linux_dma_resv.c revision 1.6 1 /* $NetBSD: linux_dma_resv.c,v 1.6 2021/12/19 11:53:33 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: linux_dma_resv.c,v 1.6 2021/12/19 11:53:33 riastradh Exp $");
34
35 #include <sys/param.h>
36 #include <sys/poll.h>
37 #include <sys/select.h>
38
39 #include <linux/dma-fence.h>
40 #include <linux/dma-resv.h>
41 #include <linux/seqlock.h>
42 #include <linux/ww_mutex.h>
43
44 DEFINE_WW_CLASS(reservation_ww_class __cacheline_aligned);
45
46 static struct dma_resv_list *
47 objlist_tryalloc(uint32_t n)
48 {
49 struct dma_resv_list *list;
50
51 list = kmem_alloc(offsetof(typeof(*list), shared[n]), KM_NOSLEEP);
52 if (list == NULL)
53 return NULL;
54 list->shared_max = n;
55
56 return list;
57 }
58
59 static void
60 objlist_free(struct dma_resv_list *list)
61 {
62 uint32_t n = list->shared_max;
63
64 kmem_free(list, offsetof(typeof(*list), shared[n]));
65 }
66
67 static void
68 objlist_free_cb(struct rcu_head *rcu)
69 {
70 struct dma_resv_list *list = container_of(rcu,
71 struct dma_resv_list, rol_rcu);
72
73 objlist_free(list);
74 }
75
76 static void
77 objlist_defer_free(struct dma_resv_list *list)
78 {
79
80 call_rcu(&list->rol_rcu, objlist_free_cb);
81 }
82
83 /*
84 * dma_resv_init(robj)
85 *
86 * Initialize a reservation object. Caller must later destroy it
87 * with dma_resv_fini.
88 */
89 void
90 dma_resv_init(struct dma_resv *robj)
91 {
92
93 ww_mutex_init(&robj->lock, &reservation_ww_class);
94 seqcount_init(&robj->seq);
95 robj->fence_excl = NULL;
96 robj->fence = NULL;
97 robj->robj_prealloc = NULL;
98 }
99
100 /*
101 * dma_resv_fini(robj)
102 *
103 * Destroy a reservation object, freeing any memory that had been
104 * allocated for it. Caller must have exclusive access to it.
105 */
106 void
107 dma_resv_fini(struct dma_resv *robj)
108 {
109 unsigned i;
110
111 if (robj->robj_prealloc)
112 objlist_free(robj->robj_prealloc);
113 if (robj->fence) {
114 for (i = 0; i < robj->fence->shared_count; i++)
115 dma_fence_put(robj->fence->shared[i]);
116 objlist_free(robj->fence);
117 }
118 if (robj->fence_excl)
119 dma_fence_put(robj->fence_excl);
120 ww_mutex_destroy(&robj->lock);
121 }
122
123 /*
124 * dma_resv_lock(robj, ctx)
125 *
126 * Acquire a reservation object's lock. Return 0 on success,
127 * -EALREADY if caller already holds it, -EDEADLK if a
128 * higher-priority owner holds it and the caller must back out and
129 * retry.
130 */
131 int
132 dma_resv_lock(struct dma_resv *robj,
133 struct ww_acquire_ctx *ctx)
134 {
135
136 return ww_mutex_lock(&robj->lock, ctx);
137 }
138
139 /*
140 * dma_resv_lock_slow(robj, ctx)
141 *
142 * Acquire a reservation object's lock. Caller must not hold
143 * this lock or any others -- this is to be used in slow paths
144 * after dma_resv_lock or dma_resv_lock_interruptible has failed
145 * and the caller has backed out all other locks.
146 */
147 void
148 dma_resv_lock_slow(struct dma_resv *robj,
149 struct ww_acquire_ctx *ctx)
150 {
151
152 ww_mutex_lock_slow(&robj->lock, ctx);
153 }
154
155 /*
156 * dma_resv_lock_interruptible(robj, ctx)
157 *
158 * Acquire a reservation object's lock. Return 0 on success,
159 * -EALREADY if caller already holds it, -EDEADLK if a
160 * higher-priority owner holds it and the caller must back out and
161 * retry, -ERESTART/-EINTR if interrupted.
162 */
163 int
164 dma_resv_lock_interruptible(struct dma_resv *robj,
165 struct ww_acquire_ctx *ctx)
166 {
167
168 return ww_mutex_lock_interruptible(&robj->lock, ctx);
169 }
170
171 /*
172 * dma_resv_lock_slow_interruptible(robj, ctx)
173 *
174 * Acquire a reservation object's lock. Caller must not hold
175 * this lock or any others -- this is to be used in slow paths
176 * after dma_resv_lock or dma_resv_lock_interruptible has failed
177 * and the caller has backed out all other locks. Return 0 on
178 * success, -ERESTART/-EINTR if interrupted.
179 */
180 int
181 dma_resv_lock_slow_interruptible(struct dma_resv *robj,
182 struct ww_acquire_ctx *ctx)
183 {
184
185 return ww_mutex_lock_slow_interruptible(&robj->lock, ctx);
186 }
187
188 /*
189 * dma_resv_trylock(robj)
190 *
191 * Try to acquire a reservation object's lock without blocking.
