linux_dma_fence.c revision 1.33 1 1.33 riastrad /* $NetBSD: linux_dma_fence.c,v 1.33 2021/12/19 12:34:58 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.33 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.33 2021/12/19 12:34:58 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/atomic.h>
36 1.1 riastrad #include <sys/condvar.h>
37 1.1 riastrad #include <sys/queue.h>
38 1.1 riastrad
39 1.1 riastrad #include <linux/atomic.h>
40 1.2 riastrad #include <linux/dma-fence.h>
41 1.1 riastrad #include <linux/errno.h>
42 1.1 riastrad #include <linux/kref.h>
43 1.1 riastrad #include <linux/sched.h>
44 1.1 riastrad #include <linux/spinlock.h>
45 1.1 riastrad
46 1.24 riastrad #define FENCE_MAGIC_GOOD 0x607ba424048c37e5ULL
47 1.24 riastrad #define FENCE_MAGIC_BAD 0x7641ca721344505fULL
48 1.24 riastrad
49 1.1 riastrad /*
50 1.2 riastrad * linux_dma_fence_trace
51 1.1 riastrad *
52 1.2 riastrad * True if we print DMA_FENCE_TRACE messages, false if not. These
53 1.2 riastrad * are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
54 1.2 riastrad * in boothowto.
55 1.1 riastrad */
56 1.2 riastrad int linux_dma_fence_trace = 0;
57 1.1 riastrad
58 1.1 riastrad /*
59 1.2 riastrad * dma_fence_referenced_p(fence)
60 1.1 riastrad *
61 1.1 riastrad * True if fence has a positive reference count. True after
62 1.2 riastrad * dma_fence_init; after the last dma_fence_put, this becomes
63 1.24 riastrad * false. The fence must have been initialized and must not have
64 1.24 riastrad * been destroyed.
65 1.1 riastrad */
66 1.1 riastrad static inline bool __diagused
67 1.2 riastrad dma_fence_referenced_p(struct dma_fence *fence)
68 1.1 riastrad {
69 1.1 riastrad
70 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
71 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
72 1.24 riastrad
73 1.1 riastrad return kref_referenced_p(&fence->refcount);
74 1.1 riastrad }
75 1.1 riastrad
76 1.1 riastrad /*
77 1.2 riastrad * dma_fence_init(fence, ops, lock, context, seqno)
78 1.1 riastrad *
79 1.2 riastrad * Initialize fence. Caller should call dma_fence_destroy when
80 1.2 riastrad * done, after all references have been released.
81 1.1 riastrad */
82 1.1 riastrad void
83 1.2 riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
84 1.2 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
85 1.1 riastrad {
86 1.1 riastrad
87 1.1 riastrad kref_init(&fence->refcount);
88 1.1 riastrad fence->lock = lock;
89 1.1 riastrad fence->flags = 0;
90 1.1 riastrad fence->context = context;
91 1.1 riastrad fence->seqno = seqno;
92 1.1 riastrad fence->ops = ops;
93 1.18 riastrad fence->error = 0;
94 1.1 riastrad TAILQ_INIT(&fence->f_callbacks);
95 1.2 riastrad cv_init(&fence->f_cv, "dmafence");
96 1.24 riastrad
97 1.24 riastrad #ifdef DIAGNOSTIC
98 1.24 riastrad fence->f_magic = FENCE_MAGIC_GOOD;
99 1.24 riastrad #endif
100 1.1 riastrad }
101 1.1 riastrad
102 1.1 riastrad /*
103 1.18 riastrad * dma_fence_reset(fence)
104 1.18 riastrad *
105 1.18 riastrad * Ensure fence is in a quiescent state. Allowed either for newly
106 1.18 riastrad * initialized or freed fences, but not fences with more than one
107 1.18 riastrad * reference.
108 1.18 riastrad *
109 1.18 riastrad * XXX extension to Linux API
110 1.18 riastrad */
111 1.18 riastrad void
112 1.18 riastrad dma_fence_reset(struct dma_fence *fence, const struct dma_fence_ops *ops,
113 1.18 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
114 1.18 riastrad {
115 1.18 riastrad
116 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
117 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
118 1.18 riastrad KASSERT(kref_read(&fence->refcount) == 0 ||
119 1.18 riastrad kref_read(&fence->refcount) == 1);
120 1.18 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
121 1.18 riastrad KASSERT(fence->lock == lock);
122 1.18 riastrad KASSERT(fence->ops == ops);
123 1.18 riastrad
124 1.18 riastrad kref_init(&fence->refcount);
125 1.18 riastrad fence->flags = 0;
126 1.18 riastrad fence->context = context;
127 1.18 riastrad fence->seqno = seqno;
128 1.18 riastrad fence->error = 0;
129 1.18 riastrad }
130 1.18 riastrad
131 1.18 riastrad /*
132 1.2 riastrad * dma_fence_destroy(fence)
133 1.1 riastrad *
134 1.2 riastrad * Clean up memory initialized with dma_fence_init. This is meant
135 1.2 riastrad * to be used after a fence release callback.
136 1.19 riastrad *
137 1.19 riastrad * XXX extension to Linux API
138 1.1 riastrad */
139 1.1 riastrad void
140 1.2 riastrad dma_fence_destroy(struct dma_fence *fence)
141 1.1 riastrad {
142 1.1 riastrad
143 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
144 1.1 riastrad
145 1.24 riastrad #ifdef DIAGNOSTIC
146 1.24 riastrad fence->f_magic = FENCE_MAGIC_BAD;
147 1.24 riastrad #endif
148 1.24 riastrad
149 1.1 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
150 1.1 riastrad cv_destroy(&fence->f_cv);
151 1.1 riastrad }
152 1.1 riastrad
153 1.1 riastrad static void
154 1.2 riastrad dma_fence_free_cb(struct rcu_head *rcu)
155 1.1 riastrad {
156 1.19 riastrad struct dma_fence *fence = container_of(rcu, struct dma_fence, rcu);
157 1.1 riastrad
158 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
159 1.1 riastrad
160 1.2 riastrad dma_fence_destroy(fence);
161 1.1 riastrad kfree(fence);
162 1.1 riastrad }
163 1.1 riastrad
164 1.1 riastrad /*
165 1.2 riastrad * dma_fence_free(fence)
166 1.1 riastrad *
167 1.1 riastrad * Schedule fence to be destroyed and then freed with kfree after
168 1.1 riastrad * any pending RCU read sections on all CPUs have completed.
