dwc2_hcd.h revision 1.8.10.2 1 1.8.10.2 tls /* $NetBSD: dwc2_hcd.h,v 1.8.10.2 2014/08/20 00:04:22 tls Exp $ */
2 1.8.10.2 tls
3 1.8.10.2 tls /*
4 1.8.10.2 tls * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 1.8.10.2 tls *
6 1.8.10.2 tls * Copyright (C) 2004-2013 Synopsys, Inc.
7 1.8.10.2 tls *
8 1.8.10.2 tls * Redistribution and use in source and binary forms, with or without
9 1.8.10.2 tls * modification, are permitted provided that the following conditions
10 1.8.10.2 tls * are met:
11 1.8.10.2 tls * 1. Redistributions of source code must retain the above copyright
12 1.8.10.2 tls * notice, this list of conditions, and the following disclaimer,
13 1.8.10.2 tls * without modification.
14 1.8.10.2 tls * 2. Redistributions in binary form must reproduce the above copyright
15 1.8.10.2 tls * notice, this list of conditions and the following disclaimer in the
16 1.8.10.2 tls * documentation and/or other materials provided with the distribution.
17 1.8.10.2 tls * 3. The names of the above-listed copyright holders may not be used
18 1.8.10.2 tls * to endorse or promote products derived from this software without
19 1.8.10.2 tls * specific prior written permission.
20 1.8.10.2 tls *
21 1.8.10.2 tls * ALTERNATIVELY, this software may be distributed under the terms of the
22 1.8.10.2 tls * GNU General Public License ("GPL") as published by the Free Software
23 1.8.10.2 tls * Foundation; either version 2 of the License, or (at your option) any
24 1.8.10.2 tls * later version.
25 1.8.10.2 tls *
26 1.8.10.2 tls * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 1.8.10.2 tls * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 1.8.10.2 tls * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.8.10.2 tls * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 1.8.10.2 tls * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 1.8.10.2 tls * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 1.8.10.2 tls * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 1.8.10.2 tls * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 1.8.10.2 tls * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 1.8.10.2 tls * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 1.8.10.2 tls * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 1.8.10.2 tls */
38 1.8.10.2 tls #ifndef __DWC2_HCD_H__
39 1.8.10.2 tls #define __DWC2_HCD_H__
40 1.8.10.2 tls
41 1.8.10.2 tls /*
42 1.8.10.2 tls * This file contains the structures, constants, and interfaces for the
43 1.8.10.2 tls * Host Contoller Driver (HCD)
44 1.8.10.2 tls *
45 1.8.10.2 tls * The Host Controller Driver (HCD) is responsible for translating requests
46 1.8.10.2 tls * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 1.8.10.2 tls * It isolates the USBD from the specifics of the controller by providing an
48 1.8.10.2 tls * API to the USBD.
49 1.8.10.2 tls */
50 1.8.10.2 tls
51 1.8.10.2 tls struct dwc2_qh;
52 1.8.10.2 tls
53 1.8.10.2 tls /**
54 1.8.10.2 tls * struct dwc2_host_chan - Software host channel descriptor
55 1.8.10.2 tls *
56 1.8.10.2 tls * @hc_num: Host channel number, used for register address lookup
57 1.8.10.2 tls * @dev_addr: Address of the device
58 1.8.10.2 tls * @ep_num: Endpoint of the device
59 1.8.10.2 tls * @ep_is_in: Endpoint direction
60 1.8.10.2 tls * @speed: Device speed. One of the following values:
61 1.8.10.2 tls * - USB_SPEED_LOW
62 1.8.10.2 tls * - USB_SPEED_FULL
63 1.8.10.2 tls * - USB_SPEED_HIGH
64 1.8.10.2 tls * @ep_type: Endpoint type. One of the following values:
65 1.8.10.2 tls * - USB_ENDPOINT_XFER_CONTROL: 0
66 1.8.10.2 tls * - USB_ENDPOINT_XFER_ISOC: 1
67 1.8.10.2 tls * - USB_ENDPOINT_XFER_BULK: 2
68 1.8.10.2 tls * - USB_ENDPOINT_XFER_INTR: 3
69 1.8.10.2 tls * @max_packet: Max packet size in bytes
70 1.8.10.2 tls * @data_pid_start: PID for initial transaction.
71 1.8.10.2 tls * 0: DATA0
72 1.8.10.2 tls * 1: DATA2
73 1.8.10.2 tls * 2: DATA1
74 1.8.10.2 tls * 3: MDATA (non-Control EP),
75 1.8.10.2 tls * SETUP (Control EP)
76 1.8.10.2 tls * @multi_count: Number of additional periodic transactions per
77 1.8.10.2 tls * (micro)frame
78 1.8.10.2 tls * @xfer_buf: Pointer to current transfer buffer position
79 1.8.10.2 tls * @xfer_dma: DMA address of xfer_buf
80 1.8.10.2 tls * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
81 1.8.10.2 tls * DWORD aligned
82 1.8.10.2 tls * @xfer_len: Total number of bytes to transfer
83 1.8.10.2 tls * @xfer_count: Number of bytes transferred so far
84 1.8.10.2 tls * @start_pkt_count: Packet count at start of transfer
85 1.8.10.2 tls * @xfer_started: True if the transfer has been started
86 1.8.10.2 tls * @ping: True if a PING request should be issued on this channel
87 1.8.10.2 tls * @error_state: True if the error count for this transaction is non-zero
88 1.8.10.2 tls * @halt_on_queue: True if this channel should be halted the next time a
89 1.8.10.2 tls * request is queued for the channel. This is necessary in
90 1.8.10.2 tls * slave mode if no request queue space is available when
91 1.8.10.2 tls * an attempt is made to halt the channel.
