linux_dma_fence.c revision 1.36 1 1.36 riastrad /* $NetBSD: linux_dma_fence.c,v 1.36 2021/12/19 12:38:15 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.36 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.36 2021/12/19 12:38:15 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/atomic.h>
36 1.1 riastrad #include <sys/condvar.h>
37 1.1 riastrad #include <sys/queue.h>
38 1.36 riastrad #include <sys/sdt.h>
39 1.1 riastrad
40 1.1 riastrad #include <linux/atomic.h>
41 1.2 riastrad #include <linux/dma-fence.h>
42 1.1 riastrad #include <linux/errno.h>
43 1.1 riastrad #include <linux/kref.h>
44 1.1 riastrad #include <linux/sched.h>
45 1.1 riastrad #include <linux/spinlock.h>
46 1.1 riastrad
47 1.24 riastrad #define FENCE_MAGIC_GOOD 0x607ba424048c37e5ULL
48 1.24 riastrad #define FENCE_MAGIC_BAD 0x7641ca721344505fULL
49 1.24 riastrad
50 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, init,
51 1.36 riastrad "struct dma_fence *"/*fence*/);
52 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, reset,
53 1.36 riastrad "struct dma_fence *"/*fence*/);
54 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, release,
55 1.36 riastrad "struct dma_fence *"/*fence*/);
56 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, free,
57 1.36 riastrad "struct dma_fence *"/*fence*/);
58 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, destroy,
59 1.36 riastrad "struct dma_fence *"/*fence*/);
60 1.36 riastrad
61 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, enable_signaling,
62 1.36 riastrad "struct dma_fence *"/*fence*/);
63 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, add_callback,
64 1.36 riastrad "struct dma_fence *"/*fence*/,
65 1.36 riastrad "struct dma_fence_callback *"/*callback*/);
66 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, remove_callback,
67 1.36 riastrad "struct dma_fence *"/*fence*/,
68 1.36 riastrad "struct dma_fence_callback *"/*callback*/);
69 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, callback,
70 1.36 riastrad "struct dma_fence *"/*fence*/,
71 1.36 riastrad "struct dma_fence_callback *"/*callback*/);
72 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, test,
73 1.36 riastrad "struct dma_fence *"/*fence*/);
74 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, set_error,
75 1.36 riastrad "struct dma_fence *"/*fence*/,
76 1.36 riastrad "int"/*error*/);
77 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, signal,
78 1.36 riastrad "struct dma_fence *"/*fence*/);
79 1.36 riastrad
80 1.36 riastrad SDT_PROBE_DEFINE3(sdt, drm, fence, wait_start,
81 1.36 riastrad "struct dma_fence *"/*fence*/,
82 1.36 riastrad "bool"/*intr*/,
83 1.36 riastrad "long"/*timeout*/);
84 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, wait_done,
85 1.36 riastrad "struct dma_fence *"/*fence*/,
86 1.36 riastrad "long"/*ret*/);
87 1.36 riastrad
88 1.1 riastrad /*
89 1.2 riastrad * linux_dma_fence_trace
90 1.1 riastrad *
91 1.2 riastrad * True if we print DMA_FENCE_TRACE messages, false if not. These
92 1.2 riastrad * are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
93 1.2 riastrad * in boothowto.
94 1.1 riastrad */
95 1.2 riastrad int linux_dma_fence_trace = 0;
96 1.1 riastrad
97 1.1 riastrad /*
98 1.2 riastrad * dma_fence_referenced_p(fence)
99 1.1 riastrad *
100 1.1 riastrad * True if fence has a positive reference count. True after
101 1.2 riastrad * dma_fence_init; after the last dma_fence_put, this becomes
102 1.24 riastrad * false. The fence must have been initialized and must not have
103 1.24 riastrad * been destroyed.
104 1.1 riastrad */
105 1.1 riastrad static inline bool __diagused
106 1.2 riastrad dma_fence_referenced_p(struct dma_fence *fence)
107 1.1 riastrad {
108 1.1 riastrad
109 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
110 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
111 1.24 riastrad
112 1.1 riastrad return kref_referenced_p(&fence->refcount);
113 1.1 riastrad }
114 1.1 riastrad
115 1.1 riastrad /*
116 1.2 riastrad * dma_fence_init(fence, ops, lock, context, seqno)
117 1.1 riastrad *
118 1.2 riastrad * Initialize fence. Caller should call dma_fence_destroy when
119 1.2 riastrad * done, after all references have been released.
120 1.1 riastrad */
121 1.1 riastrad void
122 1.2 riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
123 1.2 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
124 1.1 riastrad {
125 1.1 riastrad
126 1.1 riastrad kref_init(&fence->refcount);
127 1.1 riastrad fence->lock = lock;
128 1.1 riastrad fence->flags = 0;
129 1.1 riastrad fence->context = context;
130 1.1 riastrad fence->seqno = seqno;
131 1.1 riastrad fence->ops = ops;
132 1.18 riastrad fence->error = 0;
133 1.1 riastrad TAILQ_INIT(&fence->f_callbacks);
134 1.2 riastrad cv_init(&fence->f_cv, "dmafence");
135 1.24 riastrad
136 1.24 riastrad #ifdef DIAGNOSTIC
137 1.24 riastrad fence->f_magic = FENCE_MAGIC_GOOD;
138 1.24 riastrad #endif
139 1.36 riastrad
140 1.36 riastrad SDT_PROBE1(sdt, drm, fence, init, fence);
141 1.1 riastrad }
142 1.1 riastrad
143 1.1 riastrad /*
144 1.18 riastrad * dma_fence_reset(fence)
145 1.18 riastrad *
146 1.18 riastrad * Ensure fence is in a quiescent state. Allowed either for newly
147 1.18 riastrad * initialized or freed fences, but not fences with more than one
148 1.18 riastrad * reference.
149 1.18 riastrad *
150 1.18 riastrad * XXX extension to Linux API
151 1.18 riastrad */
152 1.18 riastrad void
153 1.18 riastrad dma_fence_reset(struct dma_fence *fence, const struct dma_fence_ops *ops,
154 1.18 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
155 1.18 riastrad {
156 1.18 riastrad
157 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
158 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
159 1.18 riastrad KASSERT(kref_read(&fence->refcount) == 0 ||
160 1.18 riastrad kref_read(&fence->refcount) == 1);
161 1.18 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
162 1.18 riastrad KASSERT(fence->lock == lock);
163 1.18 riastrad KASSERT(fence->ops == ops);
164 1.18 riastrad
165 1.18 riastrad kref_init(&fence->refcount);
166 1.18 riastrad fence->flags = 0;
167 1.18 riastrad fence->context = context;
168 1.18 riastrad fence->seqno = seqno;
169 1.18 riastrad fence->error = 0;
170 1.36 riastrad
171 1.36 riastrad SDT_PROBE1(sdt, drm, fence, reset, fence);
172 1.18 riastrad }
173 1.18 riastrad
174 1.18 riastrad /*
175 1.2 riastrad * dma_fence_destroy(fence)
176 1.1 riastrad *
177 1.2 riastrad * Clean up memory initialized with dma_fence_init. This is meant
178 1.2 riastrad * to be used after a fence release callback.
