Home | History | Annotate | Line # | Download | only in linux
linux_dma_fence.c revision 1.7
      1  1.7  riastrad /*	$NetBSD: linux_dma_fence.c,v 1.7 2021/12/19 01:48:22 riastradh Exp $	*/
      2  1.1  riastrad 
      3  1.1  riastrad /*-
      4  1.1  riastrad  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  1.1  riastrad  * All rights reserved.
      6  1.1  riastrad  *
      7  1.1  riastrad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1  riastrad  * by Taylor R. Campbell.
      9  1.1  riastrad  *
     10  1.1  riastrad  * Redistribution and use in source and binary forms, with or without
     11  1.1  riastrad  * modification, are permitted provided that the following conditions
     12  1.1  riastrad  * are met:
     13  1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     14  1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     15  1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     18  1.1  riastrad  *
     19  1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1  riastrad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1  riastrad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1  riastrad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1  riastrad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1  riastrad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1  riastrad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1  riastrad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1  riastrad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1  riastrad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1  riastrad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1  riastrad  */
     31  1.1  riastrad 
     32  1.1  riastrad #include <sys/cdefs.h>
     33  1.7  riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.7 2021/12/19 01:48:22 riastradh Exp $");
     34  1.1  riastrad 
     35  1.1  riastrad #include <sys/atomic.h>
     36  1.1  riastrad #include <sys/condvar.h>
     37  1.1  riastrad #include <sys/queue.h>
     38  1.1  riastrad 
     39  1.1  riastrad #include <linux/atomic.h>
     40  1.2  riastrad #include <linux/dma-fence.h>
     41  1.1  riastrad #include <linux/errno.h>
     42  1.1  riastrad #include <linux/kref.h>
     43  1.1  riastrad #include <linux/sched.h>
     44  1.1  riastrad #include <linux/spinlock.h>
     45  1.1  riastrad 
     46  1.1  riastrad /*
     47  1.2  riastrad  * linux_dma_fence_trace
     48  1.1  riastrad  *
     49  1.2  riastrad  *	True if we print DMA_FENCE_TRACE messages, false if not.  These
     50  1.2  riastrad  *	are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
     51  1.2  riastrad  *	in boothowto.
     52  1.1  riastrad  */
     53  1.2  riastrad int	linux_dma_fence_trace = 0;
     54  1.1  riastrad 
     55  1.1  riastrad /*
     56  1.2  riastrad  * dma_fence_referenced_p(fence)
     57  1.1  riastrad  *
     58  1.1  riastrad  *	True if fence has a positive reference count.  True after
     59  1.2  riastrad  *	dma_fence_init; after the last dma_fence_put, this becomes
     60  1.2  riastrad  *	false.
     61  1.1  riastrad  */
     62  1.1  riastrad static inline bool __diagused
     63  1.2  riastrad dma_fence_referenced_p(struct dma_fence *fence)
     64  1.1  riastrad {
     65  1.1  riastrad 
     66  1.1  riastrad 	return kref_referenced_p(&fence->refcount);
     67  1.1  riastrad }
     68  1.1  riastrad 
     69  1.1  riastrad /*
     70  1.2  riastrad  * dma_fence_init(fence, ops, lock, context, seqno)
     71  1.1  riastrad  *
     72  1.2  riastrad  *	Initialize fence.  Caller should call dma_fence_destroy when
     73  1.2  riastrad  *	done, after all references have been released.
     74  1.1  riastrad  */
     75  1.1  riastrad void
     76  1.2  riastrad dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
     77  1.2  riastrad     spinlock_t *lock, unsigned context, unsigned seqno)
     78  1.1  riastrad {
     79  1.1  riastrad 
     80  1.1  riastrad 	kref_init(&fence->refcount);
     81  1.1  riastrad 	fence->lock = lock;
     82  1.1  riastrad 	fence->flags = 0;
     83  1.1  riastrad 	fence->context = context;
     84  1.1  riastrad 	fence->seqno = seqno;
     85  1.1  riastrad 	fence->ops = ops;
     86  1.1  riastrad 	TAILQ_INIT(&fence->f_callbacks);
     87  1.2  riastrad 	cv_init(&fence->f_cv, "dmafence");
     88  1.1  riastrad }
     89  1.1  riastrad 
     90  1.1  riastrad /*
     91  1.2  riastrad  * dma_fence_destroy(fence)
     92  1.1  riastrad  *
     93  1.2  riastrad  *	Clean up memory initialized with dma_fence_init.  This is meant
     94  1.2  riastrad  *	to be used after a fence release callback.
     95  1.1  riastrad  */
     96  1.1  riastrad void
     97  1.2  riastrad dma_fence_destroy(struct dma_fence *fence)
     98  1.1  riastrad {
     99  1.1  riastrad 
    100  1.2  riastrad 	KASSERT(!dma_fence_referenced_p(fence));
    101  1.1  riastrad 
    102  1.1  riastrad 	KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
    103  1.1  riastrad 	cv_destroy(&fence->f_cv);
    104  1.1  riastrad }
    105  1.1  riastrad 
    106  1.1  riastrad static void
    107  1.2  riastrad dma_fence_free_cb(struct rcu_head *rcu)
    108  1.1  riastrad {
    109  1.2  riastrad 	struct dma_fence *fence = container_of(rcu, struct dma_fence, f_rcu);
    110  1.1  riastrad 
    111  1.2  riastrad 	KASSERT(!dma_fence_referenced_p(fence));
    112  1.1  riastrad 
    113  1.2  riastrad 	dma_fence_destroy(fence);
    114  1.1  riastrad 	kfree(fence);
    115  1.1  riastrad }
    116  1.1  riastrad 
    117  1.1  riastrad /*
    118  1.2  riastrad  * dma_fence_free(fence)
    119  1.1  riastrad  *
    120  1.1  riastrad  *	Schedule fence to be destroyed and then freed with kfree after
    121  1.1  riastrad  *	any pending RCU read sections on all CPUs have completed.