92 1.8.10.2 tls * @halt_pending: True if the host channel has been halted, but the core
93 1.8.10.2 tls * is not finished flushing queued requests
94 1.8.10.2 tls * @do_split: Enable split for the channel
95 1.8.10.2 tls * @complete_split: Enable complete split
96 1.8.10.2 tls * @hub_addr: Address of high speed hub for the split
97 1.8.10.2 tls * @hub_port: Port of the low/full speed device for the split
98 1.8.10.2 tls * @xact_pos: Split transaction position. One of the following values:
99 1.8.10.2 tls * - DWC2_HCSPLT_XACTPOS_MID
100 1.8.10.2 tls * - DWC2_HCSPLT_XACTPOS_BEGIN
101 1.8.10.2 tls * - DWC2_HCSPLT_XACTPOS_END
102 1.8.10.2 tls * - DWC2_HCSPLT_XACTPOS_ALL
103 1.8.10.2 tls * @requests: Number of requests issued for this channel since it was
104 1.8.10.2 tls * assigned to the current transfer (not counting PINGs)
105 1.8.10.2 tls * @schinfo: Scheduling micro-frame bitmap
106 1.8.10.2 tls * @ntd: Number of transfer descriptors for the transfer
107 1.8.10.2 tls * @halt_status: Reason for halting the host channel
108 1.8.10.2 tls * @hcint Contents of the HCINT register when the interrupt came
109 1.8.10.2 tls * @qh: QH for the transfer being processed by this channel
110 1.8.10.2 tls * @hc_list_entry: For linking to list of host channels
111 1.8.10.2 tls * @desc_list_addr: Current QH's descriptor list DMA address
112 1.8.10.2 tls *
113 1.8.10.2 tls * This structure represents the state of a single host channel when acting in
114 1.8.10.2 tls * host mode. It contains the data items needed to transfer packets to an
115 1.8.10.2 tls * endpoint via a host channel.
116 1.8.10.2 tls */
117 1.8.10.2 tls struct dwc2_host_chan {
118 1.8.10.2 tls u8 hc_num;
119 1.8.10.2 tls
120 1.8.10.2 tls unsigned dev_addr:7;
121 1.8.10.2 tls unsigned ep_num:4;
122 1.8.10.2 tls unsigned ep_is_in:1;
123 1.8.10.2 tls unsigned speed:4;
124 1.8.10.2 tls unsigned ep_type:2;
125 1.8.10.2 tls unsigned max_packet:11;
126 1.8.10.2 tls unsigned data_pid_start:2;
127 1.8.10.2 tls #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
128 1.8.10.2 tls #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
129 1.8.10.2 tls #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
130 1.8.10.2 tls #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
131 1.8.10.2 tls #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
132 1.8.10.2 tls
133 1.8.10.2 tls unsigned multi_count:2;
134 1.8.10.2 tls
135 1.8.10.2 tls usb_dma_t *xfer_usbdma;
136 1.8.10.2 tls u8 *xfer_buf;
137 1.8.10.2 tls dma_addr_t xfer_dma;
138 1.8.10.2 tls dma_addr_t align_buf;
139 1.8.10.2 tls u32 xfer_len;
140 1.8.10.2 tls u32 xfer_count;
141 1.8.10.2 tls u16 start_pkt_count;
142 1.8.10.2 tls u8 xfer_started;
143 1.8.10.2 tls u8 do_ping;
144 1.8.10.2 tls u8 error_state;
145 1.8.10.2 tls u8 halt_on_queue;
146 1.8.10.2 tls u8 halt_pending;
147 1.8.10.2 tls u8 do_split;
148 1.8.10.2 tls u8 complete_split;
149 1.8.10.2 tls u8 hub_addr;
150 1.8.10.2 tls u8 hub_port;
151 1.8.10.2 tls u8 xact_pos;
152 1.8.10.2 tls #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
153 1.8.10.2 tls #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
154 1.8.10.2 tls #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 1.8.10.2 tls #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
156 1.8.10.2 tls
157 1.8.10.2 tls u8 requests;
158 1.8.10.2 tls u8 schinfo;
159 1.8.10.2 tls u16 ntd;
160 1.8.10.2 tls enum dwc2_halt_status halt_status;
161 1.8.10.2 tls u32 hcint;
162 1.8.10.2 tls struct dwc2_qh *qh;
163 1.8.10.2 tls struct list_head hc_list_entry;
164 1.8.10.2 tls dma_addr_t desc_list_addr;
165 1.8.10.2 tls };
166 1.8.10.2 tls
167 1.8.10.2 tls struct dwc2_hcd_pipe_info {
168 1.8.10.2 tls u8 dev_addr;
169 1.8.10.2 tls u8 ep_num;
170 1.8.10.2 tls u8 pipe_type;
171 1.8.10.2 tls u8 pipe_dir;
172 1.8.10.2 tls u16 mps;
173 1.8.10.2 tls };
174 1.8.10.2 tls
175 1.8.10.2 tls struct dwc2_hcd_iso_packet_desc {
176 1.8.10.2 tls u32 offset;
177 1.8.10.2 tls u32 length;
178 1.8.10.2 tls u32 actual_length;
179 1.8.10.2 tls u32 status;
180 1.8.10.2 tls };
181 1.8.10.2 tls
182 1.8.10.2 tls struct dwc2_qtd;
183 1.8.10.2 tls
