad * called, return zero to indicate success.
341 1.1 riastrad *
342 1.1 riastrad * Caller must hold the fence's lock.
343 1.1 riastrad */
344 1.1 riastrad static int
345 1.2 riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
346 1.1 riastrad {
347 1.1 riastrad
348 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
349 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
350 1.1 riastrad
351 1.1 riastrad /* If the fence was already signalled, fail with -ENOENT. */
352 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
353 1.1 riastrad return -ENOENT;
354 1.1 riastrad
355 1.1 riastrad /*
356 1.1 riastrad * If the enable signaling callback has been called, success.
357 1.1 riastrad * Otherwise, set the bit indicating it.
358 1.1 riastrad */
359 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags))
360 1.1 riastrad return 0;
361 1.1 riastrad
362 1.1 riastrad /* Otherwise, note that we've called it and call it. */
363 1.15 riastrad KASSERT(fence->ops->enable_signaling);
364 1.1 riastrad if (!(*fence->ops->enable_signaling)(fence)) {
365 1.1 riastrad /* If it failed, signal and return -ENOENT. */
366 1.2 riastrad dma_fence_signal_locked(fence);
367 1.1 riastrad return -ENOENT;
368 1.1 riastrad }
369 1.1 riastrad
370 1.1 riastrad /* Success! */
371 1.1 riastrad return 0;
372 1.1 riastrad }
373 1.1 riastrad
374 1.1 riastrad /*
375 1.2 riastrad * dma_fence_add_callback(fence, fcb, fn)
376 1.1 riastrad *
377 1.1 riastrad * If fence has been signalled, return -ENOENT. If the enable
378 1.1 riastrad * signalling callback hasn't been called yet, call it; if it
379 1.1 riastrad * fails, return -ENOENT. Otherwise, arrange to call fn(fence,
380 1.1 riastrad * fcb) when it is signalled, and return 0.
381 1.1 riastrad *
382 1.1 riastrad * The fence uses memory allocated by the caller in fcb from the
383 1.2 riastrad * time of dma_fence_add_callback either to the time of
384 1.2 riastrad * dma_fence_remove_callback, or just before calling fn.
385 1.1 riastrad */
386 1.1 riastrad int
387 1.2 riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
388 1.2 riastrad dma_fence_func_t fn)
389 1.1 riastrad {
390 1.1 riastrad int ret;
391 1.1 riastrad
392 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
393 1.1 riastrad
394 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
395 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
396 1.1 riastrad ret = -ENOENT;
397 1.1 riastrad goto out0;
398 1.1 riastrad }
399 1.1 riastrad
400 1.1 riastrad /* Acquire the lock. */
401 1.1 riastrad spin_lock(fence->lock);
402 1.1 riastrad
403 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
404 1.2 riastrad ret = dma_fence_ensure_signal_enabled(fence);
405 1.1 riastrad if (ret)
406 1.1 riastrad goto out1;
407 1.1 riastrad
408 1.1 riastrad /* Insert the callback. */
409 1.4 riastrad fcb->func = fn;
410 1.1 riastrad TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
411 1.1 riastrad fcb->fcb_onqueue = true;
412 1.1 riastrad
413 1.1 riastrad /* Release the lock and we're done. */
414 1.1 riastrad out1: spin_unlock(fence->lock);
415 1.1 riastrad out0: return ret;
416 1.1 riastrad }
417 1.1 riastrad
418 1.1 riastrad /*
419 1.2 riastrad * dma_fence_remove_callback(fence, fcb)
420 1.1 riastrad *
421 1.1 riastrad * Remove the callback fcb from fence. Return true if it was
422 1.1 riastrad * removed from the list, or false if it had already run and so
423 1.1 riastrad * was no longer queued anyway. Caller must have already called
424 1.2 riastrad * dma_fence_add_callback(fence, fcb).
