linux_dma_fence.c revision 1.6 1 1.6 riastrad /* $NetBSD: linux_dma_fence.c,v 1.6 2021/12/19 01:40:48 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.6 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.6 2021/12/19 01:40:48 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/atomic.h>
36 1.1 riastrad #include <sys/condvar.h>
37 1.1 riastrad #include <sys/queue.h>
38 1.1 riastrad
39 1.1 riastrad #include <linux/atomic.h>
40 1.2 riastrad #include <linux/dma-fence.h>
41 1.1 riastrad #include <linux/errno.h>
42 1.1 riastrad #include <linux/kref.h>
43 1.1 riastrad #include <linux/sched.h>
44 1.1 riastrad #include <linux/spinlock.h>
45 1.1 riastrad
46 1.1 riastrad /*
47 1.2 riastrad * linux_dma_fence_trace
48 1.1 riastrad *
49 1.2 riastrad * True if we print DMA_FENCE_TRACE messages, false if not. These
50 1.2 riastrad * are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
51 1.2 riastrad * in boothowto.
52 1.1 riastrad */
53 1.2 riastrad int linux_dma_fence_trace = 0;
54 1.1 riastrad
55 1.1 riastrad /*
56 1.2 riastrad * dma_fence_referenced_p(fence)
57 1.1 riastrad *
58 1.1 riastrad * True if fence has a positive reference count. True after
59 1.2 riastrad * dma_fence_init; after the last dma_fence_put, this becomes
60 1.2 riastrad * false.
61 1.1 riastrad */
62 1.1 riastrad static inline bool __diagused
63 1.2 riastrad dma_fence_referenced_p(struct dma_fence *fence)
64 1.1 riastrad {
65 1.1 riastrad
66 1.1 riastrad return kref_referenced_p(&fence->refcount);
67 1.1 riastrad }
68 1.1 riastrad
69 1.1 riastrad /*
70 1.2 riastrad * dma_fence_init(fence, ops, lock, context, seqno)
71 1.1 riastrad *
72 1.2 riastrad * Initialize fence. Caller should call dma_fence_destroy when
73 1.2 riastrad * done, after all references have been released.
74 1.1 riastrad */
75 1.1 riastrad void
76 1.2 riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
77 1.2 riastrad spinlock_t *lock, unsigned context, unsigned seqno)
78 1.1 riastrad {
79 1.1 riastrad
80 1.1 riastrad kref_init(&fence->refcount);
81 1.1 riastrad fence->lock = lock;
82 1.1 riastrad fence->flags = 0;
83 1.1 riastrad fence->context = context;
84 1.1 riastrad fence->seqno = seqno;
85 1.1 riastrad fence->ops = ops;
86 1.1 riastrad TAILQ_INIT(&fence->f_callbacks);
87 1.2 riastrad cv_init(&fence->f_cv, "dmafence");
88 1.1 riastrad }
89 1.1 riastrad
90 1.1 riastrad /*
91 1.2 riastrad * dma_fence_destroy(fence)
92 1.1 riastrad *
93 1.2 riastrad * Clean up memory initialized with dma_fence_init. This is meant
94 1.2 riastrad * to be used after a fence release callback.
95 1.1 riastrad */
96 1.1 riastrad void
97 1.2 riastrad dma_fence_destroy(struct dma_fence *fence)
98 1.1 riastrad {
99 1.1 riastrad
100 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
101 1.1 riastrad
102 1.1 riastrad KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
103 1.1 riastrad cv_destroy(&fence->f_cv);
104 1.1 riastrad }
105 1.1 riastrad
106 1.1 riastrad static void
107 1.2 riastrad dma_fence_free_cb(struct rcu_head *rcu)
108 1.1 riastrad {
109 1.2 riastrad struct dma_fence *fence = container_of(rcu, struct dma_fence, f_rcu);
110 1.1 riastrad
111 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
112 1.1 riastrad
113 1.2 riastrad dma_fence_destroy(fence);
114 1.1 riastrad kfree(fence);
115 1.1 riastrad }
116 1.1 riastrad
117 1.1 riastrad /*
118 1.2 riastrad * dma_fence_free(fence)
119 1.1 riastrad *
120 1.1 riastrad * Schedule fence to be destroyed and then freed with kfree after
121 1.1 riastrad * any pending RCU read sections on all CPUs have completed.
122 1.1 riastrad * Caller must guarantee all references have been released. This
123 1.1 riastrad * is meant to be used after a fence release callback.