    122  1.1  riastrad  *	Caller must guarantee all references have been released.  This
    123  1.1  riastrad  *	is meant to be used after a fence release callback.
    124  1.1  riastrad  *
    125  1.1  riastrad  *	NOTE: Callers assume kfree will be used.  We don't even use
    126  1.1  riastrad  *	kmalloc to allocate these -- caller is expected to allocate
    127  1.2  riastrad  *	memory with kmalloc to be initialized with dma_fence_init.
    128  1.1  riastrad  */
    129  1.1  riastrad void
    130  1.2  riastrad dma_fence_free(struct dma_fence *fence)
    131  1.1  riastrad {
    132  1.1  riastrad 
    133  1.2  riastrad 	KASSERT(!dma_fence_referenced_p(fence));
    134  1.1  riastrad 
    135  1.2  riastrad 	call_rcu(&fence->f_rcu, &dma_fence_free_cb);
    136  1.1  riastrad }
    137  1.1  riastrad 
    138  1.1  riastrad /*
    139  1.2  riastrad  * dma_fence_context_alloc(n)
    140  1.1  riastrad  *
    141  1.1  riastrad  *	Return the first of a contiguous sequence of unique
    142  1.1  riastrad  *	identifiers, at least until the system wraps around.
    143  1.1  riastrad  */
    144  1.1  riastrad unsigned
    145  1.2  riastrad dma_fence_context_alloc(unsigned n)
    146  1.1  riastrad {
    147  1.1  riastrad 	static volatile unsigned next_context = 0;
    148  1.1  riastrad 
    149  1.1  riastrad 	return atomic_add_int_nv(&next_context, n) - n;
    150  1.1  riastrad }
    151  1.1  riastrad 
    152  1.1  riastrad /*
    153  1.2  riastrad  * dma_fence_is_later(a, b)
    154  1.1  riastrad  *
    155  1.1  riastrad  *	True if the sequence number of fence a is later than the
    156  1.1  riastrad  *	sequence number of fence b.  Since sequence numbers wrap
    157  1.1  riastrad  *	around, we define this to mean that the sequence number of
    158  1.1  riastrad  *	fence a is no more than INT_MAX past the sequence number of
    159  1.1  riastrad  *	fence b.
    160  1.1  riastrad  *
    161  1.1  riastrad  *	The two fences must have the same context.
    162  1.1  riastrad  */
    163  1.1  riastrad bool
    164  1.2  riastrad dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
    165  1.1  riastrad {
    166  1.1  riastrad 
    167  1.1  riastrad 	KASSERTMSG(a->context == b->context, "incommensurate fences"
    168  1.1  riastrad 	    ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
    169  1.1  riastrad 
    170  1.1  riastrad 	return a->seqno - b->seqno < INT_MAX;
    171  1.1  riastrad }
    172  1.1  riastrad 
    173  1.1  riastrad /*
    174  1.2  riastrad  * dma_fence_get(fence)
    175  1.1  riastrad  *
    176  1.1  riastrad  *	Acquire a reference to fence.  The fence must not be being
    177  1.1  riastrad  *	destroyed.  Return the fence.
    178  1.1  riastrad  */
    179  1.2  riastrad struct dma_fence *
    180  1.2  riastrad dma_fence_get(struct dma_fence *fence)
    181  1.1  riastrad {
    182  1.1  riastrad 
    183  1.1  riastrad 	if (fence)
    184  1.1  riastrad 		kref_get(&fence->refcount);
    185  1.1  riastrad 	return fence;
    186  1.1  riastrad }
    187  1.1  riastrad 
    188  1.1  riastrad /*
    189  1.2  riastrad  * dma_fence_get_rcu(fence)
    190  1.1  riastrad  *
    191  1.1  riastrad  *	Attempt to acquire a reference to a fence that may be about to
    192  1.1  riastrad  *	be destroyed, during a read section.  Return the fence on
    193  1.1  riastrad  *	success, or NULL on failure.
    194  1.1  riastrad  */
    195  1.2  riastrad struct dma_fence *
    196  1.2  riastrad dma_fence_get_rcu(struct dma_fence *fence)
    197  1.1  riastrad {
    198  1.1  riastrad 
    199  1.1  riastrad 	if (!kref_get_unless_zero(&fence->refcount))
    200  1.1  riastrad 		return NULL;
    201  1.1  riastrad 	return fence;
    202  1.1  riastrad }
    203  1.1  riastrad 
    204  1.3  riastrad /*
    205  1.3  riastrad  * dma_fence_get_rcu_safe(fencep)
    206  1.3  riastrad  *
    207  1.3  riastrad  *	Attempt to acquire a reference to the fence *fencep, which may
    208  1.3  riastrad  *	be about to be destroyed, during a read section.  If the value
    209  1.3  riastrad  *	of *fencep changes after we read *fencep but before we
    210  1.3  riastrad  *	increment its reference count, retry.  Return *fencep on
    211  1.3  riastrad  *	success, or NULL on failure.