425 1.1 riastrad */
426 1.1 riastrad bool
427 1.2 riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
428 1.1 riastrad {
429 1.1 riastrad bool onqueue;
430 1.1 riastrad
431 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
432 1.1 riastrad
433 1.1 riastrad spin_lock(fence->lock);
434 1.1 riastrad onqueue = fcb->fcb_onqueue;
435 1.1 riastrad if (onqueue) {
436 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
437 1.1 riastrad fcb->fcb_onqueue = false;
438 1.1 riastrad }
439 1.1 riastrad spin_unlock(fence->lock);
440 1.1 riastrad
441 1.1 riastrad return onqueue;
442 1.1 riastrad }
443 1.1 riastrad
444 1.1 riastrad /*
445 1.2 riastrad * dma_fence_enable_sw_signaling(fence)
446 1.1 riastrad *
447 1.1 riastrad * If it hasn't been called yet and the fence hasn't been
448 1.1 riastrad * signalled yet, call the fence's enable_sw_signaling callback.
449 1.1 riastrad * If when that happens, the callback indicates failure by
450 1.1 riastrad * returning false, signal the fence.
451 1.1 riastrad */
452 1.1 riastrad void
453 1.2 riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
454 1.1 riastrad {
455 1.1 riastrad
456 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
457 1.1 riastrad
458 1.1 riastrad spin_lock(fence->lock);
459 1.2 riastrad (void)dma_fence_ensure_signal_enabled(fence);
460 1.1 riastrad spin_unlock(fence->lock);
461 1.1 riastrad }
462 1.1 riastrad
463 1.1 riastrad /*
464 1.2 riastrad * dma_fence_is_signaled(fence)
465 1.1 riastrad *
466 1.1 riastrad * Test whether the fence has been signalled. If it has been
467 1.2 riastrad * signalled by dma_fence_signal(_locked), return true. If the
468 1.1 riastrad * signalled callback returns true indicating that some implicit
469 1.1 riastrad * external condition has changed, call the callbacks as if with
470 1.2 riastrad * dma_fence_signal.
471 1.1 riastrad */
472 1.1 riastrad bool
473 1.2 riastrad dma_fence_is_signaled(struct dma_fence *fence)
474 1.1 riastrad {
475 1.1 riastrad bool signaled;
476 1.1 riastrad
477 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
478 1.1 riastrad
479 1.1 riastrad spin_lock(fence->lock);
480 1.2 riastrad signaled = dma_fence_is_signaled_locked(fence);
481 1.1 riastrad spin_unlock(fence->lock);
482 1.1 riastrad
483 1.1 riastrad return signaled;
484 1.1 riastrad }
485 1.1 riastrad
486 1.1 riastrad /*
487 1.2 riastrad * dma_fence_is_signaled_locked(fence)
488 1.1 riastrad *
489 1.1 riastrad * Test whether the fence has been signalled. Like
490 1.2 riastrad * dma_fence_is_signaleed, but caller already holds the fence's lock.
491 1.1 riastrad */
492 1.1 riastrad bool
493 1.2 riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
494 1.1 riastrad {
495 1.1 riastrad
496 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
497 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
498 1.1 riastrad
499 1.1 riastrad /* Check whether we already set the signalled bit. */
500 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
501 1.1 riastrad return true;
502 1.1 riastrad
503 1.1 riastrad /* If there's a signalled callback, test it. */
504 1.1 riastrad if (fence->ops->signaled) {
505 1.1 riastrad if ((*fence->ops->signaled)(fence)) {
506 1.1 riastrad /*
507 1.1 riastrad * It's been signalled implicitly by some
508 1.1 riastrad * external phenomonen. Act as though someone
509 1.2 riastrad * has called dma_fence_signal.
510 1.1 riastrad */
511 1.2 riastrad dma_fence_signal_locked(fence);
512 1.1 riastrad return true;
513 1.1 riastrad }
514 1.1 riastrad }
515 1.1 riastrad
516 1.1 riastrad return false;
517 1.1 riastrad }
518 1.1 riastrad
519 1.1 riastrad /*
520 1.5 riastrad * dma_fence_set_error(fence, error)
521 1.5 riastrad *
522 1.5 riastrad * Set an error code prior to dma_fence_signal for use by a
523 1.5 riastrad * waiter to learn about success or failure of the fence.