184 1.8.10.2 tls struct dwc2_hcd_urb {
185 1.8.10.2 tls void *priv; /* the xfer handle */
186 1.8.10.2 tls struct dwc2_qtd *qtd;
187 1.8.10.2 tls usb_dma_t *usbdma;
188 1.8.10.2 tls u8 *buf;
189 1.8.10.2 tls dma_addr_t dma;
190 1.8.10.2 tls usb_dma_t *setup_usbdma;
191 1.8.10.2 tls void *setup_packet;
192 1.8.10.2 tls dma_addr_t setup_dma;
193 1.8.10.2 tls u32 length;
194 1.8.10.2 tls u32 actual_length;
195 1.8.10.2 tls u32 status;
196 1.8.10.2 tls u32 error_count;
197 1.8.10.2 tls u32 packet_count;
198 1.8.10.2 tls u32 flags;
199 1.8.10.2 tls u16 interval;
200 1.8.10.2 tls struct dwc2_hcd_pipe_info pipe_info;
201 1.8.10.2 tls struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 1.8.10.2 tls };
203 1.8.10.2 tls
204 1.8.10.2 tls /* Phases for control transfers */
205 1.8.10.2 tls enum dwc2_control_phase {
206 1.8.10.2 tls DWC2_CONTROL_SETUP,
207 1.8.10.2 tls DWC2_CONTROL_DATA,
208 1.8.10.2 tls DWC2_CONTROL_STATUS,
209 1.8.10.2 tls };
210 1.8.10.2 tls
211 1.8.10.2 tls /* Transaction types */
212 1.8.10.2 tls enum dwc2_transaction_type {
213 1.8.10.2 tls DWC2_TRANSACTION_NONE,
214 1.8.10.2 tls DWC2_TRANSACTION_PERIODIC,
215 1.8.10.2 tls DWC2_TRANSACTION_NON_PERIODIC,
216 1.8.10.2 tls DWC2_TRANSACTION_ALL,
217 1.8.10.2 tls };
218 1.8.10.2 tls
219 1.8.10.2 tls /**
220 1.8.10.2 tls * struct dwc2_qh - Software queue head structure
221 1.8.10.2 tls *
222 1.8.10.2 tls * @ep_type: Endpoint type. One of the following values:
223 1.8.10.2 tls * - USB_ENDPOINT_XFER_CONTROL
224 1.8.10.2 tls * - USB_ENDPOINT_XFER_BULK
225 1.8.10.2 tls * - USB_ENDPOINT_XFER_INT
226 1.8.10.2 tls * - USB_ENDPOINT_XFER_ISOC
227 1.8.10.2 tls * @ep_is_in: Endpoint direction
228 1.8.10.2 tls * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
229 1.8.10.2 tls * @dev_speed: Device speed. One of the following values:
230 1.8.10.2 tls * - USB_SPEED_LOW
231 1.8.10.2 tls * - USB_SPEED_FULL
232 1.8.10.2 tls * - USB_SPEED_HIGH
233 1.8.10.2 tls * @data_toggle: Determines the PID of the next data packet for
234 1.8.10.2 tls * non-controltransfers. Ignored for control transfers.
235 1.8.10.2 tls * One of the following values:
236 1.8.10.2 tls * - DWC2_HC_PID_DATA0
237 1.8.10.2 tls * - DWC2_HC_PID_DATA1
238 1.8.10.2 tls * @ping_state: Ping state
239 1.8.10.2 tls * @do_split: Full/low speed endpoint on high-speed hub requires split
240 1.8.10.2 tls * @td_first: Index of first activated isochronous transfer descriptor
241 1.8.10.2 tls * @td_last: Index of last activated isochronous transfer descriptor
242 1.8.10.2 tls * @usecs: Bandwidth in microseconds per (micro)frame
243 1.8.10.2 tls * @interval: Interval between transfers in (micro)frames
244 1.8.10.2 tls * @sched_frame: (Micro)frame to initialize a periodic transfer.
245 1.8.10.2 tls * The transfer executes in the following (micro)frame.
246 1.8.10.2 tls * @frame_usecs: Internal variable used by the microframe scheduler
247 1.8.10.2 tls * @start_split_frame: (Micro)frame at which last start split was initialized
248 1.8.10.2 tls * @ntd: Actual number of transfer descriptors in a list
249 1.8.10.2 tls * @dw_align_buf: Used instead of original buffer if its physical address
250 1.8.10.2 tls * is not dword-aligned
251 1.8.10.2 tls * @dw_align_buf_dma: DMA address for align_buf
252 1.8.10.2 tls * @qtd_list: List of QTDs for this QH
253 1.8.10.2 tls * @channel: Host channel currently processing transfers for this QH
254 1.8.10.2 tls * @qh_list_entry: Entry for QH in either the periodic or non-periodic
255 1.8.10.2 tls * schedule
256 1.8.10.2 tls * @desc_list: List of transfer descriptors
257 1.8.10.2 tls * @desc_list_dma: Physical address of desc_list
258 1.8.10.2 tls * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
259 1.8.10.2 tls * descriptor and indicates original XferSize value for the
260 1.8.10.2 tls * descriptor
261 1.8.10.2 tls * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
262 1.8.10.2 tls *
263 1.8.10.2 tls * A Queue Head (QH) holds the static characteristics of an endpoint and
264 1.8.10.2 tls * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
265 1.8.10.2 tls * be entered in either the non-periodic or periodic schedule.