179 1.19 riastrad *
180 1.19 riastrad * XXX extension to Linux API
181 1.1 riastrad */
182 1.1 riastrad void
183 1.2 riastrad dma_fence_destroy(struct dma_fence *fence)
184 1.1 riastrad {
185 1.1 riastrad
186 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
187 1.1 riastrad
188 1.36 riastrad SDT_PROBE1(sdt, drm, fence, destroy, fence);
189 1.36 riastrad
190 1.24 riastrad #ifdef DIAGNOSTIC
191 1.24 riastrad fence->f_magic = FENCE_MAGIC_BAD;
192 1.24 riastrad #endif
193 1.24 riastrad
194 1.1 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
195 1.1 riastrad cv_destroy(&fence->f_cv);
196 1.1 riastrad }
197 1.1 riastrad
198 1.1 riastrad static void
199 1.2 riastrad dma_fence_free_cb(struct rcu_head *rcu)
200 1.1 riastrad {
201 1.19 riastrad struct dma_fence *fence = container_of(rcu, struct dma_fence, rcu);
202 1.1 riastrad
203 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
204 1.1 riastrad
205 1.2 riastrad dma_fence_destroy(fence);
206 1.1 riastrad kfree(fence);
207 1.1 riastrad }
208 1.1 riastrad
209 1.1 riastrad /*
210 1.2 riastrad * dma_fence_free(fence)
211 1.1 riastrad *
212 1.1 riastrad * Schedule fence to be destroyed and then freed with kfree after
213 1.1 riastrad * any pending RCU read sections on all CPUs have completed.
214 1.1 riastrad * Caller must guarantee all references have been released. This
215 1.1 riastrad * is meant to be used after a fence release callback.
216 1.1 riastrad *
217 1.1 riastrad * NOTE: Callers assume kfree will be used. We don't even use
218 1.1 riastrad * kmalloc to allocate these -- caller is expected to allocate
219 1.2 riastrad * memory with kmalloc to be initialized with dma_fence_init.
220 1.1 riastrad */
221 1.1 riastrad void
222 1.2 riastrad dma_fence_free(struct dma_fence *fence)
223 1.1 riastrad {
224 1.1 riastrad
225 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
226 1.1 riastrad
227 1.36 riastrad SDT_PROBE1(sdt, drm, fence, free, fence);
228 1.36 riastrad
229 1.19 riastrad call_rcu(&fence->rcu, &dma_fence_free_cb);
230 1.1 riastrad }
231 1.1 riastrad
232 1.1 riastrad /*
233 1.2 riastrad * dma_fence_context_alloc(n)
234 1.1 riastrad *
235 1.1 riastrad * Return the first of a contiguous sequence of unique
236 1.1 riastrad * identifiers, at least until the system wraps around.
237 1.1 riastrad */
238 1.1 riastrad unsigned
239 1.2 riastrad dma_fence_context_alloc(unsigned n)
240 1.1 riastrad {
241 1.1 riastrad static volatile unsigned next_context = 0;
242 1.1 riastrad
243 1.1 riastrad return atomic_add_int_nv(&next_context, n) - n;
244 1.1 riastrad }
245 1.1 riastrad
246 1.1 riastrad /*
247 1.2 riastrad * dma_fence_is_later(a, b)
248 1.1 riastrad *
249 1.1 riastrad * True if the sequence number of fence a is later than the
250 1.1 riastrad * sequence number of fence b. Since sequence numbers wrap
251 1.1 riastrad * around, we define this to mean that the sequence number of
252 1.1 riastrad * fence a is no more than INT_MAX past the sequence number of
253 1.1 riastrad * fence b.
254 1.1 riastrad *
255 1.1 riastrad * The two fences must have the same context.
256 1.1 riastrad */
257 1.1 riastrad bool
258 1.2 riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
259 1.1 riastrad {
260 1.1 riastrad
261 1.24 riastrad KASSERTMSG(a->f_magic != FENCE_MAGIC_BAD, "fence %p", a);
262 1.24 riastrad KASSERTMSG(a->f_magic == FENCE_MAGIC_GOOD, "fence %p", a);
263 1.24 riastrad KASSERTMSG(b->f_magic != FENCE_MAGIC_BAD, "fence %p", b);
264 1.24 riastrad KASSERTMSG(b->f_magic == FENCE_MAGIC_GOOD, "fence %p", b);
265 1.1 riastrad KASSERTMSG(a->context == b->context, "incommensurate fences"
266 1.1 riastrad ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
267 1.1 riastrad
268 1.1 riastrad return a->seqno - b->seqno < INT_MAX;
269 1.1 riastrad }
270 1.1 riastrad
271 1.30 riastrad static const char *dma_fence_stub_name(struct dma_fence *f)
272 1.30 riastrad {
273 1.30 riastrad
274 1.30 riastrad return "stub";
275 1.30 riastrad }
276 1.30 riastrad
277 1.30 riastrad static const struct dma_fence_ops dma_fence_stub_ops = {
278 1.30 riastrad .get_driver_name = dma_fence_stub_name,
279 1.30 riastrad .get_timeline_name = dma_fence_stub_name,
280 1.30 riastrad };
281 1.30 riastrad
282 1.1 riastrad /*
283 1.9 riastrad * dma_fence_get_stub()
284 1.9 riastrad *
285 1.9 riastrad * Return a dma fence that is always already signalled.
286 1.9 riastrad */
287 1.9 riastrad struct dma_fence *
288 1.9 riastrad dma_fence_get_stub(void)
289 1.9 riastrad {
290 1.9 riastrad /*
291 1.9 riastrad * XXX This probably isn't good enough -- caller may try
292 1.9 riastrad * operations on this that require the lock, which will
293 1.9 riastrad * require us to create and destroy the lock on module
294 1.9 riastrad * load/unload.
