dwc2_hcd.h revision 1.15 1 1.15 simonb /* $NetBSD: dwc2_hcd.h,v 1.15 2018/08/08 07:20:44 simonb Exp $ */
2 1.1 skrll
3 1.1 skrll /*
4 1.1 skrll * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 1.1 skrll *
6 1.1 skrll * Copyright (C) 2004-2013 Synopsys, Inc.
7 1.1 skrll *
8 1.1 skrll * Redistribution and use in source and binary forms, with or without
9 1.1 skrll * modification, are permitted provided that the following conditions
10 1.1 skrll * are met:
11 1.1 skrll * 1. Redistributions of source code must retain the above copyright
12 1.1 skrll * notice, this list of conditions, and the following disclaimer,
13 1.1 skrll * without modification.
14 1.1 skrll * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 skrll * notice, this list of conditions and the following disclaimer in the
16 1.1 skrll * documentation and/or other materials provided with the distribution.
17 1.1 skrll * 3. The names of the above-listed copyright holders may not be used
18 1.1 skrll * to endorse or promote products derived from this software without
19 1.1 skrll * specific prior written permission.
20 1.1 skrll *
21 1.1 skrll * ALTERNATIVELY, this software may be distributed under the terms of the
22 1.1 skrll * GNU General Public License ("GPL") as published by the Free Software
23 1.1 skrll * Foundation; either version 2 of the License, or (at your option) any
24 1.1 skrll * later version.
25 1.1 skrll *
26 1.1 skrll * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 1.1 skrll * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 1.1 skrll * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 1.1 skrll * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 1.1 skrll * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 1.1 skrll * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 1.1 skrll * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 1.1 skrll * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 1.1 skrll * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 1.1 skrll * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 1.1 skrll */
38 1.1 skrll #ifndef __DWC2_HCD_H__
39 1.1 skrll #define __DWC2_HCD_H__
40 1.1 skrll
41 1.1 skrll /*
42 1.1 skrll * This file contains the structures, constants, and interfaces for the
43 1.1 skrll * Host Contoller Driver (HCD)
44 1.1 skrll *
45 1.1 skrll * The Host Controller Driver (HCD) is responsible for translating requests
46 1.1 skrll * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 1.1 skrll * It isolates the USBD from the specifics of the controller by providing an
48 1.1 skrll * API to the USBD.
49 1.1 skrll */
50 1.1 skrll
51 1.1 skrll struct dwc2_qh;
52 1.1 skrll
53 1.1 skrll /**
54 1.1 skrll * struct dwc2_host_chan - Software host channel descriptor
55 1.1 skrll *
56 1.1 skrll * @hc_num: Host channel number, used for register address lookup
57 1.1 skrll * @dev_addr: Address of the device
58 1.1 skrll * @ep_num: Endpoint of the device
59 1.1 skrll * @ep_is_in: Endpoint direction
60 1.1 skrll * @speed: Device speed. One of the following values:
61 1.1 skrll * - USB_SPEED_LOW
62 1.1 skrll * - USB_SPEED_FULL
63 1.1 skrll * - USB_SPEED_HIGH
64 1.1 skrll * @ep_type: Endpoint type. One of the following values:
65 1.1 skrll * - USB_ENDPOINT_XFER_CONTROL: 0
66 1.1 skrll * - USB_ENDPOINT_XFER_ISOC: 1
67 1.1 skrll * - USB_ENDPOINT_XFER_BULK: 2
68 1.1 skrll * - USB_ENDPOINT_XFER_INTR: 3
69 1.1 skrll * @max_packet: Max packet size in bytes
70 1.1 skrll * @data_pid_start: PID for initial transaction.
71 1.1 skrll * 0: DATA0
72 1.1 skrll * 1: DATA2
73 1.1 skrll * 2: DATA1
74 1.1 skrll * 3: MDATA (non-Control EP),
75 1.1 skrll * SETUP (Control EP)
76 1.1 skrll * @multi_count: Number of additional periodic transactions per
77 1.1 skrll * (micro)frame
78 1.1 skrll * @xfer_buf: Pointer to current transfer buffer position
79 1.1 skrll * @xfer_dma: DMA address of xfer_buf
80 1.1 skrll * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 1.1 skrll * DWORD aligned
82 1.1 skrll * @xfer_len: Total number of bytes to transfer
83 1.1 skrll * @xfer_count: Number of bytes transferred so far
84 1.1 skrll * @start_pkt_count: Packet count at start of transfer
85 1.1 skrll * @xfer_started: True if the transfer has been started
86 1.1 skrll * @ping: True if a PING request should be issued on this channel
87 1.1 skrll * @error_state: True if the error count for this transaction is non-zero
88 1.1 skrll * @halt_on_queue: True if this channel should be halted the next time a
89 1.1 skrll * request is queued for the channel. This is necessary in
90 1.1 skrll * slave mode if no request queue space is available when
91 1.1 skrll * an attempt is made to halt the channel.