266 1.8.10.2 tls */
267 1.8.10.2 tls struct dwc2_qh {
268 1.8.10.2 tls u8 ep_type;
269 1.8.10.2 tls u8 ep_is_in;
270 1.8.10.2 tls u16 maxp;
271 1.8.10.2 tls u8 dev_speed;
272 1.8.10.2 tls u8 data_toggle;
273 1.8.10.2 tls u8 ping_state;
274 1.8.10.2 tls u8 do_split;
275 1.8.10.2 tls u8 td_first;
276 1.8.10.2 tls u8 td_last;
277 1.8.10.2 tls u16 usecs;
278 1.8.10.2 tls u16 interval;
279 1.8.10.2 tls u16 sched_frame;
280 1.8.10.2 tls u16 frame_usecs[8];
281 1.8.10.2 tls u16 start_split_frame;
282 1.8.10.2 tls u16 ntd;
283 1.8.10.2 tls usb_dma_t dw_align_buf_usbdma;
284 1.8.10.2 tls u8 *dw_align_buf;
285 1.8.10.2 tls dma_addr_t dw_align_buf_dma;
286 1.8.10.2 tls struct list_head qtd_list;
287 1.8.10.2 tls struct dwc2_host_chan *channel;
288 1.8.10.2 tls struct list_head qh_list_entry;
289 1.8.10.2 tls usb_dma_t desc_list_usbdma;
290 1.8.10.2 tls struct dwc2_hcd_dma_desc *desc_list;
291 1.8.10.2 tls dma_addr_t desc_list_dma;
292 1.8.10.2 tls u32 *n_bytes;
293 1.8.10.2 tls unsigned tt_buffer_dirty:1;
294 1.8.10.2 tls };
295 1.8.10.2 tls
296 1.8.10.2 tls /**
297 1.8.10.2 tls * struct dwc2_qtd - Software queue transfer descriptor (QTD)
298 1.8.10.2 tls *
299 1.8.10.2 tls * @control_phase: Current phase for control transfers (Setup, Data, or
300 1.8.10.2 tls * Status)
301 1.8.10.2 tls * @in_process: Indicates if this QTD is currently processed by HW
302 1.8.10.2 tls * @data_toggle: Determines the PID of the next data packet for the
303 1.8.10.2 tls * data phase of control transfers. Ignored for other
304 1.8.10.2 tls * transfer types. One of the following values:
305 1.8.10.2 tls * - DWC2_HC_PID_DATA0
306 1.8.10.2 tls * - DWC2_HC_PID_DATA1
307 1.8.10.2 tls * @complete_split: Keeps track of the current split type for FS/LS
308 1.8.10.2 tls * endpoints on a HS Hub
309 1.8.10.2 tls * @isoc_split_pos: Position of the ISOC split in full/low speed
310 1.8.10.2 tls * @isoc_frame_index: Index of the next frame descriptor for an isochronous
311 1.8.10.2 tls * transfer. A frame descriptor describes the buffer
312 1.8.10.2 tls * position and length of the data to be transferred in the
313 1.8.10.2 tls * next scheduled (micro)frame of an isochronous transfer.
314 1.8.10.2 tls * It also holds status for that transaction. The frame
315 1.8.10.2 tls * index starts at 0.
316 1.8.10.2 tls * @isoc_split_offset: Position of the ISOC split in the buffer for the
317 1.8.10.2 tls * current frame
318 1.8.10.2 tls * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
319 1.8.10.2 tls * @error_count: Holds the number of bus errors that have occurred for
320 1.8.10.2 tls * a transaction within this transfer
321 1.8.10.2 tls * @n_desc: Number of DMA descriptors for this QTD
322 1.8.10.2 tls * @isoc_frame_index_last: Last activated frame (packet) index, used in
323 1.8.10.2 tls * descriptor DMA mode only
324 1.8.10.2 tls * @urb: URB for this transfer
325 1.8.10.2 tls * @qh: Queue head for this QTD
326 1.8.10.2 tls * @qtd_list_entry: For linking to the QH's list of QTDs
327 1.8.10.2 tls *
328 1.8.10.2 tls * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
329 1.8.10.2 tls * interrupt, or isochronous transfer. A single QTD is created for each URB
330 1.8.10.2 tls * (of one of these types) submitted to the HCD. The transfer associated with
331 1.8.10.2 tls * a QTD may require one or multiple transactions.
332 1.8.10.2 tls *
333 1.8.10.2 tls * A QTD is linked to a Queue Head, which is entered in either the
334 1.8.10.2 tls * non-periodic or periodic schedule for execution. When a QTD is chosen for
335 1.8.10.2 tls * execution, some or all of its transactions may be executed. After
336 1.8.10.2 tls * execution, the state of the QTD is updated. The QTD may be retired if all
337 1.8.10.2 tls * its transactions are complete or if an error occurred. Otherwise, it
338 1.8.10.2 tls * remains in the schedule so more transactions can be executed later.