169 1.1 riastrad * Caller must guarantee all references have been released. This
170 1.1 riastrad * is meant to be used after a fence release callback.
171 1.1 riastrad *
172 1.1 riastrad * NOTE: Callers assume kfree will be used. We don't even use
173 1.1 riastrad * kmalloc to allocate these -- caller is expected to allocate
174 1.2 riastrad * memory with kmalloc to be initialized with dma_fence_init.
175 1.1 riastrad */
176 1.1 riastrad void
177 1.2 riastrad dma_fence_free(struct dma_fence *fence)
178 1.1 riastrad {
179 1.1 riastrad
180 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
181 1.1 riastrad
182 1.19 riastrad call_rcu(&fence->rcu, &dma_fence_free_cb);
183 1.1 riastrad }
184 1.1 riastrad
185 1.1 riastrad /*
186 1.2 riastrad * dma_fence_context_alloc(n)
187 1.1 riastrad *
188 1.1 riastrad * Return the first of a contiguous sequence of unique
189 1.1 riastrad * identifiers, at least until the system wraps around.
190 1.1 riastrad */
191 1.1 riastrad unsigned
192 1.2 riastrad dma_fence_context_alloc(unsigned n)
193 1.1 riastrad {
194 1.1 riastrad static volatile unsigned next_context = 0;
195 1.1 riastrad
196 1.1 riastrad return atomic_add_int_nv(&next_context, n) - n;
197 1.1 riastrad }
198 1.1 riastrad
199 1.1 riastrad /*
200 1.2 riastrad * dma_fence_is_later(a, b)
201 1.1 riastrad *
202 1.1 riastrad * True if the sequence number of fence a is later than the
203 1.1 riastrad * sequence number of fence b. Since sequence numbers wrap
204 1.1 riastrad * around, we define this to mean that the sequence number of
205 1.1 riastrad * fence a is no more than INT_MAX past the sequence number of
206 1.1 riastrad * fence b.
207 1.1 riastrad *
208 1.1 riastrad * The two fences must have the same context.
209 1.1 riastrad */
210 1.1 riastrad bool
211 1.2 riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
212 1.1 riastrad {
213 1.1 riastrad
214 1.24 riastrad KASSERTMSG(a->f_magic != FENCE_MAGIC_BAD, "fence %p", a);
215 1.24 riastrad KASSERTMSG(a->f_magic == FENCE_MAGIC_GOOD, "fence %p", a);
216 1.24 riastrad KASSERTMSG(b->f_magic != FENCE_MAGIC_BAD, "fence %p", b);
217 1.24 riastrad KASSERTMSG(b->f_magic == FENCE_MAGIC_GOOD, "fence %p", b);
218 1.1 riastrad KASSERTMSG(a->context == b->context, "incommensurate fences"
219 1.1 riastrad ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
220 1.1 riastrad
221 1.1 riastrad return a->seqno - b->seqno < INT_MAX;
222 1.1 riastrad }
223 1.1 riastrad
224 1.30 riastrad static const char *dma_fence_stub_name(struct dma_fence *f)
225 1.30 riastrad {
226 1.30 riastrad
227 1.30 riastrad return "stub";
228 1.30 riastrad }
229 1.30 riastrad
230 1.30 riastrad static const struct dma_fence_ops dma_fence_stub_ops = {
231 1.30 riastrad .get_driver_name = dma_fence_stub_name,
232 1.30 riastrad .get_timeline_name = dma_fence_stub_name,
233 1.30 riastrad };
234 1.30 riastrad
235 1.1 riastrad /*
236 1.9 riastrad * dma_fence_get_stub()
237 1.9 riastrad *
238 1.9 riastrad * Return a dma fence that is always already signalled.
239 1.9 riastrad */
240 1.9 riastrad struct dma_fence *
241 1.9 riastrad dma_fence_get_stub(void)
242 1.9 riastrad {
243 1.9 riastrad /*
244 1.9 riastrad * XXX This probably isn't good enough -- caller may try
245 1.9 riastrad * operations on this that require the lock, which will
246 1.9 riastrad * require us to create and destroy the lock on module
247 1.9 riastrad * load/unload.
248 1.9 riastrad */
249 1.9 riastrad static struct dma_fence fence = {
250 1.9 riastrad .refcount = {1}, /* always referenced */
251 1.9 riastrad .flags = 1u << DMA_FENCE_FLAG_SIGNALED_BIT,
252 1.30 riastrad .ops = &dma_fence_stub_ops,
253 1.29 riastrad #ifdef DIAGNOSTIC
254 1.29 riastrad .f_magic = FENCE_MAGIC_GOOD,
255 1.29 riastrad #endif
256 1.9 riastrad };
257 1.9 riastrad
258 1.9 riastrad return dma_fence_get(&fence);
259 1.9 riastrad }
260 1.9 riastrad
261 1.9 riastrad /*
262 1.2 riastrad * dma_fence_get(fence)
263 1.1 riastrad *
264 1.26 riastrad * Acquire a reference to fence and return it, or return NULL if
265 1.26 riastrad * fence is NULL. The fence, if nonnull, must not be being
266 1.26 riastrad * destroyed.
267 1.1 riastrad */
268 1.2 riastrad struct dma_fence *
269 1.2 riastrad dma_fence_get(struct dma_fence *fence)
270 1.1 riastrad {
271 1.1 riastrad
272 1.26 riastrad if (fence == NULL)
273 1.26 riastrad return NULL;
274 1.26 riastrad
275 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
276 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
277 1.24 riastrad
278 1.26 riastrad kref_get(&fence->refcount);
279 1.1 riastrad return fence;
280 1.1 riastrad }
281 1.1 riastrad
282 1.1 riastrad /*
283 1.2 riastrad * dma_fence_get_rcu(fence)
284 1.1 riastrad *
285 1.1 riastrad * Attempt to acquire a reference to a fence that may be about to
286 1.1 riastrad * be destroyed, during a read section. Return the fence on
287 1.26 riastrad * success, or NULL on failure. The fence must be nonnull.
