linux_dma_fence.c revision 1.41 1 1.41 riastrad /* $NetBSD: linux_dma_fence.c,v 1.41 2022/09/01 01:54:38 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.41 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.41 2022/09/01 01:54:38 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/atomic.h>
36 1.1 riastrad #include <sys/condvar.h>
37 1.38 riastrad #include <sys/lock.h>
38 1.1 riastrad #include <sys/queue.h>
39 1.36 riastrad #include <sys/sdt.h>
40 1.1 riastrad
41 1.1 riastrad #include <linux/atomic.h>
42 1.2 riastrad #include <linux/dma-fence.h>
43 1.1 riastrad #include <linux/errno.h>
44 1.1 riastrad #include <linux/kref.h>
45 1.1 riastrad #include <linux/sched.h>
46 1.1 riastrad #include <linux/spinlock.h>
47 1.1 riastrad
48 1.24 riastrad #define FENCE_MAGIC_GOOD 0x607ba424048c37e5ULL
49 1.24 riastrad #define FENCE_MAGIC_BAD 0x7641ca721344505fULL
50 1.24 riastrad
51 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, init,
52 1.36 riastrad "struct dma_fence *"/*fence*/);
53 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, reset,
54 1.36 riastrad "struct dma_fence *"/*fence*/);
55 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, release,
56 1.36 riastrad "struct dma_fence *"/*fence*/);
57 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, free,
58 1.36 riastrad "struct dma_fence *"/*fence*/);
59 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, destroy,
60 1.36 riastrad "struct dma_fence *"/*fence*/);
61 1.36 riastrad
62 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, enable_signaling,
63 1.36 riastrad "struct dma_fence *"/*fence*/);
64 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, add_callback,
65 1.36 riastrad "struct dma_fence *"/*fence*/,
66 1.36 riastrad "struct dma_fence_callback *"/*callback*/);
67 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, remove_callback,
68 1.36 riastrad "struct dma_fence *"/*fence*/,
69 1.36 riastrad "struct dma_fence_callback *"/*callback*/);
70 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, callback,
71 1.36 riastrad "struct dma_fence *"/*fence*/,
72 1.36 riastrad "struct dma_fence_callback *"/*callback*/);
73 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, test,
74 1.36 riastrad "struct dma_fence *"/*fence*/);
75 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, set_error,
76 1.36 riastrad "struct dma_fence *"/*fence*/,
77 1.36 riastrad "int"/*error*/);
78 1.36 riastrad SDT_PROBE_DEFINE1(sdt, drm, fence, signal,
79 1.36 riastrad "struct dma_fence *"/*fence*/);
80 1.36 riastrad
81 1.36 riastrad SDT_PROBE_DEFINE3(sdt, drm, fence, wait_start,
82 1.36 riastrad "struct dma_fence *"/*fence*/,
83 1.36 riastrad "bool"/*intr*/,
84 1.36 riastrad "long"/*timeout*/);
85 1.36 riastrad SDT_PROBE_DEFINE2(sdt, drm, fence, wait_done,
86 1.36 riastrad "struct dma_fence *"/*fence*/,
87 1.36 riastrad "long"/*ret*/);
88 1.36 riastrad
89 1.1 riastrad /*
90 1.2 riastrad * linux_dma_fence_trace
91 1.1 riastrad *
92 1.2 riastrad * True if we print DMA_FENCE_TRACE messages, false if not. These
93 1.2 riastrad * are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
94 1.2 riastrad * in boothowto.
95 1.1 riastrad */
96 1.2 riastrad int linux_dma_fence_trace = 0;
97 1.1 riastrad
98 1.41 riastrad static spinlock_t dma_fence_stub_lock;
99 1.41 riastrad static struct dma_fence dma_fence_stub;
100 1.41 riastrad
101 1.41 riastrad static const char *dma_fence_stub_name(struct dma_fence *f)
102 1.41 riastrad {
103 1.41 riastrad
104 1.41 riastrad KASSERT(f == &dma_fence_stub);
105 1.41 riastrad return "stub";
106 1.41 riastrad }
107 1.41 riastrad
108 1.41 riastrad static void
109 1.41 riastrad dma_fence_stub_release(struct dma_fence *f)
110 1.41 riastrad {
111 1.41 riastrad
112 1.41 riastrad KASSERT(f == &dma_fence_stub);
113 1.41 riastrad dma_fence_destroy(f);
114 1.41 riastrad }
115 1.41 riastrad
116 1.41 riastrad static const struct dma_fence_ops dma_fence_stub_ops = {
117 1.41 riastrad .get_driver_name = dma_fence_stub_name,
118 1.41 riastrad .get_timeline_name = dma_fence_stub_name,
119 1.41 riastrad .release = dma_fence_stub_release,
120 1.41 riastrad };
121 1.41 riastrad
122 1.41 riastrad /*
123 1.41 riastrad * linux_dma_fences_init(), linux_dma_fences_fini()
124 1.41 riastrad *
125 1.41 riastrad * Set up and tear down module state.
126 1.41 riastrad */
127 1.41 riastrad void
128 1.41 riastrad linux_dma_fences_init(void)
129 1.41 riastrad {
130 1.41 riastrad int error __diagused;
131 1.41 riastrad
132 1.41 riastrad dma_fence_init(&dma_fence_stub, &dma_fence_stub_ops,
133 1.41 riastrad &dma_fence_stub_lock, /*context*/0, /*seqno*/0);
134 1.41 riastrad error = dma_fence_signal(&dma_fence_stub);
135 1.41 riastrad KASSERTMSG(error == 0, "error=%d", error);
136 1.41 riastrad }
137 1.41 riastrad
138 1.41 riastrad void
139 1.41 riastrad linux_dma_fences_fini(void)
140 1.41 riastrad {
141 1.41 riastrad
142 1.41 riastrad dma_fence_put(&dma_fence_stub);
143 1.41 riastrad }
144 1.41 riastrad
145 1.1 riastrad /*
146 1.2 riastrad * dma_fence_referenced_p(fence)
147 1.1 riastrad *
148 1.1 riastrad * True if fence has a positive reference count. True after
149 1.2 riastrad * dma_fence_init; after the last dma_fence_put, this becomes
150 1.24 riastrad * false. The fence must have been initialized and must not have
151 1.24 riastrad * been destroyed.
152 1.1 riastrad */
153 1.1 riastrad static inline bool __diagused
154 1.2 riastrad dma_fence_referenced_p(struct dma_fence *fence)
155 1.1 riastrad {
156 1.1 riastrad
157 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
158 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
159 1.24 riastrad
160 1.1 riastrad return kref_referenced_p(&fence->refcount);
161 1.1 riastrad }
162 1.1 riastrad
163 1.1 riastrad /*
164 1.2 riastrad * dma_fence_init(fence, ops, lock, context, seqno)
165 1.1 riastrad *
166 1.2 riastrad * Initialize fence. Caller should call dma_fence_destroy when
167 1.2 riastrad * done, after all references have been released.
