1 1.15 simonb /* $NetBSD: dwc2_hcd.h,v 1.15 2018/08/08 07:20:44 simonb Exp $ */ 2 1.1 skrll 3 1.1 skrll /* 4 1.1 skrll * hcd.h - DesignWare HS OTG Controller host-mode declarations 5 1.1 skrll * 6 1.1 skrll * Copyright (C) 2004-2013 Synopsys, Inc. 7 1.1 skrll * 8 1.1 skrll * Redistribution and use in source and binary forms, with or without 9 1.1 skrll * modification, are permitted provided that the following conditions 10 1.1 skrll * are met: 11 1.1 skrll * 1. Redistributions of source code must retain the above copyright 12 1.1 skrll * notice, this list of conditions, and the following disclaimer, 13 1.1 skrll * without modification. 14 1.1 skrll * 2. Redistributions in binary form must reproduce the above copyright 15 1.1 skrll * notice, this list of conditions and the following disclaimer in the 16 1.1 skrll * documentation and/or other materials provided with the distribution. 17 1.1 skrll * 3. The names of the above-listed copyright holders may not be used 18 1.1 skrll * to endorse or promote products derived from this software without 19 1.1 skrll * specific prior written permission. 20 1.1 skrll * 21 1.1 skrll * ALTERNATIVELY, this software may be distributed under the terms of the 22 1.1 skrll * GNU General Public License ("GPL") as published by the Free Software 23 1.1 skrll * Foundation; either version 2 of the License, or (at your option) any 24 1.1 skrll * later version. 25 1.1 skrll * 26 1.1 skrll * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 27 1.1 skrll * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 28 1.1 skrll * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 1.1 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 30 1.1 skrll * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 31 1.1 skrll * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 32 1.1 skrll * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 33 1.1 skrll * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 34 1.1 skrll * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 35 1.1 skrll * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 36 1.1 skrll * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 37 1.1 skrll */ 38 1.1 skrll #ifndef __DWC2_HCD_H__ 39 1.1 skrll #define __DWC2_HCD_H__ 40 1.1 skrll 41 1.1 skrll /* 42 1.1 skrll * This file contains the structures, constants, and interfaces for the 43 1.1 skrll * Host Contoller Driver (HCD) 44 1.1 skrll * 45 1.1 skrll * The Host Controller Driver (HCD) is responsible for translating requests 46 1.1 skrll * from the USB Driver into the appropriate actions on the DWC_otg controller. 47 1.1 skrll * It isolates the USBD from the specifics of the controller by providing an 48 1.1 skrll * API to the USBD. 49 1.1 skrll */ 50 1.1 skrll 51 1.1 skrll struct dwc2_qh; 52 1.1 skrll 53 1.1 skrll /** 54 1.1 skrll * struct dwc2_host_chan - Software host channel descriptor 55 1.1 skrll * 56 1.1 skrll * @hc_num: Host channel number, used for register address lookup 57 1.1 skrll * @dev_addr: Address of the device 58 1.1 skrll * @ep_num: Endpoint of the device 59 1.1 skrll * @ep_is_in: Endpoint direction 60 1.1 skrll * @speed: Device speed. One of the following values: 61 1.1 skrll * - USB_SPEED_LOW 62 1.1 skrll * - USB_SPEED_FULL 63 1.1 skrll * - USB_SPEED_HIGH 64 1.1 skrll * @ep_type: Endpoint type. One of the following values: 65 1.1 skrll * - USB_ENDPOINT_XFER_CONTROL: 0 66 1.1 skrll * - USB_ENDPOINT_XFER_ISOC: 1 67 1.1 skrll * - USB_ENDPOINT_XFER_BULK: 2 68 1.1 skrll * - USB_ENDPOINT_XFER_INTR: 3 69 1.1 skrll * @max_packet: Max packet size in bytes 70 1.1 skrll * @data_pid_start: PID for initial transaction. 71 1.1 skrll * 0: DATA0 72 1.1 skrll * 1: DATA2 73 1.1 skrll * 2: DATA1 74 1.1 skrll * 3: MDATA (non-Control EP), 75 1.1 skrll * SETUP (Control EP) 76 1.1 skrll * @multi_count: Number of additional periodic transactions per 77 1.1 skrll * (micro)frame 78 1.1 skrll * @xfer_buf: Pointer to current transfer buffer position 79 1.1 skrll * @xfer_dma: DMA address of xfer_buf 80 1.1 skrll * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not 81 1.1 skrll * DWORD aligned 82 1.1 skrll * @xfer_len: Total number of bytes to transfer 83 1.1 skrll * @xfer_count: Number of bytes transferred so far 84 1.1 skrll * @start_pkt_count: Packet count at start of transfer 85 1.1 skrll * @xfer_started: True if the transfer has been started 86 1.1 skrll * @ping: True if a PING request should be issued on this channel 87 1.1 skrll * @error_state: True if the error count for this transaction is non-zero 88 1.1 skrll * @halt_on_queue: True if this channel should be halted the next time a 89 1.1 skrll * request is queued for the channel. This is necessary in 90 1.1 skrll * slave mode if no request queue space is available when 91 1.1 skrll * an attempt is made to halt the channel. 