Home | History | Annotate | Line # | Download | only in linux
linux_dma_fence.c revision 1.7
      1 /*	$NetBSD: linux_dma_fence.c,v 1.7 2021/12/19 01:48:22 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: linux_dma_fence.c,v 1.7 2021/12/19 01:48:22 riastradh Exp $");
     34 
     35 #include <sys/atomic.h>
     36 #include <sys/condvar.h>
     37 #include <sys/queue.h>
     38 
     39 #include <linux/atomic.h>
     40 #include <linux/dma-fence.h>
     41 #include <linux/errno.h>
     42 #include <linux/kref.h>
     43 #include <linux/sched.h>
     44 #include <linux/spinlock.h>
     45 
     46 /*
     47  * linux_dma_fence_trace
     48  *
     49  *	True if we print DMA_FENCE_TRACE messages, false if not.  These
     50  *	are extremely noisy, too much even for AB_VERBOSE and AB_DEBUG
     51  *	in boothowto.
     52  */
     53 int	linux_dma_fence_trace = 0;
     54 
     55 /*
     56  * dma_fence_referenced_p(fence)
     57  *
     58  *	True if fence has a positive reference count.  True after
     59  *	dma_fence_init; after the last dma_fence_put, this becomes
     60  *	false.
     61  */
     62 static inline bool __diagused
     63 dma_fence_referenced_p(struct dma_fence *fence)
     64 {
     65 
     66 	return kref_referenced_p(&fence->refcount);
     67 }
     68 
     69 /*
     70  * dma_fence_init(fence, ops, lock, context, seqno)
     71  *
     72  *	Initialize fence.  Caller should call dma_fence_destroy when
     73  *	done, after all references have been released.
     74  */
     75 void
     76 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
     77     spinlock_t *lock, unsigned context, unsigned seqno)
     78 {
     79 
     80 	kref_init(&fence->refcount);
     81 	fence->lock = lock;
     82 	fence->flags = 0;
     83 	fence->context = context;
     84 	fence->seqno = seqno;
     85 	fence->ops = ops;
     86 	TAILQ_INIT(&fence->f_callbacks);
     87 	cv_init(&fence->f_cv, "dmafence");
     88 }
     89 
     90 /*
     91  * dma_fence_destroy(fence)
     92  *
     93  *	Clean up memory initialized with dma_fence_init.  This is meant
     94  *	to be used after a fence release callback.
     95  */
     96 void
     97 dma_fence_destroy(struct dma_fence *fence)
     98 {
     99 
    100 	KASSERT(!dma_fence_referenced_p(fence));
    101 
    102 	KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
    103 	cv_destroy(&fence->f_cv);
    104 }
    105 
    106 static void
    107 dma_fence_free_cb(struct rcu_head *rcu)
    108 {
    109 	struct dma_fence *fence = container_of(rcu, struct dma_fence, f_rcu);
    110 
    111 	KASSERT(!dma_fence_referenced_p(fence));
    112 
    113 	dma_fence_destroy(fence);
    114 	kfree(fence);
    115 }
    116 
    117 /*
    118  * dma_fence_free(fence)
    119  *
    120  *	Schedule fence to be destroyed and then freed with kfree after
    121  *	any pending RCU read sections on all CPUs have completed.
    122  *	Caller must guarantee all references have been released.  This
    123  *	is meant to be used after a fence release callback.
    124  *
    125  *	NOTE: Callers assume kfree will be used.  We don't even use
    126  *	kmalloc to allocate these -- caller is expected to allocate
    127  *	memory with kmalloc to be initialized with dma_fence_init.
    128  */
    129 void
    130 dma_fence_free(struct dma_fence *fence)
    131 {
    132 
    133 	KASSERT(!dma_fence_referenced_p(fence));
    134 
    135 	call_rcu(&fence->f_rcu, &dma_fence_free_cb);
    136 }
    137 
    138 /*
    139  * dma_fence_context_alloc(n)
    140  *
    141  *	Return the first of a contiguous sequence of unique
    142  *	identifiers, at least until the system wraps around.
