linux_dma_fence.c revision 1.25 1 1.25 riastrad /* $NetBSD: linux_dma_fence.c,v 1.25 2021/12/19 12:11:05 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.25 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.25 2021/12/19 12:11:05 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/atomic.h>
36 1.1 riastrad #include <sys/condvar.h>
37 1.1 riastrad #include <sys/queue.h>
38 1.1 riastrad
39 1.1 riastrad #include <linux/atomic.h>
40 1.2 riastrad #include <linux/dma-fence.h>
41 1.1 riastrad #include <linux/errno.h>
42 1.1 riastrad #include <linux/kref.h>
43 1.1 riastrad #include <linux/sched.h>
44 1.1 riastrad #include <linux/spinlock.h>
45 1.1 riastrad
46 1.24 riastrad #define FENCE_MAGIC_GOOD 0x607ba424048c37e5ULL
47 1.24 riastrad #define FENCE_MAGIC_BAD 0x7641ca721344505fULL
48 1.24 riastrad
49 1.1 riastrad /*
50 1.2 riastrad * linux_dma_fence_trace
51 1.1 riastrad *
52 1.2 riastrad * True if we print DMA_FENCE_TRACE messages, false if not. These
53 1.2 riastrad * are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
54 1.2 riastrad * in boothowto.
55 1.1 riastrad */
56 1.2 riastrad int linux_dma_fence_trace = 0;
57 1.1 riastrad
58 1.1 riastrad /*
59 1.2 riastrad * dma_fence_referenced_p(fence)
60 1.1 riastrad *
61 1.1 riastrad * True if fence has a positive reference count. True after
62 1.2 riastrad * dma_fence_init; after the last dma_fence_put, this becomes
63 1.24 riastrad * false. The fence must have been initialized and must not have
64 1.24 riastrad * been destroyed.
65 1.1 riastrad */
66 1.1 riastrad static inline bool __diagused
67 1.2 riastrad dma_fence_referenced_p(struct dma_fence *fence)
68 1.1 riastrad {
69 1.1 riastrad
70 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
71 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
72 1.24 riastrad
73 1.1 riastrad return kref_referenced_p(&fence->refcount);
74 1.1 riastrad }
75 1.1 riastrad
76 1.1 riastrad /*
77 1.2 riastrad * dma_fence_init(fence, ops, lock, context, seqno)
78 1.1 riastrad *
79 1.2 riastrad * Initialize fence. Caller should call dma_fence_destroy when
80 1.2 riastrad * done, after all references have been released.
81 1.1 riastrad */
82 1.1 riastrad void
83 1.2 riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
84 1.2 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
85 1.1 riastrad {
86 1.1 riastrad
87 1.1 riastrad kref_init(&fence->refcount);
88 1.1 riastrad fence->lock = lock;
89 1.1 riastrad fence->flags = 0;
90 1.1 riastrad fence->context = context;
91 1.1 riastrad fence->seqno = seqno;
92 1.1 riastrad fence->ops = ops;
93 1.18 riastrad fence->error = 0;
94 1.1 riastrad TAILQ_INIT(&fence->f_callbacks);
95 1.2 riastrad cv_init(&fence->f_cv, "dmafence");
96 1.24 riastrad
97 1.24 riastrad #ifdef DIAGNOSTIC
98 1.24 riastrad fence->f_magic = FENCE_MAGIC_GOOD;
99 1.24 riastrad #endif
100 1.1 riastrad }
101 1.1 riastrad
102 1.1 riastrad /*
103 1.18 riastrad * dma_fence_reset(fence)
104 1.18 riastrad *
105 1.18 riastrad * Ensure fence is in a quiescent state. Allowed either for newly
106 1.18 riastrad * initialized or freed fences, but not fences with more than one
107 1.18 riastrad * reference.
108 1.18 riastrad *
109 1.18 riastrad * XXX extension to Linux API
110 1.18 riastrad */
111 1.18 riastrad void
112 1.18 riastrad dma_fence_reset(struct dma_fence *fence, const struct dma_fence_ops *ops,
113 1.18 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
114 1.18 riastrad {
115 1.18 riastrad
116 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
117 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
118 1.18 riastrad KASSERT(kref_read(&fence->refcount) == 0 ||
119 1.18 riastrad kref_read(&fence->refcount) == 1);
120 1.18 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
121 1.18 riastrad KASSERT(fence->lock == lock);
122 1.18 riastrad KASSERT(fence->ops == ops);
123 1.18 riastrad
124 1.18 riastrad kref_init(&fence->refcount);
125 1.18 riastrad fence->flags = 0;
126 1.18 riastrad fence->context = context;
127 1.18 riastrad fence->seqno = seqno;
128 1.18 riastrad fence->error = 0;
129 1.18 riastrad }
130 1.18 riastrad
131 1.18 riastrad /*
132 1.2 riastrad * dma_fence_destroy(fence)
133 1.1 riastrad *
134 1.2 riastrad * Clean up memory initialized with dma_fence_init. This is meant
135 1.2 riastrad * to be used after a fence release callback.