295 1.9 riastrad */
296 1.9 riastrad static struct dma_fence fence = {
297 1.9 riastrad .refcount = {1}, /* always referenced */
298 1.9 riastrad .flags = 1u << DMA_FENCE_FLAG_SIGNALED_BIT,
299 1.30 riastrad .ops = &dma_fence_stub_ops,
300 1.29 riastrad #ifdef DIAGNOSTIC
301 1.29 riastrad .f_magic = FENCE_MAGIC_GOOD,
302 1.29 riastrad #endif
303 1.9 riastrad };
304 1.9 riastrad
305 1.9 riastrad return dma_fence_get(&fence);
306 1.9 riastrad }
307 1.9 riastrad
308 1.9 riastrad /*
309 1.2 riastrad * dma_fence_get(fence)
310 1.1 riastrad *
311 1.26 riastrad * Acquire a reference to fence and return it, or return NULL if
312 1.26 riastrad * fence is NULL. The fence, if nonnull, must not be being
313 1.26 riastrad * destroyed.
314 1.1 riastrad */
315 1.2 riastrad struct dma_fence *
316 1.2 riastrad dma_fence_get(struct dma_fence *fence)
317 1.1 riastrad {
318 1.1 riastrad
319 1.26 riastrad if (fence == NULL)
320 1.26 riastrad return NULL;
321 1.26 riastrad
322 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
323 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
324 1.24 riastrad
325 1.26 riastrad kref_get(&fence->refcount);
326 1.1 riastrad return fence;
327 1.1 riastrad }
328 1.1 riastrad
329 1.1 riastrad /*
330 1.2 riastrad * dma_fence_get_rcu(fence)
331 1.1 riastrad *
332 1.1 riastrad * Attempt to acquire a reference to a fence that may be about to
333 1.1 riastrad * be destroyed, during a read section. Return the fence on
334 1.26 riastrad * success, or NULL on failure. The fence must be nonnull.
335 1.1 riastrad */
336 1.2 riastrad struct dma_fence *
337 1.2 riastrad dma_fence_get_rcu(struct dma_fence *fence)
338 1.1 riastrad {
339 1.1 riastrad
340 1.8 riastrad __insn_barrier();
341 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
342 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
343 1.1 riastrad if (!kref_get_unless_zero(&fence->refcount))
344 1.1 riastrad return NULL;
345 1.1 riastrad return fence;
346 1.1 riastrad }
347 1.1 riastrad
348 1.3 riastrad /*
349 1.3 riastrad * dma_fence_get_rcu_safe(fencep)
350 1.3 riastrad *
351 1.3 riastrad * Attempt to acquire a reference to the fence *fencep, which may
352 1.3 riastrad * be about to be destroyed, during a read section. If the value
353 1.3 riastrad * of *fencep changes after we read *fencep but before we
354 1.3 riastrad * increment its reference count, retry. Return *fencep on
355 1.3 riastrad * success, or NULL on failure.
356 1.3 riastrad */
357 1.3 riastrad struct dma_fence *
358 1.7 riastrad dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
359 1.3 riastrad {
360 1.3 riastrad struct dma_fence *fence, *fence0;
361 1.3 riastrad
362 1.3 riastrad retry:
363 1.3 riastrad fence = *fencep;
364 1.3 riastrad
365 1.3 riastrad /* Load fence only once. */
366 1.3 riastrad __insn_barrier();
367 1.3 riastrad
368 1.3 riastrad /* If there's nothing there, give up. */
369 1.3 riastrad if (fence == NULL)
370 1.3 riastrad return NULL;
371 1.3 riastrad
372 1.3 riastrad /* Make sure we don't load stale fence guts. */
373 1.3 riastrad membar_datadep_consumer();
374 1.3 riastrad
375 1.3 riastrad /* Try to acquire a reference. If we can't, try again. */
376 1.3 riastrad if (!dma_fence_get_rcu(fence))
377 1.3 riastrad goto retry;
378 1.3 riastrad
379 1.3 riastrad /*
380 1.3 riastrad * Confirm that it's still the same fence. If not, release it
381 1.3 riastrad * and retry.
382 1.3 riastrad */
383 1.3 riastrad fence0 = *fencep;
384 1.3 riastrad __insn_barrier();
385 1.3 riastrad if (fence != fence0) {
386 1.3 riastrad dma_fence_put(fence);
387 1.3 riastrad goto retry;
388 1.3 riastrad }
389 1.3 riastrad
390 1.3 riastrad /* Success! */
391 1.24 riastrad KASSERT(dma_fence_referenced_p(fence));
392 1.3 riastrad return fence;
393 1.3 riastrad }
394 1.3 riastrad
395 1.1 riastrad static void
396 1.2 riastrad dma_fence_release(struct kref *refcount)
397 1.1 riastrad {
398 1.2 riastrad struct dma_fence *fence = container_of(refcount, struct dma_fence,
399 1.2 riastrad refcount);
400 1.1 riastrad
401 1.23 riastrad KASSERTMSG(TAILQ_EMPTY(&fence->f_callbacks),
402 1.23 riastrad "fence %p has pending callbacks", fence);
403 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
404 1.1 riastrad
405 1.36 riastrad SDT_PROBE1(sdt, drm, fence, release, fence);
406 1.36 riastrad
407 1.1 riastrad if (fence->ops->release)
408 1.1 riastrad (*fence->ops->release)(fence);
409 1.1 riastrad else
410 1.2 riastrad dma_fence_free(fence);
411 1.1 riastrad }
412 1.1 riastrad
413 1.1 riastrad /*
414 1.2 riastrad * dma_fence_put(fence)
415 1.1 riastrad *
416 1.1 riastrad * Release a reference to fence. If this was the last one, call
417 1.1 riastrad * the fence's release callback.
418 1.1 riastrad */
419 1.1 riastrad void
420 1.2 riastrad dma_fence_put(struct dma_fence *fence)
421 1.1 riastrad {
422 1.1 riastrad
423 1.1 riastrad if (fence == NULL)
424 1.1 riastrad return;
425 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
426 1.2 riastrad kref_put(&fence->refcount, &dma_fence_release);
427 1.1 riastrad }
428 1.1 riastrad
429 1.1 riastrad /*
430 1.2 riastrad * dma_fence_ensure_signal_enabled(fence)
431 1.1 riastrad *
432 1.1 riastrad * Internal subroutine. If the fence was already signalled,
433 1.1 riastrad * return -ENOENT. Otherwise, if the enable signalling callback
434 1.1 riastrad * has not been called yet, call it. If fails, signal the fence
435 1.1 riastrad * and return -ENOENT. If it succeeds, or if it had already been
436 1.1 riastrad * called, return zero to indicate success.
437 1.1 riastrad *
438 1.1 riastrad * Caller must hold the fence's lock.