92 1.1 skrll * @halt_pending: True if the host channel has been halted, but the core 93 1.1 skrll * is not finished flushing queued requests 94 1.1 skrll * @do_split: Enable split for the channel 95 1.1 skrll * @complete_split: Enable complete split 96 1.1 skrll * @hub_addr: Address of high speed hub for the split 97 1.1 skrll * @hub_port: Port of the low/full speed device for the split 98 1.1 skrll * @xact_pos: Split transaction position. One of the following values: 99 1.1 skrll * - DWC2_HCSPLT_XACTPOS_MID 100 1.1 skrll * - DWC2_HCSPLT_XACTPOS_BEGIN 101 1.1 skrll * - DWC2_HCSPLT_XACTPOS_END 102 1.1 skrll * - DWC2_HCSPLT_XACTPOS_ALL 103 1.1 skrll * @requests: Number of requests issued for this channel since it was 104 1.1 skrll * assigned to the current transfer (not counting PINGs) 105 1.1 skrll * @schinfo: Scheduling micro-frame bitmap 106 1.1 skrll * @ntd: Number of transfer descriptors for the transfer 107 1.1 skrll * @halt_status: Reason for halting the host channel 108 1.1 skrll * @hcint Contents of the HCINT register when the interrupt came 109 1.1 skrll * @qh: QH for the transfer being processed by this channel 110 1.1 skrll * @hc_list_entry: For linking to list of host channels 111 1.1 skrll * @desc_list_addr: Current QH's descriptor list DMA address 112 1.12 skrll * @desc_list_sz: Current QH's descriptor list size 113 1.1 skrll * 114 1.1 skrll * This structure represents the state of a single host channel when acting in 115 1.1 skrll * host mode. It contains the data items needed to transfer packets to an 116 1.1 skrll * endpoint via a host channel. 117 1.1 skrll */ 118 1.1 skrll struct dwc2_host_chan { 119 1.1 skrll u8 hc_num; 120 1.1 skrll 121 1.1 skrll unsigned dev_addr:7; 122 1.1 skrll unsigned ep_num:4; 123 1.1 skrll unsigned ep_is_in:1; 124 1.1 skrll unsigned speed:4; 125 1.1 skrll unsigned ep_type:2; 126 1.1 skrll unsigned max_packet:11; 127 1.1 skrll unsigned data_pid_start:2; 128 1.3 skrll #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0 129 1.3 skrll #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2 130 1.3 skrll #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1 131 1.3 skrll #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA 132 1.3 skrll #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP 133 1.1 skrll 134 1.1 skrll unsigned multi_count:2; 135 1.1 skrll 136 1.2 skrll usb_dma_t *xfer_usbdma; 137 1.1 skrll u8 *xfer_buf; 138 1.1 skrll dma_addr_t xfer_dma; 139 1.1 skrll dma_addr_t align_buf; 140 1.1 skrll u32 xfer_len; 141 1.1 skrll u32 xfer_count; 142 1.1 skrll u16 start_pkt_count; 143 1.1 skrll u8 xfer_started; 144 1.1 skrll u8 do_ping; 145 1.1 skrll u8 error_state; 146 1.1 skrll u8 halt_on_queue; 147 1.1 skrll u8 halt_pending; 148 1.1 skrll u8 do_split; 149 1.1 skrll u8 complete_split; 150 1.1 skrll u8 hub_addr; 151 1.1 skrll u8 hub_port; 152 1.1 skrll u8 xact_pos; 153 1.3 skrll #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID 154 1.3 skrll #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END 155 1.3 skrll #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN 156 1.3 skrll #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL 157 1.1 skrll 158 1.1 skrll u8 requests; 159 1.1 skrll u8 schinfo; 160 1.1 skrll u16 ntd; 161 1.1 skrll enum dwc2_halt_status halt_status; 162 1.1 skrll u32 hcint; 163 1.1 skrll struct dwc2_qh *qh; 164 1.1 skrll struct list_head hc_list_entry; 165 1.12 skrll usb_dma_t desc_list_usbdma; 166 1.1 skrll dma_addr_t desc_list_addr; 167 1.12 skrll u32 desc_list_sz; 168 1.1 skrll }; 169 1.1 skrll 170 1.1 skrll struct dwc2_hcd_pipe_info { 171 1.1 skrll u8 dev_addr; 172 1.1 skrll u8 ep_num; 173 1.1 skrll u8 pipe_type; 174 1.1 skrll u8 pipe_dir; 175 1.1 skrll u16 mps; 176 1.1 skrll }; 177 1.1 skrll 178 1.1 skrll struct dwc2_hcd_iso_packet_desc { 179 1.1 skrll u32 offset; 180 1.1 skrll u32 length; 181 1.1 skrll u32 actual_length; 182 1.1 skrll u32 status; 183 1.1 skrll }; 184 1.1 skrll 185 1.1 skrll struct dwc2_qtd; 186 1.1 skrll 187 1.1 skrll struct dwc2_hcd_urb { 188 1.2 skrll void *priv; /* the xfer handle */ 189 1.1 skrll struct dwc2_qtd *qtd; 190 1.2 skrll usb_dma_t *usbdma; 191 1.2 skrll u8 *buf; 192 1.1 skrll dma_addr_t dma; 193 1.2 skrll usb_dma_t *setup_usbdma; 194 1.1 skrll void *setup_packet; 195 1.1 skrll dma_addr_t setup_dma; 196 1.1 skrll u32 length; 197 1.1 skrll u32 actual_length; 198 1.1 skrll u32 status; 199 1.1 skrll u32 error_count; 200 1.1 skrll u32 packet_count; 201 1.1 skrll u32 flags; 202 1.1 skrll u16 interval; 203 1.1 skrll struct dwc2_hcd_pipe_info pipe_info; 204 1.1 skrll struct dwc2_hcd_iso_packet_desc iso_descs[0]; 205 1.1 skrll }; 206 1.1 skrll 207 1.1 skrll /* Phases for control transfers */ 208 1.1 skrll enum dwc2_control_phase { 209 1.1 skrll DWC2_CONTROL_SETUP, 210 1.1 skrll DWC2_CONTROL_DATA, 211 1.1 skrll DWC2_CONTROL_STATUS, 212 1.1 skrll }; 213 1.1 skrll 214 1.1 skrll /* Transaction types */ 215 1.1 skrll enum dwc2_transaction_type { 216 1.1 skrll DWC2_TRANSACTION_NONE, 217 1.1 skrll DWC2_TRANSACTION_PERIODIC, 218 1.1 skrll DWC2_TRANSACTION_NON_PERIODIC, 219 1.1 skrll DWC2_TRANSACTION_ALL, 220 1.1 skrll }; 221 1.1 skrll 222 1.1 skrll /** 223 1.1 skrll * struct dwc2_qh - Software queue head structure 224 1.1 skrll * 225 1.15 simonb * @hsotg: The HCD state structure for the DWC OTG controller 226 1.1 skrll * @ep_type: Endpoint type. One of the following values: 227 1.1 skrll * - USB_ENDPOINT_XFER_CONTROL 228 1.1 skrll * - USB_ENDPOINT_XFER_BULK 229 1.1 skrll * - USB_ENDPOINT_XFER_INT 230 1.1 skrll * - USB_ENDPOINT_XFER_ISOC 231 1.1 skrll * @ep_is_in: Endpoint direction 232 1.1 skrll * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor 233 1.1 skrll * @dev_speed: Device speed. One of the following values: 234 1.1 skrll * - USB_SPEED_LOW 235 1.1 skrll * - USB_SPEED_FULL 236 1.1 skrll * - USB_SPEED_HIGH 237 1.1 skrll * @data_toggle: Determines the PID of the next data packet for 238 1.1 skrll * non-controltransfers. Ignored for control transfers. 239 1.1 skrll * One of the following values: 240 1.1 skrll * - DWC2_HC_PID_DATA0 241 1.1 skrll * - DWC2_HC_PID_DATA1 242 1.1 skrll * @ping_state: Ping state 243 1.1 skrll * @do_split: Full/low speed endpoint on high-speed hub requires split 244 1.1 skrll * @td_first: Index of first activated isochronous transfer descriptor 245 1.1 skrll * @td_last: Index of last activated isochronous transfer descriptor 246 1.1 skrll * @usecs: Bandwidth in microseconds per (micro)frame 247 1.1 skrll * @interval: Interval between transfers in (micro)frames 248 1.1 skrll * @sched_frame: (Micro)frame to initialize a periodic transfer. 249 1.1 skrll * The transfer executes in the following (micro)frame. 250 1.9 skrll * @nak_frame: Internal variable used by the NAK holdoff code 251 1.1 skrll * @frame_usecs: Internal variable used by the microframe scheduler 252 1.1 skrll * @start_split_frame: (Micro)frame at which last start split was initialized 253 1.1 skrll * @ntd: Actual number of transfer descriptors in a list 254 1.1 skrll * @dw_align_buf: Used instead of original buffer if its physical address 255 1.1 skrll * is not dword-aligned 256 1.10 skrll * @dw_align_buf_size: Size of dw_align_buf 257 1.10 skrll * @dw_align_buf_dma: DMA address for dw_align_buf 258 1.1 skrll * @qtd_list: List of QTDs for this QH 259 1.1 skrll * @channel: Host channel currently processing transfers for this QH 260 1.1 skrll * @qh_list_entry: Entry for QH in either the periodic or non-periodic 261 1.1 skrll * schedule 262 1.1 skrll * @desc_list: List of transfer descriptors 263 1.1 skrll * @desc_list_dma: Physical address of desc_list 264 1.12 skrll * @desc_list_sz: Size of descriptors list 265 1.1 skrll * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer 266 1.1 skrll * descriptor and indicates original XferSize value for the 267 1.1 skrll * descriptor 268 1.15 simonb * @wait_timer: Timer used to wait before re-queuing. 269 1.1 skrll * @tt_buffer_dirty True if clear_tt_buffer_complete is pending 270 1.15 simonb * @want_wait: We should wait before re-queuing; only matters for non- 271 1.15 simonb * periodic transfers and is ignored for periodic ones. 272 1.15 simonb * @wait_timer_cancel: Set to true to cancel the wait_timer. 273 1.1 skrll * 274 1.1 skrll * A Queue Head (QH) holds the static characteristics of an endpoint and 275 1.1 skrll * maintains a list of transfers (QTDs) for that endpoint. A QH structure may 276 1.1 skrll * be entered in either the non-periodic or periodic schedule. 