linux_dma_fence.c revision 1.23 1 1.23 riastrad /* $NetBSD: linux_dma_fence.c,v 1.23 2021/12/19 12:09:51 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.23 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.23 2021/12/19 12:09:51 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/atomic.h>
36 1.1 riastrad #include <sys/condvar.h>
37 1.1 riastrad #include <sys/queue.h>
38 1.1 riastrad
39 1.1 riastrad #include <linux/atomic.h>
40 1.2 riastrad #include <linux/dma-fence.h>
41 1.1 riastrad #include <linux/errno.h>
42 1.1 riastrad #include <linux/kref.h>
43 1.1 riastrad #include <linux/sched.h>
44 1.1 riastrad #include <linux/spinlock.h>
45 1.1 riastrad
46 1.1 riastrad /*
47 1.2 riastrad * linux_dma_fence_trace
48 1.1 riastrad *
49 1.2 riastrad * True if we print DMA_FENCE_TRACE messages, false if not. These
50 1.2 riastrad * are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
51 1.2 riastrad * in boothowto.
52 1.1 riastrad */
53 1.2 riastrad int linux_dma_fence_trace = 0;
54 1.1 riastrad
55 1.1 riastrad /*
56 1.2 riastrad * dma_fence_referenced_p(fence)
57 1.1 riastrad *
58 1.1 riastrad * True if fence has a positive reference count. True after
59 1.2 riastrad * dma_fence_init; after the last dma_fence_put, this becomes
60 1.2 riastrad * false.
61 1.1 riastrad */
62 1.1 riastrad static inline bool __diagused
63 1.2 riastrad dma_fence_referenced_p(struct dma_fence *fence)
64 1.1 riastrad {
65 1.1 riastrad
66 1.1 riastrad return kref_referenced_p(&fence->refcount);
67 1.1 riastrad }
68 1.1 riastrad
69 1.1 riastrad /*
70 1.2 riastrad * dma_fence_init(fence, ops, lock, context, seqno)
71 1.1 riastrad *
72 1.2 riastrad * Initialize fence. Caller should call dma_fence_destroy when
73 1.2 riastrad * done, after all references have been released.
74 1.1 riastrad */
75 1.1 riastrad void
76 1.2 riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
77 1.2 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
78 1.1 riastrad {
79 1.1 riastrad
80 1.1 riastrad kref_init(&fence->refcount);
81 1.1 riastrad fence->lock = lock;
82 1.1 riastrad fence->flags = 0;
83 1.1 riastrad fence->context = context;
84 1.1 riastrad fence->seqno = seqno;
85 1.1 riastrad fence->ops = ops;
86 1.18 riastrad fence->error = 0;
87 1.1 riastrad TAILQ_INIT(&fence->f_callbacks);
88 1.2 riastrad cv_init(&fence->f_cv, "dmafence");
89 1.1 riastrad }
90 1.1 riastrad
91 1.1 riastrad /*
92 1.18 riastrad * dma_fence_reset(fence)
93 1.18 riastrad *
94 1.18 riastrad * Ensure fence is in a quiescent state. Allowed either for newly
95 1.18 riastrad * initialized or freed fences, but not fences with more than one
96 1.18 riastrad * reference.
97 1.18 riastrad *
98 1.18 riastrad * XXX extension to Linux API
99 1.18 riastrad */
100 1.18 riastrad void
101 1.18 riastrad dma_fence_reset(struct dma_fence *fence, const struct dma_fence_ops *ops,
102 1.18 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
103 1.18 riastrad {
104 1.18 riastrad
105 1.18 riastrad KASSERT(kref_read(&fence->refcount) == 0 ||
106 1.18 riastrad kref_read(&fence->refcount) == 1);
107 1.18 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
108 1.18 riastrad KASSERT(fence->lock == lock);
109 1.18 riastrad KASSERT(fence->ops == ops);
110 1.18 riastrad
111 1.18 riastrad kref_init(&fence->refcount);
112 1.18 riastrad fence->flags = 0;
113 1.18 riastrad fence->context = context;
114 1.18 riastrad fence->seqno = seqno;
115 1.18 riastrad fence->error = 0;
116 1.18 riastrad }
117 1.18 riastrad
118 1.18 riastrad /*
119 1.2 riastrad * dma_fence_destroy(fence)
120 1.1 riastrad *
121 1.2 riastrad * Clean up memory initialized with dma_fence_init. This is meant
122 1.2 riastrad * to be used after a fence release callback.
123 1.19 riastrad *
124 1.19 riastrad * XXX extension to Linux API
125 1.1 riastrad */
126 1.1 riastrad void
127 1.2 riastrad dma_fence_destroy(struct dma_fence *fence)
128 1.1 riastrad {
129 1.1 riastrad
130 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
131 1.1 riastrad
132 1.1 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
133 1.1 riastrad cv_destroy(&fence->f_cv);
134 1.1 riastrad }
135 1.1 riastrad
136 1.1 riastrad static void
137 1.2 riastrad dma_fence_free_cb(struct rcu_head *rcu)
138 1.1 riastrad {
139 1.19 riastrad struct dma_fence *fence = container_of(rcu, struct dma_fence, rcu);
140 1.1 riastrad
141 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
142 1.1 riastrad
143 1.2 riastrad dma_fence_destroy(fence);
144 1.1 riastrad kfree(fence);
145 1.1 riastrad }
146 1.1 riastrad
147 1.1 riastrad /*
148 1.2 riastrad * dma_fence_free(fence)
149 1.1 riastrad *
150 1.1 riastrad * Schedule fence to be destroyed and then freed with kfree after
151 1.1 riastrad * any pending RCU read sections on all CPUs have completed.