92 1.1 skrll * @halt_pending: True if the host channel has been halted, but the core
93 1.1 skrll * is not finished flushing queued requests
94 1.1 skrll * @do_split: Enable split for the channel
95 1.1 skrll * @complete_split: Enable complete split
96 1.1 skrll * @hub_addr: Address of high speed hub for the split
97 1.1 skrll * @hub_port: Port of the low/full speed device for the split
98 1.1 skrll * @xact_pos: Split transaction position. One of the following values:
99 1.1 skrll * - DWC2_HCSPLT_XACTPOS_MID
100 1.1 skrll * - DWC2_HCSPLT_XACTPOS_BEGIN
101 1.1 skrll * - DWC2_HCSPLT_XACTPOS_END
102 1.1 skrll * - DWC2_HCSPLT_XACTPOS_ALL
103 1.1 skrll * @requests: Number of requests issued for this channel since it was
104 1.1 skrll * assigned to the current transfer (not counting PINGs)
105 1.1 skrll * @schinfo: Scheduling micro-frame bitmap
106 1.1 skrll * @ntd: Number of transfer descriptors for the transfer
107 1.1 skrll * @halt_status: Reason for halting the host channel
108 1.1 skrll * @hcint Contents of the HCINT register when the interrupt came
109 1.1 skrll * @qh: QH for the transfer being processed by this channel
110 1.1 skrll * @hc_list_entry: For linking to list of host channels
111 1.1 skrll * @desc_list_addr: Current QH's descriptor list DMA address
112 1.12 skrll * @desc_list_sz: Current QH's descriptor list size
113 1.1 skrll *
114 1.1 skrll * This structure represents the state of a single host channel when acting in
115 1.1 skrll * host mode. It contains the data items needed to transfer packets to an
116 1.1 skrll * endpoint via a host channel.
117 1.1 skrll */
118 1.1 skrll struct dwc2_host_chan {
119 1.1 skrll u8 hc_num;
120 1.1 skrll
121 1.1 skrll unsigned dev_addr:7;
122 1.1 skrll unsigned ep_num:4;
123 1.1 skrll unsigned ep_is_in:1;
124 1.1 skrll unsigned speed:4;
125 1.1 skrll unsigned ep_type:2;
126 1.1 skrll unsigned max_packet:11;
127 1.1 skrll unsigned data_pid_start:2;
128 1.3 skrll #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
129 1.3 skrll #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
130 1.3 skrll #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
131 1.3 skrll #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
132 1.3 skrll #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
133 1.1 skrll
134 1.1 skrll unsigned multi_count:2;
135 1.1 skrll
136 1.2 skrll usb_dma_t *xfer_usbdma;
137 1.1 skrll u8 *xfer_buf;
138 1.1 skrll dma_addr_t xfer_dma;
139 1.1 skrll dma_addr_t align_buf;
140 1.1 skrll u32 xfer_len;
141 1.1 skrll u32 xfer_count;
142 1.1 skrll u16 start_pkt_count;
143 1.1 skrll u8 xfer_started;
144 1.1 skrll u8 do_ping;
145 1.1 skrll u8 error_state;
146 1.1 skrll u8 halt_on_queue;
147 1.1 skrll u8 halt_pending;
148 1.1 skrll u8 do_split;
149 1.1 skrll u8 complete_split;
150 1.1 skrll u8 hub_addr;
151 1.1 skrll u8 hub_port;
152 1.1 skrll u8 xact_pos;
153 1.3 skrll #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
154 1.3 skrll #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
155 1.3 skrll #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
156 1.3 skrll #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
157 1.1 skrll
158 1.1 skrll u8 requests;
159 1.1 skrll u8 schinfo;
160 1.1 skrll u16 ntd;
161 1.1 skrll enum dwc2_halt_status halt_status;
162 1.1 skrll u32 hcint;
163 1.1 skrll struct dwc2_qh *qh;
164 1.1 skrll struct list_head hc_list_entry;
165 1.12 skrll usb_dma_t desc_list_usbdma;
166 1.1 skrll dma_addr_t desc_list_addr;
167 1.12 skrll u32 desc_list_sz;
168 1.1 skrll };
169 1.1 skrll
170 1.1 skrll struct dwc2_hcd_pipe_info {
171 1.1 skrll u8 dev_addr;
172 1.1 skrll u8 ep_num;
173 1.1 skrll u8 pipe_type;
174 1.1 skrll u8 pipe_dir;
175 1.1 skrll u16 mps;
176 1.1 skrll };
177 1.1 skrll
178 1.1 skrll struct dwc2_hcd_iso_packet_desc {
179 1.1 skrll u32 offset;
180 1.1 skrll u32 length;
181 1.1 skrll u32 actual_length;
182 1.1 skrll u32 status;
183 1.1 skrll };
184 1.1 skrll