    212  1.3  riastrad  */
    213  1.3  riastrad struct dma_fence *
    214  1.7  riastrad dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
    215  1.3  riastrad {
    216  1.3  riastrad 	struct dma_fence *fence, *fence0;
    217  1.3  riastrad 
    218  1.3  riastrad retry:
    219  1.3  riastrad 	fence = *fencep;
    220  1.3  riastrad 
    221  1.3  riastrad 	/* Load fence only once.  */
    222  1.3  riastrad 	__insn_barrier();
    223  1.3  riastrad 
    224  1.3  riastrad 	/* If there's nothing there, give up.  */
    225  1.3  riastrad 	if (fence == NULL)
    226  1.3  riastrad 		return NULL;
    227  1.3  riastrad 
    228  1.3  riastrad 	/* Make sure we don't load stale fence guts.  */
    229  1.3  riastrad 	membar_datadep_consumer();
    230  1.3  riastrad 
    231  1.3  riastrad 	/* Try to acquire a reference.  If we can't, try again.  */
    232  1.3  riastrad 	if (!dma_fence_get_rcu(fence))
    233  1.3  riastrad 		goto retry;
    234  1.3  riastrad 
    235  1.3  riastrad 	/*
    236  1.3  riastrad 	 * Confirm that it's still the same fence.  If not, release it
    237  1.3  riastrad 	 * and retry.
    238  1.3  riastrad 	 */
    239  1.3  riastrad 	fence0 = *fencep;
    240  1.3  riastrad 	__insn_barrier();
    241  1.3  riastrad 	if (fence != fence0) {
    242  1.3  riastrad 		dma_fence_put(fence);
    243  1.3  riastrad 		goto retry;
    244  1.3  riastrad 	}
    245  1.3  riastrad 
    246  1.3  riastrad 	/* Success!  */
    247  1.3  riastrad 	return fence;
    248  1.3  riastrad }
    249  1.3  riastrad 
    250  1.1  riastrad static void
    251  1.2  riastrad dma_fence_release(struct kref *refcount)
    252  1.1  riastrad {
    253  1.2  riastrad 	struct dma_fence *fence = container_of(refcount, struct dma_fence,
    254  1.2  riastrad 	    refcount);
    255  1.1  riastrad 
    256  1.2  riastrad 	KASSERT(!dma_fence_referenced_p(fence));
    257  1.1  riastrad 
    258  1.1  riastrad 	if (fence->ops->release)
    259  1.1  riastrad 		(*fence->ops->release)(fence);
    260  1.1  riastrad 	else
    261  1.2  riastrad 		dma_fence_free(fence);
    262  1.1  riastrad }
    263  1.1  riastrad 
    264  1.1  riastrad /*
    265  1.2  riastrad  * dma_fence_put(fence)
    266  1.1  riastrad  *
    267  1.1  riastrad  *	Release a reference to fence.  If this was the last one, call
    268  1.1  riastrad  *	the fence's release callback.
    269  1.1  riastrad  */
    270  1.1  riastrad void
    271  1.2  riastrad dma_fence_put(struct dma_fence *fence)
    272  1.1  riastrad {
    273  1.1  riastrad 
    274  1.1  riastrad 	if (fence == NULL)
    275  1.1  riastrad 		return;
    276  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    277  1.2  riastrad 	kref_put(&fence->refcount, &dma_fence_release);
    278  1.1  riastrad }
    279  1.1  riastrad 
    280  1.1  riastrad /*
    281  1.2  riastrad  * dma_fence_ensure_signal_enabled(fence)
    282  1.1  riastrad  *
    283  1.1  riastrad  *	Internal subroutine.  If the fence was already signalled,
    284  1.1  riastrad  *	return -ENOENT.  Otherwise, if the enable signalling callback
    285  1.1  riastrad  *	has not been called yet, call it.  If fails, signal the fence
    286  1.1  riastrad  *	and return -ENOENT.  If it succeeds, or if it had already been
    287  1.1  riastrad  *	called, return zero to indicate success.
    288  1.1  riastrad  *
    289  1.1  riastrad  *	Caller must hold the fence's lock.
    290  1.1  riastrad  */
    291  1.1  riastrad static int
    292  1.2  riastrad dma_fence_ensure_signal_enabled(struct dma_fence *fence)
    293  1.1  riastrad {
    294  1.1  riastrad 
    295  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    296  1.1  riastrad 	KASSERT(spin_is_locked(fence->lock));
    297  1.1  riastrad 
    298  1.1  riastrad 	/* If the fence was already signalled, fail with -ENOENT.  */
    299  1.2  riastrad 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    300  1.1  riastrad 		return -ENOENT;
    301  1.1  riastrad 
    302  1.1  riastrad 	/*
    303  1.1  riastrad 	 * If the enable signaling callback has been called, success.
    304  1.1  riastrad 	 * Otherwise, set the bit indicating it.
    305  1.1  riastrad 	 */
    306  1.2  riastrad 	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags))
    307  1.1  riastrad 		return 0;
    308  1.1  riastrad 
    309  1.1  riastrad 	/* Otherwise, note that we've called it and call it.  */
    310  1.1  riastrad 	if (!(*fence->ops->enable_signaling)(fence)) {
    311  1.1  riastrad 		/* If it failed, signal and return -ENOENT.  */
    312  1.2  riastrad 		dma_fence_signal_locked(fence);
    313  1.1  riastrad 		return -ENOENT;
    314  1.1  riastrad 	}
    315  1.1  riastrad 
    316  1.1  riastrad 	/* Success!  */
    317  1.1  riastrad 	return 0;
    318  1.1  riastrad }
    319  1.1  riastrad 
    320  1.1  riastrad /*
    321  1.2  riastrad  * dma_fence_add_callback(fence, fcb, fn)
    322  1.1  riastrad  *
    323  1.1  riastrad  *	If fence has been signalled, return -ENOENT.  If the enable
    324  1.1  riastrad  *	signalling callback hasn't been called yet, call it; if it
    325  1.1  riastrad  *	fails, return -ENOENT.  Otherwise, arrange to call fn(fence,
    326  1.1  riastrad  *	fcb) when it is signalled, and return 0.