152 1.1 riastrad * Caller must guarantee all references have been released. This
153 1.1 riastrad * is meant to be used after a fence release callback.
154 1.1 riastrad *
155 1.1 riastrad * NOTE: Callers assume kfree will be used. We don't even use
156 1.1 riastrad * kmalloc to allocate these -- caller is expected to allocate
157 1.2 riastrad * memory with kmalloc to be initialized with dma_fence_init.
158 1.1 riastrad */
159 1.1 riastrad void
160 1.2 riastrad dma_fence_free(struct dma_fence *fence)
161 1.1 riastrad {
162 1.1 riastrad
163 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
164 1.1 riastrad
165 1.19 riastrad call_rcu(&fence->rcu, &dma_fence_free_cb);
166 1.1 riastrad }
167 1.1 riastrad
168 1.1 riastrad /*
169 1.2 riastrad * dma_fence_context_alloc(n)
170 1.1 riastrad *
171 1.1 riastrad * Return the first of a contiguous sequence of unique
172 1.1 riastrad * identifiers, at least until the system wraps around.
173 1.1 riastrad */
174 1.1 riastrad unsigned
175 1.2 riastrad dma_fence_context_alloc(unsigned n)
176 1.1 riastrad {
177 1.1 riastrad static volatile unsigned next_context = 0;
178 1.1 riastrad
179 1.1 riastrad return atomic_add_int_nv(&next_context, n) - n;
180 1.1 riastrad }
181 1.1 riastrad
182 1.1 riastrad /*
183 1.2 riastrad * dma_fence_is_later(a, b)
184 1.1 riastrad *
185 1.1 riastrad * True if the sequence number of fence a is later than the
186 1.1 riastrad * sequence number of fence b. Since sequence numbers wrap
187 1.1 riastrad * around, we define this to mean that the sequence number of
188 1.1 riastrad * fence a is no more than INT_MAX past the sequence number of
189 1.1 riastrad * fence b.
190 1.1 riastrad *
191 1.1 riastrad * The two fences must have the same context.
192 1.1 riastrad */
193 1.1 riastrad bool
194 1.2 riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
195 1.1 riastrad {
196 1.1 riastrad
197 1.1 riastrad KASSERTMSG(a->context == b->context, "incommensurate fences"
198 1.1 riastrad ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
199 1.1 riastrad
200 1.1 riastrad return a->seqno - b->seqno < INT_MAX;
201 1.1 riastrad }
202 1.1 riastrad
203 1.1 riastrad /*
204 1.9 riastrad * dma_fence_get_stub()
205 1.9 riastrad *
206 1.9 riastrad * Return a dma fence that is always already signalled.
207 1.9 riastrad */
208 1.9 riastrad struct dma_fence *
209 1.9 riastrad dma_fence_get_stub(void)
210 1.9 riastrad {
211 1.9 riastrad /*
212 1.9 riastrad * XXX This probably isn't good enough -- caller may try
213 1.9 riastrad * operations on this that require the lock, which will
214 1.9 riastrad * require us to create and destroy the lock on module
215 1.9 riastrad * load/unload.
216 1.9 riastrad */
217 1.9 riastrad static struct dma_fence fence = {
218 1.9 riastrad .refcount = {1}, /* always referenced */
219 1.9 riastrad .flags = 1u << DMA_FENCE_FLAG_SIGNALED_BIT,
220 1.9 riastrad };
221 1.9 riastrad
222 1.9 riastrad return dma_fence_get(&fence);
223 1.9 riastrad }
224 1.9 riastrad
225 1.9 riastrad /*
226 1.2 riastrad * dma_fence_get(fence)
227 1.1 riastrad *
228 1.1 riastrad * Acquire a reference to fence. The fence must not be being
229 1.1 riastrad * destroyed. Return the fence.
230 1.1 riastrad */
231 1.2 riastrad struct dma_fence *
232 1.2 riastrad dma_fence_get(struct dma_fence *fence)
233 1.1 riastrad {
234 1.1 riastrad
235 1.1 riastrad if (fence)
236 1.1 riastrad kref_get(&fence->refcount);
237 1.1 riastrad return fence;
238 1.1 riastrad }
239 1.1 riastrad
240 1.1 riastrad /*
241 1.2 riastrad * dma_fence_get_rcu(fence)
242 1.1 riastrad *
243 1.1 riastrad * Attempt to acquire a reference to a fence that may be about to
244 1.1 riastrad * be destroyed, during a read section. Return the fence on
245 1.1 riastrad * success, or NULL on failure.
246 1.1 riastrad */
247 1.2 riastrad struct dma_fence *
248 1.2 riastrad dma_fence_get_rcu(struct dma_fence *fence)
249 1.1 riastrad {
250 1.1 riastrad
251 1.8 riastrad __insn_barrier();
252 1.1 riastrad if (!kref_get_unless_zero(&fence->refcount))
253 1.1 riastrad return NULL;
254 1.1 riastrad return fence;
255 1.1 riastrad }
256 1.1 riastrad
257 1.3 riastrad /*
258 1.3 riastrad * dma_fence_get_rcu_safe(fencep)
259 1.3 riastrad *
260 1.3 riastrad * Attempt to acquire a reference to the fence *fencep, which may
261 1.3 riastrad * be about to be destroyed, during a read section. If the value
262 1.3 riastrad * of *fencep changes after we read *fencep but before we
263 1.3 riastrad * increment its reference count, retry. Return *fencep on
264 1.3 riastrad * success, or NULL on failure.