439 1.1 riastrad */
440 1.1 riastrad static int
441 1.2 riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
442 1.1 riastrad {
443 1.20 riastrad bool already_enabled;
444 1.1 riastrad
445 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
446 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
447 1.1 riastrad
448 1.20 riastrad /* Determine whether signalling was enabled, and enable it. */
449 1.20 riastrad already_enabled = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
450 1.20 riastrad &fence->flags);
451 1.20 riastrad
452 1.1 riastrad /* If the fence was already signalled, fail with -ENOENT. */
453 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
454 1.1 riastrad return -ENOENT;
455 1.1 riastrad
456 1.1 riastrad /*
457 1.20 riastrad * Otherwise, if it wasn't enabled yet, try to enable
458 1.35 riastrad * signalling.
459 1.1 riastrad */
460 1.36 riastrad if (!already_enabled && fence->ops->enable_signaling) {
461 1.36 riastrad SDT_PROBE1(sdt, drm, fence, enable_signaling, fence);
462 1.36 riastrad if (!(*fence->ops->enable_signaling)(fence)) {
463 1.36 riastrad /* If it failed, signal and return -ENOENT. */
464 1.36 riastrad dma_fence_signal_locked(fence);
465 1.36 riastrad return -ENOENT;
466 1.36 riastrad }
467 1.1 riastrad }
468 1.1 riastrad
469 1.1 riastrad /* Success! */
470 1.1 riastrad return 0;
471 1.1 riastrad }
472 1.1 riastrad
473 1.1 riastrad /*
474 1.2 riastrad * dma_fence_add_callback(fence, fcb, fn)
475 1.1 riastrad *
476 1.1 riastrad * If fence has been signalled, return -ENOENT. If the enable
477 1.1 riastrad * signalling callback hasn't been called yet, call it; if it
478 1.1 riastrad * fails, return -ENOENT. Otherwise, arrange to call fn(fence,
479 1.1 riastrad * fcb) when it is signalled, and return 0.
480 1.1 riastrad *
481 1.1 riastrad * The fence uses memory allocated by the caller in fcb from the
482 1.2 riastrad * time of dma_fence_add_callback either to the time of
483 1.2 riastrad * dma_fence_remove_callback, or just before calling fn.
484 1.1 riastrad */
485 1.1 riastrad int
486 1.2 riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
487 1.2 riastrad dma_fence_func_t fn)
488 1.1 riastrad {
489 1.1 riastrad int ret;
490 1.1 riastrad
491 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
492 1.1 riastrad
493 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
494 1.34 riastrad if (atomic_load_relaxed(&fence->flags) &
495 1.34 riastrad (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
496 1.1 riastrad ret = -ENOENT;
497 1.1 riastrad goto out0;
498 1.1 riastrad }
499 1.1 riastrad
500 1.1 riastrad /* Acquire the lock. */
501 1.1 riastrad spin_lock(fence->lock);
502 1.1 riastrad
503 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
504 1.2 riastrad ret = dma_fence_ensure_signal_enabled(fence);
505 1.1 riastrad if (ret)
506 1.1 riastrad goto out1;
507 1.1 riastrad
508 1.1 riastrad /* Insert the callback. */
509 1.36 riastrad SDT_PROBE2(sdt, drm, fence, add_callback, fence, fcb);
510 1.4 riastrad fcb->func = fn;
511 1.1 riastrad TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
512 1.1 riastrad fcb->fcb_onqueue = true;
513 1.21 riastrad ret = 0;
514 1.1 riastrad
515 1.1 riastrad /* Release the lock and we're done. */
516 1.1 riastrad out1: spin_unlock(fence->lock);
517 1.21 riastrad out0: if (ret) {
518 1.21 riastrad fcb->func = NULL;
519 1.21 riastrad fcb->fcb_onqueue = false;
520 1.21 riastrad }
521 1.21 riastrad return ret;
522 1.1 riastrad }
523 1.1 riastrad
524 1.1 riastrad /*
525 1.2 riastrad * dma_fence_remove_callback(fence, fcb)
526 1.1 riastrad *
527 1.1 riastrad * Remove the callback fcb from fence. Return true if it was
528 1.1 riastrad * removed from the list, or false if it had already run and so
529 1.1 riastrad * was no longer queued anyway. Caller must have already called
530 1.2 riastrad * dma_fence_add_callback(fence, fcb).
531 1.1 riastrad */
532 1.1 riastrad bool
533 1.2 riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
534 1.1 riastrad {
535 1.1 riastrad bool onqueue;
536 1.1 riastrad
537 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
538 1.1 riastrad
539 1.1 riastrad spin_lock(fence->lock);
540 1.1 riastrad onqueue = fcb->fcb_onqueue;
541 1.1 riastrad if (onqueue) {
542 1.36 riastrad SDT_PROBE2(sdt, drm, fence, remove_callback, fence, fcb);
543 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
544 1.1 riastrad fcb->fcb_onqueue = false;
545 1.1 riastrad }
546 1.1 riastrad spin_unlock(fence->lock);
547 1.1 riastrad
548 1.1 riastrad return onqueue;
549 1.1 riastrad }
550 1.1 riastrad
551 1.1 riastrad /*
552 1.2 riastrad * dma_fence_enable_sw_signaling(fence)
553 1.1 riastrad *
554 1.1 riastrad * If it hasn't been called yet and the fence hasn't been
555 1.1 riastrad * signalled yet, call the fence's enable_sw_signaling callback.
556 1.1 riastrad * If when that happens, the callback indicates failure by
557 1.1 riastrad * returning false, signal the fence.
558 1.1 riastrad */
559 1.1 riastrad void
560 1.2 riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
561 1.1 riastrad {
562 1.1 riastrad
563 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
564 1.1 riastrad
565 1.1 riastrad spin_lock(fence->lock);
566 1.22 riastrad if ((fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) == 0)
567 1.22 riastrad (void)dma_fence_ensure_signal_enabled(fence);
568 1.1 riastrad spin_unlock(fence->lock);
569 1.1 riastrad }
570 1.1 riastrad
571 1.1 riastrad /*
572 1.2 riastrad * dma_fence_is_signaled(fence)
573 1.1 riastrad *
574 1.1 riastrad * Test whether the fence has been signalled. If it has been
575 1.2 riastrad * signalled by dma_fence_signal(_locked), return true. If the
576 1.1 riastrad * signalled callback returns true indicating that some implicit
577 1.1 riastrad * external condition has changed, call the callbacks as if with
578 1.2 riastrad * dma_fence_signal.