    327  1.1  riastrad  *
    328  1.1  riastrad  *	The fence uses memory allocated by the caller in fcb from the
    329  1.2  riastrad  *	time of dma_fence_add_callback either to the time of
    330  1.2  riastrad  *	dma_fence_remove_callback, or just before calling fn.
    331  1.1  riastrad  */
    332  1.1  riastrad int
    333  1.2  riastrad dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
    334  1.2  riastrad     dma_fence_func_t fn)
    335  1.1  riastrad {
    336  1.1  riastrad 	int ret;
    337  1.1  riastrad 
    338  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    339  1.1  riastrad 
    340  1.1  riastrad 	/* Optimistically try to skip the lock if it's already signalled.  */
    341  1.2  riastrad 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
    342  1.1  riastrad 		ret = -ENOENT;
    343  1.1  riastrad 		goto out0;
    344  1.1  riastrad 	}
    345  1.1  riastrad 
    346  1.1  riastrad 	/* Acquire the lock.  */
    347  1.1  riastrad 	spin_lock(fence->lock);
    348  1.1  riastrad 
    349  1.1  riastrad 	/* Ensure signalling is enabled, or fail if we can't.  */
    350  1.2  riastrad 	ret = dma_fence_ensure_signal_enabled(fence);
    351  1.1  riastrad 	if (ret)
    352  1.1  riastrad 		goto out1;
    353  1.1  riastrad 
    354  1.1  riastrad 	/* Insert the callback.  */
    355  1.4  riastrad 	fcb->func = fn;
    356  1.1  riastrad 	TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
    357  1.1  riastrad 	fcb->fcb_onqueue = true;
    358  1.1  riastrad 
    359  1.1  riastrad 	/* Release the lock and we're done.  */
    360  1.1  riastrad out1:	spin_unlock(fence->lock);
    361  1.1  riastrad out0:	return ret;
    362  1.1  riastrad }
    363  1.1  riastrad 
    364  1.1  riastrad /*
    365  1.2  riastrad  * dma_fence_remove_callback(fence, fcb)
    366  1.1  riastrad  *
    367  1.1  riastrad  *	Remove the callback fcb from fence.  Return true if it was
    368  1.1  riastrad  *	removed from the list, or false if it had already run and so
    369  1.1  riastrad  *	was no longer queued anyway.  Caller must have already called
    370  1.2  riastrad  *	dma_fence_add_callback(fence, fcb).
    371  1.1  riastrad  */
    372  1.1  riastrad bool
    373  1.2  riastrad dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
    374  1.1  riastrad {
    375  1.1  riastrad 	bool onqueue;
    376  1.1  riastrad 
    377  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    378  1.1  riastrad 
    379  1.1  riastrad 	spin_lock(fence->lock);
    380  1.1  riastrad 	onqueue = fcb->fcb_onqueue;
    381  1.1  riastrad 	if (onqueue) {
    382  1.1  riastrad 		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
    383  1.1  riastrad 		fcb->fcb_onqueue = false;
    384  1.1  riastrad 	}
    385  1.1  riastrad 	spin_unlock(fence->lock);
    386  1.1  riastrad 
    387  1.1  riastrad 	return onqueue;
    388  1.1  riastrad }
    389  1.1  riastrad 
    390  1.1  riastrad /*
    391  1.2  riastrad  * dma_fence_enable_sw_signaling(fence)
    392  1.1  riastrad  *
    393  1.1  riastrad  *	If it hasn't been called yet and the fence hasn't been
    394  1.1  riastrad  *	signalled yet, call the fence's enable_sw_signaling callback.
    395  1.1  riastrad  *	If when that happens, the callback indicates failure by
    396  1.1  riastrad  *	returning false, signal the fence.
    397  1.1  riastrad  */
    398  1.1  riastrad void
    399  1.2  riastrad dma_fence_enable_sw_signaling(struct dma_fence *fence)
    400  1.1  riastrad {
    401  1.1  riastrad 
    402  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    403  1.1  riastrad 
    404  1.1  riastrad 	spin_lock(fence->lock);
    405  1.2  riastrad 	(void)dma_fence_ensure_signal_enabled(fence);
    406  1.1  riastrad 	spin_unlock(fence->lock);
    407  1.1  riastrad }
    408  1.1  riastrad 
    409  1.1  riastrad /*
    410  1.2  riastrad  * dma_fence_is_signaled(fence)
    411  1.1  riastrad  *
    412  1.1  riastrad  *	Test whether the fence has been signalled.  If it has been
    413  1.2  riastrad  *	signalled by dma_fence_signal(_locked), return true.  If the
    414  1.1  riastrad  *	signalled callback returns true indicating that some implicit
    415  1.1  riastrad  *	external condition has changed, call the callbacks as if with
    416  1.2  riastrad  *	dma_fence_signal.