265 1.3 riastrad */
266 1.3 riastrad struct dma_fence *
267 1.7 riastrad dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
268 1.3 riastrad {
269 1.3 riastrad struct dma_fence *fence, *fence0;
270 1.3 riastrad
271 1.3 riastrad retry:
272 1.3 riastrad fence = *fencep;
273 1.3 riastrad
274 1.3 riastrad /* Load fence only once. */
275 1.3 riastrad __insn_barrier();
276 1.3 riastrad
277 1.3 riastrad /* If there's nothing there, give up. */
278 1.3 riastrad if (fence == NULL)
279 1.3 riastrad return NULL;
280 1.3 riastrad
281 1.3 riastrad /* Make sure we don't load stale fence guts. */
282 1.3 riastrad membar_datadep_consumer();
283 1.3 riastrad
284 1.3 riastrad /* Try to acquire a reference. If we can't, try again. */
285 1.3 riastrad if (!dma_fence_get_rcu(fence))
286 1.3 riastrad goto retry;
287 1.3 riastrad
288 1.3 riastrad /*
289 1.3 riastrad * Confirm that it's still the same fence. If not, release it
290 1.3 riastrad * and retry.
291 1.3 riastrad */
292 1.3 riastrad fence0 = *fencep;
293 1.3 riastrad __insn_barrier();
294 1.3 riastrad if (fence != fence0) {
295 1.3 riastrad dma_fence_put(fence);
296 1.3 riastrad goto retry;
297 1.3 riastrad }
298 1.3 riastrad
299 1.3 riastrad /* Success! */
300 1.3 riastrad return fence;
301 1.3 riastrad }
302 1.3 riastrad
303 1.1 riastrad static void
304 1.2 riastrad dma_fence_release(struct kref *refcount)
305 1.1 riastrad {
306 1.2 riastrad struct dma_fence *fence = container_of(refcount, struct dma_fence,
307 1.2 riastrad refcount);
308 1.1 riastrad
309 1.23 riastrad KASSERTMSG(TAILQ_EMPTY(&fence->f_callbacks),
310 1.23 riastrad "fence %p has pending callbacks", fence);
311 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
312 1.1 riastrad
313 1.1 riastrad if (fence->ops->release)
314 1.1 riastrad (*fence->ops->release)(fence);
315 1.1 riastrad else
316 1.2 riastrad dma_fence_free(fence);
317 1.1 riastrad }
318 1.1 riastrad
319 1.1 riastrad /*
320 1.2 riastrad * dma_fence_put(fence)
321 1.1 riastrad *
322 1.1 riastrad * Release a reference to fence. If this was the last one, call
323 1.1 riastrad * the fence's release callback.
324 1.1 riastrad */
325 1.1 riastrad void
326 1.2 riastrad dma_fence_put(struct dma_fence *fence)
327 1.1 riastrad {
328 1.1 riastrad
329 1.1 riastrad if (fence == NULL)
330 1.1 riastrad return;
331 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
332 1.2 riastrad kref_put(&fence->refcount, &dma_fence_release);
333 1.1 riastrad }
334 1.1 riastrad
335 1.1 riastrad /*
336 1.2 riastrad * dma_fence_ensure_signal_enabled(fence)
337 1.1 riastrad *
338 1.1 riastrad * Internal subroutine. If the fence was already signalled,
339 1.1 riastrad * return -ENOENT. Otherwise, if the enable signalling callback
340 1.1 riastrad * has not been called yet, call it. If fails, signal the fence
341 1.1 riastrad * and return -ENOENT. If it succeeds, or if it had already been
342 1.1 riastrad * called, return zero to indicate success.
343 1.1 riastrad *
344 1.1 riastrad * Caller must hold the fence's lock.
345 1.1 riastrad */
346 1.1 riastrad static int
347 1.2 riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
348 1.1 riastrad {
349 1.20 riastrad bool already_enabled;
350 1.1 riastrad
351 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
352 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
353 1.1 riastrad
354 1.20 riastrad /* Determine whether signalling was enabled, and enable it. */
355 1.20 riastrad already_enabled = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
356 1.20 riastrad &fence->flags);
357 1.20 riastrad
358 1.1 riastrad /* If the fence was already signalled, fail with -ENOENT. */
359 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
360 1.1 riastrad return -ENOENT;
361 1.1 riastrad
362 1.1 riastrad /*
363 1.20 riastrad * Otherwise, if it wasn't enabled yet, try to enable
364 1.20 riastrad * signalling, or fail if the fence doesn't support that.
365 1.1 riastrad */
366 1.20 riastrad if (!already_enabled) {
367 1.20 riastrad if (fence->ops->enable_signaling == NULL)
368 1.20 riastrad return -ENOENT;
369 1.20 riastrad if (!(*fence->ops->enable_signaling)(fence)) {
370 1.20 riastrad /* If it failed, signal and return -ENOENT. */
371 1.20 riastrad dma_fence_signal_locked(fence);
372 1.20 riastrad return -ENOENT;
373 1.20 riastrad }
374 1.1 riastrad }
375 1.1 riastrad
376 1.1 riastrad /* Success! */
377 1.1 riastrad return 0;
378 1.1 riastrad }
379 1.1 riastrad
380 1.1 riastrad /*
381 1.2 riastrad * dma_fence_add_callback(fence, fcb, fn)
382 1.1 riastrad *
383 1.1 riastrad * If fence has been signalled, return -ENOENT. If the enable
384 1.1 riastrad * signalling callback hasn't been called yet, call it; if it
385 1.1 riastrad * fails, return -ENOENT. Otherwise, arrange to call fn(fence,
386 1.1 riastrad * fcb) when it is signalled, and return 0.