192 * Return true on success, false on failure.
193 */
194 bool
195 dma_resv_trylock(struct dma_resv *robj)
196 {
197
198 return ww_mutex_trylock(&robj->lock);
199 }
200
201 /*
202 * dma_resv_locking_ctx(robj)
203 *
204 * Return a pointer to the ww_acquire_ctx used by the owner of
205 * the reservation object's lock, or NULL if it is either not
206 * owned or if it is locked without context.
207 */
208 struct ww_acquire_ctx *
209 dma_resv_locking_ctx(struct dma_resv *robj)
210 {
211
212 return ww_mutex_locking_ctx(&robj->lock);
213 }
214
215 /*
216 * dma_resv_unlock(robj)
217 *
218 * Release a reservation object's lock.
219 */
220 void
221 dma_resv_unlock(struct dma_resv *robj)
222 {
223
224 return ww_mutex_unlock(&robj->lock);
225 }
226
227 /*
228 * dma_resv_held(robj)
229 *
230 * True if robj is locked.
231 */
232 bool
233 dma_resv_held(struct dma_resv *robj)
234 {
235
236 return ww_mutex_is_locked(&robj->lock);
237 }
238
239 /*
240 * dma_resv_assert_held(robj)
241 *
242 * Panic if robj is not held, in DIAGNOSTIC builds.
243 */
244 void
245 dma_resv_assert_held(struct dma_resv *robj)
246 {
247
248 KASSERT(dma_resv_held(robj));
249 }
250
251 /*
252 * dma_resv_get_excl(robj)
253 *
254 * Return a pointer to the exclusive fence of the reservation
255 * object robj.
256 *
257 * Caller must have robj locked.
258 */
259 struct dma_fence *
260 dma_resv_get_excl(struct dma_resv *robj)
261 {
262
263 KASSERT(dma_resv_held(robj));
264 return robj->fence_excl;
265 }
266
267 /*
268 * dma_resv_get_list(robj)
269 *
270 * Return a pointer to the shared fence list of the reservation
271 * object robj.
272 *
273 * Caller must have robj locked.
274 */
275 struct dma_resv_list *
276 dma_resv_get_list(struct dma_resv *robj)
277 {
278
279 KASSERT(dma_resv_held(robj));
280 return robj->fence;
281 }
282
283 /*
284 * dma_resv_reserve_shared(robj)
285 *
286 * Reserve space in robj to add a shared fence. To be used only
287 * once before calling dma_resv_add_shared_fence.
288 *
289 * Caller must have robj locked.
290 *
291 * Internally, we start with room for four entries and double if
292 * we don't have enough. This is not guaranteed.
293 */
294 int
295 dma_resv_reserve_shared(struct dma_resv *robj, unsigned int num_fences)
296 {
297 struct dma_resv_list *list, *prealloc;
298 uint32_t n, nalloc;
299
300 KASSERT(dma_resv_held(robj));
301 KASSERT(num_fences == 1);
302
303 list = robj->fence;
304 prealloc = robj->robj_prealloc;
305
306 /* If there's an existing list, check it for space. */
307 if (list) {
308 /* If there's too many already, give up. */
309 if (list->shared_count == UINT32_MAX)
310 return -ENOMEM;
311
312 /* Add one more. */
313 n = list->shared_count + 1;
314
315 /* If there's enough for one more, we're done. */
316 if (n <= list->shared_max)
317 return 0;
318 } else {
319 /* No list already. We need space for 1. */
320 n = 1;
321 }
322
323 /* If not, maybe there's a preallocated list ready. */
324 if (prealloc != NULL) {
325 /* If there's enough room in it, stop here. */
326 if (n <= prealloc->shared_max)
327 return 0;
328
329 /* Try to double its capacity. */
330 nalloc = n > UINT32_MAX/2 ? UINT32_MAX : 2*n;
331 prealloc = objlist_tryalloc(nalloc);
332 if (prealloc == NULL)
333 return -ENOMEM;
334
335 /* Swap the new preallocated list and free the old one. */
336 objlist_free(robj->robj_prealloc);
337 robj->robj_prealloc = prealloc;
338 } else {
339 /* Start with some spare. */
340 nalloc = n > UINT32_MAX/2 ? UINT32_MAX : MAX(2*n, 4);
341 prealloc = objlist_tryalloc(nalloc);
342 if (prealloc == NULL)
343 return -ENOMEM;
344 /* Save the new preallocated list. */
345 robj->robj_prealloc = prealloc;
346 }
347
348 /* Success! */
349 return 0;
350 }
351
352 struct dma_resv_write_ticket {
353 };
354
355 /*
356 * dma_resv_write_begin(robj, ticket)
357 *
358 * Begin an atomic batch of writes to robj, and initialize opaque
359 * ticket for it. The ticket must be passed to
360 * dma_resv_write_commit to commit the writes.
361 *
362 * Caller must have robj locked.
363 *
364 * Implies membar_producer, i.e. store-before-store barrier. Does
365 * NOT serve as an acquire operation, however.