277 1.1 skrll */ 278 1.1 skrll struct dwc2_qh { 279 1.15 simonb struct dwc2_hsotg *hsotg; 280 1.1 skrll u8 ep_type; 281 1.1 skrll u8 ep_is_in; 282 1.1 skrll u16 maxp; 283 1.1 skrll u8 dev_speed; 284 1.1 skrll u8 data_toggle; 285 1.1 skrll u8 ping_state; 286 1.1 skrll u8 do_split; 287 1.1 skrll u8 td_first; 288 1.1 skrll u8 td_last; 289 1.1 skrll u16 usecs; 290 1.1 skrll u16 interval; 291 1.1 skrll u16 sched_frame; 292 1.9 skrll u16 nak_frame; 293 1.1 skrll u16 frame_usecs[8]; 294 1.1 skrll u16 start_split_frame; 295 1.1 skrll u16 ntd; 296 1.2 skrll usb_dma_t dw_align_buf_usbdma; 297 1.1 skrll u8 *dw_align_buf; 298 1.10 skrll int dw_align_buf_size; 299 1.1 skrll dma_addr_t dw_align_buf_dma; 300 1.1 skrll struct list_head qtd_list; 301 1.1 skrll struct dwc2_host_chan *channel; 302 1.1 skrll struct list_head qh_list_entry; 303 1.2 skrll usb_dma_t desc_list_usbdma; 304 1.1 skrll struct dwc2_hcd_dma_desc *desc_list; 305 1.1 skrll dma_addr_t desc_list_dma; 306 1.12 skrll u32 desc_list_sz; 307 1.1 skrll u32 *n_bytes; 308 1.15 simonb /* XXX struct timer_list wait_timer; */ 309 1.15 simonb callout_t wait_timer; 310 1.1 skrll unsigned tt_buffer_dirty:1; 311 1.15 simonb unsigned want_wait:1; 312 1.15 simonb unsigned wait_timer_cancel:1; 313 1.1 skrll }; 314 1.1 skrll 315 1.1 skrll /** 316 1.1 skrll * struct dwc2_qtd - Software queue transfer descriptor (QTD) 317 1.1 skrll * 318 1.1 skrll * @control_phase: Current phase for control transfers (Setup, Data, or 319 1.1 skrll * Status) 320 1.1 skrll * @in_process: Indicates if this QTD is currently processed by HW 321 1.1 skrll * @data_toggle: Determines the PID of the next data packet for the 322 1.1 skrll * data phase of control transfers. Ignored for other 323 1.1 skrll * transfer types. One of the following values: 324 1.1 skrll * - DWC2_HC_PID_DATA0 325 1.1 skrll * - DWC2_HC_PID_DATA1 326 1.1 skrll * @complete_split: Keeps track of the current split type for FS/LS 327 1.1 skrll * endpoints on a HS Hub 328 1.1 skrll * @isoc_split_pos: Position of the ISOC split in full/low speed 329 1.1 skrll * @isoc_frame_index: Index of the next frame descriptor for an isochronous 330 1.1 skrll * transfer. A frame descriptor describes the buffer 331 1.1 skrll * position and length of the data to be transferred in the 332 1.1 skrll * next scheduled (micro)frame of an isochronous transfer. 333 1.1 skrll * It also holds status for that transaction. The frame 334 1.1 skrll * index starts at 0. 335 1.1 skrll * @isoc_split_offset: Position of the ISOC split in the buffer for the 336 1.1 skrll * current frame 337 1.1 skrll * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT 338 1.1 skrll * @error_count: Holds the number of bus errors that have occurred for 339 1.1 skrll * a transaction within this transfer 340 1.1 skrll * @n_desc: Number of DMA descriptors for this QTD 341 1.1 skrll * @isoc_frame_index_last: Last activated frame (packet) index, used in 342 1.1 skrll * descriptor DMA mode only 343 1.15 simonb * @num_naks: Number of NAKs received on this QTD. 344 1.1 skrll * @urb: URB for this transfer 345 1.1 skrll * @qh: Queue head for this QTD 346 1.1 skrll * @qtd_list_entry: For linking to the QH's list of QTDs 347 1.1 skrll * 348 1.1 skrll * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, 349 1.1 skrll * interrupt, or isochronous transfer. A single QTD is created for each URB 350 1.1 skrll * (of one of these types) submitted to the HCD. The transfer associated with 351 1.1 skrll * a QTD may require one or multiple transactions. 352 1.1 skrll * 353 1.1 skrll * A QTD is linked to a Queue Head, which is entered in either the 354 1.1 skrll * non-periodic or periodic schedule for execution. When a QTD is chosen for 355 1.1 skrll * execution, some or all of its transactions may be executed. After 356 1.1 skrll * execution, the state of the QTD is updated. The QTD may be retired if all 357 1.1 skrll * its transactions are complete or if an error occurred. Otherwise, it 358 1.1 skrll * remains in the schedule so more transactions can be executed later. 