linux_dma_resv.c revision 1.11 1 1.11 riastrad /* $NetBSD: linux_dma_resv.c,v 1.11 2021/12/19 12:21:30 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #include <sys/cdefs.h>
33 1.11 riastrad __KERNEL_RCSID(0, "$NetBSD: linux_dma_resv.c,v 1.11 2021/12/19 12:21:30 riastradh Exp $");
34 1.1 riastrad
35 1.1 riastrad #include <sys/param.h>
36 1.1 riastrad #include <sys/poll.h>
37 1.1 riastrad #include <sys/select.h>
38 1.1 riastrad
39 1.1 riastrad #include <linux/dma-fence.h>
40 1.1 riastrad #include <linux/dma-resv.h>
41 1.1 riastrad #include <linux/seqlock.h>
42 1.1 riastrad #include <linux/ww_mutex.h>
43 1.1 riastrad
44 1.1 riastrad DEFINE_WW_CLASS(reservation_ww_class __cacheline_aligned);
45 1.1 riastrad
46 1.1 riastrad static struct dma_resv_list *
47 1.1 riastrad objlist_tryalloc(uint32_t n)
48 1.1 riastrad {
49 1.1 riastrad struct dma_resv_list *list;
50 1.1 riastrad
51 1.1 riastrad list = kmem_alloc(offsetof(typeof(*list), shared[n]), KM_NOSLEEP);
52 1.1 riastrad if (list == NULL)
53 1.1 riastrad return NULL;
54 1.1 riastrad list->shared_max = n;
55 1.1 riastrad
56 1.1 riastrad return list;
57 1.1 riastrad }
58 1.1 riastrad
59 1.1 riastrad static void
60 1.1 riastrad objlist_free(struct dma_resv_list *list)
61 1.1 riastrad {
62 1.1 riastrad uint32_t n = list->shared_max;
63 1.1 riastrad
64 1.1 riastrad kmem_free(list, offsetof(typeof(*list), shared[n]));
65 1.1 riastrad }
66 1.1 riastrad
67 1.1 riastrad static void
68 1.1 riastrad objlist_free_cb(struct rcu_head *rcu)
69 1.1 riastrad {
70 1.1 riastrad struct dma_resv_list *list = container_of(rcu,
71 1.1 riastrad struct dma_resv_list, rol_rcu);
72 1.1 riastrad
73 1.1 riastrad objlist_free(list);
74 1.1 riastrad }
75 1.1 riastrad
76 1.1 riastrad static void
77 1.1 riastrad objlist_defer_free(struct dma_resv_list *list)
78 1.1 riastrad {
79 1.1 riastrad
80 1.1 riastrad call_rcu(&list->rol_rcu, objlist_free_cb);
81 1.1 riastrad }
82 1.1 riastrad
83 1.1 riastrad /*
84 1.1 riastrad * dma_resv_init(robj)
85 1.1 riastrad *
86 1.1 riastrad * Initialize a reservation object. Caller must later destroy it
87 1.1 riastrad * with dma_resv_fini.
88 1.1 riastrad */
89 1.1 riastrad void
90 1.1 riastrad dma_resv_init(struct dma_resv *robj)
91 1.1 riastrad {
92 1.1 riastrad
93 1.1 riastrad ww_mutex_init(&robj->lock, &reservation_ww_class);
94 1.1 riastrad seqcount_init(&robj->seq);
95 1.1 riastrad robj->fence_excl = NULL;
96 1.1 riastrad robj->fence = NULL;
97 1.1 riastrad robj->robj_prealloc = NULL;
98 1.1 riastrad }
99 1.1 riastrad
100 1.1 riastrad /*
101 1.1 riastrad * dma_resv_fini(robj)
102 1.1 riastrad *
103 1.1 riastrad * Destroy a reservation object, freeing any memory that had been
104 1.1 riastrad * allocated for it. Caller must have exclusive access to it.
105 1.1 riastrad */
106 1.1 riastrad void
107 1.1 riastrad dma_resv_fini(struct dma_resv *robj)
108 1.1 riastrad {
109 1.1 riastrad unsigned i;
110 1.1 riastrad
111 1.10 riastrad if (robj->robj_prealloc) {
112 1.1 riastrad objlist_free(robj->robj_prealloc);
113 1.10 riastrad robj->robj_prealloc = NULL; /* paranoia */
114 1.10 riastrad }
115 1.1 riastrad if (robj->fence) {
116 1.10 riastrad for (i = 0; i < robj->fence->shared_count; i++) {
117 1.1 riastrad dma_fence_put(robj->fence->shared[i]);
118 1.10 riastrad robj->fence->shared[i] = NULL; /* paranoia */
119 1.10 riastrad }
120 1.1 riastrad objlist_free(robj->fence);
121 1.10 riastrad robj->fence = NULL; /* paranoia */
122 1.1 riastrad }
123 1.10 riastrad if (robj->fence_excl) {
124 1.1 riastrad dma_fence_put(robj->fence_excl);
125 1.10 riastrad robj->fence_excl = NULL; /* paranoia */
126 1.10 riastrad }
127 1.1 riastrad ww_mutex_destroy(&robj->lock);
128 1.1 riastrad }
129 1.1 riastrad
130 1.1 riastrad /*
131 1.1 riastrad * dma_resv_lock(robj, ctx)
132 1.1 riastrad *
133 1.1 riastrad * Acquire a reservation object's lock. Return 0 on success,
134 1.1 riastrad * -EALREADY if caller already holds it, -EDEADLK if a
135 1.1 riastrad * higher-priority owner holds it and the caller must back out and
136 1.1 riastrad * retry.
137 1.1 riastrad */
138 1.1 riastrad int
139 1.1 riastrad dma_resv_lock(struct dma_resv *robj,
140 1.1 riastrad struct ww_acquire_ctx *ctx)
141 1.1 riastrad {
142 1.1 riastrad
143 1.1 riastrad return ww_mutex_lock(&robj->lock, ctx);
144 1.1 riastrad }
145 1.1 riastrad
146 1.1 riastrad /*
147 1.2 riastrad * dma_resv_lock_slow(robj, ctx)
148 1.2 riastrad *
149 1.2 riastrad * Acquire a reservation object's lock. Caller must not hold
150 1.2 riastrad * this lock or any others -- this is to be used in slow paths
151 1.2 riastrad * after dma_resv_lock or dma_resv_lock_interruptible has failed
152 1.2 riastrad * and the caller has backed out all other locks.
153 1.2 riastrad */
154 1.2 riastrad void
155 1.2 riastrad dma_resv_lock_slow(struct dma_resv *robj,
156 1.2 riastrad struct ww_acquire_ctx *ctx)
157 1.2 riastrad {
158 1.2 riastrad
159 1.2 riastrad ww_mutex_lock_slow(&robj->lock, ctx);
160 1.2 riastrad }
161 1.2 riastrad
162 1.2 riastrad /*
163 1.1 riastrad * dma_resv_lock_interruptible(robj, ctx)
164 1.1 riastrad *
165 1.1 riastrad * Acquire a reservation object's lock. Return 0 on success,
166 1.1 riastrad * -EALREADY if caller already holds it, -EDEADLK if a
167 1.1 riastrad * higher-priority owner holds it and the caller must back out and
168 1.1 riastrad * retry, -ERESTART/-EINTR if interrupted.
169 1.1 riastrad */
170 1.1 riastrad int
171 1.1 riastrad dma_resv_lock_interruptible(struct dma_resv *robj,
172 1.1 riastrad struct ww_acquire_ctx *ctx)
173 1.1 riastrad {
174 1.1 riastrad
175 1.1 riastrad return ww_mutex_lock_interruptible(&robj->lock, ctx);
176 1.1 riastrad }
177 1.1 riastrad
178 1.1 riastrad /*
179 1.2 riastrad * dma_resv_lock_slow_interruptible(robj, ctx)
180 1.2 riastrad *
181 1.2 riastrad * Acquire a reservation object's lock. Caller must not hold
182 1.2 riastrad * this lock or any others -- this is to be used in slow paths
183 1.2 riastrad * after dma_resv_lock or dma_resv_lock_interruptible has failed
184 1.2 riastrad * and the caller has backed out all other locks. Return 0 on
185 1.2 riastrad * success, -ERESTART/-EINTR if interrupted.
186 1.2 riastrad */
187 1.2 riastrad int
188 1.2 riastrad dma_resv_lock_slow_interruptible(struct dma_resv *robj,
189 1.2 riastrad struct ww_acquire_ctx *ctx)
190 1.2 riastrad {
191 1.2 riastrad
192 1.2 riastrad return ww_mutex_lock_slow_interruptible(&robj->lock, ctx);
193 1.2 riastrad }
194 1.2 riastrad
195 1.2 riastrad /*
196 1.1 riastrad * dma_resv_trylock(robj)
197 1.1 riastrad *
198 1.1 riastrad * Try to acquire a reservation object's lock without blocking.
199 1.1 riastrad * Return true on success, false on failure.