124 1.1 riastrad *
125 1.1 riastrad * NOTE: Callers assume kfree will be used. We don't even use
126 1.1 riastrad * kmalloc to allocate these -- caller is expected to allocate
127 1.2 riastrad * memory with kmalloc to be initialized with dma_fence_init.
128 1.1 riastrad */
129 1.1 riastrad void
130 1.2 riastrad dma_fence_free(struct dma_fence *fence)
131 1.1 riastrad {
132 1.1 riastrad
133 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
134 1.1 riastrad
135 1.2 riastrad call_rcu(&fence->f_rcu, &dma_fence_free_cb);
136 1.1 riastrad }
137 1.1 riastrad
138 1.1 riastrad /*
139 1.2 riastrad * dma_fence_context_alloc(n)
140 1.1 riastrad *
141 1.1 riastrad * Return the first of a contiguous sequence of unique
142 1.1 riastrad * identifiers, at least until the system wraps around.
143 1.1 riastrad */
144 1.1 riastrad unsigned
145 1.2 riastrad dma_fence_context_alloc(unsigned n)
146 1.1 riastrad {
147 1.1 riastrad static volatile unsigned next_context = 0;
148 1.1 riastrad
149 1.1 riastrad return atomic_add_int_nv(&next_context, n) - n;
150 1.1 riastrad }
151 1.1 riastrad
152 1.1 riastrad /*
153 1.2 riastrad * dma_fence_is_later(a, b)
154 1.1 riastrad *
155 1.1 riastrad * True if the sequence number of fence a is later than the
156 1.1 riastrad * sequence number of fence b. Since sequence numbers wrap
157 1.1 riastrad * around, we define this to mean that the sequence number of
158 1.1 riastrad * fence a is no more than INT_MAX past the sequence number of
159 1.1 riastrad * fence b.
160 1.1 riastrad *
161 1.1 riastrad * The two fences must have the same context.
162 1.1 riastrad */
163 1.1 riastrad bool
164 1.2 riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
165 1.1 riastrad {
166 1.1 riastrad
167 1.1 riastrad KASSERTMSG(a->context == b->context, "incommensurate fences"
168 1.1 riastrad ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
169 1.1 riastrad
170 1.1 riastrad return a->seqno - b->seqno < INT_MAX;
171 1.1 riastrad }
172 1.1 riastrad
173 1.1 riastrad /*
174 1.2 riastrad * dma_fence_get(fence)
175 1.1 riastrad *
176 1.1 riastrad * Acquire a reference to fence. The fence must not be being
177 1.1 riastrad * destroyed. Return the fence.
178 1.1 riastrad */
179 1.2 riastrad struct dma_fence *
180 1.2 riastrad dma_fence_get(struct dma_fence *fence)
181 1.1 riastrad {
182 1.1 riastrad
183 1.1 riastrad if (fence)
184 1.1 riastrad kref_get(&fence->refcount);
185 1.1 riastrad return fence;
186 1.1 riastrad }
187 1.1 riastrad
188 1.1 riastrad /*
189 1.2 riastrad * dma_fence_get_rcu(fence)
190 1.1 riastrad *
191 1.1 riastrad * Attempt to acquire a reference to a fence that may be about to
192 1.1 riastrad * be destroyed, during a read section. Return the fence on
193 1.1 riastrad * success, or NULL on failure.
194 1.1 riastrad */
195 1.2 riastrad struct dma_fence *
196 1.2 riastrad dma_fence_get_rcu(struct dma_fence *fence)
197 1.1 riastrad {
198 1.1 riastrad
199 1.1 riastrad if (!kref_get_unless_zero(&fence->refcount))
200 1.1 riastrad return NULL;
201 1.1 riastrad return fence;
202 1.1 riastrad }
203 1.1 riastrad
204 1.3 riastrad /*
205 1.3 riastrad * dma_fence_get_rcu_safe(fencep)
206 1.3 riastrad *
207 1.3 riastrad * Attempt to acquire a reference to the fence *fencep, which may
208 1.3 riastrad * be about to be destroyed, during a read section. If the value
209 1.3 riastrad * of *fencep changes after we read *fencep but before we
210 1.3 riastrad * increment its reference count, retry. Return *fencep on
211 1.3 riastrad * success, or NULL on failure.