366 */
367 static void
368 dma_resv_write_begin(struct dma_resv *robj,
369 struct dma_resv_write_ticket *ticket)
370 {
371
372 KASSERT(dma_resv_held(robj));
373
374 write_seqcount_begin(&robj->seq);
375 }
376
377 /*
378 * dma_resv_write_commit(robj, ticket)
379 *
380 * Commit an atomic batch of writes to robj begun with the call to
381 * dma_resv_write_begin that returned ticket.
382 *
383 * Caller must have robj locked.
384 *
385 * Implies membar_producer, i.e. store-before-store barrier. Does
386 * NOT serve as a release operation, however.
387 */
388 static void
389 dma_resv_write_commit(struct dma_resv *robj,
390 struct dma_resv_write_ticket *ticket)
391 {
392
393 KASSERT(dma_resv_held(robj));
394
395 write_seqcount_end(&robj->seq);
396 }
397
398 struct dma_resv_read_ticket {
399 unsigned version;
400 };
401
402 /*
403 * dma_resv_read_begin(robj, ticket)
404 *
405 * Begin a read section, and initialize opaque ticket for it. The
406 * ticket must be passed to dma_resv_read_exit, and the
407 * caller must be prepared to retry reading if it fails.
408 */
409 static void
410 dma_resv_read_begin(const struct dma_resv *robj,
411 struct dma_resv_read_ticket *ticket)
412 {
413
414 ticket->version = read_seqcount_begin(&robj->seq);
415 }
416
417 /*
418 * dma_resv_read_valid(robj, ticket)
419 *
420 * Test whether the read sections are valid. Return true on
421 * success, or false on failure if the read ticket has been
422 * invalidated.
423 */
424 static bool
425 dma_resv_read_valid(const struct dma_resv *robj,
426 struct dma_resv_read_ticket *ticket)
427 {
428
429 return !read_seqcount_retry(&robj->seq, ticket->version);
430 }
431
432 /*
433 * dma_resv_add_excl_fence(robj, fence)
434 *
435 * Empty and release all of robj's shared fences, and clear and
436 * release its exclusive fence. If fence is nonnull, acquire a
437 * reference to it and save it as robj's exclusive fence.
438 *
439 * Caller must have robj locked.
440 */
441 void
442 dma_resv_add_excl_fence(struct dma_resv *robj,
443 struct dma_fence *fence)
444 {
445 struct dma_fence *old_fence = robj->fence_excl;
446 struct dma_resv_list *old_list = robj->fence;
447 uint32_t old_shared_count;
448 struct dma_resv_write_ticket ticket;
449
450 KASSERT(dma_resv_held(robj));
451
452 /*
453 * If we are setting rather than just removing a fence, acquire
454 * a reference for ourselves.
455 */
456 if (fence)
457 (void)dma_fence_get(fence);
458
459 /* If there are any shared fences, remember how many. */
460 if (old_list)
461 old_shared_count = old_list->shared_count;
462
463 /* Begin an update. */
464 dma_resv_write_begin(robj, &ticket);
465
466 /* Replace the fence and zero the shared count. */
467 atomic_store_release(&robj->fence_excl, fence);
468 if (old_list)
469 old_list->shared_count = 0;
470
471 /* Commit the update. */
472 dma_resv_write_commit(robj, &ticket);
473
474 /* Release the old exclusive fence, if any. */
475 if (old_fence)
476 dma_fence_put(old_fence);
477
478 /* Release any old shared fences. */
479 if (old_list) {
480 while (old_shared_count--)
481 dma_fence_put(old_list->shared[old_shared_count]);
482 }
483 }
484
485 /*
486 * dma_resv_add_shared_fence(robj, fence)
487 *
488 * Acquire a reference to fence and add it to robj's shared list.
489 * If any fence was already added with the same context number,
490 * release it and replace it by this one.
491 *
492 * Caller must have robj locked, and must have preceded with a
493 * call to dma_resv_reserve_shared for each shared fence
494 * added.
495 */
496 void
497 dma_resv_add_shared_fence(struct dma_resv *robj,
498 struct dma_fence *fence)
499 {
500 struct dma_resv_list *list = robj->fence;
501 struct dma_resv_list *prealloc = robj->robj_prealloc;
502 struct dma_resv_write_ticket ticket;
503 struct dma_fence *replace = NULL;
504 uint32_t i;
505
506 KASSERT(dma_resv_held(robj));
507
508 /* Acquire a reference to the fence. */
509 KASSERT(fence != NULL);
510 (void)dma_fence_get(fence);
511
512 /* Check for a preallocated replacement list. */
513 if (prealloc == NULL) {
514 /*
515 * If there is no preallocated replacement list, then
516 * there must be room in the current list.
517 */
518 KASSERT(list != NULL);
519 KASSERT(list->shared_count < list->shared_max);
520
521 /* Begin an update. Implies membar_producer for fence. */
522 dma_resv_write_begin(robj, &ticket);
523
524 /* Find a fence with the same context number. */
525 for (i = 0; i < list->shared_count; i++) {
526 if (list->shared[i]->context == fence->context) {
527 replace = list->shared[i];
528 list->shared[i] = fence;
529 break;
530 }
531 }
532
533 /* If we didn't find one, add it at the end. */
534 if (i == list->shared_count)
535 list->shared[list->shared_count++] = fence;
536
537 /* Commit the update. */
538 dma_resv_write_commit(robj, &ticket);
539 } else {
540 /*
541 * There is a preallocated replacement list. There may
542 * not be a current list. If not, treat it as a zero-
543 * length list.