185 1.1 skrll struct dwc2_qtd;
186 1.1 skrll
187 1.1 skrll struct dwc2_hcd_urb {
188 1.2 skrll void *priv; /* the xfer handle */
189 1.1 skrll struct dwc2_qtd *qtd;
190 1.2 skrll usb_dma_t *usbdma;
191 1.2 skrll u8 *buf;
192 1.1 skrll dma_addr_t dma;
193 1.2 skrll usb_dma_t *setup_usbdma;
194 1.1 skrll void *setup_packet;
195 1.1 skrll dma_addr_t setup_dma;
196 1.1 skrll u32 length;
197 1.1 skrll u32 actual_length;
198 1.1 skrll u32 status;
199 1.1 skrll u32 error_count;
200 1.1 skrll u32 packet_count;
201 1.1 skrll u32 flags;
202 1.1 skrll u16 interval;
203 1.1 skrll struct dwc2_hcd_pipe_info pipe_info;
204 1.1 skrll struct dwc2_hcd_iso_packet_desc iso_descs[0];
205 1.1 skrll };
206 1.1 skrll
207 1.1 skrll /* Phases for control transfers */
208 1.1 skrll enum dwc2_control_phase {
209 1.1 skrll DWC2_CONTROL_SETUP,
210 1.1 skrll DWC2_CONTROL_DATA,
211 1.1 skrll DWC2_CONTROL_STATUS,
212 1.1 skrll };
213 1.1 skrll
214 1.1 skrll /* Transaction types */
215 1.1 skrll enum dwc2_transaction_type {
216 1.1 skrll DWC2_TRANSACTION_NONE,
217 1.1 skrll DWC2_TRANSACTION_PERIODIC,
218 1.1 skrll DWC2_TRANSACTION_NON_PERIODIC,
219 1.1 skrll DWC2_TRANSACTION_ALL,
220 1.1 skrll };
221 1.1 skrll
222 1.1 skrll /**
223 1.1 skrll * struct dwc2_qh - Software queue head structure
224 1.1 skrll *
225 1.15 simonb * @hsotg: The HCD state structure for the DWC OTG controller
226 1.1 skrll * @ep_type: Endpoint type. One of the following values:
227 1.1 skrll * - USB_ENDPOINT_XFER_CONTROL
228 1.1 skrll * - USB_ENDPOINT_XFER_BULK
229 1.1 skrll * - USB_ENDPOINT_XFER_INT
230 1.1 skrll * - USB_ENDPOINT_XFER_ISOC
231 1.1 skrll * @ep_is_in: Endpoint direction
232 1.1 skrll * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
233 1.1 skrll * @dev_speed: Device speed. One of the following values:
234 1.1 skrll * - USB_SPEED_LOW
235 1.1 skrll * - USB_SPEED_FULL
236 1.1 skrll * - USB_SPEED_HIGH
237 1.1 skrll * @data_toggle: Determines the PID of the next data packet for
238 1.1 skrll * non-controltransfers. Ignored for control transfers.
239 1.1 skrll * One of the following values:
240 1.1 skrll * - DWC2_HC_PID_DATA0
241 1.1 skrll * - DWC2_HC_PID_DATA1
242 1.1 skrll * @ping_state: Ping state
243 1.1 skrll * @do_split: Full/low speed endpoint on high-speed hub requires split
244 1.1 skrll * @td_first: Index of first activated isochronous transfer descriptor
245 1.1 skrll * @td_last: Index of last activated isochronous transfer descriptor
246 1.1 skrll * @usecs: Bandwidth in microseconds per (micro)frame
247 1.1 skrll * @interval: Interval between transfers in (micro)frames
248 1.1 skrll * @sched_frame: (Micro)frame to initialize a periodic transfer.
249 1.1 skrll * The transfer executes in the following (micro)frame.
250 1.9 skrll * @nak_frame: Internal variable used by the NAK holdoff code
251 1.1 skrll * @frame_usecs: Internal variable used by the microframe scheduler
252 1.1 skrll * @start_split_frame: (Micro)frame at which last start split was initialized
253 1.1 skrll * @ntd: Actual number of transfer descriptors in a list
254 1.1 skrll * @dw_align_buf: Used instead of original buffer if its physical address
255 1.1 skrll * is not dword-aligned
256 1.10 skrll * @dw_align_buf_size: Size of dw_align_buf
257 1.10 skrll * @dw_align_buf_dma: DMA address for dw_align_buf
258 1.1 skrll * @qtd_list: List of QTDs for this QH
259 1.1 skrll * @channel: Host channel currently processing transfers for this QH
260 1.1 skrll * @qh_list_entry: Entry for QH in either the periodic or non-periodic
261 1.1 skrll * schedule
262 1.1 skrll * @desc_list: List of transfer descriptors
263 1.1 skrll * @desc_list_dma: Physical address of desc_list
264 1.12 skrll * @desc_list_sz: Size of descriptors list
265 1.1 skrll * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
266 1.1 skrll * descriptor and indicates original XferSize value for the
267 1.1 skrll * descriptor
268 1.15 simonb * @wait_timer: Timer used to wait before re-queuing.