212 1.3 riastrad */
213 1.3 riastrad struct dma_fence *
214 1.3 riastrad dma_fence_get_rcu_safe(struct dma_fence **fencep)
215 1.3 riastrad {
216 1.3 riastrad struct dma_fence *fence, *fence0;
217 1.3 riastrad
218 1.3 riastrad retry:
219 1.3 riastrad fence = *fencep;
220 1.3 riastrad
221 1.3 riastrad /* Load fence only once. */
222 1.3 riastrad __insn_barrier();
223 1.3 riastrad
224 1.3 riastrad /* If there's nothing there, give up. */
225 1.3 riastrad if (fence == NULL)
226 1.3 riastrad return NULL;
227 1.3 riastrad
228 1.3 riastrad /* Make sure we don't load stale fence guts. */
229 1.3 riastrad membar_datadep_consumer();
230 1.3 riastrad
231 1.3 riastrad /* Try to acquire a reference. If we can't, try again. */
232 1.3 riastrad if (!dma_fence_get_rcu(fence))
233 1.3 riastrad goto retry;
234 1.3 riastrad
235 1.3 riastrad /*
236 1.3 riastrad * Confirm that it's still the same fence. If not, release it
237 1.3 riastrad * and retry.
238 1.3 riastrad */
239 1.3 riastrad fence0 = *fencep;
240 1.3 riastrad __insn_barrier();
241 1.3 riastrad if (fence != fence0) {
242 1.3 riastrad dma_fence_put(fence);
243 1.3 riastrad goto retry;
244 1.3 riastrad }
245 1.3 riastrad
246 1.3 riastrad /* Success! */
247 1.3 riastrad return fence;
248 1.3 riastrad }
249 1.3 riastrad
250 1.1 riastrad static void
251 1.2 riastrad dma_fence_release(struct kref *refcount)
252 1.1 riastrad {
253 1.2 riastrad struct dma_fence *fence = container_of(refcount, struct dma_fence,
254 1.2 riastrad refcount);
255 1.1 riastrad
256 1.2 riastrad KASSERT(!dma_fence_referenced_p(fence));
257 1.1 riastrad
258 1.1 riastrad if (fence->ops->release)
259 1.1 riastrad (*fence->ops->release)(fence);
260 1.1 riastrad else
261 1.2 riastrad dma_fence_free(fence);
262 1.1 riastrad }
263 1.1 riastrad
264 1.1 riastrad /*
265 1.2 riastrad * dma_fence_put(fence)
266 1.1 riastrad *
267 1.1 riastrad * Release a reference to fence. If this was the last one, call
268 1.1 riastrad * the fence's release callback.
269 1.1 riastrad */
270 1.1 riastrad void
271 1.2 riastrad dma_fence_put(struct dma_fence *fence)
272 1.1 riastrad {
273 1.1 riastrad
274 1.1 riastrad if (fence == NULL)
275 1.1 riastrad return;
276 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
277 1.2 riastrad kref_put(&fence->refcount, &dma_fence_release);
278 1.1 riastrad }
279 1.1 riastrad
280 1.1 riastrad /*
281 1.2 riastrad * dma_fence_ensure_signal_enabled(fence)
282 1.1 riastrad *
283 1.1 riastrad * Internal subroutine. If the fence was already signalled,
284 1.1 riastrad * return -ENOENT. Otherwise, if the enable signalling callback
285 1.1 riastrad * has not been called yet, call it. If fails, signal the fence
286 1.1 riastrad * and return -ENOENT. If it succeeds, or if it had already been
287 1.1 riastrad * called, return zero to indicate success.
288 1.1 riastrad *
289 1.1 riastrad * Caller must hold the fence's lock.
290 1.1 riastrad */
291 1.1 riastrad static int
292 1.2 riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
293 1.1 riastrad {
294 1.1 riastrad
295 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
296 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
297 1.1 riastrad
298 1.1 riastrad /* If the fence was already signalled, fail with -ENOENT. */
299 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
300 1.1 riastrad return -ENOENT;
301 1.1 riastrad
302 1.1 riastrad /*
303 1.1 riastrad * If the enable signaling callback has been called, success.
304 1.1 riastrad * Otherwise, set the bit indicating it.
305 1.1 riastrad */
306 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags))
307 1.1 riastrad return 0;
308 1.1 riastrad
309 1.1 riastrad /* Otherwise, note that we've called it and call it. */
310 1.1 riastrad if (!(*fence->ops->enable_signaling)(fence)) {
311 1.1 riastrad /* If it failed, signal and return -ENOENT. */
312 1.2 riastrad dma_fence_signal_locked(fence);
313 1.1 riastrad return -ENOENT;
314 1.1 riastrad }
315 1.1 riastrad
316 1.1 riastrad /* Success! */
317 1.1 riastrad return 0;
318 1.1 riastrad }
319 1.1 riastrad
320 1.1 riastrad /*
321 1.2 riastrad * dma_fence_add_callback(fence, fcb, fn)
322 1.1 riastrad *
323 1.1 riastrad * If fence has been signalled, return -ENOENT. If the enable
324 1.1 riastrad * signalling callback hasn't been called yet, call it; if it
325 1.1 riastrad * fails, return -ENOENT. Otherwise, arrange to call fn(fence,
326 1.1 riastrad * fcb) when it is signalled, and return 0.