200 1.1 riastrad */
201 1.1 riastrad bool
202 1.1 riastrad dma_resv_trylock(struct dma_resv *robj)
203 1.1 riastrad {
204 1.1 riastrad
205 1.1 riastrad return ww_mutex_trylock(&robj->lock);
206 1.1 riastrad }
207 1.1 riastrad
208 1.1 riastrad /*
209 1.4 riastrad * dma_resv_locking_ctx(robj)
210 1.4 riastrad *
211 1.4 riastrad * Return a pointer to the ww_acquire_ctx used by the owner of
212 1.4 riastrad * the reservation object's lock, or NULL if it is either not
213 1.4 riastrad * owned or if it is locked without context.
214 1.4 riastrad */
215 1.4 riastrad struct ww_acquire_ctx *
216 1.4 riastrad dma_resv_locking_ctx(struct dma_resv *robj)
217 1.4 riastrad {
218 1.4 riastrad
219 1.4 riastrad return ww_mutex_locking_ctx(&robj->lock);
220 1.4 riastrad }
221 1.4 riastrad
222 1.4 riastrad /*
223 1.1 riastrad * dma_resv_unlock(robj)
224 1.1 riastrad *
225 1.1 riastrad * Release a reservation object's lock.
226 1.1 riastrad */
227 1.1 riastrad void
228 1.1 riastrad dma_resv_unlock(struct dma_resv *robj)
229 1.1 riastrad {
230 1.1 riastrad
231 1.1 riastrad return ww_mutex_unlock(&robj->lock);
232 1.1 riastrad }
233 1.1 riastrad
234 1.1 riastrad /*
235 1.11 riastrad * dma_resv_is_locked(robj)
236 1.11 riastrad *
237 1.11 riastrad * True if robj is locked.
238 1.11 riastrad */
239 1.11 riastrad bool
240 1.11 riastrad dma_resv_is_locked(struct dma_resv *robj)
241 1.11 riastrad {
242 1.11 riastrad
243 1.11 riastrad return ww_mutex_is_locked(&robj->lock);
244 1.11 riastrad }
245 1.11 riastrad
246 1.11 riastrad /*
247 1.1 riastrad * dma_resv_held(robj)
248 1.1 riastrad *
249 1.1 riastrad * True if robj is locked.
250 1.1 riastrad */
251 1.1 riastrad bool
252 1.1 riastrad dma_resv_held(struct dma_resv *robj)
253 1.1 riastrad {
254 1.1 riastrad
255 1.1 riastrad return ww_mutex_is_locked(&robj->lock);
256 1.1 riastrad }
257 1.1 riastrad
258 1.1 riastrad /*
259 1.1 riastrad * dma_resv_assert_held(robj)
260 1.1 riastrad *
261 1.1 riastrad * Panic if robj is not held, in DIAGNOSTIC builds.
262 1.1 riastrad */
263 1.1 riastrad void
264 1.1 riastrad dma_resv_assert_held(struct dma_resv *robj)
265 1.1 riastrad {
266 1.1 riastrad
267 1.1 riastrad KASSERT(dma_resv_held(robj));
268 1.1 riastrad }
269 1.1 riastrad
270 1.1 riastrad /*
271 1.1 riastrad * dma_resv_get_excl(robj)
272 1.1 riastrad *
273 1.1 riastrad * Return a pointer to the exclusive fence of the reservation
274 1.1 riastrad * object robj.
275 1.1 riastrad *
276 1.1 riastrad * Caller must have robj locked.
277 1.1 riastrad */
278 1.1 riastrad struct dma_fence *
279 1.1 riastrad dma_resv_get_excl(struct dma_resv *robj)
280 1.1 riastrad {
281 1.1 riastrad
282 1.1 riastrad KASSERT(dma_resv_held(robj));
283 1.1 riastrad return robj->fence_excl;
284 1.1 riastrad }
285 1.1 riastrad
286 1.1 riastrad /*
287 1.1 riastrad * dma_resv_get_list(robj)
288 1.1 riastrad *
289 1.1 riastrad * Return a pointer to the shared fence list of the reservation
290 1.1 riastrad * object robj.
291 1.1 riastrad *
292 1.1 riastrad * Caller must have robj locked.
293 1.1 riastrad */
294 1.1 riastrad struct dma_resv_list *
295 1.1 riastrad dma_resv_get_list(struct dma_resv *robj)
296 1.1 riastrad {
297 1.1 riastrad
298 1.1 riastrad KASSERT(dma_resv_held(robj));
299 1.1 riastrad return robj->fence;
300 1.1 riastrad }
301 1.1 riastrad
302 1.1 riastrad /*
303 1.1 riastrad * dma_resv_reserve_shared(robj)
304 1.1 riastrad *
305 1.1 riastrad * Reserve space in robj to add a shared fence. To be used only
306 1.1 riastrad * once before calling dma_resv_add_shared_fence.
307 1.1 riastrad *
308 1.1 riastrad * Caller must have robj locked.
309 1.1 riastrad *
310 1.1 riastrad * Internally, we start with room for four entries and double if
311 1.1 riastrad * we don't have enough. This is not guaranteed.
312 1.1 riastrad */
313 1.1 riastrad int
314 1.3 riastrad dma_resv_reserve_shared(struct dma_resv *robj, unsigned int num_fences)
315 1.1 riastrad {
316 1.1 riastrad struct dma_resv_list *list, *prealloc;
317 1.1 riastrad uint32_t n, nalloc;
318 1.1 riastrad
319 1.1 riastrad KASSERT(dma_resv_held(robj));
320 1.3 riastrad KASSERT(num_fences == 1);
321 1.1 riastrad
322 1.1 riastrad list = robj->fence;
323 1.1 riastrad prealloc = robj->robj_prealloc;
324 1.1 riastrad
325 1.1 riastrad /* If there's an existing list, check it for space. */
326 1.1 riastrad if (list) {
327 1.1 riastrad /* If there's too many already, give up. */
328 1.1 riastrad if (list->shared_count == UINT32_MAX)
329 1.1 riastrad return -ENOMEM;
330 1.1 riastrad
331 1.1 riastrad /* Add one more. */
332 1.1 riastrad n = list->shared_count + 1;
333 1.1 riastrad
334 1.1 riastrad /* If there's enough for one more, we're done. */
335 1.1 riastrad if (n <= list->shared_max)
336 1.1 riastrad return 0;
337 1.1 riastrad } else {
338 1.1 riastrad /* No list already. We need space for 1. */
339 1.1 riastrad n = 1;
340 1.1 riastrad }
341 1.1 riastrad
342 1.1 riastrad /* If not, maybe there's a preallocated list ready. */
343 1.1 riastrad if (prealloc != NULL) {
344 1.1 riastrad /* If there's enough room in it, stop here. */
345 1.1 riastrad if (n <= prealloc->shared_max)
346 1.1 riastrad return 0;
347 1.1 riastrad
348 1.1 riastrad /* Try to double its capacity. */
349 1.1 riastrad nalloc = n > UINT32_MAX/2 ? UINT32_MAX : 2*n;
350 1.1 riastrad prealloc = objlist_tryalloc(nalloc);
351 1.1 riastrad if (prealloc == NULL)
352 1.1 riastrad return -ENOMEM;
353 1.1 riastrad
354 1.1 riastrad /* Swap the new preallocated list and free the old one. */
355 1.1 riastrad objlist_free(robj->robj_prealloc);
356 1.1 riastrad robj->robj_prealloc = prealloc;
357 1.1 riastrad } else {
358 1.1 riastrad /* Start with some spare. */
359 1.1 riastrad nalloc = n > UINT32_MAX/2 ? UINT32_MAX : MAX(2*n, 4);
360 1.1 riastrad prealloc = objlist_tryalloc(nalloc);
361 1.1 riastrad if (prealloc == NULL)
362 1.1 riastrad return -ENOMEM;
363 1.1 riastrad /* Save the new preallocated list. */
364 1.1 riastrad robj->robj_prealloc = prealloc;
365 1.1 riastrad }
366 1.1 riastrad
367 1.1 riastrad /* Success! */
368 1.1 riastrad return 0;
369 1.1 riastrad }
370 1.1 riastrad
371 1.1 riastrad struct dma_resv_write_ticket {
372 1.1 riastrad };
373 1.1 riastrad
374 1.1 riastrad /*
375 1.1 riastrad * dma_resv_write_begin(robj, ticket)
376 1.1 riastrad *
377 1.1 riastrad * Begin an atomic batch of writes to robj, and initialize opaque
378 1.1 riastrad * ticket for it. The ticket must be passed to
379 1.1 riastrad * dma_resv_write_commit to commit the writes.
380 1.1 riastrad *
381 1.1 riastrad * Caller must have robj locked.
382 1.1 riastrad *
383 1.1 riastrad * Implies membar_producer, i.e. store-before-store barrier. Does
384 1.1 riastrad * NOT serve as an acquire operation, however.