524 1.5 riastrad */
525 1.5 riastrad void
526 1.5 riastrad dma_fence_set_error(struct dma_fence *fence, int error)
527 1.5 riastrad {
528 1.5 riastrad
529 1.5 riastrad KASSERT(!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)));
530 1.6 riastrad KASSERTMSG(error >= -ELAST, "%d", error);
531 1.5 riastrad KASSERTMSG(error < 0, "%d", error);
532 1.5 riastrad
533 1.5 riastrad fence->error = error;
534 1.5 riastrad }
535 1.5 riastrad
536 1.5 riastrad /*
537 1.10 riastrad * dma_fence_get_status(fence)
538 1.10 riastrad *
539 1.10 riastrad * Return 0 if fence has yet to be signalled, 1 if it has been
540 1.10 riastrad * signalled without error, or negative error code if
541 1.10 riastrad * dma_fence_set_error was used.
542 1.10 riastrad */
543 1.10 riastrad int
544 1.10 riastrad dma_fence_get_status(struct dma_fence *fence)
545 1.10 riastrad {
546 1.10 riastrad int ret;
547 1.10 riastrad
548 1.10 riastrad spin_lock(fence->lock);
549 1.10 riastrad if (!dma_fence_is_signaled_locked(fence)) {
550 1.10 riastrad ret = 0;
551 1.10 riastrad } else if (fence->error) {
552 1.10 riastrad ret = fence->error;
553 1.10 riastrad KASSERTMSG(ret < 0, "%d", ret);
554 1.10 riastrad } else {
555 1.10 riastrad ret = 1;
556 1.10 riastrad }
557 1.10 riastrad spin_unlock(fence->lock);
558 1.10 riastrad
559 1.10 riastrad return ret;
560 1.10 riastrad }
561 1.10 riastrad
562 1.10 riastrad /*
563 1.2 riastrad * dma_fence_signal(fence)
564 1.1 riastrad *
565 1.1 riastrad * Signal the fence. If it has already been signalled, return
566 1.1 riastrad * -EINVAL. If it has not been signalled, call the enable
567 1.1 riastrad * signalling callback if it hasn't been called yet, and remove
568 1.1 riastrad * each registered callback from the queue and call it; then
569 1.1 riastrad * return 0.
570 1.1 riastrad */
571 1.1 riastrad int
572 1.2 riastrad dma_fence_signal(struct dma_fence *fence)
573 1.1 riastrad {
574 1.1 riastrad int ret;
575 1.1 riastrad
576 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
577 1.1 riastrad
578 1.1 riastrad spin_lock(fence->lock);
579 1.2 riastrad ret = dma_fence_signal_locked(fence);
580 1.1 riastrad spin_unlock(fence->lock);
581 1.1 riastrad
582 1.1 riastrad return ret;
583 1.1 riastrad }
584 1.1 riastrad
585 1.1 riastrad /*
586 1.2 riastrad * dma_fence_signal_locked(fence)
587 1.1 riastrad *
588 1.2 riastrad * Signal the fence. Like dma_fence_signal, but caller already
589 1.2 riastrad * holds the fence's lock.