544 */
545 uint32_t shared_count = (list == NULL? 0 : list->shared_count);
546
547 /* There had better be room in the preallocated list. */
548 KASSERT(shared_count < prealloc->shared_max);
549
550 /*
551 * Copy the fences over, but replace if we find one
552 * with the same context number.
553 */
554 for (i = 0; i < shared_count; i++) {
555 if (replace == NULL &&
556 list->shared[i]->context == fence->context) {
557 replace = list->shared[i];
558 prealloc->shared[i] = fence;
559 } else {
560 prealloc->shared[i] = list->shared[i];
561 }
562 }
563 prealloc->shared_count = shared_count;
564
565 /* If we didn't find one, add it at the end. */
566 if (replace == NULL)
567 prealloc->shared[prealloc->shared_count++] = fence;
568
569 /*
570 * Now ready to replace the list. Begin an update.
571 * Implies membar_producer for fence and prealloc.
572 */
573 dma_resv_write_begin(robj, &ticket);
574
575 /* Replace the list. */
576 atomic_store_release(&robj->fence, prealloc);
577 robj->robj_prealloc = NULL;
578
579 /* Commit the update. */
580 dma_resv_write_commit(robj, &ticket);
581
582 /*
583 * If there is an old list, free it when convenient.
584 * (We are not in a position at this point to sleep
585 * waiting for activity on all CPUs.)
586 */
587 if (list)
588 objlist_defer_free(list);
589 }
590
591 /* Release a fence if we replaced it. */
592 if (replace)
593 dma_fence_put(replace);
594 }
595
596 /*
597 * dma_resv_get_excl_rcu(robj)
598 *
599 * Note: Caller need not call this from an RCU read section.
600 */
601 struct dma_fence *
602 dma_resv_get_excl_rcu(const struct dma_resv *robj)
603 {
604 struct dma_fence *fence;
605
606 rcu_read_lock();
607 fence = dma_fence_get_rcu_safe(&robj->fence_excl);
608 rcu_read_unlock();
609
610 return fence;
611 }
612
613 /*
614 * dma_resv_get_fences_rcu(robj, fencep, nsharedp, sharedp)
615 */
616 int
617 dma_resv_get_fences_rcu(const struct dma_resv *robj,
618 struct dma_fence **fencep, unsigned *nsharedp, struct dma_fence ***sharedp)
619 {
620 const struct dma_resv_list *list;
621 struct dma_fence *fence;
622 struct dma_fence **shared = NULL;
623 unsigned shared_alloc, shared_count, i;
624 struct dma_resv_read_ticket ticket;
625
626 top:
627 /* Enter an RCU read section and get a read ticket. */
628 rcu_read_lock();
629 dma_resv_read_begin(robj, &ticket);
630
631 /* If there is a shared list, grab it. */
632 if ((list = atomic_load_consume(&robj->fence)) != NULL) {
633
634 /* Check whether we have a buffer. */
635 if (shared == NULL) {
636 /*
637 * We don't have a buffer yet. Try to allocate
638 * one without waiting.
639 */
640 shared_alloc = list->shared_max;
641 shared = kcalloc(shared_alloc, sizeof(shared[0]),
642 GFP_NOWAIT);
643 if (shared == NULL) {
644 /*
645 * Couldn't do it immediately. Back
646 * out of RCU and allocate one with
647 * waiting.
648 */
649 rcu_read_unlock();
650 shared = kcalloc(shared_alloc,
651 sizeof(shared[0]), GFP_KERNEL);
652 if (shared == NULL)
653 return -ENOMEM;
654 goto top;
655 }
656 } else if (shared_alloc < list->shared_max) {
657 /*
658 * We have a buffer but it's too small. We're
659 * already racing in this case, so just back
660 * out and wait to allocate a bigger one.
661 */
662 shared_alloc = list->shared_max;
663 rcu_read_unlock();
664 kfree(shared);
665 shared = kcalloc(shared_alloc, sizeof(shared[0]),
666 GFP_KERNEL);
667 if (shared == NULL)
668 return -ENOMEM;
669 }
670
671 /*
672 * We got a buffer large enough. Copy into the buffer
673 * and record the number of elements.
674 */
675 memcpy(shared, list->shared, shared_alloc * sizeof(shared[0]));
676 shared_count = list->shared_count;
677 } else {
678 /* No shared list: shared count is zero. */
679 shared_count = 0;
680 }
681
682 /* If there is an exclusive fence, grab it. */
683 fence = atomic_load_consume(&robj->fence_excl);
684
685 /*
686 * We are done reading from robj and list. Validate our
687 * parking ticket. If it's invalid, do not pass go and do not
688 * collect $200.
689 */
690 if (!dma_resv_read_valid(robj, &ticket))
691 goto restart;
692
693 /*
694 * Try to get a reference to the exclusive fence, if there is
695 * one. If we can't, start over.
696 */
697 if (fence) {
698 if (dma_fence_get_rcu(fence) == NULL)
699 goto restart;
700 }
701
702 /*
703 * Try to get a reference to all of the shared fences.