385 1.1 riastrad */
386 1.1 riastrad static void
387 1.1 riastrad dma_resv_write_begin(struct dma_resv *robj,
388 1.1 riastrad struct dma_resv_write_ticket *ticket)
389 1.1 riastrad {
390 1.1 riastrad
391 1.1 riastrad KASSERT(dma_resv_held(robj));
392 1.1 riastrad
393 1.1 riastrad write_seqcount_begin(&robj->seq);
394 1.1 riastrad }
395 1.1 riastrad
396 1.1 riastrad /*
397 1.1 riastrad * dma_resv_write_commit(robj, ticket)
398 1.1 riastrad *
399 1.1 riastrad * Commit an atomic batch of writes to robj begun with the call to
400 1.1 riastrad * dma_resv_write_begin that returned ticket.
401 1.1 riastrad *
402 1.1 riastrad * Caller must have robj locked.
403 1.1 riastrad *
404 1.1 riastrad * Implies membar_producer, i.e. store-before-store barrier. Does
405 1.1 riastrad * NOT serve as a release operation, however.
406 1.1 riastrad */
407 1.1 riastrad static void
408 1.1 riastrad dma_resv_write_commit(struct dma_resv *robj,
409 1.1 riastrad struct dma_resv_write_ticket *ticket)
410 1.1 riastrad {
411 1.1 riastrad
412 1.1 riastrad KASSERT(dma_resv_held(robj));
413 1.1 riastrad
414 1.1 riastrad write_seqcount_end(&robj->seq);
415 1.1 riastrad }
416 1.1 riastrad
417 1.1 riastrad struct dma_resv_read_ticket {
418 1.1 riastrad unsigned version;
419 1.1 riastrad };
420 1.1 riastrad
421 1.1 riastrad /*
422 1.1 riastrad * dma_resv_read_begin(robj, ticket)
423 1.1 riastrad *
424 1.1 riastrad * Begin a read section, and initialize opaque ticket for it. The
425 1.1 riastrad * ticket must be passed to dma_resv_read_exit, and the
426 1.1 riastrad * caller must be prepared to retry reading if it fails.
427 1.1 riastrad */
428 1.1 riastrad static void
429 1.1 riastrad dma_resv_read_begin(const struct dma_resv *robj,
430 1.1 riastrad struct dma_resv_read_ticket *ticket)
431 1.1 riastrad {
432 1.1 riastrad
433 1.1 riastrad ticket->version = read_seqcount_begin(&robj->seq);
434 1.1 riastrad }
435 1.1 riastrad
436 1.1 riastrad /*
437 1.1 riastrad * dma_resv_read_valid(robj, ticket)
438 1.1 riastrad *
439 1.1 riastrad * Test whether the read sections are valid. Return true on
440 1.1 riastrad * success, or false on failure if the read ticket has been
441 1.1 riastrad * invalidated.
442 1.1 riastrad */
443 1.1 riastrad static bool
444 1.1 riastrad dma_resv_read_valid(const struct dma_resv *robj,
445 1.1 riastrad struct dma_resv_read_ticket *ticket)
446 1.1 riastrad {
447 1.1 riastrad
448 1.1 riastrad return !read_seqcount_retry(&robj->seq, ticket->version);
449 1.1 riastrad }
450 1.1 riastrad
451 1.1 riastrad /*
452 1.1 riastrad * dma_resv_add_excl_fence(robj, fence)
453 1.1 riastrad *
454 1.1 riastrad * Empty and release all of robj's shared fences, and clear and
455 1.1 riastrad * release its exclusive fence. If fence is nonnull, acquire a
456 1.1 riastrad * reference to it and save it as robj's exclusive fence.
457 1.1 riastrad *
458 1.1 riastrad * Caller must have robj locked.
459 1.1 riastrad */
460 1.1 riastrad void
461 1.1 riastrad dma_resv_add_excl_fence(struct dma_resv *robj,
462 1.1 riastrad struct dma_fence *fence)
463 1.1 riastrad {
464 1.1 riastrad struct dma_fence *old_fence = robj->fence_excl;
465 1.1 riastrad struct dma_resv_list *old_list = robj->fence;
466 1.1 riastrad uint32_t old_shared_count;
467 1.1 riastrad struct dma_resv_write_ticket ticket;
468 1.1 riastrad
469 1.1 riastrad KASSERT(dma_resv_held(robj));
470 1.1 riastrad
471 1.1 riastrad /*
472 1.1 riastrad * If we are setting rather than just removing a fence, acquire
473 1.1 riastrad * a reference for ourselves.
474 1.1 riastrad */
475 1.1 riastrad if (fence)
476 1.1 riastrad (void)dma_fence_get(fence);
477 1.1 riastrad
478 1.1 riastrad /* If there are any shared fences, remember how many. */
479 1.1 riastrad if (old_list)
480 1.1 riastrad old_shared_count = old_list->shared_count;
481 1.1 riastrad
482 1.7 riastrad /* Begin an update. Implies membar_producer for fence. */
483 1.1 riastrad dma_resv_write_begin(robj, &ticket);
484 1.1 riastrad
485 1.1 riastrad /* Replace the fence and zero the shared count. */
486 1.7 riastrad atomic_store_relaxed(&robj->fence_excl, fence);
487 1.1 riastrad if (old_list)
488 1.1 riastrad old_list->shared_count = 0;
489 1.1 riastrad
490 1.1 riastrad /* Commit the update. */
491 1.1 riastrad dma_resv_write_commit(robj, &ticket);
492 1.1 riastrad
493 1.1 riastrad /* Release the old exclusive fence, if any. */
494 1.10 riastrad if (old_fence) {
495 1.1 riastrad dma_fence_put(old_fence);
496 1.10 riastrad old_fence = NULL; /* paranoia */
497 1.10 riastrad }
498 1.1 riastrad
499 1.1 riastrad /* Release any old shared fences. */
500 1.1 riastrad if (old_list) {
501 1.10 riastrad while (old_shared_count--) {
502 1.1 riastrad dma_fence_put(old_list->shared[old_shared_count]);
503 1.10 riastrad /* paranoia */
504 1.10 riastrad old_list->shared[old_shared_count] = NULL;
505 1.10 riastrad }
506 1.1 riastrad }
507 1.1 riastrad }
508 1.1 riastrad
509 1.1 riastrad /*
510 1.1 riastrad * dma_resv_add_shared_fence(robj, fence)
511 1.1 riastrad *
512 1.1 riastrad * Acquire a reference to fence and add it to robj's shared list.
513 1.1 riastrad * If any fence was already added with the same context number,
514 1.1 riastrad * release it and replace it by this one.
515 1.1 riastrad *
516 1.1 riastrad * Caller must have robj locked, and must have preceded with a
517 1.1 riastrad * call to dma_resv_reserve_shared for each shared fence
518 1.1 riastrad * added.
519 1.1 riastrad */
520 1.1 riastrad void
521 1.1 riastrad dma_resv_add_shared_fence(struct dma_resv *robj,
522 1.1 riastrad struct dma_fence *fence)
523 1.1 riastrad {
524 1.1 riastrad struct dma_resv_list *list = robj->fence;
525 1.1 riastrad struct dma_resv_list *prealloc = robj->robj_prealloc;
526 1.1 riastrad struct dma_resv_write_ticket ticket;
527 1.1 riastrad struct dma_fence *replace = NULL;
528 1.1 riastrad uint32_t i;
529 1.1 riastrad
530 1.1 riastrad KASSERT(dma_resv_held(robj));
531 1.1 riastrad
532 1.1 riastrad /* Acquire a reference to the fence. */
533 1.1 riastrad KASSERT(fence != NULL);
534 1.1 riastrad (void)dma_fence_get(fence);
535 1.1 riastrad
536 1.1 riastrad /* Check for a preallocated replacement list. */
537 1.1 riastrad if (prealloc == NULL) {
538 1.1 riastrad /*
539 1.1 riastrad * If there is no preallocated replacement list, then
540 1.1 riastrad * there must be room in the current list.
541 1.1 riastrad */
542 1.1 riastrad KASSERT(list != NULL);
543 1.1 riastrad KASSERT(list->shared_count < list->shared_max);
544 1.1 riastrad
545 1.1 riastrad /* Begin an update. Implies membar_producer for fence. */
546 1.1 riastrad dma_resv_write_begin(robj, &ticket);
547 1.1 riastrad
548 1.1 riastrad /* Find a fence with the same context number. */
549 1.1 riastrad for (i = 0; i < list->shared_count; i++) {
550 1.1 riastrad if (list->shared[i]->context == fence->context) {
551 1.1 riastrad replace = list->shared[i];
552 1.7 riastrad atomic_store_relaxed(&list->shared[i], fence);
553 1.1 riastrad break;
554 1.1 riastrad }
555 1.1 riastrad }
556 1.1 riastrad
557 1.1 riastrad /* If we didn't find one, add it at the end. */
558 1.7 riastrad if (i == list->shared_count) {
559 1.7 riastrad atomic_store_relaxed(&list->shared[list->shared_count],
560 1.7 riastrad fence);
561 1.7 riastrad atomic_store_relaxed(&list->shared_count,
562 1.7 riastrad list->shared_count + 1);
563 1.7 riastrad }
564 1.1 riastrad
565 1.1 riastrad /* Commit the update. */
566 1.1 riastrad dma_resv_write_commit(robj, &ticket);
567 1.1 riastrad } else {
568 1.1 riastrad /*
569 1.1 riastrad * There is a preallocated replacement list. There may
570 1.1 riastrad * not be a current list. If not, treat it as a zero-
571 1.1 riastrad * length list.