    143  */
    144 unsigned
    145 dma_fence_context_alloc(unsigned n)
    146 {
    147 	static volatile unsigned next_context = 0;
    148 
    149 	return atomic_add_int_nv(&next_context, n) - n;
    150 }
    151 
    152 /*
    153  * dma_fence_is_later(a, b)
    154  *
    155  *	True if the sequence number of fence a is later than the
    156  *	sequence number of fence b.  Since sequence numbers wrap
    157  *	around, we define this to mean that the sequence number of
    158  *	fence a is no more than INT_MAX past the sequence number of
    159  *	fence b.
    160  *
    161  *	The two fences must have the same context.
    162  */
    163 bool
    164 dma_fence_is_later(struct dma_fence *a, struct dma_fence *b)
    165 {
    166 
    167 	KASSERTMSG(a->context == b->context, "incommensurate fences"
    168 	    ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);
    169 
    170 	return a->seqno - b->seqno < INT_MAX;
    171 }
    172 
    173 /*
    174  * dma_fence_get(fence)
    175  *
    176  *	Acquire a reference to fence.  The fence must not be being
    177  *	destroyed.  Return the fence.
    178  */
    179 struct dma_fence *
    180 dma_fence_get(struct dma_fence *fence)
    181 {
    182 
    183 	if (fence)
    184 		kref_get(&fence->refcount);
    185 	return fence;
    186 }
    187 
    188 /*
    189  * dma_fence_get_rcu(fence)
    190  *
    191  *	Attempt to acquire a reference to a fence that may be about to
    192  *	be destroyed, during a read section.  Return the fence on
    193  *	success, or NULL on failure.
    194  */
    195 struct dma_fence *
    196 dma_fence_get_rcu(struct dma_fence *fence)
    197 {
    198 
    199 	if (!kref_get_unless_zero(&fence->refcount))
    200 		return NULL;
    201 	return fence;
    202 }
    203 
    204 /*
    205  * dma_fence_get_rcu_safe(fencep)
    206  *
    207  *	Attempt to acquire a reference to the fence *fencep, which may
    208  *	be about to be destroyed, during a read section.  If the value
    209  *	of *fencep changes after we read *fencep but before we
    210  *	increment its reference count, retry.  Return *fencep on
    211  *	success, or NULL on failure.
    212  */
    213 struct dma_fence *
    214 dma_fence_get_rcu_safe(struct dma_fence *volatile const *fencep)
    215 {
    216 	struct dma_fence *fence, *fence0;
    217 
    218 retry:
    219 	fence = *fencep;
    220 
    221 	/* Load fence only once.  */
    222 	__insn_barrier();
    223 
    224 	/* If there's nothing there, give up.  */
    225 	if (fence == NULL)
    226 		return NULL;
    227 
    228 	/* Make sure we don't load stale fence guts.  */
    229 	membar_datadep_consumer();
    230 
    231 	/* Try to acquire a reference.  If we can't, try again.  */
    232 	if (!dma_fence_get_rcu(fence))
    233 		goto retry;
    234 
    235 	/*
    236 	 * Confirm that it's still the same fence.  If not, release it
    237 	 * and retry.
    238 	 */
    239 	fence0 = *fencep;
    240 	__insn_barrier();
    241 	if (fence != fence0) {
    242 		dma_fence_put(fence);
    243 		goto retry;
    244 	}
    245 
    246 	/* Success!  */
    247 	return fence;
    248 }
    249 
    250 static void
    251 dma_fence_release(struct kref *refcount)
    252 {
    253 	struct dma_fence *fence = container_of(refcount, struct dma_fence,
    254 	    refcount);
    255 
    256 	KASSERT(!dma_fence_referenced_p(fence));
    257 
    258 	if (fence->ops->release)
    259 		(*fence->ops->release)(fence);
    260 	else
    261 		dma_fence_free(fence);
    262 }
    263 
    264 /*
    265  * dma_fence_put(fence)
    266  *
    267  *	Release a reference to fence.  If this was the last one, call
    268  *	the fence's release callback.
