Home | History | Annotate | Line # | Download | only in linux
linux_xa.c revision 1.3
      1  1.3  riastrad /*	$NetBSD: linux_xa.c,v 1.3 2021/12/19 12:05:25 riastradh Exp $	*/
      2  1.1  riastrad 
      3  1.1  riastrad /*-
      4  1.1  riastrad  * Copyright (c) 2021 The NetBSD Foundation, Inc.
      5  1.1  riastrad  * All rights reserved.
      6  1.1  riastrad  *
      7  1.1  riastrad  * Redistribution and use in source and binary forms, with or without
      8  1.1  riastrad  * modification, are permitted provided that the following conditions
      9  1.1  riastrad  * are met:
     10  1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     11  1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     12  1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     15  1.1  riastrad  *
     16  1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  1.1  riastrad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  1.1  riastrad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  1.1  riastrad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  1.1  riastrad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  1.1  riastrad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  1.1  riastrad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  1.1  riastrad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  1.1  riastrad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  1.1  riastrad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  1.1  riastrad  * POSSIBILITY OF SUCH DAMAGE.
     27  1.1  riastrad  */
     28  1.1  riastrad 
     29  1.1  riastrad #include <sys/cdefs.h>
     30  1.3  riastrad __KERNEL_RCSID(0, "$NetBSD: linux_xa.c,v 1.3 2021/12/19 12:05:25 riastradh Exp $");
     31  1.1  riastrad 
     32  1.3  riastrad /*
     33  1.3  riastrad  * This is a lame-o implementation of the Linux xarray data type, which
     34  1.3  riastrad  * implements a map from 64-bit integers to pointers.  The operations
     35  1.3  riastrad  * it supports are designed to be implemented by a radix tree, but
     36  1.3  riastrad  * NetBSD's radixtree(9) doesn't quite support them all, and it's a bit
     37  1.3  riastrad  * of work to implement them, so this just uses a red/black tree
     38  1.3  riastrad  * instead at the cost of some performance in certain types of lookups
     39  1.3  riastrad  * (and negative-lookups -- finding a free key).
     40  1.3  riastrad  */
     41  1.1  riastrad 
     42  1.3  riastrad #include <sys/rbtree.h>
     43  1.1  riastrad 
     44  1.1  riastrad #include <linux/xarray.h>
     45  1.1  riastrad 
     46  1.3  riastrad struct node {
     47  1.3  riastrad 	struct rb_node	n_rb;
     48  1.3  riastrad 	uint64_t	n_key;
     49  1.3  riastrad 	void		*n_datum;
     50  1.3  riastrad };
     51  1.3  riastrad 
     52  1.3  riastrad static int
     53  1.3  riastrad compare_nodes(void *cookie, const void *va, const void *vb)
     54  1.3  riastrad {
     55  1.3  riastrad 	const struct node *a = va, *b = vb;
     56  1.3  riastrad 
     57  1.3  riastrad 	if (a->n_key < b->n_key)
     58  1.3  riastrad 		return -1;
     59  1.3  riastrad 	if (a->n_key > b->n_key)
     60  1.3  riastrad 		return +1;
     61  1.3  riastrad 	return 0;
     62  1.3  riastrad }
     63  1.3  riastrad 
     64  1.3  riastrad static int
     65  1.3  riastrad compare_node_key(void *cookie, const void *vn, const void *vk)
     66  1.3  riastrad {
     67  1.3  riastrad 	const struct node *n = vn;
     68  1.3  riastrad 	const uint64_t *k = vk;
     69  1.3  riastrad 
     70  1.3  riastrad 	if (n->n_key < *k)
     71  1.3  riastrad 		return -1;
     72  1.3  riastrad 	if (n->n_key > *k)
     73  1.3  riastrad 		return +1;
     74  1.3  riastrad 	return 0;
     75  1.3  riastrad }
     76  1.3  riastrad 
     77  1.3  riastrad static const rb_tree_ops_t xa_rb_ops = {
     78  1.3  riastrad 	.rbto_compare_nodes = compare_nodes,
     79  1.3  riastrad 	.rbto_compare_key = compare_node_key,
     80  1.3  riastrad 	.rbto_node_offset = offsetof(struct node, n_rb),
     81  1.3  riastrad };
     82  1.3  riastrad 
     83  1.1  riastrad const struct xa_limit xa_limit_32b = { .min = 0, .max = UINT32_MAX };
     84  1.1  riastrad 
     85  1.1  riastrad void
     86  1.1  riastrad xa_init_flags(struct xarray *xa, gfp_t gfp)
     87  1.1  riastrad {
     88  1.1  riastrad 
     89  1.1  riastrad 	mutex_init(&xa->xa_lock, MUTEX_DEFAULT, IPL_VM);
     90  1.3  riastrad 	rb_tree_init(&xa->xa_tree, &xa_rb_ops);
     91  1.1  riastrad 	xa->xa_gfp = gfp;
     92  1.1  riastrad }
     93  1.1  riastrad 
     94  1.1  riastrad void
     95  1.1  riastrad xa_destroy(struct xarray *xa)
     96  1.1  riastrad {
     97  1.3  riastrad 	struct node *n;
     98  1.1  riastrad 
     99  1.3  riastrad 	/*
    100  1.3  riastrad 	 * Linux allows xa to remain populated on destruction; it is
    101  1.3  riastrad 	 * our job to free any internal node structures.