269 1.1 skrll * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
270 1.15 simonb * @want_wait: We should wait before re-queuing; only matters for non-
271 1.15 simonb * periodic transfers and is ignored for periodic ones.
272 1.15 simonb * @wait_timer_cancel: Set to true to cancel the wait_timer.
273 1.1 skrll *
274 1.1 skrll * A Queue Head (QH) holds the static characteristics of an endpoint and
275 1.1 skrll * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
276 1.1 skrll * be entered in either the non-periodic or periodic schedule.
277 1.1 skrll */
278 1.1 skrll struct dwc2_qh {
279 1.15 simonb struct dwc2_hsotg *hsotg;
280 1.1 skrll u8 ep_type;
281 1.1 skrll u8 ep_is_in;
282 1.1 skrll u16 maxp;
283 1.1 skrll u8 dev_speed;
284 1.1 skrll u8 data_toggle;
285 1.1 skrll u8 ping_state;
286 1.1 skrll u8 do_split;
287 1.1 skrll u8 td_first;
288 1.1 skrll u8 td_last;
289 1.1 skrll u16 usecs;
290 1.1 skrll u16 interval;
291 1.1 skrll u16 sched_frame;
292 1.9 skrll u16 nak_frame;
293 1.1 skrll u16 frame_usecs[8];
294 1.1 skrll u16 start_split_frame;
295 1.1 skrll u16 ntd;
296 1.2 skrll usb_dma_t dw_align_buf_usbdma;
297 1.1 skrll u8 *dw_align_buf;
298 1.10 skrll int dw_align_buf_size;
299 1.1 skrll dma_addr_t dw_align_buf_dma;
300 1.1 skrll struct list_head qtd_list;
301 1.1 skrll struct dwc2_host_chan *channel;
302 1.1 skrll struct list_head qh_list_entry;
303 1.2 skrll usb_dma_t desc_list_usbdma;
304 1.1 skrll struct dwc2_hcd_dma_desc *desc_list;
305 1.1 skrll dma_addr_t desc_list_dma;
306 1.12 skrll u32 desc_list_sz;
307 1.1 skrll u32 *n_bytes;
308 1.15 simonb /* XXX struct timer_list wait_timer; */
309 1.15 simonb callout_t wait_timer;
310 1.1 skrll unsigned tt_buffer_dirty:1;
311 1.15 simonb unsigned want_wait:1;
312 1.15 simonb unsigned wait_timer_cancel:1;
313 1.1 skrll };
314 1.1 skrll
315 1.1 skrll /**
316 1.1 skrll * struct dwc2_qtd - Software queue transfer descriptor (QTD)
317 1.1 skrll *
318 1.1 skrll * @control_phase: Current phase for control transfers (Setup, Data, or
319 1.1 skrll * Status)
320 1.1 skrll * @in_process: Indicates if this QTD is currently processed by HW
321 1.1 skrll * @data_toggle: Determines the PID of the next data packet for the
322 1.1 skrll * data phase of control transfers. Ignored for other
323 1.1 skrll * transfer types. One of the following values:
324 1.1 skrll * - DWC2_HC_PID_DATA0
325 1.1 skrll * - DWC2_HC_PID_DATA1
326 1.1 skrll * @complete_split: Keeps track of the current split type for FS/LS
327 1.1 skrll * endpoints on a HS Hub
328 1.1 skrll * @isoc_split_pos: Position of the ISOC split in full/low speed
329 1.1 skrll * @isoc_frame_index: Index of the next frame descriptor for an isochronous
330 1.1 skrll * transfer. A frame descriptor describes the buffer
331 1.1 skrll * position and length of the data to be transferred in the
332 1.1 skrll * next scheduled (micro)frame of an isochronous transfer.
333 1.1 skrll * It also holds status for that transaction. The frame
334 1.1 skrll * index starts at 0.
335 1.1 skrll * @isoc_split_offset: Position of the ISOC split in the buffer for the
336 1.1 skrll * current frame
337 1.1 skrll * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
338 1.1 skrll * @error_count: Holds the number of bus errors that have occurred for
339 1.1 skrll * a transaction within this transfer
340 1.1 skrll * @n_desc: Number of DMA descriptors for this QTD
341 1.1 skrll * @isoc_frame_index_last: Last activated frame (packet) index, used in
342 1.1 skrll * descriptor DMA mode only
343 1.15 simonb * @num_naks: Number of NAKs received on this QTD.