704 */
705 for (i = 0; i < shared_count; i++) {
706 if (dma_fence_get_rcu(shared[i]) == NULL)
707 goto put_restart;
708 }
709
710 /* Success! */
711 rcu_read_unlock();
712 *fencep = fence;
713 *nsharedp = shared_count;
714 *sharedp = shared;
715 return 0;
716
717 put_restart:
718 /* Back out. */
719 while (i --> 0) {
720 dma_fence_put(shared[i]);
721 shared[i] = NULL; /* paranoia */
722 }
723 if (fence) {
724 dma_fence_put(fence);
725 fence = NULL; /* paranoia */
726 }
727
728 restart:
729 rcu_read_unlock();
730 goto top;
731 }
732
733 /*
734 * dma_resv_copy_fences(dst, src)
735 *
736 * Copy the exclusive fence and all the shared fences from src to
737 * dst.
738 *
739 * Caller must have dst locked.
740 */
741 int
742 dma_resv_copy_fences(struct dma_resv *dst_robj,
743 const struct dma_resv *src_robj)
744 {
745 const struct dma_resv_list *src_list;
746 struct dma_resv_list *dst_list = NULL;
747 struct dma_resv_list *old_list;
748 struct dma_fence *fence = NULL;
749 struct dma_fence *old_fence;
750 uint32_t shared_count, i;
751 struct dma_resv_read_ticket read_ticket;
752 struct dma_resv_write_ticket write_ticket;
753
754 KASSERT(dma_resv_held(dst_robj));
755
756 top:
757 /* Enter an RCU read section and get a read ticket. */
758 rcu_read_lock();
759 dma_resv_read_begin(src_robj, &read_ticket);
760
761 /* Get the shared list. */
762 if ((src_list = atomic_load_consume(&src_robj->fence)) != NULL) {
763
764 /* Find out how long it is. */
765 shared_count = src_list->shared_count;
766
767 /*
768 * Make sure we saw a consistent snapshot of the list
769 * pointer and length.
770 */
771 if (!dma_resv_read_valid(src_robj, &read_ticket))
772 goto restart;
773
774 /* Allocate a new list. */
775 dst_list = objlist_tryalloc(shared_count);
776 if (dst_list == NULL)
777 return -ENOMEM;
778
779 /* Copy over all fences that are not yet signalled. */
780 dst_list->shared_count = 0;
781 for (i = 0; i < shared_count; i++) {
782 if ((fence = dma_fence_get_rcu(src_list->shared[i]))
783 != NULL)
784 goto restart;
785 if (dma_fence_is_signaled(fence)) {
786 dma_fence_put(fence);
787 fence = NULL;
788 continue;
789 }
790 dst_list->shared[dst_list->shared_count++] = fence;
791 fence = NULL;
792 }
793 }
794
795 /* Get the exclusive fence. */
796 if ((fence = atomic_load_consume(&src_robj->fence_excl)) != NULL) {
797
798 /*
799 * Make sure we saw a consistent snapshot of the fence.
800 *
801 * XXX I'm not actually sure this is necessary since
802 * pointer writes are supposed to be atomic.
803 */
804 if (!dma_resv_read_valid(src_robj, &read_ticket)) {
805 fence = NULL;
806 goto restart;
807 }
808
809 /*
810 * If it is going away, restart. Otherwise, acquire a
811 * reference to it.
812 */
813 if (!dma_fence_get_rcu(fence)) {
814 fence = NULL;
815 goto restart;
816 }
817 }
818
819 /* All done with src; exit the RCU read section. */
820 rcu_read_unlock();
821
822 /*
823 * We now have a snapshot of the shared and exclusive fences of
824 * src_robj and we have acquired references to them so they
825 * won't go away. Transfer them over to dst_robj, releasing
826 * references to any that were there.
827 */
828
829 /* Get the old shared and exclusive fences, if any. */
830 old_list = dst_robj->fence;
831 old_fence = dst_robj->fence_excl;
832
833 /* Begin an update. */
834 dma_resv_write_begin(dst_robj, &write_ticket);
835
836 /* Replace the fences. */
837 membar_exit();
838 atomic_store_relaxed(&dst_robj->fence, dst_list);
839 atomic_store_relaxed(&dst_robj->fence_excl, fence);
840
841 /* Commit the update. */
842 dma_resv_write_commit(dst_robj, &write_ticket);
843
844 /* Release the old exclusive fence, if any. */
845 if (old_fence)
846 dma_fence_put(old_fence);
847
848 /* Release any old shared fences. */
849 if (old_list) {
850 for (i = old_list->shared_count; i --> 0;)
851 dma_fence_put(old_list->shared[i]);
852 }
853
854 /* Success! */
855 return 0;
856
857 restart:
858 rcu_read_unlock();
859 if (dst_list) {
860 for (i = dst_list->shared_count; i --> 0;) {
861 dma_fence_put(dst_list->shared[i]);
862 dst_list->shared[i] = NULL;
863 }
864 objlist_free(dst_list);
865 dst_list = NULL;
866 }
867 if (fence) {
868 dma_fence_put(fence);
869 fence = NULL;
870 }
871 goto top;
872 }
873
874 /*
875 * dma_resv_test_signaled_rcu(robj, shared)
876 *
877 * If shared is true, test whether all of the shared fences are
878 * signalled, or if there are none, test whether the exclusive
879 * fence is signalled. If shared is false, test only whether the
880 * exclusive fence is signalled.