136 1.19 riastrad *
137 1.19 riastrad * XXX extension to Linux API
138 1.1 riastrad */
139 1.1 riastrad void
140 1.2 riastrad dma_fence_destroy(struct dma_fence *fence)
141 1.1 riastrad {
142 1.1 riastrad
143 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
144 1.1 riastrad
145 1.24 riastrad #ifdef DIAGNOSTIC
146 1.24 riastrad fence->f_magic = FENCE_MAGIC_BAD;
147 1.24 riastrad #endif
148 1.24 riastrad
149 1.1 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
150 1.1 riastrad cv_destroy(&fence->f_cv);
151 1.1 riastrad }
152 1.1 riastrad
153 1.1 riastrad static void
154 1.2 riastrad dma_fence_free_cb(struct rcu_head *rcu)
155 1.1 riastrad {
156 1.19 riastrad struct dma_fence *fence = container_of(rcu, struct dma_fence, rcu);
157 1.1 riastrad
158 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
159 1.1 riastrad
160 1.2 riastrad dma_fence_destroy(fence);
161 1.1 riastrad kfree(fence);
162 1.1 riastrad }
163 1.1 riastrad
164 1.1 riastrad /*
165 1.2 riastrad * dma_fence_free(fence)
166 1.1 riastrad *
167 1.1 riastrad * Schedule fence to be destroyed and then freed with kfree after
168 1.1 riastrad * any pending RCU read sections on all CPUs have completed.
169 1.1 riastrad * Caller must guarantee all references have been released. This
170 1.1 riastrad * is meant to be used after a fence release callback.
171 1.1 riastrad *
172 1.1 riastrad * NOTE: Callers assume kfree will be used. We don't even use
173 1.1 riastrad * kmalloc to allocate these -- caller is expected to allocate
174 1.2 riastrad * memory with kmalloc to be initialized with dma_fence_init.
175 1.1 riastrad */
176 1.1 riastrad void
177 1.2 riastrad dma_fence_free(struct dma_fence *fence)
178 1.1 riastrad {
179 1.1 riastrad
180 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
181 1.1 riastrad
182 1.19 riastrad call_rcu(&fence->rcu, &dma_fence_free_cb);
183 1.1 riastrad }
184 1.1 riastrad
185 1.1 riastrad /*
186 1.2 riastrad * dma_fence_context_alloc(n)
187 1.1 riastrad *
188 1.1 riastrad * Return the first of a contiguous sequence of unique
189 1.1 riastrad * identifiers, at least until the system wraps around.
190 1.1 riastrad */
191 1.1 riastrad unsigned
192 1.2 riastrad dma_fence_context_alloc(unsigned n)
193 1.1 riastrad {
194 1.1 riastrad static volatile unsigned next_context = 0;
195 1.1 riastrad
196 1.1 riastrad return atomic_add_int_nv(&next_context, n) - n;
197 1.1 riastrad }
198 1.1 riastrad
199 1.1 riastrad /*
200 1.2 riastrad * dma_fence_is_later(a, b)
201 1.1 riastrad *
202 1.1 riastrad * True if the sequence number of fence a is later than the
203 1.1 riastrad * sequence number of fence b. Since sequence numbers wrap
204 1.1 riastrad * around, we define this to mean that the sequence number of
205 1.1 riastrad * fence a is no more than INT_MAX past the sequence number of
206 1.1 riastrad * fence b.
207 1.1 riastrad *
208 1.1 riastrad * The two fences must have the same context.
209 1.1 riastrad */
210 1.1 riastrad bool
211 1.2 riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
212 1.1 riastrad {
213 1.1 riastrad
214 1.24 riastrad KASSERTMSG(a->f_magic != FENCE_MAGIC_BAD, "fence %p", a);
215 1.24 riastrad KASSERTMSG(a->f_magic == FENCE_MAGIC_GOOD, "fence %p", a);
216 1.24 riastrad KASSERTMSG(b->f_magic != FENCE_MAGIC_BAD, "fence %p", b);
217 1.24 riastrad KASSERTMSG(b->f_magic == FENCE_MAGIC_GOOD, "fence %p", b);
218 1.1 riastrad KASSERTMSG(a->context == b->context, "incommensurate fences"
219 1.1 riastrad ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
220 1.1 riastrad
221 1.1 riastrad return a->seqno - b->seqno < INT_MAX;
222 1.1 riastrad }
223 1.1 riastrad
224 1.1 riastrad /*
225 1.9 riastrad * dma_fence_get_stub()
226 1.9 riastrad *
227 1.9 riastrad * Return a dma fence that is always already signalled.
228 1.9 riastrad */
229 1.9 riastrad struct dma_fence *
230 1.9 riastrad dma_fence_get_stub(void)
231 1.9 riastrad {
232 1.9 riastrad /*
233 1.9 riastrad * XXX This probably isn't good enough -- caller may try
234 1.9 riastrad * operations on this that require the lock, which will
235 1.9 riastrad * require us to create and destroy the lock on module
236 1.9 riastrad * load/unload.
237 1.9 riastrad */
238 1.9 riastrad static struct dma_fence fence = {
239 1.9 riastrad .refcount = {1}, /* always referenced */
240 1.9 riastrad .flags = 1u << DMA_FENCE_FLAG_SIGNALED_BIT,
241 1.9 riastrad };
242 1.9 riastrad
243 1.9 riastrad return dma_fence_get(&fence);
244 1.9 riastrad }
245 1.9 riastrad
246 1.9 riastrad /*
247 1.2 riastrad * dma_fence_get(fence)
248 1.1 riastrad *
249 1.1 riastrad * Acquire a reference to fence. The fence must not be being
250 1.1 riastrad * destroyed. Return the fence.
251 1.1 riastrad */
252 1.2 riastrad struct dma_fence *
253 1.2 riastrad dma_fence_get(struct dma_fence *fence)
254 1.1 riastrad {
255 1.1 riastrad
256 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
257 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
258 1.24 riastrad
259 1.1 riastrad if (fence)
260 1.1 riastrad kref_get(&fence->refcount);
261 1.1 riastrad return fence;
262 1.1 riastrad }
263 1.1 riastrad
264 1.1 riastrad /*
265 1.2 riastrad * dma_fence_get_rcu(fence)
266 1.1 riastrad *
267 1.1 riastrad * Attempt to acquire a reference to a fence that may be about to
268 1.1 riastrad * be destroyed, during a read section. Return the fence on
269 1.1 riastrad * success, or NULL on failure.
