Home | History | Annotate | Line # | Download | only in linux
linux_dma_resv.c revision 1.5
      1 /*	$NetBSD: linux_dma_resv.c,v 1.5 2021/12/19 11:52:55 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: linux_dma_resv.c,v 1.5 2021/12/19 11:52:55 riastradh Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/poll.h>
     37 #include <sys/select.h>
     38 
     39 #include <linux/dma-fence.h>
     40 #include <linux/dma-resv.h>
     41 #include <linux/seqlock.h>
     42 #include <linux/ww_mutex.h>
     43 
     44 DEFINE_WW_CLASS(reservation_ww_class __cacheline_aligned);
     45 
     46 static struct dma_resv_list *
     47 objlist_tryalloc(uint32_t n)
     48 {
     49 	struct dma_resv_list *list;
     50 
     51 	list = kmem_alloc(offsetof(typeof(*list), shared[n]), KM_NOSLEEP);
     52 	if (list == NULL)
     53 		return NULL;
     54 	list->shared_max = n;
     55 
     56 	return list;
     57 }
     58 
     59 static void
     60 objlist_free(struct dma_resv_list *list)
     61 {
     62 	uint32_t n = list->shared_max;
     63 
     64 	kmem_free(list, offsetof(typeof(*list), shared[n]));
     65 }
     66 
     67 static void
     68 objlist_free_cb(struct rcu_head *rcu)
     69 {
     70 	struct dma_resv_list *list = container_of(rcu,
     71 	    struct dma_resv_list, rol_rcu);
     72 
     73 	objlist_free(list);
     74 }
     75 
     76 static void
     77 objlist_defer_free(struct dma_resv_list *list)
     78 {
     79 
     80 	call_rcu(&list->rol_rcu, objlist_free_cb);
     81 }
     82 
     83 /*
     84  * dma_resv_init(robj)
     85  *
     86  *	Initialize a reservation object.  Caller must later destroy it
     87  *	with dma_resv_fini.
     88  */
     89 void
     90 dma_resv_init(struct dma_resv *robj)
     91 {
     92 
     93 	ww_mutex_init(&robj->lock, &reservation_ww_class);
     94 	seqcount_init(&robj->seq);
     95 	robj->fence_excl = NULL;
     96 	robj->fence = NULL;
     97 	robj->robj_prealloc = NULL;
     98 }
     99 
    100 /*
    101  * dma_resv_fini(robj)
    102  *
    103  *	Destroy a reservation object, freeing any memory that had been
    104  *	allocated for it.  Caller must have exclusive access to it.
    105  */
    106 void
    107 dma_resv_fini(struct dma_resv *robj)
    108 {
    109 	unsigned i;
    110 
    111 	if (robj->robj_prealloc)
    112 		objlist_free(robj->robj_prealloc);
    113 	if (robj->fence) {
    114 		for (i = 0; i < robj->fence->shared_count; i++)
    115 			dma_fence_put(robj->fence->shared[i]);
    116 		objlist_free(robj->fence);
    117 	}
    118 	if (robj->fence_excl)
    119 		dma_fence_put(robj->fence_excl);
    120 	ww_mutex_destroy(&robj->lock);
    121 }
    122 
    123 /*
    124  * dma_resv_lock(robj, ctx)
    125  *
    126  *	Acquire a reservation object's lock.  Return 0 on success,
    127  *	-EALREADY if caller already holds it, -EDEADLK if a
    128  *	higher-priority owner holds it and the caller must back out and
    129  *	retry.
    130  */
    131 int
    132 dma_resv_lock(struct dma_resv *robj,
    133     struct ww_acquire_ctx *ctx)
    134 {
    135 
    136 	return ww_mutex_lock(&robj->lock, ctx);
    137 }
    138 
    139 /*
    140  * dma_resv_lock_slow(robj, ctx)
    141  *
    142  *	Acquire a reservation object's lock.  Caller must not hold
    143  *	this lock or any others -- this is to be used in slow paths
    144  *	after dma_resv_lock or dma_resv_lock_interruptible has failed
    145  *	and the caller has backed out all other locks.
    146  */
    147 void
    148 dma_resv_lock_slow(struct dma_resv *robj,
    149     struct ww_acquire_ctx *ctx)
    150 {
    151 
    152 	ww_mutex_lock_slow(&robj->lock, ctx);
    153 }
    154 
    155 /*
    156  * dma_resv_lock_interruptible(robj, ctx)
    157  *
    158  *	Acquire a reservation object's lock.  Return 0 on success,
    159  *	-EALREADY if caller already holds it, -EDEADLK if a
    160  *	higher-priority owner holds it and the caller must back out and
    161  *	retry, -ERESTART/-EINTR if interrupted.
    162  */
    163 int
    164 dma_resv_lock_interruptible(struct dma_resv *robj,
    165     struct ww_acquire_ctx *ctx)
    166 {
    167 
    168 	return ww_mutex_lock_interruptible(&robj->lock, ctx);
    169 }
    170 
    171 /*
    172  * dma_resv_lock_slow_interruptible(robj, ctx)
    173  *
    174  *	Acquire a reservation object's lock.  Caller must not hold
    175  *	this lock or any others -- this is to be used in slow paths
    176  *	after dma_resv_lock or dma_resv_lock_interruptible has failed
    177  *	and the caller has backed out all other locks.  Return 0 on
    178  *	success, -ERESTART/-EINTR if interrupted.
    179  */
    180 int
    181 dma_resv_lock_slow_interruptible(struct dma_resv *robj,
    182     struct ww_acquire_ctx *ctx)
    183 {
    184 
    185 	return ww_mutex_lock_slow_interruptible(&robj->lock, ctx);
    186 }
    187 
    188 /*
    189  * dma_resv_trylock(robj)
    190  *
    191  *	Try to acquire a reservation object's lock without blocking.
    192  *	Return true on success, false on failure.
    193  */
    194 bool
    195 dma_resv_trylock(struct dma_resv *robj)
    196 {
    197 
    198 	return ww_mutex_trylock(&robj->lock);
    199 }
    200 
    201 /*
    202  * dma_resv_locking_ctx(robj)
    203  *
    204  *	Return a pointer to the ww_acquire_ctx used by the owner of
    205  *	the reservation object's lock, or NULL if it is either not
    206  *	owned or if it is locked without context.