168 1.1 riastrad */
169 1.1 riastrad void
170 1.2 riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
171 1.38 riastrad spinlock_t *lock, uint64_t context, uint64_t seqno)
172 1.1 riastrad {
173 1.1 riastrad
174 1.1 riastrad kref_init(&fence->refcount);
175 1.1 riastrad fence->lock = lock;
176 1.1 riastrad fence->flags = 0;
177 1.1 riastrad fence->context = context;
178 1.1 riastrad fence->seqno = seqno;
179 1.1 riastrad fence->ops = ops;
180 1.18 riastrad fence->error = 0;
181 1.1 riastrad TAILQ_INIT(&fence->f_callbacks);
182 1.2 riastrad cv_init(&fence->f_cv, "dmafence");
183 1.24 riastrad
184 1.24 riastrad #ifdef DIAGNOSTIC
185 1.24 riastrad fence->f_magic = FENCE_MAGIC_GOOD;
186 1.24 riastrad #endif
187 1.36 riastrad
188 1.36 riastrad SDT_PROBE1(sdt, drm, fence, init, fence);
189 1.1 riastrad }
190 1.1 riastrad
191 1.1 riastrad /*
192 1.18 riastrad * dma_fence_reset(fence)
193 1.18 riastrad *
194 1.18 riastrad * Ensure fence is in a quiescent state. Allowed either for newly
195 1.18 riastrad * initialized or freed fences, but not fences with more than one
196 1.18 riastrad * reference.
197 1.18 riastrad *
198 1.18 riastrad * XXX extension to Linux API
199 1.18 riastrad */
200 1.18 riastrad void
201 1.18 riastrad dma_fence_reset(struct dma_fence *fence, const struct dma_fence_ops *ops,
202 1.38 riastrad spinlock_t *lock, uint64_t context, uint64_t seqno)
203 1.18 riastrad {
204 1.18 riastrad
205 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
206 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
207 1.18 riastrad KASSERT(kref_read(&fence->refcount) == 0 ||
208 1.18 riastrad kref_read(&fence->refcount) == 1);
209 1.18 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
210 1.18 riastrad KASSERT(fence->lock == lock);
211 1.18 riastrad KASSERT(fence->ops == ops);
212 1.18 riastrad
213 1.18 riastrad kref_init(&fence->refcount);
214 1.18 riastrad fence->flags = 0;
215 1.18 riastrad fence->context = context;
216 1.18 riastrad fence->seqno = seqno;
217 1.18 riastrad fence->error = 0;
218 1.36 riastrad
219 1.36 riastrad SDT_PROBE1(sdt, drm, fence, reset, fence);
220 1.18 riastrad }
221 1.18 riastrad
222 1.18 riastrad /*
223 1.2 riastrad * dma_fence_destroy(fence)
224 1.1 riastrad *
225 1.2 riastrad * Clean up memory initialized with dma_fence_init. This is meant
226 1.2 riastrad * to be used after a fence release callback.
227 1.19 riastrad *
228 1.19 riastrad * XXX extension to Linux API
229 1.1 riastrad */
230 1.1 riastrad void
231 1.2 riastrad dma_fence_destroy(struct dma_fence *fence)
232 1.1 riastrad {
233 1.1 riastrad
234 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
235 1.1 riastrad
236 1.36 riastrad SDT_PROBE1(sdt, drm, fence, destroy, fence);
237 1.36 riastrad
238 1.24 riastrad #ifdef DIAGNOSTIC
239 1.24 riastrad fence->f_magic = FENCE_MAGIC_BAD;
240 1.24 riastrad #endif
241 1.24 riastrad
242 1.1 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
243 1.1 riastrad cv_destroy(&fence->f_cv);
244 1.1 riastrad }
245 1.1 riastrad
246 1.1 riastrad static void
247 1.2 riastrad dma_fence_free_cb(struct rcu_head *rcu)
248 1.1 riastrad {
249 1.19 riastrad struct dma_fence *fence = container_of(rcu, struct dma_fence, rcu);
250 1.1 riastrad
251 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
252 1.1 riastrad
253 1.2 riastrad dma_fence_destroy(fence);
254 1.1 riastrad kfree(fence);
255 1.1 riastrad }
256 1.1 riastrad
257 1.1 riastrad /*
258 1.2 riastrad * dma_fence_free(fence)
259 1.1 riastrad *
260 1.1 riastrad * Schedule fence to be destroyed and then freed with kfree after
261 1.1 riastrad * any pending RCU read sections on all CPUs have completed.
262 1.1 riastrad * Caller must guarantee all references have been released. This
263 1.1 riastrad * is meant to be used after a fence release callback.
264 1.1 riastrad *
265 1.1 riastrad * NOTE: Callers assume kfree will be used. We don't even use
266 1.1 riastrad * kmalloc to allocate these -- caller is expected to allocate
267 1.2 riastrad * memory with kmalloc to be initialized with dma_fence_init.
268 1.1 riastrad */
269 1.1 riastrad void
270 1.2 riastrad dma_fence_free(struct dma_fence *fence)
271 1.1 riastrad {
272 1.1 riastrad
273 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
274 1.1 riastrad
275 1.36 riastrad SDT_PROBE1(sdt, drm, fence, free, fence);
276 1.36 riastrad
277 1.19 riastrad call_rcu(&fence->rcu, &dma_fence_free_cb);
278 1.1 riastrad }
279 1.1 riastrad
280 1.1 riastrad /*
281 1.2 riastrad * dma_fence_context_alloc(n)
282 1.1 riastrad *
283 1.1 riastrad * Return the first of a contiguous sequence of unique
284 1.1 riastrad * identifiers, at least until the system wraps around.
285 1.1 riastrad */
286 1.38 riastrad uint64_t
287 1.2 riastrad dma_fence_context_alloc(unsigned n)
288 1.1 riastrad {
289 1.38 riastrad static struct {
290 1.38 riastrad volatile unsigned lock;
291 1.38 riastrad uint64_t context;
292 1.38 riastrad } S;
293 1.38 riastrad uint64_t c;
294 1.1 riastrad
295 1.40 riastrad while (__predict_false(atomic_swap_uint(&S.lock, 1)))
296 1.38 riastrad SPINLOCK_BACKOFF_HOOK;
297 1.40 riastrad membar_acquire();
298 1.38 riastrad c = S.context;
299 1.38 riastrad S.context += n;
300 1.38 riastrad atomic_store_release(&S.lock, 0);
301 1.38 riastrad
302 1.38 riastrad return c;
303 1.38 riastrad }
304 1.38 riastrad
305 1.38 riastrad /*
306 1.38 riastrad * __dma_fence_is_later(a, b, ops)
307 1.38 riastrad *
308 1.38 riastrad * True if sequence number a is later than sequence number b,
309 1.38 riastrad * according to the given fence ops.
310 1.38 riastrad *
311 1.38 riastrad * - For fence ops with 64-bit sequence numbers, this is simply
312 1.38 riastrad * defined to be a > b as unsigned 64-bit integers.