270 1.1 riastrad */
271 1.2 riastrad struct dma_fence *
272 1.2 riastrad dma_fence_get_rcu(struct dma_fence *fence)
273 1.1 riastrad {
274 1.1 riastrad
275 1.8 riastrad __insn_barrier();
276 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
277 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
278 1.1 riastrad if (!kref_get_unless_zero(&fence->refcount))
279 1.1 riastrad return NULL;
280 1.1 riastrad return fence;
281 1.1 riastrad }
282 1.1 riastrad
283 1.3 riastrad /*
284 1.3 riastrad * dma_fence_get_rcu_safe(fencep)
285 1.3 riastrad *
286 1.3 riastrad * Attempt to acquire a reference to the fence *fencep, which may
287 1.3 riastrad * be about to be destroyed, during a read section. If the value
288 1.3 riastrad * of *fencep changes after we read *fencep but before we
289 1.3 riastrad * increment its reference count, retry. Return *fencep on
290 1.3 riastrad * success, or NULL on failure.
291 1.3 riastrad */
292 1.3 riastrad struct dma_fence *
293 1.7 riastrad dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
294 1.3 riastrad {
295 1.3 riastrad struct dma_fence *fence, *fence0;
296 1.3 riastrad
297 1.3 riastrad retry:
298 1.3 riastrad fence = *fencep;
299 1.3 riastrad
300 1.3 riastrad /* Load fence only once. */
301 1.3 riastrad __insn_barrier();
302 1.3 riastrad
303 1.3 riastrad /* If there's nothing there, give up. */
304 1.3 riastrad if (fence == NULL)
305 1.3 riastrad return NULL;
306 1.3 riastrad
307 1.3 riastrad /* Make sure we don't load stale fence guts. */
308 1.3 riastrad membar_datadep_consumer();
309 1.3 riastrad
310 1.3 riastrad /* Try to acquire a reference. If we can't, try again. */
311 1.3 riastrad if (!dma_fence_get_rcu(fence))
312 1.3 riastrad goto retry;
313 1.3 riastrad
314 1.3 riastrad /*
315 1.3 riastrad * Confirm that it's still the same fence. If not, release it
316 1.3 riastrad * and retry.
317 1.3 riastrad */
318 1.3 riastrad fence0 = *fencep;
319 1.3 riastrad __insn_barrier();
320 1.3 riastrad if (fence != fence0) {
321 1.3 riastrad dma_fence_put(fence);
322 1.3 riastrad goto retry;
323 1.3 riastrad }
324 1.3 riastrad
325 1.3 riastrad /* Success! */
326 1.24 riastrad KASSERT(dma_fence_referenced_p(fence));
327 1.3 riastrad return fence;
328 1.3 riastrad }
329 1.3 riastrad
330 1.1 riastrad static void
331 1.2 riastrad dma_fence_release(struct kref *refcount)
332 1.1 riastrad {
333 1.2 riastrad struct dma_fence *fence = container_of(refcount, struct dma_fence,
334 1.2 riastrad refcount);
335 1.1 riastrad
336 1.23 riastrad KASSERTMSG(TAILQ_EMPTY(&fence->f_callbacks),
337 1.23 riastrad "fence %p has pending callbacks", fence);
338 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
339 1.1 riastrad
340 1.1 riastrad if (fence->ops->release)
341 1.1 riastrad (*fence->ops->release)(fence);
342 1.1 riastrad else
343 1.2 riastrad dma_fence_free(fence);
344 1.1 riastrad }
345 1.1 riastrad
346 1.1 riastrad /*
347 1.2 riastrad * dma_fence_put(fence)
348 1.1 riastrad *
349 1.1 riastrad * Release a reference to fence. If this was the last one, call
350 1.1 riastrad * the fence's release callback.
351 1.1 riastrad */
352 1.1 riastrad void
353 1.2 riastrad dma_fence_put(struct dma_fence *fence)
354 1.1 riastrad {
355 1.1 riastrad
356 1.1 riastrad if (fence == NULL)
357 1.1 riastrad return;
358 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
359 1.2 riastrad kref_put(&fence->refcount, &dma_fence_release);
360 1.1 riastrad }
361 1.1 riastrad
362 1.1 riastrad /*
363 1.2 riastrad * dma_fence_ensure_signal_enabled(fence)
364 1.1 riastrad *
365 1.1 riastrad * Internal subroutine. If the fence was already signalled,
366 1.1 riastrad * return -ENOENT. Otherwise, if the enable signalling callback
367 1.1 riastrad * has not been called yet, call it. If fails, signal the fence
368 1.1 riastrad * and return -ENOENT. If it succeeds, or if it had already been
369 1.1 riastrad * called, return zero to indicate success.
370 1.1 riastrad *
371 1.1 riastrad * Caller must hold the fence's lock.
372 1.1 riastrad */
373 1.1 riastrad static int
374 1.2 riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
375 1.1 riastrad {
376 1.20 riastrad bool already_enabled;
377 1.1 riastrad
378 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
379 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
380 1.1 riastrad
381 1.20 riastrad /* Determine whether signalling was enabled, and enable it. */
382 1.20 riastrad already_enabled = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
383 1.20 riastrad &fence->flags);
384 1.20 riastrad
385 1.1 riastrad /* If the fence was already signalled, fail with -ENOENT. */
386 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
387 1.1 riastrad return -ENOENT;
388 1.1 riastrad
389 1.1 riastrad /*
390 1.20 riastrad * Otherwise, if it wasn't enabled yet, try to enable
391 1.20 riastrad * signalling, or fail if the fence doesn't support that.