359 1.1 skrll */ 360 1.1 skrll struct dwc2_qtd { 361 1.1 skrll enum dwc2_control_phase control_phase; 362 1.1 skrll u8 in_process; 363 1.1 skrll u8 data_toggle; 364 1.1 skrll u8 complete_split; 365 1.1 skrll u8 isoc_split_pos; 366 1.1 skrll u16 isoc_frame_index; 367 1.1 skrll u16 isoc_split_offset; 368 1.12 skrll u16 isoc_td_last; 369 1.12 skrll u16 isoc_td_first; 370 1.1 skrll u32 ssplit_out_xfer_count; 371 1.1 skrll u8 error_count; 372 1.1 skrll u8 n_desc; 373 1.1 skrll u16 isoc_frame_index_last; 374 1.15 simonb u16 num_naks; 375 1.1 skrll struct dwc2_hcd_urb *urb; 376 1.1 skrll struct dwc2_qh *qh; 377 1.1 skrll struct list_head qtd_list_entry; 378 1.1 skrll }; 379 1.1 skrll 380 1.1 skrll #ifdef DEBUG 381 1.1 skrll struct hc_xfer_info { 382 1.1 skrll struct dwc2_hsotg *hsotg; 383 1.1 skrll struct dwc2_host_chan *chan; 384 1.1 skrll }; 385 1.1 skrll #endif 386 1.1 skrll 387 1.1 skrll /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */ 388 1.1 skrll static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg) 389 1.1 skrll { 390 1.1 skrll return (struct usb_hcd *)hsotg->priv; 391 1.1 skrll } 392 1.1 skrll 393 1.1 skrll /* 394 1.1 skrll * Inline used to disable one channel interrupt. Channel interrupts are 395 1.1 skrll * disabled when the channel is halted or released by the interrupt handler. 396 1.1 skrll * There is no need to handle further interrupts of that type until the 397 1.1 skrll * channel is re-assigned. In fact, subsequent handling may cause crashes 398 1.1 skrll * because the channel structures are cleaned up when the channel is released. 399 1.1 skrll */ 400 1.1 skrll static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr) 401 1.1 skrll { 402 1.2 skrll u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum)); 403 1.1 skrll 404 1.1 skrll mask &= ~intr; 405 1.2 skrll DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask); 406 1.1 skrll } 407 1.1 skrll 408 1.1 skrll /* 409 1.1 skrll * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they 410 1.1 skrll * are read as 1, they won't clear when written back. 411 1.1 skrll */ 412 1.1 skrll static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg) 413 1.1 skrll { 414 1.2 skrll u32 hprt0 = DWC2_READ_4(hsotg, HPRT0); 415 1.1 skrll 416 1.1 skrll hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG); 417 1.1 skrll return hprt0; 418 1.1 skrll } 419 1.1 skrll 420 1.1 skrll static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe) 421 1.1 skrll { 422 1.1 skrll return pipe->ep_num; 423 1.1 skrll } 424 1.1 skrll 425 1.1 skrll static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe) 426 1.1 skrll { 427 1.1 skrll return pipe->pipe_type; 428 1.1 skrll } 429 1.1 skrll 430 1.1 skrll static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe) 431 1.1 skrll { 432 1.1 skrll return pipe->mps; 433 1.1 skrll } 434 1.1 skrll 435 1.1 skrll static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe) 436 1.1 skrll { 437 1.1 skrll return pipe->dev_addr; 438 1.1 skrll } 439 1.1 skrll 440 1.1 skrll static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe) 441 1.1 skrll { 442 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC; 443 1.1 skrll } 444 1.1 skrll 445 1.1 skrll static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe) 446 1.1 skrll { 447 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_INT; 448 1.1 skrll } 449 1.1 skrll 450 1.1 skrll static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe) 451 1.1 skrll { 452 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_BULK; 453 1.1 skrll } 454 1.1 skrll 455 1.1 skrll static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe) 456 1.1 skrll { 457 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL; 458 1.1 skrll } 459 1.1 skrll 460 1.1 skrll static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe) 461 1.1 skrll { 462 1.1 skrll return pipe->pipe_dir == USB_DIR_IN; 463 1.1 skrll } 464 1.1 skrll 465 1.1 skrll static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe) 466 1.1 skrll { 467 1.1 skrll return !dwc2_hcd_is_pipe_in(pipe); 468 1.1 skrll } 469 1.1 skrll 470 1.10 skrll extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg); 471 1.1 skrll extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg); 472 1.1 skrll 473 1.1 skrll /* Transaction Execution Functions */ 474 1.1 skrll extern enum dwc2_transaction_type dwc2_hcd_select_transactions( 475 1.1 skrll struct dwc2_hsotg *hsotg); 476 1.1 skrll extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, 477 1.1 skrll enum dwc2_transaction_type tr_type); 478 1.1 skrll 479 1.1 skrll /* Schedule Queue Functions */ 480 1.1 skrll /* Implemented in hcd_queue.c */ 481 1.1 skrll extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg); 482 1.10 skrll extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, 