339 1.8.10.2 tls */
340 1.8.10.2 tls struct dwc2_qtd {
341 1.8.10.2 tls enum dwc2_control_phase control_phase;
342 1.8.10.2 tls u8 in_process;
343 1.8.10.2 tls u8 data_toggle;
344 1.8.10.2 tls u8 complete_split;
345 1.8.10.2 tls u8 isoc_split_pos;
346 1.8.10.2 tls u16 isoc_frame_index;
347 1.8.10.2 tls u16 isoc_split_offset;
348 1.8.10.2 tls u32 ssplit_out_xfer_count;
349 1.8.10.2 tls u8 error_count;
350 1.8.10.2 tls u8 n_desc;
351 1.8.10.2 tls u16 isoc_frame_index_last;
352 1.8.10.2 tls struct dwc2_hcd_urb *urb;
353 1.8.10.2 tls struct dwc2_qh *qh;
354 1.8.10.2 tls struct list_head qtd_list_entry;
355 1.8.10.2 tls };
356 1.8.10.2 tls
357 1.8.10.2 tls #ifdef DEBUG
358 1.8.10.2 tls struct hc_xfer_info {
359 1.8.10.2 tls struct dwc2_hsotg *hsotg;
360 1.8.10.2 tls struct dwc2_host_chan *chan;
361 1.8.10.2 tls };
362 1.8.10.2 tls #endif
363 1.8.10.2 tls
364 1.8.10.2 tls /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
365 1.8.10.2 tls static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
366 1.8.10.2 tls {
367 1.8.10.2 tls return (struct usb_hcd *)hsotg->priv;
368 1.8.10.2 tls }
369 1.8.10.2 tls
370 1.8.10.2 tls /*
371 1.8.10.2 tls * Inline used to disable one channel interrupt. Channel interrupts are
372 1.8.10.2 tls * disabled when the channel is halted or released by the interrupt handler.
373 1.8.10.2 tls * There is no need to handle further interrupts of that type until the
374 1.8.10.2 tls * channel is re-assigned. In fact, subsequent handling may cause crashes
375 1.8.10.2 tls * because the channel structures are cleaned up when the channel is released.
376 1.8.10.2 tls */
377 1.8.10.2 tls static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
378 1.8.10.2 tls {
379 1.8.10.2 tls u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
380 1.8.10.2 tls
381 1.8.10.2 tls mask &= ~intr;
382 1.8.10.2 tls DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
383 1.8.10.2 tls }
384 1.8.10.2 tls
385 1.8.10.2 tls /*
386 1.8.10.2 tls * Returns the mode of operation, host or device
387 1.8.10.2 tls */
388 1.8.10.2 tls static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
389 1.8.10.2 tls {
390 1.8.10.2 tls return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
391 1.8.10.2 tls }
392 1.8.10.2 tls
393 1.8.10.2 tls static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
394 1.8.10.2 tls {
395 1.8.10.2 tls return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
396 1.8.10.2 tls }
397 1.8.10.2 tls
398 1.8.10.2 tls /*
399 1.8.10.2 tls * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
400 1.8.10.2 tls * are read as 1, they won't clear when written back.
401 1.8.10.2 tls */
402 1.8.10.2 tls static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
403 1.8.10.2 tls {
404 1.8.10.2 tls u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
405 1.8.10.2 tls
406 1.8.10.2 tls hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
407 1.8.10.2 tls return hprt0;
408 1.8.10.2 tls }
409 1.8.10.2 tls
410 1.8.10.2 tls static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
411 1.8.10.2 tls {
412 1.8.10.2 tls return pipe->ep_num;
413 1.8.10.2 tls }
414 1.8.10.2 tls
415 1.8.10.2 tls static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
416 1.8.10.2 tls {
417 1.8.10.2 tls return pipe->pipe_type;
418 1.8.10.2 tls }
419 1.8.10.2 tls
420 1.8.10.2 tls static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
421 1.8.10.2 tls {
422 1.8.10.2 tls return pipe->mps;
423 1.8.10.2 tls }
424 1.8.10.2 tls
425 1.8.10.2 tls static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
426 1.8.10.2 tls {
427 1.8.10.2 tls return pipe->dev_addr;
428 1.8.10.2 tls }
429 1.8.10.2 tls
430 1.8.10.2 tls static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
431 1.8.10.2 tls {
432 1.8.10.2 tls return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
433 1.8.10.2 tls }
434 1.8.10.2 tls
435 1.8.10.2 tls static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
436 1.8.10.2 tls {
437 1.8.10.2 tls return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
438 1.8.10.2 tls }
439 1.8.10.2 tls
440 1.8.10.2 tls static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
441 1.8.10.2 tls {
442 1.8.10.2 tls return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
443 1.8.10.2 tls }
444 1.8.10.2 tls
445 1.8.10.2 tls static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
446 1.8.10.2 tls {
447 1.8.10.2 tls return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
448 1.8.10.2 tls }
449 1.8.10.2 tls
450 1.8.10.2 tls static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
451 1.8.10.2 tls {
452 1.8.10.2 tls return pipe->pipe_dir == USB_DIR_IN;
453 1.8.10.2 tls }
454 1.8.10.2 tls
455 1.8.10.2 tls static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
456 1.8.10.2 tls {