579 1.1 riastrad */
580 1.1 riastrad bool
581 1.2 riastrad dma_fence_is_signaled(struct dma_fence *fence)
582 1.1 riastrad {
583 1.1 riastrad bool signaled;
584 1.1 riastrad
585 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
586 1.1 riastrad
587 1.1 riastrad spin_lock(fence->lock);
588 1.2 riastrad signaled = dma_fence_is_signaled_locked(fence);
589 1.1 riastrad spin_unlock(fence->lock);
590 1.1 riastrad
591 1.1 riastrad return signaled;
592 1.1 riastrad }
593 1.1 riastrad
594 1.1 riastrad /*
595 1.2 riastrad * dma_fence_is_signaled_locked(fence)
596 1.1 riastrad *
597 1.1 riastrad * Test whether the fence has been signalled. Like
598 1.2 riastrad * dma_fence_is_signaleed, but caller already holds the fence's lock.
599 1.1 riastrad */
600 1.1 riastrad bool
601 1.2 riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
602 1.1 riastrad {
603 1.1 riastrad
604 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
605 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
606 1.1 riastrad
607 1.1 riastrad /* Check whether we already set the signalled bit. */
608 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
609 1.1 riastrad return true;
610 1.1 riastrad
611 1.1 riastrad /* If there's a signalled callback, test it. */
612 1.1 riastrad if (fence->ops->signaled) {
613 1.36 riastrad SDT_PROBE1(sdt, drm, fence, test, fence);
614 1.1 riastrad if ((*fence->ops->signaled)(fence)) {
615 1.1 riastrad /*
616 1.1 riastrad * It's been signalled implicitly by some
617 1.1 riastrad * external phenomonen. Act as though someone
618 1.2 riastrad * has called dma_fence_signal.
619 1.1 riastrad */
620 1.2 riastrad dma_fence_signal_locked(fence);
621 1.1 riastrad return true;
622 1.1 riastrad }
623 1.1 riastrad }
624 1.1 riastrad
625 1.1 riastrad return false;
626 1.1 riastrad }
627 1.1 riastrad
628 1.1 riastrad /*
629 1.5 riastrad * dma_fence_set_error(fence, error)
630 1.5 riastrad *
631 1.5 riastrad * Set an error code prior to dma_fence_signal for use by a
632 1.5 riastrad * waiter to learn about success or failure of the fence.
633 1.5 riastrad */
634 1.5 riastrad void
635 1.5 riastrad dma_fence_set_error(struct dma_fence *fence, int error)
636 1.5 riastrad {
637 1.5 riastrad
638 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
639 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
640 1.34 riastrad KASSERT((atomic_load_relaxed(&fence->flags) &
641 1.34 riastrad (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) == 0);
642 1.6 riastrad KASSERTMSG(error >= -ELAST, "%d", error);
643 1.5 riastrad KASSERTMSG(error < 0, "%d", error);
644 1.5 riastrad
645 1.36 riastrad SDT_PROBE2(sdt, drm, fence, set_error, fence, error);
646 1.5 riastrad fence->error = error;
647 1.5 riastrad }
648 1.5 riastrad
649 1.5 riastrad /*
650 1.10 riastrad * dma_fence_get_status(fence)
651 1.10 riastrad *
652 1.10 riastrad * Return 0 if fence has yet to be signalled, 1 if it has been
653 1.10 riastrad * signalled without error, or negative error code if
654 1.10 riastrad * dma_fence_set_error was used.
655 1.10 riastrad */
656 1.10 riastrad int
657 1.10 riastrad dma_fence_get_status(struct dma_fence *fence)
658 1.10 riastrad {
659 1.10 riastrad int ret;
660 1.10 riastrad
661 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
662 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
663 1.24 riastrad
664 1.10 riastrad spin_lock(fence->lock);
665 1.10 riastrad if (!dma_fence_is_signaled_locked(fence)) {
666 1.10 riastrad ret = 0;
667 1.10 riastrad } else if (fence->error) {
668 1.10 riastrad ret = fence->error;
669 1.10 riastrad KASSERTMSG(ret < 0, "%d", ret);
670 1.10 riastrad } else {
671 1.10 riastrad ret = 1;
672 1.10 riastrad }
673 1.10 riastrad spin_unlock(fence->lock);
674 1.10 riastrad
675 1.10 riastrad return ret;
676 1.10 riastrad }
677 1.10 riastrad
678 1.10 riastrad /*
679 1.2 riastrad * dma_fence_signal(fence)
680 1.1 riastrad *
681 1.1 riastrad * Signal the fence. If it has already been signalled, return
682 1.1 riastrad * -EINVAL. If it has not been signalled, call the enable
683 1.1 riastrad * signalling callback if it hasn't been called yet, and remove
684 1.1 riastrad * each registered callback from the queue and call it; then
685 1.1 riastrad * return 0.
686 1.1 riastrad */
687 1.1 riastrad int
688 1.2 riastrad dma_fence_signal(struct dma_fence *fence)
689 1.1 riastrad {
690 1.1 riastrad int ret;
691 1.1 riastrad
692 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
693 1.1 riastrad
694 1.1 riastrad spin_lock(fence->lock);
695 1.2 riastrad ret = dma_fence_signal_locked(fence);
696 1.1 riastrad spin_unlock(fence->lock);
697 1.1 riastrad
698 1.1 riastrad return ret;
699 1.1 riastrad }
700 1.1 riastrad
701 1.1 riastrad /*
702 1.2 riastrad * dma_fence_signal_locked(fence)
703 1.1 riastrad *
704 1.2 riastrad * Signal the fence. Like dma_fence_signal, but caller already
705 1.2 riastrad * holds the fence's lock.