    207  */
    208 struct ww_acquire_ctx *
    209 dma_resv_locking_ctx(struct dma_resv *robj)
    210 {
    211 
    212 	return ww_mutex_locking_ctx(&robj->lock);
    213 }
    214 
    215 /*
    216  * dma_resv_unlock(robj)
    217  *
    218  *	Release a reservation object's lock.
    219  */
    220 void
    221 dma_resv_unlock(struct dma_resv *robj)
    222 {
    223 
    224 	return ww_mutex_unlock(&robj->lock);
    225 }
    226 
    227 /*
    228  * dma_resv_held(robj)
    229  *
    230  *	True if robj is locked.
    231  */
    232 bool
    233 dma_resv_held(struct dma_resv *robj)
    234 {
    235 
    236 	return ww_mutex_is_locked(&robj->lock);
    237 }
    238 
    239 /*
    240  * dma_resv_assert_held(robj)
    241  *
    242  *	Panic if robj is not held, in DIAGNOSTIC builds.
    243  */
    244 void
    245 dma_resv_assert_held(struct dma_resv *robj)
    246 {
    247 
    248 	KASSERT(dma_resv_held(robj));
    249 }
    250 
    251 /*
    252  * dma_resv_get_excl(robj)
    253  *
    254  *	Return a pointer to the exclusive fence of the reservation
    255  *	object robj.
    256  *
    257  *	Caller must have robj locked.
    258  */
    259 struct dma_fence *
    260 dma_resv_get_excl(struct dma_resv *robj)
    261 {
    262 
    263 	KASSERT(dma_resv_held(robj));
    264 	return robj->fence_excl;
    265 }
    266 
    267 /*
    268  * dma_resv_get_list(robj)
    269  *
    270  *	Return a pointer to the shared fence list of the reservation
    271  *	object robj.
    272  *
    273  *	Caller must have robj locked.
    274  */
    275 struct dma_resv_list *
    276 dma_resv_get_list(struct dma_resv *robj)
    277 {
    278 
    279 	KASSERT(dma_resv_held(robj));
    280 	return robj->fence;
    281 }
    282 
    283 /*
    284  * dma_resv_reserve_shared(robj)
    285  *
    286  *	Reserve space in robj to add a shared fence.  To be used only
    287  *	once before calling dma_resv_add_shared_fence.
    288  *
    289  *	Caller must have robj locked.
    290  *
    291  *	Internally, we start with room for four entries and double if
    292  *	we don't have enough.  This is not guaranteed.
    293  */
    294 int
    295 dma_resv_reserve_shared(struct dma_resv *robj, unsigned int num_fences)
    296 {
    297 	struct dma_resv_list *list, *prealloc;
    298 	uint32_t n, nalloc;
    299 
    300 	KASSERT(dma_resv_held(robj));
    301 	KASSERT(num_fences == 1);
    302 
    303 	list = robj->fence;
    304 	prealloc = robj->robj_prealloc;
    305 
    306 	/* If there's an existing list, check it for space.  */
    307 	if (list) {
    308 		/* If there's too many already, give up.  */
    309 		if (list->shared_count == UINT32_MAX)
    310 			return -ENOMEM;
    311 
    312 		/* Add one more. */
    313 		n = list->shared_count + 1;
    314 
    315 		/* If there's enough for one more, we're done.  */
    316 		if (n <= list->shared_max)
    317 			return 0;
    318 	} else {
    319 		/* No list already.  We need space for 1.  */
    320 		n = 1;
    321 	}
    322 
    323 	/* If not, maybe there's a preallocated list ready.  */
    324 	if (prealloc != NULL) {
    325 		/* If there's enough room in it, stop here.  */
    326 		if (n <= prealloc->shared_max)
    327 			return 0;
    328 
    329 		/* Try to double its capacity.  */
    330 		nalloc = n > UINT32_MAX/2 ? UINT32_MAX : 2*n;
    331 		prealloc = objlist_tryalloc(nalloc);
    332 		if (prealloc == NULL)
    333 			return -ENOMEM;
    334 
    335 		/* Swap the new preallocated list and free the old one.  */
    336 		objlist_free(robj->robj_prealloc);
    337 		robj->robj_prealloc = prealloc;
    338 	} else {
    339 		/* Start with some spare.  */
    340 		nalloc = n > UINT32_MAX/2 ? UINT32_MAX : MAX(2*n, 4);
    341 		prealloc = objlist_tryalloc(nalloc);
    342 		if (prealloc == NULL)
    343 			return -ENOMEM;
    344 		/* Save the new preallocated list.  */
    345 		robj->robj_prealloc = prealloc;
    346 	}
    347 
    348 	/* Success!  */
    349 	return 0;
    350 }
    351 
    352 struct dma_resv_write_ticket {
    353 };
    354 
    355 /*
    356  * dma_resv_write_begin(robj, ticket)
    357  *
    358  *	Begin an atomic batch of writes to robj, and initialize opaque
    359  *	ticket for it.  The ticket must be passed to
    360  *	dma_resv_write_commit to commit the writes.
    361  *
    362  *	Caller must have robj locked.
    363  *
    364  *	Implies membar_producer, i.e. store-before-store barrier.  Does
    365  *	NOT serve as an acquire operation, however.
    366  */
    367 static void
    368 dma_resv_write_begin(struct dma_resv *robj,
    369     struct dma_resv_write_ticket *ticket)
    370 {
    371 
    372 	KASSERT(dma_resv_held(robj));
    373 
    374 	write_seqcount_begin(&robj->seq);
    375 }
    376 
    377 /*
    378  * dma_resv_write_commit(robj, ticket)
    379  *
    380  *	Commit an atomic batch of writes to robj begun with the call to
    381  *	dma_resv_write_begin that returned ticket.
    382  *
    383  *	Caller must have robj locked.
    384  *
    385  *	Implies membar_producer, i.e. store-before-store barrier.  Does
    386  *	NOT serve as a release operation, however.