457 1.8.10.2 tls return !dwc2_hcd_is_pipe_in(pipe);
458 1.8.10.2 tls }
459 1.8.10.2 tls
460 1.8.10.2 tls extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg,
461 1.8.10.2 tls const struct dwc2_core_params *params);
462 1.8.10.2 tls extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
463 1.8.10.2 tls extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
464 1.8.10.2 tls const struct dwc2_core_params *params);
465 1.8.10.2 tls extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
466 1.8.10.2 tls extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
467 1.8.10.2 tls
468 1.8.10.2 tls /* Transaction Execution Functions */
469 1.8.10.2 tls extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
470 1.8.10.2 tls struct dwc2_hsotg *hsotg);
471 1.8.10.2 tls extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
472 1.8.10.2 tls enum dwc2_transaction_type tr_type);
473 1.8.10.2 tls
474 1.8.10.2 tls /* Schedule Queue Functions */
475 1.8.10.2 tls /* Implemented in hcd_queue.c */
476 1.8.10.2 tls extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
477 1.8.10.2 tls extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
478 1.8.10.2 tls extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
479 1.8.10.2 tls extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
480 1.8.10.2 tls extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
481 1.8.10.2 tls int sched_csplit);
482 1.8.10.2 tls
483 1.8.10.2 tls extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
484 1.8.10.2 tls extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
485 1.8.10.2 tls struct dwc2_qh **qh, int mem_flags);
486 1.8.10.2 tls
487 1.8.10.2 tls /* Removes and frees a QTD */
488 1.8.10.2 tls extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
489 1.8.10.2 tls struct dwc2_qtd *qtd,
490 1.8.10.2 tls struct dwc2_qh *qh);
491 1.8.10.2 tls
492 1.8.10.2 tls /* Descriptor DMA support functions */
493 1.8.10.2 tls extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
494 1.8.10.2 tls struct dwc2_qh *qh);
495 1.8.10.2 tls extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
496 1.8.10.2 tls struct dwc2_host_chan *chan, int chnum,
497 1.8.10.2 tls enum dwc2_halt_status halt_status);
498 1.8.10.2 tls
499 1.8.10.2 tls extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
500 1.8.10.2 tls gfp_t mem_flags);
501 1.8.10.2 tls extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
502 1.8.10.2 tls
503 1.8.10.2 tls /* Check if QH is non-periodic */
504 1.8.10.2 tls #define dwc2_qh_is_non_per(_qh_ptr_) \
505 1.8.10.2 tls ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
506 1.8.10.2 tls (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
507 1.8.10.2 tls
508 1.8.10.2 tls #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
509 1.8.10.2 tls static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
510 1.8.10.2 tls static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
511 1.8.10.2 tls static inline bool dbg_perio(void) { return true; }
512 1.8.10.2 tls #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
513 1.8.10.2 tls static inline bool dbg_hc(struct dwc2_host_chan *hc)
514 1.8.10.2 tls {
515 1.8.10.2 tls return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
516 1.8.10.2 tls hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
517 1.8.10.2 tls }
518 1.8.10.2 tls
519 1.8.10.2 tls static inline bool dbg_qh(struct dwc2_qh *qh)
520 1.8.10.2 tls {
521 1.8.10.2 tls return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
522 1.8.10.2 tls qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
523 1.8.10.2 tls }
524 1.8.10.2 tls
525 1.8.10.2 tls
526 1.8.10.2 tls static inline bool dbg_perio(void) { return false; }
527 1.8.10.2 tls #endif
528 1.8.10.2 tls
529 1.8.10.2 tls /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
530 1.8.10.2 tls #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
531 1.8.10.2 tls
532 1.8.10.2 tls /* Packet size for any kind of endpoint descriptor */
533 1.8.10.2 tls #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
534 1.8.10.2 tls
535 1.8.10.2 tls /*
536 1.8.10.2 tls * Returns true if frame1 is less than or equal to frame2. The comparison is
537 1.8.10.2 tls * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
538 1.8.10.2 tls * frame number when the max frame number is reached.
539 1.8.10.2 tls */
540 1.8.10.2 tls static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
541 1.8.10.2 tls {
542 1.8.10.2 tls return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
543 1.8.10.2 tls }
544 1.8.10.2 tls
545 1.8.10.2 tls /*
546 1.8.10.2 tls * Returns true if frame1 is greater than frame2. The comparison is done
547 1.8.10.2 tls * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
548 1.8.10.2 tls * number when the max frame number is reached.