706 1.1 riastrad */
707 1.1 riastrad int
708 1.2 riastrad dma_fence_signal_locked(struct dma_fence *fence)
709 1.1 riastrad {
710 1.2 riastrad struct dma_fence_cb *fcb, *next;
711 1.1 riastrad
712 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
713 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
714 1.1 riastrad
715 1.1 riastrad /* If it's been signalled, fail; otherwise set the signalled bit. */
716 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
717 1.1 riastrad return -EINVAL;
718 1.1 riastrad
719 1.36 riastrad SDT_PROBE1(sdt, drm, fence, signal, fence);
720 1.36 riastrad
721 1.25 riastrad /* Set the timestamp. */
722 1.25 riastrad fence->timestamp = ktime_get();
723 1.25 riastrad set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
724 1.25 riastrad
725 1.1 riastrad /* Wake waiters. */
726 1.1 riastrad cv_broadcast(&fence->f_cv);
727 1.1 riastrad
728 1.1 riastrad /* Remove and call the callbacks. */
729 1.1 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
730 1.36 riastrad SDT_PROBE2(sdt, drm, fence, callback, fence, fcb);
731 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
732 1.1 riastrad fcb->fcb_onqueue = false;
733 1.4 riastrad (*fcb->func)(fence, fcb);
734 1.1 riastrad }
735 1.1 riastrad
736 1.1 riastrad /* Success! */
737 1.1 riastrad return 0;
738 1.1 riastrad }
739 1.1 riastrad
740 1.1 riastrad struct wait_any {
741 1.2 riastrad struct dma_fence_cb fcb;
742 1.1 riastrad struct wait_any1 {
743 1.1 riastrad kmutex_t lock;
744 1.1 riastrad kcondvar_t cv;
745 1.31 riastrad struct wait_any *cb;
746 1.1 riastrad bool done;
747 1.1 riastrad } *common;
748 1.1 riastrad };
749 1.1 riastrad
750 1.1 riastrad static void
751 1.2 riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
752 1.1 riastrad {
753 1.1 riastrad struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
754 1.1 riastrad
755 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
756 1.1 riastrad
757 1.1 riastrad mutex_enter(&cb->common->lock);
758 1.1 riastrad cb->common->done = true;
759 1.1 riastrad cv_broadcast(&cb->common->cv);
760 1.1 riastrad mutex_exit(&cb->common->lock);
761 1.1 riastrad }
762 1.1 riastrad
763 1.1 riastrad /*
764 1.11 riastrad * dma_fence_wait_any_timeout(fence, nfences, intr, timeout, ip)
765 1.1 riastrad *
766 1.1 riastrad * Wait for any of fences[0], fences[1], fences[2], ...,
767 1.13 riastrad * fences[nfences-1] to be signalled. If ip is nonnull, set *ip
768 1.13 riastrad * to the index of the first one.
769 1.31 riastrad *
770 1.31 riastrad * Return -ERESTARTSYS if interrupted, 0 on timeout, or time
771 1.31 riastrad * remaining (at least 1) on success.
772 1.1 riastrad */
773 1.1 riastrad long
774 1.2 riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
775 1.11 riastrad bool intr, long timeout, uint32_t *ip)
776 1.1 riastrad {
777 1.1 riastrad struct wait_any1 common;
778 1.1 riastrad struct wait_any *cb;
779 1.1 riastrad uint32_t i, j;
780 1.1 riastrad int start, end;
781 1.1 riastrad long ret = 0;
782 1.1 riastrad
783 1.32 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
784 1.32 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
785 1.32 riastrad
786 1.31 riastrad /* Optimistically check whether any are signalled. */
787 1.31 riastrad for (i = 0; i < nfences; i++) {
788 1.32 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
789 1.31 riastrad if (dma_fence_is_signaled(fences[i])) {
790 1.31 riastrad if (ip)
791 1.31 riastrad *ip = i;
792 1.31 riastrad return MAX(1, timeout);
793 1.31 riastrad }
794 1.31 riastrad }
795 1.31 riastrad
796 1.31 riastrad /*
797 1.31 riastrad * If timeout is zero, we're just polling, so stop here as if
798 1.31 riastrad * we timed out instantly.
799 1.31 riastrad */
800 1.31 riastrad if (timeout == 0)
801 1.31 riastrad return 0;
802 1.31 riastrad
803 1.1 riastrad /* Allocate an array of callback records. */
804 1.1 riastrad cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
805 1.32 riastrad if (cb == NULL)
806 1.32 riastrad return -ENOMEM;
807 1.1 riastrad
808 1.1 riastrad /* Initialize a mutex and condvar for the common wait. */
809 1.1 riastrad mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
810 1.1 riastrad cv_init(&common.cv, "fence");
811 1.31 riastrad common.cb = cb;
812 1.1 riastrad common.done = false;
813 1.1 riastrad
814 1.31 riastrad /*
815 1.31 riastrad * Add a callback to each of the fences, or stop if already
816 1.31 riastrad * signalled.
817 1.31 riastrad */
818 1.1 riastrad for (i = 0; i < nfences; i++) {
819 1.1 riastrad cb[i].common = &common;
820 1.2 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
821 1.2 riastrad ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
822 1.2 riastrad &wait_any_cb);
823 1.31 riastrad if (ret) {
824 1.31 riastrad KASSERT(ret == -ENOENT);
825 1.11 riastrad if (ip)
826 1.31 riastrad *ip = i;
827 1.31 riastrad ret = MAX(1, timeout);
828 1.32 riastrad goto out;
829 1.11 riastrad }
830 1.1 riastrad }
831 1.1 riastrad
832 1.1 riastrad /*
833 1.1 riastrad * None of them was ready immediately. Wait for one of the
834 1.1 riastrad * callbacks to notify us when it is done.
835 1.1 riastrad */
836 1.1 riastrad mutex_enter(&common.lock);
837 1.32 riastrad while (!common.done) {
838 1.32 riastrad /* Wait for the time remaining. */
839 1.1 riastrad start = getticks();
840 1.1 riastrad if (intr) {
841 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
842 1.1 riastrad ret = -cv_timedwait_sig(&common.cv,
843 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
844 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
845 1.1 riastrad } else {
846 1.1 riastrad ret = -cv_wait_sig(&common.cv, &common.lock);
847 1.1 riastrad }
848 1.1 riastrad } else {
849 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
850 1.1 riastrad ret = -cv_timedwait(&common.cv,
851 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
852 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
853 1.1 riastrad } else {
854 1.1 riastrad cv_wait(&common.cv, &common.lock);
855 1.1 riastrad ret = 0;
856 1.1 riastrad }
857 1.1 riastrad }
858 1.1 riastrad end = getticks();
859 1.32 riastrad
860 1.32 riastrad /* Deduct from time remaining. If none left, time out. */
861 1.32 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
862 1.32 riastrad timeout -= MIN(timeout,
863 1.32 riastrad (unsigned)end - (unsigned)start);
864 1.32 riastrad if (timeout == 0)
865 1.32 riastrad ret = -EWOULDBLOCK;
866 1.32 riastrad }
867 1.32 riastrad
868 1.32 riastrad /* If the wait failed, give up. */
869 1.31 riastrad if (ret)
870 1.1 riastrad break;
871 1.1 riastrad }
872 1.1 riastrad mutex_exit(&common.lock);
873 1.1 riastrad
874 1.1 riastrad /*
875 1.32 riastrad * Massage the return code if nonzero:
876 1.32 riastrad * - if we were interrupted, return -ERESTARTSYS;
877 1.32 riastrad * - if we timed out, return 0.
878 1.32 riastrad * No other failure is possible. On success, ret=0 but we
879 1.32 riastrad * check again below to verify anyway.