572 1.1 riastrad */
573 1.1 riastrad uint32_t shared_count = (list == NULL? 0 : list->shared_count);
574 1.1 riastrad
575 1.1 riastrad /* There had better be room in the preallocated list. */
576 1.1 riastrad KASSERT(shared_count < prealloc->shared_max);
577 1.1 riastrad
578 1.1 riastrad /*
579 1.1 riastrad * Copy the fences over, but replace if we find one
580 1.1 riastrad * with the same context number.
581 1.1 riastrad */
582 1.1 riastrad for (i = 0; i < shared_count; i++) {
583 1.1 riastrad if (replace == NULL &&
584 1.1 riastrad list->shared[i]->context == fence->context) {
585 1.1 riastrad replace = list->shared[i];
586 1.1 riastrad prealloc->shared[i] = fence;
587 1.1 riastrad } else {
588 1.1 riastrad prealloc->shared[i] = list->shared[i];
589 1.1 riastrad }
590 1.1 riastrad }
591 1.1 riastrad prealloc->shared_count = shared_count;
592 1.1 riastrad
593 1.1 riastrad /* If we didn't find one, add it at the end. */
594 1.1 riastrad if (replace == NULL)
595 1.1 riastrad prealloc->shared[prealloc->shared_count++] = fence;
596 1.1 riastrad
597 1.1 riastrad /*
598 1.1 riastrad * Now ready to replace the list. Begin an update.
599 1.1 riastrad * Implies membar_producer for fence and prealloc.
600 1.1 riastrad */
601 1.1 riastrad dma_resv_write_begin(robj, &ticket);
602 1.1 riastrad
603 1.1 riastrad /* Replace the list. */
604 1.7 riastrad atomic_store_relaxed(&robj->fence, prealloc);
605 1.1 riastrad robj->robj_prealloc = NULL;
606 1.1 riastrad
607 1.1 riastrad /* Commit the update. */
608 1.1 riastrad dma_resv_write_commit(robj, &ticket);
609 1.1 riastrad
610 1.1 riastrad /*
611 1.1 riastrad * If there is an old list, free it when convenient.
612 1.1 riastrad * (We are not in a position at this point to sleep
613 1.1 riastrad * waiting for activity on all CPUs.)
614 1.1 riastrad */
615 1.1 riastrad if (list)
616 1.1 riastrad objlist_defer_free(list);
617 1.1 riastrad }
618 1.1 riastrad
619 1.1 riastrad /* Release a fence if we replaced it. */
620 1.10 riastrad if (replace) {
621 1.1 riastrad dma_fence_put(replace);
622 1.10 riastrad replace = NULL; /* paranoia */
623 1.10 riastrad }
624 1.1 riastrad }
625 1.1 riastrad
626 1.1 riastrad /*
627 1.1 riastrad * dma_resv_get_excl_rcu(robj)
628 1.1 riastrad *
629 1.1 riastrad * Note: Caller need not call this from an RCU read section.
630 1.1 riastrad */
631 1.1 riastrad struct dma_fence *
632 1.1 riastrad dma_resv_get_excl_rcu(const struct dma_resv *robj)
633 1.1 riastrad {
634 1.1 riastrad struct dma_fence *fence;
635 1.1 riastrad
636 1.1 riastrad rcu_read_lock();
637 1.1 riastrad fence = dma_fence_get_rcu_safe(&robj->fence_excl);
638 1.1 riastrad rcu_read_unlock();
639 1.1 riastrad
640 1.1 riastrad return fence;
641 1.1 riastrad }
642 1.1 riastrad
643 1.1 riastrad /*
644 1.1 riastrad * dma_resv_get_fences_rcu(robj, fencep, nsharedp, sharedp)
645 1.1 riastrad */
646 1.1 riastrad int
647 1.1 riastrad dma_resv_get_fences_rcu(const struct dma_resv *robj,
648 1.1 riastrad struct dma_fence **fencep, unsigned *nsharedp, struct dma_fence ***sharedp)
649 1.1 riastrad {
650 1.10 riastrad const struct dma_resv_list *list = NULL;
651 1.10 riastrad struct dma_fence *fence = NULL;
652 1.1 riastrad struct dma_fence **shared = NULL;
653 1.1 riastrad unsigned shared_alloc, shared_count, i;
654 1.1 riastrad struct dma_resv_read_ticket ticket;
655 1.1 riastrad
656 1.10 riastrad top: KASSERT(fence == NULL);
657 1.10 riastrad
658 1.1 riastrad /* Enter an RCU read section and get a read ticket. */
659 1.1 riastrad rcu_read_lock();
660 1.1 riastrad dma_resv_read_begin(robj, &ticket);
661 1.1 riastrad
662 1.7 riastrad /*
663 1.7 riastrad * If there is a shared list, grab it. The atomic_load_consume
664 1.7 riastrad * here pairs with the membar_producer in dma_resv_write_begin
665 1.7 riastrad * to ensure the content of robj->fence is initialized before
666 1.7 riastrad * we witness the pointer.
667 1.7 riastrad */
668 1.6 riastrad if ((list = atomic_load_consume(&robj->fence)) != NULL) {
669 1.1 riastrad
670 1.1 riastrad /* Check whether we have a buffer. */
671 1.1 riastrad if (shared == NULL) {
672 1.1 riastrad /*
673 1.1 riastrad * We don't have a buffer yet. Try to allocate
674 1.1 riastrad * one without waiting.
675 1.1 riastrad */
676 1.1 riastrad shared_alloc = list->shared_max;
677 1.1 riastrad shared = kcalloc(shared_alloc, sizeof(shared[0]),
678 1.1 riastrad GFP_NOWAIT);
679 1.1 riastrad if (shared == NULL) {
680 1.1 riastrad /*
681 1.1 riastrad * Couldn't do it immediately. Back
682 1.1 riastrad * out of RCU and allocate one with
683 1.1 riastrad * waiting.
684 1.1 riastrad */
685 1.1 riastrad rcu_read_unlock();
686 1.1 riastrad shared = kcalloc(shared_alloc,
687 1.1 riastrad sizeof(shared[0]), GFP_KERNEL);
688 1.1 riastrad if (shared == NULL)
689 1.1 riastrad return -ENOMEM;
690 1.1 riastrad goto top;
691 1.1 riastrad }
692 1.1 riastrad } else if (shared_alloc < list->shared_max) {
693 1.1 riastrad /*
694 1.1 riastrad * We have a buffer but it's too small. We're
695 1.1 riastrad * already racing in this case, so just back
696 1.1 riastrad * out and wait to allocate a bigger one.
697 1.1 riastrad */
698 1.1 riastrad shared_alloc = list->shared_max;
699 1.1 riastrad rcu_read_unlock();
700 1.1 riastrad kfree(shared);
701 1.1 riastrad shared = kcalloc(shared_alloc, sizeof(shared[0]),
702 1.1 riastrad GFP_KERNEL);
703 1.1 riastrad if (shared == NULL)
704 1.1 riastrad return -ENOMEM;
705 1.1 riastrad }
706 1.1 riastrad
707 1.1 riastrad /*
708 1.1 riastrad * We got a buffer large enough. Copy into the buffer
709 1.7 riastrad * and record the number of elements. Could safely use
710 1.7 riastrad * memcpy here, because even if we race with a writer
711 1.7 riastrad * it'll invalidate the read ticket and we'll start
712 1.7 riastrad * ove, but atomic_load in a loop will pacify kcsan.
713 1.7 riastrad */
714 1.7 riastrad shared_count = atomic_load_relaxed(&list->shared_count);
715 1.7 riastrad for (i = 0; i < shared_count; i++)
716 1.7 riastrad shared[i] = atomic_load_relaxed(&list->shared[i]);
717 1.1 riastrad } else {
718 1.1 riastrad /* No shared list: shared count is zero. */
719 1.1 riastrad shared_count = 0;
720 1.1 riastrad }
721 1.1 riastrad
722 1.1 riastrad /* If there is an exclusive fence, grab it. */
723 1.10 riastrad KASSERT(fence == NULL);
724 1.6 riastrad fence = atomic_load_consume(&robj->fence_excl);
725 1.1 riastrad
726 1.1 riastrad /*
727 1.1 riastrad * We are done reading from robj and list. Validate our
728 1.1 riastrad * parking ticket. If it's invalid, do not pass go and do not
729 1.1 riastrad * collect $200.
730 1.1 riastrad */
731 1.10 riastrad if (!dma_resv_read_valid(robj, &ticket)) {
732 1.10 riastrad fence = NULL;
733 1.1 riastrad goto restart;
734 1.10 riastrad }
735 1.1 riastrad
736 1.1 riastrad /*
737 1.1 riastrad * Try to get a reference to the exclusive fence, if there is
738 1.1 riastrad * one. If we can't, start over.