    387  */
    388 static void
    389 dma_resv_write_commit(struct dma_resv *robj,
    390     struct dma_resv_write_ticket *ticket)
    391 {
    392 
    393 	KASSERT(dma_resv_held(robj));
    394 
    395 	write_seqcount_end(&robj->seq);
    396 }
    397 
    398 struct dma_resv_read_ticket {
    399 	unsigned version;
    400 };
    401 
    402 /*
    403  * dma_resv_read_begin(robj, ticket)
    404  *
    405  *	Begin a read section, and initialize opaque ticket for it.  The
    406  *	ticket must be passed to dma_resv_read_exit, and the
    407  *	caller must be prepared to retry reading if it fails.
    408  */
    409 static void
    410 dma_resv_read_begin(const struct dma_resv *robj,
    411     struct dma_resv_read_ticket *ticket)
    412 {
    413 
    414 	ticket->version = read_seqcount_begin(&robj->seq);
    415 }
    416 
    417 /*
    418  * dma_resv_read_valid(robj, ticket)
    419  *
    420  *	Test whether the read sections are valid.  Return true on
    421  *	success, or false on failure if the read ticket has been
    422  *	invalidated.
    423  */
    424 static bool
    425 dma_resv_read_valid(const struct dma_resv *robj,
    426     struct dma_resv_read_ticket *ticket)
    427 {
    428 
    429 	return !read_seqcount_retry(&robj->seq, ticket->version);
    430 }
    431 
    432 /*
    433  * dma_resv_add_excl_fence(robj, fence)
    434  *
    435  *	Empty and release all of robj's shared fences, and clear and
    436  *	release its exclusive fence.  If fence is nonnull, acquire a
    437  *	reference to it and save it as robj's exclusive fence.
    438  *
    439  *	Caller must have robj locked.
    440  */
    441 void
    442 dma_resv_add_excl_fence(struct dma_resv *robj,
    443     struct dma_fence *fence)
    444 {
    445 	struct dma_fence *old_fence = robj->fence_excl;
    446 	struct dma_resv_list *old_list = robj->fence;
    447 	uint32_t old_shared_count;
    448 	struct dma_resv_write_ticket ticket;
    449 
    450 	KASSERT(dma_resv_held(robj));
    451 
    452 	/*
    453 	 * If we are setting rather than just removing a fence, acquire
    454 	 * a reference for ourselves.
    455 	 */
    456 	if (fence)
    457 		(void)dma_fence_get(fence);
    458 
    459 	/* If there are any shared fences, remember how many.  */
    460 	if (old_list)
    461 		old_shared_count = old_list->shared_count;
    462 
    463 	/* Begin an update.  */
    464 	dma_resv_write_begin(robj, &ticket);
    465 
    466 	/* Replace the fence and zero the shared count.  */
    467 	robj->fence_excl = fence;
    468 	if (old_list)
    469 		old_list->shared_count = 0;
    470 
    471 	/* Commit the update.  */
    472 	dma_resv_write_commit(robj, &ticket);
    473 
    474 	/* Release the old exclusive fence, if any.  */
    475 	if (old_fence)
    476 		dma_fence_put(old_fence);
    477 
    478 	/* Release any old shared fences.  */
    479 	if (old_list) {
    480 		while (old_shared_count--)
    481 			dma_fence_put(old_list->shared[old_shared_count]);
    482 	}
    483 }
    484 
    485 /*
    486  * dma_resv_add_shared_fence(robj, fence)
    487  *
    488  *	Acquire a reference to fence and add it to robj's shared list.
    489  *	If any fence was already added with the same context number,
    490  *	release it and replace it by this one.
    491  *
    492  *	Caller must have robj locked, and must have preceded with a
    493  *	call to dma_resv_reserve_shared for each shared fence
    494  *	added.
    495  */
    496 void
    497 dma_resv_add_shared_fence(struct dma_resv *robj,
    498     struct dma_fence *fence)
    499 {
    500 	struct dma_resv_list *list = robj->fence;
    501 	struct dma_resv_list *prealloc = robj->robj_prealloc;
    502 	struct dma_resv_write_ticket ticket;
    503 	struct dma_fence *replace = NULL;
    504 	uint32_t i;
    505 
    506 	KASSERT(dma_resv_held(robj));
    507 
    508 	/* Acquire a reference to the fence.  */
    509 	KASSERT(fence != NULL);
    510 	(void)dma_fence_get(fence);
    511 
    512 	/* Check for a preallocated replacement list.  */
    513 	if (prealloc == NULL) {
    514 		/*
    515 		 * If there is no preallocated replacement list, then
    516 		 * there must be room in the current list.
    517 		 */
    518 		KASSERT(list != NULL);
    519 		KASSERT(list->shared_count < list->shared_max);
    520 
    521 		/* Begin an update.  Implies membar_producer for fence.  */
    522 		dma_resv_write_begin(robj, &ticket);
    523 
    524 		/* Find a fence with the same context number.  */
    525 		for (i = 0; i < list->shared_count; i++) {
    526 			if (list->shared[i]->context == fence->context) {
    527 				replace = list->shared[i];
    528 				list->shared[i] = fence;
    529 				break;
    530 			}
    531 		}
    532 
    533 		/* If we didn't find one, add it at the end.  */
    534 		if (i == list->shared_count)
    535 			list->shared[list->shared_count++] = fence;
    536 
    537 		/* Commit the update.  */
    538 		dma_resv_write_commit(robj, &ticket);
    539 	} else {
    540 		/*
    541 		 * There is a preallocated replacement list.  There may
    542 		 * not be a current list.  If not, treat it as a zero-
    543 		 * length list.
    544 		 */
    545 		uint32_t shared_count = (list == NULL? 0 : list->shared_count);
    546 
    547 		/* There had better be room in the preallocated list.  */
    548 		KASSERT(shared_count < prealloc->shared_max);
    549 
    550 		/*
    551 		 * Copy the fences over, but replace if we find one
    552 		 * with the same context number.