327 1.1 riastrad *
328 1.1 riastrad * The fence uses memory allocated by the caller in fcb from the
329 1.2 riastrad * time of dma_fence_add_callback either to the time of
330 1.2 riastrad * dma_fence_remove_callback, or just before calling fn.
331 1.1 riastrad */
332 1.1 riastrad int
333 1.2 riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
334 1.2 riastrad dma_fence_func_t fn)
335 1.1 riastrad {
336 1.1 riastrad int ret;
337 1.1 riastrad
338 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
339 1.1 riastrad
340 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
341 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
342 1.1 riastrad ret = -ENOENT;
343 1.1 riastrad goto out0;
344 1.1 riastrad }
345 1.1 riastrad
346 1.1 riastrad /* Acquire the lock. */
347 1.1 riastrad spin_lock(fence->lock);
348 1.1 riastrad
349 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
350 1.2 riastrad ret = dma_fence_ensure_signal_enabled(fence);
351 1.1 riastrad if (ret)
352 1.1 riastrad goto out1;
353 1.1 riastrad
354 1.1 riastrad /* Insert the callback. */
355 1.4 riastrad fcb->func = fn;
356 1.1 riastrad TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
357 1.1 riastrad fcb->fcb_onqueue = true;
358 1.1 riastrad
359 1.1 riastrad /* Release the lock and we're done. */
360 1.1 riastrad out1: spin_unlock(fence->lock);
361 1.1 riastrad out0: return ret;
362 1.1 riastrad }
363 1.1 riastrad
364 1.1 riastrad /*
365 1.2 riastrad * dma_fence_remove_callback(fence, fcb)
366 1.1 riastrad *
367 1.1 riastrad * Remove the callback fcb from fence. Return true if it was
368 1.1 riastrad * removed from the list, or false if it had already run and so
369 1.1 riastrad * was no longer queued anyway. Caller must have already called
370 1.2 riastrad * dma_fence_add_callback(fence, fcb).
371 1.1 riastrad */
372 1.1 riastrad bool
373 1.2 riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
374 1.1 riastrad {
375 1.1 riastrad bool onqueue;
376 1.1 riastrad
377 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
378 1.1 riastrad
379 1.1 riastrad spin_lock(fence->lock);
380 1.1 riastrad onqueue = fcb->fcb_onqueue;
381 1.1 riastrad if (onqueue) {
382 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
383 1.1 riastrad fcb->fcb_onqueue = false;
384 1.1 riastrad }
385 1.1 riastrad spin_unlock(fence->lock);
386 1.1 riastrad
387 1.1 riastrad return onqueue;
388 1.1 riastrad }
389 1.1 riastrad
390 1.1 riastrad /*
391 1.2 riastrad * dma_fence_enable_sw_signaling(fence)
392 1.1 riastrad *
393 1.1 riastrad * If it hasn't been called yet and the fence hasn't been
394 1.1 riastrad * signalled yet, call the fence's enable_sw_signaling callback.
395 1.1 riastrad * If when that happens, the callback indicates failure by
396 1.1 riastrad * returning false, signal the fence.
397 1.1 riastrad */
398 1.1 riastrad void
399 1.2 riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
400 1.1 riastrad {
401 1.1 riastrad
402 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
403 1.1 riastrad
404 1.1 riastrad spin_lock(fence->lock);
405 1.2 riastrad (void)dma_fence_ensure_signal_enabled(fence);
406 1.1 riastrad spin_unlock(fence->lock);
407 1.1 riastrad }
408 1.1 riastrad
409 1.1 riastrad /*
410 1.2 riastrad * dma_fence_is_signaled(fence)
411 1.1 riastrad *
412 1.1 riastrad * Test whether the fence has been signalled. If it has been
413 1.2 riastrad * signalled by dma_fence_signal(_locked), return true. If the
414 1.1 riastrad * signalled callback returns true indicating that some implicit
415 1.1 riastrad * external condition has changed, call the callbacks as if with
416 1.2 riastrad * dma_fence_signal.