590 1.1 riastrad */
591 1.1 riastrad int
592 1.2 riastrad dma_fence_signal_locked(struct dma_fence *fence)
593 1.1 riastrad {
594 1.2 riastrad struct dma_fence_cb *fcb, *next;
595 1.1 riastrad
596 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
597 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
598 1.1 riastrad
599 1.1 riastrad /* If it's been signalled, fail; otherwise set the signalled bit. */
600 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
601 1.1 riastrad return -EINVAL;
602 1.1 riastrad
603 1.1 riastrad /* Wake waiters. */
604 1.1 riastrad cv_broadcast(&fence->f_cv);
605 1.1 riastrad
606 1.1 riastrad /* Remove and call the callbacks. */
607 1.1 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
608 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
609 1.1 riastrad fcb->fcb_onqueue = false;
610 1.4 riastrad (*fcb->func)(fence, fcb);
611 1.1 riastrad }
612 1.1 riastrad
613 1.1 riastrad /* Success! */
614 1.1 riastrad return 0;
615 1.1 riastrad }
616 1.1 riastrad
617 1.1 riastrad struct wait_any {
618 1.2 riastrad struct dma_fence_cb fcb;
619 1.1 riastrad struct wait_any1 {
620 1.1 riastrad kmutex_t lock;
621 1.1 riastrad kcondvar_t cv;
622 1.1 riastrad bool done;
623 1.11 riastrad uint32_t *ip;
624 1.11 riastrad struct wait_any *cb;
625 1.1 riastrad } *common;
626 1.1 riastrad };
627 1.1 riastrad
628 1.1 riastrad static void
629 1.2 riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
630 1.1 riastrad {
631 1.1 riastrad struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
632 1.1 riastrad
633 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
634 1.1 riastrad
635 1.1 riastrad mutex_enter(&cb->common->lock);
636 1.1 riastrad cb->common->done = true;
637 1.11 riastrad if (cb->common->ip)
638 1.11 riastrad *cb->common->ip = cb - cb->common->cb;
639 1.1 riastrad cv_broadcast(&cb->common->cv);
640 1.1 riastrad mutex_exit(&cb->common->lock);
641 1.1 riastrad }
642 1.1 riastrad
643 1.1 riastrad /*
644 1.11 riastrad * dma_fence_wait_any_timeout(fence, nfences, intr, timeout, ip)
645 1.1 riastrad *
646 1.1 riastrad * Wait for any of fences[0], fences[1], fences[2], ...,
647 1.13 riastrad * fences[nfences-1] to be signalled. If ip is nonnull, set *ip
648 1.13 riastrad * to the index of the first one.
649 1.1 riastrad */
650 1.1 riastrad long
651 1.2 riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
652 1.11 riastrad bool intr, long timeout, uint32_t *ip)
653 1.1 riastrad {
654 1.1 riastrad struct wait_any1 common;
655 1.1 riastrad struct wait_any *cb;
656 1.1 riastrad uint32_t i, j;
657 1.1 riastrad int start, end;
658 1.1 riastrad long ret = 0;
659 1.1 riastrad
660 1.1 riastrad /* Allocate an array of callback records. */
661 1.1 riastrad cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
662 1.1 riastrad if (cb == NULL) {
663 1.1 riastrad ret = -ENOMEM;
664 1.1 riastrad goto out0;
665 1.1 riastrad }
666 1.1 riastrad
667 1.1 riastrad /* Initialize a mutex and condvar for the common wait. */
668 1.1 riastrad mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
669 1.1 riastrad cv_init(&common.cv, "fence");
670 1.1 riastrad common.done = false;
671 1.11 riastrad common.ip = ip;
672 1.11 riastrad common.cb = cb;
673 1.1 riastrad
674 1.1 riastrad /* Add a callback to each of the fences, or stop here if we can't. */
675 1.1 riastrad for (i = 0; i < nfences; i++) {
676 1.1 riastrad cb[i].common = &common;
677 1.2 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
678 1.2 riastrad ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
679 1.2 riastrad &wait_any_cb);
680 1.1 riastrad if (ret)
681 1.1 riastrad goto out1;
682 1.1 riastrad }
683 1.1 riastrad
684 1.1 riastrad /*
685 1.1 riastrad * Test whether any of the fences has been signalled. If they
686 1.1 riastrad * have, stop here. If the haven't, we are guaranteed to be
687 1.1 riastrad * notified by one of the callbacks when they have.
688 1.1 riastrad */
689 1.1 riastrad for (j = 0; j < nfences; j++) {
690 1.11 riastrad if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags)) {
691 1.11 riastrad if (ip)
692 1.11 riastrad *ip = j;
693 1.11 riastrad ret = 0;
694 1.1 riastrad goto out1;
695 1.11 riastrad }
696 1.1 riastrad }
697 1.1 riastrad
698 1.1 riastrad /*
699 1.1 riastrad * None of them was ready immediately. Wait for one of the
700 1.1 riastrad * callbacks to notify us when it is done.