    553 		 */
    554 		for (i = 0; i < shared_count; i++) {
    555 			if (replace == NULL &&
    556 			    list->shared[i]->context == fence->context) {
    557 				replace = list->shared[i];
    558 				prealloc->shared[i] = fence;
    559 			} else {
    560 				prealloc->shared[i] = list->shared[i];
    561 			}
    562 		}
    563 		prealloc->shared_count = shared_count;
    564 
    565 		/* If we didn't find one, add it at the end.  */
    566 		if (replace == NULL)
    567 			prealloc->shared[prealloc->shared_count++] = fence;
    568 
    569 		/*
    570 		 * Now ready to replace the list.  Begin an update.
    571 		 * Implies membar_producer for fence and prealloc.
    572 		 */
    573 		dma_resv_write_begin(robj, &ticket);
    574 
    575 		/* Replace the list.  */
    576 		robj->fence = prealloc;
    577 		robj->robj_prealloc = NULL;
    578 
    579 		/* Commit the update.  */
    580 		dma_resv_write_commit(robj, &ticket);
    581 
    582 		/*
    583 		 * If there is an old list, free it when convenient.
    584 		 * (We are not in a position at this point to sleep
    585 		 * waiting for activity on all CPUs.)
    586 		 */
    587 		if (list)
    588 			objlist_defer_free(list);
    589 	}
    590 
    591 	/* Release a fence if we replaced it.  */
    592 	if (replace)
    593 		dma_fence_put(replace);
    594 }
    595 
    596 /*
    597  * dma_resv_get_excl_rcu(robj)
    598  *
    599  *	Note: Caller need not call this from an RCU read section.
    600  */
    601 struct dma_fence *
    602 dma_resv_get_excl_rcu(const struct dma_resv *robj)
    603 {
    604 	struct dma_fence *fence;
    605 
    606 	rcu_read_lock();
    607 	fence = dma_fence_get_rcu_safe(&robj->fence_excl);
    608 	rcu_read_unlock();
    609 
    610 	return fence;
    611 }
    612 
    613 /*
    614  * dma_resv_get_fences_rcu(robj, fencep, nsharedp, sharedp)
    615  */
    616 int
    617 dma_resv_get_fences_rcu(const struct dma_resv *robj,
    618     struct dma_fence **fencep, unsigned *nsharedp, struct dma_fence ***sharedp)
    619 {
    620 	const struct dma_resv_list *list;
    621 	struct dma_fence *fence;
    622 	struct dma_fence **shared = NULL;
    623 	unsigned shared_alloc, shared_count, i;
    624 	struct dma_resv_read_ticket ticket;
    625 
    626 top:
    627 	/* Enter an RCU read section and get a read ticket.  */
    628 	rcu_read_lock();
    629 	dma_resv_read_begin(robj, &ticket);
    630 
    631 	/* If there is a shared list, grab it.  */
    632 	list = robj->fence;
    633 	__insn_barrier();
    634 	if (list) {
    635 		/* Make sure the content of the list has been published.  */
    636 		membar_datadep_consumer();
    637 
    638 		/* Check whether we have a buffer.  */
    639 		if (shared == NULL) {
    640 			/*
    641 			 * We don't have a buffer yet.  Try to allocate
    642 			 * one without waiting.
    643 			 */
    644 			shared_alloc = list->shared_max;
    645 			__insn_barrier();
    646 			shared = kcalloc(shared_alloc, sizeof(shared[0]),
    647 			    GFP_NOWAIT);
    648 			if (shared == NULL) {
    649 				/*
    650 				 * Couldn't do it immediately.  Back
    651 				 * out of RCU and allocate one with
    652 				 * waiting.
    653 				 */
    654 				rcu_read_unlock();
    655 				shared = kcalloc(shared_alloc,
    656 				    sizeof(shared[0]), GFP_KERNEL);
    657 				if (shared == NULL)
    658 					return -ENOMEM;
    659 				goto top;
    660 			}
    661 		} else if (shared_alloc < list->shared_max) {
    662 			/*
    663 			 * We have a buffer but it's too small.  We're
    664 			 * already racing in this case, so just back
    665 			 * out and wait to allocate a bigger one.
    666 			 */
    667 			shared_alloc = list->shared_max;
    668 			__insn_barrier();
    669 			rcu_read_unlock();
    670 			kfree(shared);
    671 			shared = kcalloc(shared_alloc, sizeof(shared[0]),
    672 			    GFP_KERNEL);
    673 			if (shared == NULL)
    674 				return -ENOMEM;
    675 		}
    676 
    677 		/*
    678 		 * We got a buffer large enough.  Copy into the buffer
    679 		 * and record the number of elements.
    680 		 */
    681 		memcpy(shared, list->shared, shared_alloc * sizeof(shared[0]));
    682 		shared_count = list->shared_count;
    683 	} else {
    684 		/* No shared list: shared count is zero.  */
    685 		shared_count = 0;
    686 	}
    687 
    688 	/* If there is an exclusive fence, grab it.  */
    689 	fence = robj->fence_excl;
    690 	__insn_barrier();
    691 	if (fence) {
    692 		/* Make sure the content of the fence has been published.  */
    693 		membar_datadep_consumer();
    694 	}
    695 
    696 	/*
    697 	 * We are done reading from robj and list.  Validate our
    698 	 * parking ticket.  If it's invalid, do not pass go and do not
    699 	 * collect $200.
    700 	 */
    701 	if (!dma_resv_read_valid(robj, &ticket))
    702 		goto restart;
    703 
    704 	/*
    705 	 * Try to get a reference to the exclusive fence, if there is
    706 	 * one.  If we can't, start over.
    707 	 */
    708 	if (fence) {
    709 		if (dma_fence_get_rcu(fence) == NULL)
    710 			goto restart;
    711 	}
    712 
    713 	/*
    714 	 * Try to get a reference to all of the shared fences.