483 1.10 skrll struct dwc2_hcd_urb *urb, 484 1.10 skrll gfp_t mem_flags); 485 1.1 skrll extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 486 1.1 skrll extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 487 1.1 skrll extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 488 1.1 skrll extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 489 1.1 skrll int sched_csplit); 490 1.1 skrll 491 1.1 skrll extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb); 492 1.1 skrll extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 493 1.10 skrll struct dwc2_qh *qh); 494 1.1 skrll 495 1.2 skrll /* Removes and frees a QTD */ 496 1.2 skrll extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg, 497 1.2 skrll struct dwc2_qtd *qtd, 498 1.2 skrll struct dwc2_qh *qh); 499 1.1 skrll 500 1.1 skrll /* Descriptor DMA support functions */ 501 1.1 skrll extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, 502 1.1 skrll struct dwc2_qh *qh); 503 1.1 skrll extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg, 504 1.1 skrll struct dwc2_host_chan *chan, int chnum, 505 1.1 skrll enum dwc2_halt_status halt_status); 506 1.1 skrll 507 1.1 skrll extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 508 1.1 skrll gfp_t mem_flags); 509 1.1 skrll extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 510 1.1 skrll 511 1.1 skrll /* Check if QH is non-periodic */ 512 1.1 skrll #define dwc2_qh_is_non_per(_qh_ptr_) \ 513 1.1 skrll ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \ 514 1.1 skrll (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL) 515 1.1 skrll 516 1.1 skrll #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC 517 1.1 skrll static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; } 518 1.1 skrll static inline bool dbg_qh(struct dwc2_qh *qh) { return true; } 519 1.1 skrll static inline bool dbg_perio(void) { return true; } 520 1.1 skrll #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */ 521 1.1 skrll static inline bool dbg_hc(struct dwc2_host_chan *hc) 522 1.1 skrll { 523 1.1 skrll return hc->ep_type == USB_ENDPOINT_XFER_BULK || 524 1.1 skrll hc->ep_type == USB_ENDPOINT_XFER_CONTROL; 525 1.1 skrll } 526 1.1 skrll 527 1.1 skrll static inline bool dbg_qh(struct dwc2_qh *qh) 528 1.1 skrll { 529 1.1 skrll return qh->ep_type == USB_ENDPOINT_XFER_BULK || 530 1.1 skrll qh->ep_type == USB_ENDPOINT_XFER_CONTROL; 531 1.1 skrll } 532 1.1 skrll 533 1.1 skrll 534 1.1 skrll static inline bool dbg_perio(void) { return false; } 535 1.1 skrll #endif 536 1.1 skrll 537 1.1 skrll /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */ 538 1.1 skrll #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03)) 539 1.1 skrll 540 1.1 skrll /* Packet size for any kind of endpoint descriptor */ 541 1.1 skrll #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff) 542 1.1 skrll 543 1.1 skrll /* 544 1.12 skrll * Returns true if frame1 index is greater than frame2 index. The comparison 545 1.12 skrll * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the 546 1.12 skrll * frame number when the max index frame number is reached. 547 1.12 skrll */ 548 1.12 skrll static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2) 549 1.12 skrll { 550 1.12 skrll u16 diff = fr_idx1 - fr_idx2; 551 1.12 skrll u16 sign = diff & (FRLISTEN_64_SIZE >> 1); 552 1.12 skrll 553 1.12 skrll return diff && !sign; 554 1.12 skrll } 555 1.12 skrll 556 1.12 skrll /* 557 1.1 skrll * Returns true if frame1 is less than or equal to frame2. The comparison is 558 1.1 skrll * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the 559 1.1 skrll * frame number when the max frame number is reached. 560 1.1 skrll */ 561 1.1 skrll static inline int dwc2_frame_num_le(u16 frame1, u16 frame2) 562 1.1 skrll { 563 1.1 skrll return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1); 564 1.1 skrll } 565 1.1 skrll 566 1.1 skrll /* 567 1.1 skrll * Returns true if frame1 is greater than frame2. The comparison is done 568 1.1 skrll * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame 569 1.1 skrll * number when the max frame number is reached. 570 1.1 skrll */ 571 1.1 skrll static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2) 572 1.1 skrll { 573 1.1 skrll return (frame1 != frame2) && 574 1.1 skrll ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1); 575 1.1 skrll } 576 1.1 skrll 577 1.1 skrll /* 578 1.1 skrll * Increments frame by the amount specified by inc. The addition is done 579 1.1 skrll * modulo HFNUM_MAX_FRNUM. Returns the incremented value. 