288 1.1 riastrad */
289 1.2 riastrad struct dma_fence *
290 1.2 riastrad dma_fence_get_rcu(struct dma_fence *fence)
291 1.1 riastrad {
292 1.1 riastrad
293 1.8 riastrad __insn_barrier();
294 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
295 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
296 1.1 riastrad if (!kref_get_unless_zero(&fence->refcount))
297 1.1 riastrad return NULL;
298 1.1 riastrad return fence;
299 1.1 riastrad }
300 1.1 riastrad
301 1.3 riastrad /*
302 1.3 riastrad * dma_fence_get_rcu_safe(fencep)
303 1.3 riastrad *
304 1.3 riastrad * Attempt to acquire a reference to the fence *fencep, which may
305 1.3 riastrad * be about to be destroyed, during a read section. If the value
306 1.3 riastrad * of *fencep changes after we read *fencep but before we
307 1.3 riastrad * increment its reference count, retry. Return *fencep on
308 1.3 riastrad * success, or NULL on failure.
309 1.3 riastrad */
310 1.3 riastrad struct dma_fence *
311 1.7 riastrad dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
312 1.3 riastrad {
313 1.3 riastrad struct dma_fence *fence, *fence0;
314 1.3 riastrad
315 1.3 riastrad retry:
316 1.3 riastrad fence = *fencep;
317 1.3 riastrad
318 1.3 riastrad /* Load fence only once. */
319 1.3 riastrad __insn_barrier();
320 1.3 riastrad
321 1.3 riastrad /* If there's nothing there, give up. */
322 1.3 riastrad if (fence == NULL)
323 1.3 riastrad return NULL;
324 1.3 riastrad
325 1.3 riastrad /* Make sure we don't load stale fence guts. */
326 1.3 riastrad membar_datadep_consumer();
327 1.3 riastrad
328 1.3 riastrad /* Try to acquire a reference. If we can't, try again. */
329 1.3 riastrad if (!dma_fence_get_rcu(fence))
330 1.3 riastrad goto retry;
331 1.3 riastrad
332 1.3 riastrad /*
333 1.3 riastrad * Confirm that it's still the same fence. If not, release it
334 1.3 riastrad * and retry.
335 1.3 riastrad */
336 1.3 riastrad fence0 = *fencep;
337 1.3 riastrad __insn_barrier();
338 1.3 riastrad if (fence != fence0) {
339 1.3 riastrad dma_fence_put(fence);
340 1.3 riastrad goto retry;
341 1.3 riastrad }
342 1.3 riastrad
343 1.3 riastrad /* Success! */
344 1.24 riastrad KASSERT(dma_fence_referenced_p(fence));
345 1.3 riastrad return fence;
346 1.3 riastrad }
347 1.3 riastrad
348 1.1 riastrad static void
349 1.2 riastrad dma_fence_release(struct kref *refcount)
350 1.1 riastrad {
351 1.2 riastrad struct dma_fence *fence = container_of(refcount, struct dma_fence,
352 1.2 riastrad refcount);
353 1.1 riastrad
354 1.23 riastrad KASSERTMSG(TAILQ_EMPTY(&fence->f_callbacks),
355 1.23 riastrad "fence %p has pending callbacks", fence);
356 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
357 1.1 riastrad
358 1.1 riastrad if (fence->ops->release)
359 1.1 riastrad (*fence->ops->release)(fence);
360 1.1 riastrad else
361 1.2 riastrad dma_fence_free(fence);
362 1.1 riastrad }
363 1.1 riastrad
364 1.1 riastrad /*
365 1.2 riastrad * dma_fence_put(fence)
366 1.1 riastrad *
367 1.1 riastrad * Release a reference to fence. If this was the last one, call
368 1.1 riastrad * the fence's release callback.
369 1.1 riastrad */
370 1.1 riastrad void
371 1.2 riastrad dma_fence_put(struct dma_fence *fence)
372 1.1 riastrad {
373 1.1 riastrad
374 1.1 riastrad if (fence == NULL)
375 1.1 riastrad return;
376 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
377 1.2 riastrad kref_put(&fence->refcount, &dma_fence_release);
378 1.1 riastrad }
379 1.1 riastrad
380 1.1 riastrad /*
381 1.2 riastrad * dma_fence_ensure_signal_enabled(fence)
382 1.1 riastrad *
383 1.1 riastrad * Internal subroutine. If the fence was already signalled,
384 1.1 riastrad * return -ENOENT. Otherwise, if the enable signalling callback
385 1.1 riastrad * has not been called yet, call it. If fails, signal the fence
386 1.1 riastrad * and return -ENOENT. If it succeeds, or if it had already been
387 1.1 riastrad * called, return zero to indicate success.
388 1.1 riastrad *
389 1.1 riastrad * Caller must hold the fence's lock.
390 1.1 riastrad */
391 1.1 riastrad static int
392 1.2 riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
393 1.1 riastrad {
394 1.20 riastrad bool already_enabled;
395 1.1 riastrad
396 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
397 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
398 1.1 riastrad
399 1.20 riastrad /* Determine whether signalling was enabled, and enable it. */
400 1.20 riastrad already_enabled = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
401 1.20 riastrad &fence->flags);
402 1.20 riastrad
403 1.1 riastrad /* If the fence was already signalled, fail with -ENOENT. */
404 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
405 1.1 riastrad return -ENOENT;
406 1.1 riastrad
407 1.1 riastrad /*
408 1.20 riastrad * Otherwise, if it wasn't enabled yet, try to enable
409 1.20 riastrad * signalling, or fail if the fence doesn't support that.