387 1.1 riastrad *
388 1.1 riastrad * The fence uses memory allocated by the caller in fcb from the
389 1.2 riastrad * time of dma_fence_add_callback either to the time of
390 1.2 riastrad * dma_fence_remove_callback, or just before calling fn.
391 1.1 riastrad */
392 1.1 riastrad int
393 1.2 riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
394 1.2 riastrad dma_fence_func_t fn)
395 1.1 riastrad {
396 1.1 riastrad int ret;
397 1.1 riastrad
398 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
399 1.1 riastrad
400 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
401 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
402 1.1 riastrad ret = -ENOENT;
403 1.1 riastrad goto out0;
404 1.1 riastrad }
405 1.1 riastrad
406 1.1 riastrad /* Acquire the lock. */
407 1.1 riastrad spin_lock(fence->lock);
408 1.1 riastrad
409 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
410 1.2 riastrad ret = dma_fence_ensure_signal_enabled(fence);
411 1.1 riastrad if (ret)
412 1.1 riastrad goto out1;
413 1.1 riastrad
414 1.1 riastrad /* Insert the callback. */
415 1.4 riastrad fcb->func = fn;
416 1.1 riastrad TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
417 1.1 riastrad fcb->fcb_onqueue = true;
418 1.21 riastrad ret = 0;
419 1.1 riastrad
420 1.1 riastrad /* Release the lock and we're done. */
421 1.1 riastrad out1: spin_unlock(fence->lock);
422 1.21 riastrad out0: if (ret) {
423 1.21 riastrad fcb->func = NULL;
424 1.21 riastrad fcb->fcb_onqueue = false;
425 1.21 riastrad }
426 1.21 riastrad return ret;
427 1.1 riastrad }
428 1.1 riastrad
429 1.1 riastrad /*
430 1.2 riastrad * dma_fence_remove_callback(fence, fcb)
431 1.1 riastrad *
432 1.1 riastrad * Remove the callback fcb from fence. Return true if it was
433 1.1 riastrad * removed from the list, or false if it had already run and so
434 1.1 riastrad * was no longer queued anyway. Caller must have already called
435 1.2 riastrad * dma_fence_add_callback(fence, fcb).
436 1.1 riastrad */
437 1.1 riastrad bool
438 1.2 riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
439 1.1 riastrad {
440 1.1 riastrad bool onqueue;
441 1.1 riastrad
442 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
443 1.1 riastrad
444 1.1 riastrad spin_lock(fence->lock);
445 1.1 riastrad onqueue = fcb->fcb_onqueue;
446 1.1 riastrad if (onqueue) {
447 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
448 1.1 riastrad fcb->fcb_onqueue = false;
449 1.1 riastrad }
450 1.1 riastrad spin_unlock(fence->lock);
451 1.1 riastrad
452 1.1 riastrad return onqueue;
453 1.1 riastrad }
454 1.1 riastrad
455 1.1 riastrad /*
456 1.2 riastrad * dma_fence_enable_sw_signaling(fence)
457 1.1 riastrad *
458 1.1 riastrad * If it hasn't been called yet and the fence hasn't been
459 1.1 riastrad * signalled yet, call the fence's enable_sw_signaling callback.
460 1.1 riastrad * If when that happens, the callback indicates failure by
461 1.1 riastrad * returning false, signal the fence.
462 1.1 riastrad */
463 1.1 riastrad void
464 1.2 riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
465 1.1 riastrad {
466 1.1 riastrad
467 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
468 1.1 riastrad
469 1.1 riastrad spin_lock(fence->lock);
470 1.22 riastrad if ((fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) == 0)
471 1.22 riastrad (void)dma_fence_ensure_signal_enabled(fence);
472 1.1 riastrad spin_unlock(fence->lock);
473 1.1 riastrad }
474 1.1 riastrad
475 1.1 riastrad /*
476 1.2 riastrad * dma_fence_is_signaled(fence)
477 1.1 riastrad *
478 1.1 riastrad * Test whether the fence has been signalled. If it has been
479 1.2 riastrad * signalled by dma_fence_signal(_locked), return true. If the
480 1.1 riastrad * signalled callback returns true indicating that some implicit
481 1.1 riastrad * external condition has changed, call the callbacks as if with
482 1.2 riastrad * dma_fence_signal.
483 1.1 riastrad */
484 1.1 riastrad bool
485 1.2 riastrad dma_fence_is_signaled(struct dma_fence *fence)
486 1.1 riastrad {
487 1.1 riastrad bool signaled;
488 1.1 riastrad
489 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
490 1.1 riastrad
491 1.1 riastrad spin_lock(fence->lock);
492 1.2 riastrad signaled = dma_fence_is_signaled_locked(fence);
493 1.1 riastrad spin_unlock(fence->lock);
494 1.1 riastrad
495 1.1 riastrad return signaled;
496 1.1 riastrad }
497 1.1 riastrad
498 1.1 riastrad /*
499 1.2 riastrad * dma_fence_is_signaled_locked(fence)
500 1.1 riastrad *
501 1.1 riastrad * Test whether the fence has been signalled. Like
502 1.2 riastrad * dma_fence_is_signaleed, but caller already holds the fence's lock.