    269  */
    270 void
    271 dma_fence_put(struct dma_fence *fence)
    272 {
    273 
    274 	if (fence == NULL)
    275 		return;
    276 	KASSERT(dma_fence_referenced_p(fence));
    277 	kref_put(&fence->refcount, &dma_fence_release);
    278 }
    279 
    280 /*
    281  * dma_fence_ensure_signal_enabled(fence)
    282  *
    283  *	Internal subroutine.  If the fence was already signalled,
    284  *	return -ENOENT.  Otherwise, if the enable signalling callback
    285  *	has not been called yet, call it.  If fails, signal the fence
    286  *	and return -ENOENT.  If it succeeds, or if it had already been
    287  *	called, return zero to indicate success.
    288  *
    289  *	Caller must hold the fence's lock.
    290  */
    291 static int
    292 dma_fence_ensure_signal_enabled(struct dma_fence *fence)
    293 {
    294 
    295 	KASSERT(dma_fence_referenced_p(fence));
    296 	KASSERT(spin_is_locked(fence->lock));
    297 
    298 	/* If the fence was already signalled, fail with -ENOENT.  */
    299 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    300 		return -ENOENT;
    301 
    302 	/*
    303 	 * If the enable signaling callback has been called, success.
    304 	 * Otherwise, set the bit indicating it.
    305 	 */
    306 	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags))
    307 		return 0;
    308 
    309 	/* Otherwise, note that we've called it and call it.  */
    310 	if (!(*fence->ops->enable_signaling)(fence)) {
    311 		/* If it failed, signal and return -ENOENT.  */
    312 		dma_fence_signal_locked(fence);
    313 		return -ENOENT;
    314 	}
    315 
    316 	/* Success!  */
    317 	return 0;
    318 }
    319 
    320 /*
    321  * dma_fence_add_callback(fence, fcb, fn)
    322  *
    323  *	If fence has been signalled, return -ENOENT.  If the enable
    324  *	signalling callback hasn't been called yet, call it; if it
    325  *	fails, return -ENOENT.  Otherwise, arrange to call fn(fence,
    326  *	fcb) when it is signalled, and return 0.
    327  *
    328  *	The fence uses memory allocated by the caller in fcb from the
    329  *	time of dma_fence_add_callback either to the time of
    330  *	dma_fence_remove_callback, or just before calling fn.
    331  */
    332 int
    333 dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *fcb,
    334     dma_fence_func_t fn)
    335 {
    336 	int ret;
    337 
    338 	KASSERT(dma_fence_referenced_p(fence));
    339 
    340 	/* Optimistically try to skip the lock if it's already signalled.  */
    341 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)) {
    342 		ret = -ENOENT;
    343 		goto out0;
    344 	}
    345 
    346 	/* Acquire the lock.  */
    347 	spin_lock(fence->lock);
    348 
    349 	/* Ensure signalling is enabled, or fail if we can't.  */
    350 	ret = dma_fence_ensure_signal_enabled(fence);
    351 	if (ret)
    352 		goto out1;
    353 
    354 	/* Insert the callback.  */
    355 	fcb->func = fn;
    356 	TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
    357 	fcb->fcb_onqueue = true;
    358 
    359 	/* Release the lock and we're done.  */
    360 out1:	spin_unlock(fence->lock);
    361 out0:	return ret;
    362 }
    363 
    364 /*
    365  * dma_fence_remove_callback(fence, fcb)
    366  *
    367  *	Remove the callback fcb from fence.  Return true if it was
    368  *	removed from the list, or false if it had already run and so
    369  *	was no longer queued anyway.  Caller must have already called
    370  *	dma_fence_add_callback(fence, fcb).