    715 	 */
    716 	for (i = 0; i < shared_count; i++) {
    717 		if (dma_fence_get_rcu(shared[i]) == NULL)
    718 			goto put_restart;
    719 	}
    720 
    721 	/* Success!  */
    722 	rcu_read_unlock();
    723 	*fencep = fence;
    724 	*nsharedp = shared_count;
    725 	*sharedp = shared;
    726 	return 0;
    727 
    728 put_restart:
    729 	/* Back out.  */
    730 	while (i --> 0) {
    731 		dma_fence_put(shared[i]);
    732 		shared[i] = NULL; /* paranoia */
    733 	}
    734 	if (fence) {
    735 		dma_fence_put(fence);
    736 		fence = NULL;	/* paranoia */
    737 	}
    738 
    739 restart:
    740 	rcu_read_unlock();
    741 	goto top;
    742 }
    743 
    744 /*
    745  * dma_resv_copy_fences(dst, src)
    746  *
    747  *	Copy the exclusive fence and all the shared fences from src to
    748  *	dst.
    749  *
    750  *	Caller must have dst locked.
    751  */
    752 int
    753 dma_resv_copy_fences(struct dma_resv *dst_robj,
    754     const struct dma_resv *src_robj)
    755 {
    756 	const struct dma_resv_list *src_list;
    757 	struct dma_resv_list *dst_list = NULL;
    758 	struct dma_resv_list *old_list;
    759 	struct dma_fence *fence = NULL;
    760 	struct dma_fence *old_fence;
    761 	uint32_t shared_count, i;
    762 	struct dma_resv_read_ticket read_ticket;
    763 	struct dma_resv_write_ticket write_ticket;
    764 
    765 	KASSERT(dma_resv_held(dst_robj));
    766 
    767 top:
    768 	/* Enter an RCU read section and get a read ticket.  */
    769 	rcu_read_lock();
    770 	dma_resv_read_begin(src_robj, &read_ticket);
    771 
    772 	/* Get the shared list.  */
    773 	src_list = src_robj->fence;
    774 	__insn_barrier();
    775 	if (src_list) {
    776 		/* Make sure the content of the list has been published.  */
    777 		membar_datadep_consumer();
    778 
    779 		/* Find out how long it is.  */
    780 		shared_count = src_list->shared_count;
    781 
    782 		/*
    783 		 * Make sure we saw a consistent snapshot of the list
    784 		 * pointer and length.
    785 		 */
    786 		if (!dma_resv_read_valid(src_robj, &read_ticket))
    787 			goto restart;
    788 
    789 		/* Allocate a new list.  */
    790 		dst_list = objlist_tryalloc(shared_count);
    791 		if (dst_list == NULL)
    792 			return -ENOMEM;
    793 
    794 		/* Copy over all fences that are not yet signalled.  */
    795 		dst_list->shared_count = 0;
    796 		for (i = 0; i < shared_count; i++) {
    797 			if ((fence = dma_fence_get_rcu(src_list->shared[i]))
    798 			    != NULL)
    799 				goto restart;
    800 			if (dma_fence_is_signaled(fence)) {
    801 				dma_fence_put(fence);
    802 				fence = NULL;
    803 				continue;
    804 			}
    805 			dst_list->shared[dst_list->shared_count++] = fence;
    806 			fence = NULL;
    807 		}
    808 	}
    809 
    810 	/* Get the exclusive fence.  */
    811 	fence = src_robj->fence_excl;
    812 	__insn_barrier();
    813 	if (fence != NULL) {
    814 		/* Make sure the content of the fence has been published.  */
    815 		membar_datadep_consumer();
    816 
    817 		/*
    818 		 * Make sure we saw a consistent snapshot of the fence.
    819 		 *
    820 		 * XXX I'm not actually sure this is necessary since
    821 		 * pointer writes are supposed to be atomic.
    822 		 */
    823 		if (!dma_resv_read_valid(src_robj, &read_ticket)) {
    824 			fence = NULL;
    825 			goto restart;
    826 		}
    827 
    828 		/*
    829 		 * If it is going away, restart.  Otherwise, acquire a
    830 		 * reference to it.
    831 		 */
    832 		if (!dma_fence_get_rcu(fence)) {
    833 			fence = NULL;
    834 			goto restart;
    835 		}
    836 	}
    837 
    838 	/* All done with src; exit the RCU read section.  */
    839 	rcu_read_unlock();
    840 
    841 	/*
    842 	 * We now have a snapshot of the shared and exclusive fences of
    843 	 * src_robj and we have acquired references to them so they
    844 	 * won't go away.  Transfer them over to dst_robj, releasing
    845 	 * references to any that were there.
    846 	 */
    847 
    848 	/* Get the old shared and exclusive fences, if any.  */
    849 	old_list = dst_robj->fence;
    850 	old_fence = dst_robj->fence_excl;
    851 
    852 	/* Begin an update.  */
    853 	dma_resv_write_begin(dst_robj, &write_ticket);
    854 
    855 	/* Replace the fences.  */
    856 	dst_robj->fence = dst_list;
    857 	dst_robj->fence_excl = fence;
    858 
    859 	/* Commit the update.  */
    860 	dma_resv_write_commit(dst_robj, &write_ticket);
    861 
    862 	/* Release the old exclusive fence, if any.  */
    863 	if (old_fence)
    864 		dma_fence_put(old_fence);
    865 
    866 	/* Release any old shared fences.  */
    867 	if (old_list) {
    868 		for (i = old_list->shared_count; i --> 0;)
    869 			dma_fence_put(old_list->shared[i]);
    870 	}
    871 
    872 	/* Success!  */
    873 	return 0;
    874 
    875 restart:
    876 	rcu_read_unlock();
    877 	if (dst_list) {
    878 		for (i = dst_list->shared_count; i --> 0;) {
    879 			dma_fence_put(dst_list->shared[i]);
    880 			dst_list->shared[i] = NULL;
    881 		}
    882 		objlist_free(dst_list);
    883 		dst_list = NULL;
    884 	}
    885 	if (fence) {
    886 		dma_fence_put(fence);
    887 		fence = NULL;
    888 	}
    889 	goto top;
    890 }
    891 
    892 /*
    893  * dma_resv_test_signaled_rcu(robj, shared)
    894  *
    895  *	If shared is true, test whether all of the shared fences are
    896  *	signalled, or if there are none, test whether the exclusive
    897  *	fence is signalled.  If shared is false, test only whether the
    898  *	exclusive fence is signalled.
    899  *
    900  *	XXX Why does this _not_ test the exclusive fence if shared is
    901  *	true only if there are no shared fences?  This makes no sense.