344 1.1 skrll * @urb: URB for this transfer
345 1.1 skrll * @qh: Queue head for this QTD
346 1.1 skrll * @qtd_list_entry: For linking to the QH's list of QTDs
347 1.1 skrll *
348 1.1 skrll * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
349 1.1 skrll * interrupt, or isochronous transfer. A single QTD is created for each URB
350 1.1 skrll * (of one of these types) submitted to the HCD. The transfer associated with
351 1.1 skrll * a QTD may require one or multiple transactions.
352 1.1 skrll *
353 1.1 skrll * A QTD is linked to a Queue Head, which is entered in either the
354 1.1 skrll * non-periodic or periodic schedule for execution. When a QTD is chosen for
355 1.1 skrll * execution, some or all of its transactions may be executed. After
356 1.1 skrll * execution, the state of the QTD is updated. The QTD may be retired if all
357 1.1 skrll * its transactions are complete or if an error occurred. Otherwise, it
358 1.1 skrll * remains in the schedule so more transactions can be executed later.
359 1.1 skrll */
360 1.1 skrll struct dwc2_qtd {
361 1.1 skrll enum dwc2_control_phase control_phase;
362 1.1 skrll u8 in_process;
363 1.1 skrll u8 data_toggle;
364 1.1 skrll u8 complete_split;
365 1.1 skrll u8 isoc_split_pos;
366 1.1 skrll u16 isoc_frame_index;
367 1.1 skrll u16 isoc_split_offset;
368 1.12 skrll u16 isoc_td_last;
369 1.12 skrll u16 isoc_td_first;
370 1.1 skrll u32 ssplit_out_xfer_count;
371 1.1 skrll u8 error_count;
372 1.1 skrll u8 n_desc;
373 1.1 skrll u16 isoc_frame_index_last;
374 1.15 simonb u16 num_naks;
375 1.1 skrll struct dwc2_hcd_urb *urb;
376 1.1 skrll struct dwc2_qh *qh;
377 1.1 skrll struct list_head qtd_list_entry;
378 1.1 skrll };
379 1.1 skrll
380 1.1 skrll #ifdef DEBUG
381 1.1 skrll struct hc_xfer_info {
382 1.1 skrll struct dwc2_hsotg *hsotg;
383 1.1 skrll struct dwc2_host_chan *chan;
384 1.1 skrll };
385 1.1 skrll #endif
386 1.1 skrll
387 1.1 skrll /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
388 1.1 skrll static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
389 1.1 skrll {
390 1.1 skrll return (struct usb_hcd *)hsotg->priv;
391 1.1 skrll }
392 1.1 skrll
393 1.1 skrll /*
394 1.1 skrll * Inline used to disable one channel interrupt. Channel interrupts are
395 1.1 skrll * disabled when the channel is halted or released by the interrupt handler.
396 1.1 skrll * There is no need to handle further interrupts of that type until the
397 1.1 skrll * channel is re-assigned. In fact, subsequent handling may cause crashes
398 1.1 skrll * because the channel structures are cleaned up when the channel is released.
399 1.1 skrll */
400 1.1 skrll static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
401 1.1 skrll {
402 1.2 skrll u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
403 1.1 skrll
404 1.1 skrll mask &= ~intr;
405 1.2 skrll DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
406 1.1 skrll }
407 1.1 skrll
408 1.1 skrll /*
409 1.1 skrll * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
410 1.1 skrll * are read as 1, they won't clear when written back.