    417  1.1  riastrad  */
    418  1.1  riastrad bool
    419  1.2  riastrad dma_fence_is_signaled(struct dma_fence *fence)
    420  1.1  riastrad {
    421  1.1  riastrad 	bool signaled;
    422  1.1  riastrad 
    423  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    424  1.1  riastrad 
    425  1.1  riastrad 	spin_lock(fence->lock);
    426  1.2  riastrad 	signaled = dma_fence_is_signaled_locked(fence);
    427  1.1  riastrad 	spin_unlock(fence->lock);
    428  1.1  riastrad 
    429  1.1  riastrad 	return signaled;
    430  1.1  riastrad }
    431  1.1  riastrad 
    432  1.1  riastrad /*
    433  1.2  riastrad  * dma_fence_is_signaled_locked(fence)
    434  1.1  riastrad  *
    435  1.1  riastrad  *	Test whether the fence has been signalled.  Like
    436  1.2  riastrad  *	dma_fence_is_signaleed, but caller already holds the fence's lock.
    437  1.1  riastrad  */
    438  1.1  riastrad bool
    439  1.2  riastrad dma_fence_is_signaled_locked(struct dma_fence *fence)
    440  1.1  riastrad {
    441  1.1  riastrad 
    442  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    443  1.1  riastrad 	KASSERT(spin_is_locked(fence->lock));
    444  1.1  riastrad 
    445  1.1  riastrad 	/* Check whether we already set the signalled bit.  */
    446  1.2  riastrad 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    447  1.1  riastrad 		return true;
    448  1.1  riastrad 
    449  1.1  riastrad 	/* If there's a signalled callback, test it.  */
    450  1.1  riastrad 	if (fence->ops->signaled) {
    451  1.1  riastrad 		if ((*fence->ops->signaled)(fence)) {
    452  1.1  riastrad 			/*
    453  1.1  riastrad 			 * It's been signalled implicitly by some
    454  1.1  riastrad 			 * external phenomonen.  Act as though someone
    455  1.2  riastrad 			 * has called dma_fence_signal.
    456  1.1  riastrad 			 */
    457  1.2  riastrad 			dma_fence_signal_locked(fence);
    458  1.1  riastrad 			return true;
    459  1.1  riastrad 		}
    460  1.1  riastrad 	}
    461  1.1  riastrad 
    462  1.1  riastrad 	return false;
    463  1.1  riastrad }
    464  1.1  riastrad 
    465  1.1  riastrad /*
    466  1.5  riastrad  * dma_fence_set_error(fence, error)
    467  1.5  riastrad  *
    468  1.5  riastrad  *	Set an error code prior to dma_fence_signal for use by a
    469  1.5  riastrad  *	waiter to learn about success or failure of the fence.
    470  1.5  riastrad  */
    471  1.5  riastrad void
    472  1.5  riastrad dma_fence_set_error(struct dma_fence *fence, int error)
    473  1.5  riastrad {
    474  1.5  riastrad 
    475  1.5  riastrad 	KASSERT(!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)));
    476  1.6  riastrad 	KASSERTMSG(error >= -ELAST, "%d", error);
    477  1.5  riastrad 	KASSERTMSG(error < 0, "%d", error);
    478  1.5  riastrad 
    479  1.5  riastrad 	fence->error = error;
    480  1.5  riastrad }
    481  1.5  riastrad 
    482  1.5  riastrad /*
    483  1.2  riastrad  * dma_fence_signal(fence)
    484  1.1  riastrad  *
    485  1.1  riastrad  *	Signal the fence.  If it has already been signalled, return
    486  1.1  riastrad  *	-EINVAL.  If it has not been signalled, call the enable
    487  1.1  riastrad  *	signalling callback if it hasn't been called yet, and remove
    488  1.1  riastrad  *	each registered callback from the queue and call it; then
    489  1.1  riastrad  *	return 0.
    490  1.1  riastrad  */
    491  1.1  riastrad int
    492  1.2  riastrad dma_fence_signal(struct dma_fence *fence)
    493  1.1  riastrad {
    494  1.1  riastrad 	int ret;
    495  1.1  riastrad 
    496  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    497  1.1  riastrad 
    498  1.1  riastrad 	spin_lock(fence->lock);
    499  1.2  riastrad 	ret = dma_fence_signal_locked(fence);
    500  1.1  riastrad 	spin_unlock(fence->lock);
    501  1.1  riastrad 
    502  1.1  riastrad 	return ret;
    503  1.1  riastrad }
    504  1.1  riastrad 
    505  1.1  riastrad /*
    506  1.2  riastrad  * dma_fence_signal_locked(fence)
    507  1.1  riastrad  *
    508  1.2  riastrad  *	Signal the fence.  Like dma_fence_signal, but caller already
    509  1.2  riastrad  *	holds the fence's lock.