313 1.38 riastrad *
314 1.38 riastrad * - For fence ops with 32-bit sequence numbers, this is defined
315 1.38 riastrad * to mean that the 32-bit unsigned difference a - b is less
316 1.38 riastrad * than INT_MAX.
317 1.38 riastrad */
318 1.38 riastrad bool
319 1.38 riastrad __dma_fence_is_later(uint64_t a, uint64_t b, const struct dma_fence_ops *ops)
320 1.38 riastrad {
321 1.38 riastrad
322 1.38 riastrad if (ops->use_64bit_seqno)
323 1.38 riastrad return a > b;
324 1.38 riastrad else
325 1.38 riastrad return (unsigned)a - (unsigned)b < INT_MAX;
326 1.1 riastrad }
327 1.1 riastrad
328 1.1 riastrad /*
329 1.2 riastrad * dma_fence_is_later(a, b)
330 1.1 riastrad *
331 1.1 riastrad * True if the sequence number of fence a is later than the
332 1.1 riastrad * sequence number of fence b. Since sequence numbers wrap
333 1.1 riastrad * around, we define this to mean that the sequence number of
334 1.1 riastrad * fence a is no more than INT_MAX past the sequence number of
335 1.1 riastrad * fence b.
336 1.1 riastrad *
337 1.38 riastrad * The two fences must have the context. Whether sequence numbers
338 1.38 riastrad * are 32-bit is determined by a.
339 1.1 riastrad */
340 1.1 riastrad bool
341 1.2 riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
342 1.1 riastrad {
343 1.1 riastrad
344 1.24 riastrad KASSERTMSG(a->f_magic != FENCE_MAGIC_BAD, "fence %p", a);
345 1.24 riastrad KASSERTMSG(a->f_magic == FENCE_MAGIC_GOOD, "fence %p", a);
346 1.24 riastrad KASSERTMSG(b->f_magic != FENCE_MAGIC_BAD, "fence %p", b);
347 1.24 riastrad KASSERTMSG(b->f_magic == FENCE_MAGIC_GOOD, "fence %p", b);
348 1.1 riastrad KASSERTMSG(a->context == b->context, "incommensurate fences"
349 1.38 riastrad ": %"PRIu64" @ %p =/= %"PRIu64" @ %p",
350 1.38 riastrad a->context, a, b->context, b);
351 1.1 riastrad
352 1.38 riastrad return __dma_fence_is_later(a->seqno, b->seqno, a->ops);
353 1.1 riastrad }
354 1.1 riastrad
355 1.1 riastrad /*
356 1.9 riastrad * dma_fence_get_stub()
357 1.9 riastrad *
358 1.9 riastrad * Return a dma fence that is always already signalled.
359 1.9 riastrad */
360 1.9 riastrad struct dma_fence *
361 1.9 riastrad dma_fence_get_stub(void)
362 1.9 riastrad {
363 1.9 riastrad
364 1.41 riastrad return dma_fence_get(&dma_fence_stub);
365 1.9 riastrad }
366 1.9 riastrad
367 1.9 riastrad /*
368 1.2 riastrad * dma_fence_get(fence)
369 1.1 riastrad *
370 1.26 riastrad * Acquire a reference to fence and return it, or return NULL if
371 1.26 riastrad * fence is NULL. The fence, if nonnull, must not be being
372 1.26 riastrad * destroyed.
373 1.1 riastrad */
374 1.2 riastrad struct dma_fence *
375 1.2 riastrad dma_fence_get(struct dma_fence *fence)
376 1.1 riastrad {
377 1.1 riastrad
378 1.26 riastrad if (fence == NULL)
379 1.26 riastrad return NULL;
380 1.26 riastrad
381 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
382 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
383 1.24 riastrad
384 1.26 riastrad kref_get(&fence->refcount);
385 1.1 riastrad return fence;
386 1.1 riastrad }
387 1.1 riastrad
388 1.1 riastrad /*
389 1.2 riastrad * dma_fence_get_rcu(fence)
390 1.1 riastrad *
391 1.1 riastrad * Attempt to acquire a reference to a fence that may be about to
392 1.1 riastrad * be destroyed, during a read section. Return the fence on
393 1.26 riastrad * success, or NULL on failure. The fence must be nonnull.
394 1.1 riastrad */
395 1.2 riastrad struct dma_fence *
396 1.2 riastrad dma_fence_get_rcu(struct dma_fence *fence)
397 1.1 riastrad {
398 1.1 riastrad
399 1.8 riastrad __insn_barrier();
400 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
401 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
402 1.1 riastrad if (!kref_get_unless_zero(&fence->refcount))
403 1.1 riastrad return NULL;
404 1.1 riastrad return fence;
405 1.1 riastrad }
406 1.1 riastrad
407 1.3 riastrad /*
408 1.3 riastrad * dma_fence_get_rcu_safe(fencep)
409 1.3 riastrad *
410 1.3 riastrad * Attempt to acquire a reference to the fence *fencep, which may
411 1.3 riastrad * be about to be destroyed, during a read section. If the value
412 1.3 riastrad * of *fencep changes after we read *fencep but before we
413 1.3 riastrad * increment its reference count, retry. Return *fencep on
414 1.3 riastrad * success, or NULL on failure.
415 1.3 riastrad */
416 1.3 riastrad struct dma_fence *
417 1.7 riastrad dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
418 1.3 riastrad {
419 1.39 riastrad struct dma_fence *fence;
420 1.3 riastrad
421 1.3 riastrad retry:
422 1.39 riastrad /*
423 1.39 riastrad * Load the fence, ensuring we observe the fully initialized
424 1.39 riastrad * content.
425 1.39 riastrad */
426 1.39 riastrad if ((fence = atomic_load_consume(fencep)) == NULL)
427 1.3 riastrad return NULL;
428 1.3 riastrad
429 1.3 riastrad /* Try to acquire a reference. If we can't, try again. */
430 1.3 riastrad if (!dma_fence_get_rcu(fence))
431 1.3 riastrad goto retry;
432 1.3 riastrad
433 1.3 riastrad /*
434 1.3 riastrad * Confirm that it's still the same fence. If not, release it
435 1.3 riastrad * and retry.
436 1.3 riastrad */
437 1.39 riastrad if (fence != atomic_load_relaxed(fencep)) {
438 1.3 riastrad dma_fence_put(fence);
439 1.3 riastrad goto retry;
440 1.3 riastrad }
441 1.3 riastrad
442 1.3 riastrad /* Success! */
443 1.24 riastrad KASSERT(dma_fence_referenced_p(fence));
444 1.3 riastrad return fence;
445 1.3 riastrad }
446 1.3 riastrad
447 1.1 riastrad static void
448 1.2 riastrad dma_fence_release(struct kref *refcount)
449 1.1 riastrad {
450 1.2 riastrad struct dma_fence *fence = container_of(refcount, struct dma_fence,
451 1.2 riastrad refcount);
452 1.1 riastrad
453 1.23 riastrad KASSERTMSG(TAILQ_EMPTY(&fence->f_callbacks),
454 1.23 riastrad "fence %p has pending callbacks", fence);
455 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
456 1.1 riastrad
457 1.36 riastrad SDT_PROBE1(sdt, drm, fence, release, fence);
458 1.36 riastrad
459 1.1 riastrad if (fence->ops->release)
460 1.1 riastrad (*fence->ops->release)(fence);
461 1.1 riastrad else
462 1.2 riastrad dma_fence_free(fence);
463 1.1 riastrad }
464 1.1 riastrad
465 1.1 riastrad /*
466 1.2 riastrad * dma_fence_put(fence)
467 1.1 riastrad *
468 1.1 riastrad * Release a reference to fence. If this was the last one, call
469 1.1 riastrad * the fence's release callback.