410 1.1 riastrad */
411 1.20 riastrad if (!already_enabled) {
412 1.20 riastrad if (fence->ops->enable_signaling == NULL)
413 1.20 riastrad return -ENOENT;
414 1.20 riastrad if (!(*fence->ops->enable_signaling)(fence)) {
415 1.20 riastrad /* If it failed, signal and return -ENOENT. */
416 1.20 riastrad dma_fence_signal_locked(fence);
417 1.20 riastrad return -ENOENT;
418 1.20 riastrad }
419 1.1 riastrad }
420 1.1 riastrad
421 1.1 riastrad /* Success! */
422 1.1 riastrad return 0;
423 1.1 riastrad }
424 1.1 riastrad
425 1.1 riastrad /*
426 1.2 riastrad * dma_fence_add_callback(fence, fcb, fn)
427 1.1 riastrad *
428 1.1 riastrad * If fence has been signalled, return -ENOENT. If the enable
429 1.1 riastrad * signalling callback hasn't been called yet, call it; if it
430 1.1 riastrad * fails, return -ENOENT. Otherwise, arrange to call fn(fence,
431 1.1 riastrad * fcb) when it is signalled, and return 0.
432 1.1 riastrad *
433 1.1 riastrad * The fence uses memory allocated by the caller in fcb from the
434 1.2 riastrad * time of dma_fence_add_callback either to the time of
435 1.2 riastrad * dma_fence_remove_callback, or just before calling fn.
436 1.1 riastrad */
437 1.1 riastrad int
438 1.2 riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
439 1.2 riastrad dma_fence_func_t fn)
440 1.1 riastrad {
441 1.1 riastrad int ret;
442 1.1 riastrad
443 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
444 1.1 riastrad
445 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
446 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
447 1.1 riastrad ret = -ENOENT;
448 1.1 riastrad goto out0;
449 1.1 riastrad }
450 1.1 riastrad
451 1.1 riastrad /* Acquire the lock. */
452 1.1 riastrad spin_lock(fence->lock);
453 1.1 riastrad
454 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
455 1.2 riastrad ret = dma_fence_ensure_signal_enabled(fence);
456 1.1 riastrad if (ret)
457 1.1 riastrad goto out1;
458 1.1 riastrad
459 1.1 riastrad /* Insert the callback. */
460 1.4 riastrad fcb->func = fn;
461 1.1 riastrad TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
462 1.1 riastrad fcb->fcb_onqueue = true;
463 1.21 riastrad ret = 0;
464 1.1 riastrad
465 1.1 riastrad /* Release the lock and we're done. */
466 1.1 riastrad out1: spin_unlock(fence->lock);
467 1.21 riastrad out0: if (ret) {
468 1.21 riastrad fcb->func = NULL;
469 1.21 riastrad fcb->fcb_onqueue = false;
470 1.21 riastrad }
471 1.21 riastrad return ret;
472 1.1 riastrad }
473 1.1 riastrad
474 1.1 riastrad /*
475 1.2 riastrad * dma_fence_remove_callback(fence, fcb)
476 1.1 riastrad *
477 1.1 riastrad * Remove the callback fcb from fence. Return true if it was
478 1.1 riastrad * removed from the list, or false if it had already run and so
479 1.1 riastrad * was no longer queued anyway. Caller must have already called
480 1.2 riastrad * dma_fence_add_callback(fence, fcb).
481 1.1 riastrad */
482 1.1 riastrad bool
483 1.2 riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
484 1.1 riastrad {
485 1.1 riastrad bool onqueue;
486 1.1 riastrad
487 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
488 1.1 riastrad
489 1.1 riastrad spin_lock(fence->lock);
490 1.1 riastrad onqueue = fcb->fcb_onqueue;
491 1.1 riastrad if (onqueue) {
492 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
493 1.1 riastrad fcb->fcb_onqueue = false;
494 1.1 riastrad }
495 1.1 riastrad spin_unlock(fence->lock);
496 1.1 riastrad
497 1.1 riastrad return onqueue;
498 1.1 riastrad }
499 1.1 riastrad
500 1.1 riastrad /*
501 1.2 riastrad * dma_fence_enable_sw_signaling(fence)
502 1.1 riastrad *
503 1.1 riastrad * If it hasn't been called yet and the fence hasn't been
504 1.1 riastrad * signalled yet, call the fence's enable_sw_signaling callback.
505 1.1 riastrad * If when that happens, the callback indicates failure by
506 1.1 riastrad * returning false, signal the fence.
507 1.1 riastrad */
508 1.1 riastrad void
509 1.2 riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
510 1.1 riastrad {
511 1.1 riastrad
512 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
513 1.1 riastrad
514 1.1 riastrad spin_lock(fence->lock);
515 1.22 riastrad if ((fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) == 0)
516 1.22 riastrad (void)dma_fence_ensure_signal_enabled(fence);
517 1.1 riastrad spin_unlock(fence->lock);
518 1.1 riastrad }
519 1.1 riastrad
520 1.1 riastrad /*
521 1.2 riastrad * dma_fence_is_signaled(fence)
522 1.1 riastrad *
523 1.1 riastrad * Test whether the fence has been signalled. If it has been
524 1.2 riastrad * signalled by dma_fence_signal(_locked), return true. If the
525 1.1 riastrad * signalled callback returns true indicating that some implicit
526 1.1 riastrad * external condition has changed, call the callbacks as if with
527 1.2 riastrad * dma_fence_signal.
528 1.1 riastrad */
529 1.1 riastrad bool
530 1.2 riastrad dma_fence_is_signaled(struct dma_fence *fence)
531 1.1 riastrad {
532 1.1 riastrad bool signaled;
533 1.1 riastrad
534 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
535 1.1 riastrad
536 1.1 riastrad spin_lock(fence->lock);
537 1.2 riastrad signaled = dma_fence_is_signaled_locked(fence);
538 1.1 riastrad spin_unlock(fence->lock);
539 1.1 riastrad
540 1.1 riastrad return signaled;
541 1.1 riastrad }
542 1.1 riastrad
543 1.1 riastrad /*
544 1.2 riastrad * dma_fence_is_signaled_locked(fence)
545 1.1 riastrad *
546 1.1 riastrad * Test whether the fence has been signalled. Like
547 1.2 riastrad * dma_fence_is_signaleed, but caller already holds the fence's lock.