503 1.1 riastrad */
504 1.1 riastrad bool
505 1.2 riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
506 1.1 riastrad {
507 1.1 riastrad
508 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
509 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
510 1.1 riastrad
511 1.1 riastrad /* Check whether we already set the signalled bit. */
512 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
513 1.1 riastrad return true;
514 1.1 riastrad
515 1.1 riastrad /* If there's a signalled callback, test it. */
516 1.1 riastrad if (fence->ops->signaled) {
517 1.1 riastrad if ((*fence->ops->signaled)(fence)) {
518 1.1 riastrad /*
519 1.1 riastrad * It's been signalled implicitly by some
520 1.1 riastrad * external phenomonen. Act as though someone
521 1.2 riastrad * has called dma_fence_signal.
522 1.1 riastrad */
523 1.2 riastrad dma_fence_signal_locked(fence);
524 1.1 riastrad return true;
525 1.1 riastrad }
526 1.1 riastrad }
527 1.1 riastrad
528 1.1 riastrad return false;
529 1.1 riastrad }
530 1.1 riastrad
531 1.1 riastrad /*
532 1.5 riastrad * dma_fence_set_error(fence, error)
533 1.5 riastrad *
534 1.5 riastrad * Set an error code prior to dma_fence_signal for use by a
535 1.5 riastrad * waiter to learn about success or failure of the fence.
536 1.5 riastrad */
537 1.5 riastrad void
538 1.5 riastrad dma_fence_set_error(struct dma_fence *fence, int error)
539 1.5 riastrad {
540 1.5 riastrad
541 1.5 riastrad KASSERT(!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)));
542 1.6 riastrad KASSERTMSG(error >= -ELAST, "%d", error);
543 1.5 riastrad KASSERTMSG(error < 0, "%d", error);
544 1.5 riastrad
545 1.5 riastrad fence->error = error;
546 1.5 riastrad }
547 1.5 riastrad
548 1.5 riastrad /*
549 1.10 riastrad * dma_fence_get_status(fence)
550 1.10 riastrad *
551 1.10 riastrad * Return 0 if fence has yet to be signalled, 1 if it has been
552 1.10 riastrad * signalled without error, or negative error code if
553 1.10 riastrad * dma_fence_set_error was used.
554 1.10 riastrad */
555 1.10 riastrad int
556 1.10 riastrad dma_fence_get_status(struct dma_fence *fence)
557 1.10 riastrad {
558 1.10 riastrad int ret;
559 1.10 riastrad
560 1.10 riastrad spin_lock(fence->lock);
561 1.10 riastrad if (!dma_fence_is_signaled_locked(fence)) {
562 1.10 riastrad ret = 0;
563 1.10 riastrad } else if (fence->error) {
564 1.10 riastrad ret = fence->error;
565 1.10 riastrad KASSERTMSG(ret < 0, "%d", ret);
566 1.10 riastrad } else {
567 1.10 riastrad ret = 1;
568 1.10 riastrad }
569 1.10 riastrad spin_unlock(fence->lock);
570 1.10 riastrad
571 1.10 riastrad return ret;
572 1.10 riastrad }
573 1.10 riastrad
574 1.10 riastrad /*
575 1.2 riastrad * dma_fence_signal(fence)
576 1.1 riastrad *
577 1.1 riastrad * Signal the fence. If it has already been signalled, return
578 1.1 riastrad * -EINVAL. If it has not been signalled, call the enable
579 1.1 riastrad * signalling callback if it hasn't been called yet, and remove
580 1.1 riastrad * each registered callback from the queue and call it; then
581 1.1 riastrad * return 0.
582 1.1 riastrad */
583 1.1 riastrad int
584 1.2 riastrad dma_fence_signal(struct dma_fence *fence)
585 1.1 riastrad {
586 1.1 riastrad int ret;
587 1.1 riastrad
588 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
589 1.1 riastrad
590 1.1 riastrad spin_lock(fence->lock);
591 1.2 riastrad ret = dma_fence_signal_locked(fence);
592 1.1 riastrad spin_unlock(fence->lock);
593 1.1 riastrad
594 1.1 riastrad return ret;
595 1.1 riastrad }
596 1.1 riastrad
597 1.1 riastrad /*
598 1.2 riastrad * dma_fence_signal_locked(fence)
599 1.1 riastrad *
600 1.2 riastrad * Signal the fence. Like dma_fence_signal, but caller already
601 1.2 riastrad * holds the fence's lock.