580 1.1 skrll */ 581 1.1 skrll static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc) 582 1.1 skrll { 583 1.1 skrll return (frame + inc) & HFNUM_MAX_FRNUM; 584 1.1 skrll } 585 1.1 skrll 586 1.1 skrll static inline u16 dwc2_full_frame_num(u16 frame) 587 1.1 skrll { 588 1.1 skrll return (frame & HFNUM_MAX_FRNUM) >> 3; 589 1.1 skrll } 590 1.1 skrll 591 1.1 skrll static inline u16 dwc2_micro_frame_num(u16 frame) 592 1.1 skrll { 593 1.1 skrll return frame & 0x7; 594 1.1 skrll } 595 1.1 skrll 596 1.1 skrll /* 597 1.1 skrll * Returns the Core Interrupt Status register contents, ANDed with the Core 598 1.1 skrll * Interrupt Mask register contents 599 1.1 skrll */ 600 1.1 skrll static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg) 601 1.1 skrll { 602 1.2 skrll return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK); 603 1.1 skrll } 604 1.1 skrll 605 1.1 skrll static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb) 606 1.1 skrll { 607 1.1 skrll return dwc2_urb->status; 608 1.1 skrll } 609 1.1 skrll 610 1.1 skrll static inline u32 dwc2_hcd_urb_get_actual_length( 611 1.1 skrll struct dwc2_hcd_urb *dwc2_urb) 612 1.1 skrll { 613 1.1 skrll return dwc2_urb->actual_length; 614 1.1 skrll } 615 1.1 skrll 616 1.1 skrll static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb) 617 1.1 skrll { 618 1.1 skrll return dwc2_urb->error_count; 619 1.1 skrll } 620 1.1 skrll 621 1.1 skrll static inline void dwc2_hcd_urb_set_iso_desc_params( 622 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset, 623 1.1 skrll u32 length) 624 1.1 skrll { 625 1.1 skrll dwc2_urb->iso_descs[desc_num].offset = offset; 626 1.1 skrll dwc2_urb->iso_descs[desc_num].length = length; 627 1.1 skrll } 628 1.1 skrll 629 1.1 skrll static inline u32 dwc2_hcd_urb_get_iso_desc_status( 630 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num) 631 1.1 skrll { 632 1.1 skrll return dwc2_urb->iso_descs[desc_num].status; 633 1.1 skrll } 634 1.1 skrll 635 1.1 skrll static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length( 636 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num) 637 1.1 skrll { 638 1.1 skrll return dwc2_urb->iso_descs[desc_num].actual_length; 639 1.1 skrll } 640 1.1 skrll 641 1.1 skrll static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg, 642 1.14 skrll struct usbd_xfer *xfer) 643 1.1 skrll { 644 1.2 skrll struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer); 645 1.2 skrll struct dwc2_qh *qh = dpipe->priv; 646 1.1 skrll 647 1.1 skrll if (qh && !list_empty(&qh->qh_list_entry)) 648 1.1 skrll return 1; 649 1.1 skrll 650 1.1 skrll return 0; 651 1.1 skrll } 652 1.1 skrll 653 1.5 skrll static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg, 654 1.5 skrll struct dwc2_pipe *dpipe) 655 1.5 skrll { 656 1.5 skrll struct dwc2_qh *qh = dpipe->priv; 657 1.5 skrll 658 1.5 skrll if (!qh) { 659 1.5 skrll WARN_ON(1); 660 1.5 skrll return 0; 661 1.5 skrll } 662 1.5 skrll 663 1.5 skrll return qh->usecs; 664 1.5 skrll } 665 1.1 skrll 666 1.1 skrll extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg, 667 1.1 skrll struct dwc2_host_chan *chan, int chnum, 668 1.1 skrll struct dwc2_qtd *qtd); 669 1.1 skrll 670 1.1 skrll /* HCD Core API */ 671 1.1 skrll 672 1.1 skrll /** 673 1.1 skrll * dwc2_handle_hcd_intr() - Called on every hardware interrupt 674 1.1 skrll * 675 1.1 skrll * @hsotg: The DWC2 HCD 676 1.1 skrll * 677 1.1 skrll * Returns IRQ_HANDLED if interrupt is handled 678 1.1 skrll * Return IRQ_NONE if interrupt is not handled 679 1.1 skrll */ 680 1.1 skrll extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg); 681 1.1 skrll 682 1.1 skrll /** 683 1.1 skrll * dwc2_hcd_stop() - Halts the DWC_otg host mode operation 684 1.1 skrll * 685 1.1 skrll * @hsotg: The DWC2 HCD 686 1.1 skrll */ 687 1.1 skrll extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg); 688 1.1 skrll 689 1.1 skrll /** 690 1.1 skrll * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host, 691 1.1 skrll * and 0 otherwise 692 1.1 skrll * 693 1.1 skrll * @hsotg: The DWC2 HCD 694 1.1 skrll */ 695 1.1 skrll extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg); 696 1.1 skrll 697 1.1 skrll /** 698 1.1 skrll * dwc2_hcd_dump_state() - Dumps hsotg state 699 1.1 skrll * 700 1.1 skrll * @hsotg: The DWC2 HCD 701 1.1 skrll * 702 1.1 skrll * NOTE: This function will be removed once the peripheral controller code 703 1.1 skrll * is integrated and the driver is stable 704 1.1 skrll */ 705 1.1 skrll extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg); 706 1.1 skrll 707 1.1 skrll /** 708 1.1 skrll * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF 709 1.1 skrll * 710 1.1 skrll * @hsotg: The DWC2 HCD 711 1.1 skrll * 712 1.1 skrll * This can be used to determine average interrupt latency. Frame remaining is 713 1.1 skrll * also shown for start transfer and two additional sample points. 