548 1.1 riastrad */
549 1.1 riastrad bool
550 1.2 riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
551 1.1 riastrad {
552 1.1 riastrad
553 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
554 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
555 1.1 riastrad
556 1.1 riastrad /* Check whether we already set the signalled bit. */
557 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
558 1.1 riastrad return true;
559 1.1 riastrad
560 1.1 riastrad /* If there's a signalled callback, test it. */
561 1.1 riastrad if (fence->ops->signaled) {
562 1.1 riastrad if ((*fence->ops->signaled)(fence)) {
563 1.1 riastrad /*
564 1.1 riastrad * It's been signalled implicitly by some
565 1.1 riastrad * external phenomonen. Act as though someone
566 1.2 riastrad * has called dma_fence_signal.
567 1.1 riastrad */
568 1.2 riastrad dma_fence_signal_locked(fence);
569 1.1 riastrad return true;
570 1.1 riastrad }
571 1.1 riastrad }
572 1.1 riastrad
573 1.1 riastrad return false;
574 1.1 riastrad }
575 1.1 riastrad
576 1.1 riastrad /*
577 1.5 riastrad * dma_fence_set_error(fence, error)
578 1.5 riastrad *
579 1.5 riastrad * Set an error code prior to dma_fence_signal for use by a
580 1.5 riastrad * waiter to learn about success or failure of the fence.
581 1.5 riastrad */
582 1.5 riastrad void
583 1.5 riastrad dma_fence_set_error(struct dma_fence *fence, int error)
584 1.5 riastrad {
585 1.5 riastrad
586 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
587 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
588 1.5 riastrad KASSERT(!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)));
589 1.6 riastrad KASSERTMSG(error >= -ELAST, "%d", error);
590 1.5 riastrad KASSERTMSG(error < 0, "%d", error);
591 1.5 riastrad
592 1.5 riastrad fence->error = error;
593 1.5 riastrad }
594 1.5 riastrad
595 1.5 riastrad /*
596 1.10 riastrad * dma_fence_get_status(fence)
597 1.10 riastrad *
598 1.10 riastrad * Return 0 if fence has yet to be signalled, 1 if it has been
599 1.10 riastrad * signalled without error, or negative error code if
600 1.10 riastrad * dma_fence_set_error was used.
601 1.10 riastrad */
602 1.10 riastrad int
603 1.10 riastrad dma_fence_get_status(struct dma_fence *fence)
604 1.10 riastrad {
605 1.10 riastrad int ret;
606 1.10 riastrad
607 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
608 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
609 1.24 riastrad
610 1.10 riastrad spin_lock(fence->lock);
611 1.10 riastrad if (!dma_fence_is_signaled_locked(fence)) {
612 1.10 riastrad ret = 0;
613 1.10 riastrad } else if (fence->error) {
614 1.10 riastrad ret = fence->error;
615 1.10 riastrad KASSERTMSG(ret < 0, "%d", ret);
616 1.10 riastrad } else {
617 1.10 riastrad ret = 1;
618 1.10 riastrad }
619 1.10 riastrad spin_unlock(fence->lock);
620 1.10 riastrad
621 1.10 riastrad return ret;
622 1.10 riastrad }
623 1.10 riastrad
624 1.10 riastrad /*
625 1.2 riastrad * dma_fence_signal(fence)
626 1.1 riastrad *
627 1.1 riastrad * Signal the fence. If it has already been signalled, return
628 1.1 riastrad * -EINVAL. If it has not been signalled, call the enable
629 1.1 riastrad * signalling callback if it hasn't been called yet, and remove
630 1.1 riastrad * each registered callback from the queue and call it; then
631 1.1 riastrad * return 0.
632 1.1 riastrad */
633 1.1 riastrad int
634 1.2 riastrad dma_fence_signal(struct dma_fence *fence)
635 1.1 riastrad {
636 1.1 riastrad int ret;
637 1.1 riastrad
638 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
639 1.1 riastrad
640 1.1 riastrad spin_lock(fence->lock);
641 1.2 riastrad ret = dma_fence_signal_locked(fence);
642 1.1 riastrad spin_unlock(fence->lock);
643 1.1 riastrad
644 1.1 riastrad return ret;
645 1.1 riastrad }
646 1.1 riastrad
647 1.1 riastrad /*
648 1.2 riastrad * dma_fence_signal_locked(fence)
649 1.1 riastrad *
650 1.2 riastrad * Signal the fence. Like dma_fence_signal, but caller already
651 1.2 riastrad * holds the fence's lock.
652 1.1 riastrad */
653 1.1 riastrad int
654 1.2 riastrad dma_fence_signal_locked(struct dma_fence *fence)
655 1.1 riastrad {
656 1.2 riastrad struct dma_fence_cb *fcb, *next;
657 1.1 riastrad
658 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
659 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
660 1.1 riastrad
661 1.1 riastrad /* If it's been signalled, fail; otherwise set the signalled bit. */
662 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
663 1.1 riastrad return -EINVAL;
664 1.1 riastrad
665 1.25 riastrad /* Set the timestamp. */
666 1.25 riastrad fence->timestamp = ktime_get();
667 1.25 riastrad set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
668 1.25 riastrad
669 1.1 riastrad /* Wake waiters. */
670 1.1 riastrad cv_broadcast(&fence->f_cv);
671 1.1 riastrad
672 1.1 riastrad /* Remove and call the callbacks. */
673 1.1 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
674 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
675 1.1 riastrad fcb->fcb_onqueue = false;
676 1.4 riastrad (*fcb->func)(fence, fcb);
677 1.1 riastrad }
678 1.1 riastrad
679 1.1 riastrad /* Success! */
680 1.1 riastrad return 0;
681 1.1 riastrad }
682 1.1 riastrad
683 1.1 riastrad struct wait_any {
684 1.2 riastrad struct dma_fence_cb fcb;
685 1.1 riastrad struct wait_any1 {
686 1.1 riastrad kmutex_t lock;
687 1.1 riastrad kcondvar_t cv;
688 1.31 riastrad struct wait_any *cb;
689 1.1 riastrad bool done;
690 1.1 riastrad } *common;
691 1.1 riastrad };
692 1.1 riastrad
693 1.1 riastrad static void
694 1.2 riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
695 1.1 riastrad {
696 1.1 riastrad struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
697 1.1 riastrad
698 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
699 1.1 riastrad
700 1.1 riastrad mutex_enter(&cb->common->lock);
701 1.1 riastrad cb->common->done = true;
702 1.1 riastrad cv_broadcast(&cb->common->cv);
703 1.1 riastrad mutex_exit(&cb->common->lock);
704 1.1 riastrad }
705 1.1 riastrad
706 1.1 riastrad /*
707 1.11 riastrad * dma_fence_wait_any_timeout(fence, nfences, intr, timeout, ip)
708 1.1 riastrad *
709 1.1 riastrad * Wait for any of fences[0], fences[1], fences[2], ...,
710 1.13 riastrad * fences[nfences-1] to be signalled. If ip is nonnull, set *ip
711 1.13 riastrad * to the index of the first one.