417 1.1 riastrad */
418 1.1 riastrad bool
419 1.2 riastrad dma_fence_is_signaled(struct dma_fence *fence)
420 1.1 riastrad {
421 1.1 riastrad bool signaled;
422 1.1 riastrad
423 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
424 1.1 riastrad
425 1.1 riastrad spin_lock(fence->lock);
426 1.2 riastrad signaled = dma_fence_is_signaled_locked(fence);
427 1.1 riastrad spin_unlock(fence->lock);
428 1.1 riastrad
429 1.1 riastrad return signaled;
430 1.1 riastrad }
431 1.1 riastrad
432 1.1 riastrad /*
433 1.2 riastrad * dma_fence_is_signaled_locked(fence)
434 1.1 riastrad *
435 1.1 riastrad * Test whether the fence has been signalled. Like
436 1.2 riastrad * dma_fence_is_signaleed, but caller already holds the fence's lock.
437 1.1 riastrad */
438 1.1 riastrad bool
439 1.2 riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
440 1.1 riastrad {
441 1.1 riastrad
442 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
443 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
444 1.1 riastrad
445 1.1 riastrad /* Check whether we already set the signalled bit. */
446 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
447 1.1 riastrad return true;
448 1.1 riastrad
449 1.1 riastrad /* If there's a signalled callback, test it. */
450 1.1 riastrad if (fence->ops->signaled) {
451 1.1 riastrad if ((*fence->ops->signaled)(fence)) {
452 1.1 riastrad /*
453 1.1 riastrad * It's been signalled implicitly by some
454 1.1 riastrad * external phenomonen. Act as though someone
455 1.2 riastrad * has called dma_fence_signal.
456 1.1 riastrad */
457 1.2 riastrad dma_fence_signal_locked(fence);
458 1.1 riastrad return true;
459 1.1 riastrad }
460 1.1 riastrad }
461 1.1 riastrad
462 1.1 riastrad return false;
463 1.1 riastrad }
464 1.1 riastrad
465 1.1 riastrad /*
466 1.5 riastrad * dma_fence_set_error(fence, error)
467 1.5 riastrad *
468 1.5 riastrad * Set an error code prior to dma_fence_signal for use by a
469 1.5 riastrad * waiter to learn about success or failure of the fence.
470 1.5 riastrad */
471 1.5 riastrad void
472 1.5 riastrad dma_fence_set_error(struct dma_fence *fence, int error)
473 1.5 riastrad {
474 1.5 riastrad
475 1.5 riastrad KASSERT(!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)));
476 1.6 riastrad KASSERTMSG(error >= -ELAST, "%d", error);
477 1.5 riastrad KASSERTMSG(error < 0, "%d", error);
478 1.5 riastrad
479 1.5 riastrad fence->error = error;
480 1.5 riastrad }
481 1.5 riastrad
482 1.5 riastrad /*
483 1.2 riastrad * dma_fence_signal(fence)
484 1.1 riastrad *
485 1.1 riastrad * Signal the fence. If it has already been signalled, return
486 1.1 riastrad * -EINVAL. If it has not been signalled, call the enable
487 1.1 riastrad * signalling callback if it hasn't been called yet, and remove
488 1.1 riastrad * each registered callback from the queue and call it; then
489 1.1 riastrad * return 0.
490 1.1 riastrad */
491 1.1 riastrad int
492 1.2 riastrad dma_fence_signal(struct dma_fence *fence)
493 1.1 riastrad {
494 1.1 riastrad int ret;
495 1.1 riastrad
496 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
497 1.1 riastrad
498 1.1 riastrad spin_lock(fence->lock);
499 1.2 riastrad ret = dma_fence_signal_locked(fence);
500 1.1 riastrad spin_unlock(fence->lock);
501 1.1 riastrad
502 1.1 riastrad return ret;
503 1.1 riastrad }
504 1.1 riastrad
505 1.1 riastrad /*
506 1.2 riastrad * dma_fence_signal_locked(fence)
507 1.1 riastrad *
508 1.2 riastrad * Signal the fence. Like dma_fence_signal, but caller already
509 1.2 riastrad * holds the fence's lock.