701 1.1 riastrad */
702 1.1 riastrad mutex_enter(&common.lock);
703 1.1 riastrad while (timeout > 0 && !common.done) {
704 1.1 riastrad start = getticks();
705 1.1 riastrad __insn_barrier();
706 1.1 riastrad if (intr) {
707 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
708 1.1 riastrad ret = -cv_timedwait_sig(&common.cv,
709 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
710 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
711 1.1 riastrad } else {
712 1.1 riastrad ret = -cv_wait_sig(&common.cv, &common.lock);
713 1.1 riastrad }
714 1.1 riastrad } else {
715 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
716 1.1 riastrad ret = -cv_timedwait(&common.cv,
717 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
718 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
719 1.1 riastrad } else {
720 1.1 riastrad cv_wait(&common.cv, &common.lock);
721 1.1 riastrad ret = 0;
722 1.1 riastrad }
723 1.1 riastrad }
724 1.1 riastrad end = getticks();
725 1.1 riastrad __insn_barrier();
726 1.1 riastrad if (ret) {
727 1.1 riastrad if (ret == -ERESTART)
728 1.1 riastrad ret = -ERESTARTSYS;
729 1.1 riastrad break;
730 1.1 riastrad }
731 1.1 riastrad timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
732 1.1 riastrad }
733 1.1 riastrad mutex_exit(&common.lock);
734 1.1 riastrad
735 1.1 riastrad /*
736 1.1 riastrad * Massage the return code: if we were interrupted, return
737 1.1 riastrad * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
738 1.1 riastrad * return the remaining time.
739 1.1 riastrad */
740 1.1 riastrad if (ret < 0) {
741 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
742 1.1 riastrad ret = -ERESTARTSYS;
743 1.1 riastrad if (ret == -EWOULDBLOCK)
744 1.1 riastrad ret = 0;
745 1.1 riastrad } else {
746 1.1 riastrad KASSERT(ret == 0);
747 1.1 riastrad ret = timeout;
748 1.1 riastrad }
749 1.1 riastrad
750 1.1 riastrad out1: while (i --> 0)
751 1.2 riastrad (void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
752 1.1 riastrad cv_destroy(&common.cv);
753 1.1 riastrad mutex_destroy(&common.lock);
754 1.1 riastrad kfree(cb);
755 1.1 riastrad out0: return ret;
756 1.1 riastrad }
757 1.1 riastrad
758 1.1 riastrad /*
759 1.2 riastrad * dma_fence_wait_timeout(fence, intr, timeout)
760 1.1 riastrad *
761 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
762 1.1 riastrad * true; or until timeout, if positive. Return -ERESTARTSYS if
763 1.1 riastrad * interrupted, negative error code on any other error, zero on
764 1.1 riastrad * timeout, or positive number of ticks remaining if the fence is
765 1.1 riastrad * signalled before the timeout. Works by calling the fence wait
766 1.1 riastrad * callback.
767 1.1 riastrad *
768 1.1 riastrad * The timeout must be nonnegative and less than
769 1.1 riastrad * MAX_SCHEDULE_TIMEOUT.
770 1.1 riastrad */
771 1.1 riastrad long
772 1.2 riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
773 1.1 riastrad {
774 1.1 riastrad
775 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
776 1.1 riastrad KASSERT(timeout >= 0);
777 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
778 1.1 riastrad
779 1.14 riastrad if (fence->ops->wait)
780 1.14 riastrad return (*fence->ops->wait)(fence, intr, timeout);
781 1.14 riastrad else
782 1.14 riastrad return dma_fence_default_wait(fence, intr, timeout);
783 1.1 riastrad }
784 1.1 riastrad
785 1.1 riastrad /*
786 1.2 riastrad * dma_fence_wait(fence, intr)
787 1.1 riastrad *
788 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
789 1.1 riastrad * true. Return -ERESTARTSYS if interrupted, negative error code
790 1.1 riastrad * on any other error, zero on sucess. Works by calling the fence
791 1.1 riastrad * wait callback with MAX_SCHEDULE_TIMEOUT.