602 1.1 riastrad */
603 1.1 riastrad int
604 1.2 riastrad dma_fence_signal_locked(struct dma_fence *fence)
605 1.1 riastrad {
606 1.2 riastrad struct dma_fence_cb *fcb, *next;
607 1.1 riastrad
608 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
609 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
610 1.1 riastrad
611 1.1 riastrad /* If it's been signalled, fail; otherwise set the signalled bit. */
612 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
613 1.1 riastrad return -EINVAL;
614 1.1 riastrad
615 1.1 riastrad /* Wake waiters. */
616 1.1 riastrad cv_broadcast(&fence->f_cv);
617 1.1 riastrad
618 1.1 riastrad /* Remove and call the callbacks. */
619 1.1 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
620 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
621 1.1 riastrad fcb->fcb_onqueue = false;
622 1.4 riastrad (*fcb->func)(fence, fcb);
623 1.1 riastrad }
624 1.1 riastrad
625 1.1 riastrad /* Success! */
626 1.1 riastrad return 0;
627 1.1 riastrad }
628 1.1 riastrad
629 1.1 riastrad struct wait_any {
630 1.2 riastrad struct dma_fence_cb fcb;
631 1.1 riastrad struct wait_any1 {
632 1.1 riastrad kmutex_t lock;
633 1.1 riastrad kcondvar_t cv;
634 1.1 riastrad bool done;
635 1.11 riastrad uint32_t *ip;
636 1.11 riastrad struct wait_any *cb;
637 1.1 riastrad } *common;
638 1.1 riastrad };
639 1.1 riastrad
640 1.1 riastrad static void
641 1.2 riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
642 1.1 riastrad {
643 1.1 riastrad struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
644 1.1 riastrad
645 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
646 1.1 riastrad
647 1.1 riastrad mutex_enter(&cb->common->lock);
648 1.1 riastrad cb->common->done = true;
649 1.11 riastrad if (cb->common->ip)
650 1.11 riastrad *cb->common->ip = cb - cb->common->cb;
651 1.1 riastrad cv_broadcast(&cb->common->cv);
652 1.1 riastrad mutex_exit(&cb->common->lock);
653 1.1 riastrad }
654 1.1 riastrad
655 1.1 riastrad /*
656 1.11 riastrad * dma_fence_wait_any_timeout(fence, nfences, intr, timeout, ip)
657 1.1 riastrad *
658 1.1 riastrad * Wait for any of fences[0], fences[1], fences[2], ...,
659 1.13 riastrad * fences[nfences-1] to be signalled. If ip is nonnull, set *ip
660 1.13 riastrad * to the index of the first one.
661 1.1 riastrad */
662 1.1 riastrad long
663 1.2 riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
664 1.11 riastrad bool intr, long timeout, uint32_t *ip)
665 1.1 riastrad {
666 1.1 riastrad struct wait_any1 common;
667 1.1 riastrad struct wait_any *cb;
668 1.1 riastrad uint32_t i, j;
669 1.1 riastrad int start, end;
670 1.1 riastrad long ret = 0;
671 1.1 riastrad
672 1.1 riastrad /* Allocate an array of callback records. */
673 1.1 riastrad cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
674 1.1 riastrad if (cb == NULL) {
675 1.1 riastrad ret = -ENOMEM;
676 1.1 riastrad goto out0;
677 1.1 riastrad }
678 1.1 riastrad
679 1.1 riastrad /* Initialize a mutex and condvar for the common wait. */
680 1.1 riastrad mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
681 1.1 riastrad cv_init(&common.cv, "fence");
682 1.1 riastrad common.done = false;
683 1.11 riastrad common.ip = ip;
684 1.11 riastrad common.cb = cb;
685 1.1 riastrad
686 1.1 riastrad /* Add a callback to each of the fences, or stop here if we can't. */
687 1.1 riastrad for (i = 0; i < nfences; i++) {
688 1.1 riastrad cb[i].common = &common;
689 1.2 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
690 1.2 riastrad ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
691 1.2 riastrad &wait_any_cb);
692 1.1 riastrad if (ret)
693 1.1 riastrad goto out1;
694 1.1 riastrad }
695 1.1 riastrad
696 1.1 riastrad /*
697 1.1 riastrad * Test whether any of the fences has been signalled. If they
698 1.1 riastrad * have, stop here. If the haven't, we are guaranteed to be
699 1.1 riastrad * notified by one of the callbacks when they have.
700 1.1 riastrad */
701 1.1 riastrad for (j = 0; j < nfences; j++) {
702 1.11 riastrad if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags)) {
703 1.11 riastrad if (ip)
704 1.11 riastrad *ip = j;
705 1.11 riastrad ret = 0;
706 1.1 riastrad goto out1;
707 1.11 riastrad }
708 1.1 riastrad }
709 1.1 riastrad
710 1.1 riastrad /*
711 1.1 riastrad * None of them was ready immediately. Wait for one of the
712 1.1 riastrad * callbacks to notify us when it is done.
713 1.1 riastrad */
714 1.1 riastrad mutex_enter(&common.lock);
715 1.1 riastrad while (timeout > 0 && !common.done) {
716 1.1 riastrad start = getticks();
717 1.1 riastrad __insn_barrier();
718 1.1 riastrad if (intr) {
719 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
720 1.1 riastrad ret = -cv_timedwait_sig(&common.cv,
721 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
722 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
723 1.1 riastrad } else {
724 1.1 riastrad ret = -cv_wait_sig(&common.cv, &common.lock);
725 1.1 riastrad }
726 1.1 riastrad } else {
727 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
728 1.1 riastrad ret = -cv_timedwait(&common.cv,
729 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
730 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
731 1.1 riastrad } else {
732 1.1 riastrad cv_wait(&common.cv, &common.lock);
733 1.1 riastrad ret = 0;
734 1.1 riastrad }
735 1.1 riastrad }
736 1.1 riastrad end = getticks();
737 1.1 riastrad __insn_barrier();
738 1.1 riastrad if (ret) {
739 1.1 riastrad if (ret == -ERESTART)
740 1.1 riastrad ret = -ERESTARTSYS;
741 1.1 riastrad break;
742 1.1 riastrad }
743 1.1 riastrad timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
744 1.1 riastrad }
745 1.1 riastrad mutex_exit(&common.lock);
746 1.1 riastrad
747 1.1 riastrad /*
748 1.1 riastrad * Massage the return code: if we were interrupted, return
749 1.1 riastrad * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
750 1.1 riastrad * return the remaining time.