    371  */
    372 bool
    373 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *fcb)
    374 {
    375 	bool onqueue;
    376 
    377 	KASSERT(dma_fence_referenced_p(fence));
    378 
    379 	spin_lock(fence->lock);
    380 	onqueue = fcb->fcb_onqueue;
    381 	if (onqueue) {
    382 		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
    383 		fcb->fcb_onqueue = false;
    384 	}
    385 	spin_unlock(fence->lock);
    386 
    387 	return onqueue;
    388 }
    389 
    390 /*
    391  * dma_fence_enable_sw_signaling(fence)
    392  *
    393  *	If it hasn't been called yet and the fence hasn't been
    394  *	signalled yet, call the fence's enable_sw_signaling callback.
    395  *	If when that happens, the callback indicates failure by
    396  *	returning false, signal the fence.
    397  */
    398 void
    399 dma_fence_enable_sw_signaling(struct dma_fence *fence)
    400 {
    401 
    402 	KASSERT(dma_fence_referenced_p(fence));
    403 
    404 	spin_lock(fence->lock);
    405 	(void)dma_fence_ensure_signal_enabled(fence);
    406 	spin_unlock(fence->lock);
    407 }
    408 
    409 /*
    410  * dma_fence_is_signaled(fence)
    411  *
    412  *	Test whether the fence has been signalled.  If it has been
    413  *	signalled by dma_fence_signal(_locked), return true.  If the
    414  *	signalled callback returns true indicating that some implicit
    415  *	external condition has changed, call the callbacks as if with
    416  *	dma_fence_signal.
    417  */
    418 bool
    419 dma_fence_is_signaled(struct dma_fence *fence)
    420 {
    421 	bool signaled;
    422 
    423 	KASSERT(dma_fence_referenced_p(fence));
    424 
    425 	spin_lock(fence->lock);
    426 	signaled = dma_fence_is_signaled_locked(fence);
    427 	spin_unlock(fence->lock);
    428 
    429 	return signaled;
    430 }
    431 
    432 /*
    433  * dma_fence_is_signaled_locked(fence)
    434  *
    435  *	Test whether the fence has been signalled.  Like
    436  *	dma_fence_is_signaleed, but caller already holds the fence's lock.
    437  */
    438 bool
    439 dma_fence_is_signaled_locked(struct dma_fence *fence)
    440 {
    441 
    442 	KASSERT(dma_fence_referenced_p(fence));
    443 	KASSERT(spin_is_locked(fence->lock));
    444 
    445 	/* Check whether we already set the signalled bit.  */
    446 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    447 		return true;
    448 
    449 	/* If there's a signalled callback, test it.  */
    450 	if (fence->ops->signaled) {
    451 		if ((*fence->ops->signaled)(fence)) {
    452 			/*
    453 			 * It's been signalled implicitly by some
    454 			 * external phenomonen.  Act as though someone
    455 			 * has called dma_fence_signal.
    456 			 */
    457 			dma_fence_signal_locked(fence);
    458 			return true;
    459 		}
    460 	}
    461 
    462 	return false;
    463 }
    464 
    465 /*
    466  * dma_fence_set_error(fence, error)
    467  *
    468  *	Set an error code prior to dma_fence_signal for use by a
    469  *	waiter to learn about success or failure of the fence.
    470  */
    471 void
    472 dma_fence_set_error(struct dma_fence *fence, int error)
    473 {
    474 
    475 	KASSERT(!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT)));
    476 	KASSERTMSG(error >= -ELAST, "%d", error);
    477 	KASSERTMSG(error < 0, "%d", error);
    478 
    479 	fence->error = error;
    480 }
    481 
    482 /*
    483  * dma_fence_signal(fence)
    484  *
    485  *	Signal the fence.  If it has already been signalled, return
    486  *	-EINVAL.  If it has not been signalled, call the enable
    487  *	signalling callback if it hasn't been called yet, and remove
    488  *	each registered callback from the queue and call it; then
    489  *	return 0.