712 1.31 riastrad *
713 1.31 riastrad * Return -ERESTARTSYS if interrupted, 0 on timeout, or time
714 1.31 riastrad * remaining (at least 1) on success.
715 1.1 riastrad */
716 1.1 riastrad long
717 1.2 riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
718 1.11 riastrad bool intr, long timeout, uint32_t *ip)
719 1.1 riastrad {
720 1.1 riastrad struct wait_any1 common;
721 1.1 riastrad struct wait_any *cb;
722 1.1 riastrad uint32_t i, j;
723 1.1 riastrad int start, end;
724 1.1 riastrad long ret = 0;
725 1.1 riastrad
726 1.32 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
727 1.32 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
728 1.32 riastrad
729 1.31 riastrad /* Optimistically check whether any are signalled. */
730 1.31 riastrad for (i = 0; i < nfences; i++) {
731 1.32 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
732 1.31 riastrad if (dma_fence_is_signaled(fences[i])) {
733 1.31 riastrad if (ip)
734 1.31 riastrad *ip = i;
735 1.31 riastrad return MAX(1, timeout);
736 1.31 riastrad }
737 1.31 riastrad }
738 1.31 riastrad
739 1.31 riastrad /*
740 1.31 riastrad * If timeout is zero, we're just polling, so stop here as if
741 1.31 riastrad * we timed out instantly.
742 1.31 riastrad */
743 1.31 riastrad if (timeout == 0)
744 1.31 riastrad return 0;
745 1.31 riastrad
746 1.1 riastrad /* Allocate an array of callback records. */
747 1.1 riastrad cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
748 1.32 riastrad if (cb == NULL)
749 1.32 riastrad return -ENOMEM;
750 1.1 riastrad
751 1.1 riastrad /* Initialize a mutex and condvar for the common wait. */
752 1.1 riastrad mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
753 1.1 riastrad cv_init(&common.cv, "fence");
754 1.31 riastrad common.cb = cb;
755 1.1 riastrad common.done = false;
756 1.1 riastrad
757 1.31 riastrad /*
758 1.31 riastrad * Add a callback to each of the fences, or stop if already
759 1.31 riastrad * signalled.
760 1.31 riastrad */
761 1.1 riastrad for (i = 0; i < nfences; i++) {
762 1.1 riastrad cb[i].common = &common;
763 1.2 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
764 1.2 riastrad ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
765 1.2 riastrad &wait_any_cb);
766 1.31 riastrad if (ret) {
767 1.31 riastrad KASSERT(ret == -ENOENT);
768 1.11 riastrad if (ip)
769 1.31 riastrad *ip = i;
770 1.31 riastrad ret = MAX(1, timeout);
771 1.32 riastrad goto out;
772 1.11 riastrad }
773 1.1 riastrad }
774 1.1 riastrad
775 1.1 riastrad /*
776 1.1 riastrad * None of them was ready immediately. Wait for one of the
777 1.1 riastrad * callbacks to notify us when it is done.
778 1.1 riastrad */
779 1.1 riastrad mutex_enter(&common.lock);
780 1.32 riastrad while (!common.done) {
781 1.32 riastrad /* Wait for the time remaining. */
782 1.1 riastrad start = getticks();
783 1.1 riastrad if (intr) {
784 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
785 1.1 riastrad ret = -cv_timedwait_sig(&common.cv,
786 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
787 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
788 1.1 riastrad } else {
789 1.1 riastrad ret = -cv_wait_sig(&common.cv, &common.lock);
790 1.1 riastrad }
791 1.1 riastrad } else {
792 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
793 1.1 riastrad ret = -cv_timedwait(&common.cv,
794 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
795 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
796 1.1 riastrad } else {
797 1.1 riastrad cv_wait(&common.cv, &common.lock);
798 1.1 riastrad ret = 0;
799 1.1 riastrad }
800 1.1 riastrad }
801 1.1 riastrad end = getticks();
802 1.32 riastrad
803 1.32 riastrad /* Deduct from time remaining. If none left, time out. */
804 1.32 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
805 1.32 riastrad timeout -= MIN(timeout,
806 1.32 riastrad (unsigned)end - (unsigned)start);
807 1.32 riastrad if (timeout == 0)
808 1.32 riastrad ret = -EWOULDBLOCK;
809 1.32 riastrad }
810 1.32 riastrad
811 1.32 riastrad /* If the wait failed, give up. */
812 1.31 riastrad if (ret)
813 1.1 riastrad break;
814 1.1 riastrad }
815 1.1 riastrad mutex_exit(&common.lock);
816 1.1 riastrad
817 1.1 riastrad /*
818 1.32 riastrad * Massage the return code if nonzero:
819 1.32 riastrad * - if we were interrupted, return -ERESTARTSYS;
820 1.32 riastrad * - if we timed out, return 0.
821 1.32 riastrad * No other failure is possible. On success, ret=0 but we
822 1.32 riastrad * check again below to verify anyway.