392 1.1 riastrad */
393 1.20 riastrad if (!already_enabled) {
394 1.20 riastrad if (fence->ops->enable_signaling == NULL)
395 1.20 riastrad return -ENOENT;
396 1.20 riastrad if (!(*fence->ops->enable_signaling)(fence)) {
397 1.20 riastrad /* If it failed, signal and return -ENOENT. */
398 1.20 riastrad dma_fence_signal_locked(fence);
399 1.20 riastrad return -ENOENT;
400 1.20 riastrad }
401 1.1 riastrad }
402 1.1 riastrad
403 1.1 riastrad /* Success! */
404 1.1 riastrad return 0;
405 1.1 riastrad }
406 1.1 riastrad
407 1.1 riastrad /*
408 1.2 riastrad * dma_fence_add_callback(fence, fcb, fn)
409 1.1 riastrad *
410 1.1 riastrad * If fence has been signalled, return -ENOENT. If the enable
411 1.1 riastrad * signalling callback hasn't been called yet, call it; if it
412 1.1 riastrad * fails, return -ENOENT. Otherwise, arrange to call fn(fence,
413 1.1 riastrad * fcb) when it is signalled, and return 0.
414 1.1 riastrad *
415 1.1 riastrad * The fence uses memory allocated by the caller in fcb from the
416 1.2 riastrad * time of dma_fence_add_callback either to the time of
417 1.2 riastrad * dma_fence_remove_callback, or just before calling fn.
418 1.1 riastrad */
419 1.1 riastrad int
420 1.2 riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
421 1.2 riastrad dma_fence_func_t fn)
422 1.1 riastrad {
423 1.1 riastrad int ret;
424 1.1 riastrad
425 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
426 1.1 riastrad
427 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
428 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
429 1.1 riastrad ret = -ENOENT;
430 1.1 riastrad goto out0;
431 1.1 riastrad }
432 1.1 riastrad
433 1.1 riastrad /* Acquire the lock. */
434 1.1 riastrad spin_lock(fence->lock);
435 1.1 riastrad
436 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
437 1.2 riastrad ret = dma_fence_ensure_signal_enabled(fence);
438 1.1 riastrad if (ret)
439 1.1 riastrad goto out1;
440 1.1 riastrad
441 1.1 riastrad /* Insert the callback. */
442 1.4 riastrad fcb->func = fn;
443 1.1 riastrad TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
444 1.1 riastrad fcb->fcb_onqueue = true;
445 1.21 riastrad ret = 0;
446 1.1 riastrad
447 1.1 riastrad /* Release the lock and we're done. */
448 1.1 riastrad out1: spin_unlock(fence->lock);
449 1.21 riastrad out0: if (ret) {
450 1.21 riastrad fcb->func = NULL;
451 1.21 riastrad fcb->fcb_onqueue = false;
452 1.21 riastrad }
453 1.21 riastrad return ret;
454 1.1 riastrad }
455 1.1 riastrad
456 1.1 riastrad /*
457 1.2 riastrad * dma_fence_remove_callback(fence, fcb)
458 1.1 riastrad *
459 1.1 riastrad * Remove the callback fcb from fence. Return true if it was
460 1.1 riastrad * removed from the list, or false if it had already run and so
461 1.1 riastrad * was no longer queued anyway. Caller must have already called
462 1.2 riastrad * dma_fence_add_callback(fence, fcb).
463 1.1 riastrad */
464 1.1 riastrad bool
465 1.2 riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
466 1.1 riastrad {
467 1.1 riastrad bool onqueue;
468 1.1 riastrad
469 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
470 1.1 riastrad
471 1.1 riastrad spin_lock(fence->lock);
472 1.1 riastrad onqueue = fcb->fcb_onqueue;
473 1.1 riastrad if (onqueue) {
474 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
475 1.1 riastrad fcb->fcb_onqueue = false;
476 1.1 riastrad }
477 1.1 riastrad spin_unlock(fence->lock);
478 1.1 riastrad
479 1.1 riastrad return onqueue;
480 1.1 riastrad }
481 1.1 riastrad
482 1.1 riastrad /*
483 1.2 riastrad * dma_fence_enable_sw_signaling(fence)
484 1.1 riastrad *
485 1.1 riastrad * If it hasn't been called yet and the fence hasn't been
486 1.1 riastrad * signalled yet, call the fence's enable_sw_signaling callback.
487 1.1 riastrad * If when that happens, the callback indicates failure by
488 1.1 riastrad * returning false, signal the fence.
489 1.1 riastrad */
490 1.1 riastrad void
491 1.2 riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
492 1.1 riastrad {
493 1.1 riastrad
494 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
495 1.1 riastrad
496 1.1 riastrad spin_lock(fence->lock);
497 1.22 riastrad if ((fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) == 0)
498 1.22 riastrad (void)dma_fence_ensure_signal_enabled(fence);
499 1.1 riastrad spin_unlock(fence->lock);
500 1.1 riastrad }
501 1.1 riastrad
502 1.1 riastrad /*
503 1.2 riastrad * dma_fence_is_signaled(fence)
504 1.1 riastrad *
505 1.1 riastrad * Test whether the fence has been signalled. If it has been
506 1.2 riastrad * signalled by dma_fence_signal(_locked), return true. If the
507 1.1 riastrad * signalled callback returns true indicating that some implicit
508 1.1 riastrad * external condition has changed, call the callbacks as if with
509 1.2 riastrad * dma_fence_signal.