549 1.8.10.2 tls */
550 1.8.10.2 tls static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
551 1.8.10.2 tls {
552 1.8.10.2 tls return (frame1 != frame2) &&
553 1.8.10.2 tls ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
554 1.8.10.2 tls }
555 1.8.10.2 tls
556 1.8.10.2 tls /*
557 1.8.10.2 tls * Increments frame by the amount specified by inc. The addition is done
558 1.8.10.2 tls * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
559 1.8.10.2 tls */
560 1.8.10.2 tls static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
561 1.8.10.2 tls {
562 1.8.10.2 tls return (frame + inc) & HFNUM_MAX_FRNUM;
563 1.8.10.2 tls }
564 1.8.10.2 tls
565 1.8.10.2 tls static inline u16 dwc2_full_frame_num(u16 frame)
566 1.8.10.2 tls {
567 1.8.10.2 tls return (frame & HFNUM_MAX_FRNUM) >> 3;
568 1.8.10.2 tls }
569 1.8.10.2 tls
570 1.8.10.2 tls static inline u16 dwc2_micro_frame_num(u16 frame)
571 1.8.10.2 tls {
572 1.8.10.2 tls return frame & 0x7;
573 1.8.10.2 tls }
574 1.8.10.2 tls
575 1.8.10.2 tls /*
576 1.8.10.2 tls * Returns the Core Interrupt Status register contents, ANDed with the Core
577 1.8.10.2 tls * Interrupt Mask register contents
578 1.8.10.2 tls */
579 1.8.10.2 tls static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
580 1.8.10.2 tls {
581 1.8.10.2 tls return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
582 1.8.10.2 tls }
583 1.8.10.2 tls
584 1.8.10.2 tls static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
585 1.8.10.2 tls {
586 1.8.10.2 tls return dwc2_urb->status;
587 1.8.10.2 tls }
588 1.8.10.2 tls
589 1.8.10.2 tls static inline u32 dwc2_hcd_urb_get_actual_length(
590 1.8.10.2 tls struct dwc2_hcd_urb *dwc2_urb)
591 1.8.10.2 tls {
592 1.8.10.2 tls return dwc2_urb->actual_length;
593 1.8.10.2 tls }
594 1.8.10.2 tls
595 1.8.10.2 tls static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
596 1.8.10.2 tls {
597 1.8.10.2 tls return dwc2_urb->error_count;
598 1.8.10.2 tls }
599 1.8.10.2 tls
600 1.8.10.2 tls static inline void dwc2_hcd_urb_set_iso_desc_params(
601 1.8.10.2 tls struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
602 1.8.10.2 tls u32 length)
603 1.8.10.2 tls {
604 1.8.10.2 tls dwc2_urb->iso_descs[desc_num].offset = offset;
605 1.8.10.2 tls dwc2_urb->iso_descs[desc_num].length = length;
606 1.8.10.2 tls }
607 1.8.10.2 tls
608 1.8.10.2 tls static inline u32 dwc2_hcd_urb_get_iso_desc_status(
609 1.8.10.2 tls struct dwc2_hcd_urb *dwc2_urb, int desc_num)
610 1.8.10.2 tls {
611 1.8.10.2 tls return dwc2_urb->iso_descs[desc_num].status;
612 1.8.10.2 tls }
613 1.8.10.2 tls
614 1.8.10.2 tls static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
615 1.8.10.2 tls struct dwc2_hcd_urb *dwc2_urb, int desc_num)
616 1.8.10.2 tls {
617 1.8.10.2 tls return dwc2_urb->iso_descs[desc_num].actual_length;
618 1.8.10.2 tls }
619 1.8.10.2 tls
620 1.8.10.2 tls static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
621 1.8.10.2 tls usbd_xfer_handle xfer)
622 1.8.10.2 tls {
623 1.8.10.2 tls struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
624 1.8.10.2 tls struct dwc2_qh *qh = dpipe->priv;
625 1.8.10.2 tls
626 1.8.10.2 tls if (qh && !list_empty(&qh->qh_list_entry))
627 1.8.10.2 tls return 1;
628 1.8.10.2 tls
629 1.8.10.2 tls return 0;
630 1.8.10.2 tls }
631 1.8.10.2 tls
632 1.8.10.2 tls static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
633 1.8.10.2 tls struct dwc2_pipe *dpipe)
634 1.8.10.2 tls {
635 1.8.10.2 tls struct dwc2_qh *qh = dpipe->priv;
636 1.8.10.2 tls
637 1.8.10.2 tls if (!qh) {
638 1.8.10.2 tls WARN_ON(1);
639 1.8.10.2 tls return 0;
640 1.8.10.2 tls }
641 1.8.10.2 tls
642 1.8.10.2 tls return qh->usecs;
643 1.8.10.2 tls }
644 1.8.10.2 tls
645 1.8.10.2 tls extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
646 1.8.10.2 tls struct dwc2_host_chan *chan, int chnum,
647 1.8.10.2 tls struct dwc2_qtd *qtd);
648 1.8.10.2 tls
649 1.8.10.2 tls /* HCD Core API */
650 1.8.10.2 tls
651 1.8.10.2 tls /**
652 1.8.10.2 tls * dwc2_handle_hcd_intr() - Called on every hardware interrupt
653 1.8.10.2 tls *
654 1.8.10.2 tls * @hsotg: The DWC2 HCD
655 1.8.10.2 tls *
656 1.8.10.2 tls * Returns IRQ_HANDLED if interrupt is handled
657 1.8.10.2 tls * Return IRQ_NONE if interrupt is not handled
658 1.8.10.2 tls */
659 1.8.10.2 tls extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
660 1.8.10.2 tls
661 1.8.10.2 tls /**
662 1.8.10.2 tls * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
663 1.8.10.2 tls *
664 1.8.10.2 tls * @hsotg: The DWC2 HCD
665 1.8.10.2 tls */
666 1.8.10.2 tls extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
667 1.8.10.2 tls
668 1.8.10.2 tls extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
669 1.8.10.2 tls extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
670 1.8.10.2 tls
671 1.8.10.2 tls /**
672 1.8.10.2 tls * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
673 1.8.10.2 tls * and 0 otherwise
674 1.8.10.2 tls *
675 1.8.10.2 tls * @hsotg: The DWC2 HCD
676 1.8.10.2 tls */
677 1.8.10.2 tls extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
678 1.8.10.2 tls
679 1.8.10.2 tls /**
680 1.8.10.2 tls * dwc2_hcd_get_frame_number() - Returns current frame number
681 1.8.10.2 tls *
682 1.8.10.2 tls * @hsotg: The DWC2 HCD
683 1.8.10.2 tls */
684 1.8.10.2 tls extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
685 1.8.10.2 tls
686 1.8.10.2 tls /**
687 1.8.10.2 tls * dwc2_hcd_dump_state() - Dumps hsotg state
688 1.8.10.2 tls *
689 1.8.10.2 tls * @hsotg: The DWC2 HCD
690 1.8.10.2 tls *
691 1.8.10.2 tls * NOTE: This function will be removed once the peripheral controller code
692 1.8.10.2 tls * is integrated and the driver is stable
693 1.8.10.2 tls */
694 1.8.10.2 tls extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
695 1.8.10.2 tls
696 1.8.10.2 tls /**
697 1.8.10.2 tls * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
698 1.8.10.2 tls *
699 1.8.10.2 tls * @hsotg: The DWC2 HCD
700 1.8.10.2 tls *
701 1.8.10.2 tls * This can be used to determine average interrupt latency. Frame remaining is
702 1.8.10.2 tls * also shown for start transfer and two additional sample points.