880 1.32 riastrad */
881 1.32 riastrad if (ret) {
882 1.32 riastrad KASSERTMSG((ret == -EINTR || ret == -ERESTART ||
883 1.32 riastrad ret == -EWOULDBLOCK), "ret=%ld", ret);
884 1.32 riastrad if (ret == -EINTR || ret == -ERESTART) {
885 1.32 riastrad ret = -ERESTARTSYS;
886 1.32 riastrad } else if (ret == -EWOULDBLOCK) {
887 1.32 riastrad KASSERT(timeout != MAX_SCHEDULE_TIMEOUT);
888 1.32 riastrad ret = 0; /* timed out */
889 1.32 riastrad }
890 1.32 riastrad }
891 1.32 riastrad
892 1.32 riastrad KASSERT(ret != -ERESTART); /* would be confused with time left */
893 1.32 riastrad
894 1.32 riastrad /*
895 1.31 riastrad * Test whether any of the fences has been signalled. If they
896 1.31 riastrad * have, return success.
897 1.31 riastrad */
898 1.31 riastrad for (j = 0; j < nfences; j++) {
899 1.31 riastrad if (dma_fence_is_signaled(fences[i])) {
900 1.31 riastrad if (ip)
901 1.31 riastrad *ip = j;
902 1.31 riastrad ret = MAX(1, timeout);
903 1.32 riastrad goto out;
904 1.31 riastrad }
905 1.31 riastrad }
906 1.31 riastrad
907 1.31 riastrad /*
908 1.32 riastrad * If user passed MAX_SCHEDULE_TIMEOUT, we can't return 0
909 1.32 riastrad * meaning timed out because we're supposed to wait forever.
910 1.1 riastrad */
911 1.32 riastrad KASSERT(timeout == MAX_SCHEDULE_TIMEOUT ? ret != 0 : 1);
912 1.1 riastrad
913 1.32 riastrad out: while (i --> 0)
914 1.2 riastrad (void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
915 1.1 riastrad cv_destroy(&common.cv);
916 1.1 riastrad mutex_destroy(&common.lock);
917 1.1 riastrad kfree(cb);
918 1.32 riastrad return ret;
919 1.1 riastrad }
920 1.1 riastrad
921 1.1 riastrad /*
922 1.2 riastrad * dma_fence_wait_timeout(fence, intr, timeout)
923 1.1 riastrad *
924 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
925 1.1 riastrad * true; or until timeout, if positive. Return -ERESTARTSYS if
926 1.1 riastrad * interrupted, negative error code on any other error, zero on
927 1.1 riastrad * timeout, or positive number of ticks remaining if the fence is
928 1.1 riastrad * signalled before the timeout. Works by calling the fence wait
929 1.1 riastrad * callback.
930 1.1 riastrad *
931 1.28 riastrad * The timeout must be nonnegative and at most
932 1.28 riastrad * MAX_SCHEDULE_TIMEOUT, which means wait indefinitely.
933 1.1 riastrad */
934 1.1 riastrad long
935 1.2 riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
936 1.1 riastrad {
937 1.36 riastrad long ret;
938 1.1 riastrad
939 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
940 1.27 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
941 1.28 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
942 1.1 riastrad
943 1.36 riastrad SDT_PROBE3(sdt, drm, fence, wait_start, fence, intr, timeout);
944 1.14 riastrad if (fence->ops->wait)
945 1.36 riastrad ret = (*fence->ops->wait)(fence, intr, timeout);
946 1.14 riastrad else
947 1.36 riastrad ret = dma_fence_default_wait(fence, intr, timeout);
948 1.36 riastrad SDT_PROBE2(sdt, drm, fence, wait_done, fence, ret);
949 1.36 riastrad
950 1.36 riastrad return ret;
951 1.1 riastrad }
952 1.1 riastrad
953 1.1 riastrad /*
954 1.2 riastrad * dma_fence_wait(fence, intr)
955 1.1 riastrad *
956 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
957 1.1 riastrad * true. Return -ERESTARTSYS if interrupted, negative error code
958 1.1 riastrad * on any other error, zero on sucess. Works by calling the fence
959 1.1 riastrad * wait callback with MAX_SCHEDULE_TIMEOUT.
960 1.1 riastrad */
961 1.1 riastrad long
962 1.2 riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
963 1.1 riastrad {
964 1.1 riastrad long ret;
965 1.1 riastrad
966 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
967 1.1 riastrad
968 1.15 riastrad if (fence->ops->wait)
969 1.15 riastrad ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
970 1.15 riastrad else
971 1.15 riastrad ret = dma_fence_default_wait(fence, intr,
972 1.15 riastrad MAX_SCHEDULE_TIMEOUT);
973 1.1 riastrad KASSERT(ret != 0);
974 1.33 riastrad KASSERTMSG(ret == -ERESTARTSYS || ret == MAX_SCHEDULE_TIMEOUT,
975 1.33 riastrad "ret=%ld", ret);
976 1.1 riastrad
977 1.1 riastrad return (ret < 0 ? ret : 0);
978 1.1 riastrad }
979 1.1 riastrad
980 1.1 riastrad /*
981 1.2 riastrad * dma_fence_default_wait(fence, intr, timeout)
982 1.1 riastrad *
983 1.1 riastrad * Default implementation of fence wait callback using a condition
984 1.1 riastrad * variable. If the fence is already signalled, return timeout,
985 1.16 riastrad * or 1 if timeout is zero meaning poll. If the enable signalling
986 1.16 riastrad * callback hasn't been called, call it, and if it fails, act as
987 1.16 riastrad * if the fence had been signalled. Otherwise, wait on the
988 1.16 riastrad * internal condvar. If timeout is MAX_SCHEDULE_TIMEOUT, wait
989 1.16 riastrad * indefinitely.
990 1.1 riastrad */
991 1.1 riastrad long
992 1.2 riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
993 1.1 riastrad {
994 1.1 riastrad int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
995 1.1 riastrad kmutex_t *lock = &fence->lock->sl_lock;
996 1.1 riastrad long ret = 0;
997 1.1 riastrad
998 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
999 1.1 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
1000 1.1 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
1001 1.1 riastrad
1002 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
1003 1.34 riastrad if (atomic_load_relaxed(&fence->flags) &
1004 1.34 riastrad (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
1005 1.32 riastrad return MAX(1, timeout);
1006 1.1 riastrad
1007 1.1 riastrad /* Acquire the lock. */
1008 1.1 riastrad spin_lock(fence->lock);
1009 1.1 riastrad
1010 1.16 riastrad /* Ensure signalling is enabled, or stop if already completed. */
1011 1.17 riastrad if (dma_fence_ensure_signal_enabled(fence) != 0) {
1012 1.32 riastrad ret = MAX(1, timeout);
1013 1.32 riastrad goto out;
1014 1.17 riastrad }
1015 1.16 riastrad
1016 1.16 riastrad /* If merely polling, stop here. */
1017 1.16 riastrad if (timeout == 0) {
1018 1.32 riastrad ret = 0;
1019 1.32 riastrad goto out;
1020 1.16 riastrad }
1021 1.1 riastrad
1022 1.1 riastrad /* Find out what our deadline is so we can handle spurious wakeup. */
1023 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
1024 1.1 riastrad now = getticks();
1025 1.1 riastrad starttime = now;
1026 1.1 riastrad deadline = starttime + timeout;
1027 1.1 riastrad }
1028 1.1 riastrad
1029 1.1 riastrad /* Wait until the signalled bit is set. */
1030 1.2 riastrad while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
1031 1.1 riastrad /*
1032 1.1 riastrad * If there's a timeout and we've passed the deadline,
1033 1.1 riastrad * give up.