470 1.1 riastrad */
471 1.1 riastrad void
472 1.2 riastrad dma_fence_put(struct dma_fence *fence)
473 1.1 riastrad {
474 1.1 riastrad
475 1.1 riastrad if (fence == NULL)
476 1.1 riastrad return;
477 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
478 1.2 riastrad kref_put(&fence->refcount, &dma_fence_release);
479 1.1 riastrad }
480 1.1 riastrad
481 1.1 riastrad /*
482 1.2 riastrad * dma_fence_ensure_signal_enabled(fence)
483 1.1 riastrad *
484 1.1 riastrad * Internal subroutine. If the fence was already signalled,
485 1.1 riastrad * return -ENOENT. Otherwise, if the enable signalling callback
486 1.1 riastrad * has not been called yet, call it. If fails, signal the fence
487 1.1 riastrad * and return -ENOENT. If it succeeds, or if it had already been
488 1.1 riastrad * called, return zero to indicate success.
489 1.1 riastrad *
490 1.1 riastrad * Caller must hold the fence's lock.
491 1.1 riastrad */
492 1.1 riastrad static int
493 1.2 riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
494 1.1 riastrad {
495 1.20 riastrad bool already_enabled;
496 1.1 riastrad
497 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
498 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
499 1.1 riastrad
500 1.20 riastrad /* Determine whether signalling was enabled, and enable it. */
501 1.20 riastrad already_enabled = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
502 1.20 riastrad &fence->flags);
503 1.20 riastrad
504 1.1 riastrad /* If the fence was already signalled, fail with -ENOENT. */
505 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
506 1.1 riastrad return -ENOENT;
507 1.1 riastrad
508 1.1 riastrad /*
509 1.20 riastrad * Otherwise, if it wasn't enabled yet, try to enable
510 1.35 riastrad * signalling.
511 1.1 riastrad */
512 1.36 riastrad if (!already_enabled && fence->ops->enable_signaling) {
513 1.36 riastrad SDT_PROBE1(sdt, drm, fence, enable_signaling, fence);
514 1.36 riastrad if (!(*fence->ops->enable_signaling)(fence)) {
515 1.36 riastrad /* If it failed, signal and return -ENOENT. */
516 1.36 riastrad dma_fence_signal_locked(fence);
517 1.36 riastrad return -ENOENT;
518 1.36 riastrad }
519 1.1 riastrad }
520 1.1 riastrad
521 1.1 riastrad /* Success! */
522 1.1 riastrad return 0;
523 1.1 riastrad }
524 1.1 riastrad
525 1.1 riastrad /*
526 1.2 riastrad * dma_fence_add_callback(fence, fcb, fn)
527 1.1 riastrad *
528 1.1 riastrad * If fence has been signalled, return -ENOENT. If the enable
529 1.1 riastrad * signalling callback hasn't been called yet, call it; if it
530 1.1 riastrad * fails, return -ENOENT. Otherwise, arrange to call fn(fence,
531 1.1 riastrad * fcb) when it is signalled, and return 0.
532 1.1 riastrad *
533 1.1 riastrad * The fence uses memory allocated by the caller in fcb from the
534 1.2 riastrad * time of dma_fence_add_callback either to the time of
535 1.2 riastrad * dma_fence_remove_callback, or just before calling fn.
536 1.1 riastrad */
537 1.1 riastrad int
538 1.2 riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
539 1.2 riastrad dma_fence_func_t fn)
540 1.1 riastrad {
541 1.1 riastrad int ret;
542 1.1 riastrad
543 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
544 1.1 riastrad
545 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
546 1.34 riastrad if (atomic_load_relaxed(&fence->flags) &
547 1.34 riastrad (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
548 1.1 riastrad ret = -ENOENT;
549 1.1 riastrad goto out0;
550 1.1 riastrad }
551 1.1 riastrad
552 1.1 riastrad /* Acquire the lock. */
553 1.1 riastrad spin_lock(fence->lock);
554 1.1 riastrad
555 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
556 1.2 riastrad ret = dma_fence_ensure_signal_enabled(fence);
557 1.1 riastrad if (ret)
558 1.1 riastrad goto out1;
559 1.1 riastrad
560 1.1 riastrad /* Insert the callback. */
561 1.36 riastrad SDT_PROBE2(sdt, drm, fence, add_callback, fence, fcb);
562 1.4 riastrad fcb->func = fn;
563 1.1 riastrad TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
564 1.1 riastrad fcb->fcb_onqueue = true;
565 1.21 riastrad ret = 0;
566 1.1 riastrad
567 1.1 riastrad /* Release the lock and we're done. */
568 1.1 riastrad out1: spin_unlock(fence->lock);
569 1.21 riastrad out0: if (ret) {
570 1.21 riastrad fcb->func = NULL;
571 1.21 riastrad fcb->fcb_onqueue = false;
572 1.21 riastrad }
573 1.21 riastrad return ret;
574 1.1 riastrad }
575 1.1 riastrad
576 1.1 riastrad /*
577 1.2 riastrad * dma_fence_remove_callback(fence, fcb)
578 1.1 riastrad *
579 1.1 riastrad * Remove the callback fcb from fence. Return true if it was
580 1.1 riastrad * removed from the list, or false if it had already run and so
581 1.1 riastrad * was no longer queued anyway. Caller must have already called
582 1.2 riastrad * dma_fence_add_callback(fence, fcb).
583 1.1 riastrad */
584 1.1 riastrad bool
585 1.2 riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
586 1.1 riastrad {
587 1.1 riastrad bool onqueue;
588 1.1 riastrad
589 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
590 1.1 riastrad
591 1.1 riastrad spin_lock(fence->lock);
592 1.1 riastrad onqueue = fcb->fcb_onqueue;
593 1.1 riastrad if (onqueue) {
594 1.36 riastrad SDT_PROBE2(sdt, drm, fence, remove_callback, fence, fcb);
595 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
596 1.1 riastrad fcb->fcb_onqueue = false;
597 1.1 riastrad }
598 1.1 riastrad spin_unlock(fence->lock);
599 1.1 riastrad
600 1.1 riastrad return onqueue;
601 1.1 riastrad }
602 1.1 riastrad
603 1.1 riastrad /*
604 1.2 riastrad * dma_fence_enable_sw_signaling(fence)
605 1.1 riastrad *
606 1.1 riastrad * If it hasn't been called yet and the fence hasn't been
607 1.1 riastrad * signalled yet, call the fence's enable_sw_signaling callback.