739 1.1 riastrad */
740 1.1 riastrad if (fence) {
741 1.8 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
742 1.1 riastrad goto restart;
743 1.1 riastrad }
744 1.1 riastrad
745 1.1 riastrad /*
746 1.1 riastrad * Try to get a reference to all of the shared fences.
747 1.1 riastrad */
748 1.1 riastrad for (i = 0; i < shared_count; i++) {
749 1.7 riastrad if (dma_fence_get_rcu(atomic_load_relaxed(&shared[i])) == NULL)
750 1.1 riastrad goto put_restart;
751 1.1 riastrad }
752 1.1 riastrad
753 1.1 riastrad /* Success! */
754 1.1 riastrad rcu_read_unlock();
755 1.1 riastrad *fencep = fence;
756 1.1 riastrad *nsharedp = shared_count;
757 1.1 riastrad *sharedp = shared;
758 1.1 riastrad return 0;
759 1.1 riastrad
760 1.1 riastrad put_restart:
761 1.1 riastrad /* Back out. */
762 1.1 riastrad while (i --> 0) {
763 1.1 riastrad dma_fence_put(shared[i]);
764 1.1 riastrad shared[i] = NULL; /* paranoia */
765 1.1 riastrad }
766 1.1 riastrad if (fence) {
767 1.1 riastrad dma_fence_put(fence);
768 1.10 riastrad fence = NULL;
769 1.1 riastrad }
770 1.1 riastrad
771 1.1 riastrad restart:
772 1.10 riastrad KASSERT(fence == NULL);
773 1.1 riastrad rcu_read_unlock();
774 1.1 riastrad goto top;
775 1.1 riastrad }
776 1.1 riastrad
777 1.1 riastrad /*
778 1.1 riastrad * dma_resv_copy_fences(dst, src)
779 1.1 riastrad *
780 1.1 riastrad * Copy the exclusive fence and all the shared fences from src to
781 1.1 riastrad * dst.
782 1.1 riastrad *
783 1.1 riastrad * Caller must have dst locked.
784 1.1 riastrad */
785 1.1 riastrad int
786 1.1 riastrad dma_resv_copy_fences(struct dma_resv *dst_robj,
787 1.1 riastrad const struct dma_resv *src_robj)
788 1.1 riastrad {
789 1.1 riastrad const struct dma_resv_list *src_list;
790 1.1 riastrad struct dma_resv_list *dst_list = NULL;
791 1.1 riastrad struct dma_resv_list *old_list;
792 1.1 riastrad struct dma_fence *fence = NULL;
793 1.1 riastrad struct dma_fence *old_fence;
794 1.1 riastrad uint32_t shared_count, i;
795 1.1 riastrad struct dma_resv_read_ticket read_ticket;
796 1.1 riastrad struct dma_resv_write_ticket write_ticket;
797 1.1 riastrad
798 1.1 riastrad KASSERT(dma_resv_held(dst_robj));
799 1.1 riastrad
800 1.10 riastrad top: KASSERT(fence == NULL);
801 1.10 riastrad
802 1.1 riastrad /* Enter an RCU read section and get a read ticket. */
803 1.1 riastrad rcu_read_lock();
804 1.1 riastrad dma_resv_read_begin(src_robj, &read_ticket);
805 1.1 riastrad
806 1.1 riastrad /* Get the shared list. */
807 1.6 riastrad if ((src_list = atomic_load_consume(&src_robj->fence)) != NULL) {
808 1.1 riastrad
809 1.1 riastrad /* Find out how long it is. */
810 1.7 riastrad shared_count = atomic_load_relaxed(&src_list->shared_count);
811 1.1 riastrad
812 1.1 riastrad /*
813 1.1 riastrad * Make sure we saw a consistent snapshot of the list
814 1.1 riastrad * pointer and length.
815 1.1 riastrad */
816 1.1 riastrad if (!dma_resv_read_valid(src_robj, &read_ticket))
817 1.1 riastrad goto restart;
818 1.1 riastrad
819 1.1 riastrad /* Allocate a new list. */
820 1.1 riastrad dst_list = objlist_tryalloc(shared_count);
821 1.1 riastrad if (dst_list == NULL)
822 1.1 riastrad return -ENOMEM;
823 1.1 riastrad
824 1.1 riastrad /* Copy over all fences that are not yet signalled. */
825 1.1 riastrad dst_list->shared_count = 0;
826 1.1 riastrad for (i = 0; i < shared_count; i++) {
827 1.10 riastrad KASSERT(fence == NULL);
828 1.7 riastrad fence = atomic_load_relaxed(&src_list->shared[i]);
829 1.9 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
830 1.1 riastrad goto restart;
831 1.1 riastrad if (dma_fence_is_signaled(fence)) {
832 1.1 riastrad dma_fence_put(fence);
833 1.1 riastrad fence = NULL;
834 1.1 riastrad continue;
835 1.1 riastrad }
836 1.1 riastrad dst_list->shared[dst_list->shared_count++] = fence;
837 1.1 riastrad fence = NULL;
838 1.1 riastrad }
839 1.1 riastrad }
840 1.1 riastrad
841 1.1 riastrad /* Get the exclusive fence. */
842 1.10 riastrad KASSERT(fence == NULL);
843 1.6 riastrad if ((fence = atomic_load_consume(&src_robj->fence_excl)) != NULL) {
844 1.1 riastrad
845 1.1 riastrad /*
846 1.1 riastrad * Make sure we saw a consistent snapshot of the fence.
847 1.1 riastrad *
848 1.1 riastrad * XXX I'm not actually sure this is necessary since
849 1.1 riastrad * pointer writes are supposed to be atomic.
850 1.1 riastrad */
851 1.1 riastrad if (!dma_resv_read_valid(src_robj, &read_ticket)) {
852 1.1 riastrad fence = NULL;
853 1.1 riastrad goto restart;
854 1.1 riastrad }
855 1.1 riastrad
856 1.1 riastrad /*
857 1.1 riastrad * If it is going away, restart. Otherwise, acquire a
858 1.1 riastrad * reference to it.
859 1.1 riastrad */
860 1.1 riastrad if (!dma_fence_get_rcu(fence)) {
861 1.1 riastrad fence = NULL;
862 1.1 riastrad goto restart;
863 1.1 riastrad }
864 1.1 riastrad }
865 1.1 riastrad
866 1.1 riastrad /* All done with src; exit the RCU read section. */
867 1.1 riastrad rcu_read_unlock();
868 1.1 riastrad
869 1.1 riastrad /*
870 1.1 riastrad * We now have a snapshot of the shared and exclusive fences of
871 1.1 riastrad * src_robj and we have acquired references to them so they
872 1.1 riastrad * won't go away. Transfer them over to dst_robj, releasing
873 1.1 riastrad * references to any that were there.
874 1.1 riastrad */
875 1.1 riastrad
876 1.1 riastrad /* Get the old shared and exclusive fences, if any. */
877 1.1 riastrad old_list = dst_robj->fence;
878 1.1 riastrad old_fence = dst_robj->fence_excl;
879 1.1 riastrad
880 1.7 riastrad /*
881 1.7 riastrad * Begin an update. Implies membar_producer for dst_list and
882 1.7 riastrad * fence.
883 1.7 riastrad */
884 1.1 riastrad dma_resv_write_begin(dst_robj, &write_ticket);
885 1.1 riastrad
886 1.1 riastrad /* Replace the fences. */
887 1.6 riastrad atomic_store_relaxed(&dst_robj->fence, dst_list);
888 1.6 riastrad atomic_store_relaxed(&dst_robj->fence_excl, fence);
889 1.1 riastrad
890 1.1 riastrad /* Commit the update. */
891 1.1 riastrad dma_resv_write_commit(dst_robj, &write_ticket);
892 1.1 riastrad
893 1.1 riastrad /* Release the old exclusive fence, if any. */
894 1.10 riastrad if (old_fence) {
895 1.1 riastrad dma_fence_put(old_fence);
896 1.10 riastrad old_fence = NULL; /* paranoia */
897 1.10 riastrad }
898 1.1 riastrad
899 1.1 riastrad /* Release any old shared fences. */
900 1.1 riastrad if (old_list) {
901 1.10 riastrad for (i = old_list->shared_count; i --> 0;) {
902 1.1 riastrad dma_fence_put(old_list->shared[i]);
903 1.10 riastrad old_list->shared[i] = NULL; /* paranoia */
904 1.10 riastrad }
905 1.10 riastrad objlist_free(old_list);
906 1.10 riastrad old_list = NULL; /* paranoia */
907 1.1 riastrad }
908 1.1 riastrad
909 1.1 riastrad /* Success! */
910 1.1 riastrad return 0;
911 1.1 riastrad
912 1.1 riastrad restart:
913 1.10 riastrad KASSERT(fence == NULL);
914 1.1 riastrad rcu_read_unlock();
915 1.1 riastrad if (dst_list) {
916 1.1 riastrad for (i = dst_list->shared_count; i --> 0;) {
917 1.1 riastrad dma_fence_put(dst_list->shared[i]);
918 1.10 riastrad dst_list->shared[i] = NULL; /* paranoia */
919 1.1 riastrad }
920 1.1 riastrad objlist_free(dst_list);
921 1.1 riastrad dst_list = NULL;
922 1.1 riastrad }
923 1.1 riastrad goto top;
924 1.1 riastrad }
925 1.1 riastrad
926 1.1 riastrad /*
927 1.1 riastrad * dma_resv_test_signaled_rcu(robj, shared)
928 1.1 riastrad *
929 1.1 riastrad * If shared is true, test whether all of the shared fences are
930 1.1 riastrad * signalled, or if there are none, test whether the exclusive
931 1.1 riastrad * fence is signalled. If shared is false, test only whether the
932 1.1 riastrad * exclusive fence is signalled.