881 *
882 * XXX Why does this _not_ test the exclusive fence if shared is
883 * true only if there are no shared fences? This makes no sense.
884 */
885 bool
886 dma_resv_test_signaled_rcu(const struct dma_resv *robj,
887 bool shared)
888 {
889 struct dma_resv_read_ticket ticket;
890 struct dma_resv_list *list;
891 struct dma_fence *fence;
892 uint32_t i, shared_count;
893 bool signaled = true;
894
895 top:
896 /* Enter an RCU read section and get a read ticket. */
897 rcu_read_lock();
898 dma_resv_read_begin(robj, &ticket);
899
900 /* If shared is requested and there is a shared list, test it. */
901 if (!shared)
902 goto excl;
903 if ((list = atomic_load_consume(&robj->fence)) != NULL) {
904
905 /* Find out how long it is. */
906 shared_count = list->shared_count;
907
908 /*
909 * Make sure we saw a consistent snapshot of the list
910 * pointer and length.
911 */
912 if (!dma_resv_read_valid(robj, &ticket))
913 goto restart;
914
915 /*
916 * For each fence, if it is going away, restart.
917 * Otherwise, acquire a reference to it to test whether
918 * it is signalled. Stop if we find any that is not
919 * signalled.
920 */
921 for (i = 0; i < shared_count; i++) {
922 fence = dma_fence_get_rcu(list->shared[i]);
923 if (fence == NULL)
924 goto restart;
925 signaled &= dma_fence_is_signaled(fence);
926 dma_fence_put(fence);
927 if (!signaled)
928 goto out;
929 }
930 }
931
932 excl:
933 /* If there is an exclusive fence, test it. */
934 if ((fence = atomic_load_consume(&robj->fence_excl)) != NULL) {
935
936 /*
937 * Make sure we saw a consistent snapshot of the fence.
938 *
939 * XXX I'm not actually sure this is necessary since
940 * pointer writes are supposed to be atomic.
941 */
942 if (!dma_resv_read_valid(robj, &ticket))
943 goto restart;
944
945 /*
946 * If it is going away, restart. Otherwise, acquire a
947 * reference to it to test whether it is signalled.
948 */
949 if ((fence = dma_fence_get_rcu(fence)) == NULL)
950 goto restart;
951 signaled &= dma_fence_is_signaled(fence);
952 dma_fence_put(fence);
953 if (!signaled)
954 goto out;
955 }
956
957 out: rcu_read_unlock();
958 return signaled;
959
960 restart:
961 rcu_read_unlock();
962 goto top;
963 }
964
965 /*
966 * dma_resv_wait_timeout_rcu(robj, shared, intr, timeout)
967 *
968 * If shared is true, wait for all of the shared fences to be
969 * signalled, or if there are none, wait for the exclusive fence
970 * to be signalled. If shared is false, wait only for the
971 * exclusive fence to be signalled. If timeout is zero, don't
972 * wait, only test.
973 *
974 * XXX Why does this _not_ wait for the exclusive fence if shared
975 * is true only if there are no shared fences? This makes no
976 * sense.
977 */
978 long
979 dma_resv_wait_timeout_rcu(const struct dma_resv *robj,
980 bool shared, bool intr, unsigned long timeout)
981 {
982 struct dma_resv_read_ticket ticket;
983 struct dma_resv_list *list;
984 struct dma_fence *fence;
985 uint32_t i, shared_count;
986 long ret;
987
988 if (timeout == 0)
989 return dma_resv_test_signaled_rcu(robj, shared);
990
991 top:
992 /* Enter an RCU read section and get a read ticket. */
993 rcu_read_lock();
994 dma_resv_read_begin(robj, &ticket);
995
996 /* If shared is requested and there is a shared list, wait on it. */
997 if (!shared)
998 goto excl;
999 if ((list = atomic_load_consume(&robj->fence)) != NULL) {
1000
1001 /* Find out how long it is. */
1002 shared_count = list->shared_count;
1003
1004 /*
1005 * Make sure we saw a consistent snapshot of the list
1006 * pointer and length.
1007 */
1008 if (!dma_resv_read_valid(robj, &ticket))
1009 goto restart;
1010
1011 /*
1012 * For each fence, if it is going away, restart.
1013 * Otherwise, acquire a reference to it to test whether
1014 * it is signalled. Stop and wait if we find any that
1015 * is not signalled.
1016 */
1017 for (i = 0; i < shared_count; i++) {
1018 fence = dma_fence_get_rcu(list->shared[i]);
1019 if (fence == NULL)
1020 goto restart;
1021 if (!dma_fence_is_signaled(fence))
1022 goto wait;
1023 dma_fence_put(fence);
1024 }
1025 }
1026
1027 excl:
1028 /* If there is an exclusive fence, test it. */
1029 if ((fence = atomic_load_consume(&robj->fence_excl)) != NULL) {
1030
1031 /*
1032 * Make sure we saw a consistent snapshot of the fence.
1033 *
1034 * XXX I'm not actually sure this is necessary since
1035 * pointer writes are supposed to be atomic.