608 1.1 riastrad * If when that happens, the callback indicates failure by
609 1.1 riastrad * returning false, signal the fence.
610 1.1 riastrad */
611 1.1 riastrad void
612 1.2 riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
613 1.1 riastrad {
614 1.1 riastrad
615 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
616 1.1 riastrad
617 1.1 riastrad spin_lock(fence->lock);
618 1.22 riastrad if ((fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) == 0)
619 1.22 riastrad (void)dma_fence_ensure_signal_enabled(fence);
620 1.1 riastrad spin_unlock(fence->lock);
621 1.1 riastrad }
622 1.1 riastrad
623 1.1 riastrad /*
624 1.2 riastrad * dma_fence_is_signaled(fence)
625 1.1 riastrad *
626 1.1 riastrad * Test whether the fence has been signalled. If it has been
627 1.2 riastrad * signalled by dma_fence_signal(_locked), return true. If the
628 1.1 riastrad * signalled callback returns true indicating that some implicit
629 1.1 riastrad * external condition has changed, call the callbacks as if with
630 1.2 riastrad * dma_fence_signal.
631 1.1 riastrad */
632 1.1 riastrad bool
633 1.2 riastrad dma_fence_is_signaled(struct dma_fence *fence)
634 1.1 riastrad {
635 1.1 riastrad bool signaled;
636 1.1 riastrad
637 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
638 1.1 riastrad
639 1.1 riastrad spin_lock(fence->lock);
640 1.2 riastrad signaled = dma_fence_is_signaled_locked(fence);
641 1.1 riastrad spin_unlock(fence->lock);
642 1.1 riastrad
643 1.1 riastrad return signaled;
644 1.1 riastrad }
645 1.1 riastrad
646 1.1 riastrad /*
647 1.2 riastrad * dma_fence_is_signaled_locked(fence)
648 1.1 riastrad *
649 1.1 riastrad * Test whether the fence has been signalled. Like
650 1.2 riastrad * dma_fence_is_signaleed, but caller already holds the fence's lock.
651 1.1 riastrad */
652 1.1 riastrad bool
653 1.2 riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
654 1.1 riastrad {
655 1.1 riastrad
656 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
657 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
658 1.1 riastrad
659 1.1 riastrad /* Check whether we already set the signalled bit. */
660 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
661 1.1 riastrad return true;
662 1.1 riastrad
663 1.1 riastrad /* If there's a signalled callback, test it. */
664 1.1 riastrad if (fence->ops->signaled) {
665 1.36 riastrad SDT_PROBE1(sdt, drm, fence, test, fence);
666 1.1 riastrad if ((*fence->ops->signaled)(fence)) {
667 1.1 riastrad /*
668 1.1 riastrad * It's been signalled implicitly by some
669 1.1 riastrad * external phenomonen. Act as though someone
670 1.2 riastrad * has called dma_fence_signal.
671 1.1 riastrad */
672 1.2 riastrad dma_fence_signal_locked(fence);
673 1.1 riastrad return true;
674 1.1 riastrad }
675 1.1 riastrad }
676 1.1 riastrad
677 1.1 riastrad return false;
678 1.1 riastrad }
679 1.1 riastrad
680 1.1 riastrad /*
681 1.5 riastrad * dma_fence_set_error(fence, error)
682 1.5 riastrad *
683 1.5 riastrad * Set an error code prior to dma_fence_signal for use by a
684 1.5 riastrad * waiter to learn about success or failure of the fence.
685 1.5 riastrad */
686 1.5 riastrad void
687 1.5 riastrad dma_fence_set_error(struct dma_fence *fence, int error)
688 1.5 riastrad {
689 1.5 riastrad
690 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
691 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
692 1.34 riastrad KASSERT((atomic_load_relaxed(&fence->flags) &
693 1.34 riastrad (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) == 0);
694 1.6 riastrad KASSERTMSG(error >= -ELAST, "%d", error);
695 1.5 riastrad KASSERTMSG(error < 0, "%d", error);
696 1.5 riastrad
697 1.36 riastrad SDT_PROBE2(sdt, drm, fence, set_error, fence, error);
698 1.5 riastrad fence->error = error;
699 1.5 riastrad }
700 1.5 riastrad
701 1.5 riastrad /*
702 1.10 riastrad * dma_fence_get_status(fence)
703 1.10 riastrad *
704 1.10 riastrad * Return 0 if fence has yet to be signalled, 1 if it has been
705 1.10 riastrad * signalled without error, or negative error code if
706 1.10 riastrad * dma_fence_set_error was used.
707 1.10 riastrad */
708 1.10 riastrad int
709 1.10 riastrad dma_fence_get_status(struct dma_fence *fence)
710 1.10 riastrad {
711 1.10 riastrad int ret;
712 1.10 riastrad
713 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
714 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
715 1.24 riastrad
716 1.10 riastrad spin_lock(fence->lock);
717 1.10 riastrad if (!dma_fence_is_signaled_locked(fence)) {
718 1.10 riastrad ret = 0;
719 1.10 riastrad } else if (fence->error) {
720 1.10 riastrad ret = fence->error;
721 1.10 riastrad KASSERTMSG(ret < 0, "%d", ret);
722 1.10 riastrad } else {
723 1.10 riastrad ret = 1;
724 1.10 riastrad }
725 1.10 riastrad spin_unlock(fence->lock);
726 1.10 riastrad
727 1.10 riastrad return ret;
728 1.10 riastrad }
729 1.10 riastrad
730 1.10 riastrad /*
731 1.2 riastrad * dma_fence_signal(fence)
732 1.1 riastrad *
733 1.1 riastrad * Signal the fence. If it has already been signalled, return
734 1.1 riastrad * -EINVAL. If it has not been signalled, call the enable
735 1.1 riastrad * signalling callback if it hasn't been called yet, and remove
736 1.1 riastrad * each registered callback from the queue and call it; then
737 1.1 riastrad * return 0.
738 1.1 riastrad */
739 1.1 riastrad int
740 1.2 riastrad dma_fence_signal(struct dma_fence *fence)
741 1.1 riastrad {
742 1.1 riastrad int ret;
743 1.1 riastrad
744 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
745 1.1 riastrad
746 1.1 riastrad spin_lock(fence->lock);
747 1.2 riastrad ret = dma_fence_signal_locked(fence);
748 1.1 riastrad spin_unlock(fence->lock);
749 1.1 riastrad
750 1.1 riastrad return ret;
751 1.1 riastrad }
752 1.1 riastrad
753 1.1 riastrad /*
754 1.2 riastrad * dma_fence_signal_locked(fence)
755 1.1 riastrad *
756 1.2 riastrad * Signal the fence. Like dma_fence_signal, but caller already
757 1.2 riastrad * holds the fence's lock.