933 1.1 riastrad *
934 1.1 riastrad * XXX Why does this _not_ test the exclusive fence if shared is
935 1.1 riastrad * true only if there are no shared fences? This makes no sense.
936 1.1 riastrad */
937 1.1 riastrad bool
938 1.1 riastrad dma_resv_test_signaled_rcu(const struct dma_resv *robj,
939 1.1 riastrad bool shared)
940 1.1 riastrad {
941 1.1 riastrad struct dma_resv_read_ticket ticket;
942 1.1 riastrad struct dma_resv_list *list;
943 1.10 riastrad struct dma_fence *fence = NULL;
944 1.1 riastrad uint32_t i, shared_count;
945 1.1 riastrad bool signaled = true;
946 1.1 riastrad
947 1.10 riastrad top: KASSERT(fence == NULL);
948 1.10 riastrad
949 1.1 riastrad /* Enter an RCU read section and get a read ticket. */
950 1.1 riastrad rcu_read_lock();
951 1.1 riastrad dma_resv_read_begin(robj, &ticket);
952 1.1 riastrad
953 1.1 riastrad /* If shared is requested and there is a shared list, test it. */
954 1.10 riastrad if (shared && (list = atomic_load_consume(&robj->fence)) != NULL) {
955 1.1 riastrad
956 1.1 riastrad /* Find out how long it is. */
957 1.7 riastrad shared_count = atomic_load_relaxed(&list->shared_count);
958 1.1 riastrad
959 1.1 riastrad /*
960 1.1 riastrad * Make sure we saw a consistent snapshot of the list
961 1.1 riastrad * pointer and length.
962 1.1 riastrad */
963 1.1 riastrad if (!dma_resv_read_valid(robj, &ticket))
964 1.1 riastrad goto restart;
965 1.1 riastrad
966 1.1 riastrad /*
967 1.1 riastrad * For each fence, if it is going away, restart.
968 1.1 riastrad * Otherwise, acquire a reference to it to test whether
969 1.1 riastrad * it is signalled. Stop if we find any that is not
970 1.1 riastrad * signalled.
971 1.1 riastrad */
972 1.1 riastrad for (i = 0; i < shared_count; i++) {
973 1.10 riastrad KASSERT(fence == NULL);
974 1.7 riastrad fence = atomic_load_relaxed(&list->shared[i]);
975 1.10 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
976 1.1 riastrad goto restart;
977 1.1 riastrad signaled &= dma_fence_is_signaled(fence);
978 1.1 riastrad dma_fence_put(fence);
979 1.10 riastrad fence = NULL;
980 1.1 riastrad if (!signaled)
981 1.1 riastrad goto out;
982 1.1 riastrad }
983 1.1 riastrad }
984 1.1 riastrad
985 1.1 riastrad /* If there is an exclusive fence, test it. */
986 1.10 riastrad KASSERT(fence == NULL);
987 1.6 riastrad if ((fence = atomic_load_consume(&robj->fence_excl)) != NULL) {
988 1.1 riastrad
989 1.1 riastrad /*
990 1.1 riastrad * Make sure we saw a consistent snapshot of the fence.
991 1.1 riastrad *
992 1.1 riastrad * XXX I'm not actually sure this is necessary since
993 1.1 riastrad * pointer writes are supposed to be atomic.
994 1.1 riastrad */
995 1.10 riastrad if (!dma_resv_read_valid(robj, &ticket)) {
996 1.10 riastrad fence = NULL;
997 1.1 riastrad goto restart;
998 1.10 riastrad }
999 1.1 riastrad
1000 1.1 riastrad /*
1001 1.1 riastrad * If it is going away, restart. Otherwise, acquire a
1002 1.1 riastrad * reference to it to test whether it is signalled.
1003 1.1 riastrad */
1004 1.1 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
1005 1.1 riastrad goto restart;
1006 1.1 riastrad signaled &= dma_fence_is_signaled(fence);
1007 1.1 riastrad dma_fence_put(fence);
1008 1.10 riastrad fence = NULL;
1009 1.1 riastrad if (!signaled)
1010 1.1 riastrad goto out;
1011 1.1 riastrad }
1012 1.1 riastrad
1013 1.10 riastrad out: KASSERT(fence == NULL);
1014 1.10 riastrad rcu_read_unlock();
1015 1.1 riastrad return signaled;
1016 1.1 riastrad
1017 1.1 riastrad restart:
1018 1.10 riastrad KASSERT(fence == NULL);
1019 1.1 riastrad rcu_read_unlock();
1020 1.1 riastrad goto top;
1021 1.1 riastrad }
1022 1.1 riastrad
1023 1.1 riastrad /*
1024 1.1 riastrad * dma_resv_wait_timeout_rcu(robj, shared, intr, timeout)
1025 1.1 riastrad *
1026 1.1 riastrad * If shared is true, wait for all of the shared fences to be
1027 1.1 riastrad * signalled, or if there are none, wait for the exclusive fence
1028 1.1 riastrad * to be signalled. If shared is false, wait only for the
1029 1.1 riastrad * exclusive fence to be signalled. If timeout is zero, don't
1030 1.1 riastrad * wait, only test.
1031 1.1 riastrad *
1032 1.1 riastrad * XXX Why does this _not_ wait for the exclusive fence if shared
1033 1.1 riastrad * is true only if there are no shared fences? This makes no
1034 1.1 riastrad * sense.
1035 1.1 riastrad */
1036 1.1 riastrad long
1037 1.1 riastrad dma_resv_wait_timeout_rcu(const struct dma_resv *robj,
1038 1.1 riastrad bool shared, bool intr, unsigned long timeout)
1039 1.1 riastrad {
1040 1.1 riastrad struct dma_resv_read_ticket ticket;
1041 1.1 riastrad struct dma_resv_list *list;
1042 1.10 riastrad struct dma_fence *fence = NULL;
1043 1.1 riastrad uint32_t i, shared_count;
1044 1.1 riastrad long ret;
1045 1.1 riastrad
1046 1.1 riastrad if (timeout == 0)
1047 1.1 riastrad return dma_resv_test_signaled_rcu(robj, shared);
1048 1.1 riastrad
1049 1.10 riastrad top: KASSERT(fence == NULL);
1050 1.10 riastrad
1051 1.1 riastrad /* Enter an RCU read section and get a read ticket. */
1052 1.1 riastrad rcu_read_lock();
1053 1.1 riastrad dma_resv_read_begin(robj, &ticket);
1054 1.1 riastrad
1055 1.1 riastrad /* If shared is requested and there is a shared list, wait on it. */
1056 1.10 riastrad if (shared && (list = atomic_load_consume(&robj->fence)) != NULL) {
1057 1.1 riastrad
1058 1.1 riastrad /* Find out how long it is. */
1059 1.1 riastrad shared_count = list->shared_count;
1060 1.1 riastrad
1061 1.1 riastrad /*
1062 1.1 riastrad * Make sure we saw a consistent snapshot of the list
1063 1.1 riastrad * pointer and length.
1064 1.1 riastrad */
1065 1.1 riastrad if (!dma_resv_read_valid(robj, &ticket))
1066 1.1 riastrad goto restart;
1067 1.1 riastrad
1068 1.1 riastrad /*
1069 1.1 riastrad * For each fence, if it is going away, restart.
1070 1.1 riastrad * Otherwise, acquire a reference to it to test whether
1071 1.1 riastrad * it is signalled. Stop and wait if we find any that
1072 1.1 riastrad * is not signalled.
1073 1.1 riastrad */
1074 1.1 riastrad for (i = 0; i < shared_count; i++) {
1075 1.10 riastrad KASSERT(fence == NULL);
1076 1.7 riastrad fence = atomic_load_relaxed(&list->shared[i]);
1077 1.10 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
1078 1.1 riastrad goto restart;
1079 1.1 riastrad if (!dma_fence_is_signaled(fence))
1080 1.1 riastrad goto wait;
1081 1.1 riastrad dma_fence_put(fence);
1082 1.10 riastrad fence = NULL;
1083 1.1 riastrad }
1084 1.1 riastrad }
1085 1.1 riastrad
1086 1.1 riastrad /* If there is an exclusive fence, test it. */
1087 1.10 riastrad KASSERT(fence == NULL);
1088 1.6 riastrad if ((fence = atomic_load_consume(&robj->fence_excl)) != NULL) {
1089 1.1 riastrad
1090 1.1 riastrad /*
1091 1.1 riastrad * Make sure we saw a consistent snapshot of the fence.