    902  */
    903 bool
    904 dma_resv_test_signaled_rcu(const struct dma_resv *robj,
    905     bool shared)
    906 {
    907 	struct dma_resv_read_ticket ticket;
    908 	struct dma_resv_list *list;
    909 	struct dma_fence *fence;
    910 	uint32_t i, shared_count;
    911 	bool signaled = true;
    912 
    913 top:
    914 	/* Enter an RCU read section and get a read ticket.  */
    915 	rcu_read_lock();
    916 	dma_resv_read_begin(robj, &ticket);
    917 
    918 	/* If shared is requested and there is a shared list, test it.  */
    919 	if (!shared)
    920 		goto excl;
    921 	list = robj->fence;
    922 	__insn_barrier();
    923 	if (list) {
    924 		/* Make sure the content of the list has been published.  */
    925 		membar_datadep_consumer();
    926 
    927 		/* Find out how long it is.  */
    928 		shared_count = list->shared_count;
    929 
    930 		/*
    931 		 * Make sure we saw a consistent snapshot of the list
    932 		 * pointer and length.
    933 		 */
    934 		if (!dma_resv_read_valid(robj, &ticket))
    935 			goto restart;
    936 
    937 		/*
    938 		 * For each fence, if it is going away, restart.
    939 		 * Otherwise, acquire a reference to it to test whether
    940 		 * it is signalled.  Stop if we find any that is not
    941 		 * signalled.
    942 		 */
    943 		for (i = 0; i < shared_count; i++) {
    944 			fence = dma_fence_get_rcu(list->shared[i]);
    945 			if (fence == NULL)
    946 				goto restart;
    947 			signaled &= dma_fence_is_signaled(fence);
    948 			dma_fence_put(fence);
    949 			if (!signaled)
    950 				goto out;
    951 		}
    952 	}
    953 
    954 excl:
    955 	/* If there is an exclusive fence, test it.  */
    956 	fence = robj->fence_excl;
    957 	__insn_barrier();
    958 	if (fence) {
    959 		/* Make sure the content of the fence has been published.  */
    960 		membar_datadep_consumer();
    961 
    962 		/*
    963 		 * Make sure we saw a consistent snapshot of the fence.
    964 		 *
    965 		 * XXX I'm not actually sure this is necessary since
    966 		 * pointer writes are supposed to be atomic.
    967 		 */
    968 		if (!dma_resv_read_valid(robj, &ticket))
    969 			goto restart;
    970 
    971 		/*
    972 		 * If it is going away, restart.  Otherwise, acquire a
    973 		 * reference to it to test whether it is signalled.
    974 		 */
    975 		if ((fence = dma_fence_get_rcu(fence)) == NULL)
    976 			goto restart;
    977 		signaled &= dma_fence_is_signaled(fence);
    978 		dma_fence_put(fence);
    979 		if (!signaled)
    980 			goto out;
    981 	}
    982 
    983 out:	rcu_read_unlock();
    984 	return signaled;
    985 
    986 restart:
    987 	rcu_read_unlock();
    988 	goto top;
    989 }
    990 
    991 /*
    992  * dma_resv_wait_timeout_rcu(robj, shared, intr, timeout)
    993  *
    994  *	If shared is true, wait for all of the shared fences to be
    995  *	signalled, or if there are none, wait for the exclusive fence
    996  *	to be signalled.  If shared is false, wait only for the
    997  *	exclusive fence to be signalled.  If timeout is zero, don't
    998  *	wait, only test.
    999  *
   1000  *	XXX Why does this _not_ wait for the exclusive fence if shared
   1001  *	is true only if there are no shared fences?  This makes no
   1002  *	sense.
   1003  */
   1004 long
   1005 dma_resv_wait_timeout_rcu(const struct dma_resv *robj,
   1006     bool shared, bool intr, unsigned long timeout)
   1007 {
   1008 	struct dma_resv_read_ticket ticket;
   1009 	struct dma_resv_list *list;
   1010 	struct dma_fence *fence;
   1011 	uint32_t i, shared_count;
   1012 	long ret;
   1013 
   1014 	if (timeout == 0)
   1015 		return dma_resv_test_signaled_rcu(robj, shared);
   1016 
   1017 top:
   1018 	/* Enter an RCU read section and get a read ticket.  */
   1019 	rcu_read_lock();
   1020 	dma_resv_read_begin(robj, &ticket);
   1021 
   1022 	/* If shared is requested and there is a shared list, wait on it.  */
   1023 	if (!shared)
   1024 		goto excl;
   1025 	list = robj->fence;
   1026 	__insn_barrier();
   1027 	if (list) {
   1028 		/* Make sure the content of the list has been published.  */
   1029 		membar_datadep_consumer();
   1030 
   1031 		/* Find out how long it is.  */
   1032 		shared_count = list->shared_count;
   1033 
   1034 		/*
   1035 		 * Make sure we saw a consistent snapshot of the list
   1036 		 * pointer and length.
   1037 		 */
   1038 		if (!dma_resv_read_valid(robj, &ticket))
   1039 			goto restart;
   1040 
   1041 		/*
   1042 		 * For each fence, if it is going away, restart.
   1043 		 * Otherwise, acquire a reference to it to test whether
   1044 		 * it is signalled.  Stop and wait if we find any that
   1045 		 * is not signalled.
   1046 		 */
   1047 		for (i = 0; i < shared_count; i++) {
   1048 			fence = dma_fence_get_rcu(list->shared[i]);
   1049 			if (fence == NULL)
   1050 				goto restart;
   1051 			if (!dma_fence_is_signaled(fence))
   1052 				goto wait;
   1053 			dma_fence_put(fence);
   1054 		}
   1055 	}
   1056 
   1057 excl:
   1058 	/* If there is an exclusive fence, test it.  */
   1059 	fence = robj->fence_excl;
   1060 	__insn_barrier();
   1061 	if (fence) {
   1062 		/* Make sure the content of the fence has been published.  */
   1063 		membar_datadep_consumer();
   1064 
   1065 		/*
   1066 		 * Make sure we saw a consistent snapshot of the fence.