1036 */
1037 if (!dma_resv_read_valid(robj, &ticket))
1038 goto restart;
1039
1040 /*
1041 * If it is going away, restart. Otherwise, acquire a
1042 * reference to it to test whether it is signalled. If
1043 * not, wait for it.
1044 */
1045 if ((fence = dma_fence_get_rcu(fence)) == NULL)
1046 goto restart;
1047 if (!dma_fence_is_signaled(fence))
1048 goto wait;
1049 dma_fence_put(fence);
1050 }
1051
1052 /* Success! Return the number of ticks left. */
1053 rcu_read_unlock();
1054 return timeout;
1055
1056 restart:
1057 rcu_read_unlock();
1058 goto top;
1059
1060 wait:
1061 /*
1062 * Exit the RCU read section, wait for it, and release the
1063 * fence when we're done. If we time out or fail, bail.
1064 * Otherwise, go back to the top.
1065 */
1066 KASSERT(fence != NULL);
1067 rcu_read_unlock();
1068 ret = dma_fence_wait_timeout(fence, intr, timeout);
1069 dma_fence_put(fence);
1070 if (ret <= 0)
1071 return ret;
1072 KASSERT(ret <= timeout);
1073 timeout = ret;
1074 goto top;
1075 }
1076
1077 /*
1078 * dma_resv_poll_init(rpoll, lock)
1079 *
1080 * Initialize reservation poll state.
1081 */
1082 void
1083 dma_resv_poll_init(struct dma_resv_poll *rpoll)
1084 {
1085
1086 mutex_init(&rpoll->rp_lock, MUTEX_DEFAULT, IPL_VM);
1087 selinit(&rpoll->rp_selq);
1088 rpoll->rp_claimed = 0;
1089 }
1090
1091 /*
1092 * dma_resv_poll_fini(rpoll)
1093 *
1094 * Release any resource associated with reservation poll state.
1095 */
1096 void
1097 dma_resv_poll_fini(struct dma_resv_poll *rpoll)
1098 {
1099
1100 KASSERT(rpoll->rp_claimed == 0);
1101 seldestroy(&rpoll->rp_selq);
1102 mutex_destroy(&rpoll->rp_lock);
1103 }
1104
1105 /*
1106 * dma_resv_poll_cb(fence, fcb)
1107 *
1108 * Callback to notify a reservation poll that a fence has
1109 * completed. Notify any waiters and allow the next poller to
1110 * claim the callback.
1111 *
1112 * If one thread is waiting for the exclusive fence only, and we
1113 * spuriously notify them about a shared fence, tough.
1114 */
1115 static void
1116 dma_resv_poll_cb(struct dma_fence *fence, struct dma_fence_cb *fcb)
1117 {
1118 struct dma_resv_poll *rpoll = container_of(fcb,
1119 struct dma_resv_poll, rp_fcb);
1120
1121 mutex_enter(&rpoll->rp_lock);
1122 selnotify(&rpoll->rp_selq, 0, NOTE_SUBMIT);
1123 rpoll->rp_claimed = 0;
1124 mutex_exit(&rpoll->rp_lock);
1125 }
1126
1127 /*
1128 * dma_resv_do_poll(robj, events, rpoll)
1129 *
1130 * Poll for reservation object events using the reservation poll
1131 * state in rpoll:
1132 *
1133 * - POLLOUT wait for all fences shared and exclusive
1134 * - POLLIN wait for the exclusive fence
1135 *
1136 * Return the subset of events in events that are ready. If any
1137 * are requested but not ready, arrange to be notified with
1138 * selnotify when they are.
1139 */
1140 int
1141 dma_resv_do_poll(const struct dma_resv *robj, int events,
1142 struct dma_resv_poll *rpoll)
1143 {
1144 struct dma_resv_read_ticket ticket;
1145 struct dma_resv_list *list;
1146 struct dma_fence *fence;
1147 uint32_t i, shared_count;
1148 int revents;
1149 bool recorded = false; /* curlwp is on the selq */
1150 bool claimed = false; /* we claimed the callback */
1151 bool callback = false; /* we requested a callback */
1152
1153 /*
1154 * Start with the maximal set of events that could be ready.
1155 * We will eliminate the events that are definitely not ready
1156 * as we go at the same time as we add callbacks to notify us
1157 * that they may be ready.
1158 */
1159 revents = events & (POLLIN|POLLOUT);
1160 if (revents == 0)
1161 return 0;
1162
1163 top:
1164 /* Enter an RCU read section and get a read ticket. */
1165 rcu_read_lock();
1166 dma_resv_read_begin(robj, &ticket);
1167
1168 /* If we want to wait for all fences, get the shared list. */
1169 if (!(events & POLLOUT))
1170 goto excl;
1171 if ((list = atomic_load_consume(&robj->fence)) != NULL) do {
1172
1173 /* Find out how long it is. */
1174 shared_count = list->shared_count;
1175
1176 /*
1177 * Make sure we saw a consistent snapshot of the list
1178 * pointer and length.
1179 */
1180 if (!dma_resv_read_valid(robj, &ticket))
1181 goto restart;
1182
1183 /*
1184 * For each fence, if it is going away, restart.