758 1.1 riastrad */
759 1.1 riastrad int
760 1.2 riastrad dma_fence_signal_locked(struct dma_fence *fence)
761 1.1 riastrad {
762 1.2 riastrad struct dma_fence_cb *fcb, *next;
763 1.1 riastrad
764 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
765 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
766 1.1 riastrad
767 1.1 riastrad /* If it's been signalled, fail; otherwise set the signalled bit. */
768 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
769 1.1 riastrad return -EINVAL;
770 1.1 riastrad
771 1.36 riastrad SDT_PROBE1(sdt, drm, fence, signal, fence);
772 1.36 riastrad
773 1.25 riastrad /* Set the timestamp. */
774 1.25 riastrad fence->timestamp = ktime_get();
775 1.25 riastrad set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
776 1.25 riastrad
777 1.1 riastrad /* Wake waiters. */
778 1.1 riastrad cv_broadcast(&fence->f_cv);
779 1.1 riastrad
780 1.1 riastrad /* Remove and call the callbacks. */
781 1.1 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
782 1.36 riastrad SDT_PROBE2(sdt, drm, fence, callback, fence, fcb);
783 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
784 1.1 riastrad fcb->fcb_onqueue = false;
785 1.4 riastrad (*fcb->func)(fence, fcb);
786 1.1 riastrad }
787 1.1 riastrad
788 1.1 riastrad /* Success! */
789 1.1 riastrad return 0;
790 1.1 riastrad }
791 1.1 riastrad
792 1.1 riastrad struct wait_any {
793 1.2 riastrad struct dma_fence_cb fcb;
794 1.1 riastrad struct wait_any1 {
795 1.1 riastrad kmutex_t lock;
796 1.1 riastrad kcondvar_t cv;
797 1.31 riastrad struct wait_any *cb;
798 1.1 riastrad bool done;
799 1.1 riastrad } *common;
800 1.1 riastrad };
801 1.1 riastrad
802 1.1 riastrad static void
803 1.2 riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
804 1.1 riastrad {
805 1.1 riastrad struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
806 1.1 riastrad
807 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
808 1.1 riastrad
809 1.1 riastrad mutex_enter(&cb->common->lock);
810 1.1 riastrad cb->common->done = true;
811 1.1 riastrad cv_broadcast(&cb->common->cv);
812 1.1 riastrad mutex_exit(&cb->common->lock);
813 1.1 riastrad }
814 1.1 riastrad
815 1.1 riastrad /*
816 1.11 riastrad * dma_fence_wait_any_timeout(fence, nfences, intr, timeout, ip)
817 1.1 riastrad *
818 1.1 riastrad * Wait for any of fences[0], fences[1], fences[2], ...,
819 1.13 riastrad * fences[nfences-1] to be signalled. If ip is nonnull, set *ip
820 1.13 riastrad * to the index of the first one.
821 1.31 riastrad *
822 1.31 riastrad * Return -ERESTARTSYS if interrupted, 0 on timeout, or time
823 1.31 riastrad * remaining (at least 1) on success.
824 1.1 riastrad */
825 1.1 riastrad long
826 1.2 riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
827 1.11 riastrad bool intr, long timeout, uint32_t *ip)
828 1.1 riastrad {
829 1.1 riastrad struct wait_any1 common;
830 1.1 riastrad struct wait_any *cb;
831 1.1 riastrad uint32_t i, j;
832 1.1 riastrad int start, end;
833 1.1 riastrad long ret = 0;
834 1.1 riastrad
835 1.32 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
836 1.32 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
837 1.32 riastrad
838 1.31 riastrad /* Optimistically check whether any are signalled. */
839 1.31 riastrad for (i = 0; i < nfences; i++) {
840 1.32 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
841 1.31 riastrad if (dma_fence_is_signaled(fences[i])) {
842 1.31 riastrad if (ip)
843 1.31 riastrad *ip = i;
844 1.31 riastrad return MAX(1, timeout);
845 1.31 riastrad }
846 1.31 riastrad }
847 1.31 riastrad
848 1.31 riastrad /*
849 1.31 riastrad * If timeout is zero, we're just polling, so stop here as if
850 1.31 riastrad * we timed out instantly.
851 1.31 riastrad */
852 1.31 riastrad if (timeout == 0)
853 1.31 riastrad return 0;
854 1.31 riastrad
855 1.1 riastrad /* Allocate an array of callback records. */
856 1.1 riastrad cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
857 1.32 riastrad if (cb == NULL)
858 1.32 riastrad return -ENOMEM;
859 1.1 riastrad
860 1.1 riastrad /* Initialize a mutex and condvar for the common wait. */
861 1.1 riastrad mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
862 1.1 riastrad cv_init(&common.cv, "fence");
863 1.31 riastrad common.cb = cb;
864 1.1 riastrad common.done = false;
865 1.1 riastrad
866 1.31 riastrad /*
867 1.31 riastrad * Add a callback to each of the fences, or stop if already
868 1.31 riastrad * signalled.
869 1.31 riastrad */
870 1.1 riastrad for (i = 0; i < nfences; i++) {
871 1.1 riastrad cb[i].common = &common;
872 1.2 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
873 1.2 riastrad ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
874 1.2 riastrad &wait_any_cb);
875 1.31 riastrad if (ret) {
876 1.31 riastrad KASSERT(ret == -ENOENT);
877 1.11 riastrad if (ip)
878 1.31 riastrad *ip = i;
879 1.31 riastrad ret = MAX(1, timeout);
880 1.32 riastrad goto out;
881 1.11 riastrad }
882 1.1 riastrad }
883 1.1 riastrad
884 1.1 riastrad /*
885 1.1 riastrad * None of them was ready immediately. Wait for one of the
886 1.1 riastrad * callbacks to notify us when it is done.
887 1.1 riastrad */
888 1.1 riastrad mutex_enter(&common.lock);
889 1.32 riastrad while (!common.done) {
890 1.32 riastrad /* Wait for the time remaining. */
891 1.1 riastrad start = getticks();
892 1.1 riastrad if (intr) {
893 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
894 1.1 riastrad ret = -cv_timedwait_sig(&common.cv,
895 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
896 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
897 1.1 riastrad } else {
898 1.1 riastrad ret = -cv_wait_sig(&common.cv, &common.lock);
899 1.1 riastrad }
900 1.1 riastrad } else {
901 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
902 1.1 riastrad ret = -cv_timedwait(&common.cv,
903 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
904 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
905 1.1 riastrad } else {
906 1.1 riastrad cv_wait(&common.cv, &common.lock);
907 1.1 riastrad ret = 0;
908 1.1 riastrad }
909 1.1 riastrad }
910 1.1 riastrad end = getticks();
911 1.32 riastrad
912 1.32 riastrad /* Deduct from time remaining. If none left, time out. */
913 1.32 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
914 1.32 riastrad timeout -= MIN(timeout,
915 1.32 riastrad (unsigned)end - (unsigned)start);
916 1.32 riastrad if (timeout == 0)
917 1.32 riastrad ret = -EWOULDBLOCK;
918 1.32 riastrad }
919 1.32 riastrad
920 1.32 riastrad /* If the wait failed, give up. */
921 1.31 riastrad if (ret)
922 1.1 riastrad break;
923 1.1 riastrad }
924 1.1 riastrad mutex_exit(&common.lock);
925 1.1 riastrad
926 1.1 riastrad /*
927 1.32 riastrad * Massage the return code if nonzero:
928 1.32 riastrad * - if we were interrupted, return -ERESTARTSYS;
929 1.32 riastrad * - if we timed out, return 0.