   1067 		 *
   1068 		 * XXX I'm not actually sure this is necessary since
   1069 		 * pointer writes are supposed to be atomic.
   1070 		 */
   1071 		if (!dma_resv_read_valid(robj, &ticket))
   1072 			goto restart;
   1073 
   1074 		/*
   1075 		 * If it is going away, restart.  Otherwise, acquire a
   1076 		 * reference to it to test whether it is signalled.  If
   1077 		 * not, wait for it.
   1078 		 */
   1079 		if ((fence = dma_fence_get_rcu(fence)) == NULL)
   1080 			goto restart;
   1081 		if (!dma_fence_is_signaled(fence))
   1082 			goto wait;
   1083 		dma_fence_put(fence);
   1084 	}
   1085 
   1086 	/* Success!  Return the number of ticks left.  */
   1087 	rcu_read_unlock();
   1088 	return timeout;
   1089 
   1090 restart:
   1091 	rcu_read_unlock();
   1092 	goto top;
   1093 
   1094 wait:
   1095 	/*
   1096 	 * Exit the RCU read section, wait for it, and release the
   1097 	 * fence when we're done.  If we time out or fail, bail.
   1098 	 * Otherwise, go back to the top.
   1099 	 */
   1100 	KASSERT(fence != NULL);
   1101 	rcu_read_unlock();
   1102 	ret = dma_fence_wait_timeout(fence, intr, timeout);
   1103 	dma_fence_put(fence);
   1104 	if (ret <= 0)
   1105 		return ret;
   1106 	KASSERT(ret <= timeout);
   1107 	timeout = ret;
   1108 	goto top;
   1109 }
   1110 
   1111 /*
   1112  * dma_resv_poll_init(rpoll, lock)
   1113  *
   1114  *	Initialize reservation poll state.
   1115  */
   1116 void
   1117 dma_resv_poll_init(struct dma_resv_poll *rpoll)
   1118 {
   1119 
   1120 	mutex_init(&rpoll->rp_lock, MUTEX_DEFAULT, IPL_VM);
   1121 	selinit(&rpoll->rp_selq);
   1122 	rpoll->rp_claimed = 0;
   1123 }
   1124 
   1125 /*
   1126  * dma_resv_poll_fini(rpoll)
   1127  *
   1128  *	Release any resource associated with reservation poll state.
   1129  */
   1130 void
   1131 dma_resv_poll_fini(struct dma_resv_poll *rpoll)
   1132 {
   1133 
   1134 	KASSERT(rpoll->rp_claimed == 0);
   1135 	seldestroy(&rpoll->rp_selq);
   1136 	mutex_destroy(&rpoll->rp_lock);
   1137 }
   1138 
   1139 /*
   1140  * dma_resv_poll_cb(fence, fcb)
   1141  *
   1142  *	Callback to notify a reservation poll that a fence has
   1143  *	completed.  Notify any waiters and allow the next poller to
   1144  *	claim the callback.
   1145  *
   1146  *	If one thread is waiting for the exclusive fence only, and we
   1147  *	spuriously notify them about a shared fence, tough.
   1148  */
   1149 static void
   1150 dma_resv_poll_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
   1151 {
   1152 	struct dma_resv_poll *rpoll = container_of(fcb,
   1153 	    struct dma_resv_poll, rp_fcb);
   1154 
   1155 	mutex_enter(&rpoll->rp_lock);
   1156 	selnotify(&rpoll->rp_selq, 0, NOTE_SUBMIT);
   1157 	rpoll->rp_claimed = 0;
   1158 	mutex_exit(&rpoll->rp_lock);
   1159 }
   1160 
   1161 /*
   1162  * dma_resv_do_poll(robj, events, rpoll)
   1163  *
   1164  *	Poll for reservation object events using the reservation poll
   1165  *	state in rpoll:
   1166  *
   1167  *	- POLLOUT	wait for all fences shared and exclusive
   1168  *	- POLLIN	wait for the exclusive fence
   1169  *
   1170  *	Return the subset of events in events that are ready.  If any
   1171  *	are requested but not ready, arrange to be notified with
   1172  *	selnotify when they are.
   1173  */
   1174 int
   1175 dma_resv_do_poll(const struct dma_resv *robj, int events,
   1176     struct dma_resv_poll *rpoll)
   1177 {
   1178 	struct dma_resv_read_ticket ticket;
   1179 	struct dma_resv_list *list;
   1180 	struct dma_fence *fence;
   1181 	uint32_t i, shared_count;
   1182 	int revents;
   1183 	bool recorded = false;	/* curlwp is on the selq */
   1184 	bool claimed = false;	/* we claimed the callback */
   1185 	bool callback = false;	/* we requested a callback */
   1186 
   1187 	/*
   1188 	 * Start with the maximal set of events that could be ready.
   1189 	 * We will eliminate the events that are definitely not ready
   1190 	 * as we go at the same time as we add callbacks to notify us
   1191 	 * that they may be ready.
   1192 	 */
   1193 	revents = events & (POLLIN|POLLOUT);
   1194 	if (revents == 0)
   1195 		return 0;
   1196 
   1197 top:
   1198 	/* Enter an RCU read section and get a read ticket.  */
   1199 	rcu_read_lock();
   1200 	dma_resv_read_begin(robj, &ticket);
   1201 
   1202 	/* If we want to wait for all fences, get the shared list.  */
   1203 	if (!(events & POLLOUT))
   1204 		goto excl;
   1205 	list = robj->fence;
   1206 	__insn_barrier();
   1207 	if (list) do {
   1208 		/* Make sure the content of the list has been published.  */
   1209 		membar_datadep_consumer();
   1210 
   1211 		/* Find out how long it is.  */
   1212 		shared_count = list->shared_count;
   1213 
   1214 		/*
   1215 		 * Make sure we saw a consistent snapshot of the list
   1216 		 * pointer and length.
   1217 		 */
   1218 		if (!dma_resv_read_valid(robj, &ticket))
   1219 			goto restart;
   1220 
   1221 		/*
   1222 		 * For each fence, if it is going away, restart.
   1223 		 * Otherwise, acquire a reference to it to test whether
   1224 		 * it is signalled.  Stop and request a callback if we
   1225 		 * find any that is not signalled.