411 1.1 skrll */
412 1.1 skrll static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
413 1.1 skrll {
414 1.2 skrll u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
415 1.1 skrll
416 1.1 skrll hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
417 1.1 skrll return hprt0;
418 1.1 skrll }
419 1.1 skrll
420 1.1 skrll static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
421 1.1 skrll {
422 1.1 skrll return pipe->ep_num;
423 1.1 skrll }
424 1.1 skrll
425 1.1 skrll static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
426 1.1 skrll {
427 1.1 skrll return pipe->pipe_type;
428 1.1 skrll }
429 1.1 skrll
430 1.1 skrll static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
431 1.1 skrll {
432 1.1 skrll return pipe->mps;
433 1.1 skrll }
434 1.1 skrll
435 1.1 skrll static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
436 1.1 skrll {
437 1.1 skrll return pipe->dev_addr;
438 1.1 skrll }
439 1.1 skrll
440 1.1 skrll static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
441 1.1 skrll {
442 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
443 1.1 skrll }
444 1.1 skrll
445 1.1 skrll static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
446 1.1 skrll {
447 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
448 1.1 skrll }
449 1.1 skrll
450 1.1 skrll static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
451 1.1 skrll {
452 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
453 1.1 skrll }
454 1.1 skrll
455 1.1 skrll static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
456 1.1 skrll {
457 1.1 skrll return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
458 1.1 skrll }
459 1.1 skrll
460 1.1 skrll static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
461 1.1 skrll {
462 1.1 skrll return pipe->pipe_dir == USB_DIR_IN;
463 1.1 skrll }
464 1.1 skrll
465 1.1 skrll static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
466 1.1 skrll {
467 1.1 skrll return !dwc2_hcd_is_pipe_in(pipe);
468 1.1 skrll }
469 1.1 skrll
470 1.10 skrll extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
471 1.1 skrll extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
472 1.1 skrll
473 1.1 skrll /* Transaction Execution Functions */
474 1.1 skrll extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
475 1.1 skrll struct dwc2_hsotg *hsotg);
476 1.1 skrll extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
477 1.1 skrll enum dwc2_transaction_type tr_type);
478 1.1 skrll
479 1.1 skrll /* Schedule Queue Functions */
480 1.1 skrll /* Implemented in hcd_queue.c */
481 1.1 skrll extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
482 1.10 skrll extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
483 1.10 skrll struct dwc2_hcd_urb *urb,
484 1.10 skrll gfp_t mem_flags);
485 1.1 skrll extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
486 1.1 skrll extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
487 1.1 skrll extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
488 1.1 skrll extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
489 1.1 skrll int sched_csplit);
490 1.1 skrll
491 1.1 skrll extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
492 1.1 skrll extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
493 1.10 skrll struct dwc2_qh *qh);
494 1.1 skrll
495 1.2 skrll /* Removes and frees a QTD */
496 1.2 skrll extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
497 1.2 skrll struct dwc2_qtd *qtd,
498 1.2 skrll struct dwc2_qh *qh);
499 1.1 skrll
500 1.1 skrll /* Descriptor DMA support functions */
501 1.1 skrll extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
502 1.1 skrll struct dwc2_qh *qh);
503 1.1 skrll extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
504 1.1 skrll struct dwc2_host_chan *chan, int chnum,
505 1.1 skrll enum dwc2_halt_status halt_status);
506 1.1 skrll
507 1.1 skrll extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
508 1.1 skrll gfp_t mem_flags);
509 1.1 skrll extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
510 1.1 skrll
511 1.1 skrll /* Check if QH is non-periodic */
512 1.1 skrll #define dwc2_qh_is_non_per(_qh_ptr_) \
513 1.1 skrll ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
514 1.1 skrll (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
515 1.1 skrll
516 1.1 skrll #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
517 1.1 skrll static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
518 1.1 skrll static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
519 1.1 skrll static inline bool dbg_perio(void) { return true; }
520 1.1 skrll #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
521 1.1 skrll static inline bool dbg_hc(struct dwc2_host_chan *hc)
522 1.1 skrll {
523 1.1 skrll return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
524 1.1 skrll hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
525 1.1 skrll }
526 1.1 skrll
527 1.1 skrll static inline bool dbg_qh(struct dwc2_qh *qh)
528 1.1 skrll {
529 1.1 skrll return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
530 1.1 skrll qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
531 1.1 skrll }
532 1.1 skrll
533 1.1 skrll
534 1.1 skrll static inline bool dbg_perio(void) { return false; }
535 1.1 skrll #endif
536 1.1 skrll
537 1.1 skrll /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
538 1.1 skrll #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
539 1.1 skrll
540 1.1 skrll /* Packet size for any kind of endpoint descriptor */
541 1.1 skrll #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
542 1.1 skrll
543 1.1 skrll /*
544 1.12 skrll * Returns true if frame1 index is greater than frame2 index. The comparison
545 1.12 skrll * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
546 1.12 skrll * frame number when the max index frame number is reached.
547 1.12 skrll */
548 1.12 skrll static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
549 1.12 skrll {
550 1.12 skrll u16 diff = fr_idx1 - fr_idx2;
551 1.12 skrll u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
552 1.12 skrll
553 1.12 skrll return diff && !sign;
554 1.12 skrll }
555 1.12 skrll
556 1.12 skrll /*
557 1.1 skrll * Returns true if frame1 is less than or equal to frame2. The comparison is
558 1.1 skrll * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
559 1.1 skrll * frame number when the max frame number is reached.
560 1.1 skrll */
561 1.1 skrll static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
562 1.1 skrll {
563 1.1 skrll return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
564 1.1 skrll }
565 1.1 skrll
566 1.1 skrll /*
567 1.1 skrll * Returns true if frame1 is greater than frame2. The comparison is done
568 1.1 skrll * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
569 1.1 skrll * number when the max frame number is reached.