    490  */
    491 int
    492 dma_fence_signal(struct dma_fence *fence)
    493 {
    494 	int ret;
    495 
    496 	KASSERT(dma_fence_referenced_p(fence));
    497 
    498 	spin_lock(fence->lock);
    499 	ret = dma_fence_signal_locked(fence);
    500 	spin_unlock(fence->lock);
    501 
    502 	return ret;
    503 }
    504 
    505 /*
    506  * dma_fence_signal_locked(fence)
    507  *
    508  *	Signal the fence.  Like dma_fence_signal, but caller already
    509  *	holds the fence's lock.
    510  */
    511 int
    512 dma_fence_signal_locked(struct dma_fence *fence)
    513 {
    514 	struct dma_fence_cb *fcb, *next;
    515 
    516 	KASSERT(dma_fence_referenced_p(fence));
    517 	KASSERT(spin_is_locked(fence->lock));
    518 
    519 	/* If it's been signalled, fail; otherwise set the signalled bit.  */
    520 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
    521 		return -EINVAL;
    522 
    523 	/* Wake waiters.  */
    524 	cv_broadcast(&fence->f_cv);
    525 
    526 	/* Remove and call the callbacks.  */
    527 	TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
    528 		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
    529 		fcb->fcb_onqueue = false;
    530 		(*fcb->func)(fence, fcb);
    531 	}
    532 
    533 	/* Success! */
    534 	return 0;
    535 }
    536 
    537 struct wait_any {
    538 	struct dma_fence_cb	fcb;
    539 	struct wait_any1 {
    540 		kmutex_t	lock;
    541 		kcondvar_t	cv;
    542 		bool		done;
    543 	}		*common;
    544 };
    545 
    546 static void
    547 wait_any_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
    548 {
    549 	struct wait_any *cb = container_of(fcb, struct wait_any, fcb);
    550 
    551 	KASSERT(dma_fence_referenced_p(fence));
    552 
    553 	mutex_enter(&cb->common->lock);
    554 	cb->common->done = true;
    555 	cv_broadcast(&cb->common->cv);
    556 	mutex_exit(&cb->common->lock);
    557 }
    558 
    559 /*
    560  * dma_fence_wait_any_timeout(fence, nfences, intr, timeout)
    561  *
    562  *	Wait for any of fences[0], fences[1], fences[2], ...,
    563  *	fences[nfences-1] to be signaled.
    564  */
    565 long
    566 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t nfences,
    567     bool intr, long timeout)
    568 {
    569 	struct wait_any1 common;
    570 	struct wait_any *cb;
    571 	uint32_t i, j;
    572 	int start, end;
    573 	long ret = 0;
    574 
    575 	/* Allocate an array of callback records.  */
    576 	cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
    577 	if (cb == NULL) {
    578 		ret = -ENOMEM;
    579 		goto out0;
    580 	}
    581 
    582 	/* Initialize a mutex and condvar for the common wait.  */
    583 	mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
    584 	cv_init(&common.cv, "fence");
    585 	common.done = false;
    586 
    587 	/* Add a callback to each of the fences, or stop here if we can't.  */
    588 	for (i = 0; i < nfences; i++) {
    589 		cb[i].common = &common;
    590 		KASSERT(dma_fence_referenced_p(fences[i]));
    591 		ret = dma_fence_add_callback(fences[i], &cb[i].fcb,
    592 		    &wait_any_cb);
    593 		if (ret)
    594 			goto out1;
    595 	}
    596 
    597 	/*
    598 	 * Test whether any of the fences has been signalled.  If they
    599 	 * have, stop here.  If the haven't, we are guaranteed to be
    600 	 * notified by one of the callbacks when they have.
    601 	 */
    602 	for (j = 0; j < nfences; j++) {
    603 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags))
    604 			goto out1;
    605 	}
    606 
    607 	/*
    608 	 * None of them was ready immediately.  Wait for one of the
    609 	 * callbacks to notify us when it is done.