1034 1.1 riastrad */
1035 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
1036 1.1 riastrad now = getticks();
1037 1.32 riastrad if (deadline <= now) {
1038 1.32 riastrad ret = -EWOULDBLOCK;
1039 1.1 riastrad break;
1040 1.32 riastrad }
1041 1.1 riastrad }
1042 1.32 riastrad
1043 1.32 riastrad /* Wait for the time remaining. */
1044 1.1 riastrad if (intr) {
1045 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
1046 1.1 riastrad ret = -cv_timedwait_sig(&fence->f_cv, lock,
1047 1.1 riastrad deadline - now);
1048 1.1 riastrad } else {
1049 1.1 riastrad ret = -cv_wait_sig(&fence->f_cv, lock);
1050 1.1 riastrad }
1051 1.1 riastrad } else {
1052 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
1053 1.1 riastrad ret = -cv_timedwait(&fence->f_cv, lock,
1054 1.1 riastrad deadline - now);
1055 1.1 riastrad } else {
1056 1.1 riastrad cv_wait(&fence->f_cv, lock);
1057 1.1 riastrad ret = 0;
1058 1.1 riastrad }
1059 1.1 riastrad }
1060 1.32 riastrad
1061 1.1 riastrad /* If the wait failed, give up. */
1062 1.32 riastrad if (ret)
1063 1.1 riastrad break;
1064 1.32 riastrad }
1065 1.32 riastrad
1066 1.32 riastrad /*
1067 1.32 riastrad * Massage the return code if nonzero:
1068 1.32 riastrad * - if we were interrupted, return -ERESTARTSYS;
1069 1.32 riastrad * - if we timed out, return 0.
1070 1.32 riastrad * No other failure is possible. On success, ret=0 but we
1071 1.32 riastrad * check again below to verify anyway.
1072 1.32 riastrad */
1073 1.32 riastrad if (ret) {
1074 1.32 riastrad KASSERTMSG((ret == -EINTR || ret == -ERESTART ||
1075 1.32 riastrad ret == -EWOULDBLOCK), "ret=%ld", ret);
1076 1.32 riastrad if (ret == -EINTR || ret == -ERESTART) {
1077 1.32 riastrad ret = -ERESTARTSYS;
1078 1.32 riastrad } else if (ret == -EWOULDBLOCK) {
1079 1.32 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
1080 1.32 riastrad ret = 0; /* timed out */
1081 1.1 riastrad }
1082 1.1 riastrad }
1083 1.1 riastrad
1084 1.32 riastrad KASSERT(ret != -ERESTART); /* would be confused with time left */
1085 1.1 riastrad
1086 1.32 riastrad /* Check again in case it was signalled after a wait. */
1087 1.32 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
1088 1.32 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT)
1089 1.32 riastrad ret = MAX(1, deadline - now);
1090 1.32 riastrad else
1091 1.32 riastrad ret = MAX_SCHEDULE_TIMEOUT;
1092 1.1 riastrad }
1093 1.1 riastrad
1094 1.32 riastrad out: /* All done. Release the lock. */
1095 1.32 riastrad spin_unlock(fence->lock);
1096 1.32 riastrad return ret;
1097 1.1 riastrad }
1098 1.12 riastrad
1099 1.12 riastrad /*
1100 1.12 riastrad * __dma_fence_signal(fence)
1101 1.12 riastrad *
1102 1.12 riastrad * Set fence's signalled bit, without waking waiters yet. Return
1103 1.12 riastrad * true if it was newly set, false if it was already set.
1104 1.12 riastrad */
1105 1.12 riastrad bool
1106 1.12 riastrad __dma_fence_signal(struct dma_fence *fence)
1107 1.12 riastrad {
1108 1.12 riastrad
1109 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
1110 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
1111 1.24 riastrad
1112 1.12 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1113 1.12 riastrad return false;
1114 1.12 riastrad
1115 1.12 riastrad return true;
1116 1.12 riastrad }
1117 1.12 riastrad
1118 1.12 riastrad /*
1119 1.12 riastrad * __dma_fence_signal_wake(fence)
1120 1.12 riastrad *
1121 1.25 riastrad * Set fence's timestamp and wake fence's waiters. Caller must
1122 1.25 riastrad * have previously called __dma_fence_signal and it must have
1123 1.25 riastrad * previously returned true.
1124 1.12 riastrad */
1125 1.12 riastrad void
1126 1.12 riastrad __dma_fence_signal_wake(struct dma_fence *fence, ktime_t timestamp)
1127 1.12 riastrad {
1128 1.12 riastrad struct dma_fence_cb *fcb, *next;
1129 1.12 riastrad
1130 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
1131 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
1132 1.24 riastrad
1133 1.12 riastrad spin_lock(fence->lock);
1134 1.12 riastrad
1135 1.12 riastrad KASSERT(fence->flags & DMA_FENCE_FLAG_SIGNALED_BIT);
1136 1.12 riastrad
1137 1.36 riastrad SDT_PROBE1(sdt, drm, fence, signal, fence);
1138 1.36 riastrad
1139 1.25 riastrad /* Set the timestamp. */
1140 1.25 riastrad fence->timestamp = timestamp;
1141 1.25 riastrad set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
1142 1.25 riastrad
1143 1.12 riastrad /* Wake waiters. */
1144 1.12 riastrad cv_broadcast(&fence->f_cv);
1145 1.12 riastrad
1146 1.12 riastrad /* Remove and call the callbacks. */
1147 1.12 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
1148 1.12 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
1149 1.12 riastrad fcb->fcb_onqueue = false;
1150 1.12 riastrad (*fcb->func)(fence, fcb);
1151 1.12 riastrad }
1152 1.12 riastrad
1153 1.12 riastrad spin_unlock(fence->lock);
1154 1.12 riastrad }
1155