   1226 		 */
   1227 		for (i = 0; i < shared_count; i++) {
   1228 			fence = dma_fence_get_rcu(list->shared[i]);
   1229 			if (fence == NULL)
   1230 				goto restart;
   1231 			if (!dma_fence_is_signaled(fence)) {
   1232 				dma_fence_put(fence);
   1233 				break;
   1234 			}
   1235 			dma_fence_put(fence);
   1236 		}
   1237 
   1238 		/* If all shared fences have been signalled, move on.  */
   1239 		if (i == shared_count)
   1240 			break;
   1241 
   1242 		/* Put ourselves on the selq if we haven't already.  */
   1243 		if (!recorded)
   1244 			goto record;
   1245 
   1246 		/*
   1247 		 * If someone else claimed the callback, or we already
   1248 		 * requested it, we're guaranteed to be notified, so
   1249 		 * assume the event is not ready.
   1250 		 */
   1251 		if (!claimed || callback) {
   1252 			revents &= ~POLLOUT;
   1253 			break;
   1254 		}
   1255 
   1256 		/*
   1257 		 * Otherwise, find the first fence that is not
   1258 		 * signalled, request the callback, and clear POLLOUT
   1259 		 * from the possible ready events.  If they are all
   1260 		 * signalled, leave POLLOUT set; we will simulate the
   1261 		 * callback later.
   1262 		 */
   1263 		for (i = 0; i < shared_count; i++) {
   1264 			fence = dma_fence_get_rcu(list->shared[i]);
   1265 			if (fence == NULL)
   1266 				goto restart;
   1267 			if (!dma_fence_add_callback(fence, &rpoll->rp_fcb,
   1268 				dma_resv_poll_cb)) {
   1269 				dma_fence_put(fence);
   1270 				revents &= ~POLLOUT;
   1271 				callback = true;
   1272 				break;
   1273 			}
   1274 			dma_fence_put(fence);
   1275 		}
   1276 	} while (0);
   1277 
   1278 excl:
   1279 	/* We always wait for at least the exclusive fence, so get it.  */
   1280 	fence = robj->fence_excl;
   1281 	__insn_barrier();
   1282 	if (fence) do {
   1283 		/* Make sure the content of the fence has been published.  */
   1284 		membar_datadep_consumer();
   1285 
   1286 		/*
   1287 		 * Make sure we saw a consistent snapshot of the fence.
   1288 		 *
   1289 		 * XXX I'm not actually sure this is necessary since
   1290 		 * pointer writes are supposed to be atomic.
   1291 		 */
   1292 		if (!dma_resv_read_valid(robj, &ticket))
   1293 			goto restart;
   1294 
   1295 		/*
   1296 		 * If it is going away, restart.  Otherwise, acquire a
   1297 		 * reference to it to test whether it is signalled.  If
   1298 		 * not, stop and request a callback.
   1299 		 */
   1300 		if ((fence = dma_fence_get_rcu(fence)) == NULL)
   1301 			goto restart;
   1302 		if (dma_fence_is_signaled(fence)) {
   1303 			dma_fence_put(fence);
   1304 			break;
   1305 		}
   1306 
   1307 		/* Put ourselves on the selq if we haven't already.  */
   1308 		if (!recorded) {
   1309 			dma_fence_put(fence);
   1310 			goto record;
   1311 		}
   1312 
   1313 		/*
   1314 		 * If someone else claimed the callback, or we already
   1315 		 * requested it, we're guaranteed to be notified, so
   1316 		 * assume the event is not ready.
   1317 		 */
   1318 		if (!claimed || callback) {
   1319 			dma_fence_put(fence);
   1320 			revents = 0;
   1321 			break;
   1322 		}
   1323 
   1324 		/*
   1325 		 * Otherwise, try to request the callback, and clear
   1326 		 * all possible ready events.  If the fence has been
   1327 		 * signalled in the interim, leave the events set; we
   1328 		 * will simulate the callback later.
   1329 		 */
   1330 		if (!dma_fence_add_callback(fence, &rpoll->rp_fcb,
   1331 			dma_resv_poll_cb)) {
   1332 			dma_fence_put(fence);
   1333 			revents = 0;
   1334 			callback = true;
   1335 			break;
   1336 		}
   1337 		dma_fence_put(fence);
   1338 	} while (0);
   1339 
   1340 	/* All done reading the fences.  */
   1341 	rcu_read_unlock();
   1342 
   1343 	if (claimed && !callback) {
   1344 		/*
   1345 		 * We claimed the callback but we didn't actually
   1346 		 * request it because a fence was signalled while we
   1347 		 * were claiming it.  Call it ourselves now.  The
   1348 		 * callback doesn't use the fence nor rely on holding
   1349 		 * any of the fence locks, so this is safe.
   1350 		 */
   1351 		dma_resv_poll_cb(NULL, &rpoll->rp_fcb);
   1352 	}
   1353 	return revents;
   1354 
   1355 restart:
   1356 	rcu_read_unlock();
   1357 	goto top;
   1358 
   1359 record:
   1360 	rcu_read_unlock();
   1361 	mutex_enter(&rpoll->rp_lock);
   1362 	selrecord(curlwp, &rpoll->rp_selq);
   1363 	if (!rpoll->rp_claimed)
   1364 		claimed = rpoll->rp_claimed = true;
   1365 	mutex_exit(&rpoll->rp_lock);
   1366 	recorded = true;
   1367 	goto top;
   1368 }
   1369 
   1370 /*
   1371  * dma_resv_kqfilter(robj, kn, rpoll)
   1372  *
   1373  *	Kqueue filter for reservation objects.  Currently not
   1374  *	implemented because the logic to implement it is nontrivial,
   1375  *	and userland will presumably never use it, so it would be
   1376  *	dangerous to add never-tested complex code paths to the kernel.
   1377  */
   1378 int
   1379 dma_resv_kqfilter(const struct dma_resv *robj,
   1380     struct knote *kn, struct dma_resv_poll *rpoll)
   1381 {
   1382 
   1383 	return EINVAL;
   1384 }
   1385