930 1.32 riastrad * No other failure is possible. On success, ret=0 but we
931 1.32 riastrad * check again below to verify anyway.
932 1.32 riastrad */
933 1.32 riastrad if (ret) {
934 1.32 riastrad KASSERTMSG((ret == -EINTR || ret == -ERESTART ||
935 1.32 riastrad ret == -EWOULDBLOCK), "ret=%ld", ret);
936 1.32 riastrad if (ret == -EINTR || ret == -ERESTART) {
937 1.32 riastrad ret = -ERESTARTSYS;
938 1.32 riastrad } else if (ret == -EWOULDBLOCK) {
939 1.32 riastrad KASSERT(timeout != MAX_SCHEDULE_TIMEOUT);
940 1.32 riastrad ret = 0; /* timed out */
941 1.32 riastrad }
942 1.32 riastrad }
943 1.32 riastrad
944 1.32 riastrad KASSERT(ret != -ERESTART); /* would be confused with time left */
945 1.32 riastrad
946 1.32 riastrad /*
947 1.31 riastrad * Test whether any of the fences has been signalled. If they
948 1.31 riastrad * have, return success.
949 1.31 riastrad */
950 1.31 riastrad for (j = 0; j < nfences; j++) {
951 1.31 riastrad if (dma_fence_is_signaled(fences[i])) {
952 1.31 riastrad if (ip)
953 1.31 riastrad *ip = j;
954 1.31 riastrad ret = MAX(1, timeout);
955 1.32 riastrad goto out;
956 1.31 riastrad }
957 1.31 riastrad }
958 1.31 riastrad
959 1.31 riastrad /*
960 1.32 riastrad * If user passed MAX_SCHEDULE_TIMEOUT, we can't return 0
961 1.32 riastrad * meaning timed out because we're supposed to wait forever.
962 1.1 riastrad */
963 1.32 riastrad KASSERT(timeout == MAX_SCHEDULE_TIMEOUT ? ret != 0 : 1);
964 1.1 riastrad
965 1.32 riastrad out: while (i --> 0)
966 1.2 riastrad (void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
967 1.1 riastrad cv_destroy(&common.cv);
968 1.1 riastrad mutex_destroy(&common.lock);
969 1.1 riastrad kfree(cb);
970 1.32 riastrad return ret;
971 1.1 riastrad }
972 1.1 riastrad
973 1.1 riastrad /*
974 1.2 riastrad * dma_fence_wait_timeout(fence, intr, timeout)
975 1.1 riastrad *
976 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
977 1.1 riastrad * true; or until timeout, if positive. Return -ERESTARTSYS if
978 1.1 riastrad * interrupted, negative error code on any other error, zero on
979 1.1 riastrad * timeout, or positive number of ticks remaining if the fence is
980 1.1 riastrad * signalled before the timeout. Works by calling the fence wait
981 1.1 riastrad * callback.
982 1.1 riastrad *
983 1.28 riastrad * The timeout must be nonnegative and at most
984 1.28 riastrad * MAX_SCHEDULE_TIMEOUT, which means wait indefinitely.
985 1.1 riastrad */
986 1.1 riastrad long
987 1.2 riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
988 1.1 riastrad {
989 1.36 riastrad long ret;
990 1.1 riastrad
991 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
992 1.27 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
993 1.28 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
994 1.1 riastrad
995 1.36 riastrad SDT_PROBE3(sdt, drm, fence, wait_start, fence, intr, timeout);
996 1.14 riastrad if (fence->ops->wait)
997 1.36 riastrad ret = (*fence->ops->wait)(fence, intr, timeout);
998 1.14 riastrad else
999 1.36 riastrad ret = dma_fence_default_wait(fence, intr, timeout);
1000 1.36 riastrad SDT_PROBE2(sdt, drm, fence, wait_done, fence, ret);
1001 1.36 riastrad
1002 1.36 riastrad return ret;
1003 1.1 riastrad }
1004 1.1 riastrad
1005 1.1 riastrad /*
1006 1.2 riastrad * dma_fence_wait(fence, intr)
1007 1.1 riastrad *
1008 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
1009 1.1 riastrad * true. Return -ERESTARTSYS if interrupted, negative error code
1010 1.1 riastrad * on any other error, zero on sucess. Works by calling the fence
1011 1.1 riastrad * wait callback with MAX_SCHEDULE_TIMEOUT.
1012 1.1 riastrad */
1013 1.1 riastrad long
1014 1.2 riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
1015 1.1 riastrad {
1016 1.1 riastrad long ret;
1017 1.1 riastrad
1018 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
1019 1.1 riastrad
1020 1.37 riastrad ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
1021 1.1 riastrad KASSERT(ret != 0);
1022 1.33 riastrad KASSERTMSG(ret == -ERESTARTSYS || ret == MAX_SCHEDULE_TIMEOUT,
1023 1.33 riastrad "ret=%ld", ret);
1024 1.1 riastrad
1025 1.1 riastrad return (ret < 0 ? ret : 0);
1026 1.1 riastrad }
1027 1.1 riastrad
1028 1.1 riastrad /*
1029 1.2 riastrad * dma_fence_default_wait(fence, intr, timeout)
1030 1.1 riastrad *
1031 1.1 riastrad * Default implementation of fence wait callback using a condition
1032 1.1 riastrad * variable. If the fence is already signalled, return timeout,
1033 1.16 riastrad * or 1 if timeout is zero meaning poll. If the enable signalling
1034 1.16 riastrad * callback hasn't been called, call it, and if it fails, act as
1035 1.16 riastrad * if the fence had been signalled. Otherwise, wait on the
1036 1.16 riastrad * internal condvar. If timeout is MAX_SCHEDULE_TIMEOUT, wait
1037 1.16 riastrad * indefinitely.