510 1.1 riastrad */
511 1.1 riastrad int
512 1.2 riastrad dma_fence_signal_locked(struct dma_fence *fence)
513 1.1 riastrad {
514 1.2 riastrad struct dma_fence_cb *fcb, *next;
515 1.1 riastrad
516 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
517 1.1 riastrad KASSERT(spin_is_locked(fence->lock));
518 1.1 riastrad
519 1.1 riastrad /* If it's been signalled, fail; otherwise set the signalled bit. */
520 1.2 riastrad if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
521 1.1 riastrad return -EINVAL;
522 1.1 riastrad
523 1.1 riastrad /* Wake waiters. */
524 1.1 riastrad cv_broadcast(&fence->f_cv);
525 1.1 riastrad
526 1.1 riastrad /* Remove and call the callbacks. */
527 1.1 riastrad TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
528 1.1 riastrad TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
529 1.1 riastrad fcb->fcb_onqueue = false;
530 1.4 riastrad (*fcb->func)(fence, fcb);
531 1.1 riastrad }
532 1.1 riastrad
533 1.1 riastrad /* Success! */
534 1.1 riastrad return 0;
535 1.1 riastrad }
536 1.1 riastrad
537 1.1 riastrad struct wait_any {
538 1.2 riastrad struct dma_fence_cb fcb;
539 1.1 riastrad struct wait_any1 {
540 1.1 riastrad kmutex_t lock;
541 1.1 riastrad kcondvar_t cv;
542 1.1 riastrad bool done;
543 1.1 riastrad } *common;
544 1.1 riastrad };
545 1.1 riastrad
546 1.1 riastrad static void
547 1.2 riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
548 1.1 riastrad {
549 1.1 riastrad struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
550 1.1 riastrad
551 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
552 1.1 riastrad
553 1.1 riastrad mutex_enter(&cb->common->lock);
554 1.1 riastrad cb->common->done = true;
555 1.1 riastrad cv_broadcast(&cb->common->cv);
556 1.1 riastrad mutex_exit(&cb->common->lock);
557 1.1 riastrad }
558 1.1 riastrad
559 1.1 riastrad /*
560 1.2 riastrad * dma_fence_wait_any_timeout(fence, nfences, intr, timeout)
561 1.1 riastrad *
562 1.1 riastrad * Wait for any of fences[0], fences[1], fences[2], ...,
563 1.1 riastrad * fences[nfences-1] to be signaled.
564 1.1 riastrad */
565 1.1 riastrad long
566 1.2 riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
567 1.2 riastrad bool intr, long timeout)
568 1.1 riastrad {
569 1.1 riastrad struct wait_any1 common;
570 1.1 riastrad struct wait_any *cb;
571 1.1 riastrad uint32_t i, j;
572 1.1 riastrad int start, end;
573 1.1 riastrad long ret = 0;
574 1.1 riastrad
575 1.1 riastrad /* Allocate an array of callback records. */
576 1.1 riastrad cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
577 1.1 riastrad if (cb == NULL) {
578 1.1 riastrad ret = -ENOMEM;
579 1.1 riastrad goto out0;
580 1.1 riastrad }
581 1.1 riastrad
582 1.1 riastrad /* Initialize a mutex and condvar for the common wait. */
583 1.1 riastrad mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
584 1.1 riastrad cv_init(&common.cv, "fence");
585 1.1 riastrad common.done = false;
586 1.1 riastrad
587 1.1 riastrad /* Add a callback to each of the fences, or stop here if we can't. */
588 1.1 riastrad for (i = 0; i < nfences; i++) {
589 1.1 riastrad cb[i].common = &common;
590 1.2 riastrad KASSERT(dma_fence_referenced_p(fences[i]));
591 1.2 riastrad ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
592 1.2 riastrad &wait_any_cb);
593 1.1 riastrad if (ret)
594 1.1 riastrad goto out1;
595 1.1 riastrad }
596 1.1 riastrad
597 1.1 riastrad /*
598 1.1 riastrad * Test whether any of the fences has been signalled. If they
599 1.1 riastrad * have, stop here. If the haven't, we are guaranteed to be
600 1.1 riastrad * notified by one of the callbacks when they have.
601 1.1 riastrad */
602 1.1 riastrad for (j = 0; j < nfences; j++) {
603 1.2 riastrad if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags))
604 1.1 riastrad goto out1;
605 1.1 riastrad }
606 1.1 riastrad
607 1.1 riastrad /*
608 1.1 riastrad * None of them was ready immediately. Wait for one of the
609 1.1 riastrad * callbacks to notify us when it is done.