510 1.1 riastrad */
511 1.1 riastrad bool
512 1.2 riastrad dma_fence_is_signaled(struct dma_fence *fence)
513 1.1 riastrad {
514 1.1 riastrad bool signaled;
515 1.1 riastrad
516 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
517 1.1 riastrad
518 1.1 riastrad spin_lock(fence->lock);
519 1.2 riastrad signaled = dma_fence_is_signaled_locked(fence);
520 1.1 riastrad spin_unlock(fence->lock);
521 1.1 riastrad
522 1.1 riastrad return signaled;
523 1.1 riastrad }
524 1.1 riastrad
525 1.1 riastrad /*
526 1.2 riastrad * dma_fence_is_signaled_locked(fence)
527 1.1 riastrad *
528 1.1 riastrad * Test whether the fence has been signalled. Like
529 1.2 riastrad * dma_fence_is_signaleed, but caller already holds the fence's lock.
530 1.1 riastrad */
531 1.1 riastrad bool
532 1.2 riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
533 1.1 riastrad {
534 1.1 riastrad
535 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
536 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
537 1.1 riastrad
538 1.1 riastrad /* Check whether we already set the signalled bit. */
539 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
540 1.1 riastrad return true;
541 1.1 riastrad
542 1.1 riastrad /* If there's a signalled callback, test it. */
543 1.1 riastrad if (fence->ops->signaled) {
544 1.1 riastrad if ((*fence->ops->signaled)(fence)) {
545 1.1 riastrad /*
546 1.1 riastrad * It's been signalled implicitly by some
547 1.1 riastrad * external phenomonen. Act as though someone
548 1.2 riastrad * has called dma_fence_signal.
549 1.1 riastrad */
550 1.2 riastrad dma_fence_signal_locked(fence);
551 1.1 riastrad return true;
552 1.1 riastrad }
553 1.1 riastrad }
554 1.1 riastrad
555 1.1 riastrad return false;
556 1.1 riastrad }
557 1.1 riastrad
558 1.1 riastrad /*
559 1.5 riastrad * dma_fence_set_error(fence, error)
560 1.5 riastrad *
561 1.5 riastrad * Set an error code prior to dma_fence_signal for use by a
562 1.5 riastrad * waiter to learn about success or failure of the fence.
563 1.5 riastrad */
564 1.5 riastrad void
565 1.5 riastrad dma_fence_set_error(struct dma_fence *fence, int error)
566 1.5 riastrad {
567 1.5 riastrad
568 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
569 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
570 1.5 riastrad KASSERT(!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)));
571 1.6 riastrad KASSERTMSG(error >= -ELAST, "%d", error);
572 1.5 riastrad KASSERTMSG(error < 0, "%d", error);
573 1.5 riastrad
574 1.5 riastrad fence->error = error;
575 1.5 riastrad }
576 1.5 riastrad
577 1.5 riastrad /*
578 1.10 riastrad * dma_fence_get_status(fence)
579 1.10 riastrad *
580 1.10 riastrad * Return 0 if fence has yet to be signalled, 1 if it has been
581 1.10 riastrad * signalled without error, or negative error code if
582 1.10 riastrad * dma_fence_set_error was used.
583 1.10 riastrad */
584 1.10 riastrad int
585 1.10 riastrad dma_fence_get_status(struct dma_fence *fence)
586 1.10 riastrad {
587 1.10 riastrad int ret;
588 1.10 riastrad
589 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
590 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
591 1.24 riastrad
592 1.10 riastrad spin_lock(fence->lock);
593 1.10 riastrad if (!dma_fence_is_signaled_locked(fence)) {
594 1.10 riastrad ret = 0;
595 1.10 riastrad } else if (fence->error) {
596 1.10 riastrad ret = fence->error;
597 1.10 riastrad KASSERTMSG(ret < 0, "%d", ret);
598 1.10 riastrad } else {
599 1.10 riastrad ret = 1;
600 1.10 riastrad }
601 1.10 riastrad spin_unlock(fence->lock);
602 1.10 riastrad
603 1.10 riastrad return ret;
604 1.10 riastrad }
605 1.10 riastrad
606 1.10 riastrad /*
607 1.2 riastrad * dma_fence_signal(fence)
608 1.1 riastrad *
609 1.1 riastrad * Signal the fence. If it has already been signalled, return
610 1.1 riastrad * -EINVAL. If it has not been signalled, call the enable
611 1.1 riastrad * signalling callback if it hasn't been called yet, and remove
612 1.1 riastrad * each registered callback from the queue and call it; then
613 1.1 riastrad * return 0.
614 1.1 riastrad */
615 1.1 riastrad int
616 1.2 riastrad dma_fence_signal(struct dma_fence *fence)
617 1.1 riastrad {
618 1.1 riastrad int ret;
619 1.1 riastrad
620 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
621 1.1 riastrad
622 1.1 riastrad spin_lock(fence->lock);
623 1.2 riastrad ret = dma_fence_signal_locked(fence);
624 1.1 riastrad spin_unlock(fence->lock);
625 1.1 riastrad
626 1.1 riastrad return ret;
627 1.1 riastrad }
628 1.1 riastrad
629 1.1 riastrad /*
630 1.2 riastrad * dma_fence_signal_locked(fence)
631 1.1 riastrad *
632 1.2 riastrad * Signal the fence. Like dma_fence_signal, but caller already
633 1.2 riastrad * holds the fence's lock.