1185 * Otherwise, acquire a reference to it to test whether
1186 * it is signalled. Stop and request a callback if we
1187 * find any that is not signalled.
1188 */
1189 for (i = 0; i < shared_count; i++) {
1190 fence = dma_fence_get_rcu(list->shared[i]);
1191 if (fence == NULL)
1192 goto restart;
1193 if (!dma_fence_is_signaled(fence)) {
1194 dma_fence_put(fence);
1195 break;
1196 }
1197 dma_fence_put(fence);
1198 }
1199
1200 /* If all shared fences have been signalled, move on. */
1201 if (i == shared_count)
1202 break;
1203
1204 /* Put ourselves on the selq if we haven't already. */
1205 if (!recorded)
1206 goto record;
1207
1208 /*
1209 * If someone else claimed the callback, or we already
1210 * requested it, we're guaranteed to be notified, so
1211 * assume the event is not ready.
1212 */
1213 if (!claimed || callback) {
1214 revents &= ~POLLOUT;
1215 break;
1216 }
1217
1218 /*
1219 * Otherwise, find the first fence that is not
1220 * signalled, request the callback, and clear POLLOUT
1221 * from the possible ready events. If they are all
1222 * signalled, leave POLLOUT set; we will simulate the
1223 * callback later.
1224 */
1225 for (i = 0; i < shared_count; i++) {
1226 fence = dma_fence_get_rcu(list->shared[i]);
1227 if (fence == NULL)
1228 goto restart;
1229 if (!dma_fence_add_callback(fence, &rpoll->rp_fcb,
1230 dma_resv_poll_cb)) {
1231 dma_fence_put(fence);
1232 revents &= ~POLLOUT;
1233 callback = true;
1234 break;
1235 }
1236 dma_fence_put(fence);
1237 }
1238 } while (0);
1239
1240 excl:
1241 /* We always wait for at least the exclusive fence, so get it. */
1242 if ((fence = atomic_load_consume(&robj->fence_excl)) != NULL) do {
1243
1244 /*
1245 * Make sure we saw a consistent snapshot of the fence.
1246 *
1247 * XXX I'm not actually sure this is necessary since
1248 * pointer writes are supposed to be atomic.
1249 */
1250 if (!dma_resv_read_valid(robj, &ticket))
1251 goto restart;
1252
1253 /*
1254 * If it is going away, restart. Otherwise, acquire a
1255 * reference to it to test whether it is signalled. If
1256 * not, stop and request a callback.
1257 */
1258 if ((fence = dma_fence_get_rcu(fence)) == NULL)
1259 goto restart;
1260 if (dma_fence_is_signaled(fence)) {
1261 dma_fence_put(fence);
1262 break;
1263 }
1264
1265 /* Put ourselves on the selq if we haven't already. */
1266 if (!recorded) {
1267 dma_fence_put(fence);
1268 goto record;
1269 }
1270
1271 /*
1272 * If someone else claimed the callback, or we already
1273 * requested it, we're guaranteed to be notified, so
1274 * assume the event is not ready.
1275 */
1276 if (!claimed || callback) {
1277 dma_fence_put(fence);
1278 revents = 0;
1279 break;
1280 }
1281
1282 /*
1283 * Otherwise, try to request the callback, and clear
1284 * all possible ready events. If the fence has been
1285 * signalled in the interim, leave the events set; we
1286 * will simulate the callback later.
1287 */
1288 if (!dma_fence_add_callback(fence, &rpoll->rp_fcb,
1289 dma_resv_poll_cb)) {
1290 dma_fence_put(fence);
1291 revents = 0;
1292 callback = true;
1293 break;
1294 }
1295 dma_fence_put(fence);
1296 } while (0);
1297
1298 /* All done reading the fences. */
1299 rcu_read_unlock();
1300
1301 if (claimed && !callback) {
1302 /*
1303 * We claimed the callback but we didn't actually
1304 * request it because a fence was signalled while we
1305 * were claiming it. Call it ourselves now. The
1306 * callback doesn't use the fence nor rely on holding
1307 * any of the fence locks, so this is safe.
1308 */
1309 dma_resv_poll_cb(NULL, &rpoll->rp_fcb);
1310 }
1311 return revents;
1312
1313 restart:
1314 rcu_read_unlock();
1315 goto top;
1316
1317 record:
1318 rcu_read_unlock();
1319 mutex_enter(&rpoll->rp_lock);
1320 selrecord(curlwp, &rpoll->rp_selq);
1321 if (!rpoll->rp_claimed)
1322 claimed = rpoll->rp_claimed = true;
1323 mutex_exit(&rpoll->rp_lock);
1324 recorded = true;
1325 goto top;
1326 }
1327
1328 /*
1329 * dma_resv_kqfilter(robj, kn, rpoll)
1330 *
1331 * Kqueue filter for reservation objects. Currently not
1332 * implemented because the logic to implement it is nontrivial,
1333 * and userland will presumably never use it, so it would be
1334 * dangerous to add never-tested complex code paths to the kernel.
1335 */
1336 int
1337 dma_resv_kqfilter(const struct dma_resv *robj,
1338 struct knote *kn, struct dma_resv_poll *rpoll)
1339 {
1340
1341 return EINVAL;
1342 }
1343