    510  1.1  riastrad  */
    511  1.1  riastrad int
    512  1.2  riastrad dma_fence_signal_locked(struct dma_fence *fence)
    513  1.1  riastrad {
    514  1.2  riastrad 	struct dma_fence_cb *fcb, *next;
    515  1.1  riastrad 
    516  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    517  1.1  riastrad 	KASSERT(spin_is_locked(fence->lock));
    518  1.1  riastrad 
    519  1.1  riastrad 	/* If it's been signalled, fail; otherwise set the signalled bit.  */
    520  1.2  riastrad 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
    521  1.1  riastrad 		return -EINVAL;
    522  1.1  riastrad 
    523  1.1  riastrad 	/* Wake waiters.  */
    524  1.1  riastrad 	cv_broadcast(&fence->f_cv);
    525  1.1  riastrad 
    526  1.1  riastrad 	/* Remove and call the callbacks.  */
    527  1.1  riastrad 	TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
    528  1.1  riastrad 		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
    529  1.1  riastrad 		fcb->fcb_onqueue = false;
    530  1.4  riastrad 		(*fcb->func)(fence, fcb);
    531  1.1  riastrad 	}
    532  1.1  riastrad 
    533  1.1  riastrad 	/* Success! */
    534  1.1  riastrad 	return 0;
    535  1.1  riastrad }
    536  1.1  riastrad 
    537  1.1  riastrad struct wait_any {
    538  1.2  riastrad 	struct dma_fence_cb	fcb;
    539  1.1  riastrad 	struct wait_any1 {
    540  1.1  riastrad 		kmutex_t	lock;
    541  1.1  riastrad 		kcondvar_t	cv;
    542  1.1  riastrad 		bool		done;
    543  1.1  riastrad 	}		*common;
    544  1.1  riastrad };
    545  1.1  riastrad 
    546  1.1  riastrad static void
    547  1.2  riastrad wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
    548  1.1  riastrad {
    549  1.1  riastrad 	struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
    550  1.1  riastrad 
    551  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    552  1.1  riastrad 
    553  1.1  riastrad 	mutex_enter(&cb->common->lock);
    554  1.1  riastrad 	cb->common->done = true;
    555  1.1  riastrad 	cv_broadcast(&cb->common->cv);
    556  1.1  riastrad 	mutex_exit(&cb->common->lock);
    557  1.1  riastrad }
    558  1.1  riastrad 
    559  1.1  riastrad /*
    560  1.2  riastrad  * dma_fence_wait_any_timeout(fence, nfences, intr, timeout)
    561  1.1  riastrad  *
    562  1.1  riastrad  *	Wait for any of fences[0], fences[1], fences[2], ...,
    563  1.1  riastrad  *	fences[nfences-1] to be signaled.
    564  1.1  riastrad  */
    565  1.1  riastrad long
    566  1.2  riastrad dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
    567  1.2  riastrad     bool intr, long timeout)
    568  1.1  riastrad {
    569  1.1  riastrad 	struct wait_any1 common;
    570  1.1  riastrad 	struct wait_any *cb;
    571  1.1  riastrad 	uint32_t i, j;
    572  1.1  riastrad 	int start, end;
    573  1.1  riastrad 	long ret = 0;
    574  1.1  riastrad 
    575  1.1  riastrad 	/* Allocate an array of callback records.  */
    576  1.1  riastrad 	cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
    577  1.1  riastrad 	if (cb == NULL) {
    578  1.1  riastrad 		ret = -ENOMEM;
    579  1.1  riastrad 		goto out0;
    580  1.1  riastrad 	}
    581  1.1  riastrad 
    582  1.1  riastrad 	/* Initialize a mutex and condvar for the common wait.  */
    583  1.1  riastrad 	mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
    584  1.1  riastrad 	cv_init(&common.cv, "fence");
    585  1.1  riastrad 	common.done = false;
    586  1.1  riastrad 
    587  1.1  riastrad 	/* Add a callback to each of the fences, or stop here if we can't.  */
    588  1.1  riastrad 	for (i = 0; i < nfences; i++) {
    589  1.1  riastrad 		cb[i].common = &common;
    590  1.2  riastrad 		KASSERT(dma_fence_referenced_p(fences[i]));
    591  1.2  riastrad 		ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
    592  1.2  riastrad 		    &wait_any_cb);
    593  1.1  riastrad 		if (ret)
    594  1.1  riastrad 			goto out1;
    595  1.1  riastrad 	}
    596  1.1  riastrad 
    597  1.1  riastrad 	/*
    598  1.1  riastrad 	 * Test whether any of the fences has been signalled.  If they
    599  1.1  riastrad 	 * have, stop here.  If the haven't, we are guaranteed to be
    600  1.1  riastrad 	 * notified by one of the callbacks when they have.
    601  1.1  riastrad 	 */
    602  1.1  riastrad 	for (j = 0; j < nfences; j++) {
    603  1.2  riastrad 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags))
    604  1.1  riastrad 			goto out1;
    605  1.1  riastrad 	}
    606  1.1  riastrad 
    607  1.1  riastrad 	/*
    608  1.1  riastrad 	 * None of them was ready immediately.  Wait for one of the
    609  1.1  riastrad 	 * callbacks to notify us when it is done.
    610  1.1  riastrad 	 */
    611  1.1  riastrad 	mutex_enter(&common.lock);
    612  1.1  riastrad 	while (timeout > 0 && !common.done) {
    613  1.1  riastrad 		start = getticks();
    614  1.1  riastrad 		__insn_barrier();
    615  1.1  riastrad 		if (intr) {
    616  1.1  riastrad 			if (timeout != MAX_SCHEDULE_TIMEOUT) {
    617  1.1  riastrad 				ret = -cv_timedwait_sig(&common.cv,
    618  1.1  riastrad 				    &common.lock, MIN(timeout, /* paranoia */
    619  1.1  riastrad 					MAX_SCHEDULE_TIMEOUT));
    620  1.1  riastrad 			} else {
    621  1.1  riastrad 				ret = -cv_wait_sig(&common.cv, &common.lock);
    622  1.1  riastrad 			}
    623  1.1  riastrad 		} else {
    624  1.1  riastrad 			if (timeout != MAX_SCHEDULE_TIMEOUT) {
    625  1.1  riastrad 				ret = -cv_timedwait(&common.cv,
    626  1.1  riastrad 				    &common.lock, MIN(timeout, /* paranoia */
    627  1.1  riastrad 					MAX_SCHEDULE_TIMEOUT));
    628  1.1  riastrad 			} else {
    629  1.1  riastrad 				cv_wait(&common.cv, &common.lock);
    630  1.1  riastrad 				ret = 0;
    631  1.1  riastrad 			}
    632  1.1  riastrad 		}
    633  1.1  riastrad 		end = getticks();
    634  1.1  riastrad 		__insn_barrier();
    635  1.1  riastrad 		if (ret) {
    636  1.1  riastrad 			if (ret == -ERESTART)
    637  1.1  riastrad 				ret = -ERESTARTSYS;
    638  1.1  riastrad 			break;
    639  1.1  riastrad 		}
    640  1.1  riastrad 		timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
    641  1.1  riastrad 	}
    642  1.1  riastrad 	mutex_exit(&common.lock);
    643  1.1  riastrad 
    644  1.1  riastrad 	/*
    645  1.1  riastrad 	 * Massage the return code: if we were interrupted, return
    646  1.1  riastrad 	 * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
    647  1.1  riastrad 	 * return the remaining time.