1092 1.1 riastrad *
1093 1.1 riastrad * XXX I'm not actually sure this is necessary since
1094 1.1 riastrad * pointer writes are supposed to be atomic.
1095 1.1 riastrad */
1096 1.10 riastrad if (!dma_resv_read_valid(robj, &ticket)) {
1097 1.10 riastrad fence = NULL;
1098 1.1 riastrad goto restart;
1099 1.10 riastrad }
1100 1.1 riastrad
1101 1.1 riastrad /*
1102 1.1 riastrad * If it is going away, restart. Otherwise, acquire a
1103 1.1 riastrad * reference to it to test whether it is signalled. If
1104 1.1 riastrad * not, wait for it.
1105 1.1 riastrad */
1106 1.1 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
1107 1.1 riastrad goto restart;
1108 1.1 riastrad if (!dma_fence_is_signaled(fence))
1109 1.1 riastrad goto wait;
1110 1.1 riastrad dma_fence_put(fence);
1111 1.10 riastrad fence = NULL;
1112 1.1 riastrad }
1113 1.1 riastrad
1114 1.1 riastrad /* Success! Return the number of ticks left. */
1115 1.1 riastrad rcu_read_unlock();
1116 1.10 riastrad KASSERT(fence == NULL);
1117 1.1 riastrad return timeout;
1118 1.1 riastrad
1119 1.1 riastrad restart:
1120 1.10 riastrad KASSERT(fence == NULL);
1121 1.1 riastrad rcu_read_unlock();
1122 1.1 riastrad goto top;
1123 1.1 riastrad
1124 1.1 riastrad wait:
1125 1.1 riastrad /*
1126 1.5 riastrad * Exit the RCU read section, wait for it, and release the
1127 1.5 riastrad * fence when we're done. If we time out or fail, bail.
1128 1.5 riastrad * Otherwise, go back to the top.
1129 1.1 riastrad */
1130 1.1 riastrad KASSERT(fence != NULL);
1131 1.1 riastrad rcu_read_unlock();
1132 1.1 riastrad ret = dma_fence_wait_timeout(fence, intr, timeout);
1133 1.1 riastrad dma_fence_put(fence);
1134 1.10 riastrad fence = NULL;
1135 1.1 riastrad if (ret <= 0)
1136 1.1 riastrad return ret;
1137 1.1 riastrad KASSERT(ret <= timeout);
1138 1.1 riastrad timeout = ret;
1139 1.1 riastrad goto top;
1140 1.1 riastrad }
1141 1.1 riastrad
1142 1.1 riastrad /*
1143 1.1 riastrad * dma_resv_poll_init(rpoll, lock)
1144 1.1 riastrad *
1145 1.1 riastrad * Initialize reservation poll state.
1146 1.1 riastrad */
1147 1.1 riastrad void
1148 1.1 riastrad dma_resv_poll_init(struct dma_resv_poll *rpoll)
1149 1.1 riastrad {
1150 1.1 riastrad
1151 1.1 riastrad mutex_init(&rpoll->rp_lock, MUTEX_DEFAULT, IPL_VM);
1152 1.1 riastrad selinit(&rpoll->rp_selq);
1153 1.1 riastrad rpoll->rp_claimed = 0;
1154 1.1 riastrad }
1155 1.1 riastrad
1156 1.1 riastrad /*
1157 1.1 riastrad * dma_resv_poll_fini(rpoll)
1158 1.1 riastrad *
1159 1.1 riastrad * Release any resource associated with reservation poll state.
1160 1.1 riastrad */
1161 1.1 riastrad void
1162 1.1 riastrad dma_resv_poll_fini(struct dma_resv_poll *rpoll)
1163 1.1 riastrad {
1164 1.1 riastrad
1165 1.1 riastrad KASSERT(rpoll->rp_claimed == 0);
1166 1.1 riastrad seldestroy(&rpoll->rp_selq);
1167 1.1 riastrad mutex_destroy(&rpoll->rp_lock);
1168 1.1 riastrad }
1169 1.1 riastrad
1170 1.1 riastrad /*
1171 1.1 riastrad * dma_resv_poll_cb(fence, fcb)
1172 1.1 riastrad *
1173 1.1 riastrad * Callback to notify a reservation poll that a fence has
1174 1.1 riastrad * completed. Notify any waiters and allow the next poller to
1175 1.1 riastrad * claim the callback.
1176 1.1 riastrad *
1177 1.1 riastrad * If one thread is waiting for the exclusive fence only, and we
1178 1.1 riastrad * spuriously notify them about a shared fence, tough.
1179 1.1 riastrad */
1180 1.1 riastrad static void
1181 1.1 riastrad dma_resv_poll_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
1182 1.1 riastrad {
1183 1.1 riastrad struct dma_resv_poll *rpoll = container_of(fcb,
1184 1.1 riastrad struct dma_resv_poll, rp_fcb);
1185 1.1 riastrad
1186 1.1 riastrad mutex_enter(&rpoll->rp_lock);
1187 1.1 riastrad selnotify(&rpoll->rp_selq, 0, NOTE_SUBMIT);
1188 1.1 riastrad rpoll->rp_claimed = 0;
1189 1.1 riastrad mutex_exit(&rpoll->rp_lock);
1190 1.1 riastrad }
1191 1.1 riastrad
1192 1.1 riastrad /*
1193 1.1 riastrad * dma_resv_do_poll(robj, events, rpoll)
1194 1.1 riastrad *
1195 1.1 riastrad * Poll for reservation object events using the reservation poll
1196 1.1 riastrad * state in rpoll:
1197 1.1 riastrad *
1198 1.1 riastrad * - POLLOUT wait for all fences shared and exclusive
1199 1.1 riastrad * - POLLIN wait for the exclusive fence
1200 1.1 riastrad *
1201 1.1 riastrad * Return the subset of events in events that are ready. If any
1202 1.1 riastrad * are requested but not ready, arrange to be notified with
1203 1.1 riastrad * selnotify when they are.
1204 1.1 riastrad */
1205 1.1 riastrad int
1206 1.1 riastrad dma_resv_do_poll(const struct dma_resv *robj, int events,
1207 1.1 riastrad struct dma_resv_poll *rpoll)
1208 1.1 riastrad {
1209 1.1 riastrad struct dma_resv_read_ticket ticket;
1210 1.1 riastrad struct dma_resv_list *list;
1211 1.10 riastrad struct dma_fence *fence = NULL;
1212 1.1 riastrad uint32_t i, shared_count;
1213 1.1 riastrad int revents;
1214 1.1 riastrad bool recorded = false; /* curlwp is on the selq */
1215 1.1 riastrad bool claimed = false; /* we claimed the callback */
1216 1.1 riastrad bool callback = false; /* we requested a callback */
1217 1.1 riastrad
1218 1.1 riastrad /*
1219 1.1 riastrad * Start with the maximal set of events that could be ready.
1220 1.1 riastrad * We will eliminate the events that are definitely not ready
1221 1.1 riastrad * as we go at the same time as we add callbacks to notify us
1222 1.1 riastrad * that they may be ready.
1223 1.1 riastrad */
1224 1.1 riastrad revents = events & (POLLIN|POLLOUT);
1225 1.1 riastrad if (revents == 0)
1226 1.1 riastrad return 0;
1227 1.1 riastrad
1228 1.10 riastrad top: KASSERT(fence == NULL);
1229 1.10 riastrad
1230 1.1 riastrad /* Enter an RCU read section and get a read ticket. */
1231 1.1 riastrad rcu_read_lock();
1232 1.1 riastrad dma_resv_read_begin(robj, &ticket);
1233 1.1 riastrad
1234 1.1 riastrad /* If we want to wait for all fences, get the shared list. */
1235 1.10 riastrad if ((events & POLLOUT) != 0 &&
1236 1.10 riastrad (list = atomic_load_consume(&robj->fence)) != NULL) do {
1237 1.1 riastrad
1238 1.1 riastrad /* Find out how long it is. */
1239 1.1 riastrad shared_count = list->shared_count;
1240 1.1 riastrad
1241 1.1 riastrad /*
1242 1.1 riastrad * Make sure we saw a consistent snapshot of the list
1243 1.1 riastrad * pointer and length.
1244 1.1 riastrad */
1245 1.1 riastrad if (!dma_resv_read_valid(robj, &ticket))
1246 1.1 riastrad goto restart;
1247 1.1 riastrad
1248 1.1 riastrad /*
1249 1.1 riastrad * For each fence, if it is going away, restart.
1250 1.1 riastrad * Otherwise, acquire a reference to it to test whether
1251 1.1 riastrad * it is signalled. Stop and request a callback if we
1252 1.1 riastrad * find any that is not signalled.