703 1.8.10.2 tls *
704 1.8.10.2 tls * NOTE: This function will be removed once the peripheral controller code
705 1.8.10.2 tls * is integrated and the driver is stable
706 1.8.10.2 tls */
707 1.8.10.2 tls extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
708 1.8.10.2 tls
709 1.8.10.2 tls /* URB interface */
710 1.8.10.2 tls
711 1.8.10.2 tls /* Transfer flags */
712 1.8.10.2 tls #define URB_GIVEBACK_ASAP 0x1
713 1.8.10.2 tls #define URB_SEND_ZERO_PACKET 0x2
714 1.8.10.2 tls
715 1.8.10.2 tls /* Host driver callbacks */
716 1.8.10.2 tls
717 1.8.10.2 tls extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
718 1.8.10.2 tls extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
719 1.8.10.2 tls extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
720 1.8.10.2 tls int *hub_addr, int *hub_port);
721 1.8.10.2 tls extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
722 1.8.10.2 tls extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
723 1.8.10.2 tls int status);
724 1.8.10.2 tls
725 1.8.10.2 tls #ifdef DEBUG
726 1.8.10.2 tls /*
727 1.8.10.2 tls * Macro to sample the remaining PHY clocks left in the current frame. This
728 1.8.10.2 tls * may be used during debugging to determine the average time it takes to
729 1.8.10.2 tls * execute sections of code. There are two possible sample points, "a" and
730 1.8.10.2 tls * "b", so the _letter_ argument must be one of these values.
731 1.8.10.2 tls *
732 1.8.10.2 tls * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
733 1.8.10.2 tls * example, "cat /sys/devices/lm0/hcd_frrem".
734 1.8.10.2 tls */
735 1.8.10.2 tls #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
736 1.8.10.2 tls do { \
737 1.8.10.2 tls struct hfnum_data _hfnum_; \
738 1.8.10.2 tls struct dwc2_qtd *_qtd_; \
739 1.8.10.2 tls \
740 1.8.10.2 tls _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
741 1.8.10.2 tls qtd_list_entry); \
742 1.8.10.2 tls if (usb_pipeint(_qtd_->urb->pipe) && \
743 1.8.10.2 tls (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
744 1.8.10.2 tls _hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM); \
745 1.8.10.2 tls switch (_hfnum_.b.frnum & 0x7) { \
746 1.8.10.2 tls case 7: \
747 1.8.10.2 tls (_hcd_)->hfnum_7_samples_##_letter_++; \
748 1.8.10.2 tls (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
749 1.8.10.2 tls _hfnum_.b.frrem; \
750 1.8.10.2 tls break; \
751 1.8.10.2 tls case 0: \
752 1.8.10.2 tls (_hcd_)->hfnum_0_samples_##_letter_++; \
753 1.8.10.2 tls (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
754 1.8.10.2 tls _hfnum_.b.frrem; \
755 1.8.10.2 tls break; \
756 1.8.10.2 tls default: \
757 1.8.10.2 tls (_hcd_)->hfnum_other_samples_##_letter_++; \
758 1.8.10.2 tls (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
759 1.8.10.2 tls _hfnum_.b.frrem; \
760 1.8.10.2 tls break; \
761 1.8.10.2 tls } \
762 1.8.10.2 tls } \
763 1.8.10.2 tls } while (0)
764 1.8.10.2 tls #else
765 1.8.10.2 tls #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
766 1.8.10.2 tls #endif
767 1.8.10.2 tls
768 1.8.10.2 tls
769 1.8.10.2 tls void dwc2_wakeup_detected(void *);
770 1.8.10.2 tls
771 1.8.10.2 tls int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
772 1.8.10.2 tls void dwc2_hcd_reinit(struct dwc2_hsotg *);
773 1.8.10.2 tls int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
774 1.8.10.2 tls struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
775 1.8.10.2 tls int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *, struct dwc2_hcd_urb *, void **,
776 1.8.10.2 tls gfp_t);
777 1.8.10.2 tls void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
778 1.8.10.2 tls u8 ,u8, u8, u8, u16);
779 1.8.10.2 tls
780 1.8.10.2 tls void dwc2_conn_id_status_change(struct work *);
781 1.8.10.2 tls void dwc2_hcd_start_func(struct work *);
782 1.8.10.2 tls void dwc2_hcd_reset_func(struct work *);
783 1.8.10.2 tls
784 1.8.10.2 tls struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
785 1.8.10.2 tls void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
786 1.8.10.2 tls
787 1.8.10.2 tls int _dwc2_hcd_start(struct dwc2_hsotg *);
788 1.8.10.2 tls
789 1.8.10.2 tls int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
790 1.8.10.2 tls
791 1.8.10.2 tls #endif /* __DWC2_HCD_H__ */
792