610 1.1 riastrad */
611 1.1 riastrad mutex_enter(&common.lock);
612 1.1 riastrad while (timeout > 0 && !common.done) {
613 1.1 riastrad start = getticks();
614 1.1 riastrad __insn_barrier();
615 1.1 riastrad if (intr) {
616 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
617 1.1 riastrad ret = -cv_timedwait_sig(&common.cv,
618 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
619 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
620 1.1 riastrad } else {
621 1.1 riastrad ret = -cv_wait_sig(&common.cv, &common.lock);
622 1.1 riastrad }
623 1.1 riastrad } else {
624 1.1 riastrad if (timeout != MAX_SCHEDULE_TIMEOUT) {
625 1.1 riastrad ret = -cv_timedwait(&common.cv,
626 1.1 riastrad &common.lock, MIN(timeout, /* paranoia */
627 1.1 riastrad MAX_SCHEDULE_TIMEOUT));
628 1.1 riastrad } else {
629 1.1 riastrad cv_wait(&common.cv, &common.lock);
630 1.1 riastrad ret = 0;
631 1.1 riastrad }
632 1.1 riastrad }
633 1.1 riastrad end = getticks();
634 1.1 riastrad __insn_barrier();
635 1.1 riastrad if (ret) {
636 1.1 riastrad if (ret == -ERESTART)
637 1.1 riastrad ret = -ERESTARTSYS;
638 1.1 riastrad break;
639 1.1 riastrad }
640 1.1 riastrad timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
641 1.1 riastrad }
642 1.1 riastrad mutex_exit(&common.lock);
643 1.1 riastrad
644 1.1 riastrad /*
645 1.1 riastrad * Massage the return code: if we were interrupted, return
646 1.1 riastrad * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
647 1.1 riastrad * return the remaining time.
648 1.1 riastrad */
649 1.1 riastrad if (ret < 0) {
650 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
651 1.1 riastrad ret = -ERESTARTSYS;
652 1.1 riastrad if (ret == -EWOULDBLOCK)
653 1.1 riastrad ret = 0;
654 1.1 riastrad } else {
655 1.1 riastrad KASSERT(ret == 0);
656 1.1 riastrad ret = timeout;
657 1.1 riastrad }
658 1.1 riastrad
659 1.1 riastrad out1: while (i --> 0)
660 1.2 riastrad (void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
661 1.1 riastrad cv_destroy(&common.cv);
662 1.1 riastrad mutex_destroy(&common.lock);
663 1.1 riastrad kfree(cb);
664 1.1 riastrad out0: return ret;
665 1.1 riastrad }
666 1.1 riastrad
667 1.1 riastrad /*
668 1.2 riastrad * dma_fence_wait_timeout(fence, intr, timeout)
669 1.1 riastrad *
670 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
671 1.1 riastrad * true; or until timeout, if positive. Return -ERESTARTSYS if
672 1.1 riastrad * interrupted, negative error code on any other error, zero on
673 1.1 riastrad * timeout, or positive number of ticks remaining if the fence is
674 1.1 riastrad * signalled before the timeout. Works by calling the fence wait
675 1.1 riastrad * callback.
676 1.1 riastrad *
677 1.1 riastrad * The timeout must be nonnegative and less than
678 1.1 riastrad * MAX_SCHEDULE_TIMEOUT.
679 1.1 riastrad */
680 1.1 riastrad long
681 1.2 riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
682 1.1 riastrad {
683 1.1 riastrad
684 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
685 1.1 riastrad KASSERT(timeout >= 0);
686 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
687 1.1 riastrad
688 1.1 riastrad return (*fence->ops->wait)(fence, intr, timeout);
689 1.1 riastrad }
690 1.1 riastrad
691 1.1 riastrad /*
692 1.2 riastrad * dma_fence_wait(fence, intr)
693 1.1 riastrad *
694 1.1 riastrad * Wait until fence is signalled; or until interrupt, if intr is
695 1.1 riastrad * true. Return -ERESTARTSYS if interrupted, negative error code
696 1.1 riastrad * on any other error, zero on sucess. Works by calling the fence
697 1.1 riastrad * wait callback with MAX_SCHEDULE_TIMEOUT.
698 1.1 riastrad */
699 1.1 riastrad long
700 1.2 riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
701 1.1 riastrad {
702 1.1 riastrad long ret;
703 1.1 riastrad
704 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
705 1.1 riastrad
706 1.1 riastrad ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
707 1.1 riastrad KASSERT(ret != 0);
708 1.1 riastrad
709 1.1 riastrad return (ret < 0 ? ret : 0);
710 1.1 riastrad }
711 1.1 riastrad
712 1.1 riastrad /*
713 1.2 riastrad * dma_fence_default_wait(fence, intr, timeout)
714 1.1 riastrad *
715 1.1 riastrad * Default implementation of fence wait callback using a condition
716 1.1 riastrad * variable. If the fence is already signalled, return timeout,
717 1.1 riastrad * or 1 if no timeout. If the enable signalling callback hasn't
718 1.1 riastrad * been called, call it, and if it fails, act as if the fence had
719 1.1 riastrad * been signalled. Otherwise, wait on the internal condvar. If
720 1.1 riastrad * timeout is MAX_SCHEDULE_TIMEOUT, treat it as no timeout.