    648  1.1  riastrad 	 */
    649  1.1  riastrad 	if (ret < 0) {
    650  1.1  riastrad 		if (ret == -EINTR || ret == -ERESTART)
    651  1.1  riastrad 			ret = -ERESTARTSYS;
    652  1.1  riastrad 		if (ret == -EWOULDBLOCK)
    653  1.1  riastrad 			ret = 0;
    654  1.1  riastrad 	} else {
    655  1.1  riastrad 		KASSERT(ret == 0);
    656  1.1  riastrad 		ret = timeout;
    657  1.1  riastrad 	}
    658  1.1  riastrad 
    659  1.1  riastrad out1:	while (i --> 0)
    660  1.2  riastrad 		(void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
    661  1.1  riastrad 	cv_destroy(&common.cv);
    662  1.1  riastrad 	mutex_destroy(&common.lock);
    663  1.1  riastrad 	kfree(cb);
    664  1.1  riastrad out0:	return ret;
    665  1.1  riastrad }
    666  1.1  riastrad 
    667  1.1  riastrad /*
    668  1.2  riastrad  * dma_fence_wait_timeout(fence, intr, timeout)
    669  1.1  riastrad  *
    670  1.1  riastrad  *	Wait until fence is signalled; or until interrupt, if intr is
    671  1.1  riastrad  *	true; or until timeout, if positive.  Return -ERESTARTSYS if
    672  1.1  riastrad  *	interrupted, negative error code on any other error, zero on
    673  1.1  riastrad  *	timeout, or positive number of ticks remaining if the fence is
    674  1.1  riastrad  *	signalled before the timeout.  Works by calling the fence wait
    675  1.1  riastrad  *	callback.
    676  1.1  riastrad  *
    677  1.1  riastrad  *	The timeout must be nonnegative and less than
    678  1.1  riastrad  *	MAX_SCHEDULE_TIMEOUT.
    679  1.1  riastrad  */
    680  1.1  riastrad long
    681  1.2  riastrad dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
    682  1.1  riastrad {
    683  1.1  riastrad 
    684  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    685  1.1  riastrad 	KASSERT(timeout >= 0);
    686  1.1  riastrad 	KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
    687  1.1  riastrad 
    688  1.1  riastrad 	return (*fence->ops->wait)(fence, intr, timeout);
    689  1.1  riastrad }
    690  1.1  riastrad 
    691  1.1  riastrad /*
    692  1.2  riastrad  * dma_fence_wait(fence, intr)
    693  1.1  riastrad  *
    694  1.1  riastrad  *	Wait until fence is signalled; or until interrupt, if intr is
    695  1.1  riastrad  *	true.  Return -ERESTARTSYS if interrupted, negative error code
    696  1.1  riastrad  *	on any other error, zero on sucess.  Works by calling the fence
    697  1.1  riastrad  *	wait callback with MAX_SCHEDULE_TIMEOUT.
    698  1.1  riastrad  */
    699  1.1  riastrad long
    700  1.2  riastrad dma_fence_wait(struct dma_fence *fence, bool intr)
    701  1.1  riastrad {
    702  1.1  riastrad 	long ret;
    703  1.1  riastrad 
    704  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    705  1.1  riastrad 
    706  1.1  riastrad 	ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
    707  1.1  riastrad 	KASSERT(ret != 0);
    708  1.1  riastrad 
    709  1.1  riastrad 	return (ret < 0 ? ret : 0);
    710  1.1  riastrad }
    711  1.1  riastrad 
    712  1.1  riastrad /*
    713  1.2  riastrad  * dma_fence_default_wait(fence, intr, timeout)
    714  1.1  riastrad  *
    715  1.1  riastrad  *	Default implementation of fence wait callback using a condition
    716  1.1  riastrad  *	variable.  If the fence is already signalled, return timeout,
    717  1.1  riastrad  *	or 1 if no timeout.  If the enable signalling callback hasn't
    718  1.1  riastrad  *	been called, call it, and if it fails, act as if the fence had
    719  1.1  riastrad  *	been signalled.  Otherwise, wait on the internal condvar.  If
    720  1.1  riastrad  *	timeout is MAX_SCHEDULE_TIMEOUT, treat it as no timeout.