    102  1.3  riastrad 	 */
    103  1.3  riastrad 	while ((n = RB_TREE_MIN(&xa->xa_tree)) != NULL) {
    104  1.3  riastrad 		rb_tree_remove_node(&xa->xa_tree, n);
    105  1.3  riastrad 		kmem_free(n, sizeof(*n));
    106  1.3  riastrad 	}
    107  1.1  riastrad 	mutex_destroy(&xa->xa_lock);
    108  1.1  riastrad }
    109  1.1  riastrad 
    110  1.1  riastrad void *
    111  1.1  riastrad xa_load(struct xarray *xa, unsigned long key)
    112  1.1  riastrad {
    113  1.3  riastrad 	const uint64_t key64 = key;
    114  1.3  riastrad 	struct node *n;
    115  1.1  riastrad 
    116  1.1  riastrad 	/* XXX pserialize */
    117  1.1  riastrad 	mutex_enter(&xa->xa_lock);
    118  1.3  riastrad 	n = rb_tree_find_node(&xa->xa_tree, &key64);
    119  1.1  riastrad 	mutex_exit(&xa->xa_lock);
    120  1.1  riastrad 
    121  1.3  riastrad 	return n ? n->n_datum : NULL;
    122  1.1  riastrad }
    123  1.1  riastrad 
    124  1.1  riastrad void *
    125  1.1  riastrad xa_store(struct xarray *xa, unsigned long key, void *datum, gfp_t gfp)
    126  1.1  riastrad {
    127  1.3  riastrad 	struct node *n, *collision;
    128  1.1  riastrad 
    129  1.1  riastrad 	KASSERT(datum != NULL);
    130  1.1  riastrad 	KASSERT(((uintptr_t)datum & 0x3) == 0);
    131  1.1  riastrad 
    132  1.3  riastrad 	n = kmem_zalloc(sizeof(*n), gfp & __GFP_WAIT ? KM_SLEEP : KM_NOSLEEP);
    133  1.3  riastrad 	if (n == NULL)
    134  1.3  riastrad 		return XA_ERROR(-ENOMEM);
    135  1.3  riastrad 	n->n_key = key;
    136  1.3  riastrad 	n->n_datum = datum;
    137  1.3  riastrad 
    138  1.3  riastrad 	mutex_enter(&xa->xa_lock);
    139  1.3  riastrad 	collision = rb_tree_insert_node(&xa->xa_tree, n);
    140  1.1  riastrad 	mutex_exit(&xa->xa_lock);
    141  1.3  riastrad 
    142  1.3  riastrad 	if (collision != n) {
    143  1.3  riastrad 		datum = collision->n_datum;
    144  1.3  riastrad 		kmem_free(collision, sizeof(*collision));
    145  1.1  riastrad 	}
    146  1.3  riastrad 	return datum;
    147  1.1  riastrad }
    148  1.1  riastrad 
    149  1.1  riastrad int
    150  1.1  riastrad xa_alloc(struct xarray *xa, uint32_t *idp, void *datum, struct xa_limit limit,
    151  1.1  riastrad     gfp_t gfp)
    152  1.1  riastrad {
    153  1.3  riastrad 	uint64_t key64 = limit.min;
    154  1.3  riastrad 	struct node *n, *n1, *collision __diagused;
    155  1.1  riastrad 	int error;
    156  1.1  riastrad 
    157  1.1  riastrad 	KASSERTMSG(limit.min < limit.max, "min=%"PRIu32" max=%"PRIu32,
    158  1.1  riastrad 	    limit.min, limit.max);
    159  1.1  riastrad 
    160  1.3  riastrad 	n = kmem_zalloc(sizeof(*n), gfp & __GFP_WAIT ? KM_SLEEP : KM_NOSLEEP);
    161  1.3  riastrad 	if (n == NULL)
    162  1.3  riastrad 		return -ENOMEM;
    163  1.3  riastrad 	n->n_datum = datum;
    164  1.3  riastrad 
    165  1.3  riastrad 	mutex_enter(&xa->xa_lock);
    166  1.3  riastrad 	while ((n1 = rb_tree_find_node_geq(&xa->xa_tree, &key64)) != NULL &&
    167  1.3  riastrad 	    n1->n_key == key64) {
    168  1.3  riastrad 		if (key64 == limit.max) {