1253 1.1 riastrad */
1254 1.1 riastrad for (i = 0; i < shared_count; i++) {
1255 1.10 riastrad KASSERT(fence == NULL);
1256 1.7 riastrad fence = atomic_load_relaxed(&list->shared[i]);
1257 1.10 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
1258 1.1 riastrad goto restart;
1259 1.1 riastrad if (!dma_fence_is_signaled(fence)) {
1260 1.1 riastrad dma_fence_put(fence);
1261 1.10 riastrad fence = NULL;
1262 1.1 riastrad break;
1263 1.1 riastrad }
1264 1.1 riastrad dma_fence_put(fence);
1265 1.10 riastrad fence = NULL;
1266 1.1 riastrad }
1267 1.1 riastrad
1268 1.1 riastrad /* If all shared fences have been signalled, move on. */
1269 1.1 riastrad if (i == shared_count)
1270 1.1 riastrad break;
1271 1.1 riastrad
1272 1.1 riastrad /* Put ourselves on the selq if we haven't already. */
1273 1.1 riastrad if (!recorded)
1274 1.1 riastrad goto record;
1275 1.1 riastrad
1276 1.1 riastrad /*
1277 1.1 riastrad * If someone else claimed the callback, or we already
1278 1.1 riastrad * requested it, we're guaranteed to be notified, so
1279 1.1 riastrad * assume the event is not ready.
1280 1.1 riastrad */
1281 1.1 riastrad if (!claimed || callback) {
1282 1.1 riastrad revents &= ~POLLOUT;
1283 1.1 riastrad break;
1284 1.1 riastrad }
1285 1.1 riastrad
1286 1.1 riastrad /*
1287 1.1 riastrad * Otherwise, find the first fence that is not
1288 1.1 riastrad * signalled, request the callback, and clear POLLOUT
1289 1.1 riastrad * from the possible ready events. If they are all
1290 1.1 riastrad * signalled, leave POLLOUT set; we will simulate the
1291 1.1 riastrad * callback later.
1292 1.1 riastrad */
1293 1.1 riastrad for (i = 0; i < shared_count; i++) {
1294 1.10 riastrad KASSERT(fence == NULL);
1295 1.7 riastrad fence = atomic_load_relaxed(&list->shared[i]);
1296 1.10 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
1297 1.1 riastrad goto restart;
1298 1.1 riastrad if (!dma_fence_add_callback(fence, &rpoll->rp_fcb,
1299 1.1 riastrad dma_resv_poll_cb)) {
1300 1.1 riastrad dma_fence_put(fence);
1301 1.10 riastrad fence = NULL;
1302 1.1 riastrad revents &= ~POLLOUT;
1303 1.1 riastrad callback = true;
1304 1.1 riastrad break;
1305 1.1 riastrad }
1306 1.1 riastrad dma_fence_put(fence);
1307 1.10 riastrad fence = NULL;
1308 1.1 riastrad }
1309 1.1 riastrad } while (0);
1310 1.1 riastrad
1311 1.1 riastrad /* We always wait for at least the exclusive fence, so get it. */
1312 1.10 riastrad KASSERT(fence == NULL);
1313 1.6 riastrad if ((fence = atomic_load_consume(&robj->fence_excl)) != NULL) do {
1314 1.1 riastrad
1315 1.1 riastrad /*
1316 1.1 riastrad * Make sure we saw a consistent snapshot of the fence.
1317 1.1 riastrad *
1318 1.1 riastrad * XXX I'm not actually sure this is necessary since
1319 1.1 riastrad * pointer writes are supposed to be atomic.
1320 1.1 riastrad */
1321 1.10 riastrad if (!dma_resv_read_valid(robj, &ticket)) {
1322 1.10 riastrad fence = NULL;
1323 1.1 riastrad goto restart;
1324 1.10 riastrad }
1325 1.1 riastrad
1326 1.1 riastrad /*
1327 1.1 riastrad * If it is going away, restart. Otherwise, acquire a
1328 1.1 riastrad * reference to it to test whether it is signalled. If
1329 1.1 riastrad * not, stop and request a callback.
1330 1.1 riastrad */
1331 1.1 riastrad if ((fence = dma_fence_get_rcu(fence)) == NULL)
1332 1.1 riastrad goto restart;
1333 1.1 riastrad if (dma_fence_is_signaled(fence)) {
1334 1.1 riastrad dma_fence_put(fence);
1335 1.10 riastrad fence = NULL;
1336 1.1 riastrad break;
1337 1.1 riastrad }
1338 1.1 riastrad
1339 1.1 riastrad /* Put ourselves on the selq if we haven't already. */
1340 1.1 riastrad if (!recorded) {
1341 1.1 riastrad dma_fence_put(fence);
1342 1.10 riastrad fence = NULL;
1343 1.1 riastrad goto record;
1344 1.1 riastrad }
1345 1.1 riastrad
1346 1.1 riastrad /*
1347 1.1 riastrad * If someone else claimed the callback, or we already
1348 1.1 riastrad * requested it, we're guaranteed to be notified, so
1349 1.1 riastrad * assume the event is not ready.
1350 1.1 riastrad */
1351 1.1 riastrad if (!claimed || callback) {
1352 1.1 riastrad dma_fence_put(fence);
1353 1.10 riastrad fence = NULL;
1354 1.1 riastrad revents = 0;
1355 1.1 riastrad break;
1356 1.1 riastrad }
1357 1.1 riastrad
1358 1.1 riastrad /*
1359 1.1 riastrad * Otherwise, try to request the callback, and clear
1360 1.1 riastrad * all possible ready events. If the fence has been
1361 1.1 riastrad * signalled in the interim, leave the events set; we
1362 1.1 riastrad * will simulate the callback later.
1363 1.1 riastrad */
1364 1.1 riastrad if (!dma_fence_add_callback(fence, &rpoll->rp_fcb,
1365 1.1 riastrad dma_resv_poll_cb)) {
1366 1.1 riastrad dma_fence_put(fence);
1367 1.10 riastrad fence = NULL;
1368 1.1 riastrad revents = 0;
1369 1.1 riastrad callback = true;
1370 1.1 riastrad break;
1371 1.1 riastrad }
1372 1.1 riastrad dma_fence_put(fence);
1373 1.10 riastrad fence = NULL;
1374 1.1 riastrad } while (0);
1375 1.10 riastrad KASSERT(fence == NULL);
1376 1.1 riastrad
1377 1.1 riastrad /* All done reading the fences. */
1378 1.1 riastrad rcu_read_unlock();
1379 1.1 riastrad
1380 1.1 riastrad if (claimed && !callback) {
1381 1.1 riastrad /*
1382 1.1 riastrad * We claimed the callback but we didn't actually
1383 1.1 riastrad * request it because a fence was signalled while we
1384 1.1 riastrad * were claiming it. Call it ourselves now. The
1385 1.1 riastrad * callback doesn't use the fence nor rely on holding
1386 1.1 riastrad * any of the fence locks, so this is safe.
1387 1.1 riastrad */
1388 1.1 riastrad dma_resv_poll_cb(NULL, &rpoll->rp_fcb);
1389 1.1 riastrad }
1390 1.1 riastrad return revents;
1391 1.1 riastrad
1392 1.1 riastrad restart:
1393 1.10 riastrad KASSERT(fence == NULL);
1394 1.1 riastrad rcu_read_unlock();
1395 1.1 riastrad goto top;
1396 1.1 riastrad
1397 1.1 riastrad record:
1398 1.10 riastrad KASSERT(fence == NULL);
1399 1.1 riastrad rcu_read_unlock();
1400 1.1 riastrad mutex_enter(&rpoll->rp_lock);
1401 1.1 riastrad selrecord(curlwp, &rpoll->rp_selq);
1402 1.1 riastrad if (!rpoll->rp_claimed)
1403 1.1 riastrad claimed = rpoll->rp_claimed = true;
1404 1.1 riastrad mutex_exit(&rpoll->rp_lock);
1405 1.1 riastrad recorded = true;
1406 1.1 riastrad goto top;
1407 1.1 riastrad }
1408 1.1 riastrad
1409 1.1 riastrad /*
1410 1.1 riastrad * dma_resv_kqfilter(robj, kn, rpoll)
1411 1.1 riastrad *
1412 1.1 riastrad * Kqueue filter for reservation objects. Currently not
1413 1.1 riastrad * implemented because the logic to implement it is nontrivial,
1414 1.1 riastrad * and userland will presumably never use it, so it would be
1415 1.1 riastrad * dangerous to add never-tested complex code paths to the kernel.
1416 1.1 riastrad */
1417 1.1 riastrad int
1418 1.1 riastrad dma_resv_kqfilter(const struct dma_resv *robj,
1419 1.1 riastrad struct knote *kn, struct dma_resv_poll *rpoll)
1420 1.1 riastrad {
1421 1.1 riastrad
1422 1.1 riastrad return EINVAL;
1423 1.1 riastrad }
1424