    610 	 */
    611 	mutex_enter(&common.lock);
    612 	while (timeout > 0 && !common.done) {
    613 		start = getticks();
    614 		__insn_barrier();
    615 		if (intr) {
    616 			if (timeout != MAX_SCHEDULE_TIMEOUT) {
    617 				ret = -cv_timedwait_sig(&common.cv,
    618 				    &common.lock, MIN(timeout, /* paranoia */
    619 					MAX_SCHEDULE_TIMEOUT));
    620 			} else {
    621 				ret = -cv_wait_sig(&common.cv, &common.lock);
    622 			}
    623 		} else {
    624 			if (timeout != MAX_SCHEDULE_TIMEOUT) {
    625 				ret = -cv_timedwait(&common.cv,
    626 				    &common.lock, MIN(timeout, /* paranoia */
    627 					MAX_SCHEDULE_TIMEOUT));
    628 			} else {
    629 				cv_wait(&common.cv, &common.lock);
    630 				ret = 0;
    631 			}
    632 		}
    633 		end = getticks();
    634 		__insn_barrier();
    635 		if (ret) {
    636 			if (ret == -ERESTART)
    637 				ret = -ERESTARTSYS;
    638 			break;
    639 		}
    640 		timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
    641 	}
    642 	mutex_exit(&common.lock);
    643 
    644 	/*
    645 	 * Massage the return code: if we were interrupted, return
    646 	 * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
    647 	 * return the remaining time.
    648 	 */
    649 	if (ret < 0) {
    650 		if (ret == -EINTR || ret == -ERESTART)
    651 			ret = -ERESTARTSYS;
    652 		if (ret == -EWOULDBLOCK)
    653 			ret = 0;
    654 	} else {
    655 		KASSERT(ret == 0);
    656 		ret = timeout;
    657 	}
    658 
    659 out1:	while (i --> 0)
    660 		(void)dma_fence_remove_callback(fences[i], &cb[i].fcb);
    661 	cv_destroy(&common.cv);
    662 	mutex_destroy(&common.lock);
    663 	kfree(cb);
    664 out0:	return ret;
    665 }
    666 
    667 /*
    668  * dma_fence_wait_timeout(fence, intr, timeout)
    669  *
    670  *	Wait until fence is signalled; or until interrupt, if intr is
    671  *	true; or until timeout, if positive.  Return -ERESTARTSYS if
    672  *	interrupted, negative error code on any other error, zero on
    673  *	timeout, or positive number of ticks remaining if the fence is
    674  *	signalled before the timeout.  Works by calling the fence wait
    675  *	callback.
    676  *
    677  *	The timeout must be nonnegative and less than
    678  *	MAX_SCHEDULE_TIMEOUT.
    679  */
    680 long
    681 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
    682 {
    683 
    684 	KASSERT(dma_fence_referenced_p(fence));
    685 	KASSERT(timeout >= 0);
    686 	KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
    687 
    688 	return (*fence->ops->wait)(fence, intr, timeout);
    689 }
    690 
    691 /*
    692  * dma_fence_wait(fence, intr)
    693  *
    694  *	Wait until fence is signalled; or until interrupt, if intr is
    695  *	true.  Return -ERESTARTSYS if interrupted, negative error code
    696  *	on any other error, zero on sucess.  Works by calling the fence
    697  *	wait callback with MAX_SCHEDULE_TIMEOUT.
    698  */
    699 long
    700 dma_fence_wait(struct dma_fence *fence, bool intr)
    701 {
    702 	long ret;
    703 
    704 	KASSERT(dma_fence_referenced_p(fence));
    705 
    706 	ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
    707 	KASSERT(ret != 0);
    708 
    709 	return (ret < 0 ? ret : 0);
    710 }
    711 
    712 /*
    713  * dma_fence_default_wait(fence, intr, timeout)
    714  *
    715  *	Default implementation of fence wait callback using a condition
    716  *	variable.  If the fence is already signalled, return timeout,
    717  *	or 1 if no timeout.  If the enable signalling callback hasn't
    718  *	been called, call it, and if it fails, act as if the fence had
    719  *	been signalled.  Otherwise, wait on the internal condvar.  If
    720  *	timeout is MAX_SCHEDULE_TIMEOUT, treat it as no timeout.