792 1.1 riastrad */
793 1.1 riastrad long
794 1.2 riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
795 1.1 riastrad {
796 1.1 riastrad long ret;
797 1.1 riastrad
798 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
799 1.1 riastrad
800 1.15 riastrad if (fence->ops->wait)
801 1.15 riastrad ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
802 1.15 riastrad else
803 1.15 riastrad ret = dma_fence_default_wait(fence, intr,
804 1.15 riastrad MAX_SCHEDULE_TIMEOUT);
805 1.1 riastrad KASSERT(ret != 0);
806 1.1 riastrad
807 1.1 riastrad return (ret < 0 ? ret : 0);
808 1.1 riastrad }
809 1.1 riastrad
810 1.1 riastrad /*
811 1.2 riastrad * dma_fence_default_wait(fence, intr, timeout)
812 1.1 riastrad *
813 1.1 riastrad * Default implementation of fence wait callback using a condition
814 1.1 riastrad * variable. If the fence is already signalled, return timeout,
815 1.16 riastrad * or 1 if timeout is zero meaning poll. If the enable signalling
816 1.16 riastrad * callback hasn't been called, call it, and if it fails, act as
817 1.16 riastrad * if the fence had been signalled. Otherwise, wait on the
818 1.16 riastrad * internal condvar. If timeout is MAX_SCHEDULE_TIMEOUT, wait
819 1.16 riastrad * indefinitely.
820 1.1 riastrad */
821 1.1 riastrad long
822 1.2 riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
823 1.1 riastrad {
824 1.1 riastrad int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
825 1.1 riastrad kmutex_t *lock = &fence->lock->sl_lock;
826 1.1 riastrad long ret = 0;
827 1.1 riastrad
828 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
829 1.1 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
830 1.1 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
831 1.1 riastrad
832 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
833 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
834 1.16 riastrad return (timeout ? timeout : 1);
835 1.1 riastrad
836 1.1 riastrad /* Acquire the lock. */
837 1.1 riastrad spin_lock(fence->lock);
838 1.1 riastrad
839 1.16 riastrad /* Ensure signalling is enabled, or stop if already completed. */
840 1.17 riastrad if (dma_fence_ensure_signal_enabled(fence) != 0) {
841 1.17 riastrad spin_unlock(fence->lock);
842 1.16 riastrad return (timeout ? timeout : 1);
843 1.17 riastrad }
844 1.16 riastrad
845 1.16 riastrad /* If merely polling, stop here. */
846 1.16 riastrad if (timeout == 0) {
847 1.16 riastrad spin_unlock(fence->lock);
848 1.16 riastrad return 0;
849 1.16 riastrad }
850 1.1 riastrad
851 1.1 riastrad /* Find out what our deadline is so we can handle spurious wakeup. */
852 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
853 1.1 riastrad now = getticks();
854 1.1 riastrad __insn_barrier();
855 1.1 riastrad starttime = now;
856 1.1 riastrad deadline = starttime + timeout;
857 1.1 riastrad }
858 1.1 riastrad
859 1.1 riastrad /* Wait until the signalled bit is set. */
860 1.2 riastrad while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
861 1.1 riastrad /*
862 1.1 riastrad * If there's a timeout and we've passed the deadline,
863 1.1 riastrad * give up.