634 1.1 riastrad */
635 1.1 riastrad int
636 1.2 riastrad dma_fence_signal_locked(struct dma_fence *fence)
637 1.1 riastrad {
638 1.2 riastrad struct dma_fence_cb *fcb, *next;
639 1.1 riastrad
640 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
641 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
642 1.1 riastrad
643 1.1 riastrad /* If it's been signalled, fail; otherwise set the signalled bit. */
644 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
645 1.1 riastrad return -EINVAL;
646 1.1 riastrad
647 1.25 riastrad /* Set the timestamp. */
648 1.25 riastrad fence->timestamp = ktime_get();
649 1.25 riastrad set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
650 1.25 riastrad
651 1.1 riastrad /* Wake waiters. */
652 1.1 riastrad cv_broadcast(&fence->f_cv);
653 1.1 riastrad
654 1.1 riastrad /* Remove and call the callbacks. */
655 1.1 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
656 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
657 1.1 riastrad fcb->fcb_onqueue = false;
658 1.4 riastrad (*fcb->func)(fence, fcb);
659 1.1 riastrad }
660 1.1 riastrad
661 1.1 riastrad /* Success! */
662 1.1 riastrad return 0;
663 1.1 riastrad }
664 1.1 riastrad
665 1.1 riastrad struct wait_any {
666 1.2 riastrad struct dma_fence_cb fcb;
667 1.1 riastrad struct wait_any1 {
668 1.1 riastrad kmutex_t lock;
669 1.1 riastrad kcondvar_t cv;
670 1.1 riastrad bool done;
671 1.11 riastrad uint32_t *ip;
672 1.11 riastrad struct wait_any *cb;
673 1.1 riastrad } *common;
674 1.1 riastrad };
675 1.1 riastrad
676 1.1 riastrad static void
677 1.2 riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
678 1.1 riastrad {
679 1.1 riastrad struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
680 1.1 riastrad
681 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
682 1.1 riastrad
683 1.1 riastrad mutex_enter(&cb->common->lock);
684 1.1 riastrad cb->common->done = true;
685 1.11 riastrad if (cb->common->ip)
686 1.11 riastrad *cb->common->ip = cb - cb->common->cb;
687 1.1 riastrad cv_broadcast(&cb->common->cv);
688 1.1 riastrad mutex_exit(&cb->common->lock);
689 1.1 riastrad }
690 1.1 riastrad
691 1.1 riastrad /*
692 1.11 riastrad * dma_fence_wait_any_timeout(fence, nfences, intr, timeout, ip)
693 1.1 riastrad *
694 1.1 riastrad * Wait for any of fences[0], fences[1], fences[2], ...,
695 1.13 riastrad * fences[nfences-1] to be signalled. If ip is nonnull, set *ip
696 1.13 riastrad * to the index of the first one.
697 1.1 riastrad */
698 1.1 riastrad long
699 1.2 riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
700 1.11 riastrad bool intr, long timeout, uint32_t *ip)
701 1.1 riastrad {
702 1.1 riastrad struct wait_any1 common;
703 1.1 riastrad struct wait_any *cb;
704 1.1 riastrad uint32_t i, j;
705 1.1 riastrad int start, end;
706 1.1 riastrad long ret = 0;
707 1.1 riastrad
708 1.1 riastrad /* Allocate an array of callback records. */
709 1.1 riastrad cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
710 1.1 riastrad if (cb == NULL) {
711 1.1 riastrad ret = -ENOMEM;
712 1.1 riastrad goto out0;
713 1.1 riastrad }
714 1.1 riastrad
715 1.1 riastrad /* Initialize a mutex and condvar for the common wait. */
716 1.1 riastrad mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
717 1.1 riastrad cv_init(&common.cv, "fence");
718 1.1 riastrad common.done = false;
719 1.11 riastrad common.ip = ip;
720 1.11 riastrad common.cb = cb;
721 1.1 riastrad
722 1.1 riastrad /* Add a callback to each of the fences, or stop here if we can't. */
723 1.1 riastrad for (i = 0; i < nfences; i++) {
724 1.1 riastrad cb[i].common = &common;
725 1.2 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
726 1.2 riastrad ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
727 1.2 riastrad &wait_any_cb);
728 1.1 riastrad if (ret)
729 1.1 riastrad goto out1;
730 1.1 riastrad }
731 1.1 riastrad
732 1.1 riastrad /*
733 1.1 riastrad * Test whether any of the fences has been signalled. If they
734 1.1 riastrad * have, stop here. If the haven't, we are guaranteed to be
735 1.1 riastrad * notified by one of the callbacks when they have.
736 1.1 riastrad */
737 1.1 riastrad for (j = 0; j < nfences; j++) {
738 1.11 riastrad if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags)) {
739 1.11 riastrad if (ip)
740 1.11 riastrad *ip = j;
741 1.11 riastrad ret = 0;
742 1.1 riastrad goto out1;
743 1.11 riastrad }
744 1.1 riastrad }
745 1.1 riastrad
746 1.1 riastrad /*
747 1.1 riastrad * None of them was ready immediately. Wait for one of the
748 1.1 riastrad * callbacks to notify us when it is done.
749 1.1 riastrad */
750 1.1 riastrad mutex_enter(&common.lock);
751 1.1 riastrad while (timeout > 0 && !common.done) {
752 1.1 riastrad start = getticks();
753 1.1 riastrad __insn_barrier();
754 1.1 riastrad if (intr) {
755 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
756 1.1 riastrad ret = -cv_timedwait_sig(&common.cv,
757 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
758 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
759 1.1 riastrad } else {
760 1.1 riastrad ret = -cv_wait_sig(&common.cv, &common.lock);
761 1.1 riastrad }
762 1.1 riastrad } else {
763 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
764 1.1 riastrad ret = -cv_timedwait(&common.cv,
765 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
766 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
767 1.1 riastrad } else {
768 1.1 riastrad cv_wait(&common.cv, &common.lock);
769 1.1 riastrad ret = 0;
770 1.1 riastrad }
771 1.1 riastrad }
772 1.1 riastrad end = getticks();
773 1.1 riastrad __insn_barrier();
774 1.1 riastrad if (ret) {
775 1.1 riastrad if (ret == -ERESTART)
776 1.1 riastrad ret = -ERESTARTSYS;
777 1.1 riastrad break;
778 1.1 riastrad }
779 1.1 riastrad timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
780 1.1 riastrad }
781 1.1 riastrad mutex_exit(&common.lock);
782 1.1 riastrad
783 1.1 riastrad /*
784 1.1 riastrad * Massage the return code: if we were interrupted, return
785 1.1 riastrad * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
786 1.1 riastrad * return the remaining time.