    721  */
    722 long
    723 dma_fence_default_wait(struct dma_fence *fence, bool intr, long timeout)
    724 {
    725 	int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
    726 	kmutex_t *lock = &fence->lock->sl_lock;
    727 	long ret = 0;
    728 
    729 	KASSERT(dma_fence_referenced_p(fence));
    730 	KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
    731 	KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);
    732 
    733 	/* Optimistically try to skip the lock if it's already signalled.  */
    734 	if (fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))
    735 		return (timeout < MAX_SCHEDULE_TIMEOUT ? timeout : 1);
    736 
    737 	/* Acquire the lock.  */
    738 	spin_lock(fence->lock);
    739 
    740 	/* Ensure signalling is enabled, or fail if we can't.  */
    741 	ret = dma_fence_ensure_signal_enabled(fence);
    742 	if (ret)
    743 		goto out;
    744 
    745 	/* Find out what our deadline is so we can handle spurious wakeup.  */
    746 	if (timeout < MAX_SCHEDULE_TIMEOUT) {
    747 		now = getticks();
    748 		__insn_barrier();
    749 		starttime = now;
    750 		deadline = starttime + timeout;
    751 	}
    752 
    753 	/* Wait until the signalled bit is set.  */
    754 	while (!(fence->flags & (1u << DMA_FENCE_FLAG_SIGNALED_BIT))) {
    755 		/*
    756 		 * If there's a timeout and we've passed the deadline,
    757 		 * give up.
    758 		 */
    759 		if (timeout < MAX_SCHEDULE_TIMEOUT) {
    760 			now = getticks();
    761 			__insn_barrier();
    762 			if (deadline <= now)
    763 				break;
    764 		}
    765 		if (intr) {
    766 			if (timeout < MAX_SCHEDULE_TIMEOUT) {
    767 				ret = -cv_timedwait_sig(&fence->f_cv, lock,
    768 				    deadline - now);
    769 			} else {
    770 				ret = -cv_wait_sig(&fence->f_cv, lock);
    771 			}
    772 		} else {
    773 			if (timeout < MAX_SCHEDULE_TIMEOUT) {
    774 				ret = -cv_timedwait(&fence->f_cv, lock,
    775 				    deadline - now);
    776 			} else {
    777 				cv_wait(&fence->f_cv, lock);
    778 				ret = 0;
    779 			}
    780 		}
    781 		/* If the wait failed, give up.  */
    782 		if (ret) {
    783 			if (ret == -ERESTART)
    784 				ret = -ERESTARTSYS;
    785 			break;
    786 		}
    787 	}
    788 
    789 out:
    790 	/* All done.  Release the lock.  */
    791 	spin_unlock(fence->lock);
    792 
    793 	/* If cv_timedwait gave up, return 0 meaning timeout.  */
    794 	if (ret == -EWOULDBLOCK) {
    795 		/* Only cv_timedwait and cv_timedwait_sig can return this.  */
    796 		KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
    797 		return 0;
    798 	}
    799 
    800 	/* If there was a timeout and the deadline passed, return 0.  */
    801 	if (timeout < MAX_SCHEDULE_TIMEOUT) {
    802 		if (deadline <= now)
    803 			return 0;
    804 	}
    805 
    806 	/* If we were interrupted, return -ERESTARTSYS.  */
    807 	if (ret == -EINTR || ret == -ERESTART)
    808 		return -ERESTARTSYS;
    809 
    810 	/* If there was any other kind of error, fail.  */
    811 	if (ret)
    812 		return ret;
    813 
    814 	/*
    815 	 * Success!  Return the number of ticks left, at least 1, or 1
    816 	 * if no timeout.
    817 	 */
    818 	return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
    819 }
    820