721 1.1 riastrad */
722 1.1 riastrad long
723 1.2 riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
724 1.1 riastrad {
725 1.1 riastrad int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
726 1.1 riastrad kmutex_t *lock = &fence->lock->sl_lock;
727 1.1 riastrad long ret = 0;
728 1.1 riastrad
729 1.2 riastrad KASSERT(dma_fence_referenced_p(fence));
730 1.1 riastrad KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
731 1.1 riastrad KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
732 1.1 riastrad
733 1.1 riastrad /* Optimistically try to skip the lock if it's already signalled. */
734 1.2 riastrad if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
735 1.1 riastrad return (timeout < MAX_SCHEDULE_TIMEOUT ? timeout : 1);
736 1.1 riastrad
737 1.1 riastrad /* Acquire the lock. */
738 1.1 riastrad spin_lock(fence->lock);
739 1.1 riastrad
740 1.1 riastrad /* Ensure signalling is enabled, or fail if we can't. */
741 1.2 riastrad ret = dma_fence_ensure_signal_enabled(fence);
742 1.1 riastrad if (ret)
743 1.1 riastrad goto out;
744 1.1 riastrad
745 1.1 riastrad /* Find out what our deadline is so we can handle spurious wakeup. */
746 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
747 1.1 riastrad now = getticks();
748 1.1 riastrad __insn_barrier();
749 1.1 riastrad starttime = now;
750 1.1 riastrad deadline = starttime + timeout;
751 1.1 riastrad }
752 1.1 riastrad
753 1.1 riastrad /* Wait until the signalled bit is set. */
754 1.2 riastrad while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
755 1.1 riastrad /*
756 1.1 riastrad * If there's a timeout and we've passed the deadline,
757 1.1 riastrad * give up.
758 1.1 riastrad */
759 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
760 1.1 riastrad now = getticks();
761 1.1 riastrad __insn_barrier();
762 1.1 riastrad if (deadline <= now)
763 1.1 riastrad break;
764 1.1 riastrad }
765 1.1 riastrad if (intr) {
766 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
767 1.1 riastrad ret = -cv_timedwait_sig(&fence->f_cv, lock,
768 1.1 riastrad deadline - now);
769 1.1 riastrad } else {
770 1.1 riastrad ret = -cv_wait_sig(&fence->f_cv, lock);
771 1.1 riastrad }
772 1.1 riastrad } else {
773 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
774 1.1 riastrad ret = -cv_timedwait(&fence->f_cv, lock,
775 1.1 riastrad deadline - now);
776 1.1 riastrad } else {
777 1.1 riastrad cv_wait(&fence->f_cv, lock);
778 1.1 riastrad ret = 0;
779 1.1 riastrad }
780 1.1 riastrad }
781 1.1 riastrad /* If the wait failed, give up. */
782 1.1 riastrad if (ret) {
783 1.1 riastrad if (ret == -ERESTART)
784 1.1 riastrad ret = -ERESTARTSYS;
785 1.1 riastrad break;
786 1.1 riastrad }
787 1.1 riastrad }
788 1.1 riastrad
789 1.1 riastrad out:
790 1.1 riastrad /* All done. Release the lock. */
791 1.1 riastrad spin_unlock(fence->lock);
792 1.1 riastrad
793 1.1 riastrad /* If cv_timedwait gave up, return 0 meaning timeout. */
794 1.1 riastrad if (ret == -EWOULDBLOCK) {
795 1.1 riastrad /* Only cv_timedwait and cv_timedwait_sig can return this. */
796 1.1 riastrad KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
797 1.1 riastrad return 0;
798 1.1 riastrad }
799 1.1 riastrad
800 1.1 riastrad /* If there was a timeout and the deadline passed, return 0. */
801 1.1 riastrad if (timeout < MAX_SCHEDULE_TIMEOUT) {
802 1.1 riastrad if (deadline <= now)
803 1.1 riastrad return 0;
804 1.1 riastrad }
805 1.1 riastrad
806 1.1 riastrad /* If we were interrupted, return -ERESTARTSYS. */
807 1.1 riastrad if (ret == -EINTR || ret == -ERESTART)
808 1.1 riastrad return -ERESTARTSYS;
809 1.1 riastrad
810 1.1 riastrad /* If there was any other kind of error, fail. */
811 1.1 riastrad if (ret)
812 1.1 riastrad return ret;
813 1.1 riastrad
814 1.1 riastrad /*
815 1.1 riastrad * Success! Return the number of ticks left, at least 1, or 1
816 1.1 riastrad * if no timeout.
817 1.1 riastrad */
818 1.1 riastrad return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
819 1.1 riastrad }
820