823 1.32 riastrad */
824 1.32 riastrad if (ret) {
825 1.32 riastrad KASSERTMSG((ret == -EINTR || ret == -ERESTART ||
826 1.32 riastrad ret == -EWOULDBLOCK), "ret=%ld", ret);
827 1.32 riastrad if (ret == -EINTR || ret == -ERESTART) {
828 1.32 riastrad ret = -ERESTARTSYS;
829 1.32 riastrad } else if (ret == -EWOULDBLOCK) {
830 1.32 riastrad KASSERT(timeout != MAX_SCHEDULE_TIMEOUT);
831 1.32 riastrad ret = 0; /* timed out */
832 1.32 riastrad }
833 1.32 riastrad }
834 1.32 riastrad
835 1.32 riastrad KASSERT(ret != -ERESTART); /* would be confused with time left */
836 1.32 riastrad
837 1.32 riastrad /*
838 1.31 riastrad * Test whether any of the fences has been signalled. If they
839 1.31 riastrad * have, return success.
840 1.31 riastrad */
841 1.31 riastrad for (j = 0; j < nfences; j++) {
842 1.31 riastrad if (dma_fence_is_signaled(fences[i])) {
843 1.31 riastrad if (ip)
844 1.31 riastrad *ip = j;
845 1.31 riastrad ret = MAX(1, timeout);
846 1.32 riastrad goto out;
847 1.31 riastrad }
848 1.31 riastrad }
849 1.31 riastrad
850 1.31 riastrad /*
851 1.32 riastrad * If user passed MAX_SCHEDULE_TIMEOUT, we can't return 0
852 1.32 riastrad * meaning timed out because we're supposed to wait forever.
853 1.1 riastrad */
854 1.32 riastrad KASSERT(timeout == MAX_SCHEDULE_TIMEOUT ? ret != 0 : 1);
855 1.1 riastrad
856 1.32 riastrad out: while (i --> 0)
857 1.2 riastrad (void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
858 1.1 riastrad cv_destroy(&common.cv);
859 1.1 riastrad mutex_destroy(&common.lock);
860 1.1 riastrad kfree(cb);
861 1.32 riastrad return ret;
862 1.1 riastrad }
863 1.1 riastrad
864 1.1 riastrad /*
865 1.2 riastrad * dma_fence_wait_timeout(fence, intr, timeout)
866 1.1 riastrad *
867 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
868 1.1 riastrad * true; or until timeout, if positive. Return -ERESTARTSYS if
869 1.1 riastrad * interrupted, negative error code on any other error, zero on
870 1.1 riastrad * timeout, or positive number of ticks remaining if the fence is
871 1.1 riastrad * signalled before the timeout. Works by calling the fence wait
872 1.1 riastrad * callback.
873 1.1 riastrad *
874 1.28 riastrad * The timeout must be nonnegative and at most
875 1.28 riastrad * MAX_SCHEDULE_TIMEOUT, which means wait indefinitely.
876 1.1 riastrad */
877 1.1 riastrad long
878 1.2 riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
879 1.1 riastrad {
880 1.1 riastrad
881 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
882 1.27 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
883 1.28 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
884 1.1 riastrad
885 1.14 riastrad if (fence->ops->wait)
886 1.14 riastrad return (*fence->ops->wait)(fence, intr, timeout);
887 1.14 riastrad else
888 1.14 riastrad return dma_fence_default_wait(fence, intr, timeout);
889 1.1 riastrad }
890 1.1 riastrad
891 1.1 riastrad /*
892 1.2 riastrad * dma_fence_wait(fence, intr)
893 1.1 riastrad *
894 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
895 1.1 riastrad * true. Return -ERESTARTSYS if interrupted, negative error code
896 1.1 riastrad * on any other error, zero on sucess. Works by calling the fence
897 1.1 riastrad * wait callback with MAX_SCHEDULE_TIMEOUT.
898 1.1 riastrad */
899 1.1 riastrad long
900 1.2 riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
901 1.1 riastrad {
902 1.1 riastrad long ret;
903 1.1 riastrad
904 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
905 1.1 riastrad
906 1.15 riastrad if (fence->ops->wait)
907 1.15 riastrad ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
908 1.15 riastrad else
909 1.15 riastrad ret = dma_fence_default_wait(fence, intr,
910 1.15 riastrad MAX_SCHEDULE_TIMEOUT);
911 1.1 riastrad KASSERT(ret != 0);
912 1.33 riastrad KASSERTMSG(ret == -ERESTARTSYS || ret == MAX_SCHEDULE_TIMEOUT,
913 1.33 riastrad "ret=%ld", ret);
914 1.1 riastrad
915 1.1 riastrad return (ret < 0 ? ret : 0);
916 1.1 riastrad }
917 1.1 riastrad
918 1.1 riastrad /*
919 1.2 riastrad * dma_fence_default_wait(fence, intr, timeout)
920 1.1 riastrad *
921 1.1 riastrad * Default implementation of fence wait callback using a condition
922 1.1 riastrad * variable. If the fence is already signalled, return timeout,
923 1.16 riastrad * or 1 if timeout is zero meaning poll. If the enable signalling
924 1.16 riastrad * callback hasn't been called, call it, and if it fails, act as
925 1.16 riastrad * if the fence had been signalled. Otherwise, wait on the
926 1.16 riastrad * internal condvar. If timeout is MAX_SCHEDULE_TIMEOUT, wait
927 1.16 riastrad * indefinitely.
928 1.1 riastrad */
929 1.1 riastrad long
930 1.2 riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
931 1.1 riastrad {
932 1.1 riastrad int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
933 1.1 riastrad kmutex_t *lock = &fence->lock->sl_lock;
934 1.1 riastrad long ret = 0;
935 1.1 riastrad
936 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
937 1.1 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
938 1.1 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
939 1.1 riastrad
940 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
941 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
942 1.32 riastrad return MAX(1, timeout);
943 1.1 riastrad
944 1.1 riastrad /* Acquire the lock. */
945 1.1 riastrad spin_lock(fence->lock);
946 1.1 riastrad
947 1.16 riastrad /* Ensure signalling is enabled, or stop if already completed. */
948 1.17 riastrad if (dma_fence_ensure_signal_enabled(fence) != 0) {
949 1.32 riastrad ret = MAX(1, timeout);
950 1.32 riastrad goto out;
951 1.17 riastrad }
952 1.16 riastrad
953 1.16 riastrad /* If merely polling, stop here. */
954 1.16 riastrad if (timeout == 0) {
955 1.32 riastrad ret = 0;
956 1.32 riastrad goto out;
957 1.16 riastrad }
958 1.1 riastrad
959 1.1 riastrad /* Find out what our deadline is so we can handle spurious wakeup. */
960 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
961 1.1 riastrad now = getticks();
962 1.1 riastrad starttime = now;
963 1.1 riastrad deadline = starttime + timeout;
964 1.1 riastrad }
965 1.1 riastrad
966 1.1 riastrad /* Wait until the signalled bit is set. */
967 1.2 riastrad while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
968 1.1 riastrad /*
969 1.1 riastrad * If there's a timeout and we've passed the deadline,
970 1.1 riastrad * give up.