751 1.1 riastrad */
752 1.1 riastrad if (ret < 0) {
753 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
754 1.1 riastrad ret = -ERESTARTSYS;
755 1.1 riastrad if (ret == -EWOULDBLOCK)
756 1.1 riastrad ret = 0;
757 1.1 riastrad } else {
758 1.1 riastrad KASSERT(ret == 0);
759 1.1 riastrad ret = timeout;
760 1.1 riastrad }
761 1.1 riastrad
762 1.1 riastrad out1: while (i --> 0)
763 1.2 riastrad (void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
764 1.1 riastrad cv_destroy(&common.cv);
765 1.1 riastrad mutex_destroy(&common.lock);
766 1.1 riastrad kfree(cb);
767 1.1 riastrad out0: return ret;
768 1.1 riastrad }
769 1.1 riastrad
770 1.1 riastrad /*
771 1.2 riastrad * dma_fence_wait_timeout(fence, intr, timeout)
772 1.1 riastrad *
773 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
774 1.1 riastrad * true; or until timeout, if positive. Return -ERESTARTSYS if
775 1.1 riastrad * interrupted, negative error code on any other error, zero on
776 1.1 riastrad * timeout, or positive number of ticks remaining if the fence is
777 1.1 riastrad * signalled before the timeout. Works by calling the fence wait
778 1.1 riastrad * callback.
779 1.1 riastrad *
780 1.1 riastrad * The timeout must be nonnegative and less than
781 1.1 riastrad * MAX_SCHEDULE_TIMEOUT.
782 1.1 riastrad */
783 1.1 riastrad long
784 1.2 riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
785 1.1 riastrad {
786 1.1 riastrad
787 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
788 1.1 riastrad KASSERT(timeout >= 0);
789 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
790 1.1 riastrad
791 1.14 riastrad if (fence->ops->wait)
792 1.14 riastrad return (*fence->ops->wait)(fence, intr, timeout);
793 1.14 riastrad else
794 1.14 riastrad return dma_fence_default_wait(fence, intr, timeout);
795 1.1 riastrad }
796 1.1 riastrad
797 1.1 riastrad /*
798 1.2 riastrad * dma_fence_wait(fence, intr)
799 1.1 riastrad *
800 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
801 1.1 riastrad * true. Return -ERESTARTSYS if interrupted, negative error code
802 1.1 riastrad * on any other error, zero on sucess. Works by calling the fence
803 1.1 riastrad * wait callback with MAX_SCHEDULE_TIMEOUT.
804 1.1 riastrad */
805 1.1 riastrad long
806 1.2 riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
807 1.1 riastrad {
808 1.1 riastrad long ret;
809 1.1 riastrad
810 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
811 1.1 riastrad
812 1.15 riastrad if (fence->ops->wait)
813 1.15 riastrad ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
814 1.15 riastrad else
815 1.15 riastrad ret = dma_fence_default_wait(fence, intr,
816 1.15 riastrad MAX_SCHEDULE_TIMEOUT);
817 1.1 riastrad KASSERT(ret != 0);
818 1.1 riastrad
819 1.1 riastrad return (ret < 0 ? ret : 0);
820 1.1 riastrad }
821 1.1 riastrad
822 1.1 riastrad /*
823 1.2 riastrad * dma_fence_default_wait(fence, intr, timeout)
824 1.1 riastrad *
825 1.1 riastrad * Default implementation of fence wait callback using a condition
826 1.1 riastrad * variable. If the fence is already signalled, return timeout,
827 1.16 riastrad * or 1 if timeout is zero meaning poll. If the enable signalling
828 1.16 riastrad * callback hasn't been called, call it, and if it fails, act as
829 1.16 riastrad * if the fence had been signalled. Otherwise, wait on the
830 1.16 riastrad * internal condvar. If timeout is MAX_SCHEDULE_TIMEOUT, wait
831 1.16 riastrad * indefinitely.
832 1.1 riastrad */
833 1.1 riastrad long
834 1.2 riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
835 1.1 riastrad {
836 1.1 riastrad int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
837 1.1 riastrad kmutex_t *lock = &fence->lock->sl_lock;
838 1.1 riastrad long ret = 0;
839 1.1 riastrad
840 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
841 1.1 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
842 1.1 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
843 1.1 riastrad
844 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
845 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
846 1.16 riastrad return (timeout ? timeout : 1);
847 1.1 riastrad
848 1.1 riastrad /* Acquire the lock. */
849 1.1 riastrad spin_lock(fence->lock);
850 1.1 riastrad
851 1.16 riastrad /* Ensure signalling is enabled, or stop if already completed. */
852 1.17 riastrad if (dma_fence_ensure_signal_enabled(fence) != 0) {
853 1.17 riastrad spin_unlock(fence->lock);
854 1.16 riastrad return (timeout ? timeout : 1);
855 1.17 riastrad }
856 1.16 riastrad
857 1.16 riastrad /* If merely polling, stop here. */
858 1.16 riastrad if (timeout == 0) {
859 1.16 riastrad spin_unlock(fence->lock);
860 1.16 riastrad return 0;
861 1.16 riastrad }
862 1.1 riastrad
863 1.1 riastrad /* Find out what our deadline is so we can handle spurious wakeup. */
864 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
865 1.1 riastrad now = getticks();
866 1.1 riastrad __insn_barrier();
867 1.1 riastrad starttime = now;
868 1.1 riastrad deadline = starttime + timeout;
869 1.1 riastrad }
870 1.1 riastrad
871 1.1 riastrad /* Wait until the signalled bit is set. */
872 1.2 riastrad while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
873 1.1 riastrad /*
874 1.1 riastrad * If there's a timeout and we've passed the deadline,
875 1.1 riastrad * give up.