787 1.1 riastrad */
788 1.1 riastrad if (ret < 0) {
789 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
790 1.1 riastrad ret = -ERESTARTSYS;
791 1.1 riastrad if (ret == -EWOULDBLOCK)
792 1.1 riastrad ret = 0;
793 1.1 riastrad } else {
794 1.1 riastrad KASSERT(ret == 0);
795 1.1 riastrad ret = timeout;
796 1.1 riastrad }
797 1.1 riastrad
798 1.1 riastrad out1: while (i --> 0)
799 1.2 riastrad (void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
800 1.1 riastrad cv_destroy(&common.cv);
801 1.1 riastrad mutex_destroy(&common.lock);
802 1.1 riastrad kfree(cb);
803 1.1 riastrad out0: return ret;
804 1.1 riastrad }
805 1.1 riastrad
806 1.1 riastrad /*
807 1.2 riastrad * dma_fence_wait_timeout(fence, intr, timeout)
808 1.1 riastrad *
809 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
810 1.1 riastrad * true; or until timeout, if positive. Return -ERESTARTSYS if
811 1.1 riastrad * interrupted, negative error code on any other error, zero on
812 1.1 riastrad * timeout, or positive number of ticks remaining if the fence is
813 1.1 riastrad * signalled before the timeout. Works by calling the fence wait
814 1.1 riastrad * callback.
815 1.1 riastrad *
816 1.1 riastrad * The timeout must be nonnegative and less than
817 1.1 riastrad * MAX_SCHEDULE_TIMEOUT.
818 1.1 riastrad */
819 1.1 riastrad long
820 1.2 riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
821 1.1 riastrad {
822 1.1 riastrad
823 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
824 1.1 riastrad KASSERT(timeout >= 0);
825 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
826 1.1 riastrad
827 1.14 riastrad if (fence->ops->wait)
828 1.14 riastrad return (*fence->ops->wait)(fence, intr, timeout);
829 1.14 riastrad else
830 1.14 riastrad return dma_fence_default_wait(fence, intr, timeout);
831 1.1 riastrad }
832 1.1 riastrad
833 1.1 riastrad /*
834 1.2 riastrad * dma_fence_wait(fence, intr)
835 1.1 riastrad *
836 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
837 1.1 riastrad * true. Return -ERESTARTSYS if interrupted, negative error code
838 1.1 riastrad * on any other error, zero on sucess. Works by calling the fence
839 1.1 riastrad * wait callback with MAX_SCHEDULE_TIMEOUT.
840 1.1 riastrad */
841 1.1 riastrad long
842 1.2 riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
843 1.1 riastrad {
844 1.1 riastrad long ret;
845 1.1 riastrad
846 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
847 1.1 riastrad
848 1.15 riastrad if (fence->ops->wait)
849 1.15 riastrad ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
850 1.15 riastrad else
851 1.15 riastrad ret = dma_fence_default_wait(fence, intr,
852 1.15 riastrad MAX_SCHEDULE_TIMEOUT);
853 1.1 riastrad KASSERT(ret != 0);
854 1.1 riastrad
855 1.1 riastrad return (ret < 0 ? ret : 0);
856 1.1 riastrad }
857 1.1 riastrad
858 1.1 riastrad /*
859 1.2 riastrad * dma_fence_default_wait(fence, intr, timeout)
860 1.1 riastrad *
861 1.1 riastrad * Default implementation of fence wait callback using a condition
862 1.1 riastrad * variable. If the fence is already signalled, return timeout,
863 1.16 riastrad * or 1 if timeout is zero meaning poll. If the enable signalling
864 1.16 riastrad * callback hasn't been called, call it, and if it fails, act as
865 1.16 riastrad * if the fence had been signalled. Otherwise, wait on the
866 1.16 riastrad * internal condvar. If timeout is MAX_SCHEDULE_TIMEOUT, wait
867 1.16 riastrad * indefinitely.
868 1.1 riastrad */
869 1.1 riastrad long
870 1.2 riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
871 1.1 riastrad {
872 1.1 riastrad int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
873 1.1 riastrad kmutex_t *lock = &fence->lock->sl_lock;
874 1.1 riastrad long ret = 0;
875 1.1 riastrad
876 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
877 1.1 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
878 1.1 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
879 1.1 riastrad
880 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
881 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
882 1.16 riastrad return (timeout ? timeout : 1);
883 1.1 riastrad
884 1.1 riastrad /* Acquire the lock. */
885 1.1 riastrad spin_lock(fence->lock);
886 1.1 riastrad
887 1.16 riastrad /* Ensure signalling is enabled, or stop if already completed. */
888 1.17 riastrad if (dma_fence_ensure_signal_enabled(fence) != 0) {
889 1.17 riastrad spin_unlock(fence->lock);
890 1.16 riastrad return (timeout ? timeout : 1);
891 1.17 riastrad }
892 1.16 riastrad
893 1.16 riastrad /* If merely polling, stop here. */
894 1.16 riastrad if (timeout == 0) {
895 1.16 riastrad spin_unlock(fence->lock);
896 1.16 riastrad return 0;
897 1.16 riastrad }
898 1.1 riastrad
899 1.1 riastrad /* Find out what our deadline is so we can handle spurious wakeup. */
900 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
901 1.1 riastrad now = getticks();
902 1.1 riastrad __insn_barrier();
903 1.1 riastrad starttime = now;
904 1.1 riastrad deadline = starttime + timeout;
905 1.1 riastrad }
906 1.1 riastrad
907 1.1 riastrad /* Wait until the signalled bit is set. */
908 1.2 riastrad while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
909 1.1 riastrad /*
910 1.1 riastrad * If there's a timeout and we've passed the deadline,
911 1.1 riastrad * give up.