971 1.1 riastrad */
972 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
973 1.1 riastrad now = getticks();
974 1.32 riastrad if (deadline <= now) {
975 1.32 riastrad ret = -EWOULDBLOCK;
976 1.1 riastrad break;
977 1.32 riastrad }
978 1.1 riastrad }
979 1.32 riastrad
980 1.32 riastrad /* Wait for the time remaining. */
981 1.1 riastrad if (intr) {
982 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
983 1.1 riastrad ret = -cv_timedwait_sig(&fence->f_cv, lock,
984 1.1 riastrad deadline - now);
985 1.1 riastrad } else {
986 1.1 riastrad ret = -cv_wait_sig(&fence->f_cv, lock);
987 1.1 riastrad }
988 1.1 riastrad } else {
989 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
990 1.1 riastrad ret = -cv_timedwait(&fence->f_cv, lock,
991 1.1 riastrad deadline - now);
992 1.1 riastrad } else {
993 1.1 riastrad cv_wait(&fence->f_cv, lock);
994 1.1 riastrad ret = 0;
995 1.1 riastrad }
996 1.1 riastrad }
997 1.32 riastrad
998 1.1 riastrad /* If the wait failed, give up. */
999 1.32 riastrad if (ret)
1000 1.1 riastrad break;
1001 1.32 riastrad }
1002 1.32 riastrad
1003 1.32 riastrad /*
1004 1.32 riastrad * Massage the return code if nonzero:
1005 1.32 riastrad * - if we were interrupted, return -ERESTARTSYS;
1006 1.32 riastrad * - if we timed out, return 0.
1007 1.32 riastrad * No other failure is possible. On success, ret=0 but we
1008 1.32 riastrad * check again below to verify anyway.
1009 1.32 riastrad */
1010 1.32 riastrad if (ret) {
1011 1.32 riastrad KASSERTMSG((ret == -EINTR || ret == -ERESTART ||
1012 1.32 riastrad ret == -EWOULDBLOCK), "ret=%ld", ret);
1013 1.32 riastrad if (ret == -EINTR || ret == -ERESTART) {
1014 1.32 riastrad ret = -ERESTARTSYS;
1015 1.32 riastrad } else if (ret == -EWOULDBLOCK) {
1016 1.32 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
1017 1.32 riastrad ret = 0; /* timed out */
1018 1.1 riastrad }
1019 1.1 riastrad }
1020 1.1 riastrad
1021 1.32 riastrad KASSERT(ret != -ERESTART); /* would be confused with time left */
1022 1.1 riastrad
1023 1.32 riastrad /* Check again in case it was signalled after a wait. */
1024 1.32 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
1025 1.32 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT)
1026 1.32 riastrad ret = MAX(1, deadline - now);
1027 1.32 riastrad else
1028 1.32 riastrad ret = MAX_SCHEDULE_TIMEOUT;
1029 1.1 riastrad }
1030 1.1 riastrad
1031 1.32 riastrad out: /* All done. Release the lock. */
1032 1.32 riastrad spin_unlock(fence->lock);
1033 1.32 riastrad return ret;
1034 1.1 riastrad }
1035 1.12 riastrad
1036 1.12 riastrad /*
1037 1.12 riastrad * __dma_fence_signal(fence)
1038 1.12 riastrad *
1039 1.12 riastrad * Set fence's signalled bit, without waking waiters yet. Return
1040 1.12 riastrad * true if it was newly set, false if it was already set.
1041 1.12 riastrad */
1042 1.12 riastrad bool
1043 1.12 riastrad __dma_fence_signal(struct dma_fence *fence)
1044 1.12 riastrad {
1045 1.12 riastrad
1046 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
1047 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
1048 1.24 riastrad
1049 1.12 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1050 1.12 riastrad return false;
1051 1.12 riastrad
1052 1.12 riastrad return true;
1053 1.12 riastrad }
1054 1.12 riastrad
1055 1.12 riastrad /*
1056 1.12 riastrad * __dma_fence_signal_wake(fence)
1057 1.12 riastrad *
1058 1.25 riastrad * Set fence's timestamp and wake fence's waiters. Caller must
1059 1.25 riastrad * have previously called __dma_fence_signal and it must have
1060 1.25 riastrad * previously returned true.
1061 1.12 riastrad */
1062 1.12 riastrad void
1063 1.12 riastrad __dma_fence_signal_wake(struct dma_fence *fence, ktime_t timestamp)
1064 1.12 riastrad {
1065 1.12 riastrad struct dma_fence_cb *fcb, *next;
1066 1.12 riastrad
1067 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
1068 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
1069 1.24 riastrad
1070 1.12 riastrad spin_lock(fence->lock);
1071 1.12 riastrad
1072 1.12 riastrad KASSERT(fence->flags & DMA_FENCE_FLAG_SIGNALED_BIT);
1073 1.12 riastrad
1074 1.25 riastrad /* Set the timestamp. */
1075 1.25 riastrad fence->timestamp = timestamp;
1076 1.25 riastrad set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
1077 1.25 riastrad
1078 1.12 riastrad /* Wake waiters. */
1079 1.12 riastrad cv_broadcast(&fence->f_cv);
1080 1.12 riastrad
1081 1.12 riastrad /* Remove and call the callbacks. */
1082 1.12 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
1083 1.12 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
1084 1.12 riastrad fcb->fcb_onqueue = false;
1085 1.12 riastrad (*fcb->func)(fence, fcb);
1086 1.12 riastrad }
1087 1.12 riastrad
1088 1.12 riastrad spin_unlock(fence->lock);
1089 1.12 riastrad }
1090