    721  1.1  riastrad  */
    722  1.1  riastrad long
    723  1.2  riastrad dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
    724  1.1  riastrad {
    725  1.1  riastrad 	int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
    726  1.1  riastrad 	kmutex_t *lock = &fence->lock->sl_lock;
    727  1.1  riastrad 	long ret = 0;
    728  1.1  riastrad 
    729  1.2  riastrad 	KASSERT(dma_fence_referenced_p(fence));
    730  1.1  riastrad 	KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
    731  1.1  riastrad 	KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
    732  1.1  riastrad 
    733  1.1  riastrad 	/* Optimistically try to skip the lock if it's already signalled.  */
    734  1.2  riastrad 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    735  1.1  riastrad 		return (timeout < MAX_SCHEDULE_TIMEOUT ? timeout : 1);
    736  1.1  riastrad 
    737  1.1  riastrad 	/* Acquire the lock.  */
    738  1.1  riastrad 	spin_lock(fence->lock);
    739  1.1  riastrad 
    740  1.1  riastrad 	/* Ensure signalling is enabled, or fail if we can't.  */
    741  1.2  riastrad 	ret = dma_fence_ensure_signal_enabled(fence);
    742  1.1  riastrad 	if (ret)
    743  1.1  riastrad 		goto out;
    744  1.1  riastrad 
    745  1.1  riastrad 	/* Find out what our deadline is so we can handle spurious wakeup.  */
    746  1.1  riastrad 	if (timeout < MAX_SCHEDULE_TIMEOUT) {
    747  1.1  riastrad 		now = getticks();
    748  1.1  riastrad 		__insn_barrier();
    749  1.1  riastrad 		starttime = now;
    750  1.1  riastrad 		deadline = starttime + timeout;
    751  1.1  riastrad 	}
    752  1.1  riastrad 
    753  1.1  riastrad 	/* Wait until the signalled bit is set.  */
    754  1.2  riastrad 	while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
    755  1.1  riastrad 		/*
    756  1.1  riastrad 		 * If there's a timeout and we've passed the deadline,
    757  1.1  riastrad 		 * give up.
    758  1.1  riastrad 		 */
    759  1.1  riastrad 		if (timeout < MAX_SCHEDULE_TIMEOUT) {
    760  1.1  riastrad 			now = getticks();
    761  1.1  riastrad 			__insn_barrier();
    762  1.1  riastrad 			if (deadline <= now)
    763  1.1  riastrad 				break;
    764  1.1  riastrad 		}
    765  1.1  riastrad 		if (intr) {
    766  1.1  riastrad 			if (timeout < MAX_SCHEDULE_TIMEOUT) {
    767  1.1  riastrad 				ret = -cv_timedwait_sig(&fence->f_cv, lock,
    768  1.1  riastrad 				    deadline - now);
    769  1.1  riastrad 			} else {
    770  1.1  riastrad 				ret = -cv_wait_sig(&fence->f_cv, lock);
    771  1.1  riastrad 			}
    772  1.1  riastrad 		} else {
    773  1.1  riastrad 			if (timeout < MAX_SCHEDULE_TIMEOUT) {
    774  1.1  riastrad 				ret = -cv_timedwait(&fence->f_cv, lock,
    775  1.1  riastrad 				    deadline - now);
    776  1.1  riastrad 			} else {
    777  1.1  riastrad 				cv_wait(&fence->f_cv, lock);
    778  1.1  riastrad 				ret = 0;
    779  1.1  riastrad 			}
    780  1.1  riastrad 		}
    781  1.1  riastrad 		/* If the wait failed, give up.  */
    782  1.1  riastrad 		if (ret) {
    783  1.1  riastrad 			if (ret == -ERESTART)
    784  1.1  riastrad 				ret = -ERESTARTSYS;
    785  1.1  riastrad 			break;
    786  1.1  riastrad 		}
    787  1.1  riastrad 	}
    788  1.1  riastrad 
    789  1.1  riastrad out:
    790  1.1  riastrad 	/* All done.  Release the lock.  */
    791  1.1  riastrad 	spin_unlock(fence->lock);
    792  1.1  riastrad 
    793  1.1  riastrad 	/* If cv_timedwait gave up, return 0 meaning timeout.  */
    794  1.1  riastrad 	if (ret == -EWOULDBLOCK) {
    795  1.1  riastrad 		/* Only cv_timedwait and cv_timedwait_sig can return this.  */
    796  1.1  riastrad 		KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
    797  1.1  riastrad 		return 0;
    798  1.1  riastrad 	}
    799  1.1  riastrad 
    800  1.1  riastrad 	/* If there was a timeout and the deadline passed, return 0.  */
    801  1.1  riastrad 	if (timeout < MAX_SCHEDULE_TIMEOUT) {
    802  1.1  riastrad 		if (deadline <= now)
    803  1.1  riastrad 			return 0;
    804  1.1  riastrad 	}
    805  1.1  riastrad 
    806  1.1  riastrad 	/* If we were interrupted, return -ERESTARTSYS.  */
    807  1.1  riastrad 	if (ret == -EINTR || ret == -ERESTART)
    808  1.1  riastrad 		return -ERESTARTSYS;
    809  1.1  riastrad 
    810  1.1  riastrad 	/* If there was any other kind of error, fail.  */
    811  1.1  riastrad 	if (ret)
    812  1.1  riastrad 		return ret;
    813  1.1  riastrad 
    814  1.1  riastrad 	/*
    815  1.1  riastrad 	 * Success!  Return the number of ticks left, at least 1, or 1
    816  1.1  riastrad 	 * if no timeout.
    817  1.1  riastrad 	 */
    818  1.1  riastrad 	return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
    819  1.1  riastrad }
    820