    169  1.3  riastrad 			error = -EBUSY;
    170  1.1  riastrad 			goto out;
    171  1.3  riastrad 		}
    172  1.3  riastrad 		KASSERT(key64 < UINT32_MAX);
    173  1.3  riastrad 		key64++;
    174  1.1  riastrad 	}
    175  1.3  riastrad 	/* Found a hole -- insert in it.  */
    176  1.3  riastrad 	KASSERT(n1 == NULL || n1->n_key > key64);
    177  1.3  riastrad 	n->n_key = key64;
    178  1.3  riastrad 	collision = rb_tree_insert_node(&xa->xa_tree, n);
    179  1.3  riastrad 	KASSERT(collision == n);
    180  1.3  riastrad 	error = 0;
    181  1.1  riastrad out:	mutex_exit(&xa->xa_lock);
    182  1.1  riastrad 
    183  1.3  riastrad 	if (error)
    184  1.3  riastrad 		return error;
    185  1.3  riastrad 	*idp = key64;
    186  1.1  riastrad 	return 0;
    187  1.1  riastrad }
    188  1.1  riastrad 
    189  1.1  riastrad void *
    190  1.1  riastrad xa_find(struct xarray *xa, unsigned long *startp, unsigned long max,
    191  1.1  riastrad     unsigned tagmask)
    192  1.1  riastrad {
    193  1.3  riastrad 	uint64_t key64 = *startp;
    194  1.3  riastrad 	struct node *n = NULL;
    195  1.3  riastrad 
    196  1.3  riastrad 	KASSERT(tagmask == -1);	/* not yet supported */
    197  1.1  riastrad 
    198  1.1  riastrad 	mutex_enter(&xa->xa_lock);
    199  1.3  riastrad 	n = rb_tree_find_node_geq(&xa->xa_tree, &key64);
    200  1.1  riastrad 	mutex_exit(&xa->xa_lock);
    201  1.1  riastrad 
    202  1.3  riastrad 	if (n == NULL || n->n_key > max)
    203  1.3  riastrad 		return NULL;
    204  1.3  riastrad 
    205  1.3  riastrad 	*startp = n->n_key;
    206  1.3  riastrad 	return n->n_datum;
    207  1.1  riastrad }
    208  1.1  riastrad 
    209  1.1  riastrad void *
    210  1.1  riastrad xa_find_after(struct xarray *xa, unsigned long *startp, unsigned long max,
    211  1.1  riastrad     unsigned tagmask)
    212  1.1  riastrad {
    213  1.2  riastrad 	unsigned long start = *startp + 1;
    214  1.1  riastrad 	void *found;
    215  1.1  riastrad 
    216  1.1  riastrad 	if (start == max)
    217  1.1  riastrad 		return NULL;
    218  1.1  riastrad 	found = xa_find(xa, &start, max, tagmask);
    219  1.1  riastrad 	if (found)
    220  1.1  riastrad 		*startp = start;
    221  1.1  riastrad 	return found;
    222  1.1  riastrad }
    223  1.1  riastrad 
    224  1.1  riastrad void *
    225  1.1  riastrad xa_erase(struct xarray *xa, unsigned long key)
    226  1.1  riastrad {
    227  1.3  riastrad 	uint64_t key64 = key;
    228  1.3  riastrad 	struct node *n;
    229  1.3  riastrad 	void *datum = NULL;
    230  1.1  riastrad 
    231  1.1  riastrad 	mutex_enter(&xa->xa_lock);
    232  1.3  riastrad 	n = rb_tree_find_node(&xa->xa_tree, &key64);
    233  1.3  riastrad 	if (n)
    234  1.3  riastrad 		rb_tree_remove_node(&xa->xa_tree, n);
    235  1.1  riastrad 	mutex_exit(&xa->xa_lock);
    236  1.1  riastrad 
    237  1.3  riastrad 	if (n) {
    238  1.3  riastrad 		datum = n->n_datum;
    239  1.3  riastrad 		kmem_free(n, sizeof(*n));
    240  1.3  riastrad 	}
    241  1.1  riastrad 	return datum;
    242  1.1  riastrad }
    243