570 1.1 skrll */
571 1.1 skrll static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
572 1.1 skrll {
573 1.1 skrll return (frame1 != frame2) &&
574 1.1 skrll ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
575 1.1 skrll }
576 1.1 skrll
577 1.1 skrll /*
578 1.1 skrll * Increments frame by the amount specified by inc. The addition is done
579 1.1 skrll * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
580 1.1 skrll */
581 1.1 skrll static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
582 1.1 skrll {
583 1.1 skrll return (frame + inc) & HFNUM_MAX_FRNUM;
584 1.1 skrll }
585 1.1 skrll
586 1.1 skrll static inline u16 dwc2_full_frame_num(u16 frame)
587 1.1 skrll {
588 1.1 skrll return (frame & HFNUM_MAX_FRNUM) >> 3;
589 1.1 skrll }
590 1.1 skrll
591 1.1 skrll static inline u16 dwc2_micro_frame_num(u16 frame)
592 1.1 skrll {
593 1.1 skrll return frame & 0x7;
594 1.1 skrll }
595 1.1 skrll
596 1.1 skrll /*
597 1.1 skrll * Returns the Core Interrupt Status register contents, ANDed with the Core
598 1.1 skrll * Interrupt Mask register contents
599 1.1 skrll */
600 1.1 skrll static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
601 1.1 skrll {
602 1.2 skrll return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
603 1.1 skrll }
604 1.1 skrll
605 1.1 skrll static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
606 1.1 skrll {
607 1.1 skrll return dwc2_urb->status;
608 1.1 skrll }
609 1.1 skrll
610 1.1 skrll static inline u32 dwc2_hcd_urb_get_actual_length(
611 1.1 skrll struct dwc2_hcd_urb *dwc2_urb)
612 1.1 skrll {
613 1.1 skrll return dwc2_urb->actual_length;
614 1.1 skrll }
615 1.1 skrll
616 1.1 skrll static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
617 1.1 skrll {
618 1.1 skrll return dwc2_urb->error_count;
619 1.1 skrll }
620 1.1 skrll
621 1.1 skrll static inline void dwc2_hcd_urb_set_iso_desc_params(
622 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
623 1.1 skrll u32 length)
624 1.1 skrll {
625 1.1 skrll dwc2_urb->iso_descs[desc_num].offset = offset;
626 1.1 skrll dwc2_urb->iso_descs[desc_num].length = length;
627 1.1 skrll }
628 1.1 skrll
629 1.1 skrll static inline u32 dwc2_hcd_urb_get_iso_desc_status(
630 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num)
631 1.1 skrll {
632 1.1 skrll return dwc2_urb->iso_descs[desc_num].status;
633 1.1 skrll }
634 1.1 skrll
635 1.1 skrll static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
636 1.1 skrll struct dwc2_hcd_urb *dwc2_urb, int desc_num)
637 1.1 skrll {
638 1.1 skrll return dwc2_urb->iso_descs[desc_num].actual_length;
639 1.1 skrll }
640 1.1 skrll
641 1.1 skrll static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
642 1.14 skrll struct usbd_xfer *xfer)
643 1.1 skrll {
644 1.2 skrll struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
645 1.2 skrll struct dwc2_qh *qh = dpipe->priv;
646 1.1 skrll
647 1.1 skrll if (qh && !list_empty(&qh->qh_list_entry))
648 1.1 skrll return 1;
649 1.1 skrll
650 1.1 skrll return 0;
651 1.1 skrll }
652 1.1 skrll
653 1.5 skrll static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
654 1.5 skrll struct dwc2_pipe *dpipe)
655 1.5 skrll {
656 1.5 skrll struct dwc2_qh *qh = dpipe->priv;
657 1.5 skrll
658 1.5 skrll if (!qh) {
659 1.5 skrll WARN_ON(1);
660 1.5 skrll return 0;
661 1.5 skrll }
662 1.5 skrll
663 1.5 skrll return qh->usecs;
664 1.5 skrll }
665 1.1 skrll
666 1.1 skrll extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
667 1.1 skrll struct dwc2_host_chan *chan, int chnum,
668 1.1 skrll struct dwc2_qtd *qtd);
669 1.1 skrll
670 1.1 skrll /* HCD Core API */
671 1.1 skrll
672 1.1 skrll /**
673 1.1 skrll * dwc2_handle_hcd_intr() - Called on every hardware interrupt
674 1.1 skrll *
675 1.1 skrll * @hsotg: The DWC2 HCD
676 1.1 skrll *
677 1.1 skrll * Returns IRQ_HANDLED if interrupt is handled
678 1.1 skrll * Return IRQ_NONE if interrupt is not handled
679 1.1 skrll */
680 1.1 skrll extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
681 1.1 skrll
682 1.1 skrll /**
683 1.1 skrll * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
684 1.1 skrll *
685 1.1 skrll * @hsotg: The DWC2 HCD
686 1.1 skrll */
687 1.1 skrll extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
688 1.1 skrll
689 1.1 skrll /**
690 1.1 skrll * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
691 1.1 skrll * and 0 otherwise
692 1.1 skrll *
693 1.1 skrll * @hsotg: The DWC2 HCD
694 1.1 skrll */
695 1.1 skrll extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
696 1.1 skrll
697 1.1 skrll /**
698 1.1 skrll * dwc2_hcd_dump_state() - Dumps hsotg state
699 1.1 skrll *
700 1.1 skrll * @hsotg: The DWC2 HCD
701 1.1 skrll *
702 1.1 skrll * NOTE: This function will be removed once the peripheral controller code
703 1.1 skrll * is integrated and the driver is stable
704 1.1 skrll */
705 1.1 skrll extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
706 1.1 skrll
707 1.1 skrll /**
708 1.1 skrll * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
709 1.1 skrll *
710 1.1 skrll * @hsotg: The DWC2 HCD
711 1.1 skrll *
712 1.1 skrll * This can be used to determine average interrupt latency. Frame remaining is
713 1.1 skrll * also shown for start transfer and two additional sample points.