1038 1.1 riastrad */
1039 1.1 riastrad long
1040 1.2 riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
1041 1.1 riastrad {
1042 1.1 riastrad int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
1043 1.1 riastrad kmutex_t *lock = &fence->lock->sl_lock;
1044 1.1 riastrad long ret = 0;
1045 1.1 riastrad
1046 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
1047 1.1 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
1048 1.1 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
1049 1.1 riastrad
1050 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
1051 1.34 riastrad if (atomic_load_relaxed(&fence->flags) &
1052 1.34 riastrad (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
1053 1.32 riastrad return MAX(1, timeout);
1054 1.1 riastrad
1055 1.1 riastrad /* Acquire the lock. */
1056 1.1 riastrad spin_lock(fence->lock);
1057 1.1 riastrad
1058 1.16 riastrad /* Ensure signalling is enabled, or stop if already completed. */
1059 1.17 riastrad if (dma_fence_ensure_signal_enabled(fence) != 0) {
1060 1.32 riastrad ret = MAX(1, timeout);
1061 1.32 riastrad goto out;
1062 1.17 riastrad }
1063 1.16 riastrad
1064 1.16 riastrad /* If merely polling, stop here. */
1065 1.16 riastrad if (timeout == 0) {
1066 1.32 riastrad ret = 0;
1067 1.32 riastrad goto out;
1068 1.16 riastrad }
1069 1.1 riastrad
1070 1.1 riastrad /* Find out what our deadline is so we can handle spurious wakeup. */
1071 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
1072 1.1 riastrad now = getticks();
1073 1.1 riastrad starttime = now;
1074 1.1 riastrad deadline = starttime + timeout;
1075 1.1 riastrad }
1076 1.1 riastrad
1077 1.1 riastrad /* Wait until the signalled bit is set. */
1078 1.2 riastrad while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
1079 1.1 riastrad /*
1080 1.1 riastrad * If there's a timeout and we've passed the deadline,
1081 1.1 riastrad * give up.
1082 1.1 riastrad */
1083 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
1084 1.1 riastrad now = getticks();
1085 1.32 riastrad if (deadline <= now) {
1086 1.32 riastrad ret = -EWOULDBLOCK;
1087 1.1 riastrad break;
1088 1.32 riastrad }
1089 1.1 riastrad }
1090 1.32 riastrad
1091 1.32 riastrad /* Wait for the time remaining. */
1092 1.1 riastrad if (intr) {
1093 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
1094 1.1 riastrad ret = -cv_timedwait_sig(&fence->f_cv, lock,
1095 1.1 riastrad deadline - now);
1096 1.1 riastrad } else {
1097 1.1 riastrad ret = -cv_wait_sig(&fence->f_cv, lock);
1098 1.1 riastrad }
1099 1.1 riastrad } else {
1100 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
1101 1.1 riastrad ret = -cv_timedwait(&fence->f_cv, lock,
1102 1.1 riastrad deadline - now);
1103 1.1 riastrad } else {
1104 1.1 riastrad cv_wait(&fence->f_cv, lock);
1105 1.1 riastrad ret = 0;
1106 1.1 riastrad }
1107 1.1 riastrad }
1108 1.32 riastrad
1109 1.1 riastrad /* If the wait failed, give up. */
1110 1.32 riastrad if (ret)
1111 1.1 riastrad break;
1112 1.32 riastrad }
1113 1.32 riastrad
1114 1.32 riastrad /*
1115 1.32 riastrad * Massage the return code if nonzero:
1116 1.32 riastrad * - if we were interrupted, return -ERESTARTSYS;
1117 1.32 riastrad * - if we timed out, return 0.
1118 1.32 riastrad * No other failure is possible. On success, ret=0 but we
1119 1.32 riastrad * check again below to verify anyway.
1120 1.32 riastrad */
1121 1.32 riastrad if (ret) {
1122 1.32 riastrad KASSERTMSG((ret == -EINTR || ret == -ERESTART ||
1123 1.32 riastrad ret == -EWOULDBLOCK), "ret=%ld", ret);
1124 1.32 riastrad if (ret == -EINTR || ret == -ERESTART) {
1125 1.32 riastrad ret = -ERESTARTSYS;
1126 1.32 riastrad } else if (ret == -EWOULDBLOCK) {
1127 1.32 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
1128 1.32 riastrad ret = 0; /* timed out */
1129 1.1 riastrad }
1130 1.1 riastrad }
1131 1.1 riastrad
1132 1.32 riastrad KASSERT(ret != -ERESTART); /* would be confused with time left */
1133 1.1 riastrad
1134 1.32 riastrad /* Check again in case it was signalled after a wait. */
1135 1.32 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
1136 1.32 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT)
1137 1.32 riastrad ret = MAX(1, deadline - now);
1138 1.32 riastrad else
1139 1.32 riastrad ret = MAX_SCHEDULE_TIMEOUT;
1140 1.1 riastrad }
1141 1.1 riastrad
1142 1.32 riastrad out: /* All done. Release the lock. */
1143 1.32 riastrad spin_unlock(fence->lock);
1144 1.32 riastrad return ret;
1145 1.1 riastrad }
1146 1.12 riastrad
1147 1.12 riastrad /*
1148 1.12 riastrad * __dma_fence_signal(fence)
1149 1.12 riastrad *
1150 1.12 riastrad * Set fence's signalled bit, without waking waiters yet. Return
1151 1.12 riastrad * true if it was newly set, false if it was already set.
1152 1.12 riastrad */
1153 1.12 riastrad bool
1154 1.12 riastrad __dma_fence_signal(struct dma_fence *fence)
1155 1.12 riastrad {
1156 1.12 riastrad
1157 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
1158 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
1159 1.24 riastrad
1160 1.12 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1161 1.12 riastrad return false;
1162 1.12 riastrad
1163 1.12 riastrad return true;
1164 1.12 riastrad }
1165 1.12 riastrad
1166 1.12 riastrad /*
1167 1.12 riastrad * __dma_fence_signal_wake(fence)
1168 1.12 riastrad *
1169 1.25 riastrad * Set fence's timestamp and wake fence's waiters. Caller must
1170 1.25 riastrad * have previously called __dma_fence_signal and it must have
1171 1.25 riastrad * previously returned true.
1172 1.12 riastrad */
1173 1.12 riastrad void
1174 1.12 riastrad __dma_fence_signal_wake(struct dma_fence *fence, ktime_t timestamp)
1175 1.12 riastrad {
1176 1.12 riastrad struct dma_fence_cb *fcb, *next;
1177 1.12 riastrad
1178 1.24 riastrad KASSERTMSG(fence->f_magic != FENCE_MAGIC_BAD, "fence %p", fence);
1179 1.24 riastrad KASSERTMSG(fence->f_magic == FENCE_MAGIC_GOOD, "fence %p", fence);
1180 1.24 riastrad
1181 1.12 riastrad spin_lock(fence->lock);
1182 1.12 riastrad
1183 1.12 riastrad KASSERT(fence->flags & DMA_FENCE_FLAG_SIGNALED_BIT);
1184 1.12 riastrad
1185 1.36 riastrad SDT_PROBE1(sdt, drm, fence, signal, fence);
1186 1.36 riastrad
1187 1.25 riastrad /* Set the timestamp. */
1188 1.25 riastrad fence->timestamp = timestamp;
1189 1.25 riastrad set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
1190 1.25 riastrad
1191 1.12 riastrad /* Wake waiters. */
1192 1.12 riastrad cv_broadcast(&fence->f_cv);
1193 1.12 riastrad
1194 1.12 riastrad /* Remove and call the callbacks. */
1195 1.12 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
1196 1.12 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
1197 1.12 riastrad fcb->fcb_onqueue = false;
1198 1.12 riastrad (*fcb->func)(fence, fcb);
1199 1.12 riastrad }
1200 1.12 riastrad
1201 1.12 riastrad spin_unlock(fence->lock);
1202 1.12 riastrad }
1203