714 1.1 skrll * 715 1.1 skrll * NOTE: This function will be removed once the peripheral controller code 716 1.1 skrll * is integrated and the driver is stable 717 1.1 skrll */ 718 1.1 skrll extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg); 719 1.1 skrll 720 1.1 skrll /* URB interface */ 721 1.1 skrll 722 1.1 skrll /* Transfer flags */ 723 1.1 skrll #define URB_GIVEBACK_ASAP 0x1 724 1.1 skrll #define URB_SEND_ZERO_PACKET 0x2 725 1.1 skrll 726 1.1 skrll /* Host driver callbacks */ 727 1.1 skrll 728 1.1 skrll extern void dwc2_host_start(struct dwc2_hsotg *hsotg); 729 1.1 skrll extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg); 730 1.1 skrll extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, 731 1.1 skrll int *hub_addr, int *hub_port); 732 1.1 skrll extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context); 733 1.1 skrll extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 734 1.1 skrll int status); 735 1.1 skrll 736 1.1 skrll #ifdef DEBUG 737 1.1 skrll /* 738 1.1 skrll * Macro to sample the remaining PHY clocks left in the current frame. This 739 1.1 skrll * may be used during debugging to determine the average time it takes to 740 1.1 skrll * execute sections of code. There are two possible sample points, "a" and 741 1.1 skrll * "b", so the _letter_ argument must be one of these values. 742 1.1 skrll * 743 1.1 skrll * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For 744 1.1 skrll * example, "cat /sys/devices/lm0/hcd_frrem". 745 1.1 skrll */ 746 1.1 skrll #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \ 747 1.1 skrll do { \ 748 1.1 skrll struct hfnum_data _hfnum_; \ 749 1.1 skrll struct dwc2_qtd *_qtd_; \ 750 1.1 skrll \ 751 1.1 skrll _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \ 752 1.1 skrll qtd_list_entry); \ 753 1.1 skrll if (usb_pipeint(_qtd_->urb->pipe) && \ 754 1.1 skrll (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \ 755 1.11 skrll _hfnum_.d32 = DWC2_READ_4((_hcd_), HFNUM); \ 756 1.1 skrll switch (_hfnum_.b.frnum & 0x7) { \ 757 1.1 skrll case 7: \ 758 1.1 skrll (_hcd_)->hfnum_7_samples_##_letter_++; \ 759 1.1 skrll (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \ 760 1.1 skrll _hfnum_.b.frrem; \ 761 1.1 skrll break; \ 762 1.1 skrll case 0: \ 763 1.1 skrll (_hcd_)->hfnum_0_samples_##_letter_++; \ 764 1.1 skrll (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \ 765 1.1 skrll _hfnum_.b.frrem; \ 766 1.1 skrll break; \ 767 1.1 skrll default: \ 768 1.1 skrll (_hcd_)->hfnum_other_samples_##_letter_++; \ 769 1.1 skrll (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \ 770 1.1 skrll _hfnum_.b.frrem; \ 771 1.1 skrll break; \ 772 1.1 skrll } \ 773 1.1 skrll } \ 774 1.1 skrll } while (0) 775 1.1 skrll #else 776 1.1 skrll #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0) 777 1.1 skrll #endif 778 1.1 skrll 779 1.2 skrll 780 1.2 skrll void dwc2_wakeup_detected(void *); 781 1.2 skrll 782 1.2 skrll int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *); 783 1.2 skrll void dwc2_hcd_reinit(struct dwc2_hsotg *); 784 1.2 skrll int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16); 785 1.2 skrll struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *); 786 1.10 skrll int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg, 787 1.10 skrll struct dwc2_hcd_urb *urb, struct dwc2_qh *qh, 788 1.10 skrll struct dwc2_qtd *qtd); 789 1.2 skrll void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *, 790 1.2 skrll u8 ,u8, u8, u8, u16); 791 1.2 skrll 792 1.2 skrll struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t); 793 1.2 skrll void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int); 794 1.2 skrll 795 1.2 skrll int _dwc2_hcd_start(struct dwc2_hsotg *); 796 1.2 skrll 797 1.4 skrll int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *); 798 1.4 skrll 799 1.1 skrll #endif /* __DWC2_HCD_H__ */ 800