876 1.1 riastrad */
877 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
878 1.1 riastrad now = getticks();
879 1.1 riastrad __insn_barrier();
880 1.1 riastrad if (deadline <= now)
881 1.1 riastrad break;
882 1.1 riastrad }
883 1.1 riastrad if (intr) {
884 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
885 1.1 riastrad ret = -cv_timedwait_sig(&fence->f_cv, lock,
886 1.1 riastrad deadline - now);
887 1.1 riastrad } else {
888 1.1 riastrad ret = -cv_wait_sig(&fence->f_cv, lock);
889 1.1 riastrad }
890 1.1 riastrad } else {
891 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
892 1.1 riastrad ret = -cv_timedwait(&fence->f_cv, lock,
893 1.1 riastrad deadline - now);
894 1.1 riastrad } else {
895 1.1 riastrad cv_wait(&fence->f_cv, lock);
896 1.1 riastrad ret = 0;
897 1.1 riastrad }
898 1.1 riastrad }
899 1.1 riastrad /* If the wait failed, give up. */
900 1.1 riastrad if (ret) {
901 1.1 riastrad if (ret == -ERESTART)
902 1.1 riastrad ret = -ERESTARTSYS;
903 1.1 riastrad break;
904 1.1 riastrad }
905 1.1 riastrad }
906 1.1 riastrad
907 1.1 riastrad /* All done. Release the lock. */
908 1.1 riastrad spin_unlock(fence->lock);
909 1.1 riastrad
910 1.1 riastrad /* If cv_timedwait gave up, return 0 meaning timeout. */
911 1.1 riastrad if (ret == -EWOULDBLOCK) {
912 1.1 riastrad /* Only cv_timedwait and cv_timedwait_sig can return this. */
913 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
914 1.1 riastrad return 0;
915 1.1 riastrad }
916 1.1 riastrad
917 1.1 riastrad /* If there was a timeout and the deadline passed, return 0. */
918 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
919 1.1 riastrad if (deadline <= now)
920 1.1 riastrad return 0;
921 1.1 riastrad }
922 1.1 riastrad
923 1.1 riastrad /* If we were interrupted, return -ERESTARTSYS. */
924 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
925 1.1 riastrad return -ERESTARTSYS;
926 1.1 riastrad
927 1.1 riastrad /* If there was any other kind of error, fail. */
928 1.1 riastrad if (ret)
929 1.1 riastrad return ret;
930 1.1 riastrad
931 1.1 riastrad /*
932 1.1 riastrad * Success! Return the number of ticks left, at least 1, or 1
933 1.1 riastrad * if no timeout.
934 1.1 riastrad */
935 1.1 riastrad return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
936 1.1 riastrad }
937 1.12 riastrad
938 1.12 riastrad /*
939 1.12 riastrad * __dma_fence_signal(fence)
940 1.12 riastrad *
941 1.12 riastrad * Set fence's signalled bit, without waking waiters yet. Return
942 1.12 riastrad * true if it was newly set, false if it was already set.
943 1.12 riastrad */
944 1.12 riastrad bool
945 1.12 riastrad __dma_fence_signal(struct dma_fence *fence)
946 1.12 riastrad {
947 1.12 riastrad
948 1.12 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
949 1.12 riastrad return false;
950 1.12 riastrad
951 1.12 riastrad return true;
952 1.12 riastrad }
953 1.12 riastrad
954 1.12 riastrad /*
955 1.12 riastrad * __dma_fence_signal_wake(fence)
956 1.12 riastrad *
957 1.12 riastrad * Wake fence's waiters. Caller must have previously called
958 1.12 riastrad * __dma_fence_signal and it must have previously returned true.
959 1.12 riastrad */
960 1.12 riastrad void
961 1.12 riastrad __dma_fence_signal_wake(struct dma_fence *fence, ktime_t timestamp)
962 1.12 riastrad {
963 1.12 riastrad struct dma_fence_cb *fcb, *next;
964 1.12 riastrad
965 1.12 riastrad spin_lock(fence->lock);
966 1.12 riastrad
967 1.12 riastrad KASSERT(fence->flags & DMA_FENCE_FLAG_SIGNALED_BIT);
968 1.12 riastrad
969 1.12 riastrad /* Wake waiters. */
970 1.12 riastrad cv_broadcast(&fence->f_cv);
971 1.12 riastrad
972 1.12 riastrad /* Remove and call the callbacks. */
973 1.12 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
974 1.12 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
975 1.12 riastrad fcb->fcb_onqueue = false;
976 1.12 riastrad (*fcb->func)(fence, fcb);
977 1.12 riastrad }
978 1.12 riastrad
979 1.12 riastrad spin_unlock(fence->lock);
980 1.12 riastrad }
981