912 1.1 riastrad */
913 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
914 1.1 riastrad now = getticks();
915 1.1 riastrad __insn_barrier();
916 1.1 riastrad if (deadline <= now)
917 1.1 riastrad break;
918 1.1 riastrad }
919 1.1 riastrad if (intr) {
920 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
921 1.1 riastrad ret = -cv_timedwait_sig(&fence->f_cv, lock,
922 1.1 riastrad deadline - now);
923 1.1 riastrad } else {
924 1.1 riastrad ret = -cv_wait_sig(&fence->f_cv, lock);
925 1.1 riastrad }
926 1.1 riastrad } else {
927 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
928 1.1 riastrad ret = -cv_timedwait(&fence->f_cv, lock,
929 1.1 riastrad deadline - now);
930 1.1 riastrad } else {
931 1.1 riastrad cv_wait(&fence->f_cv, lock);
932 1.1 riastrad ret = 0;
933 1.1 riastrad }
934 1.1 riastrad }
935 1.1 riastrad /* If the wait failed, give up. */
936 1.1 riastrad if (ret) {
937 1.1 riastrad if (ret == -ERESTART)
938 1.1 riastrad ret = -ERESTARTSYS;
939 1.1 riastrad break;
940 1.1 riastrad }
941 1.1 riastrad }
942 1.1 riastrad
943 1.1 riastrad /* All done. Release the lock. */
944 1.1 riastrad spin_unlock(fence->lock);
945 1.1 riastrad
946 1.1 riastrad /* If cv_timedwait gave up, return 0 meaning timeout. */
947 1.1 riastrad if (ret == -EWOULDBLOCK) {
948 1.1 riastrad /* Only cv_timedwait and cv_timedwait_sig can return this. */
949 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
950 1.1 riastrad return 0;
951 1.1 riastrad }
952 1.1 riastrad
953 1.1 riastrad /* If there was a timeout and the deadline passed, return 0. */
954 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
955 1.1 riastrad if (deadline <= now)
956 1.1 riastrad return 0;
957 1.1 riastrad }
958 1.1 riastrad
959 1.1 riastrad /* If we were interrupted, return -ERESTARTSYS. */
960 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
961 1.1 riastrad return -ERESTARTSYS;
962 1.1 riastrad
963 1.1 riastrad /* If there was any other kind of error, fail. */
964 1.1 riastrad if (ret)
965 1.1 riastrad return ret;
966 1.1 riastrad
967 1.1 riastrad /*
968 1.1 riastrad * Success! Return the number of ticks left, at least 1, or 1
969 1.1 riastrad * if no timeout.
970 1.1 riastrad */
971 1.1 riastrad return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
972 1.1 riastrad }
973 1.12 riastrad
974 1.12 riastrad /*
975 1.12 riastrad * __dma_fence_signal(fence)
976 1.12 riastrad *
977 1.12 riastrad * Set fence's signalled bit, without waking waiters yet. Return
978 1.12 riastrad * true if it was newly set, false if it was already set.
979 1.12 riastrad */
980 1.12 riastrad bool
981 1.12 riastrad __dma_fence_signal(struct dma_fence *fence)
982 1.12 riastrad {
983 1.12 riastrad
984 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
985 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
986 1.24 riastrad
987 1.12 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
988 1.12 riastrad return false;
989 1.12 riastrad
990 1.12 riastrad return true;
991 1.12 riastrad }
992 1.12 riastrad
993 1.12 riastrad /*
994 1.12 riastrad * __dma_fence_signal_wake(fence)
995 1.12 riastrad *
996 1.25 riastrad * Set fence's timestamp and wake fence's waiters. Caller must
997 1.25 riastrad * have previously called __dma_fence_signal and it must have
998 1.25 riastrad * previously returned true.
999 1.12 riastrad */
1000 1.12 riastrad void
1001 1.12 riastrad __dma_fence_signal_wake(struct dma_fence *fence, ktime_t timestamp)
1002 1.12 riastrad {
1003 1.12 riastrad struct dma_fence_cb *fcb, *next;
1004 1.12 riastrad
1005 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
1006 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
1007 1.24 riastrad
1008 1.12 riastrad spin_lock(fence->lock);
1009 1.12 riastrad
1010 1.12 riastrad KASSERT(fence->flags & DMA_FENCE_FLAG_SIGNALED_BIT);
1011 1.12 riastrad
1012 1.25 riastrad /* Set the timestamp. */
1013 1.25 riastrad fence->timestamp = timestamp;
1014 1.25 riastrad set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
1015 1.25 riastrad
1016 1.12 riastrad /* Wake waiters. */
1017 1.12 riastrad cv_broadcast(&fence->f_cv);
1018 1.12 riastrad
1019 1.12 riastrad /* Remove and call the callbacks. */
1020 1.12 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
1021 1.12 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
1022 1.12 riastrad fcb->fcb_onqueue = false;
1023 1.12 riastrad (*fcb->func)(fence, fcb);
1024 1.12 riastrad }
1025 1.12 riastrad
1026 1.12 riastrad spin_unlock(fence->lock);
1027 1.12 riastrad }
1028