864 1.1 riastrad */
865 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
866 1.1 riastrad now = getticks();
867 1.1 riastrad __insn_barrier();
868 1.1 riastrad if (deadline <= now)
869 1.1 riastrad break;
870 1.1 riastrad }
871 1.1 riastrad if (intr) {
872 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
873 1.1 riastrad ret = -cv_timedwait_sig(&fence->f_cv, lock,
874 1.1 riastrad deadline - now);
875 1.1 riastrad } else {
876 1.1 riastrad ret = -cv_wait_sig(&fence->f_cv, lock);
877 1.1 riastrad }
878 1.1 riastrad } else {
879 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
880 1.1 riastrad ret = -cv_timedwait(&fence->f_cv, lock,
881 1.1 riastrad deadline - now);
882 1.1 riastrad } else {
883 1.1 riastrad cv_wait(&fence->f_cv, lock);
884 1.1 riastrad ret = 0;
885 1.1 riastrad }
886 1.1 riastrad }
887 1.1 riastrad /* If the wait failed, give up. */
888 1.1 riastrad if (ret) {
889 1.1 riastrad if (ret == -ERESTART)
890 1.1 riastrad ret = -ERESTARTSYS;
891 1.1 riastrad break;
892 1.1 riastrad }
893 1.1 riastrad }
894 1.1 riastrad
895 1.1 riastrad /* All done. Release the lock. */
896 1.1 riastrad spin_unlock(fence->lock);
897 1.1 riastrad
898 1.1 riastrad /* If cv_timedwait gave up, return 0 meaning timeout. */
899 1.1 riastrad if (ret == -EWOULDBLOCK) {
900 1.1 riastrad /* Only cv_timedwait and cv_timedwait_sig can return this. */
901 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
902 1.1 riastrad return 0;
903 1.1 riastrad }
904 1.1 riastrad
905 1.1 riastrad /* If there was a timeout and the deadline passed, return 0. */
906 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
907 1.1 riastrad if (deadline <= now)
908 1.1 riastrad return 0;
909 1.1 riastrad }
910 1.1 riastrad
911 1.1 riastrad /* If we were interrupted, return -ERESTARTSYS. */
912 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
913 1.1 riastrad return -ERESTARTSYS;
914 1.1 riastrad
915 1.1 riastrad /* If there was any other kind of error, fail. */
916 1.1 riastrad if (ret)
917 1.1 riastrad return ret;
918 1.1 riastrad
919 1.1 riastrad /*
920 1.1 riastrad * Success! Return the number of ticks left, at least 1, or 1
921 1.1 riastrad * if no timeout.
922 1.1 riastrad */
923 1.1 riastrad return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
924 1.1 riastrad }
925 1.12 riastrad
926 1.12 riastrad /*
927 1.12 riastrad * __dma_fence_signal(fence)
928 1.12 riastrad *
929 1.12 riastrad * Set fence's signalled bit, without waking waiters yet. Return
930 1.12 riastrad * true if it was newly set, false if it was already set.
931 1.12 riastrad */
932 1.12 riastrad bool
933 1.12 riastrad __dma_fence_signal(struct dma_fence *fence)
934 1.12 riastrad {
935 1.12 riastrad
936 1.12 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
937 1.12 riastrad return false;
938 1.12 riastrad
939 1.12 riastrad return true;
940 1.12 riastrad }
941 1.12 riastrad
942 1.12 riastrad /*
943 1.12 riastrad * __dma_fence_signal_wake(fence)
944 1.12 riastrad *
945 1.12 riastrad * Wake fence's waiters. Caller must have previously called
946 1.12 riastrad * __dma_fence_signal and it must have previously returned true.
947 1.12 riastrad */
948 1.12 riastrad void
949 1.12 riastrad __dma_fence_signal_wake(struct dma_fence *fence, ktime_t timestamp)
950 1.12 riastrad {
951 1.12 riastrad struct dma_fence_cb *fcb, *next;
952 1.12 riastrad
953 1.12 riastrad spin_lock(fence->lock);
954 1.12 riastrad
955 1.12 riastrad KASSERT(fence->flags & DMA_FENCE_FLAG_SIGNALED_BIT);
956 1.12 riastrad
957 1.12 riastrad /* Wake waiters. */
958 1.12 riastrad cv_broadcast(&fence->f_cv);
959 1.12 riastrad
960 1.12 riastrad /* Remove and call the callbacks. */
961 1.12 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
962 1.12 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
963 1.12 riastrad fcb->fcb_onqueue = false;
964 1.12 riastrad (*fcb->func)(fence, fcb);
965 1.12 riastrad }
966 1.12 riastrad
967 1.12 riastrad spin_unlock(fence->lock);
968 1.12 riastrad }
969