714 1.1 skrll *
715 1.1 skrll * NOTE: This function will be removed once the peripheral controller code
716 1.1 skrll * is integrated and the driver is stable
717 1.1 skrll */
718 1.1 skrll extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
719 1.1 skrll
720 1.1 skrll /* URB interface */
721 1.1 skrll
722 1.1 skrll /* Transfer flags */
723 1.1 skrll #define URB_GIVEBACK_ASAP 0x1
724 1.1 skrll #define URB_SEND_ZERO_PACKET 0x2
725 1.1 skrll
726 1.1 skrll /* Host driver callbacks */
727 1.1 skrll
728 1.1 skrll extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
729 1.1 skrll extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
730 1.1 skrll extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
731 1.1 skrll int *hub_addr, int *hub_port);
732 1.1 skrll extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
733 1.1 skrll extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
734 1.1 skrll int status);
735 1.1 skrll
736 1.1 skrll #ifdef DEBUG
737 1.1 skrll /*
738 1.1 skrll * Macro to sample the remaining PHY clocks left in the current frame. This
739 1.1 skrll * may be used during debugging to determine the average time it takes to
740 1.1 skrll * execute sections of code. There are two possible sample points, "a" and
741 1.1 skrll * "b", so the _letter_ argument must be one of these values.
742 1.1 skrll *
743 1.1 skrll * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
744 1.1 skrll * example, "cat /sys/devices/lm0/hcd_frrem".
745 1.1 skrll */
746 1.1 skrll #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
747 1.1 skrll do { \
748 1.1 skrll struct hfnum_data _hfnum_; \
749 1.1 skrll struct dwc2_qtd *_qtd_; \
750 1.1 skrll \
751 1.1 skrll _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
752 1.1 skrll qtd_list_entry); \
753 1.1 skrll if (usb_pipeint(_qtd_->urb->pipe) && \
754 1.1 skrll (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
755 1.11 skrll _hfnum_.d32 = DWC2_READ_4((_hcd_), HFNUM); \
756 1.1 skrll switch (_hfnum_.b.frnum & 0x7) { \
757 1.1 skrll case 7: \
758 1.1 skrll (_hcd_)->hfnum_7_samples_##_letter_++; \
759 1.1 skrll (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
760 1.1 skrll _hfnum_.b.frrem; \
761 1.1 skrll break; \
762 1.1 skrll case 0: \
763 1.1 skrll (_hcd_)->hfnum_0_samples_##_letter_++; \
764 1.1 skrll (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
765 1.1 skrll _hfnum_.b.frrem; \
766 1.1 skrll break; \
767 1.1 skrll default: \
768 1.1 skrll (_hcd_)->hfnum_other_samples_##_letter_++; \
769 1.1 skrll (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
770 1.1 skrll _hfnum_.b.frrem; \
771 1.1 skrll break; \
772 1.1 skrll } \
773 1.1 skrll } \
774 1.1 skrll } while (0)
775 1.1 skrll #else
776 1.1 skrll #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
777 1.1 skrll #endif
778 1.1 skrll
779 1.2 skrll
780 1.2 skrll void dwc2_wakeup_detected(void *);
781 1.2 skrll
782 1.2 skrll int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
783 1.2 skrll void dwc2_hcd_reinit(struct dwc2_hsotg *);
784 1.2 skrll int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
785 1.2 skrll struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
786 1.10 skrll int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
787 1.10 skrll struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
788 1.10 skrll struct dwc2_qtd *qtd);
789 1.2 skrll void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
790 1.2 skrll u8 ,u8, u8, u8, u16);
791 1.2 skrll
792 1.2 skrll struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
793 1.2 skrll void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
794 1.2 skrll
795 1.2 skrll int _dwc2_hcd_start(struct dwc2_hsotg *);
796 1.2 skrll
797 1.4 skrll int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
798 1.4 skrll
799 1.1 skrll #endif /* __DWC2_HCD_H__ */
800